TRENDS IN VETERINARY PARASITOLOGY

A TWO-DAYS COURSE DEPARTMENT OF VETERINARY PATHOLOGY, MICROBIOLOGY & PARASITOLOGY FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NAIROBI

10TH & 11TH AUGUST 2011

PARASITES OF PIGS

By Dr. Fred O. Obonyo

University of Nairobi

PARASITES OF PIGS

By Dr. Fred O. Obonyo

INTRODUCTION

- Pig production provides a good potential for high economic gain to the farmer
 - High feed conversion efficiency
 - High fecundity
 - Short generation interval
- Parasitism is one of the major limiting factors to profitable pig production
- Impact of parasitism is expected to be greater where the diet is insufficient

INTERNAL PARASITES

- Infectious diseases spread quickly and are easily recognised
- Loss of appetite, reduction in weight gain, poor feed utilization and potentiation of other pathogens are the common results
- Internal parasites fall into three categories; nematodes, cestodes and trematodes
- Parasites of Veterinary importance in the tropics and temperate countries include;
 - Ascaris suum, Oesophagostomum spp, Trichuris suis, Hyostrongylus rubidus, Strongyloides ransomi, Metastrongylus spp, Stephanurus dentatus

INTERNAL PARASITES.....

- Helminths more common in the tropics but less common in temperate countries include;
 - Ascarops strongylina, Physocephalus sexalatus Macracanththorhyncus hirudinacous
 - -Use coprophagus beetles as intermediate hosts
 - Infections are common in outdoor reared pigs
- Helminths of zoonotic importance include;
 Taenia solium (Cysticercosis), Echinococcus granulosus,
 Schistosoma japonicum, Trichinella spp

Nematodes of pigs

Locations	Nematode
Stomach	Hyostrongylus, Ascarops, Physocephalus
S/intestines	Ascaris suum, Strongyloides, Trichostrongylus, Globocephalus
	Macracanthorhynchus
L/intestines	Oesophagostomum, Trichuris
Lungs	Metastrongylus
Muscles	Trichinella
Kidneys	Stephanurus

Hyostrongylus rubidus

Most important stomach worm of pigs

Morphology

- Reddish, slender worms
- Size range, 4 10 mm
- Males are bursate

- Gastric ulcers
- Haemorrhagic gastritis
- Blood suckers, may cause anaemia

Ascarops strongylina

Predilection site: Stomach

Morphology

- Red in colour
- Size: 10 22 mm long
- Pharynx strengthened by double or triple spiral thickenings
- The thickenings continuous to the end

Pathogenicity

Causes gastritis

Physocephalus sexalatus

Intermediate hosts: Coprophagous beetle

Predilection site: Stomach

Morphology

Size:6 - 22mm long

Pharynx has single spiral thickenings

The thickenings break into complete rings in middle

Physocephalus sexalatus

portion

Pathogenicity

Causes gastritis

Ascaris suum

Morphology

- Have three (3) well developed lips (1 dorsal, 2 subventral
- Sizes: 15 41cm by 3 5mm thick
- Eggs:
 - Brown yellow, oval in shape, thick shelled, thick albuminous layer with prominent projections

Genus: Ascaris cont...

Transmission

Ingestion of eggs with L₂

ASCARIS SUUM LIFE CYCLE

Genus: Ascaris cont...

Pathogenicity & clinical signs

- Malnutrition
- Migrating larvae cause tissue damage, hemorrhage, verminous pneumonia
- Large numbers of adults become twisted into bundles & obstruct intestinal lumen or cause intestinal rupture
- May wonder into stomach, cause irritation & vomiting
- May enter bile or pancreatic ducts where they cause obstruction
- Cause diarrhoea, abdominal distensions & pains

Clinical & Post-mortem A. suum

Trichuris suis

Predilection sites: Caecum & colon Morphology

- Size: 5 7 cm
- Thin hair like anterior part
- Thick posterior part
- Posterior end curved in males
- Eggs: Typical trichurid
- Barrel shaped, bipolar plugs

- Blood suckers
- Burrow anterior end into mucosa
- Irritate mucosa

Oesophagostomum dentatum

Morphology

- Size: 6 24 mm
- Males are bursate
- Have cylindrical buccal capsule
- Have leaf-crown
- Have cephalic vesicle, ventral cervical groove
- May have cephalic papillae

Pathogenicity

Larvae normally arrested in gut wall to form nodules

Adults irritate mucosa

- Diarrhoea
- Unthriftiness

Metastrongylus

Species: Metastrongylus apri, M. salmi, M. pudendotectus

Predilection sites: Bronchi & bronchioles

Morphology

- Whitish
- Size: 9 58mm
- Bursate

- Chronic bronchitis & emphysema
- Coughs, nasal disharges, dyspnoea
- Deaths

Trichinella spiralis (garbage worm)

- Small worms(2-4mm)
- Posterior part only slightly thicker than the anterior
- Neither spicule nor sheath
- Females are larviparous

Hosts: Man, pigs, rats and other mammals

Geographical distribution: World wide

Predilection sites: Small intestines, muscle (larvae)

Trichinella spiralis cont...

Morphology

- Slender worms
- Posterior part slightly thicker than the anterior
- Size: 1.4 –4 mm

Transmission

Carnivorism

Trichinella spiralis cont...

Pathogenicity

- Zoonotic
- Muscle pain

Control

- Proper cooking of meat
- Freezing
- Cook / boil pig feed
- Proper housing of pigs

TRANSMISSION RATE

- Management practices determine transmission rate and the risk of economic losses
- Differences exist between indoor and outdoor production system mainly on the type of feed and use of anthelmintics
- High prevalence rate reported in outdoor production system due to poor housing and hygiene
- Infection levels in different age groups are strongly influenced by the immunogenicity of individual helminth spp

External parasites

 Importance varies due to differences in climate and production systems

Haematopinus suis Morphology

- Size: 5-6mm long
- Long narrow head
- Large claws on each of the six legs

- Skin lesions
- Anaemia
- Transmission of Swine pox, Eperythrzoon suis

External parasites cont.....

Sarcoptes scabiei var. suis

Location: Skin(head,ears,shoulders,neck,legs and

tail)

Morphology

- Tiny mites
- Size:0.3-0.5 mm long
- Round body
- 8 stumpy legs
- unjointed pedicels

Pathogenicity

Chronic allergic dermatitis

Haemoparastes

Babesia spp

B.trautmani (Long and narrow)
 B.perroncitoi(Small rounded form)

- Occurs in pairs, oval, amoeboid and ring forms in RBCs
- Transmission: Rhipicephalus spp Boophilus spp and Dermacentor spp

- Haemolytic anaemia
- Abortion in pregnant animals

Eperythrozoon spp

- E. suis and E. parvum
- Occurs on the surface of erythrocytes
- Transmission: parenteral routes, *H. suis*

Pathogenicity

- E.suis causes haemolytic anaemia
- Significant with other concomitant infections

Trypanosomes

- *T. congolense simiae* (polymorphic)
 - T. suis (monomorphic, stout, short flagellum)
 - T. brucei (Chronic infections)
- Transmission: Glossina spp

- Tissue damage in various organs
- Severe anaemia
- immunosupression

Recent survey- Homabay District

- Pigs were examined by faecal and post-mortem methods
- Overall prevalence was high may be due to outdoor production system(housing and hygiene)
- Parasite spp were *Oesophagostomum* spp, *Strongyloides* spp, *Trichuris* spp, *Ascaris* spp, *Metastrongylus* spp, *H. rubidus*, *T. axei* and *P.sexalatus*
- Faecal examination indicated high prevalence of Oesophagostomum spp. T. suis, S. ransomi, H. rubidus and Ascaris spp had a lower prevalence
- P.M examination indicated a high prevalence of Oesophagostomum spp, H.rubidus, P.sexalatus and Metastrongylus spp

Worms recovered at P.M

Survey cont.....

- T. suis, T. axei and A. suum had a low prevalence
- P.M examination reveals the spp and is more accurate.
- Overall high prevalence could be due to outdoor production system: pigs were rarely dewormed and were not supplemented with commercial feeds
- Adults recorded highest mean epg while piglets recorded the lowest mean epg may be due to continuous exposure of adult pigs to infective stages
- Infection levels varied from division to division probably a reflection of influence of climate on survival of infective stages

Survey conti.....

- Most of the animals had low to moderate egg counts and low worm burdens(Sub-clinical infections)
- Subclinical infections are important economically
 - -retarded growth
 - -reduced productivity of animals
 - Susceptibility to other infections
- Helmithosis is a prominent problem for pig farmers and many farmers are living with it; it is not a major issue to farmers
- Need to undertake educational efforts if pig farmers are to realise production and economic benefits associated with the control of helminths

