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Abstract 

The avian dawn chorus is a period of high song output performed daily around sunrise 

during the breeding season. Singing at dawn is of such significance to birds that they 

remain motivated to do so amid the noise of numerous others. Yet, we still do not fully 

understand why the dawn chorus exists. Technological advances in recording 

equipment, data storage and sound analysis tools now enable collection and scrutiny of 

large acoustic datasets, encouraging research on sound-producing organisms and 

promoting ‘the soundscape’ as an indicator of ecosystem health. Using an unrivalled 

dataset of dawn chorus recordings collected during this thesis, I explore the chorus 

throughout Great Britain with the prospect of furthering our understanding and 

appreciation of this daily event. I first evaluate the performance of four automated 

signal recognition tools (‘recognisers’) when identifying the singing events of target 

species during the dawn chorus, and devise a new ensemble approach that improves 

detection of singing events significantly over each of the recognisers in isolation. I then 

examine daily variation in the timing and peak of the chorus across the country in 

response to minimum overnight temperature. I conclude that cooler temperatures result 

in later chorus onset and peak the following dawn, but that the magnitude of this effect 

is greater at higher latitude sites with cooler and less variable overnight temperature 

regimes. Next, I present evidence of competition for acoustic space during the dawn 

chorus between migratory and resident species possessing similar song traits, and infer 

that this may lead either to fine-scale temporal partitioning of song, such that each 

competitor maintains optimal output, or to one competitor yielding. Finally, I 

investigate day-to-day attenuation of song during the leaf-out period from budburst 

through to full-leaf in woodland trees, and establish the potential for climate-driven 

advances in leaf-out phenology to attenuate song if seasonal singing activity in birds has 

not advanced to the same degree. I find that gradual attenuation of sound through the 

leaf-out process is dependent on the height of the receiver, and surmise that current 

advances in leaf-out phenology are unlikely to have undue effect on song propagation. 

This project illustrates the advantage of applying new technology to ecological studies 

of complex acoustic environments, and highlights areas in need of improvement, which 

is essential if we are to comprehend and preserve our natural soundscapes. 
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1.1 Motivation 

Currently, habitat and biodiversity losses are occurring at greater rates than at any other 

period in human history (IPBES, 2019), and extinction rates have risen to between 100 

and 1000 times the rate during pre-human history (Lamkin and Miller, 2016). Habitat 

management and wildlife conservation is increasingly important in stemming declines 

in animal populations globally. To develop effective management strategies, there is an 

urgent requirement to document and monitor the occurrence and distribution of species 

on regional, continental and global scales, and to understand species’ ecological 

requirements (Wilson, 2017). Traditional field methods of biodiversity monitoring and 

assessment are likely to be ineffective given the broad spatial extent and short time 

frame required to assess the current rapid biodiversity losses (Guyot et al., 2016). 

Recent widespread access to computational and communication technology has led to 

novel approaches to study the natural world (reviewed by August et al., 2015; Pimm et 

al., 2015). Perhaps the most familiar of these is automated collection of images and 

acoustic recordings for biological monitoring (August et al., 2015). Indeed, one of the 

most efficient means of surveying sound-producing taxa is by passive acoustic 

monitoring (PAM), which refers to the survey of wildlife and environments using sound 

recorders, or acoustic sensors, without interfering with animal behaviour (Browning et 

al., 2017; Sueur and Farina, 2015). PAM lends itself to rapid assessment programmes 

that quickly gauge the biodiversity of distinct regions (Brandes, 2008a; Riede, 1998). 

With loss of habitat and biodiversity, environments lose their natural sounds 

(Dumyahn and Pijanowski, 2011; Pijanowski et al., 2011a), which are increasingly 

replaced by human-generated sounds (Schafer, 1994). While the value of the natural 

soundscape is recognised by humans (Davies et al., 2013), it is also of great importance 

to wildlife (Dumyahn and Pijanowski, 2011). The acoustic niche hypothesis (ANH) 

observes that sounds or vocalisations produced by species within a community are 

separated in frequency and time, such that there is little overlap, leading to partitioning 

of acoustic space (Krause, 1987). The ANH refers directly to the ecological niche 

concept, and, therefore, recognises that if equilibrium conditions are disrupted, for 

example, by the introduction of human-generated sounds, or alteration of species 

composition, there could be negative impacts on ecosystem functioning (Dumyahn and 

Pijanowski, 2011). 
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Birdsong is amongst the most appealing, yet complex, of sounds produced in 

nature, and undoubtedly makes the largest contribution to natural soundscapes in 

temperate regions of the world (Farina et al., 2011a). Although usually requiring trained 

individuals (Hobson et al., 2002), aural identification of vocalisations is the most 

efficient means of surveying passerine birds, especially in dense habitat, where visual 

detection may be compromised (Brandes, 2008a). Guidelines for traditional surveys 

(e.g. point counts and transects) state that surveys are optimally conducted at or around 

dawn, during the main breeding season, when the number of species detected per unit 

time is maximised (Bibby et al., 2000). Whether a researcher wishes to detect the 

presence of a species of interest, or to build a comprehensive list of species for 

biodiversity assessment, for most birds, the dawn chorus presents the optimal 

opportunity to achieve this efficiently. In addition, it is hypothesised that the dawn 

chorus differs functionally from song delivered at other times of the day, and that 

singing behaviour at dawn can provide insight into numerous aspects of bird ecology, 

including breeding stage, fitness of individuals and time and energy budgets. Yet, 

despite its importance to birds as a communication network, and to humans for its 

aesthetic value, many aspects of the dawn chorus remain a mystery. For example, few 

studies have assessed the influence of environmental and climatic conditions on the 

spatial and temporal structure of the chorus at the community level (e.g. Allard, 1930; 

Bruni et al., 2014; Farina et al., 2015, 2015; Leopold and Eynon, 1961; Thomas et al., 

2002; Wright, 1913, 1912), and even fewer have compared singing activity in the 

chorus across different regions and habitats (e.g. Da Silva and Kempenaers, 2017; 

Mace, 1989a), or through seasons. The role of different species that take part and 

contribute to the chorus also remains little understood (e.g. Hasan, 2011; Keast, 1994). 

Indeed, we still do not fully comprehend exactly why birds sing most intensely at dawn 

in the first place. A greater understanding of such matters will assist in identifying and 

interpreting modifications to the chorus in our changing world. In turn, this can inform 

on the health of bird populations and communities, and on the environment as a whole.  

1.2 Thesis aims and outline 

The main aims of this thesis are: (1) to determine the efficacy of applying new and 

accessible technology in sound recording hardware and signal recognition software to 

the avian dawn chorus, (2) to better understand the motivation behind the dawn chorus 
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as it builds, peaks and wanes across the country, and (3) to identify potential threats to 

the chorus, as we currently know it, as birds continue to adapt to changes in their 

environment. The specific aims of the introductory and main data chapters are outlined 

below: 

Chapter 2 – The ecology of the dawn chorus 

This chapter serves as an introduction to birdsong and the dawn chorus. I will outline 

seasonal singing patterns in temperate passerines, before presenting a review of current 

theory surrounding the existence of the dawn chorus, and of factors affecting its day-to-

day timing. I will then describe the mechanisms birds may apply to counteract acoustic 

competition during the chorus, before ending with a review on the effects of habitat on 

the propagation of song at dawn.   

Chapter 3 – Technological advances in the study of birdsong 

Here, I will provide a report on recent technological developments in the ecological 

study of birdsong. I will outline novel tools currently available to ecologists, and 

highlight the advantages of their application. I will also point-out some areas requiring 

improvement.   

Chapter 4 – Study sites  

This brief chapter serves to introduce the study sites used for data collection in chapters 

5, 6 and 7, and provides a point of reference whilst interpreting these chapters. 

Chapter 5 – Automated identification and classification of birdsong: an ensemble 

approach 

I will test an array of readily-available automated signal recognition tools 

(‘recognisers’), each programmed to identify several target species in a dataset of 

acoustic surveys of the dawn chorus. I will devise an ensemble model built upon the 

results returned by the recognisers, and compare the ensemble’s performance to that of 

each recogniser in isolation. 
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Chapter 6 – Tracking the avian dawn chorus across Great Britain with climate 

In this chapter, I will apply an acoustic index (AI) to a large acoustic dataset of the 

dawn chorus, collected at multiple sites throughout Great Britain. I will use the 

information obtained to re-visit an assumption of the energy stochasticity hypothesis, 

which provides a widely-accepted explanation for the dawn chorus. I will examine the 

importance of variability in overnight temperature on the onset and peak of the chorus 

within different regions the country, and discuss the implications of my findings with 

respect to a changing climate.  

Chapter 7 – Competition for acoustic space between resident and migratory 

species during the dawn chorus 

Here, I will investigate interactions between pairs of species that potentially compete for 

acoustic space during the dawn chorus due to similarities in song parameters. I will first 

determine whether each species in a pair apparently avoids the other’s song, before 

testing if the birds manage to maintain optimal song output in the presence of its 

competitor.  

Chapter 8 – The effect of advancing leaf-out phenology on breeding bird song 

Finally, I will determine the day-to-day attenuation of sounds of different frequency and 

transmission distance during the leaf-out process, from budburst through to full-leaf, in 

deciduous woodland habitat. I will then establish if climate-driven advances in leaf-out 

phenology have the potential to cause undue attenuation of birdsong if birds have not 

advanced seasonal singing activity to the same degree.       
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2.1 Communication by sound 

Animal communication can be defined as the transmission of a signal from one 

individual to another, such that, in general, the signaller benefits from the response of 

the recipient (Slater, 1983). Communication may take place via one or a combination of 

sensory channels: chemical, visual, tactile, and acoustic. The most fundamental piece of 

information transmitted is the species identity of the signaller, which is essential when 

the individual is searching for a mate (Slater, 1983). In many species, one sex, typically 

females, may assess several sexual traits in mate choice (Bro-Jørgensen, 2010; 

Candolin, 2003), and the opposite sex may utilise one, two or more communicative 

channels to advertise these traits. The importance of visual signals to birds is obvious, as 

signified by the striking plumage and visual displays of many species. Some combine 

visual display with acoustic signals, for example, lekking black grouse Lyrurus tetrix  

(Hovi et al., 1997), a bird of moorland and early successional woodland (Cramp and 

Simmons, 1979). However, visual display becomes a less effective means of 

communication for species living in dense habitat, such as mature woodland or reedbed 

(Catchpole and Slater, 2008). Although male Paradisaeidae of the tropical forests of 

New Guinea produce, arguably, the most elaborate visual displays of all birds, 

vocalisation is required to attract females to display areas in the first instance (e.g. Frith 

and Frith, 1988). This is because acoustic signals can travel greater distances, 

negotiating obstructions, to reach intended receivers within densely vegetated habitat, 

where visual signals fail (Waser and Waser, 1977). Further advantages of acoustic 

communication are largely associated with the efficiency and ephemerality of sound 

production; unlike showy plumage, a call or song is produced only when required, but 

may still convey a great deal of information (Catchpole and Slater, 2008), and 

apparently, with little energy expenditure (Oberweger and Goller, 2001; Ward et al., 

2004; but see Brackenbury, 1979; Hasselquist and Bensch, 2008). However, the 

distance over which an acoustic signal can be clearly heard depends on its amplitude 

and structure at the source, the characteristics of the medium (e.g., in terrestrial 

environments, wind speed, air temperature or humidity), the structure of the habitat, 

background noise, and the receiver’s mechanism for detecting the signal (Wiley and 

Richards, 1978). 
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2.2 What is birdsong? 

Bird acoustic signals are typically separated into calls and songs. In general, calls are 

simple vocalisations comprising one or two syllables produced by both male and female 

birds throughout the year, and are used over a range of contexts, including signalling 

alarm, assisting flock cohesion, maintaining parent-young contact, providing 

information about food sources, and signalling a need for food from a parent or mate 

(Ball and Hulse, 1998; Catchpole, 1979; Catchpole and Slater, 2008; Thorpe, 1961). 

Typically, the term ‘song’ is reserved for vocalisations that are generally longer, more 

complex, and which are produced solely by male birds of the suborder oscines (order 

Passeriformes) during the breeding period, when it serves two main communicative 

functions:  declaration of territory in male-male competition, and the attraction and 

stimulation of females for mating (Ball and Hulse, 1998; Brenowitz et al., 1997; 

Catchpole, 1979; Catchpole and Slater, 2008; Kroodsma and Byers, 1991; Nowicki and 

Searcy, 2004; Slagsvold, 1977). However, this view of birdsong is heavily biased by the 

fact that most research on the topic has been carried out on species and communities in 

northern temperate latitudes with distinct breeding seasons, and there exist numerous 

exceptions (e.g. Catchpole and Slater, 2008; Morton, 1996; Price et al., 2009; Slater and 

Mann, 2004). For example, song is not entirely restricted to males.  In the tropics and 

sub-tropics, where the seasons are not so strictly defined, individuals of many species 

remain in the same area, where males and females pair for life and co-operatively 

defend the same territories together for long periods (Hooker and Hooker, 1969; 

Morton, 1996). Within such species, both members of a pair may sing, either 

synchronously or alternately, to produce a duet (Farabaugh, 1982; Hall, 2004; Hooker 

and Hooker, 1969; Morton, 1996; Thorpe, 1963; Whittingham et al., 1997). Females of 

some species also regularly produce solo song (e.g. superb fairy-wren Malurus cyaneus: 

Cooney and Cockburn, 1995; stripe-headed sparrow Peucaea ruficauda: Illes and 

Yunes-Jimenez, 2009), and there is gathering evidence that female song is likely the 

ancestral state in some (Garamszegi et al., 2007; Price et al., 2009), or even all (Odom 

et al., 2014; Riebel et al., 2005), passerines. Although an increasing number of studies 

report female song in the northern temperate zone species (Table 2.1), it is still 

considered to be very rare amongst birds at these latitudes. In many of the species where 

it does occur, it does so only in a few individuals within a population, or at very defined 
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periods during, or just prior to, nest building or egg-laying. The list of potential 

functions of female song include inter- and intra-sexual competition for nesting sites or 

mates, territory defence and mate attraction (Cain and Langmore, 2015; Collins, 2004), 

and as such, do not differ significantly from those of male song. However, in some 

species, its exact function remains unknown (Krieg and Getty, 2016), and the literature 

contains little reference to female passerine song in temperate regions at dawn (cf. Gil 

and Llusia, 2020). It is, therefore, unlikely that breeding bird song recorded at dawn and 

subjected to analyses in this thesis was produced by female birds, and female song is not 

considered further.  

 

Table 2.1 A list of example publications that have reported female song in northern temperate 

zone birds, and the subject species. In most studies, incidences of female song were rare, and 

often reported for single or few individuals. Studies reporting regular song, state that song was 

largely delivered outside of the breeding season (Baptista et al., 1993; Hoelzel, 1996) or when 

accompanied by the male (McElroy and Ritchison, 1996). 

 

 

Song is not solely confined to the breeding season in temperate regions. Resident 

and migratory European robins Erithacus rubecula hold individual territories 

throughout the autumn and winter months, which they defend with song (Hoelzel, 1986; 

Kriner and Schwabl, 1991; Schwabl, 1992). Both sexes sing in autumn when territories 

Publication

Arcese et al. (1988) Song sparrow Melospiza melodia

Baptista et al. (1993) White-crowned sparrow Zonotrichia leucophrys

Beletsky (1983) Red-winged blackbird Agelaius phoeniceus

Evans Ogden et al. (2003) Hooded warbler Setophaga citrina

Hobson and Sealy (1990) Yellow warbler Setophaga petechia

Hoelzel (1986) European robin Erithacus rubecula

Kreig and Getty (2016) House wren Troglodytes aedon

Langmore and Davis (1997) Dunnock Prunella modularis

Langmore et al. (1996) Alpine accentor Prunella collaris

Mahr et al. (2016) Blue tit Cyanistes caeruleus

McElroy and Ritchison (1996) Northern cardinal Cardinalis cardinalis

Ritchison (1983) Black-headed grosbeak Pheucticus melanocephalus

Sandell and Smith (1997) Common starling Sturnus vulgaris

Taff et al. (2012) Common yellowthroat Geothlypis trichas

Species
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are being established, although female song ceases with the onset of the breeding season 

(Hoelzel, 1986; Kriner and Schwabl, 1991; Schwabl, 1992). In addition, many long-

distance migratory passerines that breed in the Palearctic, reportedly sing regularly 

whilst on their tropical African wintering grounds (Sorensen et al., 2016). In the 

common nightingale Luscinia megarhynchos (Kipper et al., 2017) and great reed 

warbler Acrocephalus arundinaceous (Sorensen et al., 2016) it is believed that this 

winter singing acts as practice, to improve the quality of song, rather than to function in 

territory defence. 

Finally, song in oscines is not necessarily complex. For example, the song of the 

chipping sparrow Spizella passerina is merely a trill, comprised of repetitions of one 

more-or-less identical syllable (Albrecht and Oring, 1995; Marler and Isaac, 1960), and 

the monotonous ‘cheeping’ of a male house sparrow Passer domesticus appears no 

more complex in structure and sound than a repeated call. Nevertheless, such 

vocalisations fulfil the same function as more complex song in other species, and 

effectively, are very simple songs (Catchpole and Slater, 2008). Indeed, it is 

hypothesised that selection should favour simplistic song when the principal function is 

territory defence (Albrecht and Oring, 1995; section 2.4.3). Therefore, whether to 

classify a vocalisation as a call or song is also related to the perceived function of the 

vocalisation (Ball and Hulse, 1998). With this in mind, within the data chapters of this 

thesis, I consider all vocalisations that function in territory defence and mate-attraction, 

including those produced by males and females of the non-passerine families Strigidae, 

Columbidae, Picidae (including drumming) and Cuculidae. In passerines, these 

vocalisations (‘true song’) are presumed to be produced solely by male birds. 

2.3 Seasonal rhythms in singing activity 

Seasonal and diurnal changes in the intensity of singing activity are typical of 

temperate passerines. Photoperiod is one of the most important environmental cues 

regulating seasonal changes in the reproductive physiology and behaviour of northern 

temperate zone species (Dawson et al., 2001; Slagsvold, 1977; Smith et al., 1997b). 

Song activity in passerines is controlled by a network of interconnected brain regions 

(or nuclei), and numerous seasonally reproductive species exhibit pronounced seasonal 

plasticity in these regions (e.g. Brenowitz et al., 1998; Nottebohm et al., 1987, 1986; 
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Smith et al., 1997a; Tramontin et al., 2000), which is primarily under the control of 

gonadal steroid hormones, notably, testosterone (e.g. Andrew, 1969; Arnold, 1975; 

Brenowitz et al., 1998; Marler et al., 1988; Nottebohm et al., 1987; Poulsen, 1951; 

Smith et al., 1997a; Tramontin et al., 2000). Ultimately, testosterone secretion is 

triggered by long-day photoperiods in spring, which increase circulating concentrations 

during the reproductive phase (Catchpole and Slater, 2008). Photoperiod may also act 

independently of steroid concentrations to supplement or modulate the effects of 

testosterone (Smith et al., 1997b). The process culminates in a seasonal stimulating 

effect on song production as well as song development and crystallisation (Alward et 

al., 2017). 

Within the seasonal cycle of physiologically-controlled song production, there are 

aspects under behavioural control, of which, much depends upon the function(s) of 

song. If song is mainly used in territorial defence, then singing should persist 

throughout the breeding season, even if at a reduced rate, and males should sing at 

increased rates when other males are singing. If the purpose of song is to protect 

paternity, then output should peak during the female’s fertile period (i.e. during egg-

laying; Birkhead and Møller, 1992). On the other hand, if the principal function of song 

is to attract and retain mates, then output should peak prior to pairing and egg-laying, 

and should cease upon the commencement of egg-laying; unpaired males should 

continue singing throughout the breeding season, and paired males should resume 

singing should they lose their nest or mate (Merilä and Sorjonen, 1994). Further, 

seasonal singing activity is likely to begin earlier in resident species than in migratory 

species (Fig. 2.1), as residents may have established territories prior to the arrival of 

spring migrants (Slagsvold, 1977). Finally, within a species, an individual may adjust 

his own singing activity according to his breeding stage, that of his mate, or that of 

neighbouring conspecifics. The result is a complex interaction of seasonal singing 

activity, both within and between species in a community, which is dependent on the 

breeding period, mating system (e.g. monogamy, polygyny or polygamy), and number 

of broods within a species, as well as the breeding status (paired or non-paired; e.g. 

Amrhein et al., 2004) and quality of individuals.  

The majority of autecological studies concerning temperate-zone passerines 

conclude that mate attraction is the primary function of song. Indeed, for the sedge 

warbler Acrocephalus schoenbaenus, this appears to be its sole function, as males cease 
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singing abruptly upon pairing, and they recommence singing only if their mate is lost 

(Catchpole, 1973). Territorial disputes between males are not settled by song, instead, 

intruders are actively approached by territory-holders (Catchpole, 1973). This is a 

pattern also recognised in the bluethroat Luscinia svecica (Merilä and Sorjonen, 1994), 

and for such species, song is confined to a short period early in the season. In other 

species, however, song serves a secondary function of territory announcement or 

territory defence (e.g. chaffinch Fringilla coelebs Hanski and Laurila, 1993; redwing 

Turdus iliacus Lampe and Espmark, 1987), and the seasonal period of song may persist 

throughout the breeding cycle. Klit (1999) confirmed that song in lesser whitethroat 

Sylvia curruca males does indeed function in territorial defence, but only until males are 

paired. Following this, the importance of the initial territory, and the motivation to 

defend it by song, decreases, and the male defends a smaller territory, surrounding the 

final nest site selected by the female, by actively approaching intruders. 

Many passerines are polygynous, and males may continue to sing beyond 

attraction of a primary mate in order to attract a second mate (e.g. willow warbler 

Phylloscopus trochilus, Gil et al., 1999; great reed warbler, Hasselquist and Bensch, 

1991; pied flycatcher Ficedula hypoleuca, Lundberg and Alatalo, 1992; common 

chiffchaff Phylloscopus collybita, Rodrigues, 1996; wood warbler Phylloscopus 

sibilatrix, Temrin, 1986), and/or to attract the mates of neighbouring males for extra-

pair copulations (e.g. common reed warbler Acrocephalus scirpaceus, Catchpole, 1973; 

common stonechat Saxicola rubicola, Greig-Smith, 1982; great tit Parus major, 

Slagsvold et al., 1994; willow tit Poecile montanus, Welling et al., 1995). Conversely, 

Møller (1988) states that male yellowhammers Emberiza citrinella sing most intensely 

during the fertile period of their own mates in order to deter neighbouring males seeking 

extra-pair copulations. Poly-territorial individuals may continue singing at high intensity 

only when they are within a secondary territory, and song becomes reduced within the 

primary territory (Hasselquist and Bensch, 1991; Lundberg and Alatalo, 1992; Temrin, 

1986).  

In contrast to polygynous species, the Eurasian blackbird Turdus merula is 

monogamous, and sedentary pairs remain faithful from one year to the next (Snow, 

1958a, 1958b). Together, they may raise up to four broods, although two or three is 

more typical, during a breeding season that extends between March and June (Cuthill 

and Macdonald, 1990; Snow, 1958a, 1958b). Snow (1958a) discovered that blackbirds 
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in his study population in Oxford, UK were in full song by mid- to late-February, and 

that the vast majority of these early season singers were first-year males attempting to 

set-up and announce new territories. Older males did not commence singing until 

March, when their mates were laying their first egg clutches. Thereafter, song output 

from paired males varied individually, with peaks coinciding with their mate’s egg-

laying periods. Song ceased altogether in July, when breeding ended and moult began. 

In his account of the cycle of song in the northern wren Troglodytes troglodytes in 

Cambridge, UK, Armstrong (1955) relates annual progression in song development and 

output with prevailing weather conditions. In a similar study on Eurasian blackbirds, 

Snow (1958a) observed that seasonal song onset was delayed by cold weather in 

February, but encouraged by mild conditions during this month. Additionally, Slagsvold 

(1977) found that the first seasonal peak in song activity amongst various species 

breeding in southern Norwegian woodlands was closely related with temperature and 

time of snow-melt, along with leaf-out times and invertebrate prey development. 

Comprehensive studies explicitly illustrating seasonal singing activity amongst 

temperate woodland birds are surprisingly scant, and there has been little development 

upon early histograms provided by Cox (1944), which were based upon a limited 

dataset of counts of singing males in a British woodland (Fig. 2.1), and those of 

Slagsvold (1977), built upon a dataset of over 20 Norwegian woodland species. 

Considering the change in environmental conditions, and consequent changes to bird 

populations and communities during the intervening years (e.g. Burfield and van 

Bommel, 2004; DEFRA, 2019), these studies likely require revision. 
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Figure 2.1 The seasonal variation in the number of males of different passerine species 

recorded singing during morning and evening transects in a British woodland habitat from 

February to October (After Cox, 1944). Peaks reflect certain stages of the breeding cycle, which 

may differ amongst species depending on the main function of song. Note also, the abrupt peak 

in the migratory willow warbler, reflecting newly-arriving male birds, compared to the gradual 

increase in many of the resident species. 

 

2.4 Why do birds sing at dawn? 

During the breeding season, most northern temperate zone male passerines sing most 

frequently and intensely during the period immediately prior to sunrise, when, together, 

they produce the avian dawn chorus (Armstrong, 1963). Multiple hypotheses have been 

proposed to explain the origin and cause of this daily phenomenon, which can be 

grouped into three broad categories: intrinsic factors, environmental factors and social 

factors (Dabelsteen and Mathevon, 2002; Farina, 2014; Stacier et al., 1996). Intrinsic 

factors include circadian cycles of hormone secretion and the physiological 

requirements of individuals. Environmental factors are represented by light levels, 
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microclimate and habitat structure, and social factors are based upon mate attraction, 

territory defence and social dynamics.  

2.4.1 Intrinsic factors 

Circadian rhythms 

In most organisms, and all birds (Cassone, 2014), many behavioural and physiological 

processes follow an exact rhythm, based upon an entrainable, internal biological clock 

(Aschoff, 1984). In the absence of external cues, the clock runs on an approximately 

24 hr cycle (O’Neill et al., 2011), but is typically adjusted by variation in natural light 

levels (Da Silva et al., 2014). The avian pineal gland and its hormone, melatonin, play a 

fundamental role in entrainment and maintenance of circadian rhythms in birds 

(Cassone and Menaker, 1984; Gwinner et al., 1997). Darkness activates increased 

melatonin-release (Reiter, 1993), which, in turn, induces sleep (Ferguson et al., 2010). 

Pinealectomy in the house sparrow results in eradication of circadian rhythms in 

locomotor activity (Gaston and Menaker, 1968), and constant light conditions have the 

same effect on locomotor activity in intact white-throated sparrows Zonotrichia 

albicollis (McMillan, 1972). Wang et al. (2012) recognised that persistence of 

undirected singing in socially isolated birds (cf. Rashotte et al., 2001) reflects an 

endogenous motivational state that is free of regulation by external environmental and 

social factors. They provided evidence that melatonin not only controls diel locomotor 

activity in birds, but also controls rhythmicity in singing behaviour, by acting directly 

on the song control system in the avian forebrain.  

Physiological requirements 

Stochastic dynamic programming (SDP) is a computational procedure that predicts 

optimal behavioural routines, under specified conditions, that maximise individual 

fitness (Houston et al., 1988). A simple SDP model, termed the energy stochasticity 

hypothesis, predicts daily singing routines in birds based upon their energy reserves, and 

provides a general explanation for the dawn chorus (e.g. Houston and McNamara, 1987; 

Hutchinson, 2002; McNamara et al., 1987).  The model assumes that during daytime in 

the breeding season, male birds must choose between two competing, but necessary, 

activities: foraging and singing. Foraging increases the chances of survival, but singing 

provides the opportunity to attract a mate, which yields a higher ultimate reward than 
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mere survival. The birds rest overnight, when they lose mass thermoregulating. 

Overnight mass loss is greater on cold nights (Godfrey and Bryant, 2000; Thomas and 

Cuthill, 2002), and the model assumes that overnight temperatures are unpredictable. 

Therefore, a bird must forage throughout the day so reserves at dusk ensure survival 

through an almost worst-case night. At dawn, a bird may possess excess fat storage if 

the worst-case night did not materialise, but there are costs attributed to this, including 

increased metabolic expenditure, wing-loading and predation risk (Witter and Cuthill, 

1993). The benefits of foraging at dawn are limited, due to low light levels (Kacelnik, 

1979), but if the bird can assume foraging success later in the day, he can facilitate 

metabolism of excess fat by producing song at dawn, whilst also gaining the benefits of 

song production (Hutchinson and McNamara, 2000; Thomas, 1999). 

The underlying assumptions of the energy stochasticity hypothesis have been 

tested directly and indirectly in the field via several food manipulation experiments. For 

example, Cuthill and MacDonald (1990) demonstrated that male Eurasian blackbird 

commenced dawn singing earlier, for a longer duration, and at a higher peak rate during 

periods of supplementary food provision. Similarly, supplementary-fed silvereye 

Zosterops lateralis not only achieved higher song rate than non-fed individuals, but also 

increased song length, and were capable of shifting song to a higher frequency band 

(Barnett and Briskie, 2007). Comparable responses have been observed in pied 

flycatcher (Gottlander, 1987), Ipswich sparrow Passerculus sandwichensis princeps 

(Reid, 1987), Carolina wren Thyrothorus ludovicianus (Strain and Mumme, 1988), and 

European robin (Thomas, 1999). A criticism of food supplementation studies, however, 

is that the treatment may be affecting the focal male’s perception of his territory, 

believing it to be a more valuable resource (Barnett and Briskie, 2007), or his territory 

may be prone to increased intrusion from neighbouring males (Ydenberg, 1984), 

prompting increases in territorial song production. Perhaps the most convincing 

evidence supporting the energy stochasticity hypothesis has been gathered by studies 

evaluating the effect of day-to-day variation in temperature on singing routines. For 

example, Garson and Hunter (1979) showed that there exists a significant positive 

relationship between minimum overnight temperature and the duration of song in 

northern wren and great tit the following dawn. Similar responses of song rate to 

temperature have been found in other species (e.g. Gottlander, 1987; Reid, 1987; Strain 

and Mumme, 1988; Thomas, 1999). Finally, the hypothesis withstood more direct 
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scrutiny when Thomas and Cuthill (2002) found that free-living European robins 

achieved greater song rate at dawn when their body mass was high. However, the 

authors maintain that overnight temperatures are not entirely unpredictable, as the 

minimum temperature of two successive nights can be correlated, and that birds may 

anticipate the temperature of the approaching night based upon their experience of the 

previous night. The authors supported a modification to the initial SDP model, when 

they found that birds were capable of strategically controlling mass at dusk, by 

increasing their daytime foraging rate if overnight temperatures were expected to be 

cold, and vice versa. Additionally, Bednekoff et al. (1994) discovered that captive great 

tits are capable of regulating overnight mass-loss when exposed to a variable, and 

hence, unpredictable, overnight temperature regime. However, the great tits consumed 

the same volume of food as when exposed to constant temperature regimes, and instead, 

regulated overnight expenditure through variation in faecal deposition, in order to match 

their required fat reserves at dawn. As a result, their body mass at dawn was not 

significantly greater on warm versus cold nights. This ability of birds to anticipate 

energy shortfalls, indicates that the cost of singing at dawn need not be especially great 

(Cuthill and Macdonald, 1990), and that all else being equal, the timing and intensity of 

dawn song should be the same from one day to the next, save for an exceptionally cold 

night. 

The energy stochasticity hypothesis remains contentious, however. For example, 

Bruni et al. (2014) examined the dawn singing performance of six North American 

oscine and sub-oscine passerines following varying overnight conditions, and found that 

only two of these species adjusted their singing behaviour in response to overnight 

temperature. Additionally, the underlying theory that the dawn chorus exists largely due 

to a conflict between singing and foraging time has been disputed by Mace (1989a; see 

below section referring to light levels and inefficient foraging). Furthermore, Bruni et 

al. (2014) argue that locomotion would be a more efficient method of eliminating 

surplus energy reserves at dawn than would singing. Although, perhaps, this argument 

may miss the point, as birds have nothing to gain from locomotion at dawn. 
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2.4.2 Environmental factors 

Light levels and inefficient foraging 

A widely accepted explanation for the dawn chorus, and one that is incorporated into 

SDP models relating to the energy stochasticity hypothesis (Hutchinson, 2002), is that 

birds are active at dawn, but light levels are not yet sufficient for foraging. Indeed, 

Kacelnik (1979) states that low profitability of foraging at dawn, due to low light levels, 

favours application of other activities at this time, provided that birds can expect 

profitable foraging later in the day. At first light, singing will be at its most productive, 

and foraging success will begin to increase. It is, therefore, profitable to defer foraging 

until its success rate peaks later in the morning, and when energy reserves become low 

(Hutchinson, 2002). Singing then ceases as birds replenish their reserves, before 

resuming song bouts intermittently with foraging through the day. A second pause in 

singing activity just before the dusk chorus is a regular feature of models in which 

foraging success declines gradually at dusk (Hutchinson, 2002); if birds know that 

foraging success will shortly decline, they should forage intensively while success 

remains high. In a study complementing this theory, Avery and Krebs (1984) inferred 

that low temperatures at dawn also make foraging unprofitable. They found that captive 

great tits became increasingly successful at locating arthropod prey with increasing 

temperature between 2˚C and 13˚C, because prey items became more active, and hence, 

more visible, with increasing ambient temperature. However, it has been shown in 

willow warblers, that song begins each dawn within a very narrow range of light 

intensities, and that light intensity is always rising during song onset, but that 

temperature ranges are much broader, and can be either falling or rising during onset 

(Brown, 1963), thus, inferring that light levels play a dominant role. A related argument 

states that the females of some species may not leave their roosts until foraging becomes 

profitable later in the morning, and that the male ceases song only when the female 

emerges (Mace, 1986; Slagsvold et al., 1994; section 2.4.3, this thesis).  

However, Mace (1989a) argued that competition with foraging time cannot 

explain dawn song, when she found that great tits breeding at latitudes with longer 

daylength went to roost at higher light levels, and had more free time in their activity 

budgets than conspecifics at lower latitudes, but still chose to begin singing before 

sunrise in the morning. Additionally, willow warblers breeding in extreme northerly 
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regions and experiencing continuous daylight during the summer months, begin singing 

when either light is at a minimum or when it has just begun to increase (Brown, 1963), 

even though, presumably, foraging time is not limited. Nevertheless, the strong 

influence of light on singing activity has been emphasised by the growing interest in the 

effects of anthropogenic light pollution on animal behaviour. Several studies suggest 

that artificial light at night (ALAN) advances dawn song onset in temperate passerines 

(Da Silva et al., 2015, e.g. 2014; Kempenaers et al., 2010; Miller, 2006). By 

experimentally illuminating a dark forested habitat, Da Silva et al. (2016) found that 

Eurasian blackbird, great tit, blue tit Cyanistes caeruleus and, in particular, European 

robin, immediately adjusted their timing of dawn song following nights interrupted by 

artificial illumination. 

None of these arguments, however, provide an answer as to why birds delay song 

onset until first light. Thomas et al. (2002) state that birds should wait until light levels 

are sufficient to carry out other activities relating to song, such as courtship behaviour 

or territorial aggression. Additionally, Krams (2001) demonstrated that vocalising 

crested tits Parus cristatus are more conspicuous and likely to be attacked by Eurasian 

sparrowhawk Accipter nisus. Thus, singing birds require clear vision in good light to 

detect predators. 

Acoustic transmission 

The acoustic transmission hypothesis (ATH; Stacier et al., 1996) states that birds sing 

most intensely at dawn because transmission of certain song traits is optimal under the 

microclimatic conditions that occur at this time of day. In particular, wind speed and 

atmospheric turbulence, which attenuate sound and generate background noise, are 

reduced at dawn. The negative effect of air turbulence on song transmission distance 

was demonstrated by Brenowitz (1982a) when he broadcast red-winged blackbird 

Agelaius phoeniceus song in open field habitat. His focus was on the low frequency (2.5 

to 4 kHz) trill section of the song, regarded to be sufficient, in isolation, for species 

recognition (Brenowitz, 1982b). Ambient noise generated by wind and air turbulence 

was least at dawn, and rose throughout the morning to midday, when solar heat typically 

produces marked temperature gradients, and wind velocity and turbulence are at their 

greatest (Henwood and Fabrick, 1979; Richards and Wiley, 1980; Wiley and Richards, 

1978). Such turbulence causes an average excess attenuation (EA; definition provided in 
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section 2.7) of 4 to 6 dB per 100 m (Ingård, 1953), reducing the distance from the 

source over which signal amplitude remains at or above the threshold of detection by 

potential receivers. Only at dawn did broadcast red-winged blackbird song transmit 

sufficient distance to pass through all neighbouring conspecific territories, regardless of 

where the signaller was located within his own territory. 

Air temperature and humidity also affect sound transmission. Increased humidity 

reduces attenuation and enhances transmission (Evans and Bazley, 1956), but the effect 

is small, and is of significance only when winds are light and the frequency of the sound 

is high (Griffin, 1971; Ingård, 1953). The influence of temperature is dependent on both 

humidity and sound frequency. Although the relationship is complex, in general, a 

sound with a frequency of 4 kHz, typical of many bird songs (Catchpole and Slater, 

2008; Fig. 2.2, this thesis), will experience increased attenuation by air at higher 

temperature and lower humidity (Harris, 1966; Wiley and Richards, 1982). Conditions 

at dawn are typically the reverse of this (see Dabelsteen and Mathevon, 2002), and all 

else being equal, dawn presents optimal conditions, relative to other times of the day, 

for diurnal species to communicate over distance by sound (Henwood and Fabrick, 

1979). 

In wooded habitat, vertical temperature gradients at dawn can assist long-distance 

sound transmission. At this time, the air immediately above the canopy warms quicker 

relative to the air beneath (Geiger et al., 2003), and as long as the temperature beneath 

remains consistent towards the ground, the situation remains favourable for propagation 

of song emitted inside the woodland (Waser and Waser, 1977; Wiley and Richards, 

1982, 1978). This is because the velocity of sound is greater in the warmer air above the 

canopy, and that the temperature gradient refracts sound that passes through it (Ingård, 

1953). When temperature increases with distance above the ground, such as within a 

woodland at dawn, refraction deflects sound back downwards, and the sound propagates 

horizontally within a ‘guide’ aided by the consistent air temperature between the canopy 

and the ground (Wiley and Richards, 1982, 1978).  By midday, a complex temperature 

gradient builds within the woodland, and the favourable conditions break down (Wiley 

and Richards, 1982, 1978). In open habitat, the early morning sun, unimpeded by a 

canopy, indirectly heats the air close to the ground, and, in contrast to the gradient 

within woodland habitat, the air gets progressively cooler with height. This gradient 

refracts sound upwards, creating a ‘shadow zone’ for sound propagation above the 
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ground (Wiley and Richards, 1982, 1978). Dawn may still present the optimal time for 

song transmission in open habitats, but on sunny days, in particular, optimal conditions 

will likely break down far quicker (Brown and Handford, 2003). 

Brown and Handford (2003) provided further evidence for the ATH. However, 

unlike prior theoretical (i.e. Henwood and Fabrick, 1979) and empirical (i.e. Brenowitz, 

1982a; Waser and Waser, 1977) studies, they found no evidence that microclimatic 

conditions at dawn maximise sound transmission distance due to reduced attenuation. 

Rather, they reported a reduction in the variability of sound degradation at dawn 

compared to midday, and argue that the resultant consistency in signal quality reduces 

message ambiguity. Not all studies support the ATH, however. In a playback 

experiment using the song of Eurasian blackcap Sylvia atricapilla in the species’ native 

deciduous temperate woodland habitat, Dabelsteen and Mathevon (2002) established 

that background noise, signal-to-noise ratio (SNR; definition provided in section 2.7) 

and EA all showed diurnal variation. As expected, background noise was lowest at 

dawn, immediately prior to commencement of the dawn chorus, and, accordingly, SNR 

at dawn was highest. However, contrary to the ATH, EA was highest at dawn and 

decreased gradually through the day. The authors could only speculate on why this 

might be, but they suggest that as the day progresses, evaporation reduces the density of 

leaves and their surface acoustic impedance, thus, reducing sound scatter and increasing 

sound ‘flow’. This led the authors to conclude that dawn is not necessarily the best time 

of day for information transfer via song in the blackcap, and social factors must be 

considered to explain dawn chorusing behaviour in deciduous woodland.  

2.4.3 Social factors 

Mate attraction 

Despite the general acceptance that male song serves to attract a female mate, direct 

empirical evidence from the field is surprisingly lacking (Catchpole and Slater, 2008; 

Eriksson and Wallin, 1986), perhaps due to difficulties in observing discreet female 

responses in what may amount to only a short period within the breeding cycle 

(Mountjoy and Lemon, 1991). Initial evidence was accumulated upon observations that 

the males of some species ceased singing immediately upon acquiring a mate (e.g. 

sedge warbler, Catchpole, 1973). Further studies experimented by removing the female 

in pairs of white-throated sparrow (Wasserman, 1977), great tit (Krebs et al., 1981; 
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Slagsvold et al., 1994) and common starling Sturnus vulgaris (Cuthill and Hindmarsh, 

1985), and all recorded a significant increase in the singing activity of the newly 

‘widowed’ male birds. Such evidence, however, is circumstantial, as it may simply be 

that having acquired a mate, a male is unable to devote time to singing (Wasserman, 

1977). More robust evidence was provided by Eriksson and Wallin (1986), when they 

studied pied flycatcher and collared flycatcher Ficedula albicollis populations. They 

placed decoy dummy male birds beside entrances of several nest-boxes, modified to 

capture prospecting females that entered the box. Half of the male decoys were 

accompanied by song broadcast through a loudspeaker, and half remained ‘silent’. Nine 

of the ten female birds subsequently captured were found within boxes from which song 

was broadcast. A similar experimental set-up was used by Mountjoy and Lemon (1991) 

when they tested the hypothesis that male song attracts females in the common starling. 

They found that females were only attracted to nest-boxes that were accompanied by 

broadcast song. However, neither of these studies state the time of day that female birds 

were attracted to the broadcast song, and therefore, one cannot conclude from them that 

dawn song, in particular, functions in mate attraction. 

Mate guarding and extra-pair paternity 

Males of many bird species spend large amounts of time singing despite having already 

obtained a mate (Møller, 1991). Mace (1987a) observed that, although male great tits 

proclaimed a territory and attracted a mate with song early in the spring, they did not 

produce a dawn chorus until later in the season, when their mates were laying. At which 

time, males left their roost early in the morning and sang close to their mates’ nest 

cavity until she emerged. Females lay one egg each 24 hr period at dawn, and are at 

their most fertile one to two hours following laying (Birkhead and Møller, 1992), 

providing only a short ‘fertilisation window’. It is, therefore, vital to her partner that he 

is present at this time. As such, Mace (1987a) hypothesised that dawn song in the great 

tit acts as a paternity assurance, and a guard against neighbouring males seeking extra-

pair paternity at this time. Once the female has emerged from her roost, the male ceases 

singing and actively guards her. 

This hypothesis was tested by Welling et al. (1995) in the willow tit. They found 

that the males with fertile mates spent more time singing, and began singing earlier in 

the morning, than males with non-fertile mates. When the female emerged from her 
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roost, song production decreased markedly, and almost half of all males ceased singing 

completely. In a follow-up study, Welling et al. (1997) prevented females from leaving 

their roosts, and found that males continued to sing until they were allowed to emerge. 

However, males were also found to sing some distance from their mate’s roost (Welling 

et al., 1995), often at the edge of their territory. In addition, males did not necessarily 

copulate with their mate at dawn (Welling et al., 1995). The authors’ translation of this 

behaviour was that dawn song in male willow tits is not produced solely to guard their 

own mates, but also acts to invite extra-pair copulations from neighbouring females. 

Likewise, Poesel et al. (2006) suggested that dawn is when female blue tits seek 

extrapair matings, and males singing at this time are more likely to attract these females. 

However, the female fertility hypothesis cannot apply to species within which unpaired 

males sing at dawn, unless they simply wish to attract extra-pair females.  

Honest advertisement of fitness 

Traits or signals that impose a cost upon the signaller can evolve under sexual selection 

if they are difficult to produce and honestly reflect the relative quality or resource-

holding potential of the signalling individual (Zahavi, 1975). Birdsong may represent 

one such signal, as it is used in both male-male competition and female choice 

(Kroodsma and Byers, 1991; Searcy and Andersson, 1986). Singing is believed to be 

costly because of the energetic demands of song production. Indeed, it has been shown 

under both captive (Eberhardt, 1994; Ward et al., 2003) and natural (Hasselquist and 

Bensch, 2008) conditions, that singing significantly increases metabolic rate over basal 

metabolic rate. However, this direct energetic cost of singing remains contentious (cf. 

Oberweger and Goller, 2001; Ward et al., 2004), and, perhaps, it is more likely to be the 

temporal demands that singing imposes on foraging time that proves costly (Berg et al., 

2005). Singing at dawn may advertise excess energy reserves at a particularly costly 

time of day. Indeed, Poesel et al. (2006) noted that singing activity in male blue tits 

peaked during the female fertile period, and that older males consistently sired more 

extrapair offspring than younger males, which they translated as the older males being 

fitter and more attractive to females. In turn, they found that male age explained a 

significant proportion of variance amongst individuals in the onset of dawn song, with 

older males singing earlier, and amongst older males, those that started to sing earlier 

had more mating partners. Otter et al (1997) found that age had less effect on the time 

that male black-capped chickadees Poecile atricapillus began singing in the morning, 
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and instead, discovered that higher ranking males (which were not necessarily older), as 

determined by relative dominance at winter feeding stations,  began singing earlier at 

dawn during the breeding season than lower ranking flockmates. It has also been 

discovered that the cost of singing could vary with the condition of the bird, as male 

sedge warbler with high blood parasite concentrations, invest less time in morning song 

flights compared to non-parasitised males (Buchanan et al., 1999). In addition, Krams 

(2001) provided evidence that long-distance communication is costly in terms of 

depredation risk, when it was found that crested tit models were prone to significantly 

more attacks by Eurasian sparrowhawk when accompanied by playback of calls. This 

argument backs-up that made earlier by Welling et al. (1997, 1995) when they noted 

that male willow tits remained secluded and sedentary whilst participating in the chorus, 

suggesting that singing at dawn is risky. 

Territorial defence 

The territory defence hypothesis (Slagsvold et al., 1994) assumes that song plays an 

important role in territory proclamation and defence. As did Mace (1987a), Slagsvold et 

al. (1994) recognised that male great tits sing most intensely prior to emergence of their 

mates at dawn during her fertile period. Contrary to Mace, however, Slagsvold 

hypothesised that this early morning song served to defend territory, and not directly to 

guard his mate. When the female has emerged during her fertile period, the resident 

male must guard her from extrapair mating by actively following her through his 

territory. During this demanding activity, he is unable to simultaneously defend his 

territory with song, so he must do so at a congruous time of day, and this is prior to her 

emergence at dawn. Temporal conflict with mate guarding, however, cannot explain 

why the dawn chorus extends beyond the fertile period of the female in some species. 

Perhaps some of the most convincing evidence that dawn song is used for territory 

defence is seen in migratory species, when male birds arrive earlier and establish 

territorial boundaries in the absence of females. For example, both paired and unpaired 

common nightingales exhibit high levels of dawn song from arrival through to the later 

stages of the breeding cycle (Amrhein et al., 2004), which is coherent with the 

hypothesis that dawn song is directed at rival males and functions to protect territory. 

Empirical evidence that dawn song is used in territorial defence has been collected 

by Krebs (1977). By removing male great tits from their territories and replacing them 
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with song broadcast through loudspeakers, he demonstrated that song alone delayed 

reoccupation of the vacant territories by rival males. Additionally, Amrhein and Erne 

(2006) experimented by simulating intrusions into the territories of male northern 

wrens, and discovered that the resident male increased song output during the following 

dawn chorus. Further, Kacelnik and Krebs (1983) posited that, due to overnight 

mortality of resident male birds, it may be advantageous for those seeking a territory to 

do so at dawn, and that this is why resident males deliver territorial song at this time. 

Amrhein (2003) tested this theory by radio-tagging several unpaired migratory common 

nightingales, and translocating them into occupied territories to imitate newly-arriving 

males. During the day, radio-tagged birds remained relatively stationary, outside the 

boundaries of occupied territories, but at dawn, they moved considerably, visiting 

several occupied territories. This, the authors argue, shows that these males were 

prospecting for territories at dawn. Furthermore, the singing activity of resident males 

during their study period was highest at dawn. 

2.4.4  Synthesis 

All of the hypotheses presented above attempting to explain the dawn chorus have been 

supported by researchers and refuted by others, and there is little consensus as to which, 

if any, is most applicable. It is widely recognised that a single hypothesis cannot 

account for dawn song in all species and individuals, and it is likely that several, or all, 

hypotheses apply at varying degrees throughout the breeding cycle (Catchpole and 

Slater, 2008; Hutchinson, 2002; Thomas, 1999). Some hypotheses, such as guarding 

mates that are most fertile at dawn (section 2.4.3), are highly species-specific (Gil and 

Llusia, 2020), and the inefficient foraging hypothesis (section 2.4.2), may only apply to 

the insectivorous feeding guild. It appears, therefore, a coincidence that all explanations 

should lead to dawn being the optimal singing time, and that different species are 

participating in the chorus for different reasons. The emerging theory behind inter-

specific communication networks (see section 2.6) may hold the key as to why most 

species choose to sing in parallel. If dawn presents the most convenient time for gaining 

the benefits of song (but is not necessarily the optimal time for all), as other activities 

are not favoured, or it is the time of day when optimal conditions for sound propagation 

are met (section 2.4.2), it is not difficult to imagine how such a communication network 

may have evolved to persist at this time. Much more experimental work is required on 
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individual species to gain an in-depth understanding of the dawn chorus (cf. Gil and 

Llusia, 2020). 

2.5 The timing of the dawn chorus 

Many investigations into the factors influencing the timing of the dawn chorus have 

concluded that specific light levels initiate singing activity in birds, and that there are 

characteristic times at which each species within a community engages in the chorus 

(e.g. Allard, 1930; Leopold and Eynon, 1961). The order of onset amongst species may 

be attributable to relative eye-size, especially amongst those that initiate the chorus 

(Berg et al., 2006; Thomas et al., 2002). This not only implicates light as the major 

influence on chorus timing, but also states that a perception of what constitutes ‘dawn’ 

occurs at different times during twilight for different species, depending on their visual 

acuity in low-light conditions. Furthermore, for a given species, the timing of ‘dawn’ 

may change with season and latitude, which have major influences on the length of both 

night and the twilight periods (see Table 2.2 for definitions of night, twilight and dawn 

used in this thesis). Latitude also influences the maximum and minimum light levels 

experienced at a location on a particular date (Martin, 1990). There exists, however, diel 

variation in song onset and output that cannot be explained by the predictable trajectory 

of the sun at a given location on a given date. Reproductive stage is likely to have an 

over-riding influence on song timing within and among species (e.g. Mace, 1987a; 

Welling et al., 1995), but there are also a number of extrinsic factors that may act to 

fine-tune song onset (Bruni et al., 2014). Weather variables are, perhaps, the most 

obvious, amongst which, heavy precipitation and strong wind are most likely to deter a 

bird from singing, not only due to their impact upon body temperature (Kennedy, 1970), 

but also due to the high level of masking noise produced by these conditions (Lengagne 

and Slater, 2002). As such, birds are expected to begin singing later, or to sing less 

vigorously, on wet and/or windy mornings (Bruni et al., 2014). Weather variables that 

reduce the amount of light perceived by birds, such as cloud cover, could also adjust 

chorus onset times, if the cloud delays the increase in light required for song onset. 

Within rural environments, where artificial light is absent, increased cloud cover has 

been shown to correlate positively with the time of chorus onset (Bruni et al., 2014). 

Finally, ambient temperature effects metabolic expenditure (Swanson, 2010), and just as 

the energy stochasticity hypothesis offers an explanation for the very existence of the 
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dawn chorus, it may also provide an explanation for diel variation in chorus onset, if, as 

the hypothesis assumes, the timing of song onset at dawn is dependent upon overnight 

energy loss in birds. 

Several recent analyses have revealed that ALAN modifies dawn singing 

behaviour in urban bird communities, such that song onset begins earlier (e.g. 

Kempenaers et al., 2010; Miller, 2006). Illumination by the moon may act in the same 

way within rural environments, by providing a light source long before light from the 

sun is detectable by birds (Bruni et al., 2014). Indeed, York et al., (2014) found that 

dawn song in male white-browed sparrow weaver Plocepasser mahali, varied with 

moon phase and its position relative to the horizon; males started singing earlier when 

the moon was full, compared to when it was new (see Table 2.2 for difference in 

illumination depending on moon phase), but only when the moon was above the horizon 

at dawn. The authors concluded that this observed effect of the moon on song onset was 

due to light intensity, rather than to other factors associated with the lunar-cycle. 

Likewise, Bruni et al. (2014) discovered that lunar stage affected the dawn chorus in six 

North American species, and that, overall, song onset was earlier during the third 

quarter or full moon, but, again, only when the moon was above the horizon at dawn. 

Individuals may adjust song onset and output according to that of conspecifics 

participating in the chorus (Hodgson et al., 2018), and some might take their cue to 

begin singing from heterospecifics, such that choruses are the result of a multi-species 

communication network (Tobias et al., 2014). However, most studies have provided 

evidence that species limit signal interference by actively avoiding others. In response 

to selection, it is possible that the song of some species has shifted frequency to avoid 

masking by heterospecifics (Brumm and Naguib, 2009), but others may have adjusted 

temporal aspects of song production (section 2.6).  



28 
 

Table 2.2 The definitions of daylight, twilight and night as a function of the elevation of 

the sun (the angle between a line from the observer to the centre of the sun, and a line 

between the observer and the point of the horizon vertically above the sun’s centre) and 

their natural illumination levels (after Martin, 1990). Upper and lower limits of starlight 

refer to variation as a function of geographical position and date. Defining night and 

dawn can be arbitrary, as at certain times of the year the sun does not drop below 

twilight zones, or does so only for short periods, yet an overnight period is still 

recognised. For simplicity, in this thesis, ‘dawn’ refers to the 90 minute period before 

local sunrise. This period was sufficient for sound recording equipment to capture the 

onset of the chorus regardless of the time of year or site location. 

Condition Limit Sun elevation (˚) Illumination (lux) 

Daylight upper   90     123786   

    Lower (sunrise/set)   -0.8     452   

Twilight:               

  Civil lower   -6     3.4   

  Nautical lower   -12     0.00829   

  Astronomical lower 
 

-18     0.000646   

Night:     < -18         

  Moonlight upper (full at 90˚)         0.371   

    lower (0.25 at 22˚)       0.0133   

  Starlight upper         0.0108   

    lower         0.0003   

 

2.6 Competition for acoustic space 

Long-distance acoustic communication during the dawn chorus can be severely 

impaired by interference and masking from competing vocalisations emitted by multiple 

conspecific and heterospecific neighbours. There are several mechanisms that birds may 

employ to reduce acoustic interference and optimise the chances of their signal being 

received and correctly interpreted by intended recipients. Long-term adaptations involve 

evolutionary changes in song characteristics (reviewed by Brumm and Slabbekoorn, 

2005), such that, for example, species occupy more-or-less distinct frequency bands 

(although this may be constrained by habitat; section 2.7 and Fig. 2.2), but individuals 

may also exhibit short-term plasticity in song structure and singing behaviour (Fig. 2.3).  
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 Perhaps the most obvious short-term mechanism that birds can employ to 

counteract competition for acoustic space, is to increase the amplitude of their own song 

to a level above that of their competitors, as louder signals propagate further, and are 

more likely to be detected against a background of noise (Klump, 1996). Indeed, 

Brumm and Todt (2002) showed that captive common nightingales increased their vocal 

amplitude accordingly in response to increasing amplitude of background white noise, 

and that the effect was clearer if the noise was within the frequency range of nightingale 

song. This mechanism was also exhibited when individuals were exposed to 

heterospecific song within the same frequency range (Brumm and Todt, 2004). 

Demonstrating that the level of interference is dependent upon the overlap in 

frequencies between the noise and the signal (Brumm and Slabbekoorn, 2005; Dooling, 

1982; Klump, 1996). With this in mind, it is conceivable that birds may regulate the 

spectral characteristics of their song, shifting notes into a distinct frequency space, so as 

to avoid overlap with others, as observed in black-capped chickadee (Goodwin and 

Podos, 2013). This will reduce the requirement to increase song amplitude, which may 

be an ineffective tactic in certain situations (Brumm, 2006). However, selection of 

spectral characteristics may be restricted by the effects of habitat on sound propagation 

as well as body size and phylogeny in birds (section 2.7), and instead, a more feasible 

short-term option may be to adjust temporal aspects of singing, such as shifting song 

production to periods, or moments, when masking noise is low. 

 In an early study, Cody and Brown (1969) noted the timing of morning song in 

sympatric common wrentit Chamaea fuscata and Bewick’s wren Thyromanes bewickii 

occupying dense chaparral habitat in North America. The two species organised their 

morning song output into cycles, such that peak output in one occurred when output of 

the other was low, and the times of peak activity did not overlap. Finer-scale patterns of 

song timing have also been observed, where birds sing at the same time in the morning, 

but still avoid temporal overlap with neighbouring species. Ficken et al. (1974) 

investigated singing interactions between red-eyed vireo Vireo olicaceus and least 

flycatcher Empidonax minimus, two co-occurring species with considerable overlap in 

song parameters. They found that the flycatcher was reluctant to begin singing when the 

vireo was already in song, but instead, inserted its song into the period of silence 

(known as a refractory period) between vireo songs. The vireo was less inclined to 

avoid flycatcher song in this way, indicating that one species may dominate such 
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interactions. Popp et  al. (1985) took this further when they investigated fine-scale 

temporal avoidance in song within an assemblage of four North American woodland 

species. They found that all species avoided singing during the song of another, and that 

overlap was rare or absent. To investigate a mechanism for overlap avoidance, the 

authors then broadcast a heterospecific stimulus song to free-living ovenbirds Seiurus 

aurocapilla, and noted that ovenbird song overlapped the stimulus song significantly 

less than predicted by chance. Instead, ovenbirds tended to begin singing immediately 

after a broadcast stimulus song. In a follow-up study, Popp and Ficken (1987) 

subsequently found that ovenbirds sang less frequently, at more irregular rates, and 

showed more variability in song duration during periods of stimulus song playback. 

This strategy of fine-scale temporal avoidance of heterospecific song was confirmed by, 

Brumm (2006), when he broadcast the song of six different species to captive common 

nightingales, and found that the nightingales showed greater variability in the temporal 

arrangement of their songs compared to when singing alone, which permitted them to 

insert their songs into the refractory periods of the other species. Brumm recognised that 

such flexibility is particularly suited to situations such as the dawn chorus. However, 

neither he, or Ficken et al. (1974), explicitly state the time of day that their observations 

were made, and Popp et al. (1985) conducted their experiment after sunrise, hence, their 

findings may or may not apply to free-living birds singing during the dawn chorus, 

when the motivation to sing is likely to be at its greatest (section 2.4). 

The effect of heterospecific masking of song on receiving birds was investigated 

by Bremond (1978), with a series of playback experiments in woodland habitat. He first 

broadcast unmasked northern wren song with a natural refractory period of 10 s, and 

recorded the time taken for a neighbouring wren to respond with song. He then 

broadcast the same wren song, but with a background heterospecific song playing i) 

continuously over the wren song, including before and between refractory periods, and 

ii) only during the song of the wren (i.e. not during the refractory periods). On average, 

subjects responded quicker to the unmasked wren song. However, they also responded 

quicker to the masked playback where the refractory periods remained silent over the 

playback where they did not. This, Bremond argues, indicates that songs of sympatric 

species do not entirely mask wren song, as wrens eventually responded to all playbacks, 

but they do have a psychological effect, whereby the receiving individual becomes 
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‘habituated’ to the heterospecific song, and fails to immediately recognise that of its 

own species. 

Temporal avoidance in song also occurs amongst male birds of the same species. 

For example, during playback of over 250 conspecific songs, Ficken et al. (1985) 

recorded only 10 occasions when ovenbirds actively overlapped a broadcast song, and 

in a prior study, Schroeder and Wiley (1983) demonstrated that male tufted titmouse 

Baeolophus bicolor seldom overlap song. However, as noted for most the above studies 

concerning inter-specific acoustic competition, due to the timing of the playback 

experiments, the results may not necessarily reflect singing behaviour during the dawn 

chorus. Additionally, singing interactions amongst males of the same species may 

reflect a more complicated behavioural pattern other than merely avoiding acoustic 

interference, and it is not clear from these studies whether the response of the subjects to 

the playback was the result of song overlap avoidance, or because individuals were 

replying to the broadcast song of a conspecific (Ficken et al., 1985). 

A contrasting view, is that rather than partitioning acoustic space, co-occurring 

species may in fact show the opposite arrangement of signal clustering, culminating in 

extended communication networks within and between species (Tobias et al., 2014). 

This process might arise in bird communities when species with similar ecological 

requirements interact to defend common resources (e.g. Catchpole, 1978; Cody, 1978, 

1969), thus, coercing the evolution of consistent territorial behaviour, such as signalling 

to advertise territorial ownership (Laiolo, 2012). This situation may be more evident in 

the complex bird communities of tropical forests, where several congeners, or other 

ecologically similar assemblages of birds, are likely to co-occur (e.g. Planqué and 

Slabbekoorn, 2008; Tobias et al., 2014), but there is indication that some temperate 

woodland choruses are also co-ordinated events. Malavasi and Farina (2013) performed 

spectral analyses of the avian dusk chorus recorded in an Italian oak woodland, and 

discovered that among the species singing simultaneously, many used the same 

frequency range. However, songs were apparently finely-timed, such that temporal 

overlap of heterospecific song was deliberate, but that spectral overlap was avoided. 

The authors acknowledge, however, that such co-ordination may be less apparent during 

the dawn chorus, when song may take on a different function (section 2.4). 
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Figure 2.2 The peak frequency (thick horizontal bars) and typical frequency range of song in 

some common breeding British woodland birds. Mean frequency measurements (peak, 

minimum and maximum frequency) were obtained by spectrogram analysis of singing events 

within up to five high quality sample recordings per species taken from the xeno-canto 

repository (www.xeno-canto.org). Peak frequency refers to the frequency in the song with the 

greatest amplitude, which shows variation amongst species. Divergence amongst species in 

frequency range, however, may be constrained by body size and the acoustic properties of 

woodland habitat. Spectrograms and measurements were made in Raven Pro v1.4 (The Cornell 

Laboratory of Ornithology, Ithaca, USA). For space and clarity, species names shown are 

shorter common British names, rather than the international naming system used throughout the 

text. 
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Figure 2.3 An example of acoustic niche partitioning during the dawn chorus in a British 

woodland bird community. Coloured boxes demarcate the songs of foreground individuals of 

the various vocalising species: red=Eurasian blackbird Turdus merula; purple=European robin 

Erithacus rubecula; green=blue tit Cyanistes caeruleus; yellow=northern wren Troglodytes 

troglodytes; black=Eurasian blackcap Sylvia atricapilla; blue=common woodpigeon Columba 

palumbus. There is available acoustic space in the frequency range below 1.5 kHz. Competition 

for acoustic space is greater within the 3-8 kHz frequency band, where similar physical 

morphology amongst species may constrain divergence. These species show apparent temporal 

partitioning to avoid overlap. Alternatively, they may increase song amplitude, which is 

reflected in the darkness of the greyscale, with black reflecting highest amplitude. However, 

here, this may reflect the proximity of the individual to the acoustic sensor and not necessarily 

the amplitude at source. Spectrogram made in Raven Pro v1.4 (The Cornell Laboratory of 

Ornithology, Ithaca, USA) of an acoustic survey made at RSPB Highnam Wood, 

Gloucestershire on 1
st
 May 2015. 

 

2.7 The effect of habitat 

The structural properties of long-distance animal vocalisations are adapted to the 

acoustics of the habitat in which they live, to maximise or optimise propagation 

(Forrest, 1994; Wiley and Richards, 1982, 1978). In this regard, the acoustic adaptation 

hypothesis (AAH; Morton, 1975) proposes that shared selection pressure has led to 



34 
 

convergence in the acoustic traits of vocalisations amongst species occupying 

comparable habitat-types (Slabbekoorn et al., 2002; Slabbekoorn and Smith, 2002a). 

The significant factors influencing convergence in birdsong are attenuation and 

degradation of sound (Slabbekoorn et al., 2002). Attenuation refers to a progressive 

decrease in a sound’s amplitude (i.e. energy per unit surface) with increasing 

transmission distance (Forrest, 1994). A proportion of the total attenuation can be 

predicted by spherical spreading, which, in its simplest form, is the loss in a sound’s 

amplitude as it radiates in all directions from the point source. It is proportional to the 

inverse-square of the transmission distance, and amounts to c.6 dB loss in amplitude per 

doubling of distance. In ideal, frictionless environments, attenuation by spherical 

spreading is equal to total attenuation, but in natural habitats, total attenuation is more 

than by spherical spreading alone. This is because of EA, caused by absorption and 

scattering of soundwaves by obstructions in the habitat, and absorption by the 

atmosphere (Forrest, 1994). Foliage increases EA (Aylor, 1972a; Martens, 1980), as 

does warm, dry air, although the relationship between temperature, humidity and 

frequency is complex (Harris, 1966). As EA increases, the operative distance of the 

sound is reduced. Degradation refers to changes in temporal and structural 

characteristics of sound, which accumulate with distance from the source (Morton, 

1986). It is caused by reflections, reverberations (echoes), scattering and frequency-

dependent filtering (Bradbury and Vehrencamp, 1998). The AAH considers habitat-

dependent variation in attenuation and degradation to predict that long duration, low 

frequency syllables with narrow bandwidths, low frequency modulation and long inter-

syllable gaps (e.g. whistles) should dominate in complex or densely-structured habitat 

(e.g. woodland). Whilst short duration, high frequency syllables, with broad 

bandwidths, high frequency modulations and short inter-syllable gaps (e.g. trills) should 

prevail in less complex or herbaceous habitat (e.g. grassland; Morton, 1975). The same 

selection pressures that drive inter-specific convergence in song traits can also generate 

intra-specific divergence when a species occupies multiple habitat types, or even similar 

habitats with differing background noise profiles (e.g. northern cardinal Cardinalis 

cardinalis, Anderson and Conner, 1985; grey-breasted wood-wren Henicorhina 

leucophrys, Dingle et al., 2008; blue tit, Doutrelant and Lambrechts, 2001; rufous-

collared sparrow Zonotricha capensis, Handford and Lougheed, 1991; little greenbul 

Andropadus virens, Slabbekoorn and Smith, 2002b). 
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Support for the AAH was provided empirically by Brown and Handford (2000), 

when they transmitted artificial sounds through several habitats of varying vegetation 

density. Their work, however, did reveal that whistles degrade less, and, therefore, 

should be favoured, within both open and dense habitats. This is because whistles (or 

tones) concentrate energy within a narrow frequency band (as opposed to spreading the 

same energy over a broad range of frequencies) which can lead to an increase in signal 

amplitude within a given habitat, regardless of its structure. For example, Slabbekoorn 

et al. (2002) observed that reverberations in the whistles of green hylia Hylia prasina, a 

passerine inhabiting dense African forest, can actually benefit from degradation, as 

reverberations within the same narrow frequency band accumulate to produce longer, 

louder and more effective signals at distance. Likewise, low frequency signals should 

prevail regardless of habitat structure (Marten and Marler, 1977; Wiley, 1991; Wiley 

and Richards, 1982). The frequency range of birdsong is believed to closely match the 

hearing range of birds (Okanoya and Dooling, 1988), which has a maximum sensitivity 

of 1-5 kHz (Dooling, 1982). Within this range, lower frequencies are less affected by 

small obstacles in the habitat (e.g. foliage), and atmospheric absorption. Scattering and 

reverberations by vegetation, therefore, are greater for higher frequencies (Aylor, 

1972a; Marten and Marler, 1977; Wiley, 1991; Wiley and Richards, 1982). Indeed, in 

deciduous woodland, Dabelsteen et al. (1993) found that the high-frequency ‘twitter’ in 

Eurasian blackbird song degraded more rapidly with distance than lower frequency 

portions of the song, and whistles projected best. During formulation of the AAH, 

Morton (1975) found a characteristic reduction in EA of low to mid frequencies 

between 1.5-2.5 kHz when transmitted at low height (<4 m) within forested habitat, a 

phenomenon he coined a ‘sound window’. Yet, very low frequencies (<1-2 kHz; Marten 

and Marler, 1977) are subject to greater EA and degradation than other frequencies 

when they are transmitted close to the ground (<1 m), because greater interference 

between the direct pathway and reflections from the ground, effectively lead to 

cancelation of sound in both pathways (Marten and Marler, 1977).  

 The validity of the AAH as an explanation for habitat-driven variation in the 

structure of birdsong is further disputed when it is applied to real organisms within their 

natural environments (Boncoraglio and Saino, 2007). Not least because the range of 

possible frequencies emitted by a bird is constrained by the size and shape of its body 

(Ryan and Brenowitz, 1985; Wallschläger, 1980) and bill (Derryberry, 2009; Podos and 
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Nowicki, 2004; Slabbekoorn and Smith, 2002a), regardless of the habitat it occupies. 

There is also concern for the theory’s generality. To illustrate, Badyaev and Leaf (1997) 

found that temporal characteristics of Phylloscopus and Hippolais warbler songs vary 

with habitat structure, as predicted, but the frequency attributes of the songs remain 

largely unaffected, whereas Blumstein and Turner (2005) found quite the opposite when 

applied to the songs of Australian birds; the effect of habitat on frequency attributes of 

song was greater than on the temporal characteristics. Wiley and Richards (1982) point 

out that the AAH was formulated based upon tropical forest species, many of which 

sing on the ground or within 1 m of the ground, where frequencies of around 1-2 kHz 

are particularly favoured, whereas birds of temperate woodland generally sing at greater 

heights above the ground (>3 m), where a 1-2 kHz ‘sound window’ is not so 

pronounced. Therefore, the predictions of the AAH may not apply in temperate regions, 

as temperate woodland birds do not gain a heightened advantage from utilising lower 

frequencies when compared to birds in open habitat. Marten and Marler (1977) also 

point out that the AAH was proposed by Morton (1975) on the basis that he did not find 

a characteristic reduction in EA at lower frequencies (1-3 kHz) in tropical grassland 

habitat. Morton (1975) interpreted this as a reason why low frequencies should not be 

favourable in open habitats. Yet, Marten and Marler (1977) did find this effect of low 

frequencies in temperate grassland. Furthermore, Sorjonen (1986) argued that 

geographical location and the assemblage of competing species have greater influence 

over the song structure of selected Luscinia species than does habitat, and that long 

distance communication can be improved more efficiently by changes in singing 

behaviour than by changes in song structure. Such behavioural adaptations include 

selection of an optimal singing height and an optimal time for song production 

(Henwood and Fabrick, 1979). Despite the uncertainty surrounding the AAH, the 

vegetation characteristics of a habitat undoubtedly influence the degree of attenuation 

and degradation of birdsong (Aylor, 1972b, 1972a; Blumenrath and Dabelsteen, 2004; 

Marten and Marler, 1977; Martens, 1980; Naguib, 2003; Price et al., 1988).  

Each spring, temperate woodland birds must contend with change to the acoustic 

properties of their environment, brought about by the emergence of new leaves and their 

growth through to maturation in what was previously a leafless environment 

(Blumenrath and Dabelsteen, 2004; Naguib, 2003). Theory suggests that the leaf-out 

process results in attenuation and degradation of successively lower frequencies, as the 
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increasing leaf size and density intercepts, reflects and absorbs increasingly large 

soundwaves (Aylor, 1972b, 1972a; Morton, 1975; Price et al., 1988; Richards and 

Wiley, 1980). These physical changes to the environment are also tracked by changes to 

the microclimate beneath the growing canopy, such as higher temperatures, which 

enhance atmospheric absorption (Harris, 1966), and hence, further attenuate sound. 

However, at dawn, the formation of the canopy can induce temperature gradients that 

are favourable for sound transmission (section 2.4.2). Several playback-record 

experiments have been devised to measure the level of attenuation and/or degradation 

experienced by birds following leaf-out in deciduous woodlands. Initially, Marten and 

Marler (1977) broadcast artificial tones of different frequencies through several foliated 

and non-foliated woodland habitats, and discovered that EA increased in the foliated 

woodlands, when compared to the non-foliated woodlands, when sound was transmitted 

close to the ground (1 m), but that EA increased substantially more at greater heights 

(e.g. 10 m) in foliated woodlands, where soundwaves were intercepted by the canopy. 

In a similar experiment, Naguib (2003) measured reverberations in artificial trills of 

different repetition rates and frequencies broadcast in the same woodland with and 

without foliage, and found that, although reverberations were present within both, 

accumulated reverberations became stronger at shorter transmission distances in the 

woodland with foliage. Finally, Blumenrath and Dabelsteen (2004) broadcast great tit 

song elements pre- and post-leaf-out at a deciduous woodland site, and showed that the 

elements suffered from increased EA, reduced SNR, which is the energy in the signal 

relative to the energy in the background noise, as well as reduced tail-to-signal ratio 

(TSR), which is the energy in the reverberations relative to the energy in the preceding 

signal, and increased blur ratio (BR), which represents the degree of blurring of 

amplitude and frequency over time (Dabelsteen et al., 1993). 

2.8  Artificial light at night (ALAN) and noise pollution 

Climate change and associated consequences for the dawn chorus are discussed 

throughout the chapters of this thesis. However, additional threats to the seasonal and 

daily timing and magnitude of the dawn chorus come from other sources of 

environmental change, notably, ALAN and anthropogenic noise pollution. ALAN is 

touched upon in prior sections of this chapter, but warrants greater attention here. 

Indeed, several studies have indicated that ALAN advances the onset of dawn singing in 
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several passerine species (Da Silva et al., 2014; Da Silva et al., 2016; Dominoni et al., 

2014; Kempenaers et al., 2010; Miller 2006; Nordt and Klenke, 2013). ALAN may 

influence a bird’s perception of dawn and daylength, altering daily and seasonal 

behaviour, including patterns in singing activity (Da Silva et al., 2015), and may 

potentially lead to physiological changes (Dominoni et al., 2013). Likewise, noise 

pollution from, for example, road traffic (Arroyo-Solís et al., 2013; Fuller et al., 2007; 

Nordt and Klenke, 2013) and airports (Dominoni et al., 2016; Gil et al., 2015) may also 

alter daily singing regimes, as birds adjust singing activity to avoid masking by noise. 

Separating the effects of ALAN and noise is difficult in some environments (Nordt and 

Klenke, 2013), and the relative effect of either ALAN or noise on a particular species, 

may differ depending on the natural singing period at dawn; ALAN tends to affect 

earlier-singing species (Da Silva et al., 2016), and noise appears to have greater effect 

on late-singing species (Dominoni et al., 2016).  Interestingly, it may be that the effect 

of noise on song onset could be facilitated by ALAN, whereby artificial light creates an 

opportunity for some birds to sing earlier in the morning and avoid the masking effects 

of anthropogenic noise that tends to start later in the day (Da Silva et al., 2014). 

 As dawn song is hypothesised to function in male-male competition and female 

choice, modification to daily and seasonal timing of song by ALAN and noise pollution 

may have longer term or evolutionary fitness consequences (Da Silva et al., 2015), but 

these remain unknown. Singing earlier in the year or earlier in the morning might be 

advantageous for males, for example, increasing the likelihood of attracting a high-

quality mate, or of siring extra-pair offspring (Kempenaers et al., 2010). Alternatively, 

earlier singing, or singing over a longer period, may come at a cost to survival, owing to 

increased risk of predation, or because of exhaustion or elevated stress levels (Da Silva 

et al., 2015). 

ALAN and noise pollution are most often associated with urban environments, 

although they are becoming increasingly problematic within rural locations (Hölker et 

al., 2010). This thesis is concerned with the dawn chorus in undisturbed woodland 

habitat, and choices made on rural study sites reflect this (chapter 4). Although few 

study sites were entirely free of distant traffic noise, most were believed to be subject to 

relatively low levels of ALAN and noise. To include the effects of ALAN and noise in 

this thesis would have introduced an extra dimension of complexity that could be dealt 

with more comprehensively in future work (chapter 9). 
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Chapter 3 

Technological advances in the study of birdsong 

 

 

Blue tit Cyanistes caeruleus 
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3.1 Digital recording 

The objective scientific study of birdsong is a relatively new field. One reason for this is 

that making a permanent record of song was not easy until the advent of portable tape 

recorders and their increased availability during the 1950s (Baker, 2001; Thorpe, 1961). 

Only with a permanent record, that can be slowed down, repeated and analysed in 

various ways, is it possible to systematically analyse the complexities of birdsong 

(Catchpole and Slater, 2008; Thorpe, 1961). Sound recording technology has advanced 

greatly in recent years, mainly due to digital audio recording methods (Brandes, 2008a), 

which has increased the portability of handheld recording equipment, as well as 

providing increased storage capacity and flexibility in recording schedules. In addition, 

digitised data can be efficiently stored for future use, and could potentially play an 

important role in future research by documenting change in acoustic populations and 

communities over large timescales (Sugai and Llusia, 2019), although this use could be 

tempered if future changes in the performance of equipment introduces bias into 

monitoring studies (Rempel et al., 2013). 

3.2 Autonomous recording units  

Acoustic monitoring of sound-producing organisms in their natural habitat has been 

revolutionised by the availability of autonomous recording units (ARUs). ARUs are 

widely used to gather ecological information on a diverse range of taxa, including 

insects (Hart et al., 2015; Newson et al., 2017), anurans (Acevedo and Villanueva-

Rivera, 2006), fish (Gannon, 2008), cetaceans (Mellinger et al., 2007; Moore et al., 

2006), bats (Newson et al., 2015), primates (Heinicke et al., 2015) and birds (reviewed 

by Shonfield and Bayne, 2017). ARUs are available commercially as fully 

programmable devices with scheduling functions (e.g. Bioacoustic Audio Recorder 

[BAR], Frontier Labs, Brisbane, AUS; Song Meter, Wildlife Acoustics Inc., Maynard, 

USA; Swift, Cornell Laboratory of Ornithology, Ithaca, USA), as low-cost 

programmable devices (e.g. AudioMoth, Hill et al., 2018), as open-source customisable 

devices (AURITA, Beason et al., 2019; Solo, Whytock and Christie, 2017), or as low-

cost non-programmable USB flash drive devices (e.g. UR-09, Shenzhen HNSAT 

Industrial Co. Ltd, Shenzhen, China). In most cases, ARUs can be deployed in the field 

for extended periods without intervention. Several units can be deployed at multiple 
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sites simultaneously, or in complex arrays (e.g. Mennill et al., 2012), providing data on 

spatio-temporal scales of ecological consequence, whilst negating the requirement for 

repeated visits to remote or hard-to-access locations. Thus, the use of ARUs leads to an 

objective approach with a greater degree of standardisation in data collection over 

human observers (Celis-Murillo et al., 2009; Heinicke et al., 2015). In addition, the 

innovation of omni-directional microphones with superior sound quality, equip 

recorders with a sensitivity similar to that of human listeners (e.g. Hobson et al., 2002; 

but see Hutto and Stutzman, 2009). As a result, the number of peer-reviewed studies 

utilising ARUs has increased dramatically in recent years. Indeed, in a literature review, 

Shonfield and Bayne (2017) identified 61 bird studies using ARUs between 2006 and 

2017, with a notable increase in the number of articles published from 2014 to 2016. 

Similarly, Sugai et al., (2019) found that the number of studies using passive acoustic 

monitoring (PAM) have increased exponentially since the 1990s, most notably in the 

period 2010 to 2017. However, PAM does not necessarily require the use of 

programmable ARUs, and only 39% of the studies researched by Sugai et al. used such 

devices. 

Data from acoustic survey can be used to ask fundamental questions related to 

ecological systems, such as species presence and habitat occupancy (e.g. Campos-

Cerqueira and Aide, 2016). Challenges remain, however, when estimating abundance 

and density from acoustic data, although several methods have been described and 

tested. For example, Dawson and Efford (2009) set out multiple spatially separated 

acoustic recorders in the field and analysed the relative intensities in individual ovenbird 

Seiurus aurocapilla songs recorded by each recorder in the array, by applying a 

statistical methodology similar to that used in spatially explicit capture-recapture 

(SECR) studies. A major drawback of this method, however, is the cost of the 

equipment required. Sebastián-González et al. (2018) devised an alternative method for 

estimating density of Hawai’i amakihi Chlorodrepanis virens using a single ARU, by 

measuring the intensity of received signals to estimate the distance of individuals from 

the microphone. The method requires prior knowledge of the relative intensities of 

recorded signals at different distances, and, therefore, may also prove to be resource 

intensive (Pérez-Granados et al., 2019). A cheaper alternative is to use a vocal activity 

rate (VAR) index (the number of songs per unit time for a species) to infer relative 

abundance of a focal species (e.g. Pérez-Granados et al., 2019), although Zwart et al. 
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(2014) did not find this method useful in estimating the abundance of European nightjar 

Caprimulgus europaeus. 

Large, long-term acoustic datasets collected by ARUs can provide new insights 

into the life histories of birds, their mating systems, the behavioural interactions 

between individuals and their ecological interactions with the environment, which were 

previously impractical or unattainable using traditional approaches to bird survey. By 

remaining in one location and monitoring continuously, or at regular intervals, use of 

ARUs to gather acoustic information can reveal changes in ecosystems over daily, 

monthly, seasonal and yearly scales. For example, following a 5-year study of Eurasian 

bittern Botaurus stellaris, Frommolt and Tauchert (2014) determined the number of 

calling individuals and documented changes in their spatial distribution, which was 

found to be connected with changes in habitat structure. Fitzsimmons et al. (2008) 

recorded entire ‘neighbourhoods’ of dawn singing black-capped chickadees Poecile 

atricapillus to quantify intricate counter-singing exchanges between competitors. 

Mennill and Vehrencamp (2008) provided the first detailed information on song 

duetting using microphone arrays to record the performance of male and female rufous-

and-white wrens Thyrothorus rufalbus, and Kirschel et al. (2011) used recordings 

obtained over a 4-year period to identify individual Mexican ant-thrushes Formicarius 

moniliger by song, and determined their territorial and social dynamics.  

 Whilst the advantages of using ARUs are clear, it has been difficult to 

quantitatively assess how ARUs compare to traditional survey methods in their 

sampling performance of species richness (Darras et al., 2018a). Multiple studies have 

been designed to test the performance of ARUs against that of bird point-counts 

performed by human observers (reviewed by Darras et al., 2018a; Shonfield and Bayne, 

2017), but there has been little consensus. Darras et al. (2018b) argued that bias is 

introduced by differing detection ranges between the two methods, and, thus, renders 

them incomparable. Therefore, Darras et al. (2018a) corrected for the detection ranges 

of different microphone models used in various comparison studies, and showed that 

both methods are statistically indistinguishable when detection range is accounted for. 

They concluded that high-end ARUs used ‘correctly’ are capable of sampling terrestrial 

wildlife just as well as human observers carrying out visual-aural point-counts. 
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3.3 Sound analysis tools 

Progress in the study of birdsong was long restricted by difficulties of description and 

measurement (Hinde, 1969), largely due to a lack of analytical equipment. 

Onomatopoeic renderings of the ‘little-bit-of-bread-and-no-cheese’ variety, as used for 

the song of yellowhammer Emberiza citronella, provided very crude descriptions, and 

conveyed little idea of either frequency changes or the ‘quality’ of the notes (Hinde, 

1969). Visual representations of birdsong was first made possible by use of 

oscillography (Hinde, 1969), which produces a record of amplitude as a function of time 

(Fig. 3.1a). However, frequency is poorly represented by oscillographic methods, and 

comprehensive analysis is feasible only with sounds that are maintained at fairly 

constant frequency and amplitude over a reasonable time period (Thorpe, 1961). 

Birdsong is characterised by sound patterns consisting of pulses of very short duration, 

large frequency range and rapid amplitude and frequency modulation, and can only be 

analysed by oscillographic methods at a prohibitive cost of time and effort (Thorpe, 

1961). A revolution came with the invention of the sound spectrograph.  This produces 

a spectrogram (or sonogram), which is essentially a Fourier analysis of frequency 

against time (Fig. 3.1b). It was initially devised for military use during World War II 

(Baker, 2001), and was first used to provide a visual representation of birdsong by 

Thorpe in 1954 (Catchpole and Slater, 2008), when his spectrograms revealed the 

acoustic intricacies of common chaffinch Fringilla coelebs song (Thorpe, 1954). Today, 

several commercially- or freely-available digital sound analysis software packages are 

available to ecologists, and include spectrographic analysis tools as standard. Some (e.g. 

Raven Pro, developed by The Cornell Laboratory of Ornithology, Ithaca, USA) allow 

the user to interact with the spectrogram using on-screen cursors, and choose from a 

suite of measurements of selected regions or sounds of interest. 
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Figure 3.1 Two types of graph commonly used to visualise sound: a) the amplitude waveform 

(or oscillogram), where the x-axis represents the passing of time, and the fluctuating amplitude 

of the sound is reflected in the height of the spikes above and below zero on the y-axis, and b) 

the spectrogram (or sonogram), where, again, the x-axis represents the passing of time, and the 

y-axis represents the frequency of the sound. Information on amplitude is depicted by the 

darkness of the greyscale, with black reflecting the frequencies of highest amplitude. The graphs 

were made in Raven Pro v1.4 (The Cornell Laboratory of Ornithology, Ithaca, USA) from the 

same recording of common chaffinch Fringilla coelebs song. 

 

3.4 Automated detection and classification of species 

Despite the benefits of using ARUs for ecological data collection, there remains the 

difficulty of extracting meaningful and accurate information from the considerable 

datasets amassed. Manually browsing many hours of acoustic surveys on spectrograms 

can be a lengthy and prohibitive task (Sebastián-González et al., 2015), that often 

requires costly teams of researchers (e.g. Furnas and Callas, 2015; Sanders and Mennill, 

2014). Therefore, one of the most pressing challenges in PAM, and crucial for its long-
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term viability (Blumstein et al., 2011), is development of reliable computer-aided 

automated signal recognition systems (hereafter ‘recognisers’) that are capable of 

identification to species level. The process of automatically detecting and classifying 

birds from sound recordings potentially presents a greater challenge than for other taxa 

(August et al., 2015; Brandes, 2008a; Briggs et al., 2012), as bird vocalisations are 

typically produced within a busy sonic environment (as opposed to the ultra- or infra-

sonic environments utilised by e.g., bats and cetaceans), and are prone to masking from 

high background noise, and when multiple species and individuals sing simultaneously, 

such as during the dawn chorus, elements of song overlap in time, frequency and 

amplitude (Briggs et al., 2012; Luther and Wiley, 2009; Priyadarshani et al., 2018). 

Furthermore, the acoustic structure of song is extremely varied and complex, and may 

vary geographically within species (Hunter and Krebs, 1979; Slater and Ince, 1979) and 

seasonally within individuals (Kunc et al., 2005); signals that vary within and between 

individuals are particularly difficult to recognise and detect (Heinicke et al., 2015). 

Many approaches to automated identification of species have been trialled in 

recent years (reviewed by Blumstein et al., 2011; Priyadarshani et al., 2018; Stowell and 

Plumbley, 2011), which have met with varying degrees of success, depending on the 

method used and the target species (Sebastián-González et al., 2015; Swiston and 

Mennill, 2009). Many approaches are built upon sophisticated machine learning 

methods, such as those applied to human speech recognition. For example, hidden 

Markov models (HMM; e.g. Brandes, 2008b; de Oliveira et al., 2015; Kogan and 

Margoliash, 1998; Potamitis et al., 2014; Trifa et al., 2008), Gaussian mixture models 

(GMM; e.g. Ganchev et al., 2015; Heinicke et al., 2015; Roch et al., 2007), support 

vector machines (SVM; e.g. Acevedo et al., 2009; Tachibana et al., 2014) and artificial 

neural networks (ANN: e.g. Chesmore and Ohya, 2004), while others use composites of 

these approaches (e.g. Koumura and Okanoya, 2016). Others utilise ensemble learning 

methods, such as random forest (e.g. Campos-Cerqueira and Aide, 2016) and decision 

trees (e.g. Acevedo et al., 2009; Digby et al., 2013), whilst others still, employ simpler 

methods, such as spectrogram cross-correlation (e.g. Frommolt and Tauchert, 2014; 

Mellinger and Clark, 2000; Ulloa et al., 2016). There are annual and one-off machine 

learning competitions, specifically aimed at driving the development of these, and other, 

birdsong recogniser methods (e.g. Goëau et al., 2017; Stowell et al., 2016). Very high 

recall (Table 3.2) of >95% has been reported for such recognisers, but this performance 
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is often reliant on high signal strength and low background noise (Bardeli et al., 2010). 

Furthermore, many are custom-built for specific species or research projects, and 

amongst those designed to detect and identify birds, few concentrate on song produced 

by oscine passerines in natural unattended field recordings (Priyadarshani et al., 2018; 

but see Acevedo et al., 2009; Campos-Cerqueira and Aide, 2016). A further limitation 

of this approach is that it often requires advanced mathematics and/or programming 

skills to develop the algorithms, and is largely inaccessible to ecologists (Aide et al., 

2013; Sebastián-González et al., 2015). As such, the wider application of these 

recognisers in ecological research remains untested. However, many commercially- and 

freely-available sound analysis software packages, such as those described above, 

include recogniser tools requiring little or no prior knowledge of acoustic theory, 

mathematics or computer programming. These recognisers are intended for widespread 

use, however, and their performance for a given species is unlikely to match that of 

custom-made recognisers. The most popular of these recognisers amongst ecologists, 

and their respective performances, are outlined below. 

Raven Pro 

Raven Pro is a sound analysis software package developed by The Cornell Laboratory 

of Ornithology, and has been designed for the primary function of birdsong analysis 

(Charif, et al., 2010; Duan et al., 2013). The programme offers two syllable-level 

automated signal detection methods as recognisers. The first, the ‘band limited energy 

detector’, estimates the background noise in an acoustic survey, and uses the estimate to 

search for sections of the survey that exceed a user-defined signal-to-noise ratio (SNR) 

in a specific frequency range, and during a specified time (Charif, et al., 2010; Duan et 

al., 2013). The second method, the ‘amplitude detector’, detects regions of a signal 

where the measure of the waveform’s envelope (the area in time-amplitude space 

occupied by the signal; Fig 3.1a) exceeds a threshold value (Charif, et al., 2010; Duan et 

al., 2013). A few studies have applied these recognisers to real world data. For instance, 

Sebastián-González et al. (2015) used the band limited energy detector to return 

candidate vocalisations (detections) of Hawai’i amakihi. The recogniser achieved 93% 

recall, but this was at a cost of 68% false positive rate (FPR; Table 3.2). Duan et al. 

(2013) achieved an average of 50% recall across five Australian birds using the band 

limited energy detector. Precision (Table 3.2), however, was low, at 25%.  
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Song Scope 

Song Scope is a digital signal processing programme produced by Wildlife Acoustics, 

Inc. Unlike Raven Pro, which includes tools for the acquisition, visualisation and 

measurement of signals (Charif, et al., 2010), automated recognition of acoustic signals 

produced by birds and other taxa is the primary function of Song Scope. The recogniser 

functions by clustering multiple syllables in a signal, and models them into signal 

structures using HMMs (Duan et al., 2013). HMMs are reported to be very sensitive to 

noise, and consequently, Duan et al. (2013) achieved an overall precision of just 32% 

when tested on the vocalisations of five Australian bird species. Additionally, Buxton et 

al. (2013) trained Song Scope recognisers to identify several seabird species from 

acoustic surveys made in the Aleutian Islands, but manual verification of the detections 

was necessary, as the number of false positives (FP) was high. Cragg et al. (2015) 

examined the reliability of Song Scope in identifying marbled murrelet Brachyramphus 

marmoratus vocalisations, and although the number of FP detections averaged just 9% 

in acoustic surveys with low background noise, this rose to 99% in surveys with high 

noise interference from non-target species’ vocalisations. Wildlife Acoustics recently 

ceased support for Song Scope software, although it remains free of charge and 

available to download from their website.   

Kaleidoscope Pro 

Kaleidoscope Pro is produced by Wildlife Acoustics, Inc., and recently replaced Song 

Scope as their flagship signal processing software package. Like Song Scope, 

Kaleidoscope Pro utilises HMMs to detect target signals. However, it employs cluster 

analysis methods to group repeated signals within an acoustic survey into several 

clusters based on their similarity. The final recogniser is produced following manual 

analysis of the clusters, when the user defines which of the clusters contain the target 

signal, and highlights non-target signals within these clusters. The algorithms then re-

compute to produce the recogniser based upon user input during the manual analysis 

stage. To date, Kaleidoscope has rarely been formally tested on non-chiropterans. 

However, Abrahams and Denny (2018) applied the programme to detect the distinctive 

call of capercaillie Tetrao urogallus in the UK, and reported relatively low recall of 

35%, but achieved a FPR of just 1.3%.  
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monitoR 

The R software (R Core Team, 2018) package monitoR contains several tools to 

manage an acoustic monitoring programme, but the primary focus of the package is 

automated detection and identification of animal vocalisations (Hafner and Katz, 

2018a). The recogniser uses the relatively simple process of template matching. The 

process involves user creation of a template(s), consisting of example signals known to 

be of the target species. The template is passed through a moving window of an acoustic 

survey, and repeatedly scored for similarity against detected signals. monitoR offers two 

template types, a cross-correlation template, which uses all regions of a spectrogram 

defined by the user, and a binary-point template, which is based upon a map of 

anticipated regions of signal within a spectrogram (Katz et al., 2016a). Katz et al. 

(2016b) reported 83% recall using the spectrogram cross-correlation recogniser to detect 

black-throated green warbler Setophaga virens song and 66% recall for ovenbird song.  

For researchers to place trust in the results returned, the recognisers outlined 

above must maximise true positive (TP) detections and minimise FP detections, but, at 

present, they do not fulfil these requirements reliably. Indeed, manual verification of the 

detections returned by a recogniser is a necessary process (e.g. Buxton et al., 2013; 

Zwart et al., 2014), and complete manual scanning of acoustic surveys remains the best 

option for studies requiring detailed information on, for example, temporal patterns in 

call frequency (Sanders and Mennill, 2014; Swiston and Mennill, 2009). In order to 

improve recogniser performance, Knight et al. (2017) advocated utilisation of the 

scoring system applied by most commercial recognisers, whereby, the recogniser 

assigns a score to each detection, which can be interpreted as a measure of confidence 

that the detection matches the target vocalisation. Users can define the score threshold, 

so that any detections scoring below this will be ignored. Setting a high threshold will 

minimise FPs, but will also result in false negatives (FN). Setting the threshold low will 

have the opposite effects. Given such trade-offs, and the imperfection of recogniser 

performance, the score thresholds set are often based upon trial-and-error and will 

ultimately depend upon the question being addressed and the priorities of the research  

(Katz et al., 2016b, 2016a). Used appropriately, however, the scoring system provides a 

means of controlling the output returned by recognisers to optimise the chances of 

arriving at the correct conclusion. 
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Table 3.1 An error matrix used to evaluate the predictive 

accuracy of automated signal detection tools (recognisers). 

A signal detected by the recogniser is a predicted presence, 

and a signal ignored by the recogniser is a predicted absence. 

TP=true positive; FP=false positive; FN=false negative; 

TN=true negative. 

 

 

 

Table 3.2 Common metrics used to assess the performance 

of automated signal detection tools (recognisers). TP=true 

positive; FP=false positive; FN=false negative; TN=true 

negative. 

 

 

3.5 Ecoacoustics and soundscape ecology 

The last decade has witnessed the emergence of ecoacoustics. Unlike traditional 

bioacoustics, which can broadly be defined as animal communication (Fletcher, 2007; 

Lomolino et al., 2015), and from which, studies typically focus on a limited set of 

species, ecoacoustics covers all ecological organisation levels (Sueur and Farina, 2015). 

The discipline of ecoacoustics includes soundscape ecology, which concentrates on 

macro or community acoustics, and is concerned with the composition of all sounds at a 

given location and time (the soundscape), considering this to be a core component of 

ecological processes (Guyot et al., 2016; Pijanowski et al., 2011b, 2011a). Krause 
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(1987) introduced the terms ‘biophony’ and ‘geophony’ to represent two of the main 

categories of sound within a soundscape, which are sounds produced by living 

organisms and geological processes (including, e.g., wind, rain and running water) 

respectively. Pijanowski et al. (2011b) extended the classification to include 

‘anthrophony’, which is sound produced by human activity, including that of road-

traffic, music and machinery, and which is commonly perceived by the listener as 

‘noise’ (Dumyahn and Pijanowski, 2011). Indeed, in their seminal reviews on the 

subject, Pijanowski et al. (2011a, 2011a) define soundscapes as “the collection of 

biological, geophysical, and anthropogenic sounds that emanate from a landscape, and 

which vary over space and time, reflecting important ecosystem processes and human 

activities”.  

Technological advances aimed at assisting bioacoustic research, for example, 

improvements made to programmable recording devices, omni-directional microphones 

and digital storage, also apply to ecoacoustic approaches (Sueur and Farina, 2015). 

However, an innovation particular to ecoacoustics is the acoustic index (AI). AIs are 

powerful, yet simple, metrics that return a score, or statistic, describing the distribution 

of acoustic energy in a soundscape and its complexity in terms of time, frequency and 

intensity. To date, more than 60 AIs have been developed and trialled (Bradfer-

Lawrence et al., 2019). In hand with AIs, recordings made of soundscapes can be used 

to study the environment in multiple ways, but the initial growth of the discipline was 

largely due to the efficacy of linking soundscape properties to biodiversity and 

ecosystem health (Burivalova et al., 2019; Dumyahn and Pijanowski, 2011; Pijanowski 

et al., 2011b, 2011a). For instance, by applying the power spectral density AI (PSD; 

Gage et al., 2001), Tucker et al. (2014) showed that the soundscape reflected differences 

in ecological condition as a consequence of fragmentation in forest remnants in 

Queensland, Australia, and Fuller et al. (2015) demonstrated that the acoustic entropy 

index (Sueur et al., 2008), acoustic evenness index (AEI; Villanueva-Rivera et al., 

2011) and normalised difference soundscape index (NDSI; Kasten et al., 2012) were 

associated with landscape characteristics, ecological condition and bird species richness 

respectively. Furthermore, although not the initial reasoning behind their formulation, 

AIs can offer an efficient alternative to recognisers when analysing large acoustic 

datasets. 
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The assumption underpinning the use of AIs, is that animal communities with more 

audible species will have greater acoustic diversity, and that acoustic diversity, in turn, 

correlates positively with biodiversity (Fuller et al., 2015; Gage et al., 2001; Guyot et 

al., 2016). However, some AIs are better suited to measuring community activity. In this 

respect, the acoustic complexity index (ACI; Pieretti et al., 2011) was developed based 

upon the observation that many biotic sounds, especially birdsong, are characterised by 

fluctuations in intensity, whilst geophonies and, in particular, anthrophonies, are of 

constant intensity (Farina et al., 2011b; Pieretti et al., 2011). Whilst filtering out human-

generated background noise, the ACI has been found to correlate more closely with the 

number of bird vocalisations, or singing activity (Pieretti et al., 2011), than with the 

diversity of species in a community (Fuller et al., 2015; but see Towsey et al., 2014), 

and is particularly useful for emphasising change in the behaviour and composition of 

bird communities (Farina et al., 2011b; Pieretti et al., 2011). Indeed, the index has been 

successfully employed to define the arrival date of migrating songbirds onto spring 

breeding grounds in North America (Buxton et al., 2016), and as such, provides a useful 

method of monitoring climate-driven phenological shifts in songbird communities 

(Buxton et al., 2016). The ACI was also applied by Farina et al. (2015) to measure fine-

scale temporal variation in intensity and complexity of song during the dawn chorus 

within several bird communities in north-western Italy. The authors demonstrated that 

the index is capable of defining characteristic lulls in the chorus that are hypothesised to 

exist around sunrise (cf. Hutchinson, 2002). Thus, based on the assumption that 

vocalisations provide a valid proxy for diversity within a community, ecoacoustic 

approaches offer a new perspective for investigating the dawn chorus, and provide an 

efficient bird diversity monitoring method (Guyot et al., 2016). 

3.6  Synthesis 

Advances made in digital audio recording equipment and data storage have opened up 

new and exciting possibilities for data collection in biodiversity monitoring 

programmes. However, for detailed acoustic studies of species, beyond 

presence/absence and habitat occupancy, reliable recognisers are required. These must 

be capable of discrimination between species’ vocalisations in recordings made within 

realistic and noisy environments – more so than currently available software packages, 

such as those described in section 3.4, but whilst retaining their accessibility and ease-
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of-use. Until recognisers possess discrimination abilities similar to human observers, 

they are unlikely to replace potentially costly deployment of humans in ecological 

studies requiring detailed information on, for example, species’ densities or behaviours. 

AIs are encouraging for studies requiring rapid biodiversity assessment, and for gaining 

broad information on sound-producing animal communities, but these should be a stop-

gap method for analysing large acoustic datasets. In the long-term, work should 

continue on developing tools that accurately obtain species-specific information from 

large acoustic datasets. 
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Chapter 4 

Study sites 

 

 

Goldcrest Regulus regulus 
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4.1  Location, climate, vegetation and light and noise pollution 

The study sites used in chapters 5 to 7 consisted of 20 × deciduous or mixed-deciduous 

woodland reserves, selected to provide a geographical and climatological spread of 

undisturbed semi-natural wooded habitat throughout Great Britain. Site locations are 

shown in Fig. 4.1. One Song Meter 2+ autonomous recording unit (ARU; Wildlife 

Acoustics Inc, Maynard, USA) was deployed at each site to record the daily dawn 

chorus in multiple years (see Fig. 4.1). Environmental data loggers were deployed 

alongside ARUs. Two data logger models were used: Tinytag Plus 2 TGP-4500 data 

loggers (Gemini Data Loggers, Chichester, UK), set to log air temperature and 

humidity, and HOBO Pendant UA-002-64 data loggers (Onset Computer Corporation, 

Bourne, USA), set to log air temperature and light intensity. One data logger was placed 

at each site in the years 2016 and 2017 (see Fig. 4.1).  

Details on the climate and vegetation characteristics of each site are provided in 

Table 4.1. Climate data were sourced from the Centre for Environmental Data Analysis 

(CEDA; https://catalogue.ceda.ac.uk/) using the dataset HadUK-Grid Gridded Climate 

Observations on a 1 km grid over the UK (Met Office, 2018), and the mean annual 

temperature and mean annual rainfall between the 10 years 2008-2017 was calculated 

for each site, using data for the 1 km cell in which the site was located. Vegetation data 

and estimated percentage canopy and understory cover were collected on one occasion 

at each site in spring/summer 2017, and reflect the structure and dominant species 

composition at that time. Vegetation data were not collected at Highnam Wood, as the 

site was not used in 2017.  

Although predominantly located within rural landscapes, the study sites were 

subject to varying levels of artificial light and noise pollution. Fig. 4.2 shows the 

landscape (within 2.5 km) surrounding each study site, and the proximity of roads and 

urban (residential or industrial) areas. Durham University and Fairburn Ings, in 

particular, were close to urbanised areas, and only Abernethy and Minsmere did not 

have an A- or B-road pass within 2.5 km of the ARU (Fig. 4.2). 
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Figure 4.1 Locations and names of study sites. One autonomous recording unit (ARU) was 

installed at each site in multiple years (15=2014/15; 16=2015-17; 3,10,19,20=2016/17; all other 

sites=2014-2017). In 2016 and 2017, Tinytag Plus 2 TGP-4500 data loggers (Gemini Data 

Loggers, Chichester, UK) were deployed at sites where names include suffix (T), and HOBO 

Pendant UA-002-64 data loggers (Onset Computer Corporation, Bourne, USA) were deployed 

at those with suffix (P). All sites consisted of semi-natural deciduous or mixed deciduous 

woodland habitat. 
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Table 4.1 Climate, vegetation structure and dominant species of study sites. Sites listed in order 

of decreasing latitude. 

 

 

Cover (%) Species Cover (%) Species Cover (%) Species

Abernethy 6.86 997 50 Betula pendula 10 Ulex europaeus 95 Pteridium , Poaceae, 

Vaccinium myrtillus ,  

Erica cinerea ,  

Juncus  sp.

Inversnaid 9.17 3007 75 Quercus petraea , B. 

pendula

0 NA 85 Pteridium , Poaceae, 

Juncus  sp.

Brock Wood 8.93 831 80 Acer 

pseudoplatanus , 

Fraxinus excelsior , 

Q. robur , B. 

pendula , Pinus  sp.

25 Hedera  sp., 

Crataegus 

monogyna ,  

Sambucus nigra , 

Taxas baccata , Abies  

sp.

50 Dryopteris  sp.,  

Mercuralis perennis

Wood of Cree 9.17 1655 75 Q. petraea , B. 

pubescens

25 Coryllus avellana , 

Sorbus aucuparia

30 Pteridium , Rubus 

fruticosus , Oxalis 

acetosella , mosses

Kingswood Burn 8.58 957 65 Quercus  sp., B. 

pendula , S. 

aucuparia

10 B. pendula , S. 

aucuparia

35 Poaceae

Durham University 9.43 742 80 A. pseudoplatanus , 

Q. robur , Fagus 

sylvatica

35 Ilex aquifolium , S. 

aucuparia

10 Pteridium , 

Dryopteris  sp.

Clay Bank 8.71 999 50 B. pendula , Alnus 

glutinosa , Abies  sp.,  

Salix  sp.

0 NA 80 Pteridium , Poaceae

Gait Barrows 9.71 1241 70 B. pendula 50
C. avellana , I. 

aquifolium
15 Mosses

Fairburn Ings 10.4 617 70 B. pendula , Q. 

robur , Pinus nigra

50 R. fruticosus , C. monogyna50 Poaceae, Impatiens 

glanulifera , 

Dryopteris  sp.Old Wood 9.99 638 70 F. excelsior , Pinus  

sp., Abies  sp.

60 C. avellana , C. 

monogyna , Acer 

campestre , S. nigra , 

A. pseudoplatanus ,  

Lonicera sp., Cornus 

sanguinea

20 M. perennis , ferns

Coombes Valley 8.92 1013 75 Q. petraea , Abies sp., 

Pinus  sp.

15 I. aquifolium 15 Pteridium

Ynys-hir 10.6 1408 65 Q. petraea 15 A. pseudoplatanus , 

Lonicera  sp., I. 

aquifolium , 

Rhododendron 

ponticum , S. 

aucuparia , C. 

avellana

90 R. fruticosus , 

Pteridium

Minsmere 10.7 620 75 Q. robur , F. 

sylvatica , C. sativa , 

B. pendula , A. 

pseudoplatanus , P. 

nigra

0 NA 50 Pteridium

The Lodge 10.6 619 75 B. pendula , Q. 

robur , C. sativa , 

Pinus  sp.

10 B. pendula 30 Pteridium

Highnam Wood 10.5 776 NR Q. robur NR NR NR NR

Nagshead 10.1 1017 80 Quercus  spp., C. 

sativa , S. aucuparia

10 I. aquifolium , S. 

aucuparia , P. 

pendula

50 Pteridium , Poaceae, 

mosses, ferns

Blean Woods 10.8 709 80 Q. robur , F. 

sylvatica , C. sativa

50 F. sylvatica , C. 

sativa , I. aquifolium

0 NR

Swell Wood 10.9 698 80 Q. robur , A. campestre 30 C. avellana , C. 

monogyna

90 Hedera  sp., M. 

perennis , Poaceae

New Forest 10.9 878 60 B. pendula , Q, 

robur , F. sylvatica , 

Populus  sp.

40 I. aquifolium , C. 

monogyna

65 Pteridium , Poaceae

Cabilla & Redrice 

Woods

10.8 1434 80 Quercus  sp. 40 I. aquifolium , C. 

avellana

40 Hyacinthoides non-

scripta , ferns, 

Pteridium

Canopy (>5 m) Understory (1-5 m) HerbaceousSite name Avg ann 

temp (﮿C)

Avg ann 

rain (mm)
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Figure 4.2 Satellite images of the 20 × study sites and their surrounding landscape. Yellow 

circles have 2.5 km radii extending from the co-ordinates of autonomous recording units and 

data loggers deployed within the sites. Pale yellow lines show A- or B-roads. Imagery taken 

from Google Earth Pro. 
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Chapter 5 

Automated identification and classification of 

birdsong: an ensemble approach 

 

 

Northern wren Troglodytes troglodytes  
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5.1 Abstract 

The avian dawn chorus presents a challenging opportunity to test autonomous recording 

units (ARUs) and associated recogniser software in the types of complex acoustic 

environments frequently encountered in the natural world. To date, extracting 

information from acoustic surveys using readily-available signal recognition tools 

(‘recognisers’) for use in biodiversity surveys has met with limited success. Combining 

signal detection methods used by different recognisers could improve performance, but 

this approach remains untested. Here, I evaluate the ability of four commonly used and 

commercially- or freely-available individual recognisers to detect species, focusing on 

five woodland birds with widely-differing song-types. Using binomial generalised linear 

models (GLMs), I combined the scores (which reflect the perceived likelihood of a 

vocalisation originating from a target species) assigned to detections made by the four 

recognisers to devise an ensemble approach to detecting and classifying birdsong during 

the dawn chorus. I assess the relative performance of individual recognisers and that of 

the ensemble models. The ensemble models out-performed all of the individual 

recognisers across all five song-types. The ensemble also minimised false positive error 

rates for all species tested – an achievement unmatched by any recognisers in isolation. 

My results highlight variation in the performance of recognisers commonly used in 

ecology, when tested on bird species of differing song-type. Moreover, during 

acoustically complex dawn choruses, with many species singing in parallel, my 

ensemble approach resulted in detection of 74% of singing events, on average, across 

the five song-types, compared to 59% when averaged across the recognisers in 

isolation; a marked improvement. I suggest that this ensemble approach, used with 

suitably trained individual recognisers, has the potential to finally open up the use of 

ARUs as a means of automatically detecting the occurrence of target species and 

identifying patterns in singing activity over time in challenging acoustic environments.
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5.2 Introduction 

Autonomous recording units (ARUs) are increasingly used to gather ecological data for 

a diverse array of sound-producing animal taxa. Used appropriately, ARUs provide an 

efficient, standardised and unbiased data-collection procedure at lower cost than 

traditional site visits by skilled observers (e.g. Zwart et al., 2014). They can be deployed 

in situ for extended periods, recording multiple species at multiple sites simultaneously, 

accumulating data on spatio-temporal scales of ecological consequence, whilst limiting 

disturbance and reducing potentially costly visits to distant and hard-to-access locations 

(Blumstein et al., 2011). However, in common with other automated data collection 

methods in ecology (e.g. camera-traps, Norouzzadeh et al., 2018), the rate-limiting step 

in biodiversity studies using such data, is that of extracting information from the 

considerable datasets amassed. This can involve manually browsing many hours of 

sound recordings on spectrograms, which is a laborious task (Sebastián-González et al., 

2015), potentially requiring costly teams of sound analysts (e.g. Furnas and Callas, 

2015; Sanders and Mennill, 2014). Automated computer-aided signal recognition 

systems provide a potential solution to the problem, and reliable systems will be crucial 

to the viability of long-term, large-scale ecological studies using ARUs (Blumstein et 

al., 2011). However, despite progress in recent years, the performance of general-use 

signal recognition systems has failed to keep pace with advances in acoustic data 

collection and storage (Wimmer et al., 2013).  

The process of automatically detecting and classifying birds from sound 

recordings potentially presents a greater challenge than for other taxa (chapter 3, section 

3.4). Birdsong, in particular, is extremely varied and complex, and when multiple 

species and individuals sing simultaneously, such as during the dawn chorus, elements 

of song overlap in time, frequency and amplitude (Luther and Wiley, 2009; 

Priyadarshani et al., 2018). Consequently, sound recordings made during the dawn 

chorus often prove overwhelming for signal recognition systems, which then fail to 

interpret the species-specific vocalisations accurately. Indeed, many studies of 

automated detection systems identify target species recognition during the dawn chorus 

as a particularly challenging research problem (e.g. Duan et al., 2013). Yet, best practice 

for traditional bird surveys (e.g. point counts and transects) in many parts of the world is 

to survey at or around dawn during the main breeding period, to maximise the number 
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of species detected per unit time (chapter 1, section 1.1). This also applies to surveys 

using ARUs, especially in long-term studies where battery life and data storage may be 

a limitation (Burivalova et al., 2019).   

Despite the difficulties, numerous methods have been developed for automated 

detection and classification of birdsong (reviewed by Blumstein et al., 2011; 

Priyadarshani et al., 2018; Stowell and Plumbley, 2011; chapter 3, section 3.4, this 

thesis), drawing upon research expertise in the fields of mathematics, computer 

engineering, bioinformatics, acoustics and audio signal processing. As a result, several 

sound analysis software packages have been developed that include automated signal 

recognition tools (hereafter ‘recognisers’) aimed at facilitating the use of ARUs by 

ecologists with only a limited understanding of the complexities of analysing acoustic 

data (e.g. Charif, et al., 2010; Hafner and Katz, 2018a; chapter 3, section 3.4, this 

thesis). To date, recognisers appear under-utilised in the ecological literature, and 

studies that have used them effectively typically document habitat occupancy and 

rudimentary activity levels at limited spatio-temporal scales. Many of these studies also 

focus on detection of distinctive, diagnostic or uncomplicated vocalisations at times of 

day when masking from background noise is low (e.g. Abrahams and Denny, 2018; 

Knight et al., 2017; Swiston and Mennill, 2009; Zwart et al., 2014). Researchers 

attempting more ambitious usage, such as detecting and recognising passerine songs at 

numerous and varied locations, have been unable to create recognisers that are fit for 

purpose (e.g. Sidie-Slettedahl et al., 2015). Manual scanning of spectrograms remains 

the best option if an accurate account of singing activity, or detection of multiple 

species, is required (Joshi et al., 2017; Knight et al., 2017; Sanders and Mennill, 2014; 

Shonfield and Bayne, 2017; Swiston and Mennill, 2009). Although recognisers are 

designed to facilitate signal recognition by reducing the time required to analyse large 

datasets, they do not fully automate the process (Charif, et al., 2010; Shonfield and 

Bayne, 2017). The procedure therefore, invariably involves manual verification of the 

detections returned, which, in itself, can be a prohibitive task.   

For researchers to have confidence in the output returned, recognisers must 

maximise the ratio of true-positive (TP) detections over false-positive (FP) errors; to 

assume (likely) absence, they must eliminate FP errors entirely. To assist in this, many 

recognisers assign a score value to each detection, which can be taken as a confidence 
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measure of how well the detection matches the target signal (chapter 3, section 3.4). In 

theory, higher scoring detections are more likely to originate from the target species.  

Despite their limitations, the various methods of signal detection amongst 

different recognisers may each have particular strengths when applied to certain 

situations and song-types, such that a combination of methods would produce a more 

robust and universal recogniser tool. Indeed, in both ecological studies and more 

widely, it is acknowledged that if individual predictive techniques provide some 

independent information, a combination of techniques will yield lower mean error than 

any one in isolation (Araújo and New, 2007). Here, I combine the performance of 

recognisers from four sound analysis software packages by using the scores assigned to 

detections to construct an ensemble model. The performance of my ensemble is 

compared to that of each of the recognisers in isolation in its ability to detect and 

classify birdsong correctly within noisy recordings made during the dawn chorus. I 

repeat this for five common British woodland bird species, which, together, exhibit a 

wide variation in song structure. My goal is to evaluate which approaches to automated 

identification perform best and to test whether combining different recognisers can 

enhance performance across multiple species. I evaluate methods in terms of increasing 

TPs and decreasing, or negating, FPs, with the aim of producing a generic approach that 

could be more widely applied. 

5.3 Materials and Methods 

5.3.1 Study Species 

Stowell and Plumbley (2011) recognise five broad song-types amongst British birds. To 

ensure that I tested recognisers over a varied range of songs, I used an example species 

with song comparable to each of these five song-type groups as follows:  1) common 

chiffchaff (hereafter ‘chiffchaff’) Phylloscopus collybita (bi-syllabic), 2) northern wren 

(hereafter ‘wren’) Troglodytes troglodytes (few syllables, with a strong bigram 

structure), 3) European robin (hereafter ‘robin’) Erithacus rubecula (large vocabulary), 

4) carrion crow Corvus corone (less-tonal), and 5) common woodpigeon (hereafter 

‘woodpigeon’) Columba palumbus (low-pitched non-passerine).   
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5.3.2 Data collection 

I collected acoustic data using ARUs (Song Meter 2+; Wildlife Acoustics Inc, Maynard, 

USA) mounted on tree trunks c.4 m from ground-level at each of 20 semi-natural mixed 

deciduous woodland study sites throughout Great Britain (Fig. 4.1). Each ARU was 

fitted with two omni-directional all-weather microphones (SMX-II; Wildlife Acoustics 

Inc, Maynard, USA) with a typical sensitivity of -35 to -43 dBV/pa and a frequency 

response of 20 Hz–20,000 Hz (Sebastián-González et al., 2015; Turgeon et al., 2017). 

Recordings were made in stereo, with a sample rate of 16000 Hz and 16-bit encoding. 

No high-pass or bandwidth filters were applied. ARUs were configured with the 

respective site co-ordinates and programmed to survey continuously for 135 min, 

commencing 90 min prior to local sunrise every day from January to August inclusive. 

These surveys were repeated for each of the four years 2014 to 2017. With the 

exception of chiffchaff, which was absent from five sites, the study species were 

ubiquitous throughout my study sites. 

5.3.3 Test dataset 

I extracted 300 samples from my dataset of acoustic surveys of the dawn chorus, 

considering only those made during the breeding season (March to June), using 

stratified random sampling, ensuring that samples were evenly distributed amongst all 

20 study sites (15 per site), and across the three years 2014 to 2016 (data collection was 

not complete for 2017 at this time). Samples including persistent heavy rain and strong 

winds were excluded from the test dataset and substituted with a new, randomly-

generated sample. I removed the first 30 min from each sample, as there was expected 

to be little or no singing activity by the study species in this early portion of the acoustic 

surveys. A randomly selected 300 s block of time was then extracted from each of the 

300 samples. The final test dataset comprised 1500 min (300 × 300 s) of acoustic 

survey. 

5.3.4 Manual song detection 

I manually analysed the test dataset, and listened to each 300 s sample whilst 

simultaneously viewing its spectrogram, and recorded all the singing events by each 

study species in turn (definitions of singing events are provided in Appendix A.1). 

Behavioural Observation Research Interactive Software (BORIS; Friard and Gamba, 
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2016) was used to record the timing of singing events. I used the ‘live’ setting on this 

program whilst simultaneously viewing spectrograms on Raven Pro v1.4 sound analysis 

software (The Cornell laboratory of Ornithology, Ithaca, USA). If a song could not be 

reliably assigned to a study species (too faint/quiet, too blurred, masked by other calls, 

or otherwise undecipherable) it was excluded from the analysis, as were vocalisations 

other than song (e.g. contact and flight calls). 

5.3.5 Automated song detection 

Training dataset 

I created individual recognisers for each study species from each of four sound analysis 

software packages, using singing events taken from a standardised training dataset. The 

full training dataset consisted of one manually-selected 105 min acoustic survey (i.e. a 

135 min survey less the first 30 min) of the dawn chorus from each of my 20 study sites, 

or, in the case of chiffchaff, from each study site that the species was present. This 

ensured that the song of each study species was represented with examples of varying 

structure and quality; thus, creating recognisers designed for general use across multiple 

study sites. Acoustic surveys included within the test dataset (section 5.3.3) were 

exempt from selection for the training dataset. Here, I provide the necessary information 

on the detection method used (where applicable) and ‘score’ settings chosen from each 

of four sound analysis software packages and associated recogniser tools. More detail 

on each recogniser is provided in chapter 3 (section 3.4). A detailed methodology for 

recogniser construction is provided in Appendix A.2. 

monitoR 

I used the cross-correlation template-matching for my analyses, as this method 

performed better than the binary-point method in preliminary tests with my dataset. 

Monitor provides a score based upon Pearson’s correlation coefficient (Pearson’s R), 

representing a detected signal’s similarity to the template. I built recognisers following 

instructions in the demonstration vignette (Hafner and Katz, 2018b) and the suggested 

workflow in Katz et al. (2016a).  
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Raven Pro 

I used the band-limited energy detector for my analyses, as preliminary tests showed 

that this performed better than the amplitude detector with my dataset. Raven assigns an 

‘Occupancy’ measurement to detections, which represents the percentage of samples 

within a selection that must exceed the background noise signal-to-noise ratio (SNR) 

threshold in order for the signal to be considered a positive detection. I used this 

measurement as a score. Raven offers a large repertoire of additional measurements 

applicable to detections; I selected the ‘Average Power (dB)’ measurement, as I 

surmised that this value could also predict the probability that detections are correct. I 

built recognisers following instructions available within the Raven v1.4 User’s Manual 

(Charif, et al., 2010).  

Song Scope 

Song Scope assigns both a ‘Score’ and ‘Quality’ value to detections. Score represents 

the statistical fit of the detection to the recogniser’s model, and Quality indicates a 

signal quality confidence. Detections must reach both a user-defined minimum Score 

and minimum Quality to count. Song Scope also returns a ‘Level (dB)’ value, which is 

the peak signal level of the vocalisation in detections. I built recognisers following 

instructions available within the Song Scope v4.0 documentation (Wildlife Acoustics, 

Inc., 2011), whilst also consulting Agranat (2009) for additional advice on settings.  

Kaleidoscope Pro 

Kaleidoscope assigns a score to detections, based upon their distance from the centre of 

the cluster. In this case, lower scores indicate better matches to the training data. I 

constructed recognisers using the cluster analysis function, following a tutorial video 

available from the software developer (Wildlife Acoustics, Inc., 2018a) and instructions 

within the Kaleidoscope v5 documentation (Wildlife Acoustics, Inc., 2018b).  

5.3.6 Ensemble model 

I used the scores assigned to the detections made by the four recognisers, plus additional 

measurements provided by Raven (Power) and Song Scope (Quality and Level), to 

construct an ensemble model for each study species. I used generalised linear models 

(GLMs) with binomial errors, implemented using the glm function in the stats package 
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in R (v3.5.2; R Core Team, 2018), to predict whether the study species was singing or 

not within each acoustic survey segment of 1 s duration (hereafter ‘segment’), with the 

recogniser scores and additional measurements, and their interaction terms, as 

explanatory variables. I used the R package MuMIn (v1.42.1; Barton, 2018) to rank 

candidate models by Akaike information criterion (AIC), and selected the highest 

ranking model.  This process was repeated using cloglog, logit and probit links; the link 

that produced the highest ranking model with the lowest AIC was retained (Burnham 

and Anderson, 2002). To assess the performance of individual recognisers in isolation, 

binomial GLMs were used to model the probability of obtaining positive detections but 

only including the recogniser scores from an individual recogniser in three cases 

(monitoR, Raven and Kaleidoscope), or, for Song Scope, with both Score and Quality 

as covariates. Again, all GLMs were repeated using cloglog, logit and probit links, and 

the links that produced the models with the lowest AIC were chosen. Further details on 

the modelling process, and model specifications, are provided in Appendix A.3. 

5.3.7 Recogniser performance analysis 

To assess the respective performances of each recogniser and the ensemble, I used area 

under the receiver operating characteristic curve (AUC-ROC). An ROC curve 

essentially describes the compromise between sensitivity and false positive rate (FPR; 

Table 3.2). If the area under the curve (AUC) is equal to 1, the classifier achieves 

perfect accuracy. AUC-ROC was calculated for each species using the R package 

ROCR (v1.0-7; Sing et al., 2005), and curves were drawn using the PRROC package 

(v1.3.1; Grau et al., 2015). I then calculated i) the minimum distance between the ROC 

curves and x=0, y=1 (roc01), i.e., the point in the ROC curve that is closest to the top-

left corner of the plot; lower distances are optimal, as they represent greater sensitivity 

relative to the corresponding false positive rate (see Metz, 1978), and ii) the minimum 

modelled probability of obtaining a positive detection at which the false positive rate 

(FPR) remained at zero (i.e. the probability threshold that negated FP errors but which 

returned TP detections), for each recogniser and the ensemble, using the R package 

cutpointr (v0.7.4; Thiele, 2018). Further detail on this process is provided in Appendix 

A.4. 

I tested for statistical difference amongst the recognisers and the ensemble in i) 

AUC-ROC, and ii) roc01 using linear mixed-effects models (LMMs) implemented in 
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the R package lme4 (v1.1.20; Bates et al., 2015) with model fit by maximum likelihood. 

AUC-ROC and roc01 performance varied amongst the study species; hence, species 

was included as a random intercept term in both models. I performed Tukey post-hoc 

pairwise tests of recognisers using the R package emmeans (v1.3.1; Length et al., 2019). 

I confirmed that normality and homoscedasticity assumptions were met by plotting the 

model residuals as Q-Q plots and against fitted values respectively. 

To test the ensemble’s ability to recognise broad-scale patterns in singing activity 

over time, I applied the ensemble models to the 60 × 300 s acoustic surveys selected to 

be the model test data (Appendix A.3), omitting samples from which the study species 

was absent (chiffchaff was excluded from this analysis due to the low number of 

datapoints following these omissions), and including all 300 segments of those that 

remained. I used the roc01 probabilities (as defined above) as cutpoints, and correlated 

the number of segments within each sample survey identified as positive detections by 

the ensemble against the corresponding numbers identified by manual analysis. 

Pearson’s r was calculated as a measure of similarity. To demonstrate the ensemble’s 

potential to recognise fine-scale patterns in singing activity, I manually selected a 

sample survey for each species, and aggregated the segments into 30 × 10 s blocks. I 

then correlated the number of segments within each 10 s block identified as positive 

detections by the ensemble with the corresponding numbers identified by manual 

analysis, and calculated Pearson’s r.  

5.4 Results 

The ensemble model produced higher AUC-ROC values than all four component 

recognisers in isolation for all study species (Fig. 5.2; Table 5.1). The ensemble also 

attained lower roc01 values than all component recognisers in isolation for all study 

species, with the exception of chiffchaff, where Song Scope attained a lower roc01 

value (Fig. 5.2; Table 5.1). No one recogniser in isolation performed consistently better, 

in terms of AUC-ROC or roc01, than any other across all study species (Fig. 5.2; Table 

5.1). The sensitivity (i.e. the proportion of study species’ 1 s singing events correctly 

identified as such) of the ensemble model at the optimal (lowest) roc01 cutpoint value 

for each study species averaged 74% amongst the species (chiffchaff=70%, wren=74%, 

robin=63%, carrion crow=81% and woodpigeon=82%; Fig. 4.2), whilst sensitivity 
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averaged across all component recognisers and study species at their respective optimal 

roc01 cutpoint values was 59% (chiffchaff=50%, wren=70%, robin=53%, carrion 

crow=62% and woodpigeon=58%). These sensitivity values, however, were achieved at 

a cost of varying FPRs (Appendix A.4, Table A.6). The ensemble returned a minimum 

probability of obtaining a positive detection, whilst suppressing FPR to zero, for all 

study species. At this probability, FP errors were negated whilst TP detections 

remained. No recogniser in isolation achieved this for all study species, and Raven did 

not achieve this for any (Appendix A.4, Table A.7).  

 

Table 5.1 The area under the receiver operating characteristic curve (AUC-ROC) and the 

minimum distance from the ROC curve and the point x=0, y=1 (roc01) for an ensemble model 

and the four component recognisers when detecting and classifying the song of five bird species 

within acoustic surveys made during the dawn chorus. Lower roc01 values are optimal as they 

represent greater sensitivity (the proportion of species’ 1 s singing events correctly identified as 

such) relative to the corresponding false positive rate (the proportion of species’ 1 s non-singing 

events incorrectly identified as 1 s singing events). The ensemble attained the lowest roc01 

values for all species, with the exception of chiffchaff, where Song Scope roc01 was lowest.  

Species Ensemble   monitoR   Raven   Song Scope   Kaleidoscope 

AUC-

ROC roc01   

AUC-

ROC roc01   

AUC-

ROC roc01   

AUC-

ROC roc01   

AUC-

ROC roc01 

Chiffchaff 0.658 0.528   0.606 0.616   0.502 0.689   0.640 0.496   0.548 0.829 

Wren 0.756 0.412   0.661 0.472   0.696 0.442   0.647 0.479   0.641 0.523 

Robin 0.699 0.476   0.604 0.633   0.591 0.588   0.570 0.608   0.653 0.525 

Carrion crow 0.836 0.268   0.669 0.512   0.782 0.337   0.738 0.393   0.739 0.433 

Woodpigeon 0.832 0.291   0.779 0.334   0.676 0.437   0.753 0.385   0.626 0.733 
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Figure 5.2 The performance of an ensemble model and the four component recognisers when 

detecting and classifying the song of five bird species within acoustic surveys made during the 

dawn chorus. Filled circles show the minimum distance between the curves and the point x=0, 

y=1 (roc01). Dashed lines show random performance. 
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AUC-ROC was significantly different amongst the recognisers and the ensemble 

(
2
(4)=57.63, p<0.001). Tukey post-hoc tests showed that the ensemble attained 

significantly higher AUC-ROC than did all recognisers in isolation (monitoR, p=0.020; 

Raven, p<0.001; Song Scope, p<0.001; Kaleidoscope, p<0.001). Additionally, both 

monitoR (p<0.001) and Raven (p=0.030) attained significantly greater AUC-ROC than 

Kaleidoscope (Fig. 5.3a). Likewise, the roc01 statistic was significantly different 

amongst the recognisers and the ensemble (
2
(4)=112.63, p<0.001). Tukey post-hoc 

tests again showed that the performance of the ensemble was significantly better, with 

roc01 less than that of all other recognisers in isolation (monitoR, p<0.001; Raven, 

p=0.036; Song Scope, p<0.001; Kaleidoscope, p<0.001). Additionally, the roc01 of 

monitoR (p<0.001), Raven (p<0.001) and Song Scope (p<0.001) were all significantly 

lower than that of Kaleidoscope (Fig. 5.3b).  

The number of segments within sample surveys identified by the ensemble as 

positive singing events correlated positively with the numbers identified by manual 

analysis for all species tested (Fig. 5.4). Pearson’s r was moderate for three study 

species, and strong for carrion crow (Fig. 5.4). Likewise, the number of segments within 

10 s blocks of chosen sample surveys identified by the ensemble as positive singing 

events, correlated positively with the numbers identified by manual analysis for all 

study species. Pearson’s r ranged from weak (chiffchaff) to very strong (robin; Fig. 5.5)
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Figure 5.3 Results of linear mixed-effects models (LMMs) testing for difference in a) the area 

under the reciever operating characteristic curve (AUC-ROC), and b) the minimum distance 

between the ROC curve and x=0, y=1 (roc01) of an ensemble model and the four component 

recognisers when detecting and classifying the song of five bird species within acoustic surveys 

made during the dawn chorus. Lower roc01 values are optimal as they represent greater 

sensitivity relative to the corresponding false positive rate. Thick horizontal bars represent mean 

values, and thin bars represent ±1SE, having accounted for the random intercept effect of 

species. Data points of species are plotted; n=155 for each recogniser. 
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Figure 5.4 The number of 1 s segments within each of n × 300 s acoustic surveys of the dawn 

chorus identified as positive singing events by manual analyses versus the number predicted by 

automated analyses using an ensemble recogniser model, and the Pearson’s correlation 

coefficient, for four bird species with differing song-types. Wren, n=45; robin, n=40; carrion 

crow, n=28; woodpigeon, n=37. 
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Figure 5.5 The number of seconds per 10 s interval that the songs of five bird species were 

detected by manual analyses of sample 300 s acoustic surveys of the dawn chorus (one survey 

selected for each species), and the corresponding number returned by automated analyses using 

ensemble recogniser models.  The ensemble models were capable of identifying fine-scale 

patterns in song output over time for the range of species. Pearson’s correlation coefficients, 

assessing the relationship between the two methods, are shown in parentheses. 
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5.5 Discussion 

If automated acoustic recognisers are to be more widely adopted in ecological studies, 

there is a need for improved recogniser performance in detecting and classifying 

vocalisations within noisy acoustic surveys. I assessed the individual performance of 

four readily-available recognisers and found that their ability to detect the singing 

events of bird species with contrasting vocalisations was highly variable.  In parallel, I 

developed an ensemble approach, whereby scores assigned to detections made by the 

four recognisers were combined to model probabilities of singing events by individual 

species. My ensemble model performed significantly better than all component 

recognisers in isolation when tested on the song of five species in acoustic surveys made 

during the dawn chorus at 20 woodland sites throughout Great Britain. The mean 

probability of the ensemble correctly identifying individual singing events across my 

five study species was 74%, compared to 59% probability when the respective 

performances of the component recognisers were averaged across the study species. The 

ensemble worked by ‘weighting’ the scores of the component recognisers, improving 

classification of the ‘true signal’, and reducing both the error and unreliability of the 

recognisers when operated in isolation (Araújo and New, 2007). Hence, the ensemble 

takes the particular strengths from each recogniser’s detection method, resulting in a 

favourable performance across all species tested. Considering that my study species 

represent the five broad song-types recognised amongst British birds (cf. Stowell and 

Plumbley, 2011), and are likely to be representative of song-types more broadly, it is 

reasonable to postulate that my ensemble method would perform favourably across 

other bird communities and also across other taxa and regions. 

The performance of the individual recognisers was inconsistent across my five 

study species, reflecting the suitability of their respective signal detection methods to 

particular song structures, frequency ranges, and background noise; no individual 

recogniser was comprehensive in its ability (cf. Brandes, 2008a). For example, Raven 

concentrates on detecting the energy within a specified frequency band, and does not 

consider the internal structure of a song (Duan et al., 2013). It is, therefore, prone to a 

high FPR. This was especially apparent with chiffchaff song, where Raven’s 

performance was barely better than random (Fig. 5.2; Table 5.1). Despite chiffchaff 

song being of a relatively simple structure, Raven was unable to discriminate between 
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the target signal and background noise in the 3.5-7 kHz frequency band in the period 

around sunrise, when most species participate in the chorus. Song Scope performed 

considerably better in this situation, despite its method of detecting song structure using 

HMMs also being sensitive to noise (Briggs et al., 2012; Duan et al., 2013). By contrast, 

Song Scope performed poorly for wren, despite wren song being delivered at the same 

time as chiffchaff, and in a broadly overlapping frequency band. This may be due to the 

high amplitude of wren song increasing the SNR, allowing Raven to detect it more 

easily, whereas there was sufficient variability in wren song structure across all dates 

and sites in the test dataset to limit discrimination by Song Scope. Wren typically sing 

at lower elevations (c.3 m Holland et al., 1998) than chiffchaff (which sings high in the 

canopy; Rodrigues, 1996). Wren song would, thus, be closer to the ARU microphones, 

which were set at c.4 m. The resultant difference in amplitude might explain the 

difference in their detection by Raven. In a prior comparison of recogniser performance, 

detecting the distinctive call of common nighthawk Chordeiles minor in less complex 

acoustic conditions at twilight, Knight et al. (2017) found that Song Scope performed 

best (as measured using AUC-ROC), followed by monitoR, then Raven, then 

Kaleidoscope. From my study species, carrion crow most closely resembles common 

nighthawk in terms of the structure of its vocalisation, but I obtained a very different 

order in AUC-ROC performance, i.e. Raven then Kaleidoscope/Song Scope, then 

monitoR (Fig. 5.2; Table 5.1), highlighting the potential problems of relying on only 

one recogniser for detection. It is apparent, therefore, that relative performances of 

individual recognisers are variable, and dependent upon the species and the situation 

within which acoustic surveys are made, and, no doubt, in the methods applied by the 

user during their construction. By comparison, the relative performance of my ensemble 

model remained consistently high across all species tested. 

In many applications of ARUs, the minimum requirement is detecting the 

occurrence, or occupancy probability, of a species of interest at a given location (e.g. 

Furnas and Callas, 2015). Unfortunately, recognisers invariably return FP errors from 

acoustic surveys, which are particularly problematic when the species of interest is 

absent from the location, and which contravene a major assumption of many occupancy 

models (MacKenzie et al., 2006). This error can be reduced, or resolved, if there is a 

minimum probability of obtaining a positive detection at which the FPR remains at zero. 

I showed that none of the recognisers tested in isolation could achieve this probability 
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cutpoint across all five of my study species (no individual recogniser enabled the 

detection of more than three species), but that this was achievable using my ensemble 

model (Appendix A.4, Table A.7). This means that to determine occurrence for each of 

my study species, I need only consider the detections made at or above the minimum 

threshold probability. Within this reduced dataset, I should be confident that the 

detections are of the target species only. If no detections are returned at or above the 

minimum probability, and the target species is otherwise a reliable contributor to the 

dawn chorus, I could infer that the species is absent. The more TP detections that 

exceed the minimum probability (Appendix A.4, Table A.7), the more confident this 

assumption should be. Importantly, an ensemble approach might, thus, enable the use of 

ARUs to determine apparent species presence-absence data for sites, if recognisers are 

available for all candidate species. 

When accurate accounts of daily or seasonal patterns in song frequency or singing 

behaviour is important, a large majority of the singing events within acoustic surveys 

must be detected (Shonfield and Bayne, 2017), whilst FP errors remain negligible. In 

this regard, a good recogniser will minimise the distance from the ROC curve to the 

point x=0, y=1 (where the distance is denoted roc01). This was beyond the capabilities 

of all individual recognisers tested for most of my study species singing during the 

dawn chorus, and the ensemble also fell short for some species in its performance here 

(Fig. 5.2; Table 5.1). This was particularly true for chiffchaff, where sensitivity at the 

optimal roc01 was 70%, which was attained at the cost of a 48% FPR (Fig. 5.2; 

Appendix A.4, Table A.6). The best performing ensemble model was for carrion crow, 

where sensitivity at the optimal roc01 was 81% at a cost of a 28% FPR (Fig. 5.2; 

Appendix A.4, Table A.6). Nevertheless, the roc01 for the ensemble across the five 

study species was significantly less than for all component recognisers in isolation (Fig. 

5.3b), and, for all study species except Song Scope’s chiffchaff recogniser, the ensemble 

model had a lower or equal FPR for any given sensitivity value (Fig. 5.2).  

An ensemble approach based on the best available current recognisers is still only 

partly capable of correctly detecting and classifying all individual singing events of 

species. In particular, when the singing activity of my study species’ in acoustic surveys 

was low, the ensemble had high FP rates (note high y-intercepts in Fig. 5.4). When the 

singing activity of the species was greater, the ensemble correlated well with the 

observed number of singing events over broad timescales (i.e. 300 s; Fig. 5.4). The 
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ensemble also demonstrated potential for very high performance in recognising singing 

activity patterns over fine timescales (i.e. 10 s) for most species tested (Fig. 5.5), and 

although the ensemble model for chiffchaff largely failed to identify the nuances in 

timing of singing events, it still correctly estimated the mean number of events across 

the sample (Fig 5.5). However, further development of individual recognisers and the 

ensemble approach will be required for reliable application to studies on song output 

and singing behaviour.  

Building ensemble recogniser models can be a lengthy process, as they require 

familiarity with the controls and construction of each component recogniser. 

Nonetheless, if they are used to examine large acoustic datasets, the enhanced 

performance of ensembles over the use of the component recognisers in isolation will 

likely out-weigh the initial time invested and, once constructed, they can be applied to a 

wide range of species, study sites and datasets. An alternative to investing in building an 

ensemble recogniser would be to allocate effort to training an individual recogniser. 

However, diminishing returns, together with the relatively narrow domain of 

performance of each individual recogniser, suggest that the outcome would be unlikely 

to match an ensemble approach in its breadth. Mine and previous studies suggest that 

major improvements can still be made to available recognisers. Future improvements to 

any one recogniser are also likely to improve the performance of an ensemble modelling 

approach, enabling a much wider utility of ARUs for ecological studies.  

With both diversity and abundance of species declining at greater rates than ever 

before in human history (IPBES, 2019), there is a pressing need to monitor the state of 

our wildlife. I present a method based on five species with different vocal characteristics 

that improves acoustic signal recognition performance significantly. My ensemble 

method offers the potential for inexpensive, robust monitoring of species. Clearly, the 

method needs to be tested on a wider range of species, but the potential use of ARUs for 

widespread use is now within our grasp. My ensemble approach could be used for a 

range of purposes, including to provide evidence for: policy makers (e.g. the presence of 

qualifying species in protected areas), those wishing to provide evidence of the presence 

of species on sites notified for developments (e.g. Environmental Impact Assessments), 

and scientists exploring ecological and behavioural research questions. 
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Chapter 6 

Tracking the avian dawn chorus across Great 

Britain with climate 

 

 
Common chaffinch Fringilla coelebs
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6.1 Abstract 

Despite its significance in the life-cycles of birds, the avian dawn chorus remains little 

understood. Several hypotheses have attempted to explain the motivation for the chorus, 

but none apply to all birds all of the time. The energy stochasticity hypothesis offers a 

general explanation, and states that birds sing more at dawn if they possess excess 

energy reserves at this time. A key assumption of the hypothesis is that overnight 

temperature dictates energy-loss, such that cooler temperatures lead to reductions in 

singing activity the following dawn, culminating in later dawn choruses and lower 

chorus peaks. Prior empirical evidence supporting this assumption is largely based on 

studies of single species at single sites. Here, I test the assumption on entire bird 

communities at multiple geographically and climatologically distinct sites, whilst 

accounting for the effect of other environmental variables, including light, which is 

often implicated as the most influential factor determining chorus timing. I used 

autonomous recording units (ARUs) to make acoustic surveys of the daily dawn chorus 

at 19 woodland sites throughout Great Britain during the main breeding season (April to 

June) in two years. I applied the acoustic complexity index (ACI) to the surveys, and 

used the scores obtained to calculate i) chorus onset time, ii) time of chorus peak, and 

iii) the magnitude of the peak in the chorus (chorus intensity) for each day at all sites. I 

conclude that the respective effects of overnight temperature and light on the timing of 

chorus onset and peak differed with latitude. Light was the over-arching factor at all 

sites, but it had relatively greater effect at lower latitudes, whereas overnight 

temperature became more important at higher latitudes, where temperature regimes are 

more likely to limit overnight energy retention in birds. Contrary to the assumptions of 

the energy stochsticity hypothesis, the magnitude of the chorus peak was not influenced 

by variation in minimum overnight temperature, but instead, responded negatively to 

the minimum temperature of the previous night. This effect was more pronounced at 

lower latitudes, where variance within overnight temperature regimes was greater, 

suggesting, perhaps, that birds utilise the minimum temperature of the previous night to 

predict that of the forthcoming night, but make errors in judgement leading to lower 

chorus peaks, especially where overnight temperatures are more variable. However, my 

interpretation of the data is offered tentatively, as I was unable to reliably isolate the 

respective effects of light and temperature in my analyses. Further work should aim to 
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achieve this. The implications of my results in the context of a changing climate are 

discussed. 

6.2 Introduction 

Each day in spring, during a period preceding sunrise, many male northern temperate 

zone passerines deliver their most intense song bout of the day, when together, they 

produce a phenomenon known as the avian dawn chorus. Several hypotheses have been 

proposed to explain the chorus (chapter 2, section 2.4), but no single one can account for 

all species and individuals. In fact, the assemblage of current hypotheses are not 

mutually exclusive, and any one, or combination thereof, may apply to some species at 

least some of the time (Hutchinson, 2002; Thomas, 1999). One broad explanation for 

the chorus that gained momentum towards the turn of the century, and one that 

incorporates some of the assertions made by other hypotheses, is the energy 

stochasticity hypothesis (chapter 2, section 2.4.1). This hypothesis is based upon 

stochastic dynamic programming (SDP) models, which determine optimal behavioural 

regimes under specified conditions that maximise individual fitness (Houston et al., 

1988). In all SDP models of daily singing regimes, overnight energy loss in birds is 

dependent upon minimum overnight temperature (Thomas and Cuthill, 2002), which 

was varied stochastically in initial models (Hutchinson et al., 1993; McNamara et al., 

1987). However, Hutchinson and McNamara (2000) extended these models to reflect 

the possibility that birds possess the ability to predict the forthcoming overnight 

temperature due to its correlation with that of the previous day (see e.g. Bednekoff et 

al., 1994). If stochasticity in overnight energy loss is removed from models, which 

could be achieved by minimising variability in overnight temperature (Hutchinson et al., 

1993; McNamara et al., 1987), they predict that the dawn chorus will be diminished, or 

lost altogether, and replaced with a lower, constant intensity of song production through 

the morning (Hutchinson, 2002).  

The underlying assumptions of the energy stochasticity hypothesis have been 

tested directly and indirectly in previous research involving free-living temperate birds 

(chapter 2, section 2.4.1), although few studies have focused on the relationship 

between minimum overnight temperature and the onset of the chorus (Bruni et al., 

2014). The hypothesis remains contentious, however, as only two of six North 
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American oscine and sub-oscine passerines studied by Bruni et al. (2014) altered their 

singing behaviour in direct response to temperatures at dawn. Furthermore, behavioural 

analysis of captive great tits Parus major has revealed that fully-satiated birds may 

choose to rest rather than sing during daylight hours (Mace, 1989b), and free-living 

conspecifics living at high latitudes, with longer day-length and foraging time, go to 

roost at higher light levels than those at lower latitudes (Mace, 1989a), yet, all still 

chose to sing most intensely at dawn despite having the opportunity to sing at other 

times of the day. Hutchinson (2002) addressed the latter point by extending the SDP 

model further, to incorporate a time-of-day dependence on the probability of gaining 

benefits from singing (i.e. the probability of pairing success). The most recent published 

SDP models concerning the dawn chorus (Hutchinson, 2002) predict that cloud cover 

and associated light level determine chorus onset, and that overnight temperature has 

greater relative effect on chorus duration and intensity.  

As is the case with many hypotheses used to explain the dawn chorus, support for 

(and opposition to) the energy stochasticity hypothesis has been gathered largely based 

on the behaviour of single species at single sites, and often involving a small number of 

individuals over a limited timescale. However, Gil and Llusia (2020) state that the most 

relevant test of the model should focus on different populations experiencing 

contrasting environmental conditions, or on different species that differ in their 

sensitivity to weather, to offer a comparative perspective. Recent advances in acoustic 

recording hardware and sound analysis tools now allow researchers, equipped with large 

acoustic datasets accumulated over several sites simultaneously for extended periods of 

time, to reconsider the hypothesis in this way. However, difficulty in extracting 

meaningful species-specific information from large acoustic datasets remains a limiting 

factor (Shonfield and Bayne, 2017). Acoustic indices (AIs) have been implemented as a 

means to overcome this difficulty, by providing broad analyses of sound-producing 

animal communities, using numerical depictions (a score or statistic) of the distribution 

of energy in acoustic surveys (Depraetere et al., 2012; Towsey et al., 2014; chapter 3, 

section 3.5, this thesis). Numerous AIs have been developed and trialled, and many 

have been shown to reflect species diversity and community structure (reviewed by 

Buxton et al., 2018). Further, some may be applied to recognise variation in daily 

animal activity. Indeed, Farina et al. (2015) used AIs to characterise dawn chorus 

singing behaviour in Mediterranean bird communities. 
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Here, I  apply one such index, the Acoustic Complexity Index (ACI; Pieretti et al., 

2011), to a large dataset of acoustic surveys taken of the dawn chorus at multiple 

woodland sites located at varying latitudes throughout Great Britain, and each facing 

different environmental conditions. The ACI has been shown to be a very effective 

metric in describing the acoustic signature of community activities, and is one of the 

best indicators of changes to the behaviour and composition of avian communities 

amongst currently available AIs (Farina et al., 2015; Pieretti et al., 2015, 2011; Towsey 

et al., 2014). I determine the emergence and peak of the dawn chorus across the country 

each day during the main breeding season, and use the information obtained to revisit 

the energy stochasticity hypothesis, and the assumption that variation in overnight 

temperature influences the timing and peak of the chorus. More specifically, I test the 

theory that cooler overnight temperatures act to suppress or delay the chorus. I also 

consider the effect of light, as light is often regarded as the most influential factor in the 

determination of chorus timing (e.g. Hutchinson, 2002; Kacelnik, 1979, Kacelnik and 

Krebs, 1983). If an effect of temperature exists, it might differ amongst sites, or regions, 

depending upon local temperature regimes. I discuss my results with reference to the 

prior theory, and consider their implications amid a rapidly changing climate. This study 

represents the first comprehensive investigation into the timing of the avian dawn 

chorus throughout Great Britain.  

6.3 Methods and materials 

6.3.1 Field methods 

I recorded the dawn chorus at 20 semi-natural mixed deciduous woodland sites 

throughout Great Britain (Chapter 4) during the months January to August inclusive in 

the years 2014 to 2017 using the equipment and methodology described in chapter 5 

(section 5.3.2). For this particular study, I considered only the acoustic surveys made 

during the core breeding season (April to June) in the years 2016 and 2017, as data 

loggers accompanied the ARUs only in these two years. The study also did not include 

Highnam Wood, as acoustic surveys were not made at this site in 2016 and 2017. It was 

necessary to correct for drift in the ARU clocks, and, therefore, upon deployment in the 

field, I set the ARU clock to GMT as per the website https://greenwichmeantime.com. 

Then, during routine maintenance visits, for battery and flash card renewal, and upon 
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collection of the ARU, I compared the time on the ARU clock with GMT and noted the 

time lost/gained by the ARU clock since deployment. All times were then subsequently 

corrected to true GMT, assuming a linear drift in time deviation in ARU clocks. I 

recorded environmental data at each site using one of two data logger models: Tinytag 

Plus 2 TGP-4500 (Gemini Data Logger Ltd, Chichester, UK), programmed to record 

ambient temperature (°C) and relative humidity (%), and HOBO Pendant UA-002-64 

(Onset Computer Corporation, Bourne, Maine, USA), programmed to record ambient 

temperature (°C) and light levels (lux), at 10-minute intervals throughout the entire 

study period. Each logger model was geographically evenly distributed amongst the 

sites (Fig. 4.1), and fixed alongside the ARU. The exception was Durham University, 

where one of each model was deployed. This permitted a comparison of temperature 

readings returned by the two different models. ARUs and microphones were exchanged 

amongst sites between years, so that no site received the same recording equipment in 

both years, but data loggers were assigned to the same site throughout.  

6.3.2 Data collection 

Acoustic Complexity Index scores 

Prior to calculation of ACI scores, I removed all acoustic surveys that included heavy 

rain or strong winds, as these weather conditions not only deter birds from singing (e.g. 

Bruni et al., 2014; O’Connor and Hicks, 1980), but also strongly influence ACI scores 

(Towsey et al., 2014). Each of the remaining surveys was split into 135 × 1 min .wav 

soundfiles using Audacity audio software (http://www.audacityteam.org/). ACI scores 

were determined using R software (v3.5.2; R Core Team, 2018) and the soundecology 

package (v1.3.3; Villanueva-Rivera and Pijanowski, 2016). An ACI score was 

computed for both channels of each 1 min soundfile using the acoustic_complexity() 

function, configured with a cluster size (j) of 5 sec, and a fast-fourier transformation 

(FFT) window (fft_w) of 512 points. Output consisted of a dataframe of ACI scores for 

each 1 min segment of each acoustic survey arranged in order of time, in minutes, 

relative to sunrise (i.e. -90 to 44). By default, the ACI score calculated for the left 

channel was chosen for further analyses, except for cases where the right channel 

produced consistently higher ACI scores (due to, for example, the left microphone being 

partially obscured by growing vegetation in the field). ACI scores were calculated for 

the frequency range 200 to 8000 Hz, which represented the full range of frequencies in 
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the acoustic surveys, but with a high-pass filter set at 200 Hz to remove low-frequency 

anthropogenic background noise (e.g. distant road traffic). A detailed description and 

formula for the ACI is provided by Pieretti et al. (2011). 

Dawn chorus peak 

To calculate standardised times of peak and onset of the dawn chorus, I first corrected 

for ARU clock drift in the times assigned to the 1 min soundfiles at each site, assuming 

drift was consistent between the ARU and GMT. The peak in the dawn chorus for each 

acoustic survey at each site was then calculated as the peak rolling 5-min mean in ACI 

scores for the 1 min segments. As this definition of the peak is based upon ACI score, it 

actually refers to the maximum ‘complexity’ in the chorus, which is typically acheived 

when the range of frequencies represented within a recording is both broad and variable 

through time. As such, it provides indication of the number of different species and 

individuals singing, or the song rate of individuals. 

Dawn chorus onset time 

Defining dawn chorus onset time is subjective. I explored three methods for its 

calculation, and checked for agreement amongst them. I further validated the onset 

times by correlating them with a dataset of manually-observed first song times in four 

prominent species common to all study sites, selecting the most parsimonious of the 

three methods for further analyses. The first method (onset.1) used a smoothed function 

to characterise variation in ACI scores over time in a given acoustic survey (Mason et 

al., 2014 provides a detailed description of the function, where it is used to estimate 

onset of spring green-up using NDVI score). First, the ACI scores within each acoustic 

survey were scaled according to the following formula: 

                           

                                   
  

Curves were then fit to the scaled values. The chorus onset time was calculated as the 

maximum second derivative of the curve, i.e. when the rate of increase in ACI score 

was at its maximum (Appendix B.1, Fig. B.1a). The second and third methods utilised 

previously calculated peak ACI scores. The first of these methods (onset.2) took the 

minute in an acoustic survey at which the ACI score equalled, or surpassed, a threshold 

equal to 20% of the corresponding peak ACI score for that survey (Appendix B.1, 
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Fig. B.1b). The third method (onset.3) was similar, but instead, used a 20% threshold 

based upon the mean minimum and mean maximum peak ACI scores amongst all 

acoustic surveys taken at a site during the survey period April to June (Appendix B.1, 

Fig. B.1b). A separate threshold was calculated and applied depending on the year in 

which an acoustic survey was taken, as changes to the exact location, positioning or 

performance of the ARUs at a site between years may have resulted in bias towards 

greater ACI scores within one of the years. The threshold was calculated as: 

onset.3 =   
                                  

 

 
   

where, k and n are the first and final acoustic surveys for a site within the study period 

in a year, peakmax  and peakmin are the maximum and minimum peak 5-min rolling mean 

in ACI scores respectively in an acoustic survey, and N is the total number of acoustic 

surveys for a site within a year.  

Correlation between the onset times of the three methods, calculated using 

Pearson’s correlation coefficient, was moderate (r=0.450 to r=0.680), and onset.2 had 

greater correlation with both of the other methods (Appendix B.1, Fig. B.2). To validate 

onset times by correlating with manually-observed times of first song in selected 

species, I first selected a subset of acoustic surveys, comprising one survey per site per 

week in 2016 and 2017. If the acoustic survey for the selected day had previously been 

removed from the dataset due to heavy rain or strong wind, I selected the acoustic 

survey from the following or the next available day. I then viewed spectrograms of the 

surveys using Raven Pro v1.4 sound analysis software (The Cornell Laboratory of 

Ornithology, Ithaca, NY, USA), configured with the FFT window set at 256 points, and 

contrast and brightness set at 62%. I scrolled through each spectrogram and recorded the 

time of the first song of European robin Erithacus rubecula, song thrush Turdus 

philomelos, Eurasian blackbird T. merula and northern wren Troglodytes troglodytes. 

The song needed to be discernible both visually in the spectrogram (given the settings 

above) and audible through headphones in order to count, and it needed to lead into a 

prolonged or continuous bout of song (a single, errant strophe of song did not count). I 

then calculated Pearson’s correlation coefficients to measure the relationship between 

first song times of each species in turn and the chorus onset times calculated by the 

three different methods. This showed that onset times returned by onset.2 had strongest 

correlation with the first song times of three of the four species (European robin, 
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Eurasian blackbird and northern wren; Appendix B.1, Fig. B.3), and hence, provided a 

more likely representation of the ‘true’ variation in chorus onset times across the entire 

dataset. For this reason, combined with onset.2’s greater congruence with the other two 

methods (see above), I chose to use onset.2 onset times in statistical analyses. 

Minimum overnight temperature 

I calculated minimum overnight temperature as the lowest temperature recorded by a 

data logger in the period between midnight and the time of commencement of an 

acoustic survey each day. Differences in temperatures recorded by the two logger types 

(Pendant and Hobo loggers) deployed together at Durham were minimal at cooler 

temperatures, such as those experienced overnight (mean=0.35°C ±SD 1.00°C between 

midnight and 0800 hrs). Nevertheless, I applied a correction factor to temperatures 

returned by the Pendant loggers in the full dataset. Calibration was performed using the 

lm() function in the stats package of base R to model the temperature values returned by 

the Tinytag logger at Durham University as a function of those returned by the Pendant 

logger. Following removal of outlying datapoints using the outliers() function in the 

sjstats package (v0.17.3; Lüdecke, 2019), the model resulted in the following correction 

factor, applied using the predict() function in the stats package, to all minimum 

overnight temperature values returned by Pendant data loggers: 

                                     

                                                    

I then calculated the mean minimum overnight temperature throughout the study period 

(April to June in both years) for each site, and subtracted the mean from the recorded 

minimum overnight temperatures to obtain deviations from the mean. This accounted 

for potential acclimatisation by local bird communities to the different mean 

temperatures amongst the sites in my analyses. As birds may possess some ability to 

predict the forthcoming overnight temperature based upon that of the previous day or 

night (Bednekoff et al., 1994; Hutchinson and McNamara, 2000; Thomas and Cuthill, 

2002), I included a variable in statistical analyses that accounted for the previous night’s 

minimum temperature. For this, I calculated deviations from the mean as detailed 

above, but using the minimum temperature of the previous night.  



88 
 

To account for other factors influencing the timing and peak of the dawn chorus in 

my analyses, I gathered information on date, light level, moon phase, prevailing climate 

and avian community composition.  

Sun elevation 

I calculated sun elevation (the angle between a line from the observer to the centre of 

the sun, and a line between the observer and the point of the horizon vertically above 

the sun’s centre) at i) the time of chorus onset, and ii) the time of chorus peak for each 

day at each site using the solarpos() function of the R package maptools (v.1.0-1; 

Bivand et al., 2020). Measured under standard conditions, illumination (light level) is 

entirely dependent on sun elevation, and any difference between the observed 

illumination and that predicted, is caused by local influences, for example, cloud cover 

(Nielsen, 1963). I did not use light level measurements returned by Pendant data 

loggers, as these loggers were only deployed at half of the study sites (chapter 4, 

Fig. 4.1). 

Moon phase 

I used two measurements to account for the potential effects of moon phase on the dawn 

chorus. First, I established if the moon was above the horizon at any point between the 

commencement of an acoustic survey and the time of civil twilight during the survey 

(assuming that the effect of moon illumination would be largely negated by civil 

twilight), and recorded moon presence as a binomial variable [1,0]. The second measure 

was the moon phase (%) at midnight preceding the acoustic survey. Moonrise times and 

illumination for each site were taken from https://aa.usno.navy.mil/. 

January to March temperature and precipitation 

To allow for the possibility of climate during the months leading into the breeding 

season having effect on dawn chorus onset during the study period, I sourced climate 

data from the Centre for Environmental Data Analysis (CEDA; 

https://catalogue.ceda.ac.uk/) using the dataset HadUK-Grid Gridded Climate 

Observations on a 1 km grid over the UK  (Met Office, 2018), and calculated the mean 

temperature and the total rainfall for the months January to March for the years 2016 

and 2017 for each site, using data for the 1 km cell in which a site was located. 
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Community composition 

The timing and peak of the dawn chorus may be dependent on the community of species 

present at a site and their relative abundance. I used the test dataset described in chapter 

5 (section 5.3.3), and the information on singing events obtained from the process 

described in chapter 5 (section 5.3.4) to sum the durations of the singing events for each 

species across all 15 × 300 s samples per site to obtain a total singing duration for each 

species at each site. From this, I established that 13 species were responsible for 91% of 

all dawn song produced amongst the sites. I applied principal component analysis 

(PCA), using the prcomp() function in the stats package of base R, to determine the 

relationships amongst sites in the composition of dawn song, using the unscaled total 

singing durations of the 13 dominant singing species as variables (Appendix B.2). I 

extracted the co-ordinates for the first two PCs (which explained 48% of the total 

variation in the data) for each site using the R package factoextra (v1.0.5; Kassambara 

and Mundt, 2017), and included the values in statistical analyses as two measures of 

variation in community composition amongst the sites (community 1 and community 2 

respectively).  

6.3.3 Statistical analysis 

I tested for the effect of minimum overnight temperature on i) dawn chorus onset time 

ii) the time of dawn chorus peak, and iii) the magnitude of dawn chorus peak using 

linear mixed-effects models (LMMs), implemented in the R package nlme (v3.1-137; 

Pinheiro and Bates, 2019). I included the following co-variates in the initial model: 

previous night minimum temperature, Julian date, sun elevation, moonrise, moon 

illumination, January to March mean temperature, January to March total rainfall, 

community measure 1, community measure 2, latitude, longitude and year. I also 

included the following relevant interaction terms: minimum overnight temperature × 

previous night minimum temperature, minimum overnight temperature × light level, 

minimum overnight temperature × moonrise, minimum overnight temperature × moon 

illumination, light level × moonrise, light level × moon illumination, moonrise × moon 

illumination, January to March mean temperature × January to March total precipitation, 

community 1 × community 2 and latitude × longitude. As I was interested in the varying 

effects of minimum overnight temperature on the response variables at the different 

sites, I included a random intercept and slope that permitted minimum overnight 
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temperature to vary by site. Following data exploration, I removed Julian date and 

January to March mean temperature from models, as they were highly co-linear with 

sun elevation and latitude respectively. I then used the dredge() function in the R 

package MuMIN (v1.42.1; Barton, 2018) to fit all possible models, and compared 

models using AIC (Burnham and Anderson, 2002). I performed model averaging using 

the mod.avg() function in the MuMIN package, considering all models simpler than the 

top model with ∆AIC <6, and took the significant effects (p≤0.05) in the full average 

model to be my final model variables. I kept the main effects of a variable if it was 

included in a significant interaction term. I then refitted the final model using restricted 

maximum likelihood (REML; Zuur et al., 2009). I confirmed that assumptions of 

normality and homoscedasticity were not violated by plotting the residuals as Q-Q plots 

and against fitted values respectively. 

6.4 Results 

The sun elevation at the time of chorus onset decreased with decreasing latitude 

(Fig. 6.1B). Likewise, sun elevation was lower at the time of chorus peak at lower 

latitudes (Fig. 6.1C). LMMs accounting for the effect of sun elevation on chorus onset 

time showed that increasing positive deviations from the mean minimum overnight 

temperature led to later chorus onset at sites located at all latitudes (Table 1, Fig. 6.1D), 

and that this delaying effect of increasing overnight temperature became greater with 

decreasing latitude (Fig. 6.1D). The time of chorus peak also became later with 

increasing positive deviations from the mean minimum overnight temperature at all 

latitudes (Table 1, Fig. 6.1E), and although the effect of minimum overnight 

temperature on the time of the chorus peak was not as great as its effect on chorus onset, 

the effect was, in general, greater at lower latitudes (Fig. 6.1E). Minimum overnight 

temperature was not retained as a significant variable following the model selection 

process for predicting the maginitude of the chorus peak (Table 1). However, increasing 

positive deviations from the mean minimum overnight temperature of the previous night 

led to decreased chorus magnitude (Table 1). This effect was greater at higher latitudes 

(Fig. 6.2). 
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Table 1 Coefficients of the fixed effects of the most parsimonious linear mixed effects models 

(LMMs), as guided by AIC, for factors influencing i) dawn chorus onset time, ii) time of dawn 

chorus peak, and iii) magnitude of dawn chorus peak within acoustic surveys taken at 19 mixed 

deciduous woodland sites throughout Great Britain from April to June 2016 and 2017. 

Variable Value SE t 

Dawn chorus onset time       

  Min. overnight temp. 5.69 0.402 14.17 

  Min. overnight temp. previous night -0.85 0.067 -12.72 

  Moonrise -1.47 0.345 -4.27 

  Sun elevation 4.03 0.119 34.02 

  Year: 2017 4.20 0.348 12.06 

  Min. overnight temp. × Min. overnight temp. prev. night -0.13 0.012 -11.18 

  Min overnight temp. × Sun elevation 0.52 0.028 18.58 

          

Dawn chorus peak time       

  Latitude -1.94 0.162 -12.02 

  Min. overnight temp. 1.16 0.134 8.69 

  Min. overnight temp. previous night -0.80 0.048 -16.46 

  Moon illumination -0.03 0.005 -6.03 

  Sun elevation 8.80 0.053 165.21 

  Year: 2017 2.71 0.262 10.34 

  Min. overnight temp. × Min. overnight temp. prev. night -0.07 0.008 -8.58 

  Min. overnight temp. × Moon illumination -0.01 0.001 -4.82 

  Min overnight temp. × Sun elevation 0.25 0.013 19.28 

          

Dawn chorus peak magnitude       

  Community 2 0.11 0.043 2.56 

  Jan-Mar rainfall -0.82 0.154 -5.33 

  Min. overnight temp. previous night -4.87 0.946 -5.15 

  Sun elevation -8.45 1.728 -4.89 
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Figure 6.1 The difference in the timing of the avian dawn chorus with variation in sun elevation 

and minimum overnight temperature at woodland study sites located at various latitudes across 

Great Britain during the core breeding season (Apr-Jun). (A) The locations of woodland study 

sites. Isochrones show the time (GMT) of sunrise across the United Kingdom in mid-May (the 

mid-point in the study period). If light levels were the sole determining factor, the chorus would 

be expected to advance in an approximately south-westerly direction across the country. (B) The 

mean sun elevation at chorus onset time at sites with increasing latitude. Error bars ±1SE. (C) 

The mean sun elevation at the time of chorus peak at sites with increasing latitude. Error bars 

±1SE. (D) The effect of 1°C increase in minimum overnight temperature on chorus onset time 
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at sites with increasing latitude. (E) The effect of 1°C increase in minimum overnight 

temperature on the time of chorus peak at sites with increasing latitude. In D and E, Y-axis 

values are from linear mixed-effects models (LMMs), and are the coefficients for the random 

effect of minimum overnight temperature on chorus onset and peak time respectively when 

varied by site. r = Pearson’s correlation coefficient (B-E). 

 

Figure 6.2 The effect of 1°C increase in the minimum overnight temperature of the previous 

night on the magnitude of the dawn chorus, as measured by the acoustic complexity index 

(ACI), at sites with increasing latitude. 

6.5 Discussion 

The avian dawn chorus is of clear significance in the life cycles of birds. Yet, despite 

robust literature based upon observations of dawn singing behaviour in individual 

species (Mace, 1987b; Stacier et al., 1996; chapter 2, this thesis), research has yet to 

firmly establish exactly why birds sing collectively as dawn. The energy stochasticity 

hypothesis provides a general, but contentious, explanation, and has been formed on the 

assumption that birds possess lower energy reserves at dawn following cooler nights, 

leading to reduced song output, later chorus onset and lower chorus peak. I tested this 

assumption by applying the ACI to a large dataset of acoustic surveys made of the dawn 

chorus at 19 woodland sites located at varying latitudes throughout Great Britain during 

the core bird breeding season. I modelled daily chorus onset and peak in response to 

minimum overnight temperatures and light levels (sun elevation), amongst other 

environmental variables that may have influence on the chorus. 
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The onset of the dawn chorus occurred at lower sun elevation at lower latitudes, 

ranging from a mean angle of -13.6˚ (astronomical twilight; Table 2.2) at the lowest 

latitude (50˚ 2  ) to -10.8˚ (nautical twilight) at the highest latitude (5 ˚ 12 ; Fig. 6.1B). 

That is to say, birds began singing at lower light levels at lower latitudes. In theory, 

such systematic latitudinal variation in response to sun elevation is unexpected if the 

chorus responds to a common light threshold at all latitudes. It is possible, therefore, 

that chorus onset responds to the rate of change in light level during twilight, rather than 

responding to the actual light level produced at a particular stage. Due to latitudinal 

differences in the trajectory of the sun relative to the local horizon, the sun rises more 

rapidly at lower latitudes, with steeper transitions from dark to light, whilst at higher 

latitudes, the sun moves at a shallower angle relative to the horizon, and remains within 

twilight zones for longer periods prior to sunrise (Daan and Aschoff, 1975). At the very 

highest latitude study site towards the end of the study period in late June, the sun 

would not have moved below the nautical twilight zone prior to dawn, whereas at late 

June at the lowest latitude study site, the sun would enter astronomical twilight (see 

Table 2.2 for sun elevation and illumination relating to these different periods of 

twilight) overnight. The vision of birds at lower latitudes may achieve greater dark 

adaptation due to experiencing darker nights (cf. Martin, 1990, pp8-10). This might 

allow for increased perception of subtle changes in light level and result in earlier 

chorus onset relative to sun elevation. Alternatively, because the transition from low-

light conditions to the light threshold at which alternative activities become profitable 

(e.g. foraging) is reached more rapidly, and in order to gain the benefits from singing, or 

for song bouts to be a length that is effective, birds at lower latitudes may have become 

entrained to begin singing at lower light levels. Similar results were obtained for the 

time of dawn chorus peak, which was reached at lower mean sun elevation at lower 

latitudes (Fig. 6.1C). The latitudinal relationship was not quite as regimented as for 

chorus onset, however. This might be expected, as more species and individuals will 

sing at the time of the chorus peak than at chorus onset, thus, introducing the potential 

for a greater number of factors, other than light, that may be site-specific, to act upon 

singing behaviour. For example, social factors, such as the density of individuals within 

the community, and the number of neighbours may determine when or whether an 

individual sings during the peak on a given morning (e.g. Hodgson et al., 2018; Liu, 

2004). 
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Mean minimum overnight temperature (the mean of the absolute temperature 

recorded) also exhibited a strong latitudinal cline, decreasing with increasing latitude 

(Appendix B.3, Fig. B.5A). According to the energy stochasticity hypothesis, this may 

also explain, at least in part, why chorus onset occurred at lower light levels at lower 

latitudes, as birds, on average, may have possessed greater energy reserves at dawn at 

lower latitudes due to warmer overnight temperature regimes. If this were the case, one 

might also expect warmer overnight temperatures to lead to earlier choruses within 

sites. However, results from LMMs revealed the opposite; increasing positive deviations 

from the mean minimum overnight temperature (i.e. warmer temperatures) led to later 

chorus onset and peak at all study sites, and the effect was greater at lower latitudes 

(Fig. 6.1). This appears counter to the assumptions of the energy stochasticity 

hypothesis. It is possible, however, that the observed delaying effect of increasing 

minimum overnight temperature on the timing of chorus onset and peak was in fact an 

effect of cloud cover on light levels, rather than one of temperature. Overcast nights 

tend to be warmer, but they are also darker at dawn, as the clouds conceal illumination 

from the rising sun. This view is supported by the positive coefficients for sun elevation 

in LMMs for chorus onset and time of chorus peak (Table 6.1); under overcast (but 

warmer) conditions, sun elevation was greater at onset and peak. Viewed in this way, 

my results support the conclusion reached by Hutchinson (2002) that variation in light 

level, rather than in overnight temperature, is the most important factor influencing the 

timing of the dawn chorus.  

Bruni et al. (2014) concluded that cloud cover alone was not the major influence 

on the timing of the dawn chorus within their study region (located at 46˚ 29  N, -84˚ 

04  E), and that it may only effect species that commence song at certain stages of the 

chorus (i.e. chorus onset), as only two of their six study species showed significantly 

delayed singing activity when the sky was cloudy. Indeed, they found that more of their 

focal species were significantly influenced by moonlight during the night than by cloud 

cover and light from the sun at dawn – a set of results which is not entirely at odds with 

those from my study, but I report a relatively small effect of moonlight (Table 6.1). In 

theory, cloud cover should have relatively greater effect on the timing of the chorus at 

higher latitudes, where the mean rate of change in light levels is lower, as it will take 

longer for a given light intensity threshold to be reached under cloud cover (Daan and 

Aschoff, 1975). On this basis, and if it is assumed that the observed positive effect of 
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minimum overnight temperature on onset times is actually an effect of cloud cover on 

light level, one should expect a greater effect size at higher latitudes, but the opposite 

trend was observed; chorus onset and peak were delayed longer by warmer temperatures 

at lower latitudes (Fig. 6.1D and E). This might indicate that an effect of minimum 

overnight temperature does exist on the timing of the dawn chorus after all, but in my 

analysis, it is concealed within the effect of cloud cover. It might be assumed that 

deviations from the mean minimum overnight temperature have greater effect on chorus 

timing at higher latitudes because these regions have lower overnight temperature 

regimes (Appendix B.3, Fig. B.5A) and overnight temperature is more likely to be a 

limiting factor in overnight energy retention and subsequent dawn singing activity. If so, 

positive deviations from the mean temperature at higher latitudes may act to off-set 

some, but not all, of the delay in chorus timing generated by increased cloud cover. At 

lower latitudes, mean temperatures may not limit overnight energy retention to the same 

degree, and consequently, deviations from the mean minimum overnight temperature 

may not have such an effect. The delaying effect of minimum overnight temperature 

observed in the models for lower latitudes, is therefore, almost entirely due to cloud 

cover, and there is potentially little or no off-set of warmer temperature concealed 

within the observed effect sizes. So, whether there is an effect or not of overnight 

temperature on the timing of the chorus, could be dependent upon the regional 

temperature regime. Prior studies have demonstrated a strong positive correlation 

between minimum overnight temperature and duration of dawn song bouts in great tit, 

northern wren Troglodytes troglodytes and European robin Erithacus rubecula (Garson 

and Hunter, 1979; Thomas 1999), but the relationship between temperature and the 

timing of the chorus is less clear. For example, Bruni et al. (2014) found that only two 

of six species were influenced by temperature alone, and Brown (1962) found that 

willow warbler Phylloscopus trochilus in Oxford, UK commenced singing over a broad 

temperature range (-1˚C to 11˚C), whilst the range of light levels remained very narrow. 

Minimum overnight temperature was not retained by model selection when 

identifying significant variables that influenced the magnitude of the dawn chorus peak 

(Table 6.1). This is counter to the conclusion of Hutchinson (2002), who’s SDP models 

predicted that overnight temperature has a significant effect on chorus duration and 

intensity (although Hutchinson’s definition and measure of chorus ‘intensity’ is not 

clear). However, the minimum overnight temperature of the previous night was retained 
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in models (Table 6.1), and at all latitudes, warmer temperatures on the previous night 

decreased the chorus peak. This result is challenging to interpret, but it may relate to 

overnight energy reserves if birds utilise the temperature of the previous night to 

attempt to predict the temperature, and hence, energy-loss, of the forthcoming night (cf. 

Hutchinson and McNamara, 2000). Reductions in the magnitude of the chorus peak (i.e. 

lower maximum ACI scores) could have been caused by (i) fewer individuals 

participating in the chorus, (ii) participating individuals singing less intensely, or (iii) 

fewer individuals singing at any one time. If the minimum overnight temperature of the 

previous night was warm, birds, expecting the temperature of the forthcoming night to 

be similar, may have foraged less during daylight hours in preparation for the 

forthcoming night. If the forthcoming night was not as warm as the previous night, birds 

may have possessed depleted energy reserves at dawn, resulting in either of (i) to (iii) 

above. Such an effect might be more pronounced in regions where variance in minimum 

overnight temperature is greater, as the forthcoming overnight temperature may be more 

difficult to predict. Data show that the effect was greater at lower latitudes (Fig. 6.2), 

and the trend was for lower latitudes to have greater variance in minimum overnight 

temperature (Appendix B3, Fig. B.5B). This explanation, however, is not consistent 

with that I provide for the observed delaying effect of minimum overnight temperature 

on the timing of the chorus at higher latitudes. As, if birds are better able to predict the 

forthcoming overnight temperature at higher latitudes, leading to lower reduction in the 

magnitude of the chorus compared to that at lower latitudes, why should they not be 

capable of doing the same in terms of the timing of the chorus? Furthermore, the energy 

stochsticity hypothesis and associated SDP models predict that lower variation in 

overnight temperatures will result in less intense choruses (Hutchinson, 2002). 

Rises in mean overnight temperature (Stone and Weaver, 2005; Vose et al., 2005) 

and day-to-day variability in temperature (i.e. sudden fluctuations in temperature and 

changes in temperature extremes, Pendlebury et al., 2004) are distinct characteristics of 

recent climate change, and the response of the dawn chorus to overnight temperatures 

currently observed at lower latitudes may magnify and become typical across much of 

Britain in future years. That is, less influence of overnight temperature on the timing of 

the chorus, due to warmer mean temperatures, and lower peaks in the chorus (or less 

intense choruses) due to unpredictability in overnight temperature regimes. It is 

uncertain how population and community dynamics will respond to these conditions in 
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the long-term, particularly if dawn song acts as an honest advertisement of fitness, 

where singing at cooler temperatures, or success in competitive interactions, act to 

increase population fitness (e.g. Poesel et al., 2004). It has been demonstrated 

previously that temperature variability, as well as mean temperature, is important in 

regulating metabolism in birds (Pendlebury et al., 2004), leading to alterations in 

physical activity and foraging behaviour. Climate matching analysis indicates that 

coastal regions of western France currently experience a climate similar to that 

predicted for southern England by 2050 (Broadmeadow et al., 2005), and dawn 

choruses with similar community compositions in this area of continental Europe, may 

provide indication of future choruses in Britain, if British bird communities can adapt in 

the long-term.  

My results show that the dawn chorus, like many other biological rhythms, is 

sensitive to climatic parameters and their variability. In this study, I have tested, for the 

first time at multiple sites with contrasting environmental conditions, the assumptions of 

the energy stochsticity hypothesis that variation in overnight temperature influences the 

timing and intensity of dawn singing activity in birds. The results of my study are 

challenging to interpret, however. Overall, data are consistent with the theory that day-

to-day variation in light level is the major influence on the timing of the dawn chorus. 

However, variation in overnight temperature may also influence the timing of the 

chorus, but only noticeably so at higher latitudes, where temperature regimes are cooler 

and likely to place a limitation on overnight energy retention. My study did not support 

the conclusion of Hutchinson (2002), that variation in overnight temperature influences 

the intensity of the chorus. This may be because birds use their experience of the 

previous night’s temperature to anticipate their energy reserves at dawn. Lower chorus 

peaks may be due to errors in judgement – which are more likely to occur in regions 

with greater variation in overnight tempertures. A major limitation to my study, 

however, is that information on cloud cover was not available for the fine spatial and 

temporal resolution required for my study design. Therefore, it was not possible to 

reliably disentangle the respective effects of overnight temperature and cloud cover on 

the timing and peak of the dawn chorus. My interpretations of the data, therefore, are 

offered tentatively. There is clearly more work to do, and a next step should focus on 

acquiring a suitable measure of cloud cover, and also perhaps of overnight wind speed 
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(cf. Hutchinson, 2002), so that firmer conclusions may be drawn in our understanding of 

the dawn chorus. 
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Chapter 7 

Competition for acoustic space between resident 

and migratory species during the dawn chorus 

 

 

 

Common chiffchaff Phylloscopus collybita 
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7.1 Abstract 

In many terrestrial habitats, the avian dawn chorus is the primary example of animal 

communication amid a background of vocalisations produced by different species 

competing for acoustic space. Individuals may establish a routine, whereby they avoid 

singing when a species with similar song traits is vocalising. Migratory species may 

arrive after routines have been established amongst individuals of resident species, thus, 

disturbing singing behaviour and song rate in residents. Migrants may also have 

difficulty in establishing their own acoustic niche. I used passive acoustic monitoring 

(PAM) methods to survey the dawn chorus at multiple woodland sites throughout Great 

Britain. Using information extracted from the acoustic surveys, I tested for association 

in the timing of singing events made by two closely-related migratory species, wood 

warbler Phylloscopus sibilatrix, a long-distance migrant declining throughout much of 

its European breeding range, and common chiffchaff P. collybita, an increasing short-

distance migrant currently expanding its European breeding range, with resident species 

displaying similar song traits to each. I then tested whether the song rate (the total time 

singing within 60 s periods of acoustic survey) of each migratory species was affected 

by that of the paired resident, and vice versa. There was a significant association 

between the timing of singing events by wood warbler and northern wren Troglodytes 

troglodytes, with temporal overlap in singing events less than expected by chance. 

However, the song rate of each species was not significantly affected by that of the 

other, inferring that the two species may have established a mutually beneficial singing 

routine. Conversely, there was no association in the timing of singing events of the 

chiffchaff and great tit Parus major, indicating that the two species sang 

indiscriminately with respect to one another, despite close spectral and temporal 

similarities in their respective songs. However, the song rate of great tit was negatively 

affected by increasing song rate in the chiffchaff. Finally, there was significantly less 

temporal overlap in chiffchaff and wren singing events than expected by chance. The 

wren seemingly dominated this interaction, as its song rate remained unaffected by 

increasing chiffchaff song rate, but chiffchaff song rate was negatively affected by that 

of the wren. This study provides evidence that free-living migrant-resident species pairs 

with similar song traits avoid temporal overlap of song during the dawn chorus, a period 

when most birds are committed to song production, and that deferential species may be 

pressured into singing at sub-optimal rates. The productivity of both migratory and 
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resident woodland birds depends on their ability to communicate effectively with 

conspecifics. With woodland bird community composition currently experiencing 

unprecedented change due to anthropogenic disturbances, there may be consequences 

for some species if competition for acoustic space changes as a result. 

7.2 Introduction 

In animal communication, it is essential that signals are detected by the intended 

recipients and that they convey a clear message amid interference from background 

noise (Bradbury and Vehrencamp, 1998; Brumm and Slabbekoorn, 2005; Endler, 1992). 

Failure in these requirements may lead to receiver error, and ultimately result in loss of 

fitness for the individuals involved, for example, due to increased risk of aggressive 

encounters or missed mating opportunities (Wiley, 2006). In acoustic communication, 

background noise takes two general forms. The first is abiotic noise, which consists of 

geophonies (e.g. wind, rain and running water) and anthrophonies (e.g. road-traffic 

noise). The second is biotic noise, or biophony, which is noise produced by other 

organisms within the environment, be they intra- or inter-specific to the signaller and 

receiver. Biotic noise is a particular concern for those animals engaging in multi-species 

choruses, and for whom it is especially difficult to discriminate between conspecific and 

heterospecific signals (Brumm and Slabbekoorn, 2005; Wollerman and Wiley, 2002). In 

many parts of the world, the avian dawn chorus presents the most challenging example 

of acoustic communication amongst high levels of background noise produced by other 

species.  

The conventional view of the avian dawn chorus is that species have evolved 

spectrally distinct songs, so as they avoid overlap with heterospecifics (Miller, 1982). 

However, restrictions are imposed on song divergence by habitat structure (Morton, 

1975), such that species occupying the same habitat may actually show convergence in 

signal properties (Cardoso and Price, 2010). Additionally, body size, trachea length and 

the structure of the bill, as well as phylogeny, will constrain spectral and temporal limits 

of songs (Derryberry, 2009; Ryan and Brenowitz, 1985; Slabbekoorn and Smith, 2000). 

Furthermore, ecologically similar species living in sympatry may acquire similar signals 

to facilitate interspecific territoriality (Cody, 1969; Laiolo, 2012; Tobias and Seddon, 

2009). Songs with similar features have a greater chance of interfering with each other, 
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and consequently, birds have developed an array of short-term behavioural strategies to 

avoid acoustic masking, such as increasing song amplitude, shifting frequency, and 

making broad- and fine-scale modifications to the timing of song (chapter 2, section 

2.6). Flexibility in temporal arrangement of song permits birds to insert their songs into 

periods of silence (known as refractory periods) of varying length between the songs of 

other species. However, avoiding temporal overlap with heterospecific song in this way, 

may constrain individuals to sing at lower than optimal rates (Popp et al., 1985).  

Acoustic competition during the breeding period potentially presents a greater 

problem for arriving migratory species. Residents are present in a habitat year round and 

initiate breeding, and therefore, seasonal singing activity, prior to the arrival of most 

migrants (cf. Both and Visser, 2001). During this time, neighbouring residents may 

learn to recognise each other and establish relationships, from which, individuals may 

benefit by mutual interest in preventing settlement by intruders (Temeles, 1994). These 

neighbours may become accustomed to each other’s song (Lambrechts and Dhondt, 

1995), leading to alternate singing routines and even co-ordinated multi-species 

communication networks within communities (Malavasi and Farina, 2013; Naguib, 

2005; Tobias et al., 2014). The arrival of migrants may initially create biophonic 

disturbances, in much the same way as introduction of an invasive species (e.g. 

Pijanowski et al., 2011b), thus, altering the existing acoustic partitioning. 

Here, I investigate the reciprocal effect of song output in two migratory European-

breeding Phylloscopus warbler species on the singing behaviour of resident species with 

similar song traits. Wood warbler P. sibilatrix is a small (c.12 g; Dunning, Jr, 2008) 

long-distance migrant, wintering in sub-Saharan Africa. The species is declining 

throughout much of its northern and western breeding range in Europe (Burfield and 

van Bommel, 2004), including in the UK, where the population has fallen by an 

estimated 63% between 1970 and 2017 (DEFRA, 2019), and is now associated 

primarily with mature upland oak woods in northern and western regions of the country 

(Mallord et al., 2012). The nominate race common chiffchaff (hereafter ‘chiffchaff’) 

P. c. collybita, that breeds in central and western Europe (incl. UK; Catry et al., 2005), 

is a smaller (8-9 g; Dunning, Jr, 2008), short-distance migrant, wintering in south-

western Europe, the Mediterranean and west Africa (Catry et al., 2005). Its population 

trend contrasts with that of wood warbler, having increased by 110% in recent decades 

(DEFRA, 2019). Both species are insectivorous and forage by leaf gleaning, but despite 
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their close relationship and ecological similarity, the acoustic structure of their 

respective songs differ markedly.  

Prior studies experimentally testing interspecific acoustic competition have either 

taken place after sunrise (e.g. Popp et al., 1985), or have failed to explicitly state the 

timing of experiments (e.g. Ficken et al., 1974), so it is unknown whether the outcomes 

apply during the dawn chorus, when the motivation to sing is at its daily peak for most 

birds (Mace, 1987b; Stacier et al., 1996). Some studies also applied playback methods 

to illicit responses from focal species (e.g. Popp et al., 1985), and/or used captive 

subjects (e.g. Brumm, 2006). This study, using daily dawn chorus data across 20 

woodland sites throughout Great Britain, represents the first investigation into 

competitive singing interactions between resident and migrant species during the dawn 

chorus within entirely natural settings. 

7.3 Methods and materials 

7.3.1 Acoustic data collection 

I recorded the dawn chorus at 20 semi-natural mixed deciduous woodland sites 

throughout Great Britain (Fig. 4.1) during the months January to August inclusive in the 

years 2014 to 2017 using the equipment and methodology described in chapter 5 

(section 5.3.2.).  

7.3.2 Acoustic analysis 

I used the 1500 min test dataset described in chapter 5 (section 5.3.3), and the 

information on singing events obtained from the process described in chapter 5 (section 

5.3.4) as my dataset for this study. 

7.3.3 Selection of species pairs 

I selected resident species most likely to compete for acoustic space with the two chosen 

migratory species based upon similarities in core temporal and spectral song parameters. 

To do this, I downloaded high quality (24100 Hz, 16-bit encoding) sample recordings of 

song for every species within the 1500 min dataset (up to five recordings per species) 

from the xeno-canto repository (www.xeno-canto.org). Preference was given to 

recordings made in the UK, but if high quality UK recordings were unavailable or not 
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suitable, then recordings made in France, Belgium or Netherlands were chosen. 

Preference was also given to recordings made during the main northern temperate zone 

breeding period (March to June), at dawn or in the early morning. I used Raven Pro v1.4 

(The Cornell Laboratory of Ornithology, Ithaca, USA) to generate spectrograms. Up to 

five songs per recording (the number selected reflected the complexity and/or variation 

in a species’ song) were described quantitatively using on-screen cursors to measure 

temporal and spectral traits. Temporal features were measured from spectrograms 

configured with broadband filter settings (window=Hann, Fast Fourier Transform [FFT] 

=512, overlap=93.8%, brightness=55%, contrast=55%) to maximise temporal 

resolution. Spectral features were measured from spectrograms configured with 

narrowband filter settings (window=Hann, FFT=1024, overlap=96.9%, 

brightness=55%, contrast=55%) to maximise spectral resolution. The following song 

parameters were measured: i) maximum frequency (Hz), ii) minimum frequency (Hz), 

iii) frequency range (Hz; maximum frequency minus minimum frequency), iv) peak 

frequency (Hz; the frequency in the song with the greatest amplitude), v) duration (s), 

vi) syllable rate (number of syllables s
-1

). When it was clearly decipherable, only the 

first harmonic was included in spectral measurements. I then calculated the mean value 

for each parameter across all songs for each species. I scaled and centred the dataset of 

mean song parameters and made a dendrogram using the pheatmap package (v1.0.12; 

Kolde, 2019) in R software (v3.5.2; R Core Team, 2018), with Euclidean distance 

clustering and Ward.D2 agglomeration methods. I determined the optimal number of 

clusters using the fviz_nbclust() function, set to k-means clustering methods, in the R 

package factoextra (v1.0.5; Kassambara and Mundt, 2017). I then selected paired 

resident-migrant species from the dendrogram on the basis of 3-4 very similar song 

parameters (Fig. 7.1). For wood warbler, this was northern wren (hereafter ‘wren’) 

Troglodytes troglodytes, and for chiffchaff, this was great tit Parus major (Fig. 7.1). To 

provide a comparison with a second species’ song, that was not so well-matched as the 

first, I also paired chiffchaff with wren, and wood warbler with great tit, to form 

additional resident-migrant species pairs. However, following preliminary analysis, I 

found I was unable to match wood warbler with great tit, as my dataset contained too 

few interactions between the two species to meet the assumptions of statistical analyses. 

I then recorded whether each of the four selected species was singing or not within each 

1 s interval of each 300 s acoustic survey sample using binary [1,0] coding. 
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Figure 7.1 Results of Euclidean distance hierarchal cluster analysis showing relationships 

between the songs of 21 bird species recorded ‘singing’ in acoustic surveys of the dawn chorus 

at 20 mixed deciduous woodland sites throughout Great Britain during the months March to 

June 2014-2016, based upon six song parameters. The colour scale represents an index of 

divergence from the mean scaled value, across all species, for a song parameter, whereby, zero 

represents the mean value across all species, dark shades represent values lower than the mean 

(negative) and light shades represent values higher than the mean (positive). The optimal 

number of clusters for the dataset, as determined by the k-means clustering method, is five. The 

dendrogram shows wood warbler Phylloscopus sibilatrix paired with wren Troglodytes 

troglodytes, and chiffchaff P. collybita paired with great tit Parus major. For space and clarity, 

species names shown are shorter common British names, rather than the international naming 

system used throughout the text. 
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Figure 7.2 Spectrograms of example songs from the four study species, a) wood warbler 

Phylloscopus sibilatrix, b) northern wren Troglodytes troglodytes, c) common chiffchaff P. 

collybita, and d) great tit Parus major, demonstrating the spectral and temporal similarities 

between the songs of species pairs (a-b and c-d). Of the six parameters chosen to distinguish 

species’ song, Euclidean distance hierarchal cluster analysis matched wood warbler and the 

wren most closely by maximum frequency, frequency range (maximum frequency – minimum 

frequency) and syllable rate (number of syllables s
-1

), and matched the chiffchaff and great tit 

most closely by minimum frequency and peak frequency (the frequency in the song with the 

highest amplitude), as denoted by similarity in colour shading in Fig. 7.1. Spectrograms were 

made in Raven Pro v1.4 (The Cornell Laboratory of Ornithology, Ithaca, USA) configured with 

a Hann window and a FFT of 256 points. 

 

7.3.4 Statistical analysis 

I applied Pearson’s 
2
 tests to detect associations in the timing of singing events in each 

resident-migrant pair. The binary data obtained from the acoustic analysis for each 300 s 

acoustic sample was divided into five 60 s segments. Only segments where both species 

of a resident-migrant pair were singing for ≥10 s and ≤50 s were retained for the 

analysis. This increased the likelihood that counts of all possible outcomes were ≥5 for 

all 60 s segments of acoustic survey. As a singing event typically lasts for a few seconds 
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or more, when a study species was singing within a given 1 s interval of acoustic 

survey, there was increased likelihood that the species was also singing in an adjacent 

1 s interval. Thus, each 1 s observation in a singing [1] or non-singing [0] event, within 

a 60 s segment of acoustic survey, was not independent of the other 1 s observations 

within the same event. To reduce the effect of non-independence of data on the 

statistical analysis, I randomly selected one 1 s interval from each singing and non-

singing event for the migratory species, along with the corresponding binary value for 

the resident species. I then compiled all the randomly-selected 1 s observations into a 

single dataframe, and performed 
2
 tests using the chisq.test() function in the stats 

package of base R. Yates’ continuity correction was not applied, as the expected counts 

for any given outcome were ≥5. The direction of significant associations was 

determined by drawing up contingency tables of observed and expected counts. 

I used linear models (LMs), applied using the lm() function in the stats package of 

base R, to test for an effect of the song rate (total time spent singing per 60 s segment of 

acoustic survey) of wren on the song rate of wood warbler and vice versa. These two 

species co-occurred at just one site (Inversnaid; Fig. 4.1). Song rate interactions 

between chiffchaff and great tit, and chiffchaff and wren, were tested with linear mixed-

effects models (LMMs) implemented in the R package nlme (v3.1.137; Pinheiro and 

Bates, 2019) with model fit by maximum likelihood. These species pairs co-occurred at 

multiple sites, and the effect of each species on the other potentially varied amongst 

them, hence, site was included as random intercept and slope terms in all LMMs. To 

prepare the datasets for the analyses, I returned to the binary data obtained for the 300 s 

segments of acoustic survey, and once again, divided each into five 60 s segments. First, 

I retained only the 60 s segments within which the migratory species was singing ≥1 s, 

and summed the total time singing by the migratory species within each. I then summed 

the corresponding total time singing by the paired resident species within each of the 

60 s segments. To prepare dataframes for testing the effect of song rate in the migratory 

species on that of the resident, I repeated this process, but retained only the 60 s 

segments where the resident species was singing ≥1 s. I excluded from this dataset, any 

acoustic surveys taken prior to the expected arrival of the migratory species across the 

UK. For the wood warbler, I took this to be day 120 (April 30), and for the chiffchaff, 

day 90 (March 31; both based upon Mason, 1995). I included the covariates Julian date, 

time of day (expressed as the time, in minutes, relative to local sunrise) and year in all 
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LMs and LMMs (as fixed effects) to account for the effect of these parameters on the 

song output of the focal species. I checked that normality and homoscedasticity 

assumptions were met by plotting the model residuals as Q-Q plots and against fitted 

values respectively, and used the weights =varPower() command in the nlme package to 

incorporate heteroscedasticity in the LMMs when required. 

7.4 Results 

There was a significant negative association between the timing of singing events by 

wood warbler and wren within 60 s segments of acoustic survey (
2 

(N=152) =6.90, 

p=0.009), with less temporal overlap in singing events than expected by chance. 

However, the song rate of wood warbler (the total time singing within 60 s segments) 

was not significantly affected by the song rate of wren (Fig. 7.3a) and vice versa 

(Fig. 7.3b). There was no association between the timing of singing events in chiffchaff 

and great tit (
2

(N=293) =0.29, p=0.590), but the song rate in chiffchaff negatively 

affected the song rate of great tit (Fig. 7.3d). By contrast, the song rate of chiffchaff was 

unaffected by that of great tit (Fig. 7.3c). This effect of chiffchaff on great tit song rate 

was very similar amongst all sites where the species co-occurred (Fig. 7.3d). There was 

also a significant negative association between the timing of singing events in wren and 

those of chiffchaff (
2

(N=1382) = 33.29, p<0.001), and the song rate of chiffchaff was 

negatively affected by that of wren (Fig. 7.3e). This affect was negative at all sites 

where the two species co-occurred and sang together, although the magnitude of the 

effect differed amongst sites (Fig. 7.3e). There was no effect, however, of song rate in 

chiffchaff on the song rate of wren (Fig. 7.3f). 
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Figure 7.3 The effect of song rate (total time singing) of a species in a resident-migrant pair on 

the song rate of the other species in the pair per 60 s segment of acoustic survey made during 

the dawn chorus at a total of 20 mixed deciduous woodland sites throughout Great Britain. 

Trend lines show the effect of each species whilst accounting for the effects of date, time 

relative to sunrise and year, as modelled by linear models (LMs; a-b), or, where the paired 

species co-occurred at multiple sites, by linear mixed effects models (LMMs; c-f). In c-f, the 

trend for each site is also shown. P values relate to the significance of the overall trend in 

respective models. 
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7.5 Discussion 

The avian dawn chorus is the best known example of animal acoustic communication 

undertaken amid a background of communications from heterospecifics. Birds 

participating in the chorus must compete for acoustic space to maximise the chances of 

their signal being received and correctly interpreted by the intended recipients. 

Competition for acoustic space may be particularly problematic for migratory species 

arriving after residents have settled onto territories and have established relationships 

with existing neighbours, especially if the properties of the migrant’s song closely 

match that of a competing resident. Using PAM, I investigated the effect of song 

produced by two closely-related migratory species, wood warbler and chiffchaff, on the 

singing behaviour of resident species with similar song traits, and vice versa, during the 

dawn chorus at woodland sites throughout Great Britain. I found evidence of 

competitive interactions between all three resident-migrant species pairs tested.   

My results indicated a reciprocated temporal avoidance of song in wood warbler 

and wren. Temporal overlap in the song of the two species was significantly less than if 

they were singing indiscriminately with respect to one another. However, each species’ 

song rate (the total time singing per 60 s of acoustic survey) was not significantly 

affected by the song rate of the other species, although the trend in both cases was 

negative (Fig. 7a-b). This might indicate that the two species were capable of alternating 

their songs in an efficient manner, so as they both inserted their song into the refractory 

periods of the other, with neither species dominating proceedings. Additional work, 

applying my methods to a larger sample size, may be required to confirm this 

relationship. Co-ordinated choruses amongst heterospecific birds are not unrealistic, 

however. Indeed, multi-species avian choruses have been described within species-rich 

tropical systems (e.g. Planqué and Slabbekoorn, 2008; Tobias et al., 2014). The 

phenomenon has also been tentatively suggested in a temperate system by Malavasi and 

Farina (2013), who hypothesised that species competing for acoustic space during the 

dusk chorus in an Italian oak wood, intentionally fine-tune the timing of song, such that 

temporal overlap occurred with heterospecific song, but frequency overlap and spectral 

masking was avoided. The two species here, however, co-occurred and regularly sang at 

just one study site (Inversnaid), where a relatively low number of resident species was 

recorded.  
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Early experimental work on temporal avoidance of song, likely failed to account 

for the non-independence of singing events (e.g. Ficken et al., 1974). The length of 

refractory periods, the gaps between singing events, can be relatively constant in some 

species (e.g. Lemon and Chatfield, 1971), and, therefore, if an individual begins a 

singing event within the refractory period of another, this could explain the pattern of 

alternating song throughout the rest of the song bout (Planck et al., 1975). However, 

despite this criticism, such alternating song is regularly cited as a reliable example of 

temporal acoustic partitioning in birds.  

Unlike the relationship reported for the wood warbler and wren, chiffchaff and 

great tit apparently sang indiscriminately with respect to one another, despite their 

spectral and temporal similarities (Fig. 7.1; Fig. 7.2). However, great tit song rate was 

significantly negatively affected by chiffchaff song rate (Fig. 7.3d), and the magnitude 

of this relationship was constant amongst all sites where the species co-occurred 

(Fig. 7.3d). By contrast, the song rate of chiffchaff remained unaffected by that of great 

tit, although the relationship was negative at most study sites (Fig. 7.3c). This 

combination of outcomes is challenging to interpret. Great tit certainly appeared to sing 

less when chiffchaff was singing, but did not avoid temporal overlap. It may be that 

chiffchaff often sang indiscriminately in respect of great tit, and the length of its singing 

events and refractory periods varied (perhaps in response to a third competitor), thus, 

making it difficult for the great tit to predict when to begin singing and avoid acoustic 

masking. 

Temporal overlap in the songs of chiffchaff and wren was significantly less than 

expected by chance. Chiffchaff song rate was significantly negatively affected by wren 

song rate, but the reverse was not true, perhaps suggestive of vocal dominance by wren. 

These respective trends were evident at most study sites (Fig. 7.3e-f). At sites where 

they co-occurred, wren was likely singing closer to optimal rate (unless it was also 

competing with a third species), and chiffchaff at sub-optimal rate. Therefore, chiffchaff 

song rate was more adversely affected by competing wren song than by that of great tit, 

although chiffchaff song is better matched spectrally and temporally to the latter 

(Fig. 7.1; Fig. 7.2). However, from a distance of 1 m, the sound pressure level of wren 

song is around 10 dB higher than chiffchaff (Brackenbury, 1979). This, coupled with 

considerable spectral overlap in the two species’ songs (Fig. 7.2), may explain these 

results, and highlights that song amplitude also needs to be considered in singing 
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interactions amongst heterospecifics. The relationship found here between chiffchaff 

and wren is comparable to that reported by Ficken et al. (1974), where red-eyed vireo 

dominated singing interactions with least flycatcher, in one of the only prior studies that 

have tested competition for acoustic space in entirely free-living birds. 

When analysing acoustic surveys, the distance of a bird from a potential 

competitor could not be gauged, and individuals of the same species were not 

discriminated. This might impose some limits on interpreting my results. Nevertheless, 

my use of PAM ensured that birds were singing openly, and that they produced a natural 

response to interference from competitors. These circumstances may not be possible to 

recreate using playback of a stimulus song, as prior studies (e.g. Brumm, 2006; Popp et 

al., 1985).  

To conclude, the arrival of migratory birds back to their breeding grounds appears 

to cause resident species with similar song traits to adjust their singing behaviour and 

song output. In return, migrants may also be compelled to sing at sub-optimal rates 

when competing for acoustic space with certain resident species. Woodland bird 

community composition in the UK and Europe is currently experiencing unprecedented 

change, partly due to contrasting responses amongst species to climate change, habitat-

loss and other anthropogenic disturbances, not least, the opposing breeding population 

trends observed for long- and short-distance migrants (e.g. Both et al., 2010; Hewson et 

al., 2007; Leech and Crick, 2007; Sanderson et al., 2006) and earlier summer migrant 

arrival dates (e.g. Cotton, 2003; Jonzén et al., 2006). Such community changes could, 

via acoustic competition, lead to unexpected consequences for species, which may not 

be intuitive, based upon more usual competitive interactions, resulting in altered fitness. 
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Chapter 8 

The effect of advancing leaf-out phenology on 

breeding bird song 

 

 

European robin Erithacus rubecula
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8.1 Abstract 

Temperate woodland birds exhibit extreme flexibility in delivery and perception of 

song, permitting long-distance communication amidst changes to the acoustic 

environment. One such annual change in temperate woodlands is with leaf-out of 

foliage each spring. These changes coincide with the core breeding period and 

consequent seasonal peak in singing activity. Recent climate-driven advances in leaf-out 

phenology may have introduced an additional impediment to long-distance 

communication, leading to information-loss between the signaller and intended 

recipients at critical stages in the reproductive cycle, with potential fitness consequences 

for the individuals involved. To estimate aural attenuation, I broadcast artificial test 

sounds (of frequencies commonly utilised by birds in temperate woodland habitat) and 

the song of three European woodland bird species (northern wren Troglodytes 

troglodytes, European robin Erithacus rubecula and common chiffchaff Phylloscopus 

collybita) each day from budburst through to leaf maturation. The attenuated sounds 

were recorded by microphones situated at different heights and increasing distances 

from the loudspeaker. However, because of time constraints, I analysed attenuation in 

the recorded artificial test sounds only. I modelled the day-to-day attenuation during 

leaf-out using linear models (LM). I then determined the level of attenuation eight days 

into the leaf-out period, as this is the average advance of leaf-out phenology in Europe 

since 1971, and attenuation at this point represented the level experienced by birds if 

they have not advanced their seasonal singing activity to the same degree. Although 

statistically significant linear changes in sound attenuation were recorded with leaf-out, 

the effect size was small, amounting to a mean of 1.13 dB loss of energy when 

microphones were situated at a height of 1.5 m, and 0.46 dB gain in energy when 

microphones were situated at 5 m, across all frequencies and distances from budburst 

through to leaf maturation. Consequently, the level of attenuation eight days into the 

leaf-out period was also low. The rate of attenuation during the leaf-out process was 

similar amongst frequencies and distances, although there was an indication that higher 

frequency (8000 Hz) test sounds attenuated at a greater rate at far distance (60 m). 

Attenuation of sound changed linearly with leaf size and density during the leaf-out 

period in deciduous woodland. The effect was dependent on the height of the receiver, 

however, and results indicate that birds may counteract the negative effect of increasing 

foliage on sound transmission during leaf-out by adjusting their position in the canopy. 
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Current advances in leaf-out phenology are unlikely to cause undue attenuation of song 

in the early stages of the breeding season in European birds for most species. However, 

there could be greater effect on other measures of sound degradation that require further 

investigation, as increasing foliage may negatively affect long-distance communication 

in birds, not by a reduction in amplitude, but through temporal adjustments in sound, 

whereby syllables in song become indistinct through increased reverberation of sound 

(i.e. ‘blurring’). This chapter presents preliminary findings, and further work will 

measure attenuation in the recorded playback of the three bird songs, and will analyse 

the effect of leaf-out on additional measures of sound degradation. 

8.2 Introduction 

Birdsong is a highly elaborate form of acoustic signal transmitted within and between 

species (Becker, 1982), and is critical in the reproductive period of passerine birds, 

when its intricacies encode information concerning the location, identity, social status, 

fitness and reproductive state of the signaller (Holland et al., 1998; Naguib et al., 2019, 

2011). In order for the benefits of song to be fulfilled, song must be audible and 

interpretable to the intended recipient. Song structure, however, is modified by the 

environment during transmission between signaller and receiver, and if this leads to 

information-loss, there may be fitness consequences for the individuals involved 

(Badyaev and Leaf, 1997). Information-loss could be accentuated by habitat-change, 

land degradation and climatic change if these processes alter the environmental 

conditions from those within which signals have evolved (Farina and Pieretti, 2014). 

For example, if birds have not adjusted seasonal peaks in song production to match 

climate-driven advances in leaf-out phenology of woodland trees, song could suffer 

from increased attenuation at crucial stages in the reproductive cycle, potentially 

affecting breeding demography. 

The effect of habitat structure on the structure and transmission of birdsong is well 

documented (reviewed in chapter 2, section 2.7), where one of the most significant 

factors is sound attenuation. In natural habitats, attenuation is expected to increase with 

the presence and density of foliage (Bradbury and Vehrencamp, 1998; Wiley, 1991; 

Wiley and Richards, 1982, 1978), although the precise relationship is dependent upon 

the sound’s frequency, as, somewhat paradoxically, foliage may exert an amplifying 
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rather than an attenuating effect on low to mid frequency sounds under certain 

conditions (Martens, 1980). As such, temperate woodland birds are potentially exposed 

to erratic changes in the acoustic properties of their environment within the breeding 

period, as the leaf-out process in trees and seasonal growth of herbaceous vegetation 

often coincides with the seasonal peak in singing activity. Indeed, Apol et al. (2018) 

propose that species living within habitats with seasonal variation in structure have 

evolved diverse call repertoires in order to counter these changes. Several experiments 

have demonstrated that sound transmission is compromised following leaf-out in 

wooded habitat (reviewed in chapter 2, section 2.7). Increases in attenuation post leaf-

out serve to reduce the operative distance of a signal (Blumenrath and Dabelsteen, 

2004). A potential solution for the signaller and/or receiver is to adjust perch height in 

the understory or canopy (Blumenrath and Dabelsteen, 2004; Henwood and Fabrick, 

1979; Mathevon et al., 1996), as the formation of an ‘acoustic channel’ between the 

canopy and understorey vegetation at this time can counteract the negative effect of 

attenuation, and may even amplify signal energy (Morton, 1975; Wiley and Richards, 

1982, 1978). However, these prior studies have compared attenuation only pre-budburst 

and post- leaf-out, with no study having examined the fine-scale and day-to-day change 

in attenuation as leaf-out progresses, or of potential non-linearity in attenuation related 

to the constantly changing size, shape, density and orientation of leaves.  

Advances in leaf-out dates of temperate deciduous trees and earlier growing 

seasons in plants are amongst the most striking consequences of climatic warming on 

ecological systems (Hoegh-Guldberg et al., 2018; Menzel et al., 2006; Post et al., 2001). 

Indeed, trends in leaf-out and flowering in Europe show an evident advance of 2.5 d 

decade
-1

 (0.25 d yr
-1

) during the period 1971-2000 (Menzel et al., 2006). It is widely 

acknowledged, however, that advances in phenology have been greater in some 

taxonomic groups than in others, and that advances in higher trophic levels have lagged 

behind those made by primary producers over comparative time-scales (Both et al., 

2009; Visser et al., 2012). This disparity has caused mismatch in the lifecycles of 

organisms and their food supply (Visser et al., 2012, 1998). A particularly well-

documented example is advancing leaf-out in deciduous trees, the timing of peak 

caterpillar emergence, and the reproductive phenology of insectivorous woodland 

passerines, where emphasis is placed on egg-laying dates of the birds (e.g. Visser et al., 

1998). The effect of phenological changes on other reproductive behaviour in birds, 
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however, is little known. Here, I aim to explore the potential impact of advancing leaf 

phenology on the acoustic environment experienced by breeding birds. 

Sequences in peak singing activity are intricately linked to the reproductive cycle 

of passerines (Naguib et al., 2019; Slagsvold, 1977), and males of many species sing 

most intensely at dawn during the strategic periods of territory establishment and mate 

attraction, as well as immediately prior to the egg-laying stage of their mate (Møller, 

1991). Mismatch in leaf-out phenology and peaks in song production may force 

signallers and receivers to adjust their respective strategies in order to maintain long-

range communication, potentially at a cost to individual fitness (Blumenrath and 

Dabelsteen, 2004), and may even lead to more physical encounters with individuals 

encroaching into apparently unoccupied territorial peripheries. As the recent advances 

in temperate leaf-out phenology are on a scale of 1-2 weeks, it is important to 

understand what effect, if any, these changes have on song attenuation and degradation 

if birds are not advancing breeding, and thus singing behaviour, to the same degree. 

I devised a dawn playback experiment to measure day-to-day attenuation in 

artificial pure-tone test sounds of five different frequencies typical of songs of temperate 

woodland birds. I recorded attenuation across the period of budburst through to leaf 

maturation in canopy trees. I estimate the day-to-day attenuation in the sounds 

according to frequency and propagation distance in the woodland as the leaf-out process 

progresses, and test whether the position of the sound’s source and receiver during this 

process affected sound attenuation. Finally, I demonstrate how, in cases where avian 

breeding phenology has not kept pace with leaf-out, dawn song may already be subject 

to changes in attenuation at critical stages in the reproductive cycle. 

8.3 Methods and materials 

8.3.1 Study site  

The experiment was conducted at Blaid’s Wood, Durham, UK (54° 45' 21'' N, -1° 34' 4'' 

E), in a 120 m × 60 m block of semi-natural mixed deciduous woodland habitat. The 

dominant canopy species were sycamore Acer pseudoplatanus (60% cover), beech 

Fagus sylvatica (8%), wych elm Ulmus glabra (8%), ash Fraxinus excelsior, sessile oak 

Quercus petraea and grey alder Alnus incana (all 6%). The height of the canopy 
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averaged 22 m, and started 8-10 m above ground level. The mean trunk circumference 

of the canopy trees at breast height (1.5 m) was 141 cm (range: 42-320 cm), and the 

inter-tree spacing at ground level averaged 3.8 m (range: 2-6.5 m; detail provided in 

Appendix C.1). The understory consisted of hazel Corylus avellana, holly Ilex 

aquifolium and hawthorn Crataegus monogyna, along with saplings and young 

individuals of the canopy species. The herbaceous layer was dominated early in the 

study period by wood anemone Anemone nemorosa and, to a lesser extent, lesser 

celandine Ficaria verna. These species increasingly gave way to abundant bluebell 

Hyacinthoides non-scripta, dog’s mercury Mercurialis perennis and bracken Pteridium 

aquilinum growth as the study period progressed.  

8.3.2 Microphone and recorder calibration and set-up 

To record playback of test sounds at the study site, I used 18 × Song Meter 2+ (Wildlife 

Acoustics, Inc, Maynard, USA) autonomous acoustic recorders (ARUs), each fitted with 

a single omni-directional all-weather microphone (SMX-II; Wildlife Acoustics, Inc, 

Maynard, USA) with a typical sensitivity of -35 to -43 dBV/pa and a frequency 

response of 20 Hz–20,000 Hz (Sebastián-González et al., 2015; Turgeon et al., 2017). I 

calibrated all ARUs and microphones prior to deployment using a Nor1251 acoustic 

calibrator (Norsonic AS, Tranby, Norway) modified to emit a 65 dB tone; all 

microphones used in the playback experiment returned a gain value of between -15 dB 

and -18 dB, which was a measure of the microphones’ responsiveness, with higher 

values reflecting a greater response to sound. To measure the recording ability of the 

ARUs, a microphone that returned a gain value of -15 dB was plugged in to each 

channel of each ARU in turn, and the test tone played via the calibrator. Readings were 

taken from the root-mean-square voltage (Vrms) signal level shown on the LCD screen 

of the ARUs. ARUs that returned lower Vrms were paired with microphones that 

returned higher gain readings, and vice versa, so that the overall performance of the 

ARU/microphone pairs were comparable. ARUs were configured to record in mono, 

with a sample rate of 16000 Hz and 16-bit encoding. No high-pass or band-width filters 

were applied. ARUs were arranged into three linear transects (six ARUs per transect) 

emanating from a common ‘base-point’ within the study site, and leading in different 

directions through the woodland (Fig.8.1). Within each transect, ARUs were placed as 

close as possible to 15 m, 30 m and 60 m from the base-point, which I refer to as ‘near’, 
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‘mid’ and ‘far’ localities from hereon (Appendix C.2 provides distances to nearest 1 m). 

These distance bands were chosen to reflect typical territory diameters, and fractions 

thereof, of many small woodland passerines (e.g. Blumenrath and Dabelsteen, 2004; 

Brenowitz, 1982a; Dabelsteen et al., 1993; Holland et al., 1998). For example, mean 

core territory size of blue tits Cyanistes caeruleus and great tits Parus major (two of the 

most frequent woodland passerines) have been estimated at ca. 5000 m
2
 and 6700 m

2
 

respectively (equating to circular ranges of radii 40 m and 50 m (Krebs, 1971). At each 

distance, two ARUs were deployed, one being set at 5 m, and another at 1.5 m above 

ground level within each transect, representing typical signaller and receiver positions 

of many woodland bird species (e.g. Blumenrath and Dabelsteen, 2004; Holland et al., 

1998, 1998; Polak, 2014). ARUs were positioned so that microphones were facing 

towards the base-point, and all remained in their respective positions throughout the 

study period. 
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Figure 8.1 Positioning and numbering of autonomous acoustic recorders (ARUs) attached to 

trees within the study site. Three transects of six ARUs radiated from a common ‘base-point’ 

(open circle), where the loudspeaker was located. Within transects, three ARUs were placed at 

5 m, and three at 1.5 m, above ground level. Distances shown between ARUs and base-point are 

approximate and not to scale, and were similar for all transects (Appendix C.2). 

 

8.3.3 Test sounds and playback 

I generated five × 3 s sine wave pure-tones of frequencies 500 Hz, 1000 Hz, 1500 Hz, 

4000 Hz and 8000 Hz as .wav files from www.audiocheck.net, and converted them to 

mp3 format for use as test sounds in the playback experiment. The five tones 

represented the dominant frequency bands of song in European temperate woodland 

passerines (chapter 2, Fig. 2.2 and Fig. 2.3). I also downloaded from the xeno-canto 

online repository (https://www.xeno-canto.org/) a high-quality example of song by three 

common European woodland bird species for use as test sounds in the playback 

experiment: northern wren Troglodytes troglodytes, European robin Erithacus rubecula 

and common chiffchaff Phylloscopus collybita. Playback of the test sounds was 

performed using an M-Audio AV30 speaker with built in pre-amp (M-Audio, 

Cumberland, Rhode Island, USA) attached to an Edirol R-05 mp3 player (Roland 

Corporation, Osaka, Japan). The peak sound pressure level of song in European 

woodland passerines has been shown to vary between approximately 75 dB at 1 m for 
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goldcrest Regulus regulus to 100 dB in song thrush Turdus philomelos (Brackenbury, 

1979). In order to replicate this, test sounds were played-back at amplitudes ranging 

from 85 dB for the 500 Hz tone to 100 dB for the 1500 Hz tone, as measured at 1 m 

prior to playbacks using a Decibel X Pro v6.2.3 sound pressure level meter (Skypaw 

Co., Ltd, Hanoi, Vietnam) for iphone, with A-weighting frequency filter.  

Playback of the test sounds took place from 16
th

 April to 21
st
 May 2018, which 

captured all stages of leaf growth from budburst through to leaf maturation in the 

dominant tree and understory species within the study site. It also covered the period of 

growth and flowering of the dominant herbaceous understorey vegetation. A reference 

playback of unattenuated test sounds, to which attenuated test sounds were compared in 

subsequent sound analysis, was made at the beginning of the study period (16
th

 April), 

1 m from an ARU, and with the speaker at the same height as the reference microphone 

(1.5 m). Playback was then carried-out with the speaker facing towards each transect in 

turn, once with the speaker at 1.5 m height, and again with the speaker at 5 m height. 

Playback was initiated and completed within the 1 hr period following sunrise each day. 

This meant that environmental conditions were similar to those of the dawn chorus 

whilst avoiding the main dawn chorus itself (which diminished markedly at sunrise 

during this period), which may have unduly masked the test sounds.  The test sounds 

were played-back in the same order each day, and the order of transects was kept 

constant throughout the study. The primary abiotic factors known to attenuate sound are 

temperature, wind and humidity (Henwood and Fabrick, 1979), though wind effects 

tend to dominate when present (Attenborough, 2014). To minimise the effect of wind, 

therefore, playback was limited to mornings when wind-speeds were ≤ 5 kmph, as 

measured using a handheld anemometer (Technoline EA-3010, TechnoTrade Import-

Export GmbH, Berlin). Playback was also avoided during precipitation, as rain imposes 

considerable constraints on sound transmission (Lengagne and Slater, 2002). I measured 

temperature and humidity at 5 min intervals throughout the study period using a Tinytag 

Plus 2 TGP-4500 data logger (Gemini Data Logger Ltd, Chichester, UK) placed 5 m 

above ground level. 

8.3.4 Sound analysis 

Due to time constraints, I analysed attenuation only in the five artificial pure-tone test 

sounds. I analysed the playback recordings of attenuated test sounds made by the ARUs, 



123 
 

and the unattenuated reference playback by viewing spectrograms on Raven Pro v1.4 

software (The Cornell Laboratory of Ornithology, Ithaca, USA). Spectrograms were 

configured with a Hann window and a Fast Fourier Transform (FFT) size of 256 

samples, corresponding to a frequency resolution of 62.5 Hz with a sampling rate at 16 

kHz. Brightness and contrast controls were set to 65%. Selections (i.e. time-frequency 

rectangles) were made around individual test sounds on the spectrograms, spanning the 

full 3 s duration of the sound along the time axis, and +/-25 Hz either side of the 

sound’s peak energy frequency on the frequency axis (e.g. 475 Hz to 525 Hz for a 

500 Hz test sound). The average power (dB) within the selection was recorded, which 

was the sum of the selection’s power spectral density divided by the number of time-

frequency bins in the selection (Charif, et al., 2010). The average power recorded in the 

attenuated test sounds was subtracted from the average power in their respective 

unattenuated reference sounds to obtain measurements of total attenuation. Unlike some 

studies, I did not subtract the predicted attenuation by spherical spread to obtain EA 

values (e.g. Blumenrath and Dabelsteen, 2004; Marten and Marler, 1977; Naguib, 

2003). This was because calculations of spherical spread assume that sound is radiating 

equally in all directions (Attenborough, 2014), and ignore ground effects, which are the 

result of interference between sound travelling directly from the source to the receiver, 

and sound reflected from the ground, when both source and receiver are close to the 

ground (Attenborough, 2014), as in my study design. Furthermore, calculated values of 

spherical spread are constant for a given distance from the source, and change in day-to-

day attenuation at a particular receiver (which was the focus of my study) would have 

been unaffected by the subtraction of attenuation by spherical spread. I did, however, 

calculate estimates of attenuation of the test sounds due to air absorption at each 

microphone distance from the speaker, as this would have differed on a daily basis. I 

used air temperature and relative humidity measurements, collected on each day of the 

experiment, to calculate air absorption using http://www.sengpielaudio.com/calculator-

air.htm (as ISO 9613-1:1993), and subtracted the resultant value from the total 

attenuation figures. In addition to measuring the power within the test sounds, I 

measured the stationary background noise underlying each test sound by making 

additional 3 s time-frequency selections of the spectrogram immediately prior to, or 

immediately following (whichever best matched the background noise underlying the 

test sound), the respective test sound, and which matched the frequency range of the test 

sound. 
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8.3.5 Statistical analysis 

All statistical analyses were carried-out in R (v3.5.2; R Core Team, 2018). Initially, to 

identify any potential non-linearity in the relationship between the number of days since 

budburst (hereafter ‘day’) and attenuation of the test sounds, I applied generalised 

additive models (GAMs) to the dataset using the gam() function in the mgcv package 

(v1.8-28; Wood, 2019). I constructed two models, one that varied the effect of day on 

attenuation by distance category (hereafter ‘distance’), and another that varied the effect 

of day by the frequency of the test sound (hereafter ‘frequency’). Background noise was 

included as an additional smoothed term in both models, and the categorical variables 

distance, frequency, microphone height and loudspeaker height were included as linear 

terms. Automatic smoothing in the GAMs, however, forced linear fits to the effect of 

day on attenuation for all distance categories (Appendix C.3, Fig. C.1), and likewise for 

most frequencies (the effect of day on the 4000 Hz frequency test sound showed non-

linearity, but was not significant at the 5% level, and, thus, there was no certainty as to 

the shape or direction of the effect; Appendix C.3, Fig. C.2). I therefore, applied linear 

models (LM) to the dataset using the lm() function in the stats package of base R. LMs 

offer increased flexibility over GAMs when adding multiple and higher-order 

interaction terms, and are less prone to over-fitting. The initial LM consisted of the main 

effects of day, distance, frequency, microphone height, loudspeaker height and 

background noise, along with all second-order interactions. I then used the dredge() 

function in the MuMIN package (v1.42.1; Barton, 2018) to fit all possible models, and 

compared models using AIC (Burnham and Anderson, 2002). I performed model 

averaging using the mod.avg() function in the MuMIN package, considering all models 

simpler than the top model with ∆AIC <6, and took the significant effects (p≤0.05) in 

the full average model to be my final model variables. I kept the main effect of a 

variable if it was included in a significant interaction term. I confirmed that normality 

and homoscedasticity assumptions were met by plotting the model residuals as Q-Q 

plots and against fitted values respectively. 

8.4 Results 

The variables included in the final averaged model testing for the effect of the number 

of days since budburst on attenuation of the test sounds are listed in Table 8.1 
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(coefficients are provided in Appendix C.4). Distance and tone frequency, and their 

interaction terms, had most influence on attenuation of the sounds, as would be 

expected following acoustic theory. Days since budburst had a significant effect on the 

level of attenuation in the sounds (Table 8.1). However, the effect differed depending on 

microphone height; attenuation increased with day when microphones were placed at 

1.5 m, but decreased (i.e. sound became progressively amplified) when microphones 

were placed at 5 m (Table 8.1, Fig. 8.2). Across all frequencies and transmission 

distances, these opposing responses amounted to a mean change in attenuation of 

1.13 dB and -0.46 dB during the entire leaf-out period, and 0.24 dB and -0.10 dB during 

the first 8 days of leaf-out, for microphones situated at 1.5 m and 5 m respectively 

(Fig. 8.2). The model selection process did not retain the second-order interaction terms 

day × frequency or day × distance (Table 8.1), as the effect of increasing day on 

attenuation was similar amongst the three distance categories (Fig. 8.3a), and amongst 

the different frequencies (Fig. 8.3b). However, there was a general trend of increasing 

attenuation with day detectable at far distance, where there was a mean difference in 

attenuation of 2.6 dB between the first and last day of the leaf-out process (Fig. 8.3a). 

This trend was similar for the 8000 Hz frequency, for which attenuation increased by a 

mean of 2.3 dB from budburst to full-leaf (Fig. 8.3b). The difference in attenuation at 

budburst versus that at full-leaf for each of the frequencies at each distance (not 

accounting for loudspeaker or microphone height) is shown in Fig. 8.4. The trend 

amongst frequencies was similar at all distances, although less pronounced at near 

distance. All trends amongst distances suggested that a ‘sound window’ existed between 

1500 Hz to 4000 Hz in the study site at full-leaf, whereby sounds within this frequency 

range attenuated less than sounds outside of this range (Morton, 1975).  
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Table 8.1 The explanatory variables in a linear model (LM), following a model selection 

process guided by AIC, testing for the effects on attenuation of test sounds of five different 

frequencies broadcast through a loudspeaker at two heights (1.5 m and 5 m) and received by 

microphones located at three distance categories from the loudspeaker, and at two heights 

(1.5 m and 5 m), in a mixed deciduous woodland in Durham, UK, whilst accounting for the 

effect of background noise. N=4274. 

Source of variation df Sums of 

squares 

Mean 

squares 

F 

Days since budburst (Day) 1 191 191 7.611 

Distance category (Distance) 2 232589 116294 4629.221 

Frequency of test sound (Frequency) 4 24902 6226 247.814 

Microphone height 1 34 34 1.359 

Loudspeaker height 1 2 2 0.060 

Background noise 1 189 189 7.540 

Day × Microphone height 1 174 174 6.944 

Backgound noise × Distance 2 72 36 1.430 

Distance × Frequency 8 6285 786 31.274 

Frequency × Microphone height 4 2839 710 28.256 

Frequency × Loudspeaker height 4 1115 279 11.096 

Microphone height × Loudspeaker height 1 194 194 7.7165 
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Figure 8.2 The attenuation of acoustic energy according to the height of receiving microphones 

amongst five pure-tone test sounds of frequency 500 Hz, 1000 Hz, 1500 Hz, 4000 Hz and 

8000 Hz broadcast through a loudspeaker in a mixed deciduous woodland in Durham, UK 

during the leaf-out period in the trees, from budburst to full-leaf. Microphones were placed in 

three distance categories from the loudspeaker. Dashed vertical line at day 8 denotes the 

estimated advance in leaf-out phenology in European deciduous trees during the period 1971-

2000 (as Menzel et al., 2006), and highlights the maximum change in attenuation of birdsong, 

should birds not have advanced their reproductive cycle, and hence, singing activity, to the same 

degree.  



128 
 

 

Figure 8.3 The attenuation in five pure-tone test sounds broadcast through a loudspeaker and 

recorded by receiving microphones located at three distance categories from the loudspeaker 

during the leaf-out period from budburst to full-leaf in the trees of a mixed deciduous woodland 

habitat in Durham, UK, according to a) microphone distance category, and b) frequency of the 

test sound.   
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Figure 8.4 The difference between the attenuation of acoustic energy at budburst and the 

attenuation of acoustic energy at full-leaf in five pure-tone test sounds of different frequency 

broadcast through a loudspeaker (once at 1.5 m and once at 5 m) and recorded by six receiving 

microphones (three situated at 1.5 m height and three at 5 m) located at each of three distance 

categories from the loudspeaker in a mixed deciduous woodland habitat in Durham, UK. N=12 

for each distance category. Error bars=±1SE. To avoid overlap, some error bars are shown off-

centre from datapoints.  

 

8.5 Discussion 

Temperate woodland birds are exposed to significant changes to their acoustic 

environment as leaves unfurl and reach maturation in the spring. Climate-driven 

advances and alterations in leaf-out phenology may introduce additional attenuation of 

song at crucial stages in the reproductive cycle. By measuring day-to-day attenuation of 

energy in sounds of different frequency each dawn from budburst through to full-leaf, I 

show the progressive attenuation of sound during the full leaf-out process, and the 
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potential effect of current advances in leaf-out phenology on the attenuation of song in 

temperate woodland birds.  

The attenuation of broadcast pure-tone sounds was significantly affected by the 

number of days since budburst (Table 8.1; Appendix C.3). However, attenuation 

increased by a mean of just 1.13 dB across all frequencies and transmission distances 

during the leaf-out period , and only when the receiving microphone was situated at a 

height of 1.5 m (Fig. 8.2). When the microphone was situated higher, at 5 m above the 

ground, attenuation decreased by 0.46 dB as the leaf-out process progressed (Fig. 8.2). 

These values of attenuation induced by leaf-out in trees are comparable with those 

obtained previously for EA in great tit song (Blumenrath and Dabelsteen, 2004), where 

an increase in sound energy was also found following leaf-out at short transmission 

distances (i.e. 15 m).  

The location of both signaller and receiver, with respect to the ground, 

temperature gradients, and other obstacles within the habitat, can affect the transmission 

of signals between them (Wiley and Richards, 1982, 1978). My results are congruent 

with prior studies that identify receiver height (e.g. Balsby et al., 2003; Dabelsteen et 

al., 1993; Marten and Marler, 1977), and/or source height (e.g. Mathevon et al., 1996) 

as factors affecting sound attenuation. In the context of my study, this means that as 

leaf-out progresses, it becomes increasingly advantageous for receivers to be located at 

5 m above the ground, rather than at 1.5 m. As leaf-out proceeds in deciduous 

woodland, an ‘acoustic channel’ or ‘wave-guide’ (Wiley and Richards, 1982, 1978) may 

form between the canopy trees and understory shrubs, where sound attenuates less than 

at other heights (Morton, 1975). Under certain conditions, sound may even become 

amplified due to the accumulation of the direct signal, reflections from foliage and 

deflections from favourable temperature gradients (Wiley and Richards, 1982, 1978), 

such as those that persist at dawn (Wiley and Richards, 1982, 1978) and, as my results 

may infer, when trees are in full-leaf. Signaller and receiver may both take advantage of 

acoustic channels by adjusting their respective positions. Mathevon et al. (1996) stated 

that, ideally, both should be above the understory (e.g. 5 m) for horizontal rather than 

diagonal (e.g. either signaller or receiver at 1.5 m) sound transmission, when 

determining the optimal woodland singing height for northern wren Troglodytes 

troglodytes. However, this may not have been applicable at my study site, as results 

show that attenuation was greater when the loudspeaker was situated at 5 m height, and 
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that this increased further if both the loudspeaker and microphone were at 5 m 

(Appendix C.3). This stresses that caution is advised when generalising on the sound 

properties of different woodland sites, which may differ with tree species composition, 

canopy and understory density, and topography. 

Despite relatively minor losses (or gains) in acoustic energy across all distances 

and frequencies, there was a general trend for increasing attenuation with day at the far 

distance (Fig. 8.3a), and the 8000 Hz frequency sound (Fig. 8.3b). The effect of 

increasing distance on attenuation was greatest for the 8000 Hz sound (Appendix C.4), 

and although not tested statistically, the strength of this interaction may have increased 

as the leaf-out process progressed. The scale of energy-loss in the 8000 Hz frequency 

sound at far distance could have negative implications for fitness of signalling birds that 

regularly utilise this frequency (e.g. goldcrest, wood warbler Phylloscopus sibilatrix and 

some elements of northern wren and European robin Erithacus rubecula song; chapter 

2, Fig. 2.2 and 2.3), if the operative distance of the signal is unduly reduced, potentially 

leading to missed mating opportunities or expenditure of energy actively chasing 

intruders or pursuing potential mates. Fitness of receivers, on the other hand, may be 

compromised if they are actively chased and attacked by signallers, or if they remain 

unaware of potential mating opportunities. However, extrapolation of data to produce 

accurate estimates of attenuation at operative distances beyond those for which 

measurements are made is difficult, as not only is attenuation by spherical spread non-

linear, so is EA within heterogenous habitat (Aylor, 1972b).  

Prior studies in fully-foliated wooded habitat have detected a characteristic dip in 

attenuation of frequencies between 1000 Hz and 2000 Hz when transmitted close to the 

ground (the ‘sound window’). Above this frequency range, attenuation essentially 

increases linearly with frequency (Embleton, 1963; Marten and Marler, 1977; Morton, 

1975; Price et al., 1988), as higher frequencies are increasingly prone to interception 

and subsequent absorption by foliage and the atmosphere (Aylor, 1972b; Price et al., 

1988). Indeed, I found that the 1500 Hz sound attenuated less at full-leaf than at 

budburst at mid distance (Fig. 8.4). At near and far distances, this phenomenon occurred 

most markedly in the 4000 Hz frequency. However, Marten and Marler (1977) state that 

the window may vary from site to site, occurring at greater frequency with transmission 

height above ground level, and that it may disappear altogether at greater heights. The 

labile nature of the window may explain this discrepancy. 



132 
 

My analyses did not detect any significant non-linearity in day-to-day attenuation 

during the leaf-out process (Appendix C.3), despite the complexity of the relationship 

between attenuation, frequency and distance (e.g. Blumenrath and Dabelsteen, 2004; 

Naguib, 2003), and the infinite number of potential modifications to sound and its 

transmission that might occur due to the changing size, shape and orientation of 

woodland foliage in the spring. Instead, the test sounds attenuated (or amplified) in a 

linear manner, and there was not, for example, an initial large effect immediately 

following budburst that subsequently subsided as leaves matured, or vice versa, for any 

sound frequency or at any transmission distance.  

The predominantly shallow and linear increases/decreases in attenuation across 

the entire leaf-out process evidently translated into very small changes in attenuation of 

energy during the initial eight days of the process; the increase in attenuation during the 

initial eight days for receivers situated at 1.5 m was 0.24 dB, and 0.10 dB decrease in 

attenuation when at 5 m height (Fig. 8.2). Such small changes in energy are unlikely to 

translate into significant loss or gain in transmission distance. Each year, signalling 

birds must exhibit plasticity in singing behaviour, and receivers in song perception, in 

order for effective long-range communication to be maintained during the leaf-out 

period. This may include adjustment of perch height (Balsby et al., 2003; Dabelsteen et 

al., 1993; Mathevon et al., 1996; this study), increasing song amplitude (Brumm and 

Todt, 2002), or altering the frequency (Goodwin and Podos, 2013) or temporal aspects 

(Slabbekoorn and den Boer-Visser, 2006) of song. Assuming such plasticity exists in all 

birds, current advances in leaf-out phenology of 2.5 d decade
-1

 (Menzel et al., 2006) are 

unlikely to increase attenuation of song to a magnitude that unduly reduces the ability of 

birds to maintain long-range transmission during the breeding period. Furthermore, 

future advances in leaf-out phenology may not force greater attenuation of song, as 

current research suggests that advance in leaf-out of European trees has declined from 4 

days °C
-1

 warming during the period 1980-1994, to 2.3 days during 1999-2013, and that 

further advance will become limited by warming-related reduction in winter chilling, 

and low light levels in early spring (Fu et al., 2015), although future responses may be 

species-specific (Flynn and Wolkovich, 2018). 

It is important to stress that this chapter presents preliminary findings, and further 

work is required to measure attenuation during the leaf-out period in the recordings 

made of my three example bird songs (section 8.3.3). Use of pure-tones in my analyses 
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demonstrated how frequencies regularly utilised by temperate woodland birds 

attenuated during the leaf-out period, but, whereas the tones are similar in structure to 

some whistle-like syllables in song (e.g. those of Eurasian blackbird Turdus merula and 

common nightingale Luscinia megarhynchos), they do not necessarily reflect the broad 

song structure of most species, which may consist of broad-band syllables (e.g. common 

chiffchaff Phylloscopus collybita), trills (e.g. northern wren) or large frequency shifts 

(e.g. common nightingale, European robin and song thrush). By focusing energy within 

a narrow frequency band, tonal sounds may attenuate more slowly compared to broad-

band sounds. Indeed, Dabelsteen et al. (1993) found that the high-frequency ‘twitters’ in 

Eurasian blackbird song suffered greater attenuation than the low-frequency whistles. 

Analyses of authentic birdsong may show different trends in attenuation during the leaf-

out period, or reinforce my results using tones. Further, some species sing from perches 

at higher elevations than those replicated in my study (e.g. common chiffchaff; 

Rodrigues, 1996). Martens and Marler (1977) found that artificial tones attenuate more 

substantially at a height of 10 m within in the canopy compared to lower heights in a 

woodland, so there might be a greater effect of advancing leaf-out phenology at these 

heights than was found in my study. Also, attenuation of energy is only one measure of 

degradation in birdsong. Foliage also causes reflections, reverberations scattering and 

frequency-dependent filtering, which accumulate with distance from the source 

(Bradbury and Vehrencamp, 1998), and manifest as changes to temporal and structural 

properties of sound (Morton, 1986). Calculation of day-to-day change in further 

measures of sound degradation may reveal consequences for birdsong under advancing 

leaf-out phenology not highlighted by attenuation alone. Finally, higher vegetation 

density at full-leaf would cause greater background noise from rustling leaves during 

wind. I purposely carried out playback on mornings with little discernible wind, but 

there could be an effect of earlier leaf-out on the degradation of birdsong due to the 

additional background noise in windier conditions. 

In conclusion, my study found a significant, but weak, linear effect of day-to-day 

leaf-out on the attenuation of energy in tests sounds. The magnitude and direction of the 

effect was dependent on the height of the receiver, confirming that birds may, to some 

degree, counteract any negative effect of leaf-out on attenuation of song by adjusting 

perch height. Attenuation during the leaf-out process did not differ significantly 

depending on the sound’s frequency or the distance of the receiver from the sound’s 
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source, although there was a signal that the effect was greater for the highest frequency 

at the furthest distance. Current advances in leaf-out phenology of 2.5 d decade
-1

 are 

unlikely to have had undue negative effect on the transmission of birdsong should birds 

not have advanced seasonal peaks in singing behaviour to the same degree. Further 

work using playback of authentic birdsong and/or playback at greater height in the 

canopy may, however, reveal a greater effect of advancing leaf-out phenology.  
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Chapter 9 

General Discussion 

 

 

Great Tit Parus major 
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9.1 Synthesis 

In this thesis, I have applied state-of-the-art acoustic recording technology to further our 

knowledge of bird behaviour during the avian dawn chorus and to confront prior theory 

relating to the existence of the chorus. The dawn chorus presents the optimal challenge 

for automated computer-assisted signal recognition systems (‘recognisers’), and this 

work has served to underline that advances made in this field have failed to keep pace 

with those made in acoustic data collection, but that ecologists can improve 

performance by applying readily-available recognisers in novel ways. Using acoustic 

technology to build upon prior research, this project has identified, or emphasised, 

physical and behavioural adaptations made by birds, and constraints put upon them, as 

they endeavour to be heard and correctly interpreted amid the high background noise of 

the dawn chorus. Here, I briefly discuss the findings of this project in the context of 

three broad categories, two of which were introduced in chapters 2 and 3 – the ecology 

of the dawn chorus, and technological advances in the study of birdsong. The third 

category is one which underlies much of the thought and discussion throughout the 

thesis, and is the influence of environmental change on future dawn choruses and, in 

turn, the impact this may have on bird populations. 

9.1.1 The ecology of the dawn chorus 

Advances in acoustic technology now permit researchers, equipped with ‘big data’, to 

reaffirm, revise, refute or build-upon prior theory attempting to explain the avian dawn 

chorus. In chapter 6, I called upon an extensive dataset of acoustic surveys to re-visit the 

energy stochasticity hypothesis, and, specifically, to question the assumption that cooler 

overnight temperatures lead to delayed and reduced dawn singing activity (e.g. 

Hutchinson, 2002; Thomas and Cuthill, 2002). My interpretation of my results largely 

reinforced this assumption. Importantly, however, by applying the theory across 

multiple geographically and climatologically distinct sites simultaneously, I concluded 

that the magnitude of the effect of overnight temperature varied with latitude, and that 

variation may be linked to means and day-to-day variability in regional temperature 

regimes. This finding not only serves to illustrate that birds and their singing routines at 

dawn are very sensitive to fluctuation in climate, but also questions whether the 

assumption concerning overnight temperatures will still apply to future choruses when 
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considering climate change (section 9.1.3), or whether the assumption currently applies 

at latitudes beyond those of Great Britain. Indeed, much of the theory surrounding the 

energy stochasticity hypothesis has been built upon observations made of bird 

communities in temperate regions (largely in the UK), and many empirical tests 

supporting the hypothesis (or assumptions thereof) have been carried-out on birds living 

at temperate latitudes (e.g. Barnett and Briskie, 2007; Gottlander, 1987; Reid, 1987; 

Thomas, 1999). At higher latitudes, where temperatures are cooler, but where overnight 

periods of darkness are very short or absent, and light cues to begin singing are not 

distinct, day-to-day variation in temperature and light levels may interact differently (cf. 

Brown, 1963; Da Silva and Kempenaers, 2017), and the latitudinal gradient in the 

response of the chorus to variation in overnight temperature, as observed in my results, 

may no longer apply. Whilst further south, for example, in Mediterranean regions, 

where the dawn chorus remains a prominent feature (e.g. Farina et al., 2011b), but 

where the lowest overnight temperatures may not limit dawn song output, variation in 

minimum overnight temperature may cease to affect chorus onset and peak.  

Signalling and receiving birds possess strategies to help them maintain effective 

long-distance communication following changes to their environment. For example, by 

exhibiting plasticity in their physiology (e.g. Bednekoff et al., 1994) and behaviour (e.g. 

Brumm, 2006, 2004; Da Silva et al., 2016; Ficken et al., 1974; Mathevon et al., 1996). 

In chapter 7, I confirmed that acoustic competition amongst species is a common 

occurrence during the dawn chorus, as two from three migrant-resident species pairs 

exhibited some apparent negative effect of song in one species on the singing behaviour 

of the other. Some species may demonstrate fine-scale temporal partitioning of song 

(e.g. Brumm, 2006), a behaviour that I propose amongst free-living wood warbler 

Phylloscopus sibilatrix and northern wren Troglodytes troglodytes (chapter 7). Such 

behaviour, however, is typically more pronounced in tropical regions, where the number 

of species and individuals are greater and acoustic niches are narrower (e.g. Planqué and 

Slabbekoorn, 2008; Tobias et al., 2014), and has not previously been reliably recorded 

in free-living birds during the dawn chorus in temperate regions. I inferred a second 

example of behavioural plasticity in chapter 8, when I suggested that birds might adjust 

song perch height to take advantage of ‘acoustic channels’ or ‘wave-guides’ that form at 

certain heights in woodland as leaf-out in the canopy and understory progresses (Wiley 

and Richards, 1982, 1978).  
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Overall, this study emphasises a requirement to continue monitoring and asking 

questions of the dawn chorus, as alterations to its timing, magnitude and performance 

can serve as an indicator of bird population and community fitness, and act as a warning 

system for general ecosystem health. Furthermore, knowledge gained of the dawn 

chorus in birds can shed light on less-familiar choruses performed by other taxa, for 

example, primates (Schel and Zuberbühler, 2012), anurans (Narins et al., 2006), fish 

(Parsons et al., 2017) and insects (Young, 1981). 

9.1.2 Technological advances in the study of bird song 

The use of autonomous recording units (ARUs) in this study permitted collection of an 

unrivalled dataset of acoustic surveys of the avian dawn chorus collected 

simultaneously at multiple woodland sites throughout Great Britain. It was not an 

original intention of this project to devise novel methods for extraction of detailed 

species-specific information from these surveys, but instead, to use existing 

commercially- or freely-available recognisers. However, this proved to be an obstacle 

for the project, as, although current readily-available recognisers provide accessibility, 

they lack reliability, and return a large number of false positive detections, especially 

when applied to high noise environments, such as the avian dawn chorus. The ensemble 

approach to automated species identification and classification described in chapter 5, 

offers a simple, yet effective, solution. A central focus of this chapter was to propose the 

application of ensemble modelling methods (e.g. Araújo and New, 2007) to automated 

acoustic signal identification, and it should be stressed, that the ensemble need not 

include the same combination of recognisers as used in my study. Indeed, the ensemble 

approach can be extended beyond the dawn chorus and birds, to provide improved 

recognition accuracy for other sound-producing taxa. For example, the method may also 

be tested on bats. Current readily-available recognisers have particular difficulty in 

distinguishing uncharacteristic bat vocalisations, most notably, the echolocation calls of 

the various Myotis species (Rydell et al., 2017). However, the complication in 

automated classification of Myotis species lies not in masking background noise, as is 

often the case with birds, but in the high degree of variation and overlap in spectral 

parameters amongst the species’ vocalisations, which may render identification 

impossible using acoustic methods alone (Rydell et al., 2017). Acoustic indices (AIs), 

introduced via the field of ecoacoustics, provide an alternative approach to the use of 
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recognisers and species-specific identification. My use of the acoustic complexity index 

(ACI) in chapter 6 verified the efficacy of using this particular AI in studies of the dawn 

chorus (cf. Farina et al., 2011b), and potentially, of sound-producing animal 

communities more widely. I found that the ACI was capable of successfully identifying 

gradation and peaks in the complex soundscape of temperate woodland at dawn. In turn, 

the ACI can be a valuable tool in long-term monitoring programmes documenting 

changes to the composition and behaviour of bird communities (Farina et al., 2011b; 

Pieretti et al., 2011). 

9.1.3 The influence of climate change on the dawn chorus  

There is convincing evidence that birds are already being affected by climate change 

(reviewed by Crick, 2004; Møller et al., 2010; Pearce-Higgins and Green, 2014).  

Changes in population dynamics (Sæther and Engen, 2010), and to the distribution 

ranges of species (Brommer and Møller, 2010), will alter the composition of 

communities (Brotons and Jiguet, 2010), with indirect effects on the performance, 

timing and magnitude of the dawn chorus (Sueur et al., 2019). This project has 

highlighted some of these effects, as well as some more direct influences on bird 

physiology, influencing behaviour and decision-making during the dawn chorus. In 

chapter 6, I found evidence that the timing and peak of the chorus in Great Britain is 

controlled, in part, by overnight temperatures, and that this effect varied with 

geographical location. I concluded that higher temperatures led to earlier onset and 

peak, especially at higher latitudes, potentially prolonging chorus duration (although 

chorus duration was not recorded). I suggested that these effects may continue into the 

future until they no longer respond to variation in overnight temperature under the 

predicted temperature increases (Easterling et al., 1997; Stone and Weaver, 2002). This, 

in turn, might imply that dawn choruses could be less intense in future, whereby 

competition for acoustic space is reduced, with, perhaps, implications for the fitness of 

bird populations, as intense competition between species and individuals tends to select 

for fitter individuals. These ‘relaxed’ choruses need not be entirely negative, however. 

In chapter 7, I suggested that acoustic competition between species during the dawn 

chorus can lead to sub-optimal song rates in deferential species. Less intense choruses 

might allow these species to sing at greater rates, albeit, perhaps, not at the optimal time 

(e.g. if dawn song functions in mate guarding, and hence, timing is dictated by the 
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behaviour of the female). That said, I also refer to the distinctive responses to climate 

change reported for short- versus long-distance migratory species (e.g. Both et al., 

2010), and the effect this may have on community composition and acoustic 

competition amongst species; those species that benefit from climate change may 

extend their distribution range, and dominate acoustic space (Sueur et al., 2019). For 

example, the UK population of common chiffchaff Phylloscopus collybita has increased 

dramatically in recent decades (DEFRA, 2019), potentially in response to reduced 

winter severity in Europe (Tellería et al., 2016), and consequent reductions in migratory 

distances endured by individuals (Newson et al., 2016). An increase in chiffchaff 

density and range, and an apparent negative effect of this species’ song rate on that of 

the resident great tit Parus major (chapter 7), may counteract any advantage associated 

with less intense choruses at dawn for the great tit. I also concluded that potential 

increases in day-to-day variability, or greater extremes, in minimum overnight 

temperature with climate change (Pendlebury et al., 2004), could lead to changes in the 

timing of the dawn chorus, if birds have difficulty in judging forthcoming overnight 

temperatures, and consequently fail to budget energy reserves accordingly. Finally, in 

chapter 8, I implied that recent levels of climate-driven advance in leaf-out phenology 

of 2.5 d decade
-1

 (Menzel et al., 2006), attenuate higher frequency elements of birdsong 

(e.g. those ≥8000 Hz) to a degree that may unduly affect long-distance communication. 

This, along with the potential attenuation associated with climate-driven changes to 

woodland vegetation composition and structure (Fuller et al., 2007), could, in the long-

term, reduce the fitness of some bird populations. 

9.1.4 Further anthropogenic challenges for the dawn chorus 

This thesis is, to a great extent, concerned with the effects of climate change on the 

dawn chorus. However, anthropogenic noise pollution and artificial light at night 

(ALAN) also pose serious threats to the chorus, and the fitness of the individuals, 

populations and communities that participate (chapter 2, section 2.8). For example, the 

important influence of illumination from the sun on the timing of the chorus, as reported 

in chapter 6, highlights the potential effect that ALAN may have as it encroaches further 

into rural areas (Hölker et al., 2010), by confusing birds’ perception of what constitutes 

‘dawn’.  The effect of ALAN might be more intense at lower latitude sites, where 

overnight periods are darker, and where I found that chorus onset responded to lower 

light levels (chapter 6).  Indeed, Kempenaers et al. (2010) found that there were no 
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artificial light effects on onset of singing at a very high latitude site (65˚N) compared to 

lower latitude sites (48˚N and 3 ˚N), which they attributed to decreased contribution of 

artificial light at high latitudes. In some locations, the potential effects of competing 

species (chapter 7) and earlier leaf-out phenology (chapter 8) on dawn birdsong may be 

insignificant compared to the masking effect of anthropogenic noise pollution, as urban 

areas and transport networks continue to expand and encroach upon rural areas (Seto et 

al., 2012). Considering the importance of dawn singing in the lifecycles of birds, it is 

imperative that the effects of noise and ALAN on bird singing behaviour in urban and 

rural locations are fully understood. 

9.2 Future work 

The ACI provided a valid holistic depiction of the dawn chorus from my acoustic 

surveys (chapter 6), but future work should strive to understand dawn singing behaviour 

in individual species. For bioacoustics methods to be truly viable in such large-scale 

studies, reliable recognisers that are capable of species identification and classification 

must be accessible to researchers (Blumstein et al., 2011). Further collaboration with 

mathematicians, computer scientists and acousticians is required to drive the 

development of new algorithms and computer-aided approaches to automated species 

identification, and to improve upon the performance of current recognisers. In the 

meantime, future research should consider alternative approaches to extracting 

meaningful information from large acoustic datasets. For example, additional work on 

my ensemble approach to automated identification can create optimal combinations of 

recognisers for a particular species or song-type. When established, combinations can 

be relayed to and implemented by fellow researchers. Thus, reducing their time spent on 

constructing ensemble recognisers. Crowd-sourcing has been employed to identify 

species from large datasets of camera-trap images (e.g. MammalWeb, Hsing et al., 

2018; Snapshot Serengeti, Swanson et al., 2015), whereby  members of the general 

public are recruited to classify images via dedicated website platforms. This novel 

approach could be utilised to classify bird species by their vocalisations within large 

acoustic datasets. The detailed species-specific information obtained within my dataset 

can be used to address multiple questions and issues concerning the ecology of the dawn 

chorus and bird behaviour during this event, expanding greatly upon the findings 

presented in this thesis.  
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Knowledge of seasonal and daily song patterns in individual species would 

provide a truly intricate view of the dawn chorus. For example, the pairwise competitive 

interactions addressed in chapter 7, which were limited to just a few species-pairs in this 

thesis due to time constraints, can be extended to encompass entire communities. At its 

simplest level, the order of song in species can be discerned, but the potential for multi-

species interplay and co-ordination in singing events, previously unknown in temperate 

dawn choruses, can also be investigated with knowledge of fine-scale temporal patterns 

in species’ singing events. Additionally, those species most likely to be affected by 

advances in leaf-out phenology and other seasonal changes to vegetation structure 

(chapter 8) can be determined if precise seasonal and daily singing routines can be 

established. Seasonal song output can also be related to breeding stage in birds, which, 

apart from its general use in understanding the function of the dawn chorus, may be of 

particular use for repeat-nesting species, such as Eurasian blackbird Turdus merula and 

song thrush T. philomelos, for which little is known on the timing of nesting attempts 

later in the season (D. Leech, pers. comm., March 3, 2016). The information already 

obtained within my dataset can address these questions for different regions of the 

country, but the dataset can be extended further by making acoustic surveys in 

alternative habitat-types (e.g. grassland, scrub or wetlands), where different sets of 

environmental conditions may drive the onset and peak of the chorus. This may be 

especially important in urban areas, where the effects of ALAN and anthropogenic 

noise on the timing and intensity of bird song are considerable. 

9.3 Conclusion 

Singing at dawn is so critical to male temperate-zone birds, that they are 

compelled to do so amid the noise of countless others. The resultant cacophony is of 

considerable cultural and aesthetic value to people, yet we still do not fully comprehend 

the motivation behind this daily event. Recent advances in recording and sound analysis 

technology now allow practitioners to investigate birdsong and the chorus as never 

before. By using this technology, this study has illustrated the sensitivity of birds to 

changes in their environment, and how this may manifest in the response of their 

singing behaviour at dawn. The information presented in this thesis is extremely 

valuable, but with an increasing urgency to mitigate environmental change and 

biodiversity-loss, it is vital that sound recording and analysis methods continue to 
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develop, particularly within the field of automated signal recognition, if we are to fully 

understand the health of populations and communities, and to preserve their 

requirements during the dawn chorus as well as more widely. 
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Appendix A 

Supporting information for chapter 5 

 

 

A.1 Definitions of singing events 

For common chiffchaff Phylloscopus collybita and carrion crow Corvus corone, with 

mono- or bi-syllabic songs, a singing event was considered to be complete when a non-

vocalising gap exceeded the regular gap between syllables. For example, a single caw 

was considered a complete song of a carrion crow, when gaps between caws exceeded 

the typical inter-syllable duration (Fig. A.1a and A.1d). For northern wren Troglodytes 

troglodytes song, with a series of syllable blocks, or phrases, that follow in dependable 

succession, the entire series of phrases were included in a single singing event 

(Fig. A.1b). By contrast, for the European robin Erithacus rubecula, which produces 

continuous song with extended inter-phrase gaps, I recorded each phrase as a singing 

event (Fig. A.1c). Results from manual analyses were used as the benchmark for 

assessing the performance of the recognisers. 
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Figure A.1 Example spectrograms of the study species, a) common chiffchaff Phylloscopus 

collybita, b) northern wren Troglodytes troglodytes, c) European robin Erithacus rubecula, d) 

carrion crow Corvus corone, and e) common woodpigeon Columba palumbus, made on Raven 

Pro v1.4 (The Cornell Laboratory of Ornithology, Ithaca, USA) from my own acoustic surveys 

using Song Meter 2+ autonomous recording units (Wildlife Acoustics Inc, Maynard, USA). 

Thick black dashes show individual singing events as they were recorded in manual song 

detection. Note that time scale varies amongst a-e. 

A.2 Building recognisers 

A.2.1 monitoR 

I extracted sound clips containing examples of the study species’ song from the training 

dataset using the viewSpec function. I then generated templates from the sound clips 

using the makeCorTemplate function. The final number of templates extracted differed 

according to the study species, and reflected the level of complexity and variation in the 

song (Table A.1). The templates were then integrated to create a recogniser using the 

combinCorTemplates function. The more templates within a recogniser, the longer it 
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takes to complete the scanning process. To reduce the duration of the scanning process, 

templates that did not return detections within preliminary tests on a subset of acoustic 

surveys from my dataset, where I knew the study species was present, were removed 

from the recogniser, until the best possible performance, in terms of scanning duration 

and the number of correct detections, was found. Prior to scanning the test dataset with 

the final recogniser, I set the score threshold to zero using the score.cutoff command, so 

that all detections, regardless of their score, were included in the results output. The 

recogniser then scanned the test dataset of 300 × 300 s sample surveys using the 

corMatch function. Multiple templates within a recogniser may register detections with 

the same singing event. Therefore, I used the findPeaks function to return the detections 

with the highest scores. I then used the timeAlign function to order the detections by 

their occurrence within sample surveys. In order to avoid overlapping or duplicate 

detections, I set the tolerance command to equal the duration of the longest template in 

the recogniser. MonitoR assigns times to detections, which represent the position of the 

centre-point of the matching template within the acoustic survey. It does not return start 

times or durations of detections, and as my subsequent analyses required these 

measurements, I calculated them using the time at the centre-point and duration of the 

matching template. 

  

Table A.1 Parameter settings used for study species’ recognisers built using the R package 

monitoR (Hafner & Katz, 2018a). 

Parameter Species 

Chiffchaff Wren Robin Carrion crow Woodpigeon 

No. of templates 6 14 14 8 5 

FFT size 256 256 256 256 256 

FFT transformation Hanning Hanning Hanning Hanning Hanning 

FFT overlap None None None None None 

Minimum frequency (Hz) 0 0 0 0 0 

Maximum frequency (Hz) 8000 8000 8000 8000 8000 

Density of points  1 1 1 1 1 

Score threshold 0.0 0.0 0.0 0.0 0.0 

Plot frame ratio 1 1 1 1 1 

Tolerance (s) 7 2.9 3.5 5 12.5 
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A.2.2  Raven Pro 

I extracted examples of study species’ singing events from the training dataset. The 

number of examples varied amongst species, and reflected the level of complexity and 

variation in the song (Table A.2). I then measured the song parameters required to 

construct the recogniser from the set of example songs (Table A.2). Using the same 

subset of test surveys as used for preliminary tests of all other recognisers during their 

construction, adjustments were made iteratively to the parameters until the best possible 

recogniser performance was found. Prior to scanning the test dataset with the final 

recogniser, I set Occupancy to the minimum allowable value of 1.0. Raven does not 

provide the facility to merge two channels in stereo surveys, and returns two sets of 

detections – one for each channel. To eliminate duplicate detections, I matched the two 

sets by values returned in the Begin Time and End Time measurements, using the 

foverlaps function in the R package data.table (Dowle et al., 2019). All detections made 

in the left channel were retained, and detections made in the right channel that 

overlapped in time with those in the left, were removed. Detections made in the right 

channel that did not overlap with those in the left were added to the list of left channel 

detections to produce a single set. 

 
Table A.2 Parameter settings used for study species’ recognisers built using Raven Pro software 

(The Cornell Laboratory of Ornithology, Ithaca, NY). 

Parameter Species 

Chiffchaff Wren Robin Carrion crow Woodpigeon 

Minimum frequency (Hz) 3500 3100 2300 700 270 

Maximum frequency (Hz) 7000 7900 7900 1800 645 

Minimum duration (s) 1.064 0.6 0.72 0.6 2 

Maximum duration (s) 13 7 7.112 12 16 

Minimum separation (s) 0.192 0.032 0.104 0.4 0.12 

SNR threshold (dB) 3 2 3 5 2.5 

Block size (s) 40 21 21 30 45 

Hop size (s) 15 9 9 10 20 

Percentile 25 25 25 30 30 
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A.2.3  Song Scope 

I extracted example singing events (called ‘annotations’ in Song Scope) from my 

training dataset. The number of annotations required to build recognisers varied 

amongst species, and reflected the level of complexity and variation in the song 

(Table A.3). A well-balanced set of annotations were chosen, encompassing the breadth 

of variation in song structure and quality, as well as the breadth of noise profiles present 

amongst the training dataset (cf. Priyadarshani et al., 2018). All, however, clearly 

showed the syllable structure of a single individual and were not unduly masked by non-

study species or other background noise. Annotations were loaded into the Song Scope 

recogniser builder as a single class. The configuration of additional settings available on 

the Song Scope interface was specific to each study species (Table A.3). Settings were 

adjusted iteratively, and annotations added and removed, by testing the recognisers on 

the same subset of my acoustic surveys as used in preliminary testing of all other 

recognisers, until the best possible performance was found. Some researchers have 

iteratively tested recogniser performance against the set of annotations used to build 

them (e.g. Knight et al., 2017; MacLaren et al., 2018), ensuring that recognisers, at 

minimum, could recognise all the signals from which they were built. However, such a 

high level of self-training may create recognisers too specific for the level of inter-site 

and intra-species variation within my broad test dataset. The final recogniser cross-

training (a measure of how well the model fits the training data) varied amongst study 

species, ranging from 61.48±3.11 for woodpigeon to 72.45±4.91 for robin (Table A.3). 

Prior to scanning the test dataset with the final recognisers, I set the Quality and Score 

thresholds to zero, and merged the signals from each channel, to return a single set of 

detections without duplicates. 
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Table A.3 Parameter settings used and cross-training values for study species’ recognisers built 

using Song Scope software (Wildlife Acoustics Inc., Maynard, USA). 

Parameter Species 

Chiffchaff Wren Robin Carrion crow Woodpigeon 

Number of annotations 90 203 268 150 40 

Sample rate 16000 16000 16000 16000 16000 

Max sample delay 64 64 64 64 64 

FFT 256 256 512 256 512 

FFT overlap 1/2 1/2 1/2 1/2 1/2 

Band Pass Filter:           

  Min 50 (3.1 kHz) 55 (3.4 kHz) 74 (2.3 kHz) 10 (625 Hz) 10 (312 Hz) 

  Max 70 (7.5 kHz) 67 (7.6 kHz) 256 (8 kHz) 22 (2 kHz) 14 (750 Hz) 

Amplitude gain 0 0 0 0 0 

Background filter (s) 1 1 1 1 1 

Max syllable (ms) 1500 1500 701 1496 1500 

Max syllable gap (ms) 271 401 341 800 701 

Max song (ms) 10001 10001 7401 12000 30001 

Dynamic range (dB) 20 17 18 12 23 

Algorithm 2.0 2.0 2.0 2.0 2.0 

Max complexity 25 48 48 25 25 

Max resolution 8 13 18 8 10 

Cross training (%) 69.38 ± 5.25 69.05 ± 3.09 72.45 ± 4.91 65.48 ± 6.04 61.48 ± 3.11 

Total training (%) 69.13 ± 4.80 68.96 ± 4.06 72.55 ± 5.11 66.16 ± 5.18 61.24 ± 3.18 

 

A.2.4  Kaleidoscope Pro 

I used the full training dataset as input into the classifying process, and, using a 

configuration of settings specific to each study species (Table A.4), Kaleidoscope 

grouped all the signals it could detect into clusters. I then examined the output for 

clusters containing the study species’ song, and detections within the cluster were 

labelled ‘True’ or ‘False’ depending on whether they were the study species song or not. 

Detections containing poor examples of the study species song, or those masked by non-

study species, were left unlabelled. This process trained Kaleidoscope to recognise only 

the verified signals in the next step. Kaleidoscope then re-scanned the training dataset 

and re-clustered the detections, according to their labels, to produce the final recogniser. 

I set the distance from cluster centre to the maximum allowable value of 2.0 to simulate 
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a zero score threshold. The recogniser then scanned all samples within the test dataset in 

a single pass. Only detections classified as ‘true’ were retained from the output. 

Duplicate detections made in both left and right channels were detected using the 

foverlaps function in the R package data.table. The best scoring duplicate (i.e. that with 

the lowest distance from the cluster centre) was retained. To make the scores of the final 

list of detections comparable to those of other recognisers in the study (i.e. on a scale of 

zero to one, with ‘one’ signifying top score), I halved their value and then subtracted it 

from one. 

 
Table A.4 Parameter settings used for study species’ recognisers built using Kaleidoscope Pro 

software (Wildlife Acoustics Inc, Maynard, USA). 

Parameter Species 

Chiffchaff Wren Robin Carrion crow  Woodpigeon  

FFT window 256 256 256 256 256 

Max dist. from cluster centre:           

  outputs in cluster.csv 1.0 1.0 1.0 1.0 1.0 

  for building clusters 0.5 0.5 0.5 0.5 0.5 

Max states 12 12 14 12 10 

Max clusters 500 500 500 500 500 

Minimum frequency (kHz) 3125 2500 2312 600 312 

Maximum frequency (kHz) 7500 8000 8000 2000 750 

Minimum length (ms) 0.1 0.1 0.1 0.1 0.1 

Maximum length (ms) 10 8 7.4 10 20 

Maximum inter-syllable (ms) 0.27 0.35 0.34 0.5 0.7 

 

A.3 Building ensemble models 

I matched the singing events of each study species identified by manual song detection 

against all 300 segments of 1 s duration (hereafter ‘segments’) of each 300 s sample in 

the test dataset, resulting in a binomial outcome of either ‘1’ (study species singing) or 

‘0’ (study species not singing) for every segment of the sample. I then matched the 

detections returned by each recogniser in turn to the segments of each sample survey 

using the start time and duration measurements returned by the recogniser (Raven, Song 

Scope and Kaleidoscope) or otherwise calculated (monitoR, see A.2.1). The respective 
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recogniser scores and additional measurements assigned to detections were placed 

alongside the matching segments. If, for any given segment, a recogniser did not make a 

detection, a score of zero was assigned. To reduce pseudo-replication during the 

modelling process due to non-independence of data-points, 50 × segments were 

randomly selected from each 300 s sample in the test dataset. From this reduced dataset 

of 15000 segments, I selected all segments from three sample surveys randomly-

selected from each of the 20 study sites (3000 segments = 20% of data) to be my model 

test data. The Power measurement returned by Raven and the Level measurement 

returned by Song Scope were found to be collinear with Raven Occupancy and Song 

Scope Score respectively, and, consequently, were removed from the modelling process. 

Generalised linear models (GLM) with binomial errors were built using the remaining 

12000 segments (80% of data), and final models were tested using the model test data. 

GLMs for individual recognisers were built using the same dataset of 12000 segments, 

and all were tested on the same 3000 segment model test data. 

 

Table A.5 Coefficients of binomial generalised linear models (GLMs) predicting the probability 

of obtaining a positive detection from scores assigned to detections made by the recognisers of 

the four signal recognition software programs and the ensemble model. m.score=monitoR 

Score; r.score=Raven Occupancy; s.score=Song Scope Score; s.qual=Song Scope Quality; 

k.score=Kaleidoscope distance from centre of cluster. 

a) Common chiffchaff Phylloscopus collybita 

Variables/Interactions Estimate SE z value p 

Ensemble (link=cloglog)         

  Intercept -4.772 0.218 -21.927 2.0E-16 

  k.score 2.205 1.033 2.134 3.3E-02 

  m.score 4.730 0.570 8.300 2.0E-16 

  r.score 1.450 0.364 4.023 5.7E-05 

  s.qual -1.674 1.717 -0.975 3.3E-01 

  s.score 2.792 0.356 7.835 4.7E-15 

  k.score × r.score 3.255 0.975 3.339 8.4E-04 

  k.score × s.qual -18.647 8.492 -2.196 2.8E-02 

  k.score × s.score -0.399 1.315 -0.304 7.6E-01 

  m.score × r.score -2.222 0.813 -2.734 6.3E-03 

  r.score × s.qual -1.170 0.526 -2.225 2.6E-02 

  r.score × s.score -1.975 0.560 -3.526 4.2E-04 

  s.qual × s.score 3.215 2.547 1.262 2.1E-01 
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  k.score × r.score × s.qual -8.277 2.579 -3.209 1.3E-03 

  k.score × s.qual × s.score 34.751 12.485 2.783 5.4E-03 

monitoR (link=cloglog)         

  Intercept -2.924 0.047 -62.200 2.0E-16 

  m.score 4.135 0.260 15.880 2.0E-16 

Raven (link=probit)         

  Intercept -1.555 0.033 -47.690 2.0E-16 

  r.score 0.233 0.048 4.840 1.3E-06 

Song Scope (link=probit)         

  Intercept -20.236 0.054 -37.162 2.0E-16 

  s.score 0.154 0.093 12.408 2.0E-16 

  s.qual -3.019 0.713 -4.233 2.3E-05 

  s.score × s.qual 4.285 1.082 3.961 7.5E-05 

Kaleidoscope (link=cloglog)         

  Intercept -2.844 0.041 -69.610 2.0E-16 

  k.score 4.195 0.190 22.090 2.0E-16 

b) Northern wren Troglodytes troglodytes 

Variables/Interactions Estimate SE z value p 

Ensemble (link=cloglog)         

  Intercept -3.375 0.130 -25.958 2.0E-16 

  k.score 1.736 0.255 6.821 9.1E-12 

  m.score 4.234 0.579 7.311 2.7E-13 

  r.score 1.179 0.209 5.644 1.7E-08 

  s.qual -4.843 1.619 -2.991 2.8E-03 

  s.score 2.249 0.248 9.065 2.0E-16 

  k.score × r.score -0.795 0.382 -2.081 3.7E-02 

  k.score × s.qual -13.874 2.893 -4.796 1.6E-06 

  k.score × s.score -1.582 0.443 -3.575 3.5E-04 

  m.score × r.score 0.087 0.842 0.103 9.2E-01 

  m.score × s.qual -10.884 6.248 -1.742 8.1E-02 

  m.score × s.score -2.408 1.075 -2.240 2.5E-02 

  r.score × s.qual 0.120 0.342 0.350 7.3E-01 

  r.score × s.score -1.340 0.367 -3.650 2.6E-04 

  s.qual × s.score 7.095 2.366 2.998 2.7E-03 

  k.score × r.score × s.score 1.574 0.613 2.566 1.0E-02 

  k.score × s.qual × s.score 22.202 4.253 5.220 1.8E-07 

  m.score × r.score × s.qual -2.662 1.378 -1.932 5.3E-02 

  m.score × r.score × s.score 2.590 1.477 1.754 7.9E-02 

  m.score × s.qual × s.score 15.414 9.000 1.713 8.7E-02 

monitoR (link=cloglog)         

  Intercept -1.859 0.033 -55.770 2.0E-16 

  m.score 4.508 0.127 35.530 2.0E-16 

Raven (link=cloglog)         

  Intercept -1.734 0.035 -49.760 2.0E-16 
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  r.score 0.137 0.041 27.500 2.0E-16 

Song Scope (link=probit)         

  Intercept -1.184 0.029 -41.120 2.0E-16 

  s.score 1.155 0.056 20.720 2.0E-16 

  s.qual -8.552 0.548 -15.590 2.0E-16 

  s.score × s.qual 13.116 0.816 16.070 2.0E-16 

Kaleidoscope (link=logit)         

  Intercept -1.316 0.028 -47.770 2.0E-16 

  k.score 2.201 0.074 29.770 2.0E-16 

c) European robin Erithacus rubecula 

Variables/Interactions Estimate SE z value p 

Ensemble (link=logit)         

  Intercept -2.043 0.071 -28.797 2.0E-16 

  k.score 0.957 0.206 4.644 3.4E-06 

  m.score 2.557 0.371 6.894 5.4E-12 

  r.score 0.243 0.113 2.156 3.1E-02 

  s.qual -3.003 0.970 -3.097 2.0E-03 

  s.score -0.183 0.148 -1.230 2.2E-01 

  k.score × r.score 0.938 0.310 3.026 2.5E-03 

  k.score × s.qual -5.964 2.483 -2.402 1.6E-02 

  k.score × s.score 0.535 0.373 1.435 1.5E-01 

  m.score × s.qual -15.403 4.488 -3.432 6.0E-04 

  m.score × s.score -0.891 0.652 -1.367 1.7E-01 

  r.score × s.qual 0.772 0.402 1.922 5.5E-02 

  s.qual × s.score 4.766 1.395 3.417 6.3E-04 

  k.score × r.score × s.qual -1.995 1.024 -1.948 5.1E-02 

  k.score × s.qual × s.score 10.729 3.514 3.054 2.3E-03 

  m.score × s.qual × s.score 23.542 6.452 3.649 2.6E-04 

monitoR (link=cloglog)         

  Intercept -1.605 0.025 -63.750 2.0E-16 

  m.score 2.641 0.120 22.070 2.0E-16 

Raven (link=cloglog)         

  Intercept -1.782 0.038 -46.420 2.0E-16 

  r.score 0.785 0.052 15.210 2.0E-16 

Song Scope (link=probit)         

  Intercept -0.948 0.026 -36.821 2.0E-16 

  s.score 0.142 0.049 2.903 3.7E-03 

  s.qual -3.974 0.349 -11.387 2.0E-16 

  s.score × s.qual 6.909 0.505 13.677 2.0E-16 

Kaleidoscope (logit)         

  Intercept -1.695 0.031 -54.830 2.0E-16 

  k.score 2.233 0.080 27.830 2.0E-16 

d) Carrion crow Corvus corone 
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Variables/Interactions Estimate SE z value p 

Ensemble (link=cloglog)         

  Intercept -4.655 0.114 -40.928 2.0E-16 

  k.score 2.647 0.525 5.037 4.7E-07 

  m.score 7.400 0.683 10.835 2.0E-16 

  r.score 2.794 0.383 7.297 3.0E-13 

  s.qual 0.214 3.071 0.070 9.4E-01 

  s.score 0.970 0.385 2.521 1.2E-02 

  k.score × m.score -3.172 1.853 -1.712 8.7E-02 

  k.score × r.score 1.867 0.795 2.348 1.9E-02 

  k.score × s.score -1.385 0.847 -1.636 1.0E-01 

  m.score × r.score -5.352 1.366 -3.918 8.9E-05 

  m.score × s.qual -6.672 1.876 -3.557 3.8E-04 

  m.score × s.score 5.613 1.590 3.531 4.1E-04 

  r.score × s.qual -21.791 6.280 -3.470 5.2E-04 

  r.score × s.score -2.555 0.792 -3.225 1.3E-03 

  s.qual × s.score 0.911 5.067 0.180 8.6E-01 

  r.score × s.qual × s.score 36.838 9.897 3.722 2.0E-04 

monitoR (link=cloglog)         

  Intercept -3.910 0.066 -59.620 2.0E-16 

  m.score 9.279 0.304 30.570 2.0E-16 

Raven (link=cloglog)         

  Intercept -3.874 0.066 -58.970 2.0E-16 

  r.score 3.844 0.134 28.670 2.0E-16 

Song Scope (link=logit)         

  Intercept -3.716 0.072 -51.613 2.0E-16 

  s.score 2.183 0.202 10.828 2.0E-16 

  s.qual -13.908 1.785 -7.791 6.6E-15 

  s.score × s.qual 25.734 2.824 9.111 2.0E-16 

Kaleidoscope (link=probit)         

  Intercept -1.917 0.025 -77.920 2.0E-16 

  k.score 2.727 0.103 26.490 2.0E-16 

e) Common woodpigeon Columba palumbus 

Variables/Interactions Estimate SE z value p 

Ensemble (link=logit)         

  Intercept -4.567 0.159 -28.822 2.0E-16 

  k.score -19.411 5.038 -3.853 1.2E-04 

  m.score 7.524 0.583 12.908 2.0E-16 

  r.score 2.295 0.316 7.263 3.8E-16 

  s.qual -18.700 4.072 -4.593 4.4E-06 

  s.score 2.214 0.344 6.436 1.2E-10 

  k.score × m.score 79.473 17.336 4.584 4.6E-06 

  k.score × r.score 10.753 3.923 2.741 6.1E-03 

  k.score × s.qual -27.737 10.916 -2.541 1.1E-02 
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  k.score × s.score 42.382 8.750 4.844 1.3E-06 

  m.score × s.qual 22.699 15.934 1.425 1.5E-01 

  m.score × s.score -2.824 1.222 -2.311 2.1E-02 

  r.score × s.score -0.575 0.644 -0.892 3.7E-01 

  s.qual × s.score 36.513 7.357 4.963 6.9E-07 

  k.score × m.score × s.score 137.779 29.617 -4.652 3.3E-06 

  k.score × r.score × s.score -21.991 6.814 -3.227 1.3E-03 

  k.score × s.qual × s.score 43.279 18.752 2.308 2.1E-02 

  m.score × s.qual × s.score -45.849 28.083 -1.633 1.0E-01 

monitoR (link=cloglog)         

  Intercept -3.390 0.055 -61.400 2.0E-16 

  m.score 8.066 0.185 43.570 2.0E-16 

Raven (link=cloglog)         

  Intercept -2.813 0.047 -59.290 2.0E-16 

  r.score 3.257 0.100 32.540 2.0E-16 

Song Scope (link=logit)         

  Intercept -2.758 0.061 -45.310 2.0E-16 

  s.score 2.627 0.131 20.090 2.0E-16 

  s.qual -28.140 1.940 -14.510 2.0E-16 

  s.score × s.qual 53.001 3.475 15.250 2.0E-16 

Kaleidoscope (link=cloglog)         

  Intercept -2.023 0.027 -76.140 2.0E-16 

  k.score 4.042 0.092 44.050 2.0E-16 

 

A.4 Recogniser performance analysis  

To calculate the area under the receiver operating characteristic curve (AUC-ROC), and 

statistics based upon the ROC curve, I split the 3000 segment model test data for each 

species, along with the modelled probabilities of obtaining positive detections for each 

recogniser, by the constituent sample surveys, thus creating 60 × samples of 50 × 

observations per study species. It was not possible to calculate statistics based upon the 

ROC curve for sample surveys within which the study species was absent, as sensitivity, 

which constitutes the y-axis of the ROC curve, cannot be calculated when true positive 

(TP) and false negative (FN) detections are both equal to zero; such samples were 

excluded from the analyses. I then calculated AUC-ROC and roc01 values for all 

remaining sample surveys and all study species using the R packages ROCR (Sing, 

Sander, Beerenwinkel, & Lengauer, 2005) and cutpointr (Thiele, 2018). 
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Table A.6 Sensitivity (Sens) and false positive rate (FPR) at the minimum distance from the 

ROC curve to the point x=0, y=1 (roc01) for each recogniser and study species, and the mean 

across all study species for each recogniser. 

Species Recogniser 

  Ensemble monitoR Raven Song Scope Kaleidoscope 

  Sens FPR Sens FPR Sens FPR Sens FPR Sens FPR 

Chiffchaff 0.698 0.475 0.426 0.205 0.621 0.557 0.781 0.526 0.178 0.083 

Wren 0.744 0.394 0.631 0.321 0.755 0.444 0.870 0.591 0.546 0.264 

Robin 0.629 0.325 0.424 0.239 0.637 0.474 0.517 0.353 0.535 0.245 

Carrion Crow 0.811 0.282 0.500 0.109 0.758 0.308 0.640 0.180 0.575 0.093 

Woodpigeon 0.817 0.330 0.720 0.231 0.635 0.268 0.688 0.270 0.268 0.017 

Mean 0.7398 0.3612 0.5402 0.2210 0.6812 0.4102 0.6992 0.3840 0.4204 0.1404 

 

 

Table A.7 The minimum probability (Prob) of obtaining a positive detection at which the false 

positive rate (FPR) remains at zero for an ensemble model and the four component recognisers 

when detecting and classifying the song of five bird species within acoustic surveys made 

during the dawn chorus, and the corresponding number of true positive (TP) detections. By 

reducing the FPR to zero, this means that using the cutpoint values for Prob presented will 

produce no false positive (FP) errors (this is of key importance when these methods are used to 

detect species occurrence, which is an aim common to many surveys). Only the ensemble model 

enabled detection with no FP errors for all five study species. 

Species Ensemble   monitoR   Raven   Song Scope   Kaleidoscope 

Prob TP   Prob TP   Prob TP   Prob TP   Prob TP 

Chiffchaff 0.765 4   NA 0   NA 0   NA 0   NA 0 

Wren 0.928 16   0.676 13   NA 0   NA 0   NA 0 

Robin 0.911 3   0.550 3   NA 0   0.681 3   NA 0 

Carrion crow 0.883 8   NA 0   NA 0   0.546 3   NA 0 

Woodpigeon 0.979 6   0.742 22   NA 0   0.926 13   0.983 11 
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Appendix B 

Supporting information for chapter 6 
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B.1  Calculation of dawn chorus onset times 

 

 

Figure B.1 Comparison of dawn chorus onset times calculated by three different methods in an 

example acoustic survey taken at Abernethy on 18
th
 May 2016. Data points show the Acoustic 

Complexity Index (ACI) scores for each minute of the survey. a) Method 1 (onset.1): the curve 

is the fitted relationship, and the vertical line shows the maximum second derivative of the 

curve, which is taken to be the chorus onset time. Note that this method used scaled ACI scores; 

b) method 2 (onset.2): the chorus onset time is the minute that the ACI score reaches, or 

surpasses, 20% of the peak rolling 5-min mean in ACI scores for the survey (pink bar). The time 

of the peak is the central minute of the peak rolling 5-min mean. In method 3 (onset.3), the time 

of onset is the minute when the ACI score reaches, or surpasses, a predefined ACI score 

threshold based upon the mean peak scores during the study period (April to June) at each site 

in each year. The threshold for Abernethy in 2016 was 1886.5, which, in the example, was 

reached at 50 mins prior to sunrise.  
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Figure B.2 The relationships amongst dawn chorus onset times calculated by three different 

methods along with the corresponding Pearson’s correlation coefficient (r). 

 

Figure B.3 The relationship between the observed time of first song in a) European robin 

Erithacus rubecula, b) song thrush Turdus philomelos, c) Eurasian blackbird T. merula, and d) 

northern wren Troglodytes troglodytes and the time of dawn chorus onset as calculated by three 

different methods along with the corresponding Pearson’s correlation coefficients (r). 
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B.2  Determination of community composition 

 
Figure B.4 Principal component analysis (PCA) showing the relationship amongst study sites 

according to the total time spent singing by 13 species, that accounted for 91% of all song 

production amongst the sites, in 15 × 300 s acoustic surveys made during the dawn chorus at 

each site. Species names are abbreviated: Bl.t=blue tit; Blckb=blackbird; Blckc=blackcap; 

Chffn=chaffinch; Chiffc=chiffchaff; Cl.t=coal tit; Crr=carrion crow; Gldc=goldcrest; 

Grt.=Great tit; Robin=robin; Sng.=song thrush; Wdpg=woodpigeon. 
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B.3  Mean and variance in minimum overnight temperature 

 

Figure B.5 The (A) mean minimum overnight temperature (±SE), and (B) variance in minimum 

overnight temperature recorded by data loggers at 19 mixed deciduous woodland study sites 

between April and June (incl.) in the years 2016 and 2017 plotted against latitude. Pearson’s 

correlation coefficients (r) are shown along with the corresponding p value.  
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Appendix C 

Supporting information for chapter 8 

 

C.1 Tree measurements 

Table C.1 The canopy trees of the study site and measurements. 52 × canopy trees were 

selected within the bounds of the study area in the study site. cbh= circumference of trunk at 

breast height (1.5 m); inter-tree spacing= the distance of the tree to its nearest neighbouring 

canopy tree; * trees to which ARUs were fixed. 

Species Common name Approx. 

height (m) 

cbh (cm) Inter-tree 

spacing 

(cm) 

Acer pseudoplatanus Sycamore 22 132 2.6 

Acer pseudoplatanus Sycamore 22 133 4.4 

Acer pseudoplatanus Sycamore 22 111 3.4 

Acer pseudoplatanus Sycamore* 25 165 5.5 

Acer pseudoplatanus Sycamore 25 197 3.7 

Acer pseudoplatanus Sycamore 22 95 3.7 

Acer pseudoplatanus Sycamore 20 88 2.6 

Acer pseudoplatanus Sycamore 25 140 2.6 

Acer pseudoplatanus Sycamore 20 60 3.9 

Acer pseudoplatanus Sycamore* 20 90 5.0 

Acer pseudoplatanus Sycamore 25 170 5.1 

Acer pseudoplatanus Sycamore 20 95 5.2 

Acer pseudoplatanus Sycamore* 20 130 5.2 

Acer pseudoplatanus Sycamore 25 105 5.2 

Acer pseudoplatanus Sycamore* 25 149 2.2 

Acer pseudoplatanus Sycamore 20 128 2.2 

Acer pseudoplatanus Sycamore 25 140 2.0 

Acer pseudoplatanus Sycamore 25 180 2.0 

Acer pseudoplatanus Sycamore 22 87 4.8 

Acer pseudoplatanus Sycamore 22 130 4.4 

Acer pseudoplatanus Sycamore 22 97 4.0 

Acer pseudoplatanus Sycamore* 22 125 4.0 

Acer pseudoplatanus Sycamore 25 166 2.5 

Acer pseudoplatanus Sycamore 25 150 2.0 

Acer pseudoplatanus Sycamore* 25 200 3.2 

Acer pseudoplatanus Sycamore 25 200 3.1 

Acer pseudoplatanus Sycamore 25 155 2.5 

Acer pseudoplatanus Sycamore 15 70 2.5 

Acer pseudoplatanus Sycamore 25 193 6.5 



163 
 

Acer pseudoplatanus Sycamore 25 230 6.5 

Acer pseudoplatanus Sycamore 25 150 4.4 

Fagus sylvatica Beech* 25 177 4.0 

Fagus sylvatica Beech 25 192 NR 

Fagus sylvatica Beech 30 320 2.2 

Fagus sylvatica Beech 25 240 6.0 

Ulmus glabra Wych Elm 5.5 42 NR 

Ulmus glabra Wych Elm 20 85 3.9 

Ulmus glabra Wych Elm 10 55 2.5 

Ulmus glabra Wych Elm 20 80 2.0 

Fraxinus excelsior Ash 25 175 2.7 

Fraxinus excelsior Ash* 25 130 5.8 

Fraxinus excelsior Ash 25 190 4.5 

Quercus petraea Sessile Oak 25 194 2.2 

Quercus petraea Sessile Oak 20 44 2.0 

Quercus petraea Sessile Oak 25 200 3.1 

Alnus incana Grey Alder 15 48 2.7 

Alnus incana Grey Alder 10 50 3.1 

Alnus incana Grey Alder 25 105 5.5 

Populus × canadensis Black Poplar 30 240 5.8 

Populus × canadensis Black Poplar* 25 133 4.4 

Aesculus hippocastanum Horse Chestnut 20 130 5.2 

Aesculus hippocastanum Horse Chestnut 25 240 5.0 

Mean   22.4 141.0 3.8 
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C.2 Set-up of autonomous recording units 

Table C.2 Height of autonomous recording units (ARUs) and distance from ‘base-point’. 

Transect No. ARU no. Height (m) Distance (m) 

1 1 5 10 

  2 5 29 

  3 5 62 

  4 1.5 10 

  5 1.5 29 

  6 1.5 62 

2 7 5 10 

  8 5 23 

  9 5 52 

  10 1.5 10 

  11 1.5 23 

  12 1.5 52 

3 13 5 15 

  14 5 32 

  15 5 57 

  16 1.5 15 

  17 1.5 32 

  18 1.5 57 

 

 



165 
 

C.3 Results of generalised additive models 

 

 

Figure C.1 Results of generalised additive models (GAMs) for the effect of the number of days 

since budburst (day) on the attenuation of five test sounds of different frequency (500 Hz, 

1000 Hz, 1500 Hz, 4000 Hz and 8000 Hz) played-back through a loudspeaker at two heights 

(1.5 m and 5 m) and received by microphones at two heights (1.5 m and 5 m) within three 

distance categories in a mixed deciduous woodland in Durham, UK. The smoothed effect of day 

was varied by distance category. The automatic smoothing applied by the mgcv package in R 

(Wood, 2019) forced linear relationships to the data for each distance category. The smoothed 

effect of background noise is also shown. 
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Figure C.2 Results of generalised additive models (GAMs) for the effect of the number of days 

since budburst (day) on the attenuation of five test sounds of different frequency played-back 

through a loudspeaker at two heights (1.5 m and 5 m) and received by microphones at two 

heights (1.5 m and 5 m) within three distance categories in a mixed deciduous woodland in 

Durham, UK. The smoothed effect of day was varied by frequency. The automatic smoothing 

applied by the mgcv package in R (Wood, 2019) forced linear relationships to the data for each 

frequency, with the exception of 4000 Hz. However, the relationship with the 4000 Hz 

frequency was not significant (p=0.176). The smoothed effect of background noise was also 

included in the GAM, but is not shown here (refer to Fig. C.1). 
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C.4 Coefficients of linear model 

Table C.3 Results of linear model for the effect of factors influencing the attenuation of pure-

tone test sounds from budburst through to full-leaf in a mixed deciduous woodland 

  Estimate SE t 

Intercept 17.18 1.640 10.476 *** 

Day since budburst (Day) 0.03 0.011 2.604 ** 

Distance category (Distance) Mid 15.48 2.252 6.876 *** 

Distance category (Distance) Far 22.25 2.204 10.094 *** 

Frequency 1000 Hz -0.74 0.557 -1.327   

Frequency 1500 Hz 3.89 0.659 5.904 *** 

Frequency 4000 Hz 7.57 0.618 12.240 *** 

Frequency 8000 Hz -3.68 0.879 -4.190 *** 

Height of Loudspeaker 5 m (Loudspeaker) 1.34 0.376 3.558 *** 

Height of Microphone 5 m (Microphone) -0.74 0.463 -1.595   

Energy in background noise (dB) 

(Background) 
-0.05 0.027 -1.796 . 

Background × Distance Mid -0.10 0.038 -2.624 ** 

Background × Distance Far -0.04 0.037 -0.975   

Day × Microphone 5 m -0.04 0.016 -2.643 ** 

Distance Mid × Frequency 1000 Hz -1.22 0.628 -1.948 . 

Distance Far × Frequency 1000 Hz -1.78 0.620 -2.878 ** 

Distance Mid × Frequency 1500 Hz -5.28 0.796 -6.638 *** 

Distance Far × Frequency 1500 Hz -7.40 0.778 -9.515 *** 

Distance Mid × Frequency 4000 Hz -3.75 0.753 -4.975 *** 

Distance Far × Frequency 4000 Hz -4.13 0.735 -5.617 *** 

Distance Mid × Frequency 8000 Hz -2.18 1.158 -1.881 . 

Distance Far × Frequency 8000 Hz 0.47 1.125 0.420   

Frequency 1000 Hz × Loudspeaker 5 m -1.47 0.485 -3.038 ** 

Frequency 1500 Hz × Loudspeaker 5 m -3.12 0.485 -6.430 *** 

Frequency 4000 Hz × Loudspeaker 5 m -2.06 0.485 -4.239 *** 

Frequency 8000 Hz × Loudspeaker 5 m -2.08 0.486 -4.287 *** 

Frequency 1000 Hz × Microphone 5 m 3.91 0.485 8.072 *** 

Frequency 1500 Hz × Microphone 5 m -0.35 0.485 -0.712   

Frequency 4000 Hz × Microphone 5 m -0.44 0.485 -0.906   

Frequency 8000 Hz × Microphone 5 m 1.14 0.486 2.344 * 

Loudspeaker 5 m × Microphone 5 m 0.85 0.307 2.778 ** 

***p<0.001, **p<0.01, *p<0.05 
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