
2023 Fall Honors Algebra Exercise 7 (due on Thursday December 21)

For submission of homework, please finish the 15 True/False problems, and
choose 10 problems from the standard ones and 5 problems from the more difficult
ones. Mark the question numbers clearly.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] =
Hungerford.

7.1. True/False questions. (Only write T or F when submitting the solutions.)

(1) Let K/E/F be a tower of extensions of fields. If K/E is Galois and E/F is Galois,
then K/F is Galois.

(2) Let K/E/F be a tower of extensions of fields. If K/F is Galois, then K/E is Galois.
(3) Let K/E/F be a tower of extensions of fields. If K/F is Galois, then E/F is Galois.
(4) No quintic polynomial is solvable by radicals over Q.
(5) Every cyclic extension K over F of degree n is of the form K = F ( n

√
a) for some

a ∈ F .
(6) LetK/F be a finite Galois extension with Galois group G. LetH andH ′ be subgroups

of G that are isomorphic. Then KH is isomorphic to KH′
.

(7) Let K be an extension of Q that is contained in Q(µn) for some n, then K is Galois
over Q.

(8) If K is a union of a tower of fields K1 ⊆ K2 ⊆ · · · , each Ki finite Galois over a field
F , then K is a Galois extension of F .

(9) If L = K1K2 be a field extension of a field F with intermediate fields K1 and K2 such
that K1 ∩K2 = F , then [L : F ] = [L : K1] · [L : K2].

(10) Let K be a Galois extension of a field F , and let f(x) ∈ F [x] be an irreducible poly-
nomial. Then if f(x) splits in K[x], then the Galois group Gal(K/F ) acts transitively
on all zeros of f(x) in K.

(11) Any algebraic closure of Q(
√
2) is isomorphic to an algebraic closure of Q(

√
7).

(12) The field Q(e) is isomorphic to Q(π).
(13) Let K be a Galois extension of F with Galois group G = Gal(K/F ). An intermediate

field E is finite over F if and only if Gal(K/E) is open in Gal(K/F ).
(14) An inverse limit of compact Hausdorff space is compact and Hausdorff.
(15) A finite index subgroup of a profinite group always contains an open normal subgroup.
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7.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 7.2.1. [DF, page 595, problem 1]

Determine the Galois closure of the field Q(
√
1 +
√
2) over Q.

Problem 7.2.2. Let K be a finite normal extension of the field F . Let φ : K → K ′ be an
isomorphism of K with a field K ′ which maps F to the subfield F ′ of K ′. Prove that the
map σ 7→ φσφ−1 defines a group isomorphism Gal(K/F ) ∼= Gal(K ′/F ′).

Problem 7.2.3. [DF, page 603, problem 10]
Explain in one-sentence why Q( 3

√
2) is not a subfield of any cyclotomic field over Q.

Problem 7.2.4. Determine all subfields of Q(ζ8) over Q and their corresponding group under
Galois theory.

Problem 7.2.5. [A, page 583, problem 1]
Let K be a Galois extension of F whose Galois group is the symmetric group S4. What

numbers occur as degrees of elements of K over F?

Problem 7.2.6. Let q denote a power of a prime p. Show that the extension Fq(t
1/n)

over Fq(t) is Galois if and only if q ≡ 1 mod n. In this case, describe the Galois group
Gal(Fq(t

1/n)/Fq(t)) and its action on t1/n.

Problem 7.2.7. [DF, page 603, problem 10]
Prove that Q( 3

√
2) is not a subfield of any cyclotomic field over Q.

Problem 7.2.8. Let G be a Hausdorff topological group and H a closed subgroup. Let
π : G→ G/H denote the quotient map. Show that G/H admits a natural topology so that a
subset U of G/H is open if and only if π−1(U) is open. Prove that this topology is Hausdorff.

Problem 7.2.9. (an explicit version of above) Let G be a profinite group and let H be a
closed normal subgroup. Prove that for any open normal subgroup N of G, the image of
H → G/N denoted by HN is a normal subgroup of G/N . Now if N ⊆ N ′ is an inclusion of
open normal subgroups of G, then HN → HN ′ is surjective. Show that

H ∼= lim←−
N▷G open normal

HN .
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7.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 7.3.1. [DF, page 582, problem 14]

Show that Q(
√

2 +
√
2) is a Galois extension of Q and determine its Galois group (over

Q).

Problem 7.3.2. [DF, page 582, problem 16]

(1) Prove that x4 − 2x2 − 2 is irreducible over Q.
(2) Show that the roots of this quartic are

α1 =

√
1 +
√
3, α2 =

√
1−
√
3, α3 = −

√
1 +
√
3, α4 = −

√
1−
√
3.

(3) Let K1 = Q(α1) and K2 = Q(α2). Show that K1 ̸= K2 and K1 ∩K2 = Q(
√
3) =: F .

(4) Prove that K1, K2 and K1K2 are Galois over F with Gal(K1K2/F ) the Klein 4-group.
Write out the elements of Gal(K1K2/F ) explicitly. Determine all the subgroups of
the Galois group and give their corresponding fixed subfields of K1K2 containing F .

(5) Prove that the splitting field of x4−2x2−2 over Q is of degree 8 with dihedral Galois
group

Problem 7.3.3. Let K/F be a finite Galois extension with Galois group G, and let H be a
subgroup and E := KH .

(1) Show that every automorphism E fixing F can be extended to an automorphism K.
(Explain how extension of embeddings into normal closure is used here.)

(2) Let N denote the subgroup of Gal(K/F ) that stabilizes E. Show that there is a
surjective map N → AutF (E) can compute its kernel.

(3) Show that N is the normalizer of H inside G and thus AutF (K) is isomorphic to
NG(H)/H.

Problem 7.3.4 (Artin–Schreier extensions). Let F be a field of characteristic p > 0. For
each element a ∈ F , show that either xp− x− a is irreducible or it splits completely in F [x].
Moreover, show that in the former case, adjoining a zero β of xp − x − a, F (β) is a finite
Galois extension of F . Describe explicitly the elements in Gal(F (β)/F ).

Challenge: Show that if F has characteristic p, then all degree p cyclic extension of F is
to adjoin a zero of xp − x− a for some a ∈ F .

Problem 7.3.5. [DF, page 595, problem 4]
Let f(x) ∈ F [x] be an irreducible polynomial of degree n over the field F , let L be the

splitting field of f(x) over F and let α be a root of f(x) in L. If K is any Galois extension of
F , show that the polynomial f(x) splits into a product of m irreducible polynomials each of
degree d overK, where d = [K(α) : K] = [(L∩K)(α) : L∩K] andm = n/d = [F (α)∩K : F ].

Problem 7.3.6. [DF, page 596, problem 5]
Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois

group is a p-group (i.e., the degree [K : F ] is a power of p). Such an extension is called a
p-extension (note that p-extensions are Galois by definition).

(1) Let L be a p-extension ofK. Prove that the Galois closure of L over F is a p-extension
of F .

(2) Give an example to show that (1) need not hold if [K : F ] is a power of p but K/F
is not Galois.
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Problem 7.3.7. [DN, page 298, problem 5]
Let p1, . . . , pr be r different prime numbers. Determine the Galois group ofK = Q(

√
p1, . . . ,

√
pr)

over Q.

Problem 7.3.8. [DN, page 298, problem 10]
Let F = Fp(u). Let K denote the splitting field of f(x) = x2p + uxp + u over F . (Why is

this polynomial irreducible?)
(1) Determine the Galois group Gal(K/F ) (in this case, it means an automorphism of K

that is identity on F ).
(2) Determine the fixed field of K under the action of Gal(K/F ).
(3) Determine the separable closure of F inside K.

Problem 7.3.9. [DN, page 301, problem 30]
Let f(x) ∈ Q[x] be a polynomial of degree n (n > 4) and the splitting field E of f(x) has

Galois group Sn over Q. Let α be a zero of f(x) in E.

(1) Prove that the only automorphism of Q(α) that fixes Q is the identity, and [Q(α) :
Q] = n.

(2) For any other root β of f(x), show that there are precisely (n − 1)! elements in
Gal(E/Q) that takes α to β.

Problem 7.3.10. [A, page 575, problem 18]
(1) Let f(x) be an irreducible separable polynomial over a field F , and let K be the

splitting field of f(x). Show that Gal(K/F ) is a subgroup of Sn. (The action on the roots of
f(x) defines such a homomorphism.)

(2) If f(x) = x4 + bx2 + c ∈ F [x], show that Gal(K/F ) is a subgroup of D4.

Problem 7.3.11. [A, page 578, problem 11]
Let K/F be a Galois extension whose Galois group is the symmetric group S3. Is it true

that K is the splitting field of an irreducible cubic polynomial over F?

Problem 7.3.12. [A, page 582, problem 9]
Let p be a prime, and let a be a rational number which is not a pth power. Let K be the

splitting field of the polynomial xp − a over Q.

(1) Prove that K is generated over Q by a pth root α of a and a primitive pth root ζ of
unity.

(2) Prove that [K : Q] = p(p− 1). (Think about how to write the answer rigorously.)
(3) Prove that the Galois group of K/Q is isomorphic to the semi-direct product Zp ⋊

(Z/pZ)×, or more explicitly the group of invertible matrices with values in Fp of the
form

(
a b
1

)
. Describe the actions of

(
a
1

)
and

(
1 b
1

)
, respectively.

Problem 7.3.13. [DF, page 653, problem 7]
Let F4 be the field with 4 elements, t a transcendental over F4, and F = F4(t

4 + t) and
K = F4(t).

(1) Show that [K : F ] = 4.
(2) Show that K is separable over F .
(3) Show that K is Galois over F .
(4) Describe the lattice of subgroups of the Galois group and the corresponding lattice of

subfields of K, giving each subfield in the form F4(r), for some rational function r(t).
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Problem 7.3.14. [DF, page 638, problem 17]
Let D ∈ Z be a squarefree integer and let a ∈ Q be a nonzero rational number. Show that

Q(
√
a
√
D) cannot be a cyclic extension of degree 4 over Q.

Problem 7.3.15. [DF, page 617, problem 8]
Determine the Galois group of x4 + 2x2 + x+ 3.

Problem 7.3.16. Determine the Galois group of x3 + x− 1.

Problem 7.3.17. LetK/F be a Galois extension with Galois groupG = Gal(K/F ). Suppose
that H is a closed normal subgroup of G. Then KH is a Galois extension of F . Conversely, if
E is an intermediate field of K/F such that E is normal over F , then Gal(K/E) is a closed
normal subgroup.

Problem 7.3.18. [DF, page 645]
Let k be a field. Prove that automorphisms of the rational function field k(t) which fix k

are precisely the fractional linear transformations determined by t 7→ at+b
ct+d

for a, b, c, d ∈ k,

ad− bc ̸= 0 (so f(t) ∈ k(t) maps to f(at+b
ct+d

)).

The automorphism group Aut(k(x)/k) ∼= PGL2(k) := GL2(k)/k
×. Here GL2(k) is the

group of 2× 2 invertible matrices, and k× denotes the subgroup of scalar matrices.

Problem 7.3.19. [DF, page 567, problem 8] and [DN, page 298, problem 10]
Let k be a field.
(1) Determine the fixed field of the automorphism t 7→ t+ 1 of k(t).
(2) Prove that the automorphism group of F2(t) is isomorphic to S3, and its fixed field is

F2(u) with

u =
(t4 − t)3

(t2 − t)5
=

(t2 + t+ 1)3

(t2 − t)2

Problem 7.3.20. Let t be transcendental over F3, let K = F3(t), let G = Aut(K/F3)
(namely the group of automorphisms of K that is identity on F3). Let F be the fixed field
of G.

(a) Prove that G ∼= S4 and deduce that there is a unique field E with F ⊂ E ⊂ K and
[E : F ] = 2. [Recall that G ∼= PGL2(F3) from Problem 7.3.18; show that PGL2(F3)
permutes the 4 lines in a 2-dimensional vector space over F3 and the kernel of this
permutation representation is the scalar matrices.]
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(b) Complete the description of the lattice of subfields of K containing E:

K = Fp(t)

∗∗ E
(

t2+1
t+1

)
∗∗

E(t3 − t) ∗∗ ∗∗ E
(

t2+t
(t−1)3

)

∗∗

E
(

(t6+t4+t2+1)2

(t3+t)3

)
.

Give each subfield in the form E(r) for some rational function r.

Problem 7.3.21. Let K be a subfield of C maximal with respect to the property that√
2 /∈ K.

(a) Show such a field K exists.
(b) Show that C is algebraic over K.
(c) Prove that every finite extension of K in C is Galois with Galois group a cyclic

2-group.
(d) Deduce that [C : K] is countable (and not finite).
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7.4. More difficult questions. (Please choose 5 problems from the following questions) I
strongly recommend trying out Problem 7.4.1.

Problem 7.4.1 (Riemann zeta function for Fp[t]). Let us first recall that Riemann zeta
function is

ζZ(s) =
∑
n≥1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1.

Its functional equation takes the following form:

Λ(s) = Λ(2− s), where Λ(s) = π−s/2Γ(s/2) · ζZ(s).
Maybe an appropriate way to think of this is: π−s/2Γ(s/2) is the “L-factor at ∞”, so that
when putting this in, the functional equation “looks nicer”. (Don’t worry too much of this
for now; read on.)

Our goal is to understand the Riemann zeta function for Fp[t], where p is a prime number.
The analogy goes as follows.{

positive integers n in Z
} {

monic polynomials f(t) in Fp[t]
}

{
prime ideals (p) in Z

} {
prime ideals p(t) in Fp[t]

}
{
prime numbers p

} {
monic irreducible polynomials p(t)

}
value n−s =

(
# Z

(n)

)−s (
# Fp[t]

(f(t))

)−s
= p−deg f(x)s

ζZ(s) =
∑
n≥1

1
ns =

∏
p prime

1
1−p−s ζFp[t](s) =

∑
monic poly f(x)

1
pdeg f ·s =

∏
monic irred p(t)

1
1−p− deg p(t)·s .

The L-factor at ∞ for Fp[t] is different from the case of Z, this is because we can view the
point really as the “infinity” point of P1; so the “L-factor at infinity” is 1

1−p−s . We also put

ΛFp[t](s) = ζFp[t](s) ·
1

1− p−s
.

Compute explicitly ζFp[t](s) and ΛFp[t](s), and prove the corresponding functional equation.
(In fact, ζFp[t](s) is a rational function in p−s.) This is a very very special case of so-called
Weil conjecture, an analogue of the Riemann zeta function for function fields.

Problem 7.4.2. [Yau contest 2017]
Let p be a prime number and let K = Fp(T ) be the field of rational functions over Fp.

Consider the polynomials

f(X) = Xp − TX − T, g(X) = Xp−1 − T.

(1) Show that f and g are irreducible and separable over K.
(2) Let M be the splitting field of g over K. Show that Gal(M/K) is isomorphic to F×

p .
(3) Let L be the splitting field of f over K. Show that g splits in L and Gal(L/K) is

isomorphic to the semidirect product G = Fp ⋊ F×
p , where F×

p acts on Fp by homotheties.

Problem 7.4.3. Recall our group theoretical statement: if H1 and H2 are normal subgroups
of a group G such that H1 ∩H2 = {1}, then G ∼= H1 ×H2.
Let L be a finite extension of F (as an ambient big fields so that the intersection below

makes sense. Let K1 and K2 be intermediate fields that are finite Galois extensions of a field
F .
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• Then the intersection K1 ∩K2 is Galois over F .
• The compositeK1K2 is Galois over F . The Galois group is isomorphic to the subgroup

H = {(σ, τ) | σ|K1∩K2 = τ |K1∩K2}
of the direct product Gal(K1/F )×Gal(K2/F ) consisting of elements whose restriction
to K1 ∩K2 are equal.
• In the special case that F = K1 ∩K2, show that this implies that

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).

(This is Proposition 21 on page 592 of [DF]. But I recommend you try to prove the
statement on yourself first.)

Problem 7.4.4. Show that there is no automorphism of R that fixes Q.
(Some list of steps can be found on page 567, problem 7 of [DF]. But you should be able

to work that out on your own.)

Problem 7.4.5. [DF, page 584, problem 27]

Let α =
√

(2 +
√
2)(3 +

√
3) and consider the extension E = Q(α).

(1) Show that α = (2 +
√
2)(3 +

√
3) is not a square in F = Q(

√
2,
√
3).

(2) Conclude from (1) that [E : Q] = 8. Prove that the roots of the minimal polynomial

over Q for α are 8 elements ±
√

(2±
√
2)(3±

√
3)

(3) Let β =
√

(2−
√
2)(3 +

√
3). Show that αβ ∈ F . And make similar arguments to

show that E is Galois over Q. Show moreover that the Galois group is determined
by mapping α to one of the 8 elements in (2).

(4) Let σ ∈ Gal(E/Q) be the automorphism that sends α to β. Show that σ has order 4
in Gal(E/Q).

(5) Show that Gal(E/Q) ∼= Q8, the quaternion group of order 8.

(Some hints might be found on page 584 of [DF])

Problem 7.4.6. Show that if H is a subgroup of a group G of index n, then the normal
subgroup

N :=
⋂
g∈G

gHg−1 ⊆ G

has index ≤ n!
(I agree that this is a group theory question. But let me explain why I think this is correct

using Galois theory: suppose that we are in the situation that K/F is a Galois extension of
fields with Galois group G, and then E := KH is a subfield such that [E : F ] = n. From

this, we see that g(E) = KgHg−1
are conjugates of E. By Galois theory, KN is the composite

of all g(E) for every g ∈ Gal(K/F ); it is the normal closure of E over F . We have shown in
class that the normal closure of a finite extension E/F of degree n has at most degree ≤ n!.
This would imply that [G : N ] ≤ n!, at least when these groups can be realized as Galois
groups. Interesting exercise: can you prove the purely group theoretic statement? Or can
you “explain” how your argument relates to the Galois theory argument I just give?)

Problem 7.4.7. [A, page 584, problem 10]
Let K be a finite extension of a field F , and let f(x) ∈ K[x]. Prove that there exists a

nonzero polynomial g(x) ∈ K[x] such that f(x)g(x) ∈ F [x].
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Problem 7.4.8. What do finite order elements in SL2(Q) look like? (Hint: look at the
eigenvalues of these matrices.)

Problem 7.4.9. [Yau contest 2010]
For a positive integer a, consider the polynomial

fa = x6 + 3ax4 + 3x3 + 3ax2 + 1.

Show that it is irreducible. Let F be the splitting field of fa. Show that its Galois group is
solvable.

Problem 7.4.10. [H, page 278, problem 14]
Here is a method for constructing a polynomial f(x) ∈ Q[x] with Galois group Sn for a

given n > 3. It depends on the fact that there exist irreducible polynomials of every degree
in Fp[x] for every prime p. First choose monic polynomials f1, f2, f3 ∈ Z[x] such that

(i) deg f2 = n and f̄2 ∈ F2[x] is irreducible.
(ii) deg f3 = n and f̄3 ∈ F3[x] factors in F3[x] as gh with g irreducible of degree n− 1 and

h linear.
(iii) deg f5 = n and f̄5 ∈ F5[x] factors as gh or gh1h2 with g irreducible quadratic in F5[x]

and h, h1, h2 irreducible polynomials of odd degree in F5[x].

(1) Let f = −15f2 + 10f3 + 6f5 (so that it is monic and f ≡ f2 mod 2, f ≡ f3 mod 3,
and f ≡ f5 mod 5). Let K be the splitting field of f(x) over Q and G := Gal(K/Q).
Show that G acts transitively on the roots of f . (Use f2.)

(2) Show that G contains a cycle of the type (i1i2 · · · in−1) and element σλ where σ is a
transposition and λ is a product of cycles of odd order.

(3) Show that σ ∈ G and thus (ikin) ∈ G for some k ∈ {1, . . . , n− 1}.
(4) Deduce that G = Sn.

Problem 7.4.11 (Classical Gauss sum). [DF, page 637, problem 11]
Let K = Q(ζp) be the cyclotomic field of pth roots of unity for the odd prime p, viewed as

a subfield of C, and let G = Gal(K/Q). Let H denote the subgroup of index 2 in the cyclic
group G. Define

η0 =
∑
τ∈H

τ(ζp), η1 =
∑
τ∈σH

τ(ζp),

where σ is a generator of Gal(K/Q) (the two periods of ζp with respect to H, i.e., the sum
of the conjugates of ζp with respect to the two cosets of H in G).

(1) Prove that σ(η0) = η1, σ(η1) = η0 and that

η0 =
∑

a=square

ζap , η0 =
∑

b̸=square

ζbp,

where the sums are over the squares and nonsquares (respectively) in (Z/pZ)×.
(2) Prove that η0 + η1 = −1.
(3) Let g =

∑i−1
i=0 ζ

i2

p (the classical Gauss sum). Prove that

g =

p−2∑
i=0

(−1)iσi(ζp).

(4) Prove that τ(g) = g if τ ∈ H and τ(g) = −g if τ /∈ H. Conclude in particular that
[Q(g) : Q] = 2. Recall that complex conjugation is the automorphism σ−1 on K.
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Conclude that ḡ = g if −1 is a square mod p (i.e., if p ≡ 1 mod 4) and ḡ = −g if −1
is not a square mod p (i.e., if p ≡ 3 mod 4) where ḡ denotes the complex conjugate
of g.

(5) Prove that ḡg = p.

(6) Conclude that g2 = (−1)(p−1)/2p and that Q(
√

(−1)(p−1)/2p) is the unique quadratic
subfield of Q(ζp).

Problem 7.4.12. [Alibaba 2021]

Find all real numbers of the form p
√

2021 + q
√
a that can be expressed as a linear combi-

nation of roots of unity with rational coefficients, where

• p and q are (possibly the same) prime numbers, and
• a > 1 is an integer, which is not a qth power.
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