2023 Fall Honors Algebra Exercise 7 (due on Thursday December 21)

For submission of homework, please finish the 15 True/False problems, and choose 10 problems from the standard ones and 5 problems from the more difficult ones. Mark the question numbers clearly.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] = Hungerford.

7.1. True/False questions. (Only write T or F when submitting the solutions.)

- (1) Let K/E/F be a tower of extensions of fields. If K/E is Galois and E/F is Galois, then K/F is Galois.
- (2) Let K/E/F be a tower of extensions of fields. If K/F is Galois, then K/E is Galois.
- (3) Let K/E/F be a tower of extensions of fields. If K/F is Galois, then E/F is Galois.
- (4) No quintic polynomial is solvable by radicals over \mathbb{Q} .
- (5) Every cyclic extension K over F of degree n is of the form $K = F(\sqrt[n]{a})$ for some $a \in F$.
- (6) Let K/F be a finite Galois extension with Galois group G. Let H and H' be subgroups of G that are isomorphic. Then K^H is isomorphic to $K^{H'}$.
- (7) Let K be an extension of \mathbb{Q} that is contained in $\mathbb{Q}(\mu_n)$ for some n, then K is Galois over \mathbb{Q} .
- (8) If K is a union of a tower of fields $K_1 \subseteq K_2 \subseteq \cdots$, each K_i finite Galois over a field F, then K is a Galois extension of F.
- (9) If $L = K_1 K_2$ be a field extension of a field F with intermediate fields K_1 and K_2 such that $K_1 \cap K_2 = F$, then $[L:F] = [L:K_1] \cdot [L:K_2]$.
- (10) Let K be a Galois extension of a field F, and let $f(x) \in F[x]$ be an irreducible polynomial. Then if f(x) splits in K[x], then the Galois group $\operatorname{Gal}(K/F)$ acts transitively on all zeros of f(x) in K.
- (11) Any algebraic closure of $\mathbb{Q}(\sqrt{2})$ is isomorphic to an algebraic closure of $\mathbb{Q}(\sqrt{7})$.
- (12) The field $\mathbb{Q}(e)$ is isomorphic to $\mathbb{Q}(\pi)$.
- (13) Let K be a Galois extension of F with Galois group G = Gal(K/F). An intermediate field E is finite over F if and only if Gal(K/E) is open in Gal(K/F).
- (14) An inverse limit of compact Hausdorff space is compact and Hausdorff.
- (15) A finite index subgroup of a profinite group always contains an open normal subgroup.

7.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 7.2.1. [DF, page 595, problem 1]

Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q} .

Problem 7.2.2. Let K be a finite normal extension of the field F. Let $\varphi : K \to K'$ be an isomorphism of K with a field K' which maps F to the subfield F' of K'. Prove that the map $\sigma \mapsto \varphi \sigma \varphi^{-1}$ defines a group isomorphism $\operatorname{Gal}(K/F) \cong \operatorname{Gal}(K'/F')$.

Problem 7.2.3. [DF, page 603, problem 10]

Explain in one-sentence why $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

Problem 7.2.4. Determine all subfields of $\mathbb{Q}(\zeta_8)$ over \mathbb{Q} and their corresponding group under Galois theory.

Problem 7.2.5. [A, page 583, problem 1]

Let K be a Galois extension of F whose Galois group is the symmetric group S_4 . What numbers occur as degrees of elements of K over F?

Problem 7.2.6. Let q denote a power of a prime p. Show that the extension $\mathbb{F}_q(t^{1/n})$ over $\mathbb{F}_q(t)$ is Galois if and only if $q \equiv 1 \mod n$. In this case, describe the Galois group $\operatorname{Gal}(\mathbb{F}_q(t^{1/n})/\mathbb{F}_q(t))$ and its action on $t^{1/n}$.

Problem 7.2.7. [DF, page 603, problem 10]

Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

Problem 7.2.8. Let G be a Hausdorff topological group and H a closed subgroup. Let $\pi: G \to G/H$ denote the quotient map. Show that G/H admits a natural topology so that a subset U of G/H is open if and only if $\pi^{-1}(U)$ is open. Prove that this topology is Hausdorff.

Problem 7.2.9. (an explicit version of above) Let G be a profinite group and let H be a closed normal subgroup. Prove that for any open normal subgroup N of G, the image of $H \to G/N$ denoted by H_N is a normal subgroup of G/N. Now if $N \subseteq N'$ is an inclusion of open normal subgroups of G, then $H_N \to H_{N'}$ is surjective. Show that

$$H \cong \varprojlim_{N \rhd G \text{ open normal}} H_N.$$

7.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 7.3.1. [DF, page 582, problem 14]

Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and determine its Galois group (over \mathbb{Q}).

Problem 7.3.2. [DF, page 582, problem 16]

- (1) Prove that $x^4 2x^2 2$ is irreducible over \mathbb{Q} .
- (2) Show that the roots of this quartic are

$$\alpha_1 = \sqrt{1 + \sqrt{3}}, \quad \alpha_2 = \sqrt{1 - \sqrt{3}}, \quad \alpha_3 = -\sqrt{1 + \sqrt{3}}, \quad \alpha_4 = -\sqrt{1 - \sqrt{3}}$$

- (3) Let $K_1 = \mathbb{Q}(\alpha_1)$ and $K_2 = \mathbb{Q}(\alpha_2)$. Show that $K_1 \neq K_2$ and $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) =: F$.
- (4) Prove that K_1, K_2 and K_1K_2 are Galois over F with $\text{Gal}(K_1K_2/F)$ the Klein 4-group. Write out the elements of $Gal(K_1K_2/F)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of K_1K_2 containing F.
- (5) Prove that the splitting field of $x^4 2x^2 2$ over \mathbb{Q} is of degree 8 with dihedral Galois group

Problem 7.3.3. Let K/F be a finite Galois extension with Galois group G, and let H be a subgroup and $E := K^H$.

- (1) Show that every automorphism E fixing F can be extended to an automorphism K. (Explain how extension of embeddings into normal closure is used here.)
- (2) Let N denote the subgroup of $\operatorname{Gal}(K/F)$ that stabilizes E. Show that there is a surjective map $N \to \operatorname{Aut}_F(E)$ can compute its kernel.
- (3) Show that N is the normalizer of H inside G and thus $\operatorname{Aut}_F(K)$ is isomorphic to $N_G(H)/H$.

Problem 7.3.4 (Artin–Schreier extensions). Let F be a field of characteristic p > 0. For each element $a \in F$, show that either $x^p - x - a$ is irreducible or it splits completely in F[x]. Moreover, show that in the former case, adjoining a zero β of $x^p - x - a$, $F(\beta)$ is a finite Galois extension of F. Describe explicitly the elements in $\text{Gal}(F(\beta)/F)$.

Challenge: Show that if F has characteristic p, then all degree p cyclic extension of F is to adjoin a zero of $x^p - x - a$ for some $a \in F$.

Problem 7.3.5. [DF, page 595, problem 4]

Let $f(x) \in F[x]$ be an irreducible polynomial of degree n over the field F, let L be the splitting field of f(x) over F and let α be a root of f(x) in L. If K is any Galois extension of F, show that the polynomial f(x) splits into a product of m irreducible polynomials each of degree d over K, where $d = [K(\alpha) : K] = [(L \cap K)(\alpha) : L \cap K]$ and $m = n/d = [F(\alpha) \cap K : F]$.

Problem 7.3.6. [DF, page 596, problem 5]

Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e., the degree [K : F] is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).

- (1) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
- (2) Give an example to show that (1) need not hold if [K : F] is a power of p but K/F is not Galois.

Problem 7.3.7. [DN, page 298, problem 5]

Let p_1, \ldots, p_r be *r* different prime numbers. Determine the Galois group of $K = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_r})$ over \mathbb{Q} .

Problem 7.3.8. [DN, page 298, problem 10]

Let $F = \mathbb{F}_p(u)$. Let K denote the splitting field of $f(x) = x^{2p} + ux^p + u$ over F. (Why is this polynomial irreducible?)

(1) Determine the Galois group $\operatorname{Gal}(K/F)$ (in this case, it means an automorphism of K that is identity on F).

- (2) Determine the fixed field of K under the action of Gal(K/F).
- (3) Determine the separable closure of F inside K.

Problem 7.3.9. [DN, page 301, problem 30]

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n \ (n > 4)$ and the splitting field E of f(x) has Galois group S_n over \mathbb{Q} . Let α be a zero of f(x) in E.

- (1) Prove that the only automorphism of $\mathbb{Q}(\alpha)$ that fixes \mathbb{Q} is the identity, and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = n$.
- (2) For any other root β of f(x), show that there are precisely (n-1)! elements in $\operatorname{Gal}(E/\mathbb{Q})$ that takes α to β .

Problem 7.3.10. [A, page 575, problem 18]

(1) Let f(x) be an irreducible separable polynomial over a field F, and let K be the splitting field of f(x). Show that $\operatorname{Gal}(K/F)$ is a subgroup of S_n . (The action on the roots of f(x) defines such a homomorphism.)

(2) If $f(x) = x^4 + bx^2 + c \in F[x]$, show that $\operatorname{Gal}(K/F)$ is a subgroup of D_4 .

Problem 7.3.11. [A, page 578, problem 11]

Let K/F be a Galois extension whose Galois group is the symmetric group S_3 . Is it true that K is the splitting field of an irreducible cubic polynomial over F?

Problem 7.3.12. [A, page 582, problem 9]

Let p be a prime, and let a be a rational number which is not a pth power. Let K be the splitting field of the polynomial $x^p - a$ over \mathbb{Q} .

- (1) Prove that K is generated over \mathbb{Q} by a *p*th root α of a and a primitive *p*th root ζ of unity.
- (2) Prove that $[K:\mathbb{Q}] = p(p-1)$. (Think about how to write the answer rigorously.)
- (3) Prove that the Galois group of K/\mathbb{Q} is isomorphic to the semi-direct product $Z_p \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$, or more explicitly the group of invertible matrices with values in \mathbb{F}_p of the form $\begin{pmatrix} a & b \\ 1 \end{pmatrix}$. Describe the actions of $\begin{pmatrix} a \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & b \\ 1 \end{pmatrix}$, respectively.

Problem 7.3.13. [DF, page 653, problem 7]

Let \mathbb{F}_4 be the field with 4 elements, t a transcendental over \mathbb{F}_4 , and $F = \mathbb{F}_4(t^4 + t)$ and $K = \mathbb{F}_4(t)$.

- (1) Show that [K : F] = 4.
- (2) Show that K is separable over F.
- (3) Show that K is Galois over F.
- (4) Describe the lattice of subgroups of the Galois group and the corresponding lattice of subfields of K, giving each subfield in the form $\mathbb{F}_4(r)$, for some rational function r(t).

Problem 7.3.14. [DF, page 638, problem 17]

Let $D \in \mathbb{Z}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Show that $\mathbb{Q}(\sqrt{a\sqrt{D}})$ cannot be a cyclic extension of degree 4 over \mathbb{Q} .

Problem 7.3.15. [DF, page 617, problem 8] Determine the Galois group of $x^4 + 2x^2 + x + 3$.

Problem 7.3.16. Determine the Galois group of $x^3 + x - 1$.

Problem 7.3.17. Let K/F be a Galois extension with Galois group G = Gal(K/F). Suppose that H is a *closed* normal subgroup of G. Then K^H is a Galois extension of F. Conversely, if E is an intermediate field of K/F such that E is normal over F, then Gal(K/E) is a closed normal subgroup.

Problem 7.3.18. [DF, page 645]

Let k be a field. Prove that automorphisms of the rational function field k(t) which fix k are precisely the fractional linear transformations determined by $t \mapsto \frac{at+b}{ct+d}$ for $a, b, c, d \in k$, $ad - bc \neq 0$ (so $f(t) \in k(t)$ maps to $f(\frac{at+b}{ct+d})$).

The automorphism group $\operatorname{Aut}(k(x)/k) \cong \operatorname{PGL}_2(k) := \operatorname{GL}_2(k)/k^{\times}$. Here $\operatorname{GL}_2(k)$ is the group of 2×2 invertible matrices, and k^{\times} denotes the subgroup of scalar matrices.

Problem 7.3.19. [DF, page 567, problem 8] and [DN, page 298, problem 10]

Let k be a field.

(1) Determine the fixed field of the automorphism $t \mapsto t + 1$ of k(t).

(2) Prove that the automorphism group of $\mathbb{F}_2(t)$ is isomorphic to S_3 , and its fixed field is $\mathbb{F}_2(u)$ with

$$u = \frac{(t^4 - t)^3}{(t^2 - t)^5} = \frac{(t^2 + t + 1)^3}{(t^2 - t)^2}$$

Problem 7.3.20. Let t be transcendental over \mathbb{F}_3 , let $K = \mathbb{F}_3(t)$, let $G = \operatorname{Aut}(K/\mathbb{F}_3)$ (namely the group of automorphisms of K that is identity on \mathbb{F}_3). Let F be the fixed field of G.

(a) Prove that $G \cong S_4$ and deduce that there is a unique field E with $F \subset E \subset K$ and [E:F] = 2. [Recall that $G \cong \text{PGL}_2(\mathbb{F}_3)$ from Problem 7.3.18; show that $\text{PGL}_2(\mathbb{F}_3)$ permutes the 4 lines in a 2-dimensional vector space over \mathbb{F}_3 and the kernel of this permutation representation is the scalar matrices.]

(b) Complete the description of the lattice of subfields of K containing E:

Give each subfield in the form E(r) for some rational function r.

Problem 7.3.21. Let K be a subfield of \mathbb{C} maximal with respect to the property that $\sqrt{2} \notin K$.

- (a) Show such a field K exists.
- (b) Show that \mathbb{C} is algebraic over K.
- (c) Prove that every finite extension of K in $\mathbb C$ is Galois with Galois group a cyclic 2-group.
- (d) Deduce that $[\mathbb{C}:K]$ is countable (and not finite).

7.4. More difficult questions. (Please choose 5 problems from the following questions) I strongly recommend trying out Problem 7.4.1.

Problem 7.4.1 (Riemann zeta function for $\mathbb{F}_p[t]$). Let us first recall that Riemann zeta function is

$$\zeta_{\mathbb{Z}}(s) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \qquad \operatorname{Re}(s) > 1.$$

Its functional equation takes the following form:

$$\Lambda(s) = \Lambda(2-s),$$
 where $\Lambda(s) = \pi^{-s/2} \Gamma(s/2) \cdot \zeta_{\mathbb{Z}}(s).$

Maybe an appropriate way to think of this is: $\pi^{-s/2}\Gamma(s/2)$ is the "L-factor at ∞ ", so that when putting this in, the functional equation "looks nicer". (Don't worry too much of this for now; read on.)

Our goal is to understand the Riemann zeta function for $\mathbb{F}_p[t]$, where p is a prime number. The analogy goes as follows.

 $\{ \text{positive integers } n \text{ in } \mathbb{Z} \} \longleftrightarrow \{ \text{monic polynomials } f(t) \text{ in } \mathbb{F}_p[t] \}$ $\{ \text{prime ideals } (p) \text{ in } \mathbb{Z} \} \longleftrightarrow \{ \text{prime ideals } p(t) \text{ in } \mathbb{F}_p[t] \}$ $\{ \text{prime numbers } p \} \longleftrightarrow \{ \text{monic irreducible polynomials } p(t) \}$ $\text{value } n^{-s} = \left(\# \frac{\mathbb{Z}}{(n)} \right)^{-s} \longleftrightarrow \left(\# \frac{\mathbb{F}_p[t]}{(f(t))} \right)^{-s} = p^{-\deg f(x)s}$ $\zeta_{\mathbb{Z}}(s) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime } 1-p^{-s}} \longleftrightarrow \zeta_{\mathbb{F}_p[t]}(s) = \sum_{\text{monic poly } f(x)} \frac{1}{p^{\deg f \cdot s}} = \prod_{\text{monic irred } p(t)} \frac{1}{1-p^{-\deg p(t) \cdot s}}.$

The L-factor at ∞ for $\mathbb{F}_p[t]$ is different from the case of \mathbb{Z} , this is because we can view the point really as the "infinity" point of \mathbb{P}^1 ; so the "L-factor at infinity" is $\frac{1}{1-p^{-s}}$. We also put

$$\Lambda_{\mathbb{F}_p[t]}(s) = \zeta_{\mathbb{F}_p[t]}(s) \cdot \frac{1}{1 - p^{-s}}.$$

Compute explicitly $\zeta_{\mathbb{F}_p[t]}(s)$ and $\Lambda_{\mathbb{F}_p[t]}(s)$, and prove the corresponding functional equation. (In fact, $\zeta_{\mathbb{F}_p[t]}(s)$ is a rational function in p^{-s} .) This is a very very special case of so-called Weil conjecture, an analogue of the Riemann zeta function for function fields.

Problem 7.4.2. [Yau contest 2017]

Let p be a prime number and let $K = \mathbb{F}_p(T)$ be the field of rational functions over \mathbb{F}_p . Consider the polynomials

$$f(X) = X^p - TX - T, \quad g(X) = X^{p-1} - T.$$

(1) Show that f and g are irreducible and separable over K.

(2) Let M be the splitting field of g over K. Show that $\operatorname{Gal}(M/K)$ is isomorphic to \mathbb{F}_p^{\times} .

(3) Let L be the splitting field of f over K. Show that g splits in L and $\operatorname{Gal}(L/K)$ is isomorphic to the semidirect product $G = \mathbb{F}_p \rtimes \mathbb{F}_p^{\times}$, where \mathbb{F}_p^{\times} acts on \mathbb{F}_p by homotheties.

Problem 7.4.3. Recall our group theoretical statement: if H_1 and H_2 are normal subgroups of a group G such that $H_1 \cap H_2 = \{1\}$, then $G \cong H_1 \times H_2$.

Let L be a finite extension of F (as an ambient big fields so that the intersection below makes sense. Let K_1 and K_2 be intermediate fields that are finite Galois extensions of a field F.

- Then the intersection $K_1 \cap K_2$ is Galois over F.
- The composite K_1K_2 is Galois over F. The Galois group is isomorphic to the subgroup

$$H = \{ (\sigma, \tau) \mid \sigma \mid_{K_1 \cap K_2} = \tau \mid_{K_1 \cap K_2} \}$$

of the direct product $\operatorname{Gal}(K_1/F) \times \operatorname{Gal}(K_2/F)$ consisting of elements whose restriction to $K_1 \cap K_2$ are equal.

• In the special case that $F = K_1 \cap K_2$, show that this implies that

$$\operatorname{Gal}(K_1K_2/F) \cong \operatorname{Gal}(K_1/F) \times \operatorname{Gal}(K_2/F).$$

(This is Proposition 21 on page 592 of [DF]. But I recommend you try to prove the statement on yourself first.)

Problem 7.4.4. Show that there is no automorphism of \mathbb{R} that fixes \mathbb{Q} .

(Some list of steps can be found on page 567, problem 7 of [DF]. But you should be able to work that out on your own.)

Problem 7.4.5. [DF, page 584, problem 27]

Let $\alpha = \sqrt{(2 + \sqrt{2})(3 + \sqrt{3})}$ and consider the extension $E = \mathbb{Q}(\alpha)$.

- (1) Show that $\alpha = (2 + \sqrt{2})(3 + \sqrt{3})$ is not a square in $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- (2) Conclude from (1) that $[E : \mathbb{Q}] = 8$. Prove that the roots of the minimal polynomial over \mathbb{Q} for α are 8 elements $\pm \sqrt{(2 \pm \sqrt{2})(3 \pm \sqrt{3})}$
- (3) Let $\beta = \sqrt{(2 \sqrt{2})(3 + \sqrt{3})}$. Show that $\alpha\beta \in F$. And make similar arguments to show that E is Galois over \mathbb{Q} . Show moreover that the Galois group is determined by mapping α to one of the 8 elements in (2).
- (4) Let $\sigma \in \text{Gal}(E/\mathbb{Q})$ be the automorphism that sends α to β . Show that σ has order 4 in $\text{Gal}(E/\mathbb{Q})$.
- (5) Show that $\operatorname{Gal}(E/\mathbb{Q}) \cong Q_8$, the quaternion group of order 8.

(Some hints might be found on page 584 of [DF])

Problem 7.4.6. Show that if H is a subgroup of a group G of index n, then the normal subgroup

$$N := \bigcap_{g \in G} gHg^{-1} \subseteq G$$

has index $\leq n!$

(I agree that this is a group theory question. But let me explain why I think this is correct using Galois theory: suppose that we are in the situation that K/F is a Galois extension of fields with Galois group G, and then $E := K^H$ is a subfield such that [E : F] = n. From this, we see that $g(E) = K^{gHg^{-1}}$ are conjugates of E. By Galois theory, K^N is the composite of all g(E) for every $g \in \text{Gal}(K/F)$; it is the normal closure of E over F. We have shown in class that the normal closure of a finite extension E/F of degree n has at most degree $\leq n!$. This would imply that $[G : N] \leq n!$, at least when these groups can be realized as Galois groups. Interesting exercise: can you prove the purely group theoretic statement? Or can you "explain" how your argument relates to the Galois theory argument I just give?)

Problem 7.4.7. [A, page 584, problem 10]

Let K be a finite extension of a field F, and let $f(x) \in K[x]$. Prove that there exists a nonzero polynomial $g(x) \in K[x]$ such that $f(x)g(x) \in F[x]$.

Problem 7.4.8. What do finite order elements in $SL_2(\mathbb{Q})$ look like? (Hint: look at the eigenvalues of these matrices.)

Problem 7.4.9. [Yau contest 2010]

For a positive integer a, consider the polynomial

$$f_a = x^6 + 3ax^4 + 3x^3 + 3ax^2 + 1.$$

Show that it is irreducible. Let F be the splitting field of f_a . Show that its Galois group is solvable.

Problem 7.4.10. [H, page 278, problem 14]

Here is a method for constructing a polynomial $f(x) \in \mathbb{Q}[x]$ with Galois group S_n for a given n > 3. It depends on the fact that there exist irreducible polynomials of every degree in $\mathbb{F}_p[x]$ for every prime p. First choose monic polynomials $f_1, f_2, f_3 \in \mathbb{Z}[x]$ such that

- (i) deg $f_2 = n$ and $\overline{f}_2 \in \mathbb{F}_2[x]$ is irreducible.
- (ii) deg $f_3 = n$ and $\bar{f}_3 \in \mathbb{F}_3[x]$ factors in $\mathbb{F}_3[x]$ as gh with g irreducible of degree n-1 and h linear.
- (iii) deg $f_5 = n$ and $\bar{f}_5 \in \mathbb{F}_5[x]$ factors as gh or gh_1h_2 with g irreducible quadratic in $\mathbb{F}_5[x]$ and h, h_1, h_2 irreducible polynomials of odd degree in $\mathbb{F}_5[x]$.
- (1) Let $f = -15f_2 + 10f_3 + 6f_5$ (so that it is monic and $f \equiv f_2 \mod 2$, $f \equiv f_3 \mod 3$, and $f \equiv f_5 \mod 5$). Let K be the splitting field of f(x) over \mathbb{Q} and $G := \operatorname{Gal}(K/\mathbb{Q})$. Show that G acts transitively on the roots of f. (Use f_2 .)
- (2) Show that G contains a cycle of the type $(i_1i_2\cdots i_{n-1})$ and element $\sigma\lambda$ where σ is a transposition and λ is a product of cycles of odd order.
- (3) Show that $\sigma \in G$ and thus $(i_k i_n) \in G$ for some $k \in \{1, \ldots, n-1\}$.
- (4) Deduce that $G = S_n$.

Problem 7.4.11 (Classical Gauss sum). [DF, page 637, problem 11]

Let $K = \mathbb{Q}(\zeta_p)$ be the cyclotomic field of p^{th} roots of unity for the odd prime p, viewed as a subfield of \mathbb{C} , and let $G = \text{Gal}(K/\mathbb{Q})$. Let H denote the subgroup of index 2 in the cyclic group G. Define

$$\eta_0 = \sum_{\tau \in H} \tau(\zeta_p), \quad \eta_1 = \sum_{\tau \in \sigma H} \tau(\zeta_p),$$

where σ is a generator of $\operatorname{Gal}(K/\mathbb{Q})$ (the two *periods* of ζ_p with respect to H, i.e., the sum of the conjugates of ζ_p with respect to the two cosets of H in G).

(1) Prove that $\sigma(\eta_0) = \eta_1$, $\sigma(\eta_1) = \eta_0$ and that

$$\eta_0 = \sum_{a= ext{square}} \zeta_p^a, \qquad \eta_0 = \sum_{b \neq ext{square}} \zeta_p^b,$$

where the sums are over the squares and nonsquares (respectively) in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

- (2) Prove that $\eta_0 + \eta_1 = -1$.
- (3) Let $g = \sum_{i=0}^{i-1} \zeta_p^{i^2}$ (the classical Gauss sum). Prove that

$$g = \sum_{i=0}^{p-2} (-1)^i \sigma^i(\zeta_p).$$

(4) Prove that $\tau(g) = g$ if $\tau \in H$ and $\tau(g) = -g$ if $\tau \notin H$. Conclude in particular that $[\mathbb{Q}(g) : \mathbb{Q}] = 2$. Recall that complex conjugation is the automorphism σ_{-1} on K.

Conclude that $\bar{g} = g$ if -1 is a square mod p (i.e., if $p \equiv 1 \mod 4$) and $\bar{g} = -g$ if -1 is not a square mod p (i.e., if $p \equiv 3 \mod 4$) where \bar{g} denotes the complex conjugate of g.

- (5) Prove that $\bar{g}g = p$.
- (6) Conclude that $g^2 = (-1)^{(p-1)/2}p$ and that $\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.

Problem 7.4.12. [Alibaba 2021]

Find all real numbers of the form $\sqrt[p]{2021 + \sqrt[q]{a}}$ that can be expressed as a linear combination of roots of unity with rational coefficients, where

- p and q are (possibly the same) prime numbers, and
- a > 1 is an integer, which is not a *q*th power.