2023 Fall Honors Algebra Exercise 7 (due on Thursday December 21)
For submission of homework, please finish the 15 True/False problems, and choose 10 problems from the standard ones and 5 problems from the more difficult ones. Mark the question numbers clearly.
$[\mathrm{A}]=$ Artin,$\quad[\mathrm{DF}]=$ Dummit and Foote,$\quad[\mathrm{DN}]=$ Ding and Nie (Chinese),$\quad[\mathrm{H}]=$ Hungerford.
7.1. True/False questions. (Only write T or F when submitting the solutions.)
(1) Let $K / E / F$ be a tower of extensions of fields. If K / E is Galois and E / F is Galois, then K / F is Galois.
(2) Let $K / E / F$ be a tower of extensions of fields. If K / F is Galois, then K / E is Galois.
(3) Let $K / E / F$ be a tower of extensions of fields. If K / F is Galois, then E / F is Galois.
(4) No quintic polynomial is solvable by radicals over \mathbb{Q}.
(5) Every cyclic extension K over F of degree n is of the form $K=F(\sqrt[n]{a})$ for some $a \in F$.
(6) Let K / F be a finite Galois extension with Galois group G. Let H and H^{\prime} be subgroups of G that are isomorphic. Then K^{H} is isomorphic to $K^{H^{\prime}}$.
(7) Let K be an extension of \mathbb{Q} that is contained in $\mathbb{Q}\left(\mu_{n}\right)$ for some n, then K is Galois over \mathbb{Q}.
(8) If K is a union of a tower of fields $K_{1} \subseteq K_{2} \subseteq \cdots$, each K_{i} finite Galois over a field F, then K is a Galois extension of F.
(9) If $L=K_{1} K_{2}$ be a field extension of a field F with intermediate fields K_{1} and K_{2} such that $K_{1} \cap K_{2}=F$, then $[L: F]=\left[L: K_{1}\right] \cdot\left[L: K_{2}\right]$.
(10) Let K be a Galois extension of a field F, and let $f(x) \in F[x]$ be an irreducible polynomial. Then if $f(x)$ splits in $K[x]$, then the Galois group $\operatorname{Gal}(K / F)$ acts transitively on all zeros of $f(x)$ in K.
(11) Any algebraic closure of $\mathbb{Q}(\sqrt{2})$ is isomorphic to an algebraic closure of $\mathbb{Q}(\sqrt{7})$.
(12) The field $\mathbb{Q}(e)$ is isomorphic to $\mathbb{Q}(\pi)$.
(13) Let K be a Galois extension of F with Galois group $G=\operatorname{Gal}(K / F)$. An intermediate field E is finite over F if and only if $\operatorname{Gal}(K / E)$ is open in $\operatorname{Gal}(K / F)$.
(14) An inverse limit of compact Hausdorff space is compact and Hausdorff.
(15) A finite index subgroup of a profinite group always contains an open normal subgroup.
7.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 7.2.1. [DF, page 595, problem 1]
Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q}.
Problem 7.2.2. Let K be a finite normal extension of the field F. Let $\varphi: K \rightarrow K^{\prime}$ be an isomorphism of K with a field K^{\prime} which maps F to the subfield F^{\prime} of K^{\prime}. Prove that the map $\sigma \mapsto \varphi \sigma \varphi^{-1}$ defines a group isomorphism $\operatorname{Gal}(K / F) \cong \operatorname{Gal}\left(K^{\prime} / F^{\prime}\right)$.
Problem 7.2.3. [DF, page 603, problem 10]
Explain in one-sentence why $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q}.
Problem 7.2.4. Determine all subfields of $\mathbb{Q}\left(\zeta_{8}\right)$ over \mathbb{Q} and their corresponding group under Galois theory.

Problem 7.2.5. [A, page 583, problem 1]
Let K be a Galois extension of F whose Galois group is the symmetric group S_{4}. What numbers occur as degrees of elements of K over F ?
Problem 7.2.6. Let q denote a power of a prime p. Show that the extension $\mathbb{F}_{q}\left(t^{1 / n}\right)$ over $\mathbb{F}_{q}(t)$ is Galois if and only if $q \equiv 1 \bmod n$. In this case, describe the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q}\left(t^{1 / n}\right) / \mathbb{F}_{q}(t)\right)$ and its action on $t^{1 / n}$.

Problem 7.2.7. [DF, page 603, problem 10]
Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q}.
Problem 7.2.8. Let G be a Hausdorff topological group and H a closed subgroup. Let $\pi: G \rightarrow G / H$ denote the quotient map. Show that G / H admits a natural topology so that a subset U of G / H is open if and only if $\pi^{-1}(U)$ is open. Prove that this topology is Hausdorff.
Problem 7.2.9. (an explicit version of above) Let G be a profinite group and let H be a closed normal subgroup. Prove that for any open normal subgroup N of G, the image of $H \rightarrow G / N$ denoted by H_{N} is a normal subgroup of G / N. Now if $N \subseteq N^{\prime}$ is an inclusion of open normal subgroups of G, then $H_{N} \rightarrow H_{N^{\prime}}$ is surjective. Show that
7.3. Standard questions. (Please choose 10 problems from the following questions)

Problem 7.3.1. [DF, page 582, problem 14]
Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and determine its Galois group (over $\mathbb{Q})$.
Problem 7.3.2. [DF, page 582, problem 16]
(1) Prove that $x^{4}-2 x^{2}-2$ is irreducible over \mathbb{Q}.
(2) Show that the roots of this quartic are

$$
\alpha_{1}=\sqrt{1+\sqrt{3}}, \quad \alpha_{2}=\sqrt{1-\sqrt{3}}, \quad \alpha_{3}=-\sqrt{1+\sqrt{3}}, \quad \alpha_{4}=-\sqrt{1-\sqrt{3}}
$$

(3) Let $K_{1}=\mathbb{Q}\left(\alpha_{1}\right)$ and $K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$. Show that $K_{1} \neq K_{2}$ and $K_{1} \cap K_{2}=\mathbb{Q}(\sqrt{3})=: F$.
(4) Prove that K_{1}, K_{2} and $K_{1} K_{2}$ are Galois over F with $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ the Klein 4-group. Write out the elements of $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of $K_{1} K_{2}$ containing F.
(5) Prove that the splitting field of $x^{4}-2 x^{2}-2$ over \mathbb{Q} is of degree 8 with dihedral Galois group

Problem 7.3.3. Let K / F be a finite Galois extension with Galois group G, and let H be a subgroup and $E:=K^{H}$.
(1) Show that every automorphism E fixing F can be extended to an automorphism K. (Explain how extension of embeddings into normal closure is used here.)
(2) Let N denote the subgroup of $\operatorname{Gal}(K / F)$ that stabilizes E. Show that there is a surjective map $N \rightarrow \operatorname{Aut}_{F}(E)$ can compute its kernel.
(3) Show that N is the normalizer of H inside G and thus $\operatorname{Aut}_{F}(K)$ is isomorphic to $N_{G}(H) / H$.
Problem 7.3.4 (Artin-Schreier extensions). Let F be a field of characteristic $p>0$. For each element $a \in F$, show that either $x^{p}-x-a$ is irreducible or it splits completely in $F[x]$. Moreover, show that in the former case, adjoining a zero β of $x^{p}-x-a, F(\beta)$ is a finite Galois extension of F. Describe explicitly the elements in $\operatorname{Gal}(F(\beta) / F)$.

Challenge: Show that if F has characteristic p, then all degree p cyclic extension of F is to adjoin a zero of $x^{p}-x-a$ for some $a \in F$.

Problem 7.3.5. [DF, page 595, problem 4]
Let $f(x) \in F[x]$ be an irreducible polynomial of degree n over the field F, let L be the splitting field of $f(x)$ over F and let α be a root of $f(x)$ in L. If K is any Galois extension of F, show that the polynomial $f(x)$ splits into a product of m irreducible polynomials each of degree d over K, where $d=[K(\alpha): K]=[(L \cap K)(\alpha): L \cap K]$ and $m=n / d=[F(\alpha) \cap K: F]$.
Problem 7.3.6. [DF, page 596, problem 5]
Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e., the degree $[K: F]$ is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).
(1) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
(2) Give an example to show that (1) need not hold if $[K: F$] is a power of p but K / F is not Galois.

Problem 7.3.7. [DN, page 298, problem 5]
Let p_{1}, \ldots, p_{r} be r different prime numbers. Determine the Galois group of $K=\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right)$ over \mathbb{Q}.

Problem 7.3.8. [DN, page 298, problem 10]
Let $F=\mathbb{F}_{p}(u)$. Let K denote the splitting field of $f(x)=x^{2 p}+u x^{p}+u$ over F. (Why is this polynomial irreducible?)
(1) Determine the Galois group $\operatorname{Gal}(K / F)$ (in this case, it means an automorphism of K that is identity on F).
(2) Determine the fixed field of K under the action of $\operatorname{Gal}(K / F)$.
(3) Determine the separable closure of F inside K.

Problem 7.3.9. [DN, page 301, problem 30]
Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n(n>4)$ and the splitting field E of $f(x)$ has Galois group S_{n} over \mathbb{Q}. Let α be a zero of $f(x)$ in E.
(1) Prove that the only automorphism of $\mathbb{Q}(\alpha)$ that fixes \mathbb{Q} is the identity, and $[\mathbb{Q}(\alpha)$: $\mathbb{Q}]=n$.
(2) For any other root β of $f(x)$, show that there are precisely $(n-1)$! elements in $\operatorname{Gal}(E / \mathbb{Q})$ that takes α to β.

Problem 7.3.10. [A, page 575, problem 18]
(1) Let $f(x)$ be an irreducible separable polynomial over a field F, and let K be the splitting field of $f(x)$. Show that $\operatorname{Gal}(K / F)$ is a subgroup of S_{n}. (The action on the roots of $f(x)$ defines such a homomorphism.)
(2) If $f(x)=x^{4}+b x^{2}+c \in F[x]$, show that $\operatorname{Gal}(K / F)$ is a subgroup of D_{4}.

Problem 7.3.11. [A, page 578, problem 11]
Let K / F be a Galois extension whose Galois group is the symmetric group S_{3}. Is it true that K is the splitting field of an irreducible cubic polynomial over F ?

Problem 7.3.12. [A, page 582, problem 9]
Let p be a prime, and let a be a rational number which is not a p th power. Let K be the splitting field of the polynomial $x^{p}-a$ over \mathbb{Q}.
(1) Prove that K is generated over \mathbb{Q} by a p th root α of a and a primitive p th root ζ of unity.
(2) Prove that $[K: \mathbb{Q}]=p(p-1)$. (Think about how to write the answer rigorously.)
(3) Prove that the Galois group of K / \mathbb{Q} is isomorphic to the semi-direct product $Z_{p} \rtimes$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$, or more explicitly the group of invertible matrices with values in \mathbb{F}_{p} of the form $\left(\begin{array}{cc}a & b \\ & 1\end{array}\right)$. Describe the actions of $\left(\begin{array}{cc}a & \\ & 1\end{array}\right)$ and $\left(\begin{array}{cc}1 & b \\ 1\end{array}\right)$, respectively.

Problem 7.3.13. [DF, page 653, problem 7]
Let \mathbb{F}_{4} be the field with 4 elements, t a transcendental over \mathbb{F}_{4}, and $F=\mathbb{F}_{4}\left(t^{4}+t\right)$ and $K=\mathbb{F}_{4}(t)$.
(1) Show that $[K: F]=4$.
(2) Show that K is separable over F.
(3) Show that K is Galois over F.
(4) Describe the lattice of subgroups of the Galois group and the corresponding lattice of subfields of K, giving each subfield in the form $\mathbb{F}_{4}(r)$, for some rational function $r(t)$.

Problem 7.3.14. [DF, page 638, problem 17]
Let $D \in \mathbb{Z}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Show that $\mathbb{Q}(\sqrt{a \sqrt{D}})$ cannot be a cyclic extension of degree 4 over \mathbb{Q}.

Problem 7.3.15. [DF, page 617, problem 8]
Determine the Galois group of $x^{4}+2 x^{2}+x+3$.

Problem 7.3.16. Determine the Galois group of $x^{3}+x-1$.

Problem 7.3.17. Let K / F be a Galois extension with Galois group $G=\operatorname{Gal}(K / F)$. Suppose that H is a closed normal subgroup of G. Then K^{H} is a Galois extension of F. Conversely, if E is an intermediate field of K / F such that E is normal over F, then $\operatorname{Gal}(K / E)$ is a closed normal subgroup.

Problem 7.3.18. [DF, page 645]
Let k be a field. Prove that automorphisms of the rational function field $k(t)$ which fix k are precisely the fractional linear transformations determined by $t \mapsto \frac{a t+b}{c t+d}$ for $a, b, c, d \in k$, $a d-b c \neq 0$ (so $f(t) \in k(t)$ maps to $f\left(\frac{a t+b}{c t+d}\right)$).

The automorphism group $\operatorname{Aut}(k(x) / k) \cong \mathrm{PGL}_{2}(k):=\mathrm{GL}_{2}(k) / k^{\times}$. Here $\mathrm{GL}_{2}(k)$ is the group of 2×2 invertible matrices, and k^{\times}denotes the subgroup of scalar matrices.

Problem 7.3.19. [DF, page 567, problem 8] and [DN, page 298, problem 10]
Let k be a field.
(1) Determine the fixed field of the automorphism $t \mapsto t+1$ of $k(t)$.
(2) Prove that the automorphism group of $\mathbb{F}_{2}(t)$ is isomorphic to S_{3}, and its fixed field is $\mathbb{F}_{2}(u)$ with

$$
u=\frac{\left(t^{4}-t\right)^{3}}{\left(t^{2}-t\right)^{5}}=\frac{\left(t^{2}+t+1\right)^{3}}{\left(t^{2}-t\right)^{2}}
$$

Problem 7.3.20. Let t be transcendental over \mathbb{F}_{3}, let $K=\mathbb{F}_{3}(t)$, let $G=\operatorname{Aut}\left(K / \mathbb{F}_{3}\right)$ (namely the group of automorphisms of K that is identity on \mathbb{F}_{3}). Let F be the fixed field of G.
(a) Prove that $G \cong S_{4}$ and deduce that there is a unique field E with $F \subset E \subset K$ and $[E: F]=2$. [Recall that $G \cong \mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ from Problem 7.3.18; show that $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ permutes the 4 lines in a 2-dimensional vector space over \mathbb{F}_{3} and the kernel of this permutation representation is the scalar matrices.]
(b) Complete the description of the lattice of subfields of K containing E :

Give each subfield in the form $E(r)$ for some rational function r.
Problem 7.3.21. Let K be a subfield of \mathbb{C} maximal with respect to the property that $\sqrt{2} \notin K$.
(a) Show such a field K exists.
(b) Show that \mathbb{C} is algebraic over K.
(c) Prove that every finite extension of K in \mathbb{C} is Galois with Galois group a cyclic 2-group.
(d) Deduce that $[\mathbb{C}: K]$ is countable (and not finite).
7.4. More difficult questions. (Please choose 5 problems from the following questions) I strongly recommend trying out Problem 7.4.1.
Problem 7.4.1 (Riemann zeta function for $\mathbb{F}_{p}[t]$). Let us first recall that Riemann zeta function is

$$
\zeta_{\mathbb{Z}}(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1
$$

Its functional equation takes the following form:

$$
\Lambda(s)=\Lambda(2-s), \quad \text { where } \Lambda(s)=\pi^{-s / 2} \Gamma(s / 2) \cdot \zeta_{\mathbb{Z}}(s)
$$

Maybe an appropriate way to think of this is: $\pi^{-s / 2} \Gamma(s / 2)$ is the "L-factor at ∞ ", so that when putting this in, the functional equation "looks nicer". (Don't worry too much of this for now; read on.)

Our goal is to understand the Riemann zeta function for $\mathbb{F}_{p}[t]$, where p is a prime number. The analogy goes as follows.

$$
\begin{aligned}
& \{\text { positive integers } n \text { in } \mathbb{Z}\} \longleftrightarrow\left\{\text { monic polynomials } f(t) \text { in } \mathbb{F}_{p}[t]\right\} \\
& \{\text { prime ideals }(p) \text { in } \mathbb{Z}\} \longleftrightarrow\left\{\text { prime ideals } p(t) \text { in } \mathbb{F}_{p}[t]\right\} \\
& \quad\{\text { prime numbers } p\} \longleftrightarrow\{\text { monic irreducible polynomials } p(t)\} \\
& \text { value } n^{-s}=\left(\# \frac{\mathbb{Z}}{(n)}\right)^{-s} \longleftrightarrow\left(\# \frac{\mathbb{F}_{p}[t]}{(f(t))}\right)^{-s}=p^{-\operatorname{deg} f(x) s} \\
& \zeta_{\mathbb{Z}}(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}} \longleftrightarrow \zeta_{\mathbb{F}_{p}[t]}(s)=\sum_{\text {monic poly } f(x)} \frac{1}{p^{\text {deg } f \cdot s}}=\prod_{\text {monic irred } p(t)} \frac{1}{1-p^{-\operatorname{deg} p(t) \cdot s}} .
\end{aligned}
$$

The L-factor at ∞ for $\mathbb{F}_{p}[t]$ is different from the case of \mathbb{Z}, this is because we can view the point really as the "infinity" point of \mathbb{P}^{1}; so the "L-factor at infinity" is $\frac{1}{1-p^{-s}}$. We also put

$$
\Lambda_{\mathbb{F}_{p}[t]}(s)=\zeta_{\mathbb{F}_{p}[t]}(s) \cdot \frac{1}{1-p^{-s}}
$$

Compute explicitly $\zeta_{\mathbb{F}_{p}[t]}(s)$ and $\Lambda_{\mathbb{F}_{p}[t]}(s)$, and prove the corresponding functional equation. (In fact, $\zeta_{\mathbb{F}_{p}[t]}(s)$ is a rational function in p^{-s}.) This is a very very special case of so-called Weil conjecture, an analogue of the Riemann zeta function for function fields.

Problem 7.4.2. [Yau contest 2017]
Let p be a prime number and let $K=\mathbb{F}_{p}(T)$ be the field of rational functions over \mathbb{F}_{p}. Consider the polynomials

$$
f(X)=X^{p}-T X-T, \quad g(X)=X^{p-1}-T
$$

(1) Show that f and g are irreducible and separable over K.
(2) Let M be the splitting field of g over K. Show that $\operatorname{Gal}(M / K)$ is isomorphic to \mathbb{F}_{p}^{\times}.
(3) Let L be the splitting field of f over K. Show that g splits in L and $\operatorname{Gal}(L / K)$ is isomorphic to the semidirect product $G=\mathbb{F}_{p} \rtimes \mathbb{F}_{p}^{\times}$, where \mathbb{F}_{p}^{\times}acts on \mathbb{F}_{p} by homotheties.
Problem 7.4.3. Recall our group theoretical statement: if H_{1} and H_{2} are normal subgroups of a group G such that $H_{1} \cap H_{2}=\{1\}$, then $G \cong H_{1} \times H_{2}$.

Let L be a finite extension of F (as an ambient big fields so that the intersection below makes sense. Let K_{1} and K_{2} be intermediate fields that are finite Galois extensions of a field F.

- Then the intersection $K_{1} \cap K_{2}$ is Galois over F.
- The composite $K_{1} K_{2}$ is Galois over F. The Galois group is isomorphic to the subgroup

$$
H=\left\{(\sigma, \tau)|\sigma|_{K_{1} \cap K_{2}}=\left.\tau\right|_{K_{1} \cap K_{2}}\right\}
$$

of the direct product $\operatorname{Gal}\left(K_{1} / F\right) \times \operatorname{Gal}\left(K_{2} / F\right)$ consisting of elements whose restriction to $K_{1} \cap K_{2}$ are equal.

- In the special case that $F=K_{1} \cap K_{2}$, show that this implies that

$$
\operatorname{Gal}\left(K_{1} K_{2} / F\right) \cong \operatorname{Gal}\left(K_{1} / F\right) \times \operatorname{Gal}\left(K_{2} / F\right)
$$

(This is Proposition 21 on page 592 of [DF]. But I recommend you try to prove the statement on yourself first.)
Problem 7.4.4. Show that there is no automorphism of \mathbb{R} that fixes \mathbb{Q}.
(Some list of steps can be found on page 567, problem 7 of [DF]. But you should be able to work that out on your own.)
Problem 7.4.5. [DF, page 584, problem 27]
Let $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$ and consider the extension $E=\mathbb{Q}(\alpha)$.
(1) Show that $\alpha=(2+\sqrt{2})(3+\sqrt{3})$ is not a square in $F=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(2) Conclude from (1) that $[E: \mathbb{Q}]=8$. Prove that the roots of the minimal polynomial over \mathbb{Q} for α are 8 elements $\pm \sqrt{(2 \pm \sqrt{2})(3 \pm \sqrt{3})}$
(3) Let $\beta=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}$. Show that $\alpha \beta \in F$. And make similar arguments to show that E is Galois over \mathbb{Q}. Show moreover that the Galois group is determined by mapping α to one of the 8 elements in (2).
(4) Let $\sigma \in \operatorname{Gal}(E / \mathbb{Q})$ be the automorphism that sends α to β. Show that σ has order 4 in $\operatorname{Gal}(E / \mathbb{Q})$.
(5) Show that $\operatorname{Gal}(E / \mathbb{Q}) \cong Q_{8}$, the quaternion group of order 8 .
(Some hints might be found on page 584 of [DF])
Problem 7.4.6. Show that if H is a subgroup of a group G of index n, then the normal subgroup

$$
N:=\bigcap_{g \in G} g H g^{-1} \subseteq G
$$

has index $\leq n$!
(I agree that this is a group theory question. But let me explain why I think this is correct using Galois theory: suppose that we are in the situation that K / F is a Galois extension of fields with Galois group G, and then $E:=K^{H}$ is a subfield such that $[E: F]=n$. From this, we see that $g(E)=K^{g H g^{-1}}$ are conjugates of E. By Galois theory, K^{N} is the composite of all $g(E)$ for every $g \in \operatorname{Gal}(K / F)$; it is the normal closure of E over F. We have shown in class that the normal closure of a finite extension E / F of degree n has at most degree $\leq n$!. This would imply that $[G: N] \leq n$!, at least when these groups can be realized as Galois groups. Interesting exercise: can you prove the purely group theoretic statement? Or can you "explain" how your argument relates to the Galois theory argument I just give?)
Problem 7.4.7. [A, page 584, problem 10]
Let K be a finite extension of a field F, and let $f(x) \in K[x]$. Prove that there exists a nonzero polynomial $g(x) \in K[x]$ such that $f(x) g(x) \in F[x]$.

Problem 7.4.8. What do finite order elements in $\mathrm{SL}_{2}(\mathbb{Q})$ look like? (Hint: look at the eigenvalues of these matrices.)

Problem 7.4.9. [Yau contest 2010]
For a positive integer a, consider the polynomial

$$
f_{a}=x^{6}+3 a x^{4}+3 x^{3}+3 a x^{2}+1 .
$$

Show that it is irreducible. Let F be the splitting field of f_{a}. Show that its Galois group is solvable.

Problem 7.4.10. [H, page 278, problem 14]
Here is a method for constructing a polynomial $f(x) \in \mathbb{Q}[x]$ with Galois group S_{n} for a given $n>3$. It depends on the fact that there exist irreducible polynomials of every degree in $\mathbb{F}_{p}[x]$ for every prime p. First choose monic polynomials $f_{1}, f_{2}, f_{3} \in \mathbb{Z}[x]$ such that
(i) $\operatorname{deg} f_{2}=n$ and $\bar{f}_{2} \in \mathbb{F}_{2}[x]$ is irreducible.
(ii) $\operatorname{deg} f_{3}=n$ and $\bar{f}_{3} \in \mathbb{F}_{3}[x]$ factors in $\mathbb{F}_{3}[x]$ as $g h$ with g irreducible of degree $n-1$ and h linear.
(iii) $\operatorname{deg} f_{5}=n$ and $\bar{f}_{5} \in \mathbb{F}_{5}[x]$ factors as $g h$ or $g h_{1} h_{2}$ with g irreducible quadratic in $\mathbb{F}_{5}[x]$ and h, h_{1}, h_{2} irreducible polynomials of odd degree in $\mathbb{F}_{5}[x]$.
(1) Let $f=-15 f_{2}+10 f_{3}+6 f_{5}$ (so that it is monic and $f \equiv f_{2} \bmod 2, f \equiv f_{3} \bmod 3$, and $\left.f \equiv f_{5} \bmod 5\right)$. Let K be the splitting field of $f(x)$ over \mathbb{Q} and $G:=\operatorname{Gal}(K / \mathbb{Q})$. Show that G acts transitively on the roots of f. (Use f_{2}.)
(2) Show that G contains a cycle of the type $\left(i_{1} i_{2} \cdots i_{n-1}\right)$ and element $\sigma \lambda$ where σ is a transposition and λ is a product of cycles of odd order.
(3) Show that $\sigma \in G$ and thus $\left(i_{k} i_{n}\right) \in G$ for some $k \in\{1, \ldots, n-1\}$.
(4) Deduce that $G=S_{n}$.

Problem 7.4.11 (Classical Gauss sum). [DF, page 637, problem 11]
Let $K=\mathbb{Q}\left(\zeta_{p}\right)$ be the cyclotomic field of $p^{\text {th }}$ roots of unity for the odd prime p, viewed as a subfield of \mathbb{C}, and let $G=\operatorname{Gal}(K / \mathbb{Q})$. Let H denote the subgroup of index 2 in the cyclic group G. Define

$$
\eta_{0}=\sum_{\tau \in H} \tau\left(\zeta_{p}\right), \quad \eta_{1}=\sum_{\tau \in \sigma H} \tau\left(\zeta_{p}\right),
$$

where σ is a generator of $\operatorname{Gal}(K / \mathbb{Q})$ (the two periods of ζ_{p} with respect to H, i.e., the sum of the conjugates of ζ_{p} with respect to the two cosets of H in G).
(1) Prove that $\sigma\left(\eta_{0}\right)=\eta_{1}, \sigma\left(\eta_{1}\right)=\eta_{0}$ and that

$$
\eta_{0}=\sum_{a=\mathrm{square}} \zeta_{p}^{a}, \quad \eta_{0}=\sum_{b \neq \mathrm{square}} \zeta_{p}^{b},
$$

where the sums are over the squares and nonsquares (respectively) in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(2) Prove that $\eta_{0}+\eta_{1}=-1$.
(3) Let $g=\sum_{i=0}^{i-1} \zeta_{p}^{i^{2}}$ (the classical Gauss sum). Prove that

$$
g=\sum_{i=0}^{p-2}(-1)^{i} \sigma^{i}\left(\zeta_{p}\right) .
$$

(4) Prove that $\tau(g)=g$ if $\tau \in H$ and $\tau(g)=-g$ if $\tau \notin H$. Conclude in particular that $[\mathbb{Q}(g): \mathbb{Q}]=2$. Recall that complex conjugation is the automorphism σ_{-1} on K.

Conclude that $\bar{g}=g$ if -1 is a square $\bmod p$ (i.e., if $p \equiv 1 \bmod 4)$ and $\bar{g}=-g$ if -1 is not a square $\bmod p$ (i.e., if $p \equiv 3 \bmod 4)$ where \bar{g} denotes the complex conjugate of g.
(5) Prove that $\bar{g} g=p$.
(6) Conclude that $g^{2}=(-1)^{(p-1) / 2} p$ and that $\mathbb{Q}\left(\sqrt{\left.(-1)^{(p-1) / 2} p\right)}\right.$ is the unique quadratic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$.

Problem 7.4.12. [Alibaba 2021]
Find all real numbers of the form $\sqrt[p]{2021+\sqrt[q]{a}}$ that can be expressed as a linear combination of roots of unity with rational coefficients, where

- p and q are (possibly the same) prime numbers, and
- $a>1$ is an integer, which is not a q th power.

