
Chapter 4 Selected Topics for Circuits and Systems 

 

4-1 Poisson’s and Laplace’s Equations 

Poisson’s equation: 



  VE 2


  

Laplace’s equation: If no charge exists, ρ=0, 02  V  

 

Eg. The two plates of a parallel-plate capacitor are separated by a distance d and 

maintained at potentials 0 and V0. Assume negligible fringing effect at the edges, 

determine (a) the potential at any point between the plates, (b) the surface charge 

densities on the plates. [清大電研] 
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Eg. The upper and lower conducting plates of a large parallel-plate capacitor are 

separated by a distance d and maintained at potentials V0 and 0, respectively. A 

dielectric slab of dielectric constant εr and uniform thickness d1=0.8d is placed 

over the lower plate. Assuming negligible fringing effect, determine (a) the 

potential and electric field distribution in the 

dielectric slab, (b) the potential and electric field 

distribution in the air space between the dielectric 

slab and the upper plate. [台大電研] 
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Eg. Show that uniqueness of electrostatic solutions. 

(Proof) Let V1 and V2 satisfy 
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1. On the conducting boundaries, Vd =0V1= V2 
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Image Theorem P(x,y,z) in the y>0 

region is   
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where R+ and R- are the distances 

from Q and –Q to the point P, 

respectively. 

 

Eg. A line charge density ρl located at a distance d from the axis of a parallel 

conducting circular cylinder of radius a. Both are infinitely long. Find the image 

position of line charge. 
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Eg. A point charge Q is placed at a distance d to a conducting sphere. Find its 

image. 
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4-2 Boundary-Value Problems in Rectangular Coordinates 
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For X(x), 1. kx
2=0, X(x)=A0x+B0 is linear. 

2. kx
2>0, X(x)=A1sinkxx+B1coskxx, X(x=a) is finite, X(x=b) is finite 

3. kx
2<0, X(x)=A2sinhkxx+B2coshkxx, X(∞) is finite, X(-∞) is finite 

Similar cases exist in Y(y) and Z(z). 

 

Eg. Two grounded, semi-infinite, parallel-plane electrodes are separated by a 

distance b. A third electrode perpendicular to and insulated from both is 

maintained at a constant potential V0. Determine the potential distribution in the 

region enclosed by the electrodes. [高考] 
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4-3 Boundary-Value Problems in Cylindrical Coordinates 
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Φ(φ)=A0φ+B0, R(r)=C0lnr+D0, 

In the φ-independent case, V(r)=C1lnr+D1 

In the φ-dependent case, Φ(φ)=Aφ+B, V(r,φ)=(Clnr+D)(Aφ+B) 

 

Eg. Consider a very long coaxial cable. The inner conductor has a radius a and is 

maintained at a potential V0. The outer conductor has an inner radius b and is 

grounded. Determine the potential distribution in the space between the 

conductors. [電信特考] 
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Eg. Two infinite insulated conducting planes maintained at potentials 0 and V0 

form a wedge-shaped configuration. Determine the potential distributions for the 

regions: 
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. [中央光電所、成大電研] 

(Sol.) 

(a) V(φ)=Aφ+B, 
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Eg. An infinitely long, thin, conducting circular tube of radius b is split in two 

halves. The upper half is kept at a potential V=Vo and the lower half at V=-Vo. 

Determine the potential distributions both inside and outside the tube. 
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Eg. A long, grounded conducting cylinder of radius b is placed along the z-axis in 

an initially uniform electric field 0ExE





. Determine potential distribution 

V(r,φ) and electric field intensity  ,rE


 outside the cylinder. Show that the 

electric field intensity at the surface of the cylinder may be twice as high as that 

in the distance, which may cause a local breakdown or corona (St. Elmo’s fire.) 

[中央光電所、高考] 
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4-4 Boundary-Value Problems in Spherical Coordinates 
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Table of Legendre’s Polynomials 
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Eg. An infinite conducting cone of half-angle α is maintained at potential V0 and 

insulated from a grounded conducting plane. Determine (a) the potential 

distribution V(θ) in the region α<θ<π/2, (b) the electric field intensity in the 

region α<θ<π/2, (c) the charge densities on the cone 

surface and on the grounded plane. 
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Eg. An uncharged conducting sphere of radius b is placed in an initially uniform 

electric field 
0

ˆEzE 


. Determine the potential distribution V(R,θ) and the 

electric field intensity  ,RE


 after the introduction of the sphere. [中山電研] 
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4-5 Capacitors and Capacitances 

 

Q=CVC=Q/V 

Eg. A parallel-plane capacitor consists of two parallel conducting plates of area S 

separate by uniform distance d, the space between the plates is filled with a 

dielectric of a constant permittivity. Determine the capacitance. 
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Eg. A cylindrical capacitor consists of an inner conductor of radius a and an 

outer conductor of radius b is filled with a dielectric of permittivity ε, and the 

length of the capacitor is L. Determine the capacitance of this capacitor. 

(Sol.) 
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Eg. A cylindrical capacitor of length L consists of coaxial conducting surface of 

radii ri and ro. Two dielectric media of different dielectric constants εr1 and εr2, 

and fill the space between the conducting surface. Determine the capacitance. [台

大物理所、高考電機技師] 
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Eg. A spherical capacitor consists of an inner conducting sphere of radius Ri and 

an outer conductor with a spherical wall of radius Ro. The space in between them 

is filled with dielectric of permittivity ε. Determine the capacitance. Assuming the 

earth to be a large conducting sphere (radius=6.37×103km) surrounded by air, 

find the capacitance of the earth and the maximum charge that can exist on the 

earth before the air breaks down. 

(Sol.) 
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Eg. Determine the capacitance per unit length 

between two long, parallel, circular conducting 

wires of radius a. The axes of the wires are 

separated by a distance D. [台大電研] 
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Eg. A straight conducting wire of radius a is parallel to and at height h from the 

surface of the earth. Assume that the earth is perfectly conducting; determine the 

capacitance and the force per unit length between the wire and the earth. 

(Sol.) D=2h, 
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Series or parallel connection of capacitance: 
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4-6 Electrostatic Energy 

To remove Q1 from infinite to a distance R12 from Q2, the amount of work required is 
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Eg. Find the energy required to assemble a uniform charge of radius b and 

volume charge density ρ. [清大電研] 
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Note: 1. SI unit for energy: Joule(J) and 1 eV =1.6×10-19J. 

2. Work (or energy) is a scalar, not a vector. 

Electrostatic energy density: we=
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Eg. A parallel-plate capacitor of area S and separation d is charged by a d-c 

voltage source V. The permittivity of the dielectric is ε. Find the stored 

electrostatic energy. 
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Eg. Use energy formulas to find the capacitance of a cylindrical capacitance 

having a length L, an inner conductor of radius a, an outer conductor of inner 

radius b, and dielectric of permittivity . 
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4-7 Electrostatic Forces and Torques 

Electrostatic force and torque due to the fixed charge: 



 ldFdW Q  is mechanic work done by the system, it costs the stored energy. 
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Electrostatic force and torque due to the fixed potential: 
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Eg. Determine the force on the conducting plates of a charged parallel-plate 

capacitor. The plates have an area S and separate in air by a distance x. 

(Sol.) (a) Assuming fixed charge, xQEQVW xe
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Eg. A parallel-plate capacitor of width w, length L, and separation d is partially 

filled with a dielectric medium of dielectric constants εr. A battery of V0 volts is 

connected between the plates. (a) Find D


, E


, ρs in each region. (b) Find 

distance x such that the electrostatic energy stored in each region is the same. [台

大電研] 
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Eg. A parallel-plate capacitor of width w, length L, and separation d has a solid 

dielectric slab of permittivityεin the space between the plates. The capacitor is 

charged to a voltage V0 by a battery. Assuming that the dielectric slab is 

withdrawn to the position shown, determine the force action on the slab. (a) with 

the switch closed, (b) after the switch is first opened. [台大電研、清大電研] 
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4-8 Resistors and Resistances 

Ohm’s law: V=RI 
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Power dissipation:   
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Eg. A long round wire of radius a and conductivity σ is coated with a material of 

conductivity 0.1σ. (a) What must be the thickness of the coating so that the 

resistance per unit length of the uncoated wire is reduced by 50%? (b) Assuming 

a total current I in the coated wire, find J and E in both the core and the coating 

material. [台科大電子所] 
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Eg. A d-c voltage of 6V applied to the ends of 1km of a conducting wire of 0.5mm 

radius results in a current of 1/6A. Find (a) the conductivity of the wire, (b) the 

electric field intensity of the wire, (c) the power dissipation in the wire, (d) the 

electron drift velocity, assuming electron mobility in the wire to be 

 sVm   23104.1 . 

(Sol.) (a)  mS
SV

I

I

V

S
R 71054.3 





, (b)  mV

V
E 3106 


, (c) 

1VIP Watt, (d) sec)/(104.8 6 mEve

 



Calculation of resistance: 

IVRdsJIEJVEVV /02  


  

Eg. A conducting material of uniform thickness h and conductivity σ, has the 

shape of a quarter of a flat circular washer, with inner radius a and outer radius 

b. Determine the resistance between the end faces. [清大電研] 

(Sol.) 02  V , V=0 at 0 , V=V0 at 
2


   

0
2

2


d

Vd , V=c1φ+c2, 
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Eg. A ground connection is made by burying a hemispherical conductor of radius 

25mm in the earth with its base up. Assuming the earth conductivity to σ=10-6 

S/m, find the resistance of the conductor to far-away points in the ground. [交大

電信所] 

(Sol.) 
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Relation between R and C: 
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Eg. Find the resistance between two concentric spherical surfaces of radii R1 and 

R2 (R1<R2) if the space between the surfaces is filled with a homogeneous and 

isotropic material having a conductivity σ. 

(Sol.) 
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Eg. Find the leakage resistance per unit length (a) between the inner and outer 

conductors of a coaxial cable that has an inner conductor of radius a, an outer 

conductor of inner radius b, and a medium with conductivity σ, and (b) of a 

parallel-wire transmission line consisting of wires of radius a separated by a 

distance D in a medium with conductivity σ. [台科大電研] 

(Sol.)  
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4-9 Inductors and Inductances 

Mutual flux: 1122112

2

d ILSB
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 (Wb) 

General mutual inductance: 
1
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Self-Inductance: 
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Neumaun formula:  
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Eg. Assume that N turns of wire are tightly wound on a toroidal frame of a 

rectangular cross section. Then, assuming the permeability of the medium to be 

μ0, find the self-inductance of the toroidal coil. [台大電研] 

(Sol.) 
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Eg. Find the inductance per unit length of a very long solenoid with air core 

having n turns per unit length. And S is the cross-sectional area. 

(Sol.) nIB o , nSIBS o  SInn o

2'  , SnL o

2'   

Eg. Two coils of N1 and N2 turns are wound concentrically on a straight 

cylindrical core of radius a and permeability μ. The windings have lengths l1 and 

l2, respectively. Find the mutual inductance between the coils. 

(Sol.) 1
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Eg. Determine the mutual inductance between a very long, straight wire and a 

conducting circular loop. [台大電研、清大物理所] 

(Sol.) 

B at p is 
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Eg. Determine the mutual inductance between a conducting triangular loop and 

a very long straight wire. 

(Sol.) 
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Eg. Determine the mutual inductance between a very long, straight wire and a 

conducting equilateral triangular loop. [高考] 

 

(Sol.) 
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Eg. Find the mutual inductance between two coplanar rectangular loops with 

parallel sides. Assume that h1 >> h2 (h2 > w2 > d). (台大電研) 

(Sol.) 
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Eg. A rectangular loop of width w and height h is situated near a very long wire 

carrying a current i1. Assume i1 to be a rectangular pulse. Find the induced 

current i2 in the rectangular loop whose self-inductance is L. 

(Sol.) 
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4-10 Magnetic Energy 

Wm=  
  '11 1
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Magnetic energy density: 
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Eg. Determine the inductance per unit length of an air coaxial transmission line 

that has a solid inner conductor of radius a and a very thin outer conductor of 

radius b. [台科大電機所] 

(Sol.) 
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Eg. Consider two coupled circuits having self-inductance L1 and L2, which carry 

currents I1 and I2, respectively. The mutual inductance between the circuits is M. 

a) Find the ratio I1/I2 that makes the stored magnetic energy Wm a minimum. 

b) Show that 
21LLM  . [清大核工所] 
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4-11 Magnetic Forces and Torques 

 

Force due to constant flux linkage: 
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Force due to constant current: 

mk

k

ks dWdWdIdW  '  

ldWdWldFdWdWIdW mmIs

k

kkm


  )(

2

1

2

1
mI WF 


 

Torque in terms of mutual inductance: 
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Eg. A current I flows in a long solenoid with n closely wound coil-turns per unit 

length. The cross-sectional area of its iron core, which has permeability μ, is S. 

Determine the force acting on the core if it is withdrawn to the position. [高考電

機技師]   

(Sol.) 
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Magnetic torque: BmT


  (B=B⊥+B∥, m∥B⊥m×B⊥=0) 
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Eg. A rectangular loop in the xy-plane with sides b1 and b2 carrying a current I 

has in a uniform magnetic field zyx BzByBxB ˆˆˆ 


. Determine the force and 

torque on the loop. 

(Sol.) )ˆˆ(21 xy ByBxbIbBmT 


 

 



4-12 Magnetic Circuits 

Define NIVm  : mmf, BS : magnetic flux, 
S

l


 : reluctance 

(1)   
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kkjj IN . (2) ∵ 0 B , ∴ 0
j

j  

 

Eg. (a) Steady current I1 and I2 flow in windings of N1 and N2 turns, respectively, 

on the outside legs of the ferromagnetic core. The core has a cross-sectional area 

Sc and permeability μ. Determine the magnetic flux in the center leg. 

(Sol.) 
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Eg. Consider the electromagnet in Figure. In which a current I in an N-turn coil 

produce a flux Φ in the magnetic circuit. The cross-sectional area of the core is 

S. Determine the lifting force on the armature. 

(Sol.) 
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