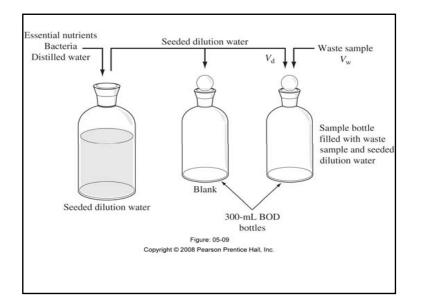


Example. A solution with $L_0 = 400 \text{ mg/L}$ and $k_1^* = 0.1/\text{d}$ is incubated for five days Find L_5 and y_5 . (Note: k_1^* is same as k_1 , but for base 10.)

$$L_{5} = L_{0} \left(10^{-k_{1}^{*}t} \right) = (400 \text{ mg/L}) 10^{-0.5} = 126 \text{ mg/L}$$
$$v_{5} = L_{0} - L_{5} = (400 - 126) \text{ mg/L} = 274 \text{ mg/L}$$


How much O₂ is consumed between days 5 and 10?

 $y_{10} = L_{o} \left(1 - 10^{-k_{1}^{*}(10)} \right) = 360 \text{ mg/L}$ $y_{5 \to 10} = y_{10} - y_{5} = (360 - 274) \text{ mg/L} = 86 \text{ mg/L}$

The BOD Test: Concept and Key Features

- > [Biodeg. Organics] hard to quantify directly
- Easier to quantify O₂ in solution, and compute O₂ that has been consumed (by difference with O_{2 init})
- > O₂ that has been consumed when reaction is complete indicates [Biodeg. Organics] that were present initially
- Both L (BOD remaining) and y (BOD exerted) are commonly called just the 'BOD', in which case the meaning has to be understood from context

- L is commonly referred to as though it represents the concentration of degradable organic matter (which it is, indirectly). But it is actually measured and reported as a concentration of O₂ (either potential O₂ consumption remaining [L] or O₂ consumption that has actually occurred [y])
- Might take long time for reaction to be complete, so partial reaction is analyzed (typically, for 5 d), and first-order rate model is used to predict ultimate amount of reaction
- > Conditions during test must not impede reaction progress
 - [O₂] (i.e., DO) must be sufficient throughout (dilute if L₀ too large)
 - Essential nutrients must be present (add if needed)
 - Appropriate organisms must be present (inoculate)

Alternative Indicators of Oxygen Demand

- Oxygen demand attributed solely to oxidation of carbon is called 'carbonaceous oxygen demand' (CBOD)
- Some oxygen can be demanded by inorganic species (e.g., Fe²⁺, Mn²⁺, HS⁻), BOD_{inorg}.
- If a BOD test is carried out for a long time (>10 d) or if 'nitrifying' organisms are present in the feed, NH₄⁺ can be oxidized to nitrate (NO₃⁻), exerting 'nitrogenous oxygen demand' (NOD).

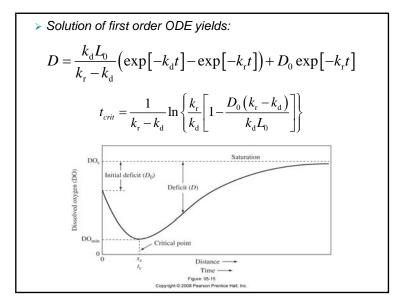
$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$

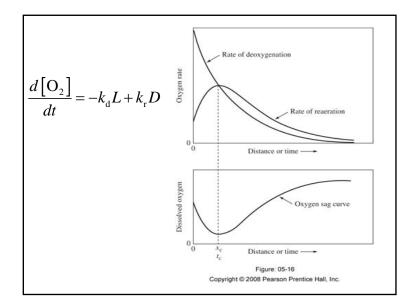
BOD and DO in Streams

Assuming a river has plug flow, dynamics of organic decay (L vs t) are similar to those in BOD test – first order reaction. k might be different because of organism population or T

$$r_L = r_{O_2 \text{ depletion}} = -k_d L$$

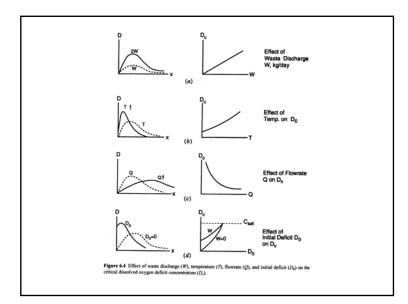
> Unlike in BOD test, O_2 can be replenished (from the air):

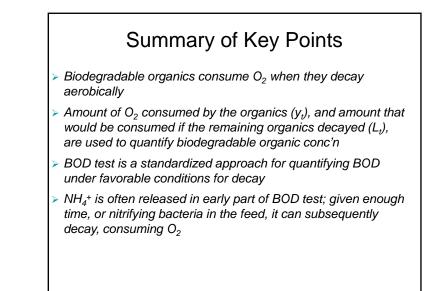

$$r_{O_2 \text{ entry}}_{\text{("reaeration")}} = k_r \left(O_{2,eq} - O_2\right) = k_d \left("O_2 \text{ deficit"}\right) = k_d D$$


Assuming PFR behavior, O₂ depletion and reaeration over distance are same as in a batch system, so:

$$r_{\mathrm{O}_{2} \mathrm{net}} = \frac{d\left[\mathrm{O}_{2}\right]}{dt} = -k_{\mathrm{d}}L + k_{\mathrm{r}}D$$

$$D = [O_2] - [O_2]_{eq}$$
, so $dD = d[O_2]$. Therefore:


$$\frac{dD}{dt} = -k_{\rm d}L_0\exp\left(-k_{\rm d}t\right) + k_{\rm r}D$$



O'Connor-Dobbins ⁹	$k_{a} = \frac{12.9u^{0.5}}{H^{1.5}}$		
Owens-Edwards-Gibbs ¹⁰	$k_a = \frac{23u^{0.73}}{H^{1.75}}$	for	H=1-2.5
			$\overline{u} = 0.1 - 0.5$ Q = 4 - 36
Churchill-Elmore-Buckingham (TVA)11	$k_a = \frac{11u}{H^{1.67}}$	for	H = 2-11
			$\overline{u} = 2-5$ Q = 1000-17,000
USGS	$k_a = \frac{7.6u}{H^{1.33}}$		
Tsivoglou	$k_a = \frac{0.048 \Delta S}{t}$	for	<i>Q</i> = 5–3000
where k_a = reacration rate constant (base \overline{u} = mean stream velocity, ft sec ⁻ H = mean stream depth, ft			
ΔS = water surface elevation change Q = flowrate, ft ³ s ⁻¹ t = travel time, days	ge, ft		

Parameter	Value	, Temperature Correction ^a
CBOD deoxygenation, kd	0.05-0.5 day-1	1.048
CBOD deoxygenation plus sedimentation, k _r	0.5-5 day-1	1.04
NBOD deoxygenation, k,	0.05-0.5 day-1	1.08
Reaeration, k _o Slow, deep rivers	0.1-0.4 day-1	1.024
Typical conditions	0.4-1.5 day-1	1.024
Swift, deep rivers	1.5-4.0 day-1	1.024
Swift, shallow rivers	4.0-10 day-1	1.024
Sediment oxygen demand, S Natural to low pollution	0.1–1.0 g m ⁻² d ⁻¹	1.065
Moderate to heavy pollution	5-10 g m ⁻² d ⁻¹	1.065
Net primary production, $(P - R)$ Daily average value $(P - R)$	0.5–10 mg L ⁻¹ d-	1.066
P _{max} , maximum daily production	2-20 mg L ⁻¹ d ⁻¹	I
R, respiration only	1–10 mg L ⁻¹ d ⁻¹	۱,
Background D.O. Deficit, D _b	0.5-2 mg L ⁻¹	NA
Coliform bacteria die-away, k		
Freshwater	0.5-5 day-1	1.07
Saltwater	2-40 day-1	1.10
Virus particles in marine waters	0.03-0.16 day-1	1.10

Summary of Key Points

- In rivers (PFRs), organic decay and O₂ consumption follow same pattern as in BOD tests, albeit typically slower
- Reaeration from atmosphere proceeds at a rate proportional to the DO deficit, with a rate constant dependent on fluid energy (increases with velocity, decreases with depth) and temperature
- Net effect of decay and reaeration leads to a characteristic pattern of DO vs. distance or time, with a minimum DO at a critical x or t
- "DO sag" curve is classical example of combination of kinetics (L decay) and equilibrium processes with mass balance concept to derive an important environmental prediction