

UNIVERSIDAD NACIONAL DE CUYO

FACULTAD DE CIENCIAS APLICADAS A LA INDUSTRIA

QUÍMICA INORGÁNICA

Carreras:

INGENIERÍA EN INDUSTRIAS DE LA ALIMENTACIÓN INGENIERÍA QUÍMICA BROMATOLOGÍA PROFESORADO DE GRADO UNIVERSITARIO EN QUÍMICA

PROFESORES:

ADJUNTO: Esp. Ing. Mónica Alejandra MORANT

JTP: Lic. Gladys LIMA

Prof. Celina TONIDANDEL

ATP: Ing. Héctor CÁCCOMO

Prof. María Noelia Ruíz Alcantú Prof. María Eugenia Márquez

PROGRAMA DE QUÍMICA INORGÁNICA

1. Carreras:

INGENIERÍA EN INDUSTRIAS DE LA ALIMENTACIÓN INGENIERÍA QUÍMICA

BROMATOLOGÍA

PROFESORADO DE GRADO UNIVERSITARIO EN QUÍMICA.

2. Año de Vigencia: 2017

3. Carga horaria: 105 HORAS

4. Equipo de cátedra:

Profesor Adjunto: ESP. ING. MÓNICA ALEJANDRA MORANT

Jefe de Trabajos Prácticos: LIC. GLADYS LIMA

PROF. CELINA TONIDANDEL

Ayudantes de Trabajos Prácticos: ING. HÉCTOR CÁCCOMO

PROF. MARÍA NOELIA RUÍZ ALCANTÚ PROF. MARÍA EUGENIA MARQUEZ

5. Objetivos del Espacio Curricular.

- Relacionar diversos fenómenos con un corto número de ideas generales.
- Utilizar teorías y métodos físicos como medios para interpretar y prever propiedades y reacciones de las especies químicas.
- Desarrollar hábitos de trabajo experimental en el laboratorio.
- Desarrollar habilidades para resolver problemas.
- Adquirir y aplicar el lenguaje científico correspondiente

6. Contenidos a desarrollar en el

Espacio Curricular

Unidad Temática	Bibliografía
Nº 1: ENLACES QUÍMICOS	Obligatoria:
 Tipos de enlaces o uniones químicas. Revisión de enlace iónico. Enlace covalente. Fórmulas electrónicas de Lewis. Resonancia. 	Whitten: Química General. Segunda edición española. Ed. McGraw-Hill. Chang, R., Química. México, D.F. Mc. Graw-Hill, 1995.
• Estructura molecular y teorías del enlace covalente: Teoría de la Repulsión del Par de Electrones de la Capa de Valencia (TRPCV); Teoría del Enlace de Valencia, Hibridación; Teoría de Orbitales Moleculares (TOM) ¹	Complementaria: Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995. Cotton y Wilkinson: Química Inorgánica Básica. Trad. Española. (México). Ed. Limusa-Wiley Christen, H.R.: Fundamentos de Química General e Inorgánica. Trad. Española. España.De. Reverté. Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España De. Reverté. Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill. Mahan: Química — Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica. Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995. Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999. Huheey, James E; Keiter, Ellen A; Keiter, Richard L. Química Inorgánica. México. Oxford-Alfa Omega.2005
N°2: COMPUESTOS DE COOORDINACIÓN	Obligatoria:
 Introducción. Origen. Teoría de Werner. Teoría de Lewis. Ligandos: conceptos, tipos. Determinación de la carga del ión central y del complejo. 	Cotton y Wilkinson: Química Inorgánica Básica. Trad. Española. (México). Ed. Limusa-Wiley Christen, H.R.: Fundamentos de Química General e Inorgánica. Trad. Española. España.De. Reverté.
•Nomenclatura.	Complementaria:
 Estereoquímica: análisis de cada geometría. Descripción, ejemplos. 	•Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
•Estereoisomería: conceptos, tipos. •Estabilidad de complejos en solución.	•Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.
Cinética y mecanismos de sustitución Teorías de enlaces de los compuestos de coordinación: Teoría del campo cristalino.	•Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa- Wiley 1995.

Propiedades magnéticas.	Colores.	Teoría	del orbital
molecular.			

- Lagowski J.J.: Química Inorgánica Moderna. Trad.
 Española España.. De. Reverté.
- •Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- •Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- •Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.
- •Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- •Huheey, James E; Keiter, Ellen A; Keiter, Richard L. Química Inorgánica. México. Oxford-Alfa Omega.2005

Nº 3: INTRODUCCIÓN AL ESTUDIO DE LA TABLA PERIÓDICA. HIDRÓGENO. GASES NOBLES.

- Conjunto de ideas interrelacionadas que dan sentido a la Tabla Periódica.
- · Revisión de las propiedades periódicas.
- Hidrógeno. Configuración electrónica. Su ubicación en la Tabla Periódica. Comportamiento químico del hidrógeno. El ión hidrógeno. Electrodo normal de hidrógeno.
- Oxidación y reducción. Reacciones redox en soluciones acuosas. Potencial
- de electrodo. Potencial de semirreacción (Potencial redox). Balance de ecuaciones redox. Variaciones de los potenciales redox.
- Teoría ácido-base: teoría de Arrhenius. Teoría de Bronsted-Lowry. Comportamiento ácido-base en soluciones acuosas y no acuosas. Fuerzas de ácidos y bases. Estructura tipo de ácidos y bases. Neutralización. Teoría de Lewis. Hidruros: salinos, complejos, covalentes. Isótopos de hidrógeno. Preparación del hidrógeno.
- Gases nobles: Configuración electrónica.
 Reactividad. Propiedades físicas y obtención.
 Química del Xenón.

Obligatoria:

- Rodgers, Glen, E., Química Inorgánica. España. Mc. Graw-Hill, 1995.
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard L. Química Inorgánica. México. Oxford-Alfa Omega.2005

Nº 4: ELEMENTOS DE LOS GRUPOS 1 y 2

- Estado natural.
- · Configuración electrónica.
- Propiedades físicas y químicas.
- · Propiedades periódicas.

Obligatoria:

•Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.

Complementaria:

- Comportamiento diferencial del litio y berilio en sus respectivos grupos.
- Obtención.
- Óxidos: Propiedades.
- · Otros compuestos oxigenados: propiedades.
- Sales: estructura y propiedades.
- Usos.

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard
 L. Química Inorgánica. México. Oxford-Alfa
 Omega.2005
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

Nº 5 ELEMENTOS DE LOS GRUPOS 13 y 14.

- Estudio periódico de cada grupo.
- · Configuración electrónica.
- Diferentes estados de oxidación. Estabilidad de los mismos.
- Comportamiento diferencial del boro y del carbono en sus respectivos grupos.
- Estados naturales.
- · Obtención.
- · Propiedades físicas y químicas.
- · Propiedades periódicas.
- · Elementos alotrópicos.
- Óxidos: estructura. Propiedades. Obtención. Usos.
- Oxisales. Estructura. Propiedades. Obtención. Usos.
- Hidróxidos e hidruros: Estructura. Propiedades Obtención. Usos.
- Compuestos de coordinación. Estructura. Propiedades. Usos.
- Química en solución.

Obligatoria:

• Rodgers, Glen, E., Química Inorgánica. España. Mc. Graw-Hill, 1995.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad.
 Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard
 L. Química Inorgánica. México. Oxford-Alfa
 Omega.2005
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.

Chang, R., Química. México, D.F. Mc. Graw-Hill, 1995.

Nº 6 ELEMENTOS DE LOS GRUPOS 15 y 16

- Estudio periódico de cada grupo.
- Comportamiento diferencial del nitrógeno y azufre en sus respectivos grupos.

Obligatoria:

•Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.

- · Configuración electrónica.
- Diferentes estados de oxidación. Estabilidad de los mismos.
- Estado natural.
- Obtención.
- Propiedades físicas y químicas.
- Propiedades periódicas.
- Estados alotrópicos: estructura.
- Óxidos. Estructura. Propiedades. Obtención. Usos.
- Oxoácidos y oxosales. Estructura. Propiedades. Obtención. Usos.
- Compuestos de coordinación: estructura. Propiedades. Obtención. Usos. Química en solución.
- Oxígeno: estructura atómica. Estado natural. Isótopos. Estados alotrópicos: oxígeno, ozono. Obtención. Óxidos. Clasificación. Ión hidróxido. Uniones del oxígeno: número de coordinación.
- Oxiácidos y oxisales.

Complementaria:

- •Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- •Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- •Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- •Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- •Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- •Huheey, James E; Keiter, Ellen A; Keiter, Richard L. Química Inorgánica. México. Oxford-Alfa Omega.2005
- •Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- •Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

Nº 7 ELEMENTOS DEL GRUPO 17. HALÓGENOS.

- Configuración electrónica
- Estados de oxidación.
- Estado natural.
- Obtención.
- · Propiedades periódicas
- · Propiedades físicas y químicas.
- Estructura de hipohalitos, halitos, halatos, perhalatos.
- Óxidos. Estructura. Propiedades. Usos.
- Pseudohalogenos.
- Compuestos interhalogenados

Obligatoria:

• Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México), Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard L. Química Inorgánica. México.

Nº 8 : ELEMENTOS DE LA PRIMERA SERIE TRANSICIÓN (primera parte): Sc, TI, V, Cr, Mn,

· Propiedades generales.

Obligatoria:

 Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.

- Configuración electrónica.
- Diferentes estados de oxidación. Estabilidad relativa. Propiedades de los estados altos de oxidación.
- Estado natural.
- Metalurgia,
- Propiedades físicas y químicas.
- Óxidos y compuestos oxigenados: estructura, propiedades, obtención, usos.
- Halogenuros: estructura, propiedades, obtención, usos.
- Compuestos de coordinación: obtención, usos, estructuras electrónicas, espectros de absorción. Índice de coordinación.
- Estabilización de estados de oxidación por complejación. Propiedades magnéticas.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard
 L. Química Inorgánica. México. Oxford-Alfa
 Omega.2005
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

N° 9 ELEMENTOS DE LA SEGUNDA SERIE TRANSICIÓN (segunda parte):, Fe, Co, Ni, Cu.

- · Propiedades generales.
- Configuración electrónica.
- Diferentes estados de oxidación. Estabilidad relativa. Propiedades de los estados altos de oxidación.
- Estado natural.
- · Metalurgia,
- Propiedades físicas y químicas.
- Óxidos y compuestos oxigenados: estructura, propiedades, obtención, usos.
- Halogenuros: estructura, propiedades, obtención, usos.
- Compuestos de coordinación: obtención, usos, estructuras electrónicas, espectros de absorción. Índice de coordinación.
- Estabilización de estados de oxidación por complejación.
- · Propiedades magnéticas.

Obligatoria:

• Rodgers, Glen, E.,Química Inorgánica. España.Mc.Graw-Hill, 1995.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad. Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard
 L. Química Inorgánica. México. Oxford-Alfa
 Omega.2005
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

N° 10 ELEMENTOS DE POSTRANSICIÓN. Zn. Cd. Hg.

- · Configuración electrónica.
- · Obtención.
- Estado de oxidación.
- · Propiedades Físicas y Químicas.
- Óxidos, hidróxidos. Estructura. Obtención. Propiedades y Usos.
- Compuestos de Coordinación. Participación de los elementos en sistemas biológicos.

Obligatoria:

• Rodgers, Glen, E., Química Inorgánica. España. Mc. Graw-Hill, 1995.

Complementaria:

- Cotton y Wilkinson: Química Inorgánica Avanzada. Trad. Española. (México),Ed. Limusa-Wiley 1995.
- Lagowski J.J.: Química Inorgánica Moderna. Trad. Española España.. De. Reverté.
- Manku G.S.: Principios de Química Inorgánica. Trad. Española. De. MacGraw-Hill.
- Mahan: Química Curso Universitario. Trad.
 Española. De. Addison-Wesley-Iberoamérica.
- Valenzuela Calahorro Cristóbal.Introducción a la Química Inorgánica. España.McGraw-Hill.1999.
- Huheey, James E; Keiter, Ellen A; Keiter, Richard
 L. Química Inorgánica. México. Oxford-Alfa
 Omega.2005
- Whitten: Química General. Segunda edición española. Ed. McGraw-Hill.
- Chang, R., Química. México, D.F. Mc. Graw-Hill,1995.

7. Descripción de Actividades de aprendizaje.

Actividades Prácticas de aula

N° DEL TRABAJO	TEMA
1	Enlaces
2	Reacciones Redox
3	Equilibrio Ácido Base
4	Compuestos de Coordinación
5	Tabla Periódica
6	Grupos 1 y 2
7	Grupo 13

8	Grupo 14 Campus virtual
9	Grupo 15
10	Grupo 16

Actividades Prácticas de Laboratorio

N° DEL TRABAJO	TEMA
1	Reacciones Redox
2	Equilibrio Ácido Base
3	Compuestos de Coordinación
4	Grupos 1, 2 y 13
5	Grupos 14 y 15

8. Descripción de Actividades de Extensión y/o Vinculación con el Sector Productivo de la Cátedra

oripotori de Actividades de Exterision y	o villouluoio	in con ci occioi i roddotivo de la odtedia
NOMBRE LA ACTIVIDAD	DURACIÓN	REQUISITOS PARA LA PARTICIPACIÓN DE LOS ESTUDIANTES
Experiencia de Laboratorio: Capacitación a docentes de nivel primario	10 hs	Tener aprobada Química General

9. Descripción de Actividades de Investigación de la Cátedra

NOMBRE LA ACTIVIDAD	DURACIÓN	REQUISITOS PARA LA PARTICIPACIÓN DE LOS ESTUDIANTES
Elementos de la 1era Serie de Transición a través del Campus Virtual	3 semanas	Ser alumnos regular y tener voluntad de realizar la práctica (no obligatorio)

7. Procesos de intervención pedagógica.

- 1.- Clases Magistrales: se llevan a cabo en la presentación de cada unidad temática de forma participativa. Están a cargo de los docentes y de los estudiantes, los que prepararán y presentarán temas establecidos de la asignatura.
- 2.- **Trabajos Prácticos de Aula:** Son encuentros organizados en grupos pequeños que cumplen una doble tarea, de aprendizaje y de resolución de ejercicios y problemas para que los estudiantes en la conjunción teoría-práctica acuerden su solución.
- 3.- **Trabajos de Laboratorio:** Conjunto de horas diagramadas a fin de realizar las prácticas de laboratorio y adquirir destreza y habilidad en el manejo de elementos de laboratorio e instrumental apropiado.
- 4.- **Trabajos de campo:** conjunto de horas destinadas preparación de actividades prácticas, investigación y elaboración de propuestas complementarias a las horas de clases.
- 5.- **Trabajos de Extensión:** es muy importante en la formación del futuro profesional incluir actividades de extensión con la comunidad. El estudiante debe relacionarse con distintos sectores de la sociedad intercambiando mediante diálogo los saberes científicos y populares en post del bien común y la divulgación del conocimiento. Práctica Social Educativa voluntaria: "La Ciencia como Puente entre la Universidad y la Escuela Primaria". La actividad consiste en talleres de integración y capacitación en experiencia de laboratorio de química y microscopía en escuelas primarias, destinada a docente y alumnos de las mismas.
- 6.- Trabajos de investigación: Conjunto de horas diagramadas a fin de proveer oportunidades para familiarizarse con los modos operativos de explorar en distintos medios (bibliografía, Internet, Campus Virtual, contexto, etc.) y realizar las actividades de investigación programadas.

7. Organización por comisiones

	Teóricas	Actividades Áulicas	Laboratorio y Planta Piloto	Tareas de Campo
cantidad de comisiones	1	1	4	A determinar
cantidad de alumnos por comisión	-	-	-	-

8. Condiciones de regularización:

- Asistencia al 75 % de las actividades teóricas.
- Asistencia al 75 % de las actividades prácticas de aula.
- Asistencia al 100% las actividades prácticas de laboratorio.
- Aprobación del 100 % de las evaluaciones parciales teórico-prácticas o sus recuperaciones, con un mínimo de 65%

9. Evaluación

Entendiendo a la evaluación como la instancia a partir de la cual se trata de comprender los procesos de enseñanza con el fin de registrar, obtener información y elaborar un juicio de valor en el que participan los actores involucrados. Se realizará los distintos momentos de Evaluación:

1. Inicial:

Diagnóstico de los saberes previos, de los alumnos en relación a contenidos básicos de Química, en el primer práctico de aula en el tema de Enlaces.

2. Procesual:

Estará compuesta por las producciones elaboradas por cada alumno en forma individual y grupal según las estrategias y actividades planteadas.

En esta instancia se evaluarán los siguientes indicadores:

- Asistencia a los prácticos de aula y Laboratorio
- Presentación de los trabajos realizados
- Participación en clase
- Responsabilidad en el cumplimiento del trabajo
- Claridad en la expresión de las ideas en forma escrita y oral

3. Resultado:

- a. Aprobación de los 2 (dos) parciales y presentación de la carpeta de Trabajos Prácticos de Aula y de Laboratorio, los que permiten acreditar la regularidad de la asignatura. Aprobación de todos los pre prácticos de laboratorio y asistencia al 100 % de los mismos, en caso de no alcanzar alguna de estas dos condiciones, el estudiante deberá rendir laboratorio en el examen final.
- b. Promoción: para la actividad propuesta del Campus Virtual, cumpliendo con la entrega y aprobación de todas las actividades propuestas. Aprobación de un examen escrito presencial con un 70 %. (No se rinde en el examen final)
- c. Examen Final: Estudiante en condición de Regular:

Puede ser oral o escrito. El examen abarcará todo el programa.

Estudiante en condición Libre:

El examen está compuesto de tres etapas: 1) Examen de laboratorio a desarrollarse en el laboratorio de docencia, dos días antes del día de la mesa. 2) Examen escrito práctico. 3) Examen escrito teórico.

Cada etapa debe ser aprobada para poder acceder a la siguiente. Si el estudiante hubiese promocionado la unidad realizada mediante el campus virtual, al perder la regularidad, pierde la promoción, es decir debe rendir programa completo.

10. Temporalización de las Actividades

Semana	LUNES 8:00 a 10:00	MARTES 10:00 a 13:00	JUEVES 10:30 a 13:00
1	31/07 Presentación - TEORÍA:	01/08 TEORÍA: Enlaces	03/08 PRÁCTICO AULA:
	Enlaces		Enlaces
2	7/08 PRÁCTICO AULA: Enlaces	08/08 TEORÍA: Óxido - Reducción	10/08 PRÁCTICO AULA:
			Redox
3	14/08 PRÁCTICO AULA: Redox	15/08 PRÁCTICO LABORATORIO:	17/08 TEORÍA: Ácido- Base
		Redox	
4	21/08 FERIADO	22/08 PRÁCTICO LABORATORIO:	24/08 PRÁCTICO AULA:
		Ácido- Base	Ácido- Base
5	28/08 TEORÍA: Comp. de	29/08 TEORÍA: Comp. de	31/08 PRÁCTICO AULA:
	Coordinación	Coordinación	Comp. de Coord.
6	04/09 PRÁCTICO AULA: Comp. de	05/09 PRÁCTICO LABORATORIO:	07/09 PARCIAL
	Coord.	Comp. de Coord.	
7	11/09 TEORÍA: Prop. Periódicas	12/09 PRÁCTICO AULA: Prop.	14/09 TEORÍA: Grupos 1 y 2
		Periódicas	A la tarde: RECUPERATORIO

"2017- AÑO DE LAS ENERGÍAS RENOVABLES"

8	18/09 PRÁCTICO AULA: Grupos 1 y 2	19/09 TEORÍA: Grupo 3	21/09 Día del Estudiante
9	25/09 PRÁCTICO AULA: Grupo 1y 2	26/09 PRÁCTICO LABORATORIO: Grupos 1, 2 y 3	28/09 PRÁCTICO AULA: Grupo 3
10	02/10 TEORÍA: Grupo 4	03/10 TEORÍA: Grupo 5	05/10 PRÁCTICO AULA: Grupo 4
11	09/10 PRÁCTICO AULA: Grupo 4 y 5	10/10 PRÁCTICO LABORATORIO: Grupos 4 y 5	12/10 TEORÍA: Grupo 6
12	16/10 FERIADO	17/10 PARCIAL	19/10 TEORÍA: Grupo 7 Práctico de aula Grupo 6 y 7
13	23/10 Práctico de aula Grupo 6 y 7 CAMPUS VIRTUAL	24/10 FERIADO	26/10 CAMPUS VIRTUAL A la tarde: RECUPERATORIO
14	30/10 CAMPUS VIRTUAL	31/11 CAMPUS VIRTUAL	2/11 CAMPUS VIRTUAL (último día entrega actividades) GLOBAL a la tarde
15	6/11 ENTREGA CARPETAS	07/11 EXAMEN ELEM. TRANSICIÓN	

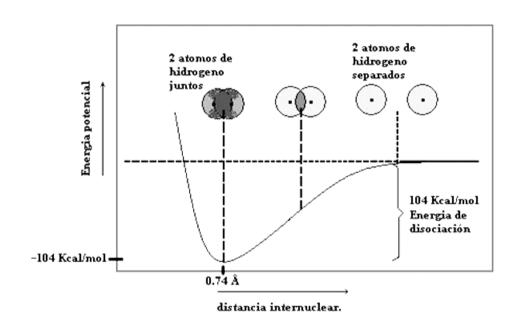
11. Distribución de la carga horaria.

Actividades	Horas
1. Teóricas	54
Apoyo teórico (incluye trabajos prácticos de aula)	22
3. Trabajo Integrador	
4. Experimentales (laboratorio, planta piloto, taller, etc.)	24
5. Trabajos en el CAMPUS VIRTUAL	5
	presenciales
Total de Horas de la Actividad Curricular	105

ENLACE COVALENTE

La atracción iónica en una red cristalina no se considera una unión química en el sentido habitual del término. En cambio la unión entre dos átomos de H en H₂, o H y Cl en HCl, o H y N en NH₃ nos da una idea real de unión química. Esto conlleva la noción de que ambos átomos se *ligan o unen a través de la compartición de uno o más pares de electrones*.

Existen dos enfoques fundamentales que explican la formación del **enlace covalente**. El primero se denomina *Teoría del Enlace de Valencia (T.E.V)*, y considera las interacciones de los diversos electrones de la capa de valencia como si se hiciera que los átomos se acercaran desde el infinito. La distancia internuclear está dada por el sistema que posee la menor energía.


El otro enfoque, denominado *Teoría de los Orbitales Moleculares (T.O.M.)*, construye a los orbitales en torno de los núcleos de los átomos que se combinan, resolviendo las funciones de onda para los electrones en forma semejante a lo que se adoptó para los átomos. Los orbitales obtenidos son multicéntricos y se denominan **orbitales moleculares (OM).**

Ambas teorías tienen sus puntos débiles y fuertes, aunque se considera que los resultados de la TOM son más exactos.

Energía de enlace

Vamos a considerar, desde el punto de vista energético, la formación de una molécula de hidrógeno a partir de átomos de hidrógeno.

Si trazamos un diagrama de la energía potencial del sistema como una función de la distancia entre los dos núcleos de los átomos de hidrógeno, podemos observar que, a grandes distancias, la energía potencial del sistema es constante e igual a cero. Cuando la distancia entre los átomos disminuye, la energía potencial disminuye alcanzando finalmente un mínimo a la distancia correspondiente al equilibrio entre los átomos (distancia internuclear) en la molécula real.

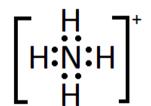
Esa distancia se denomina **longitud de enlace** y en la molécula de hidrógeno es de 0,74 A°. Si la distancia continúa disminuyendo, la energía potencial comienza a aumentar rápidamente.

La disminución inicial de la energía potencial es debida principalmente a la atracción simultánea que ejercen los dos núcleos sobre cada electrón, a diferencia de lo que ocurre en cada átomo de hidrógeno donde un núcleo atrae a un electrón. El aumento subsiguiente se debe a la repulsión núcleo-núcleo.

Existe entonces, una diferencia entre la *energía suma* dada por las ecuaciones de ondas respectivas de cada electrón y la *energía del sistema* cuando se produce la unión. A esa diferencia de energías se denomina **energía de unión**.

Si se comparan los valores teóricos y reales de estas energías, resulta mayor (aunque negativa) la real. Esto es porque se calculó la *energía teórica* suponiendo que un determinado electrón corresponde a un átomo y otro electrón a otro átomo (A-1 y B-2). Pero como la mecánica cuántica no puede indicar más que la probabilidad de hallar el electrón, sin identificarlo, debemos suponer que cualquier electrón estará en cualquier átomo (A-2 y B-1). Además puede ocurrir que el par de electrones esté circunstancialmente en un solo átomo (ión)

 $H \bullet \bullet H \qquad H^+ \quad \bullet \bullet H^- \qquad H^- \bullet \bullet \qquad H^+$


Teniendo en cuenta estas alternativas se calcula la energía del sistema y resulta muy cercana a la real.

Estructuras electrónicas de Lewis

El método de representar los enlaces por medio de puntos que a su vez representan a los electrones se conoce como *fórmula electrónica de Lewis*.

Cuando participa un par de electrones, el enlace se denomina **enlace covalente simple**. Entre los átomos puede haber compartido uno, dos y tres pares de electrones que corresponden a la existencia de enlaces simples, dobles o triples respectivamente.

En los enlaces covalentes, es posible formar un enlace simple para el cual el par de electrones es aportado por un solo átomo dador como en el caso del catión amonio

Este tipo de enlace se denomina frecuente *Enlace covalente coordinado*

También se pueden utilizar guiones para representar los pares de electrones que se comparten. Por ejemplo.

Hay que tener en cuenta que las estructuras de Lewis no presentan una imagen completa del enlace covalente, ya que en ellas solo se muestra el número de electrones de valencia, el número y tipo de enlaces y el orden en que los átomos se encuentran conectados y no sirven para representar formas tridimensionales de moléculas e iones poliatómicos. De todas maneras son útiles como modelos de enlace en muchos compuestos cuando se analizan las propiedades y reacciones de sus moléculas.

3

RESONANCIA

Algunas moléculas o iones poliatómicos pueden ser representados por dos o más fórmulas puntuales con el mismo ordenamiento de átomos. Por ejemplo el anión CO₃²-puede ser representado por:

Cada una de las formas posee estabilidad, función de onda y características particulares; sin embargo ninguna corresponde en forma completa a las propiedades del ión CO₃²⁻, ya que en realidad en dicho ión la longitud de los enlaces y la fuerza de los mismos, no corresponden a dobles ni a simples, sino a longitudes y fuerzas intermedias. O sea que ninguna de las estructuras responde en realidad a la molécula.

A este fenómeno se denomina **Resonancia** y a las estructuras individuales, formas canónicas o estructuras resonantes.

La relación entre las estructuras resonantes se indica mediante flecha de doble cabeza. Este símbolo no significa que en algún momento la molécula alcanza esos estados resonantes, sino que la estructura verdadera es un **híbrido de resonancia** entre ellas.

Las formas canónicas no tienen significado físico. Son una forma conveniente para dibujar una molécula en términos de las estructuras comunes de Lewis, aun cuando la molécula real no puede ser descrita mediante una sola formulación convencional.

El concepto de resonancia se aplica bien a sistemas orgánicos. Un ejemplo bien conocido es la molécula de benceno (C_6H_6) (ver Chang Pag. 370)

ESTRUCTURA MOLECULAR Y TEORIAS DEL ENLACE COVALENTE

Muchas propiedades físicas y químicas, tales como punto de fusión, punto de ebullición, densidad y los tipos de reacciones en que pueden intervenir las moléculas, se ven

afectadas por la organización tridimensional de los átomos en las mismas, o sea de su estructura molecular.

Las teorías actuales sobre el enlace permiten predecir estructuras y propiedades de manera acertada (aunque no siempre enteramente satisfactoria). Es necesario acordar que las teorías que se propongan deben estar de acuerdo con las observaciones experimentales. Cuando las observaciones están en desacuerdo con la teoría, hay que modificar esta última de manera que tenga en cuenta todas las observaciones conocidas.

Para tratar de explicar las estructuras de las moléculas covalentes discutiremos tres teorías:

- 1. Teoría de la repulsión del par electrónico en la capa de valencia (R.P.E.C.V.): básicamente considera que los pares de electrones de valencia se encuentran ordenados en torno al elemento central del compuesto de manera tal que existe una separación máxima (y por tanto repulsión mínima) entre ellos.
- **2. Teoría del enlace de valencia (T.E.V.)**: describe el enlace covalente como resultado de la superposición de orbitales de valencia de dos átomos.
- **3. Teoría de orbitales moleculares (T.O.M.)**: considera que la combinación de orbitales atómicos de átomos distintos, forma orbitales moleculares (OM) de manera que los electrones que participan en ellos pertenecen a la molécula considerada como un todo.

TEORÍA DE LA REPULSIÓN DEL PAR DE ELECTRONES EN LA CAPA DE VALENCIA (RPCV)

Esta teoría explica la distribución geométrica de los pares de electrones que rodean al átomo central en términos de las repulsiones entre dichos pares.

Teniendo en cuenta este modelo se puede predecir *la geometría de las moléculas* en forma sistemática.

La idea fundamental de esta teoría es que *los pares de electrones de la capa de valencia* se encuentran ordenados en torno al átomo central, de manera que las repulsiones entre ellos se reducen al mínimo.

Es conveniente destacar algunas reglas útiles para la aplicación de la RPECV:

- El enlace simple, el enlace doble, el enlace triple y un par no-compartido de electrones constituyen una *región única de alta densidad electrónica*.
- Los enlaces dobles y triples se pueden tratar como si fueran enlaces sencillos entre átomos adyacentes.
- Si para una molécula se pueden dibujar dos o más formas resonantes, el modelo RPECV se puede aplicar a cualquiera de ellas.

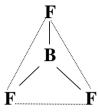
Para predecir la geometría de las moléculas, de acuerdo a esta teoría, es conveniente clasificar a las mismas en dos categorías, de acuerdo con la presencia o ausencia de pares de electrones libres en el átomo central.

Moléculas en que el átomo central no tiene pares libres

Por razones de simplificación consideraremos moléculas que tienen átomos de sólo dos elementos, **A** y **B**, de los cuales A es el átomo central.

Teniendo en cuenta que moléculas de fórmula AB serán por definición moléculas lineales, nos referiremos a moléculas de fórmulas: AB₂, AB₃, AB₄, AB₅ y AB₆.

Moléculas AB2

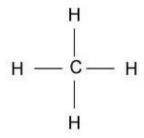

Un ejemplo de este tipo de moléculas lo constituye el BeCl₂. Para esta molécula, en el estado gaseoso, la estructura de Lewis es:

Los dos pares electrónicos tenderán a estar tan lejos como sea posible, por tanto se encontrarán en los extremos opuestos de una línea recta. Así, el ángulo ClBeCl será de 180°, y la molécula será lineal.

Moléculas AB₃

Podemos presentar como ejemplo la molécula de BF3 que contiene tres enlaces covalentes o pares enlazantes.

La distribución más estable será aquella en que las tres uniones BF apunten hacia los vértices de un triángulo equilátero con el B en el centro del triángulo

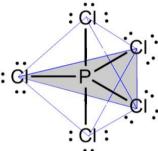


De acuerdo a esto la *geometría molecular* del BF₃ es *plana trigonal* donde cada uno de los ángulos FBF es de 120°.


Moléculas AB4

La teoría de la repulsión del par electrónico predice estructuras tetraédricas para moléculas AB₄ que carecen de pares de electrones no-compartidos en A.

Si tomamos como ejemplo al *metano* CH₄, la estructura de Lewis es:

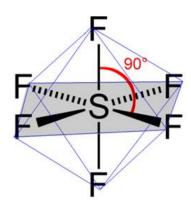


La estructura tetraédrica que predice la RPECV da el máximo de separación para cuatro pares de electrones en torno a un átomo. Así los cuatro pares de electrones se dirigen hacia los vértices de un tetraedro regular. Todos los ángulos de enlace son de 109.5°

Moléculas AB₅

Podemos tomar como ejemplo algunos halogenuros de elementos del grupo 15, como el PCl₅

La forma de minimizar las fuerzas de repulsión entre los cinco pares enlazantes es acomodar las uniones PCl en forma de bipirámide trigonal.


El átomo central (P) se localiza en el centro del triángulo común, con los otros cinco átomos ubicados en los vértices de la bipirámide trigonal. Se dice que los átomos que se encuentran arriba y abajo del plano triangular ocupan posiciones *axiales* y los que están en el plano triangular ocupan posiciones *ecuatoriales*. El ángulo entre cualquiera de los enlaces ecuatoriales es de 120°; el que se forma entre un enlace axial y uno ecuatorial es de 90°; y el que se encuentra entre los dos enlaces axiales es de 180°.

Moléculas AB₆

Como ejemplo podemos tomar al SF₆.

La estructura más estable para seis pares enlazantes SF es el octaedro.

El átomo central (S) se localiza en el centro de la base cuadrada y los otros seis átomos en los seis vértices. Todos los ángulos son de 90° excepto el que se forma entre el átomo central y los dos átomos diametralmente opuestos entre sí. Este ángulo es de 180°.

Moléculas en las cuales el átomo central tiene uno o más pares libres

La determinación de la geometría de una molécula es más complicada si el átomo central tiene tanto pares enlazantes como pares libres. En tales moléculas hay tres tipos de fuerzas de repulsión: entre pares enlazantes, entre pares libres y entre un par enlazante y un par libre. En general las fuerzas de repulsión disminuyen en el siguiente orden:

par libre-par libre > par libre-par enlazante > par enlazante-par enlazante

Los electrones en un enlace están unidos por las fuerzas de atracción ejercidas por los núcleos de los dos átomos enlazados. Estos electrones tienen "distribución espacial" menor: esto es, ocupan menos espacio que un par de electrones libres, los cuales están asociados sólo a un átomo en particular. En consecuencia, el par de electrones libres en una molécula ocupa más espacio y experimenta una mayor repulsión hacia los pares de electrones enlazantes.

Para el tipo de moléculas mencionadas es preciso distinguir entre la **geometría electrónica** y la **geometría molecular**.

La geometría electrónica se refiere al arreglo de todos los pares de electrones que rodean al átomo central, tanto enlazantes como libres.

Por otro lado, la geometría molecular se refiere al ordenamiento de átomos (es decir núcleos) y por tanto sólo se toma en cuenta como están colocados los pares enlazantes.

Veamos algunos ejemplos:

Moléculas tipo AB₂E con un par libre (SO₂)

La estructura de Lewis de SO_2 es: $O = \ddot{S} = O$

Dado que en este esquema simplificado se tratan los dobles enlaces como si fueran sencillos, la molécula de SO₂ se puede visualizar como un átomo central de azufre rodeado por tres pares de electrones. De éstos, dos son pares enlazantes y uno es un par libre. Sabemos que el arreglo global para tres pares de electrones es un triángulo, pero debido a que uno de los pares de electrones es un par libre, la molécula de SO₂ tiene una forma angular

Dado que la repulsión par libre-par enlazante es mayor que la repulsión par enlazante-par enlazante, los dos enlaces azufre-oxígeno se cierran ligeramente y el ángulo OSO es menor de 120°. En experimentos se ha observado que es de 119,5°.

Molécula tipo AB₂E₂ con dos pares de electrones libres (H₂O)

Una molécula de agua contiene dos pares enlazantes y dos pares libres:

La geometría electrónica es tetraédrica, pero tiene dos pares libres en el átomo central de Oxígeno que tienden a separarse tanto como sea posible, por lo que se puede predecir una desviación del ángulo tetraédrico. Efectivamente, en la molécula de agua el ángulo HOH es de 104.5° y la geometría molecular es angular.

Moléculas AB₃E con un par libre (NH₃)

La molécula de amoniaco tiene tres pares enlazantes y un par libre:

10

La geometría electrónica es tetraédrica, pero la existencia del par libre hace que la geometría molecular sea la de una pirámide triangular. Dado que el par libre repele a los pares enlazantes más fuertemente, los tres pares enlazantes NH se acercan; así que el ángulo HNH en el amoniaco es apenas menor que el ángulo tetraédrico ideal de 109.5°, efectivamente, experimentalmente se observa un ángulo de 107°.

Moléculas AB₄E con un par libre (SF₄)

La estructura de Lewis del SF₄ es:

El átomo central de azufre tiene cinco pares de electrones, cuya distribución corresponde a una bipirámide triangular. Sin embargo, uno de los pares de electrones es un par libre, por lo que la molécula debe tener una de las siguientes geometrías:

En la figura (a), el par libre ocupa una posición ecuatorial, y en la (b) ocupa una posición axial. La posición axial tiene tres pares vecinos a 90° y uno a 180°, mientras que la posición ecuatorial tiene dos pares vecinos a 90° y dos pares a 120°. La repulsión es menor en la figura (a) y ésta es la observada experimentalmente.

11

Recordemos que el modelo de RPECV genera predicciones confiables para las geometrías de numerosas estructuras moleculares. En ese sentido lo aceptamos y usaremos sus propuestas debido a su sencillez y utilidad.

TEORIA DEL ENLACE DE VALENCIA

El modelo de RPECV proporciona un método relativamente sencillo y directo para predecir la geometría de las moléculas. Pero no explica con claridad de qué manera se forma el enlace covalente.

Se utilizan dos teorías mecánico-cuánticas para describir el enlace covalente y la estructura electrónica de las moléculas: *la teoría del enlace de valencia (EV)*, supone que los electrones en una molécula ocupan orbitales atómicos de los átomos individuales, *y la teoría de orbitales moleculares (TOM)* que propone la formación de orbitales moleculares a partir de orbitales atómicos.

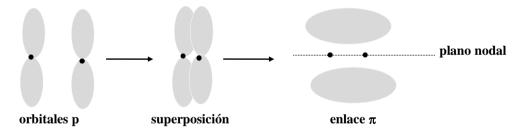
La teoría del enlace de valencia fue desarrollada por Heitler y London en 1927, es decir solo un año después de que Schrödinger introdujera la ecuación de onda. Los postulados fundamentales de esta teoría son:

- Las moléculas resultan de conducir los átomos con todos sus electrones (átomos completos) y unirlos para formar el enlace.
- Los electrones responsables de los enlaces son los **electrones de valencia.**
- Los orbitales atómicos involucrados en la formación de los enlaces son aquellos en donde residen los electrones de valencia, es decir, los **orbitales de valencia**.
- El enlace se produce cuando un orbital de valencia que posee un electrón, de un átomo, se *superpone* con otro orbital de valencia que posee un electrón, de otro átomo.

Un criterio importante de esta teoría es que los orbitales atómicos, que toman parte del enlace, tengan una superposición máxima.

De acuerdo al tipo de orbitales atómicos y de la orientación que presenten los mismos al superponerse, pueden distinguirse distintos tipos de enlaces:

A.- Superposición de orbitales atómicos s


B.- Superposición de orbitales atómicos p en la orientación "cabeza a cabeza"

C.- Superposición de orbitales s y p

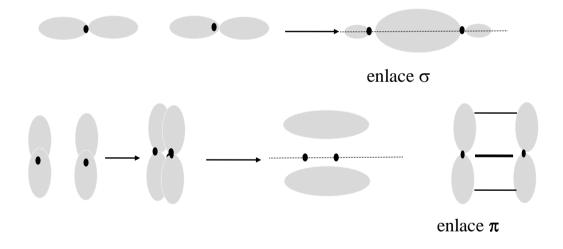
D.- Superposición de orbitales p en orientación lateral

En estas representaciones puede notarse que el enlace σ no presenta *plano nodal que contenga al eje internuclear*, es decir, al enlace. En cambio los enlaces π *poseen un plano nodal que contiene al eje internuclear*.

También puede notarse que tanto en los enlaces σ como π la nube de carga electrónica se vuelve más concentrada entre los átomos (aumenta la probabilidad electrónica entre los núcleos) lo que permite la formación del enlace al disminuir la repulsión entre los núcleos.

Los enlaces σ son más fuertes que los enlaces π , pues en ellos se produce una superposición mayor de los orbitales atómicos. Por esta causa cuando dos átomos

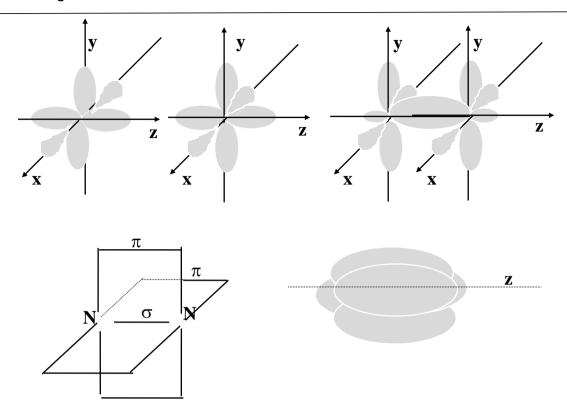
posean dos orbitales **p** con un electrón cada uno, ellos se superpondrán en la orientación "cabeza a cabeza", formando enlace σ que hará que la molécula sea más estable.


Tal es el caso de una molécula de F₂ a partir de dos átomos de F; pues si recordamos la configuración electrónica de F

F: [He] $2s^2 2p_x^2 2p_y^2 2p_z^1$, los orbitales $2p_z$ se ubicarán "cabeza a cabeza" formando un enlace σ covalente. Este será un caso de *enlace covalente simple*.

En moléculas como la de O2 donde cada átomo de oxígeno presenta configuración:

O: [He]
$$2s^2 2p_x^2 2p_y^1 2p_z^1$$


los orbitales $2p_z$ se ubicarán cabeza a cabeza formando un enlace σ , pero quedan enfrentados dos orbitales p_y con un electrón cada uno que podrán formar un enlace π . Este será un caso de *enlace doble donde hay un enlace* σ y uno π

La molécula de N_2 se forma por la unión de dos átomos de N cuya configuración electrónica es:

N: [He]
$$2s^2 2p_x^1 2p_y^1 2p_z^1$$

de manera que se formará un enlace σ entre los p_z cabeza a cabeza quedando los orbitales p_y paralelos entre sí, lo mismo que los p_x , de modo que se formarán también dos enlaces π entre ellos.

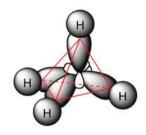
HIBRIDACIÓN DE ORBITALES

Para algunas moléculas la utilización de orbitales atómicos puros no puede explicar la existencia de un determinado números de enlaces covalentes ni la geometría molecular.

Por ejemplo, si se analiza la configuración normal del átomo de carbono

C: 1s² 2s² 2p², éste solo podría formar dos enlaces covalentes, por tener dos electrones desapareados, sin embargo es bien conocida su tetravalencia, es decir la formación de cuatro enlaces covalentes. Además, en el caso del compuesto más simple entre carbono e hidrógeno (CH₄) la geometría de la molécula corresponde a un tetraedro regular.

Esto puede explicarse, pensando en una recomposición de los orbitales atómicos del carbono. Mediante la entrega de energía de promoción el carbono deja 4 electrones desapareados:


$$2s^2 2p^2$$
 $2s^1 2p_x^1 2p_y^1 2p_z^1$

Es un estado **excitado**, pero que no alcanza a explicar los ángulos de enlaces, pues se deberían formar 3 uniones con ángulos de 90° entre sí (orbitales p) y otro diferente; sin embargo en CH₄ todas las uniones son iguales y forman ángulos de 109°.

Para ello suponemos que mediante la entrega de una energía extra (energía de valencia) el carbono pasa a un **estado de valencia** (hipotético) donde se produce la *combinación de los orbitales s y p produciendo cuatro orbitales equivalentes, cada uno con ¹/₄ de aporte de s y ³/₄ de aporte de p.*

Estos cuatro orbitales estarían ubicados tal que sus lóbulos estén dirigidos hacia los cuatro vértices de un tetraedro.

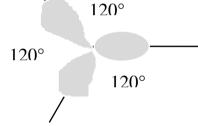
El ángulo de separación para cada par de orbitales es de 109° y se los denomina *orbitales híbridos sp*³ o también que el carbono tiene *hibridación sp*³.

Algunos tipos de hibridización

Hibridización sp

El berilio forma compuestos como BeCl₂, BeBr₂, Be(CH₃)₂ que, como moléculas gaseosas libres, son lineales y supuestamente covalentes las uniones.

La estructura electrónica del berilio $1s^2 2s^2$ no supone posibilidad de uniones covalentes. Pero si el Be es promovido a un estado **excitado** $2s^1 2p^1$ y luego a un **estado de valencia** con dos híbridos sp equivalentes y lineales, podrá unirse con dos átomos o grupo iguales monovalentes.

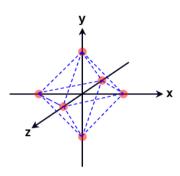

Esto vale para los halogenuros de otros metales del grupo 2 en estado gaseoso. También para el Hg con estructura [Xe] $5d^{10}$ $6s^2$, que promocionará un electrón desde el orbital **s** a un orbital **p**, y luego hibridazará **sp**, en compuestos como HgCl₂ y Hg(CN)₂.

Los dos híbridos tienen igual proporción de s y de alguno de los orbitales p, quedando sobre el eje del respectivo p que los forma.

Hibridización sp²

Elementos del grupo 13 con configuración $ns^2 np^1$, para formar moléculas MX_3 , donde M puede ser B, Al, Ga, In, Tl, y X es halógeno o radical orgánico como CH_3 , pueden formar **híbridos sp²**. Esto supone la promoción a un estado $\mathbf{s^1} \, \mathbf{p_x^1} \, \mathbf{p_y^1} \, \mathbf{y}$ luego a un estado de valencia con *tres orbitales híbridos* $\mathbf{sp^2}$ *equivalentes, trigonales*.

Los tres orbitales se ubican en *un mismo plano y sobre tres ejes separados por ángulos de 120*°.


Cada uno de los orbitales posee 1/3 de s y 2/3 de p

En general los orbitales híbridos dan una *concentración mucho mayor de la nube electrónica en ciertas direcciones*, que los simples orbitales que los forman. Esto indica una mayor superposición o mayor solapamiento con orbitales de otros átomos, en las direcciones privilegiadas que los contienen.

Hibridación d²sp³ o hibridación octaédrica

Ocurre con estructuras como la del azufre (ns² np⁴) que puede combinar los orbitales 3s, $3p_x$, $3p_y$, $3p_z$, $3d_{x^2y^2}$ y $3d_{z^2}$ formando seis orbitales equivalentes.

Esta hibridación es poco probable porque es muy grande el valor de la energía de promoción para llevar el azufre de [Ne] $3s^2$ $3p^4$ a [Ne] 3s $3p^3$ $3d^2$ y no puede compensarlo con la formación de 6 enlaces, salvo en muy pocos casos.

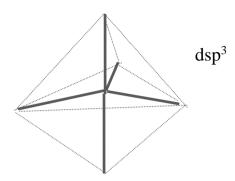
Hibridación dsp² o cuadrada plana

Resultan de la combinación de un orbital $\mathbf{d}_{\mathbf{x}^2\mathbf{y}^2}$, un \mathbf{s} y dos \mathbf{p} ($\mathbf{p}_{\mathbf{x}}\mathbf{p}_{\mathbf{y}}$), para dar cuatro orbitales equivalentes $\mathbf{d}\mathbf{s}\mathbf{p}^2$ cuyos lóbulos están dirigidos hacia los vértices de un cuadrado que yace en el **plano xy.**

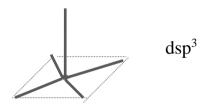
Ocurre en elementos de transición con orbitales d estables.

Hibridación sd³ o tetraédrica

Resultan de la combinación de un orbital s y los orbitales d_{xy} , d_{xz} , d_{yz} para dar un conjunto de cuatro orbitales equivalentes similares a los sp^3 en su distribución.


En algunos elementos como manganeso y cromo, cuando producen hibridación sd³, seguramente también tendrá carácter de sp³ por la proximidad de los niveles.

Hibridación dsp³ o trigonal bipiramidal


Sería la combinación de los orbitales s, p_x , p_y , p_z , y d_{z^2} formando un conjunto de cinco orbitales híbridos no equivalentes.

Esto sucede en el PF₅. Hay dos orbitales axiales que tienen contribución de p_z y d_{z^2} y tres orbitales ecuatoriales con contribución de s, p_x , p_y .

Hibridación dsp³ o piramidal cuadrada.

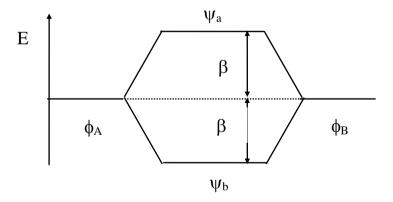
Sería la combinación de los orbitales \mathbf{s} , $\mathbf{p}_{\mathbf{x}}$, $\mathbf{p}_{\mathbf{y}}$, $\mathbf{p}_{\mathbf{z}}$, $\mathbf{d}_{\mathbf{x}^2\mathbf{y}^2}$, formando un conjunto de cinco orbitales, cuatro equivalentes y uno axial no equivalente.

TEORÍA DE LOS ORBITALES MOLECULARES T.O.M

La teoría de la ligadura de valencia o del par electrónico supone básicamente que estos electrones se encuentran localizados **entre los núcleos** y que las funciones de onda correspondientes a estos electrones son productos de funciones de ondas atómicas.

La teoría de los OM parte de **varios núcleos como están dispuestos en la molécula** y determinan los orbitales que corresponden a los electrones en el campo de este conjunto de núcleos. Estos orbitales **multicéntricos** constituyen el conjunto de orbitales que debe ser llenado con tantos electrones como lo requiera la molécula considerada.

Combinación lineal de orbitales atómicos (CLOA)


Como resulta muy difícil resolver el problema de un electrón que se mueve en el campo de dos o más núcleos, la teoría de los OM utiliza una aproximación simple y cualitativamente útil: un electrón de un OM se encontrará siempre cerca de un núcleo y relativamente lejos de los demás. Por tanto, en ese momento se comportará como si estuviese en ese orbital atómico de ese núcleo, así sucesivamente.

Para el caso de la molécula más simple, la de hidrógeno, pero con un solo electrón H_2^+ , podemos llamar ϕ_A y ϕ_B a los estados del electrón en los núcleos A y B.

Cuando el electrón se encuentra en una posición cualquiera respecto de los núcleos, se le puede describir aproximadamente por la **superposición de ambas** $\phi_A \pm \phi_B$. **Esta suma algebraica de funciones se denomina combinación lineal**. Resultarían así las funciones de onda: ψ_b y ψ_a .

$$\psi_b = (\phi_A + \phi_B)$$
. Nb $\psi_a = (\phi_A - \phi_B)$. Na

Se puede demostrar que ψ_b contribuye con más densidad electrónica y ψa con menos densidad que la simple suma de orbitales atómicos que no interaccionan.

 ψ_b se denomina **orbital ligante** (o enlazante) ψ_a se denomina **orbital antiligante** (antienlazante)

Los orbitales atómicos que no intervienen en el enlace se denominan **orbitales no** enlazantes.

Si se calculan las energías para estas fracciones encontramos que: Ea= ϕ + β Eb= ϕ - β donde ϕ sería la E de cualquiera de los orbitales atómicos ϕ_a y ϕ_b .

Teniendo en cuenta estos dos primeros orbitales moleculares dados por ψ_a y ψ_b para la molécula de H_2^+ , podemos agregar un **electrón para obtener H_2.** Este segundo electrón se alojará en ψb , que posee menos energía, junto al electrón que ya se encontraba. Este nuevo electrón se apareará con el electrón ya existente (spines contrarios).

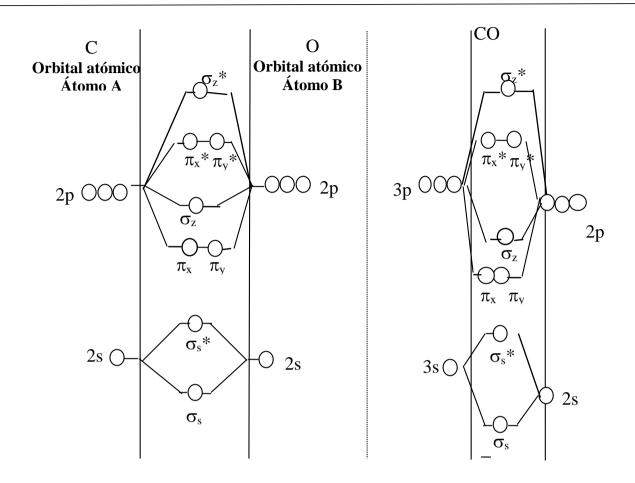
La energía total favorable **será 2β**.

Supongamos ahora unir un átomo de **He y otro de H** se formarán dos orbitales:

$$\psi_b = \phi_{He} + \phi_H$$
 ligante y $\psi_a = \phi_{He} - \phi_H$ antiligante

De acuerdo a la energía de ambos OM se ubicarán los electrones así: $\psi_b^2 \psi_a^1$. La **energía total favorable será** β . Para confirmar lo predicho por OM, se conoce una molécula HeH estable en fase gaseosa.

Si combinamos 2 átomos de He, los 4 electrones se distribuirán según: $\psi_b^2 \psi_a^2$. Por lo tanto la **energía total de la misma será 2\beta - 2\beta = 0**. Esto explica por qué los gases inertes son monoatómicos.


Los OM ligantes y antiligantes formados a partir de orbitales atómicos \mathbf{s} se representan como $\sigma \mathbf{s} \mathbf{y} \ \sigma \mathbf{s}^*$ respectivamente. También se pueden representar como $\sigma_1 \mathbf{y} \ \sigma_1^*$.

Orbitales moleculares del nivel de valencia 2s 2p

Si se unen dos átomos iguales de este nivel se van a combinar los orbitales atómicos s, p_z , p_x , y p_y para originar 8 OM.

Se conoce que los **orbitales s y p**_z **se mezclan entre sí** sobre todo en los primeros elementos del segundo período para **formar 4 OM** σ . Los orbitales **p**_x **y p**_y **se combinan para formar 4 orbitales** π . Por lo menos hasta N₂, el orden de energía para estos OM será: σ_1 ; σ_1^* ; π_x π_y ; σ_2 ; π_x^* π_y^* ; σ_2^* .

En general, se acostumbra a que los orbitales p que se unen "cabeza a cabeza" para dar OM con los p_z , por ello a σ_2 también se lo representa como σ_z .

Concepto de orden de unión

El orden de unión en la teoría de OM se define como el número de pares de electrones que ocupan orbitales ligantes menos el número de pares de electrones que ocupan orbitales antiligantes.

Un mayor orden de unión está asociado a una mayor fortaleza del enlace lo que queda evidenciado por una energía de disociación más elevada y una menor longitud de enlace.

Para los ejemplos analizados anteriormente sería:

 H_2^+ : electrón en ψ_b^1 o σ^1 —•orden de unión: $\frac{1}{2}$

H₂: 2 electrones en ψ_b^2 o σ^2 — orden de unión: 1

HeH: 3 electrones en $\psi_b^2 \psi_a^1$ o $\sigma^2 \sigma^{*1}$ —preden de unión: 1 - $\frac{1}{2}$ = $\frac{1}{2}$

He₂: 4 electrones en $\psi_b^2 \psi_a^2$ o $\sigma^2 \sigma^{*2}$ —rden de unión: 1-1= 0

22

Otros ejemplos de moléculas diatómicas homonucleares

$$Li_2: \sigma_1^2$$
 O. U= 1

Be₂: Los 4 electrones se alojarán en σ_1^2 , σ_1^{2*} con orden de unión = 0. En la naturaleza no ha sido observado. Según la teoría del enlace valencia (TEV) podría tener orden de unión = 2 (2 orbitales híbridos sp) lo que no es correcto.

B₂: $\sigma_1^2 \sigma_1^{*2} \pi^2$ orden de unión: 2-1=1.

La TEV puede explicar una valencia 3, lo que no está de acuerdo a la longitud y fortaleza de la unión.

 C_2 : $\sigma_1^2 \sigma_1^{*2} \pi^4$; orden de unión: 3-1=2

Esto es consistente con lo observado en la naturaleza.

 N_2 : El llenado de los OM todavía responde al orden dado: $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2$ orden de unión: 4-1=3

O₂: La estructura podría tener algunas variaciones en el orden de OM σ_2 y π , pero como ambas explican bien los hechos experimentales podemos dar: $\sigma_1^2 \sigma_1^{*2} \pi^{*4}$, $\sigma_2^2 \pi^{*2}$ con orden de unión: 4-2=2

F₂: Al agregar 2 electrones más a la estructura del O₂ sólo quedaría sin llenar σ_2^* , la estructura sería: $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2 \pi^{*4}$ orden de unión: 4-3=1

Ne₂: $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2 \pi^{*4} \sigma_2^{*2}$ orden de unión: 4-4=0. No existe la molécula de Ne₂.

Moléculas diatómicas heteronucleares

No difiere fundamentalmente el concepto de CLOA visto para moléculas homonucleares. En general los OM de moléculas heteronucleares no serán simétricas respecto a un plano perpendicular al eje internuclear en su punto medio y determinará la formación de uniones polares.

También hay que notar que cuando las energías de los OA a combinar estén muy distantes, seguramente no se mezclarán.

Ejemplos:

HCl: Se combinan 1s y $3p_z$ formando 2orbitales σ , uno ligante y otro antiligante. Además los orbitales 3s y $3p_y$ $3p_x$ del cloro son no **ligantes** pues no intervienen en la unión. El orden de unión es: 1 - 0 = 1

CO: Se llenarán los OM con 6 electrones del O y 4 del C. σ_1^2 σ_1^{*2} π^4 σ_2^2 . Orden de unión: 4 - 1=3

En la teoría de TEV la valencia tendía a ser 2 y no explicaba la unión tan corta C-O que se puede explicar C = O.

NO: Los cinco electrones del N y los seis del O, se ordenarán de la siguiente manera: $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2 \pi^{*1}$. El orden de unión será: $4 - 1,5 = 2 \frac{1}{2}$. Esto explicaría una unión más fuerte y más corta que la doble. Además la tendencia del NO a perder un e⁻ (el antiligante) y transformarse en NO⁺ donde la unión es más fuerte y corta, que se explica porque NO⁺ tendrá una estructura $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2$ con O.E = 3

Electronegatividad

Se define como un índice del poder de atracción de los electrones por parte de un átomo cuando éste interviene en un enlace químico.

De las diferentes escalas propuestas para expresar las electronegatividades, se utiliza la de Pauling (1932).

Carácter iónico parcial de los enlaces covalentes

En un enlace heteronuclear, el par electrónico presente en el orbital de enlace está más cerca del átomo más electronegativo. Esto conduce a la formación de un **enlace covalente parcialmente iónico**, también llamado **enlace polar**.

En un **enlace no polar**, el par electrónico del enlace está compartido en **forma igual** por los átomos enlazados. Ejemplo H·· H H - H

En el enlace polar, el par electrónico enlazado reside en forma clara **en el átomo más electronegativo.**

El carácter iónico del enlace covalente depende de las diferencias de electronegatividad de los átomos enlazados.

Pauling consideró la naturaleza polar del enlace en términos del momento dipolar (μ) que se define como el producto de la carga por la distancia internuclear.

$$\mu = q * d$$

Los valores de μ para los enlaces individuales (llamados momentos de enlaces) se **suman en forma vectorial** para obtener el momento dipolar del compuesto.

La unidad del momento dipolar se llama **debye** (**D**). Cuando la carga es igual a la del electrón o protón y la distancia es de 1 A°, el momento dipolar e igual a 4,8 D. Si no hay separación de cargas, la molécula no tendrá momento dipolar y el enlace se describe como un **enlace covalente puro**; por el contrario, a una transferencia total de electrones le corresponde una **estructura iónica**.

El **valor experimental** del momento dipolar estará entre estos dos extremos. El **porcentaje de carácter iónico** se determina a partir de la comparación del momento dipolar experimental y del momento dipolar esperado si existiera una completa transferencia de cargas.

$$%car$$
á $cter~i$ ó $nico = \frac{\mu ~exp}{\mu ~te$ ó $rica * 100$

El μ teórico puede calcularse a partir del valor de la carga electrónica (4,8 x 10⁻¹⁰ u.e.s) y la distancia internuclear de la molécula en cuestión.

$$\mu$$
 teórico= (4,8 x 10⁻¹⁰ u.e.s)*d

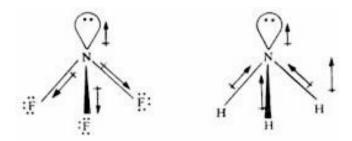
% carácter iónico de los haluros de hidrógeno

Haluro	μ ехр	d	μ teor	%	
	D	A°	D		
HF	1,98	0,92	4,42	45	1 debye(D)= 1.10^{-10} u.e.s.A°
HC1	1,03	1,28	6,07	17	
HBr	0,79	1,43	6,82	12	
HI	0,38	1,62	7,74	5	

Momento dipolar para moléculas formadas por tres o más átomos

En estos casos el momento dipolar depende tanto de la polaridad de cada uno de los enlaces como de la geometría de la molécula. Por ejemplo, la presencia de un enlace polar no necesariamente implica que la molécula tenga momento dipolo. Si consideramos la molécula de CO₂, dado que es una molécula triatómica, su geometría o es lineal o es angular

(a) es una molécula lineal, el momento dipolar es cero, (b) es una molécula angular posee momento dipolar.


En cada caso el momento dipolar de la molécula completa es la resultante de los dos momentos de enlace, esto es, los momentos dipolo individuales en los enlaces polares C=O. El momento dipolar medido es igual a la suma de estos dos momentos de enlace. El momento dipolo es una *cantidad vectorial*, es decir tiene magnitud y dirección.

Dado que los dos momentos de enlace en el CO₂ tienen igual magnitud y direcciones opuestas en la molécula lineal, la suma o resultante del momento dipolar es cero.

Por otro lado si la molécula de CO₂ fuera angular, los dos momentos de enlace se reforzarían parcialmente entre sí, de tal manera que la molécula tendría un momento dipolar.

La evidencia experimental muestra que la molécula de CO₂ no presenta momento dipolar. En consecuencia se concluye que el dióxido de carbono es una molécula lineal, lo cual es consistente con su carácter no polar.

Si se consideran las moléculas de NH₃ y NF₃ podemos ver que en ambas moléculas el átomo central es nitrógeno y tiene un par libre, cuyo momento de enlace apunta hacia afuera del átomo de nitrógeno. Se sabe que el nitrógeno es más electronegativo que el hidrógeno y así mismo que el flúor es más electronegativo que el nitrógeno. Por lo que el momento dipolar resultante en el NH₃, es mayor que en el NF₃.

Las mediciones de momento dipolar también se pueden aplicar para diferenciar moléculas. Por ejemplos las siguientes dos moléculas existen ambas; tienen la misma fórmula molecular C₂H₂Cl₂, el mismo número y tipo de enlaces, pero diferentes estructuras moleculares:

Dado que el cis-cloroetileno es una molécula polar pero el trans-dicloretileno no lo es, se pueden diferenciar fácilmente mediante mediciones de momento dipolo.

Enlace por puente hidrógeno

Las sustancias que poseen átomos de H unidos a elementos más electronegativos, presentan una serie de propiedades que se pueden explicar suponiendo que el hidrógeno posee una cierta afinidad residual para atraer otros átomos electronegativos.

El ejemplo típico lo constituye el agua. El efecto de atracción de electrones por parte del oxígeno bastante pronunciado, razón por la cual el hidrógeno de una molécula con

una carga parcial positiva es atraído por el átomo de oxígeno de la molécula contigua formándose un enlace que se conoce como puente de hidrógeno.

Estos enlaces se pueden extender a otras moléculas contiguas formando una "asociación de moléculas". Esta propiedad explica los elevados puntos de fusión y de ebullición del agua en comparación con los otros compuestos hidrogenados de los calcógenos (H₂S, H₂Se, H₂Te).

Otros tipos de interacciones electrostáticas

Existen otros tipos de interacciones electrostáticas que, a pesar de ser mucho más débiles que la interacción ión - ión son muy importantes en la explicación de ciertos fenómenos.

Ejemplos: ión-dipolo; dipolo-dipolo; ión-dipolo inducido; dipolo-dipolo inducido; dipolo inducido-dipolo inducido.

Concepto de dipolo:

Se produce un dipolo químico entre dos átomos cuando existe una **distribución desigual de cargas en la molécula**. Esta distribución desigual puede presentarse en una molécula diatómica como consecuencia de diferencias entre las electronegatividades de ambos átomos, o en una molécula poliatómica angular cuando se presentan diferencias análogas.

Un dipolo es una sustancia que no es iónica, en la que un extremo posee carga positiva o negativa respecto al otro.

Dipolo inducido: Los iones fuertemente positivos o negativos cuando se encuentran en las proximidades de moléculas que posean electrones relativamente alejados de los centros de atracción positiva. Perturban estas distribuciones electrónicas lo suficiente para que se produzcan dipolos inducidos.

28

Polarización:

Cuando se acercan dos iones A⁺ y B⁻ a distancias muy pequeñas, además de la interacción de tipo coulómbico, se producirá **una interacción debida a la polarización mutua**. Cuanto más pequeño y cargado sea el catión mayor será la polarización que produce.

REACCIONES DE OXIDACIÓN-REDUCCIÓN

Se denominan *Reacciones Redox* aquellas que se producen con cambio en el número de oxidación de dos o más especies químicas.

También podemos decir que en este tipo de reacciones se produce transferencia de electrones a veces obvia y otras no tanto.

Ejemplo:

$$Zn + Cu^{++} \rightleftharpoons Zn^{++} + Cu$$

En esta reacción la transferencia de electrones es manifiesta, mientras que:

$$2 CO + O_2 \rightleftharpoons CO_2$$

Es también una reacción redox pero donde la transferencia de electrones no es tan notable.

Estados de oxidación

El concepto de estado de oxidación se deriva de la necesidad de describir los cambios efectuados por las reacciones de óxido-reducción.

Se sigue una serie de reglas para asignar dichos estados de oxidación. Así por ejemplo:

- 1.- Para un elemento en cualquiera de sus formas alotrópicas es **cero**.
- 2.- Para iones sencillos monoatómicos es igual a la carga neta del ión:

$$S^{2-}(-2)$$
, $Cl^{-}(-1)$, $Fe^{2+}(+2)$.

- 3.- El estado de oxidación del oxígeno es (-2) en todos los compuestos, excepto en los peróxidos como H₂O₂ y Na₂O₂ (-1).
- 4.- El estado de oxidación del hidrógeno es (+1) en todos sus compuestos excepto en los que forma con los metales, donde es (-1).
- 5.- Todos los otros estados se escogen para que la suma algebraica de los estados de oxidación sea igual a la carga neta de la molécula o ión.

Podemos resumir una serie de términos utilizados en este tipo de reacciones en el siguiente cuadro:

Término	N° de oxidación	N° de electrones	
Reducción	disminuye	aumenta	
Oxidación	aumenta	disminuye	
Agente oxidante	disminuye	aumenta	
Agente reductor	aumenta	disminuye	
Forma oxidada	aumenta	disminuye	
Forma reducida	disminuye	aumenta	

Reacciones redox en soluciones acuosas

Son muchos los ejemplos de reacciones redox que suceden en soluciones acuosas y se producen entre iones en mayor o menor escala:

$$3 \; \text{Cu} + \; \text{H}^{+} + 2 \; \text{NO}_{3}^{-} \rightleftharpoons 3 \; \text{Cu}^{2+} + 2 \text{NO} + 4 \; \text{H}_{2} \text{O}$$

Estas reacciones pueden interpretarse como dos procesos o *hemirreacciones*: de oxidación y de reducción.

$$Cu \rightleftharpoons Cu^{2+} + 2e^{-}$$
 oxidación

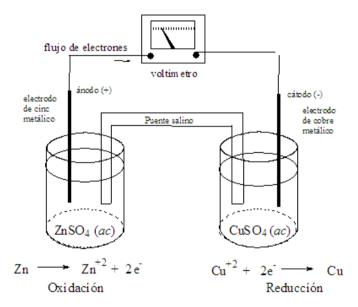
$$NO_3^- + 4H^+ + 3e^- \rightleftharpoons NO + 2 H_2O$$
 reducción

Igualando el número de electrones que se necesitan en cada hemirreacción (multiplicando cada ecuación por un coeficiente adecuado), la suma algebraica de ambas dará la ecuación global.

La igualación de estas hemirreacciones se puede realizar aplicando el denominado **método del ion -electrón.**

Para ello se deben tener en cuenta las siguientes consideraciones:

Se deben utilizar las especies que mejor representan a los compuestos en la solución. Además en el caso de oxoaniones, será necesario la utilización de iones H⁺ y H₂O si el medio es ácido, y HO⁻ y H₂O si el medio es básico.


Otros ejemplos:

a)
$$CuS + NO_3^- \rightleftharpoons Cu^{2+} + SO_4^{2-} + NO$$

$$\mathbf{b}) \qquad \mathbf{I}^{-} + \mathbf{H}_2 \mathbf{SO}_4 \ \rightleftharpoons \ \mathbf{I}_2 + \mathbf{SO}_2$$

PILA

Es un sistema químico del cual puede obtenerse energía eléctrica. La condición fundamental para que esto sea posible es mantener separados los agentes oxidante y reductor a fin de que la transferencia de electrones se realice forzosamente por una vía exterior.

Potenciales normales de oxidación-reducción

- 1.- Se puede medir la tendencia de un elemento dado a sufrir oxidación o reducción en una celda galvánica.
- 2.- Se atribuye un valor convencional a una hemirreacción entre todas las conocidas, ésta se convierte en el patrón o estándar que sirve de referencia.
- 3.- La hemirreación de referencia para potenciales de oxidación-reducción es:

$$H_{(aq)}^{+} + e^{-} \rightleftharpoons \frac{1}{2} H_{2(g)}$$
 [1M]; p = 1atm

Se le adjudica el valor de potencial normal $E^{\circ}=0,00$ v a cualquier temperatura y sirve para referir a ese valor el resto de los potenciales de otros sistemas redox.

Como los valores de los electrodos pueden ser mayores o menores que el de hidrógeno, podrán tener valores positivos o negativos.

Potencial real de un electrodo

Una barra de cinc sumergida en una solución que contiene iones cinc (Zn^{2+}) de actividad unitaria $(A_{zn++}=1)$ o (1M), a 25 °C, posee un potencial de -0,7627 v respecto al electrodo patrón de hidrógeno.

El signo otorgado al potencial del electrodo del cinc proviene del hecho de que si se construye una pila con este electrodo y el electrodo de hidrógeno, conectándo entre sí mediante un puente salino, será necesario **conectar el electrodo de cinc al terminal** (-) y el electrodo de hidrógeno al terminal (+) de un potenciómetro que indicará la diferencia de potencial que existe entre ambas hemipilas. Desde un punto de vista físico, podemos decir que el electrodo de cinc es más rico en electrones que el de hidrógeno.

Potencial de una hemirreacción: Potenciales de oxidación y reducción

El que una reacción química se produzca no es sino una consecuencia de la tendencia que tienen los sistemas químicos a **alcanzar un estado de equilibrio**.

En toda reacción química, las fuerzas que conducen al establecimiento del estado de equilibrio están gobernadas en sentido termodinámico por la tendencia que posee la **Energía Libre** del sistema a decrecer hasta que resultan iguales las energías libres de los productos de reacción y de las sustancias reaccionantes.

Energía Libre

Es una función termodinámica que indica el **máximo trabajo útil** que puede obtenerse al pasar desde el estado inicial al estado final. En una reacción química es igual a la **suma de las energías libres de los productos menos la suma de las energías libres de formación de los reactivos.**

Para que una reacción se produzca espontáneamente es necesario que durante la misma se verifique una disminución de la energía libre del sistema, o sea que en un **proceso** espontáneo la variación de energía libre debe ser negativa, o sea $\Delta G < 0$

Las alteraciones del valor de energía libre en los sistemas redox están vinculadas con la tendencia del reductor a perder electrones y la del oxidante a ganarlos.

Esta tendencia puede medirse en forma de **fuerza electromotriz** (**F.E.M**) y expresarse por medio de medidas de potenciales (**E**)

Retomando al ejemplo del cinc en solución de $A_{zn2+}=1$ y recordando que el potencial y la energía libre (ΔG°) para el electrodo normal de hidrógeno es cero, se puede escribir:

Como el Zn se disuelve en las condiciones de acidez definidas, la reacción 1 será la reacción espontánea, o sea que allí ΔG debe ser negativa ($\Delta G^{\circ} = -35,18$ Kcal). Además para un sistema redox la energía libre viene dada por:

$$\Delta G^0 = -nFE^0$$

De donde:

$$E^0 = -\frac{\Delta G^0}{nF}$$

Si como hemos dicho ΔG es negativo, será entonces E° positivo, y en este caso es $E^{\circ}=+0.7627$ v.

Como el proceso involucra una oxidación se denomina potencial de oxidación.

En cambio para la reacción 2:

$$Zn^{2+} + 2e^- \longrightarrow Zn$$

El valor de E° será negativo (E°= -0,7627) pues $\Delta G^{\circ}>0$ ($\Delta G^{\circ}=+35,18$ Kcal) y como el proceso involucra una reducción se denomina **potencial de reducción.**

Los valores de E° se denominan **potenciales tipo o potenciales normales.** Estos se definen para actividades unitarias de los iones; los metales y líquidos puros se consideran con actividad también unitaria; los gases intervienen a una atmósfera de presión.

Desde el punto de vista de la comparación de signos entre le potencial de electrodo y potencial de oxidorreducción, se observa que hay coincidencia entre los signos de los potenciales de reducción y de electrodo. Por tanto todas las reacciones se escribirán en el sentido de la reducción.

$$Zn^{2+} + 2e^- \rightarrow Zn$$

$$E^0 = -0,7627 \ V$$

$$E^0_{\ Zn^{+2}/Zn} = \ -0,7627 \ V$$

El valor del potencial redox varía fundamentalmente con la actividad de los iones, podemos usar a los fines prácticos los valores de concentración ión -molar, lo que viene expresado según la ecuación de Nerst:

$$E = E^{0!} + 2.3 \frac{RT}{nF} log \frac{Aox}{Ared}$$

Trabajando con concentraciones:

$$E = E^{0!} + 2,3 \frac{RT}{nF} log \frac{[Ox]}{[Red]}$$

Donde:

- E°!: potencial formal (incorpora los factores de actividad)
- R: constante de los gases
- T: temperatura en Kelvin
- n: número de electrones
- F: constante de Faraday = 96.500 coulombios
- [Oxid] : producto de las concentraciones de la hemirreacción de oxidación.
- [Red] : producto de las concentraciones de la hemirreacción de reducción.

Cuando la T=298°K, entonces será

$$2,3 \frac{RT}{nF} = 0,059 \cong 0,06$$

De donde

$$E = E^{0!} + 0,06log \frac{[Oxid]}{[Red]}$$

Predicción del sentido de una reacción

En general un par redox con potencial mayor que otro, podrá producir la oxidación de la forma reducida del par de menor potencial. Ejemplo:

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O \qquad E^0 = 1,36 \text{ V}$$

 $S^0 + 2H^+ + 2e^- \rightleftharpoons H_2S_{(aq)} \qquad E^0 = 0,141 \text{ V}$

El anión dicromato producirá la oxidación del anión sulfuro a azufre.

Si bien esto es correcto, en ocasiones estas predicciones son solamente teóricas y en la práctica, a veces no se producen por razones varias: *cinética de las reacciones, reacciones secundarias de precipitación, otras reacciones con mayor probabilidad, etc.* Ejemplo:

$$\frac{1}{2}I_{2} + e^{-} \rightleftarrows I^{-} \qquad E^{0} = 0,53V$$

$$Cu^{2+} + e^{-}Cu^{+} \qquad E^{0} = 0,167 \ V$$

Teóricamente se produciría la oxidación del Cu⁺ a Cu²⁺ por acción del I₂. Sin embargo la reacción progresa en sentido opuesto por la formación de un precipitado de CuI que disminuye la concentración de Cu⁺ y aumenta el potencial de Cu/Cu²⁺

$$2Cu^{2+} + 4I^- \rightleftharpoons 2CuI \downarrow +I_2$$

ÁCIDO - BASE

Teoría de Arrhenius

De acuerdo a la teoría de Arrhenius:

Un ácido: es una sustancia que contiene hidrógeno y produce H⁺ en solución acuosa.

Una base es una sustancia que contiene el grupo OH⁻ y produce el ion hidróxido HO⁻, en solución acuosa.

Teoría de Bronsted-Lowry

Un ácido se define como donador de protones (H⁺).

Una base se define como una sustancia aceptora de protones.

Según esta teoría:

Una reacción ácido- base es la transferencia de un protón de un ácido a una base.

$$HA + B \rightleftharpoons A^- + BH^+$$

Donde HA y BH⁺ son ácidos y B y A⁻ son bases. Los ácidos y bases relacionados entre sí se denominan *conjugados*. Así HA y BH⁺ son ácidos conjugados de las bases A⁻ y B, respectivamente.

Ácidos y Bases Conjugados

Ácido	HC1	HNO ₃	H ₂ SO ₄	CH ₃ COOH	H_2O	H_3O^+	NH_4^+	H_2S	HS ⁻
Base	Cl ⁻	NO ₃ -	HSO ₄ -	CH ₃ COO ⁻	OH-	H ₂ O	NH_3	HS ⁻	S^{2-}

Así la reacción de ionización total del cloruro de hidrógeno HCl que es un ácido fuerte en agua, es una reacción ácido-base en la cual el agua actúa como aceptora de protones.

Paso 1:
$$HCl_{(ac)} \rightarrow H^+_{(ac)} + Cl^-$$
 (descrpción de Arrhenius)

Paso 2:
$$H_{(ac)}^+ + H_2 O_{(l)} \rightarrow H_3 O^+$$

Total $HCl_{(ac)} + H_2O_{(l)} \rightarrow H_3O^+ + Cl^-$ (descripción de Bronsted y Lowry)

$$HCl_{(ac)} + H_2O_{(l)} \longrightarrow H_3O^+ + Cl^-$$

Los pares conjugados de ácidos y bases, son especies que difieren por un protón.

Cuanto más débil sea un ácido, mayor será la fuerza de su base conjugada. De manera similar, cuanto más débil sea una base, mayor será la fuerza de su ácido conjugado.

Hay que recordar que cuando se habla de fuerza de ácido o base, nos referimos a ello en forma relativa.

Fuerza de ácidos binarios

La facilidad con que los ácidos binarios protónicos se ionizan depende tanto de la facilidad de la ruptura de los enlaces H-X, como de la estabilidad de los iones resultantes en solución:

$$AH \rightleftharpoons A^- + H^+$$

Si el ácido es fuerte se encuentra totalmente ionizado y la base conjugada que genera tiene pocas posibilidades de producir la reacción inversa, por lo que será una base conjugada débil.

También, según Bronsted, se puede escribir así:

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

y su constante de equilibrio se expresa:

$$Kc = \frac{[A^-][H_3O^+]}{[AH][H_2O]}$$

Como [H₂O] la podemos considerar constante, se puede escribir:

$$Kc[H_2O] = \frac{[A^-][H_3O^+]}{[AH]}$$

y el producto de dos constantes es otra constante, que se denomina Ka o constante de disociación del ácido.

$$Ka = \frac{[A^-][H_3O^+]}{[AH]}$$

El valor de Ka, nos da una idea de cuánto esta ionizado o disociado el ácido, por lo tanto a mayor disociación, se puede decir que el ácido es más fuerte.

Para el caso de las bases se puede escribir e interpretar de la misma forma y calcular la constante de disociación para la base Kb.

El valor de Ka nos indica la fortaleza del ácido, otra forma de medir la fuerza de un ácido es mediante el p*orcentaje de ionización:*

$$\alpha\% = \frac{concentración\ del\ ácido\ ionizado}{concentración\ inicial\ del\ ácido}*100\%$$

Cuanto más fuerte es el ácido, más grande es el valor de α.

Ácidos poliprótidos

En el caso anterior, es sencilla la interpretación del concepto de la Ka.

Cuando el caso es de un ácido poliprótido, caso del H₂SO₄ o H₃PO₄, se considera la ionización se realiza por etapas.

$$H_2SO_4 + H_2O \Rightarrow HSO_4^- + H_3O^+ \qquad Ka_1 = \frac{[HSO_4^-][H_3O^+]}{[H_2SO_4]}$$

$$HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+ \qquad Ka_2 = \frac{[SO_4^{2-}][H_3O^+]}{HSO_4^-]}$$

Por lo que se observa, existen dos Ka, pero como los valores de la segunda constante es muy pequeño, a los fines prácticos se considera que la ionización se produce casi totalmente en el primer paso y por lo tanto se considera solo la primer constante Ka₁.

Autoprotólisis del agua

El agua puede actuar como ácido o como base en los ejemplos anteriores, por lo que a cualquier sustancia que puede actuar como ácido o como base se la denomina anfitrópica.

También se sabe que el agua se ioniza aunque en una proporción pequeña, esta ionización es un proceso ácido- base de transferencia de un protón de una molécula de agua a otra:

$$H_2O + H_2O \rightleftharpoons H_3O^+ + HO^-$$

Aplicando la constante de equilibrio:

$$Kc = \frac{[H_3O^+][HO^-]}{[H_2O]}$$

La [H₂O] se puede pasar multiplicando a Kc. Como el agua se encuentra poco ionizada, se puede considerar constante y al multiplicar a Kc, da lugar a otra constante que se denomina Kw o "constante del producto iónico del agua" y su valor a 25°C es 10⁻¹⁴, además como una molécula de agua, produce iguales cantidades de ion hidronio que de oxidrilos, se ordena como sigue:

$$Kw = [H_3O^+][HO^-] = 10^{-7} * 10^{-7} = 10^{-14}$$

En el agua o en cualquier solución, el equilibrio entre HO y H₃O + se mantiene, por lo que:

$[H_3O^+] > [HO^-]$	$[H_3O^+] > 10^{-7}$ la solución es acida
$[H_3O^+] = [HO^-]$	$[H_3O^+] = 10^{-7}$ la solución es neutra
$[H_3O^+] < [HO^-]$	$[H_3O^+]$ < 10^{-7} la solución es básica

Existe una forma más cómoda de interpretar estos resultados y es mediante la aplicación del –log a estas expresiones, reemplazando la expresión de –log por el símbolo p.

Así:

$$-log [H_3O^+] = p[H_3O^+] \text{ \'o } pH$$

De esta forma se establece una escala de pH que establece que:

pH_3O^+	pН	< 7	La solución es ácida
pH_3O^+	pН	= 7	La solución es neutra
pH_3O^+	pН	> 7	La solución es básica
рОН	> 7	La sol	ución es ácida
рОН	= 7	La sol	ución es neutra

De tal forma que:

$$pKw = pH + pOH = 14$$

pOH < 7 La solución es básica

Reacciones de Neutralización

En el concepto tradicional de Arrhenius las reacciones de neutralización son reacciones entre un ácido que aporta iones hidrógeno y una base que aporta iones hidróxido:

ácido + base
$$\rightarrow$$
 sal + agua
$$\label{eq:HCl} HCl_{(aq)} + Na(OH)_{(aq)} \rightarrow Na^+_{(aq)} + Cl^-_{(aq)} + H_2O_{(l)}$$

En el concepto de Bronsted, todas las reacciones son de neutralización en la dirección que son espontáneas, es decir, en la que se pasa de ácidos y bases más fuertes a ácidos y bases más débiles.

ácido 1 + base 2
$$\longrightarrow$$
 base conjugada 1 + ácido conjugado 2

Resumiendo podemos decir que la neutralización se define como la combinación de iones H⁺ con iones HO⁻ para formar moléculas de agua:

$$H_{(ac)}^+ + HO_{(ac)}^- \rightleftharpoons H_2O_{(l)}$$
 neutralización

Ácidos y bases de Lewis

Un ácido de Lewis es ión o molécula aceptor de pares de electrones.

Una base de Lewis es un ión o molécula dador de pares de electrones.

En una reacción ácido base, el ácido y la base comparten el par de electrones aportado por la base, formando un enlace covalente:

$$A+: B \longrightarrow A - B$$

Todos los ácidos y bases de Bronsted son ácidos y bases de Lewis. La definición de una base de Bronsted como aceptora de H⁺:

$$H^+ + B \rightarrow BH^+$$

No es más que un caso particular de base de Lewis, donde H⁺ es un ácido de Lewis. Sin embargo, muchos ácidos de Lewis no son ácidos de Bronsted. Por ejemplo, BF₃:

$$BF_3+: NH_3 \longrightarrow F_3B - NH_3$$

Las sustancias que pueden actuar a la vez como ácidos y bases de Lewis, se denominan anfóteras. Por ejemplo el óxido de alumnio.

En la definición de Lewis, la fuerza de un ácido se puede evaluar mediante la constante de equilibrio

$$A+: B \longrightarrow A - B$$

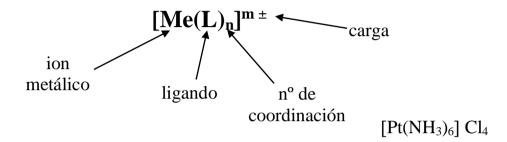
Donde B es la base de referencia. En realidad, la escala de fuerza ácida depende de la base escogida como referencia, de forma que un ácido puede ser más fuerte que otro frente a una base, pero más débil frente a otra.

COMPUESTOS DE COORDINACIÓN

Introducción

Los compuestos de coordinación se emplearon durante mucho tiempo antes de que se los reconociera como tales y habitualmente se cita al químico francés, Tassaert, como el primero que observaría, en 1798, que algunas sales de cobalto se combinan con amoníaco para dar diversos compuestos. A partir de entonces, varios químicos trataron de explicar el comportamiento de estos compuestos sin encontrar la respuesta, hasta que a fines del siglo pasado A.Werner publica sus primeros trabajos, modificando los conceptos de valencia y atracción entre los átomos que habían prevalecido hasta ese momento, y establece las bases para una nueva era en el entendimiento de la química de coordinación.

Werner estudió el comportamiento de sustancias formadas por la unión de ciertas sales y amoníaco a las que llamaron *aminas*. El estudio se centralizó en las aminas de Co^{III}, Pt^{IV} y Pt^{II}, sus transformaciones, la existencia de isómeros, sus grados de ionización, etc.

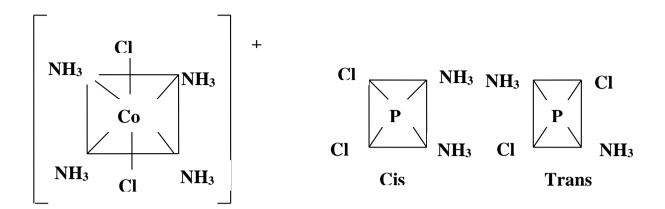

Veamos en la siguiente tabla las posibilidades de distintas aminas de Pt^{IV} en función del grado de ionización de sus soluciones determinado a partir de la conductividad eléctrica y la precipitación de iones Cl⁻ con Ag⁺ de una solución de AgNO_{3.}

Complejo	Conductividad Molar (dm ⁻¹)	Número de Iones totales	Cl ⁻	Formulación actual
PtCl ₄ .6NH ₃	523	5	4	$[Pt(NH_3)_6]^{4+} + 4Cl^{-}$
PtCl ₄ .5NH ₃	404	4	3	[Pt(NH ₃) ₅ Cl] ³⁺ + 3Cl ⁻
PtCl ₄ . 4NH ₃	229	3	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PtCl ₄ . 3NH ₃	97	2	1	$[Pt(NH_3)_3Cl_3]^+ + Cl^-$
PtCl ₄ . 2NH ₃	0	0	0	[Pt(NH ₃) ₂ Cl ₄]

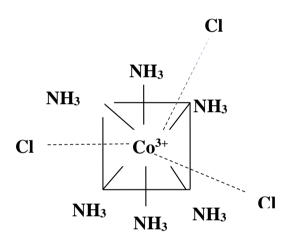
Los valores de conductividad, están en concordancia con el número de Cl⁻ y con el número total de iones; a medida que disminuye el número de cloruros y de iones totales disminuye la conductividad. Este hecho justifica también la nueva formulación. Como

no se entendía la unión entre el ligando (NH₃) y el ión central encerrados entre corchetes, a estos compuestos se los denominó "complejos".

Experiencias como éstas, sirvieron para justificar que la formulación común que se les daba, como por ejemplo PtCl₄.6NH₃, no servía para interpretar estos hechos. Por tanto surgió la necesidad de una nueva formulación que los interpretase y que hoy presentamos de la siguiente manera:



Teoría de Werner


Basada en los estudios mencionados, Werner emitió una *teoría de la coordinación* (1893), que le valió el premio Nobel, con los siguientes postulados:

- 1.- Los iones metálicos no solo tienden a saturar su valencia, sino también a completar su esfera de coordinación (número de coordinación), que está determinada por el universo total de aniones o moléculas que pueden estar directamente asociados al catión. Así CoCl₃ satura su valencia solamente mientras que [Co(NH₃)₆] Cl₃ satura su valencia y su esfera de coordinación.
- 2.- Una vez establecida las uniones de coordinación, quedaban por aclarar la distribución geométrica (estereoquímica) y la naturaleza de las uniones entre ligantes y el ión central. En base a comparar números de isómeros teóricos con el nº de isómeros geométricos experimentales Werner postuló para el número de coordinación 6 una distribución geométrica octaédrica y para el número de coordinación 4 una distribución cuadrada plana.

Por ejemplo para el Co^{III}, el complejo [Co(NH₃)₄ Cl₂]⁺Cl⁻ y para el Pt^{II} el complejo [Pt(NH₃)₂ Cl₂] sería esta la distribución.

3.- Respecto a la naturaleza de las uniones entre ligantes y el ión central, Werner las atribuyó simplemente a "valencias secundarias" de los metales. Por ejemplo: $[Co(NH_3)_6]$ Cl_3

Teoría de Lewis

Con el avance de Lewis en la unión por pares de electrones, se desarrolló la idea que los ligandos son necesariamente iones o moléculas que contienen un par o más de electrones no compartidos: :NH₃, [:Cl:], etc. El par de electrones puede unirse formando uniones dadoras o donoras con los iones metálicos. Estas uniones se denominan también uniones coordinadas y de allí el nombre que también se les da de "compuestos de coordinación".

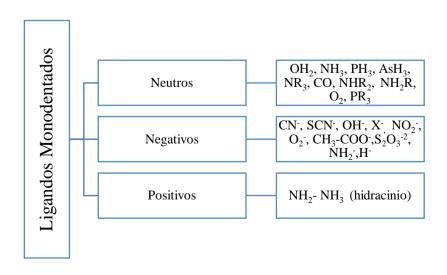
Así el ligando actúa como **base de Lewis** y el ión central como **ácido de Lewis**. Veamos en forma comparativa con el ión NH_4^+ :

$$N \stackrel{H}{\longleftarrow} H + H^{+} \longrightarrow \begin{bmatrix} H_{\stackrel{\bullet}{\longleftarrow}} N \stackrel{H}{\longleftarrow} H \end{bmatrix}$$
Base Ácido Unión Coordinada

Lo mismo ocurre en la formación del complejo diaminplata [Ag(NH₃]⁺

$$N \stackrel{H}{\leftarrow} H + Ag^{+} \longrightarrow \begin{bmatrix} Ag: N & H \\ H & H \end{bmatrix}^{+}$$

$$Ag: N \stackrel{H}{\leftarrow} H + N \stackrel{H}{\leftarrow} H \longrightarrow \begin{bmatrix} H & H & H \\ H & H & H \end{bmatrix}^{+}$$

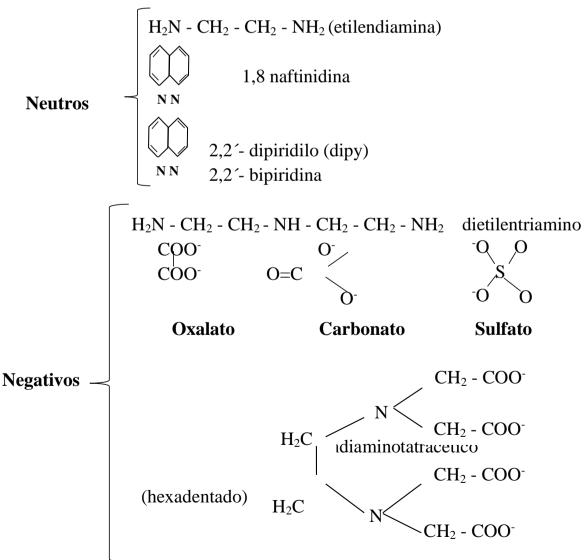

El índice de coordinación es una propiedad particular del ión metálico de manera que así como decimos que Ag tiene valencia uno, decimos que tiene índice de coordinación dos en sus complejos.

Clasificación de Ligandos

Ligando será entonces, según Lewis, todo átomo, molécula o ión capaz de actuar como dador de electrones (base de Lewis) en una o más uniones coordinadas. Hay algunos casos especiales como el **carbonilo**, **CO**, donde el dador también actúa como aceptor Según su carga y su manera de coordinar con el ión central a través de un par o varios pares de electrones, los podemos clasificar de la siguiente manera:

Ligantes uni o monodentados

Son los que utilizan sólo un átomo por vez como átomo donor. Por tanto sólo ocupan un lugar en la esfera de coordinación del catión. Pueden ser iones monoatómicos, poliatómicos y moléculas neutras.



Un ligante monodentado puede actuar como puente uniéndose a dos iones metálicos diferentes.

Ligantes polidentados

Son ligantes que poseen dos o más átomos que pueden servir simultáneamente como donantes. Podrán ser bidentados, tridentados, etc.

Aquellos ligantes polidentados cuya estructura permite la combinación de dos o más donantes al mismo ión metálico en forma simultánea, cerrando así uno o más anillos, se denominan quelatos y son muy importantes.

Determinación de la carga del ión complejo y del ión central

Se trabaja en forma similar a las sales, así por ejemplo:

 $[\text{Co Cl}_2(\text{NO}_2)_2(\text{NH}_3)_2]^?$ donde Co^{III}

Efectuamos la suma algebraica de las especies intervinientes

$$\begin{array}{c|cccc} Co & 3+ \\ 2NH_3 & 0 \\ 2NO_2^- & 2- \\ \hline 2Cl^- & 2- \\ \hline TOTAL & 1- \\ \end{array}$$

Luego la carga incógnita ¿? del complejo anterior es (1-) y por tanto pueda:

$$[CoCl_2(NO_2)_2(NH_3)_2]^{1-}$$

A este ión complejo podemos centralizarlo con un catión como Na⁺, Ca²⁺, Fe³⁺

$$Na[CoCl_2(NO_2)_2(NH_3)_2]$$

$$Ca[CoCl_2(NO_2)(NH_3)_2]_2$$

$$Fe[CoCl_2(NO_2)_2(NH_3)_2]_3$$

Veamos un ejemplo para determinar la carga del ion central:

Efectuamos la suma algebraica de las especies intervinientes, menos la del ion central:

$$\begin{array}{c|cc}
6NH_3 & 0 \\
3Cl^- & 3 \\
\hline
TOTAL & 3-
\end{array}$$

Para que el complejo sea neutro el cobalto debe ser 3+: Co(III).

ESTEREOQUÍMICA

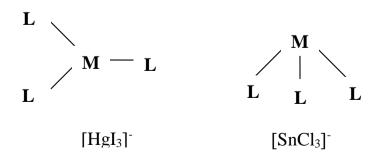
Descripción de las distintas geometrías

Veremos a continuación ejemplos de uniones de coordinación de 2 a 9 con sus estructuras geométricas y trataremos de dar algunas relaciones periódicas con respecto a esta propiedad.

También debemos conocer que un ión metálico puede tener o actuar con más de un número de coordinación, dependiendo ello de las condiciones, tipo de ligantes, etc. Así el Co^{III} prácticamente siempre tiene esfera de coordinación octaédrica (universo seis), mientras que el Ni^{II} puede actuar con número seis (octaédrico), cuatro (plano) y cuatro (tetraédrico), lo mismo que el Ti^{II} y el Co^{II}.

Índice de coordinación dos

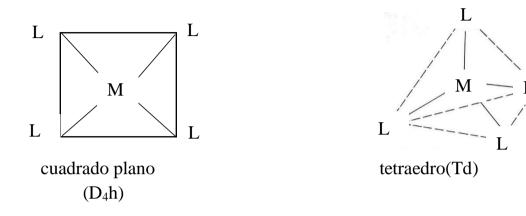
Presenta simetría lineal: L - M - L


No es muy común y lo presentan fundamentalmente los elementos de transición del grupo I B de la tabla periódica con estado de oxidación +1: Cu(I), Ag(I), Au(I).

Ejemplo:

$$[Ag(NH_3)_2]^+ \ [Ag(CN)_2]^- \ [CuCl_2]^- \ [AuCl_2]^- \ [Hg(CN)_2]$$

Índice de coordinación tres:


Es muy poco frecuente. La geometría que presenta puede ser planar o piramidal.

49

Índice de coordinación cuatro

Este índice es uno de los más importantes y presenta dos tipos de geometría posibles:

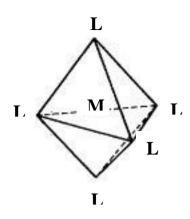
Los tetraédricos los forman:

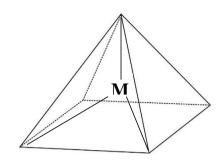
- 1.- Los elementos del grupo II b de la tabla periódica: Zn(II), Cd(II) y Hg(II).
- 2.- Es común en metales representativos, cuya estabilidad puede justificarse por unión covalente utilizando híbridos sp³

$$[BeF_4]^{2\text{-}}, [BCl_4]^{\text{-}}, [BBr_4]^{\text{-}}, [CuCl_4]^{2\text{-}}, [Cu(CN)_4]^{2\text{-}}, [Cd(CN)_4]^{2\text{-}}, [Hg(CN)_4]^{2\text{-}}$$

También podemos decir que lo forman los elementos del grupo IV y V al menor estado de oxidación: Pb(II), Sn(II)

$$[SnCl_4]^{2-}$$
, $[PbCl_4]^{2-}$, $[SbX_4]^{-}$


3.- El elemento de la 1° serie que más tendencia tiene a dar esta geometría es el níquel.


Ejemplo:
$$[Pt(NH_3)_4]^{2+}$$

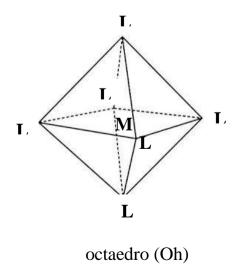
Índice de coordinación cinco:

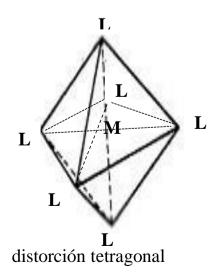
Es relativamente rara, aunque más frecuente que la tres.

Tienen dos geometrías posibles y es fácil pasar de una a otra por pequeños cambios energéticos y en los ángulos de unión. Existe un equilibrio entre ambas estructuras en resonancia:

Bipirámide trigonal (D3h) $[Ni(CN)_5]^{3-}$

Pirámide cuadrada (C4v) [Fe(CO)₅]

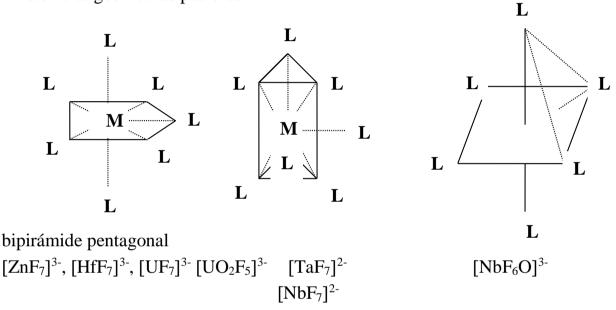

Índice de coordinación seis:


Es el más importante de todos, ya que podemos decir que casi todos los cationes forman índices seis en los complejos. Fundamentalmente lo dan:

- 1.- Elementos de la 1^a serie de transición Ti(III), Mn(II), Cr(III), V(V), Fe(II), Fe(III), Co(II), Co(III), Ni(II). También los de la 2^a y 3^a.
- 2.- Elementos representativos de los grupos III, IV, V, VI al mayor estado de oxidación:

$$[Al(H_2O)_6]^{3+}, [SnCl_6]^{2-}, [BiCl_6]^{-}, [Te(OH)_6]$$

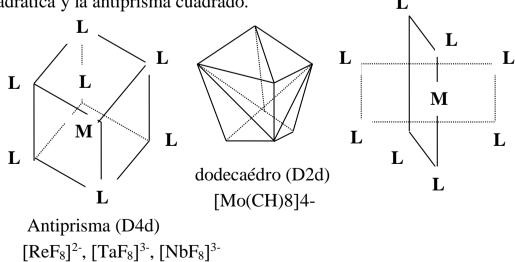
La geometría es octaédrica, pero también puede distorcionarse y dar lo que se llama distorción tetragonal.



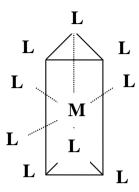
La distribución tetragonal la dan iones que presentan, como veremos oportunamente, el efecto de Janh-Teller: Mn(III), Cu(II), Cr(II), Co(II) de bajo spin.

Índice de coordinación siete:

Junto con la coordinación ocho y nueve, es propio de los elementos de la segunda y tercer serie de transición.


Existen tres geometrías posibles:

Índice de coordinación ocho:

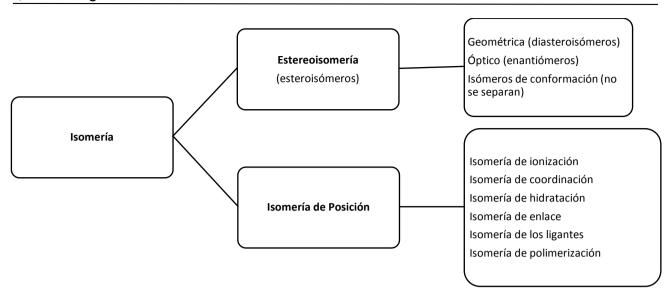

Es el número de coordinación más frecuente entre los elementos pesados y aunque la distribución más simétrica posible es el cubo, esta parece encontrarse en muy pocos sólidos y si es frecuente encontrar formas distorsionadas del cubo, como la distribución dodecuadrática y la antiprisma cuadrado.

L

Índice de coordinación nueve:

Es poco frecuente y son complejos escasos. La única distribución regular para este número es el prisma trigonal colocando los tres átomos adicionales por fuera de las tres caras vertebrales.

Son ejemplos de estos complejos: [Ca(OH)₉]⁶⁻, [ClCl₉]⁶⁻,

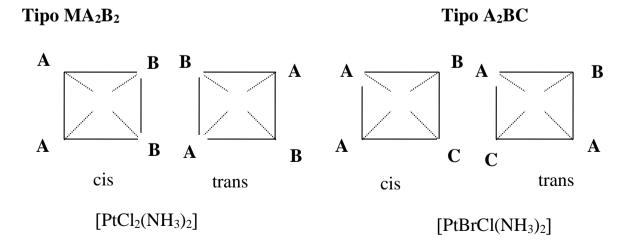

ISOMERÍA

Isómeros son dos compuestos de igual fórmula condensada pero de distinta fórmula estructural.

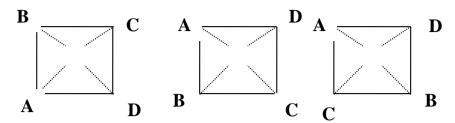
En complejos de coordinación encontramos dos tipos fundamentales de isomería:

- 1) **Esteroisomería:** tiene que ver con la distinta posición de ligandos en el espacio. Puede ser geométrica (diasteroisómeros) y óptico (enantiómeros).
- 2) **Isomería de Posición:** tiene que ver con el distinto ordenamiento de los átomos o de los ligandos. Entre los más comunes comprende las isomerías de ionización, de coordinación, de hidratación, de enlace, de los ligantes y de polimerización.

Podemos reunir los distintos tipos de isomerías en el cuadro siguiente:


Podemos estudiar cada uno de estos casos en detalle:

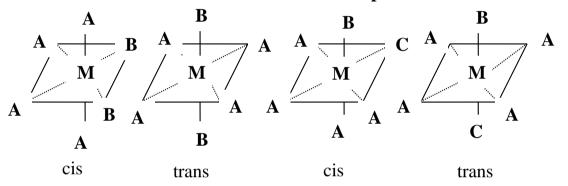
1.- Estereoisomería


a) Isomería geométrica: Presentan igual fórmula condesada, igual secuencia de átomos, pero los ligantes están ubicados en el espacio uniforme diferente. Estos isómeros difieren entre sí en sus propiedades físicas y químicas.

No se ha encontrado isomería geométrica en complejos tetraédricos, por ser todas las posiciones equivalentes. En cambio en complejos cuadrados planos y octaédricos se encuentran isomería geométrica.

Cuadrados Planos

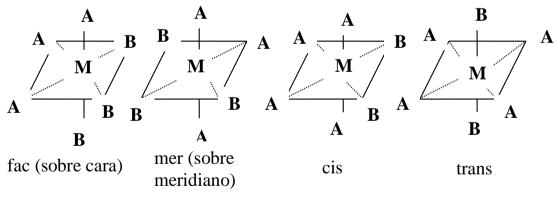
Tipo ABCD



Se nombran enumerando las posiciones

Octaédricos

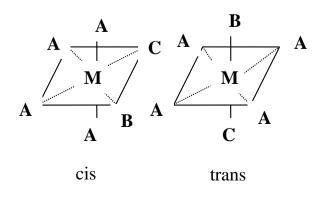
Tipo MA₄BC



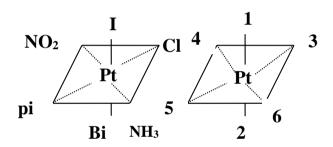
 $\left[Co(NO_2)_2(NH_3)_4\right]$

 $[CoBrCl(H_2O)_4]$

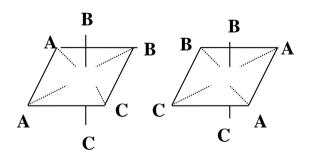
Tipo MA₃B₃


Tipo(M(AA)₂B₂

 $[Co(H_2O)_3(NH_3)_3]^{2+}$


[CoCl₂(en)2]

Tipo M(AA)₂BC

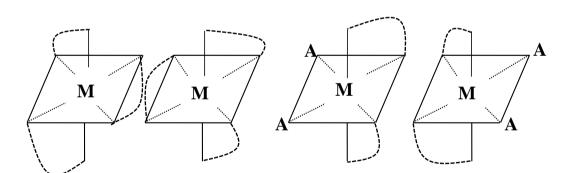

Cuando los isómeros geométricos ya no son simples para designarlos cis - trans, fac o mer se utilizan convenciones como la llamada CIP, que consisten en mencionar las posiciones ocupadas por cada ligando. Para ello se da prioridad a los átomos dadores de mayor número atómico y se le asigna el número uno, luego a medida que disminuye el número atómico de los átomos dadores va aumentando el número de prioridad. En caso de tener dos o más ligando con igual prioridad debemos fijarnos en los átomos unidos al átomo dador para decidir.

Por ejemplo en el complejo: [PtBiClI(NO₂)NH₃pi] el ligando con átomo dador de mayor número atómico es el yodo, y le asignamos el número 1, luego siguen Bi(2), Cl(3), luego NO₂(4), pi(5) y NH₃(6). Noten que para decidir entre NO₂, pi y NH₃ nos hemos fijado en los átomos unidos al hidrógeno (Átomo dador) que son oxígeno, carbono e hidrógeno respectivamente y en ese orden decrecen sus números atómicos:

b) Isomería óptica

Este tipo de isomería es más importante entre los complejos octaédricos. En complejos octaédricos no quelatados se puede producir isomería óptica *con tres o más diferentes clases de ligantes y con no más de dos de una misma clase*. Ejemplo: MA₂B₂C₂, MA₂BCDE, MABCDEF, MA₂B₂CD. Para el caso MA₂B₂C₂ existen cinco isómeros geométricos y uno de ellos forma isómero óptico.

Recordemos que la actividad óptica de una sustancia consiste en hacer girar el plano de la luz polarizada cuando ésta pasa por una solución de la sustancia.


Para confirmar que un complejo presenta isomería óptica es necesario lograr la imagen especular del isómero y asegurar que esta imagen no sea superponible mediante giros de la misma sobre los ejes X, Y, Z.

Los isómeros ópticos, se denominan enantiómeros y serán siempre moléculas asimétricas, quirales (como las manos) y por lo tanto no superponibles con su imagen en un espejo.

Los enantiómeros presentan iguales propiedades físicas y químicas, diferenciándose solo en la actividad óptica.

El que desvía la luz polarizada hacia la izquierda se denomina *levógiro*, el que lo hace hacia la derecha, *dextrógiro*.

Se han realizado muchos trabajos sobre isomería óptica de complejos octaédricos con ligantes quelatos. Los tipos más comunes son aquellos que contienen tres ligantes bidentados y dos ligantes bidentados y dos monodentados.

tres ligandos bidentados

dos ligandos bidentados y dos monodentados

2.- Isomería de posición

a) Isomería de ionización: compuestos que tienen la misma fórmula condensada total, o sea la misma composición, pero las especies con carga pueden estar como ligando o como ión fuera de la esfera de coordinación. Ejemplo:

$$[Co(NH_3)_5Br]SO_4 + Ba^{2+} \rightarrow BaSO_4$$
 Sulfato de pentaminobromocobalto (III)

$$[Co(NH_3)_5SO_4]Br + Ag^+ \rightarrow AgBr$$
 Bromuro de pentaminosulfatocobalto (III)

trans
$$[Co(en)_2Cl_2]NO_2$$
 verde

b) Isomería de coordinación: sucede cuando el catión y el anión son iones complejos. En ellos existe un intercambio de ligantes entre dos iones metálicos. Ejemplos:

$$[Co(NH3)6] [Cr(CN)6] [Co(CN)6]$$

hexocionocromato (III) de hexamincobalto (III) hexocianocobaltato (III) de

hexaminocromo (III)

$$[Pt(NH_3)_4] [PtCl_6]$$

$$[PtCl_2(NH_3)_4] [PtCl_4]$$

hexocloroplatinoto (IV) de tetraminplatino (II) tetracloroplatinoto (II) de tetramindicloroplatino (IV).

$$[Pt(NH_3)_4Cl_2]^{2+}[PtCl_4]^{2-}$$

c) Isomería de hidratación: sucede cuando se cambian ligandos por agua de hidratación.

Ejemplos: El ejemplo clásico de este tipo de isomería es el del cloruro de cromo hidrato. La sal comercial disuelta en HCl(aq) da:

$$[CrCl_2(H_2O)_4]Cl. 2H_2O$$
 verde

cloruro de tetracuodiclorocromo (III) dihidrato

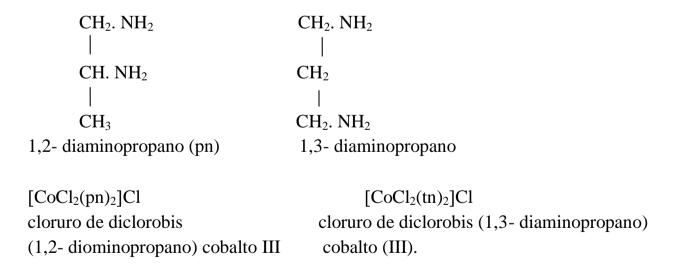
Si lo disolvemos directamente en agua da:

$$[CrCl(H_2O)_5]Cl_2$$
. H_2O azul-verde

cloruro de pentacuoclorocromo (III) monohidratado.

Y también existe:

[Cr(H₂O)₆]Cl₃ violeta cloruro de hexacuocromo (III)


d) Isomería de enlace: se puede presentar en aquellos compuestos con ligantes que tienen dos diferentes posibilidades de coordinación, por ejemplo, el ligante NO₂ puede coordinarse a través de uno de los átomos de oxígeno (nitrito) M - **O**NU, o por el átomo de nitrógeno (nitro) M - **N**O₂.

El ión tiocinato (SCN) puede coordinarse por el azufre o por el nitrógeno (isotiocinanto)

Ejemplo:

e) **Isomería de los ligantes:** se presenta cuando el ligante de por sí ya posee algún tipo de isomería de posición.

Por ejemplo:

f) **Isomería de polimerización:** la presentan compuestos que tienen la misma fórmula empírica pero la fórmula molecular de cada uno de ellos es un múltiplo de la fórmula empírica (mínima).

Ejemplos:

 $[PtCl_2(NH_3)_2]$ mononuclear M:1

 $[Pt(NH_3)_4]^{+2}[PtCl_4]^{-2}$ polinuclear M:2

[PtCl(NH₃)₃] [PtCl₃(NH₃)] polinuclear M:2

Obsérvese que el segundo y tercer compuesto también poseen isomería de coordinación.

ESTABILIDAD DE IONES COMPLEJOS EN SOLUCIÓN

En el estudio de la formación de complejos de coordinación en solución deben tenerse en cuenta dos clases de estabilidad:

La **estabilidad termodinámica** representa una medida de la cantidad de una especie química que se forma o que es transformada en otros compuestos, cuando el sistema ha alcanzado el estado de equilibrio.

La **estabilidad cinética** se refiere a la velocidad con que proceden las transformaciones que llevan al establecimiento del equilibrio.

A continuación veremos el tratamiento de los compuestos de coordinación de acuerdo a la **estabilidad termodinámica** o sea la naturaleza de los equilibrios, una vez que se han establecido.

Si analizamos los equilibrios que se establecen cuando se coloca un ión metálico M, con una cierta cantidad de un ligante monodentado L, suponiendo que no se forman compuestos que contienen más de un ión metálico, podemos escribir:

$$\mathbf{M} + \mathbf{L} \rightleftharpoons \mathbf{ML} \quad \mathbf{K_1} = \frac{[\mathbf{ML}]}{[\mathbf{M}][\mathbf{L}]}$$

$$ML + L \rightleftharpoons ML_2 \quad K_2 = \frac{[ML_2]}{[ML][L]}$$

$$ML_2 + L \rightleftharpoons ML_3$$
 $K_3 = \frac{[ML_3]}{[ML_2][L]}$

$$\mathbf{ML}_{N-1} + \mathbf{L} \rightleftharpoons \mathbf{ML}_{N} \quad \mathbf{K}_{N} = \frac{[\mathbf{ML}_{N}]}{[\mathbf{ML}_{N-1}][\mathbf{L}]}$$

Habrá N de estos equilibrios, donde N representa el número de coordinación máximo del ión metálico M, para el ligante L. El número N puede variar de un ligante a otro. Así por ejemplo el Al³⁺ forma con Cl⁻ el [AlCl₄]⁻ y con F⁻ forma el [AlF₆]³⁻.

Las constantes desde K_1 a K_N se denominan constantes de formación escalonada o constante de estabilidad escalonada.

En los equilibrios presentados se ha omitido la carga y la solvatación del ión metálico, lo que no afecta particularmente el tratamiento del tema.

Formación escalonada de complejos

Todos los complejos de la serie ML a ML_N pueden existir; sus proporciones dependerán de las concentraciones de [M] y [L] y de los valores relativos de las constantes K_i .

Si consideramos el agregado de ligante L sobre un ión metálico M, al comienzo se forma ML con exclusión de prácticamente las otras formas. Si se continua el agregado de ligante L, comienza a crecer la concentración de ML₂. Después resulta dominante ML₃ y así sucesivamente hasta llegar al complejo de número de coordinación más elevado ML_N, desapareciendo las restantes formas de menor coordinación. Siempre que la concentración del ligante sea suficientemente elevada.

Generalmente los valores de K_i disminuyen regularmente, lo que se puede explicar en base a varias razones;

- 1°) **Factores estadísticos:** tienen que ver con la presencia de agua como ligante, cada vez quedan menos ligantes para cambiar $([Ni(H_2O)_6]^{2+}, [Ni(H_2O)_5NH_3]^{2+}, [Ni(H_2O)_4(NH_3)]^{2+})$.
 - 2°) Impedimento estérico: aumenta a medida que aumenta el número de ligantes.

3°) Factores culómbicos, sobre todo en complejos con ligantes cargados.

Efecto quelato

Se refiere al aumento de estabilidad de un sistema complejo que contiene uno o más anillos quelatos en comparación con la estabilidad de un sistema lo más parecido posible, pero conteniendo ligantes monodentados.

Para ejemplificar, veamos los complejos formados por el Ni²⁺ con NH₃ y con etilendiamina (en):

$$\text{Ni}^{2+} + 6\text{NH}_3 \rightleftarrows [\text{Ni}(\text{NH}_3)_6]^{2+} \hspace{0.5cm} K_\beta = 10^{8.6}$$

$$Ni^{2+} + 3en \rightleftharpoons [Ni(en)_3]^{2+} \quad K_{\beta} = 10^{18,3}$$

En el primer complejo hay 6 ligantes monodentados

En el segundo se forman tres anillos de cinco átomos o eslabones.

$$\begin{array}{c|c} CH_2 \\ NH_2 \\ CH_2 \\ NH_2 \\ NH_2 \\ NH_2 \\ NH_2 \\ NH_2 \\ CH_2 \\ CH_2 \\ \end{array}$$

La aplicación del efecto quelato se encuentra en el significado termodinámico de las constantes de estabilidad, que como sabemos se relacionan con la energía libre según la relación: ΔG^o = -RT ln K

A su vez la energía libre establece relación con la entalpía y entropía según:

$$\Delta G = \Delta H - T \Delta S$$

Para obtener un aumento de la constante de equilibrio se debe hacer ΔH más negativo o ΔS más positivo a ambos cosas a la vez.

El valor de ΔH depende de las variaciones de las energías de unión entre metal y ligantes, y esto no varía fundamentalmente entre los quelatos y los complejos con ligantes monodentados. La explicación está en un aumento de ΔS° (la entropía del sistema), que cualitativamente puede explicarse porque hay aumento del número de moléculas libres en el caso del quelato (cada ligante desplaza dos o más moléculas de agua), mientras que en los complejos no quelatos un ligante desplaza una sola molécula de agua.

Cinética y mecanismo de las reacciones de iones complejos

Existen muchas reacciones de complejos, en los cuales varía la composición de la esfera de coordinación. En esta categoría están incluidas las reacciones de formación de los complejos a partir de los iones metálicos y los ligantes, porque en realidad los iones metálicos son "aquocomplejos" y lo que se produce es el remplazo de las moléculas de agua por los de ligante. La capacidad de un ión complejo para participar en reacciones que llevan a la sustitución de uno o más ligantes de su esfera de coordinación por otros, se denomina labilidad.

Aquellos complejos para los cuales las reacciones de este tipo son **muy rápidas**, se denominan **lábiles**, mientras que los complejos para los cuales estas reacciones proceden **muy lentamente**, **o no se producen**, se denominan **inertes**.

Estos términos se requieren a la velocidad de las reacciones y no deben confundirse con los términos estables o inertes que se refieren a la tendencia termodinámica de la especie a existir en condiciones de equilibrio.

El complejo hexaminocobalto (III) de estructura $[Co(NH_3)_6]^{3+}$, proporciona un ejemplo sencillo de esta diferencia.

En medio ácido este ión se mantiene inalterado durante días debido a su inercia cinética o falta de labilidad, a pesar de que es termodinámicamente inestable, como lo demuestra el valor de la constante de equilibrio:

$$Co(NH_3)_6]_6^{3+} + 6H_3O^+ \rightleftharpoons Co(H_2O)_6]^{3+} + NH^{4+} \quad K \cong 10^{25}$$

En contraste con este caso, la estabilidad del complejo tetracianoniquelato (II), $[Ni(CN)_4]^{2-}$, es extremadamente elevada:

$$[Ni(CN)_4]^{2-} \rightleftharpoons Ni^{2+} + 4CN^- \qquad K \cong 10^{-22}$$

Sin embargo, la velocidad del intercambio de los iones CN⁻ con iones CN⁻ marcadas con isótopos es tan grande (gran labilidad) que no puede medirse mediante técnicas comunes.

Los complejos octaédricos de la primera serie de transición, con excepción de los de Cr^{III} y Co^{III}, son normalmente lábiles. Esto significa que los complejos llegan al equilibrio tan rápidamente, incluyendo ligantes adicionales como el agua, que las reacciones parecen ser instantáneas. Las reacciones de sustitución de ligantes en complejos de Cr^{III} y Co^{III} poseen tiempos medios de horas, días y hasta semanas a 25°C. Estos son sistemas apropiados para estudios cinéticos y de mecanismos.

Mecanismos de sustitución de ligantes

SN¹: En este caso extremo, el complejo se disocia perdiendo al ligante que será reemplazado; la vacante así producida en la esfera de coordinación es ocupada por el nuevo ligante. Puede representarse como sigue:

Lenta
$$_{+Y^{-}}$$
 $[LsMX]^{M+} \longrightarrow X^{-} + [LsM]^{(M+1)+} \longrightarrow [LsMY]^{M+}$ Rápida

Es este caso la característica fundamental es que en el primer paso durante el cual se pierde X⁻, procede con relativa lentitud y determina la velocidad del proceso total. La ley cinética que corresponde a este proceso es:

$$o = K [LsMX]$$

O de otra manera, la velocidad de la reacción es proporcional a la concentración de $[LsMX]^{M+}$, pero independiente de la concentración del ligante nuevo Y^- . El símbolo SN^1 significa "sustitución nucleofílica unimolecular".

SN²: En esta segunda posibilidad extrema, el nuevo ligante ataca directamente al complejo original, formando un complejo activado heptacoordinado, que luego elimina al ligante desplazado, según el esquema siguiente:

$$[LsMX]^{M^{+}} + Y^{-}$$

$$Lenta$$

$$LsM Y$$

$$X$$

$$Y$$

$$Rápida$$

En este mecanismo la velocidad de reacción será proporcional a la concentración del $[LsMX]^{M+}$ y a la de Y^- :

$$v = K[LsMX]^{M+} [Y^{-}]$$

El símbolo SN² significa: "sustitución nucleofilica bimolecular".

Los mecanismos reales muy rara vez se aproximan a estos dos extremos. Una posición más realista debe reconocer que es probable que comience a firmarse la nueva ligadura antes que termine de romperse en enlace del ligante saliente.

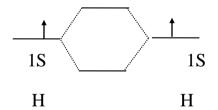
Es decir que el estado de transición puede no ser ni la especie penta coordinada del mecanismo SN¹ ni la hepta coordinada del SN².

Teorías de enlace de los compuestos de coordinación

El problema de la unión metálica ligando M-:L en los compuestos de coordinación ha sido motivo de grandes estudios desde la teoría de Lewis que propuso sus conceptos del par aislado en coordinación dativa.

Surgieron distintos modelos que consideraron las posibilidad de que dicha unión fuese iónica o covalente y se trató de que estos modelos se acercaran lo más posibles a la realidad.

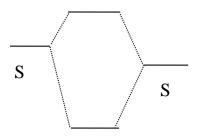
Así surgen las siguientes teorías:


1) *Teoría del campo cristalino* que consideran un modelo netamente electrostático con los ligandos como cargas puntuales.

- 2) *Teoría del campo ligando* que trata de incluir la contribución covalente y la influencia de los ligados a la unión M-L.
- 3) *Teoría del enlace de valencia* que es una de las modelos que parte de consideraciones covalentes puras, siendo en la actividad utilizada solo para algunos casos.
- 4) *Teoría del orbital molecular* que es la que más se acerca a la realidad.

Teoría de los orbitales Moleculares T.O.M

Esta teoría es la más cercana a la realidad y se utiliza cuando la contribución covalente es importante. Parte de la suposición de que la **superposición** de orbitales **metal-ligante** se ha de producir en cierta medida, siempre que la simetría lo permita.


Los orbitales moleculares serán del tipo C.L.O.A y para ello podemos recordar dichas uniones para moléculas homonucleares y heteronucleares: Por ejemplo: El caso del hidrógeno.

La unión resulta covalente pura, no hay diferencia de energía entre los orbitales atómicos de cada átomo.

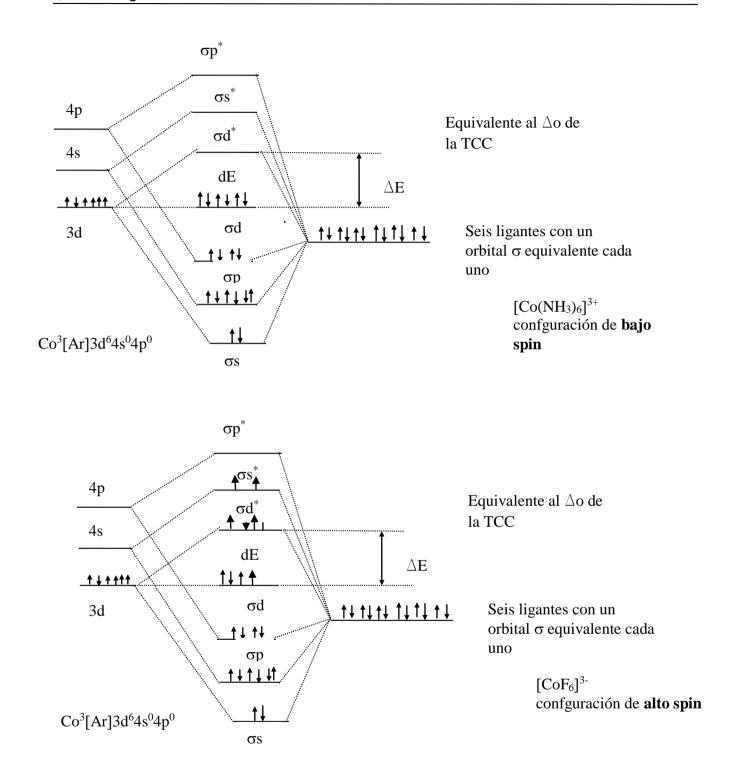
Para el caso de una molécula heteronuclear tipo AB:

Aquí la unión resulta parcialmente covalente. Los orbitales atómicos no tienen la misma energía y por lo tanto hay contribución iónica. El de menor energía resulta más electronegativo. Existe una transferencia de carga desde A hacia B en la formación de AB.

Para la formación de complejos los diagramas son más complicados, en ellos se observa que los ligandos tienen **menor** energía que el ión central y por lo tanto la transferencia de carga se realiza desde el ión central hacia los ligandos.

El tratamiento del tema, aunque no en profundidad, lo haremos solo para los complejos octaédricos.

El método empleado para la construcción de los orbitales moleculares del complejo incluye los siguientes pasos:


1°) Existen nueve orbitales pertenecientes a las capas de valencia del metal que deben ser considerados. Seis de ellos son adecuados para formar uniones si fuera (=) porque poseen lóbulos que ejercen la dirección de los enlaces metal-ligantes. Ellos son: S, px, py, pz, dz², dx²y²

Los restantes dxy, dxz, dyz quedarán como orbitales no enlazante con la misma energía y se los denomina dE.

2°) Supondremos que cada uno de los seis grupos ligantes posee un orbital, donde se encuentra el par de electrones a compartir (orbitales equivalentes). Estos orbitales podrán formar uniones con los mencionados anteriormente del metal.

De la combinación de estos orbitales se formarán un orbital ligante o enlazante y otro antiligante o antienlazante.

3°) Si los grupos ligantes poseen también orbitales π , estos se ubicarán de forma de superponerse con los orbitales d \mathcal{E} . Por ejemplo el complejo $[CoL_6]^n$ donde L es NH₃ o F-, los diagramas respectivos de orbitales moleculares son los siguientes:

Observamos que el orbital 4s del ión central forma un σ s y un σ s*, los px, py, pz forma los σ p y σ p* y los dz², dx²y² forman los σ d y σ d*. Los dxy, dyz, dxz quedan con la misma energía (dE).

Entre dE y σd^* existe un ΔE comparable al Δo de la TCC. Del valor relativo de ΔE y P y del tipo de ligando (NH₃ o F en nuestro caso) dependerá la configuración que se obtiene. Así vemos que para NH₃ se da una configuración de **bajo spin** mientras que para F es de **alto spin**.

Puesto que los seis ligantes donarán siempre $12 e^-$, los seis orbitales moleculares enlazantes(σ s, σ p, σ d) que existen en el complejo quedarán siempre llenos. En consecuencia, los electrones d que están presentes en el metal se distribuyen entre los O.M dE y σ d* (caso que coincide con la teoría del campo cristalino). Por tanto podemos también asegurar que:

1°) Las propiedades magnéticas se deben a la presencia de electrones no apareados endE y σd.

2°) El espectro visible de los complejos se debe a transición.

Si los grupos ligantes poseen orbitales π , llenos o vacíos van a interaccionar con los orbitales dE del ión metálico, los que dejarán de ser "no enlazantes". En esta situación la unión se refuerza y esto permite que el ión central pueda combinarse en estados inferiores estabilizándose. Este es el caso de los complejos organometálicos y que en forma simple podemos simbolizar:

$$dE \rightarrow \sigma d *$$

COMPUESTOS DE COORDINACIÓN REGLAS DE NOMENCLATURA

• Orden en que se escriben y nombran los iones.

Se escribe primero el catión y luego el anión. Se nombra primero el anión y luego el catión. En las fórmulas, ya sea que el complejo sea catiónico, aniónico o neutro, la práctica común es colocar primero el símbolo del (de los) átomo(s) central(es), seguido por los ligantes. La fórmula de todo el complejo se escribe entre corchetes.

• Nombre de los ligandos

1.- Ligandos aniónicos: Los ligandos aniónicos tanto orgánicos como inorgánicos terminan en "o". En general, si el nombre del anión termina en uro, ito o ato, persiste la letra final o. En el caso de ligandos aniónicos inorgánicos que contienen prefijos numéricos deben utilizarse paréntesis, por ejemploen (trifosfato), e igualmente para los análogos tio, seleno y teluro de los oxoaniones que contienen más de un átomo como por ejemplo (tiosulfato), (selenosulfato).

Los aniones que se presentan a continuación no siguen exactamente la regla anterior y se han establecido formas modificadas:

ION	NOMBRE	COMO LIGANDO		
F ⁻	fluoruro	fluoro (fluor)		
Cl ⁻	cloruro	cloro		
Br ⁻	bromuro	bromo		
I-	yoduro	yodo		
O ₂ -	óxido	oxo		
H ⁻	hidruro	hidruro (hidro)		
HO ⁻	hidróxido	hidroxo		
S_2^{2-}	disulfuro	disulfo		
CN⁻	cianuro	ciano		
O_2^{2-}	peróxido	peroxo		

2.- Ligandos neutros y catiónicos:

El nombre de la molécula o catión coordinado se utiliza sin ninguna variación. Los ligandos neutros se colocan entre paréntesis excepto: **H₂O, NO, NH₃, CO.** Agua y Amoníaco como ligandos neutros en complejos de coordinación se denominan respectivamente "acuo" y "amín". Los grupos NO y CO cuando se unen de manera directa con el átomo central, reciben el nombre de "nitrosilo" y "carbonilo" respectivamente. En el cálculo del número de oxidación estos ligandos se consideran neutros.

Terminaciones

Los nombres de los complejos aniónicos terminan en "ato" (o en ico si se los nombra como ácidos). Para los complejos catiónicos o neutros se emplea el nombre del metal sin ninguna terminación característica.

Ejemplos:

- Ca₂Fe(CN)₆ hexacianoferrato(II) de calcio
- Fe(H₂O)₆SO₄ sulfato de hexacuohierro(III)
- Ni(DMG)₂] bis(dimetilglioximato)níquel(II)

• Formas de nombrar a los ligandos

Los ligandos se nombran en orden alfabético independientemente del número de ligandos del mismo tipo, es decir sin tener en cuenta los prefijos que indican cantidad.

• Prefijos multiplicadores

Los prefijos **di, tri, tetra, penta, etc.** indican número de grupos coordinados idénticos. Con el fin de evitar ambigüedad en el caso de ligandos que ya contienen estos prefijos en sus nombres, se utilizan **bis, tris, tetraquis, etc.**

Paréntesis y corchetes

Los corchetes se utilizan para encerrar un ion complejo o una entidad de coordinación neutra. En los nombres se utilizan paréntesis después de los prefijos bis, tris, etc., en toda expresión compleja y en cualquier otro lugar e n el que sea necesario evitar toda posible ambigüedad.

• Estado de oxidación del metal

El estado de oxidación del átomo central se designa con un número romano entre paréntesis que sigue al final del nombre del complejo, sin dejar espacio.

• Formas alternativas de enlace de algunos ligandos

Los diferentes puntos de unión de un ligando se pueden señalar en cursivas, poniendo al final del nombre del ligando el símbolo del o de los átomos a través de los cuales sucede la unión, separándolo mediante guiones:

- (NH₄)₃ [Cr(NCS)₆] hexa(tiocianato-*N*-cromato(III) de amonio
- (NH₄)₂[Pt(SCN)₆] hexa(tiocianato-S-platinato(IV) de amonio

En algunos casos se emplean nombres ya establecidos para designar las posibles formas de unión, como por ejemplo, el tiocianato (-SCN) y el isotiocianato (-NCS), el nitro (-NO₂) y el nitrito (-ONO).

• Compuestos con átomos o grupos que forman puentes

Un grupo que está formando un puente se indica adicionando la letra griega μ inmediatamente antes de su nombre y separándolo del resto del complejo mediante guiones.

[(NH₃)₅Cr-OH-Cr(NH₃)₅]Cl₅ cloruro de μ-hidroxobis[pentamincromo(III)]

PROPIEDADES PERIÓDICAS

Introducción

Para dar sentido al desarrollo de este tema transcribimos la primera expresión de Glen Rodger al tratar el tema en su libro "Química Inorgánica" cap. 9:

"Uno de los aspectos más atractivos de la ciencia química es la forma en que todo se enlaza entre sí".

Esto quiere decir que podemos ordenar de distintas maneras los tópicos que aparecen en el estudio de la ciencia química, pero, en definitiva, lo que podemos alcanzar es el manejo de una "red de ideas interrelacionadas" que nos permita racionalizar y predecir una variedad de comportamientos químicos.

En el estudio de lo que se llama **química descriptiva**, éste enfoque es fundamental, pues lo que vamos a analizar en ella son las propiedades, estructuras, reacciones y aplicaciones de los elementos y sus compuestos más importantes.

Si éste análisis no lo hacemos a través de la racionalización que nos propone la "red de ideas interrelacionadas", tenderemos a "memorizarlos" exclusivamente, con lo que no lograremos ningún aprendizaje perdurable.

El estudio de la "química descriptiva" ha estado y está muy ligado al desarrollo de la tabla periódica, de manera que nuestra "red" debe permitirnos la comprensión de la tabla periódica y la química de sus elementos.

Para ello vamos a incluir en esa "red" siete "ideas" que nos faciliten el estudio comprensivo de los elementos representativos (aquellos que presentan los orbitales **ns** y **np** parcialmente llenos).

Esas siete ideas son:

- La ley periódica
- El principio de singularidad
- El efecto diagonal
- El efecto de par inerte
- La división de los elementos en: metales, metaloides y no metales.
- Carácter ácido-base de los óxidos e hidróxidos.
- El concepto de potencial de reducción estándar.

Los dos últimos conceptos se han desarrollado en otro momento, de manera que vamos a desarrollar ahora los otros cinco.

• La ley periódica

Podemos recordar que la versión moderna de esta ley establece que: "ocurre una repetición periódica de propiedades físicas y químicas cuando los elementos se colocan en orden creciente de sus números atómicos".

También vale recordar que los elementos quedan dispuestos en períodos y grupos, y que los elementos de un mismo grupo presentan propiedades, configuraciones electrónicas y estados de oxidación similares.

Sería oportuno repasar el tema desarrollado en Química General

Entre las propiedades y características que muestran tendencias periódicas nos va a ser útil estudiar las siguientes:

Carga nuclear efectiva (Zef)

"La carga nuclear efectiva actuando sobre un electrón dado es: la verdadera carga nuclear (número atómico) menos una constante de pantalla oculta que tiene en cuenta el efecto de los electrones de pantalla". Entendiéndose por "electrones de pantalla" a los electrones más cercanos al núcleo del átomo en consideración.

Podemos decir entonces que:

Zef = $\mathbf{Z} \cdot \mathbf{\sigma}$ donde $\mathbf{\sigma}$ es la constante de pantalla.

La constante de pantalla se puede determinar a través de las "Reglas de Slater" que son un conjunto de reglas empíricas, basadas en cálculos en los cuales las energía y tamaños de los orbitales atómicos en átomos polielectrónicos se estiman considerando que un electrón dado está en el campo de potencial que crea la carga nuclear más el efecto neto de todas las nubes cargadas negativamente de los otros electrones.

Estas reglas de pueden estudiar en el cap. 9 de Glen Rodger

De todos modos, una aproximación válida para la conceptualización del fenómeno, es considerar a σ como un número entero que representa el número de electrones de la capa más interna o de pantalla

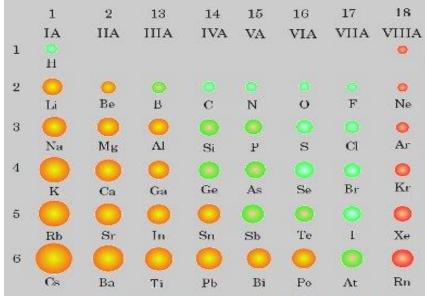
Por ejemplo, consideremos el neón, que tiene una configuración electrónica $1s^2 2s^2 2p^6$, para calcular la carga nuclear efectiva actuando sobre un electrón de valencia 2s o 2p, notemos que hay dos electrones internos o de pantalla (1s²). Decimos entonces que $\sigma = 2$, esto hace que Zef = 10 - 2 = +8.

Es importante observar que se ha considerado que los electrones internos apantallan completamente los electrones de valencia 2s y 2p de la carga nuclear +10, mientras que los electrones 2s y 2p, todos a la misma distancia del núcleo no se apantallan unos a otros en absoluto.

Al asumir que σ sea igual al número de electrones de la capa más interna, arroja una carga nuclear efectiva que es igual al número de grupo del elemento

De esta manera, Zef para cualquier gas noble es + 8.

Cuando se realiza el cálculo de Zef utilizando las Reglas de Slater los valores son más bajos; pero insistimos, a los efecto de nuestro estudio es suficiente con considerar σ como el número de electrones de las capas internas.


Ejemplo: Calcular Zef para Ca

Ca:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$Zef = (20 - 18) = +2$$

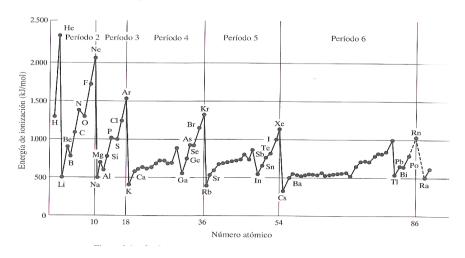
Radios atómicos

Si observamos tablas que muestran valores de radios atómicos o figuras que los representan, como la que se muestra a continuación, podemos ver que dichos radios disminuyen desde la izquierda a la derecha en un mismo período y aumentan desde arriba hacia abajo en un mismo grupo.

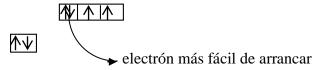
A estas conclusiones

podemos llegar también si lo relacionamos con lo visto sobre Zef.

En efecto, al pasar de un elemento a otro dentro de un período, aumenta la carga nuclear efectiva, o sea los electrones exteriores son atraídos con más fuerza, por lo tanto el radio atómico tiende a disminuir.


Cuando se comienza un nuevo período, el Zef vuelve a disminuir y el radio atómico vuelve a un valor todavía más grande debido al aumento del número de niveles de energía.

Como se puede ver, no es necesario memorizar la variación de los radios atómicos a través de la tabla, sólo debemos tener presente el concepto de Zef.


Energía de ionización

Si recordamos que Energía de Ionización es la "Energía necesaria para arrancar un electrón de un átomo gaseoso neutro", se puede justificar su variación en la tabla también en función del Zef. Así, a medida que avanzamos hacia la derecha en un período, la Zef es mayor, por lo tanto la Energía de Ionización también crecerá.

Las excepciones que se producen al pasar del grupo 2A al 3A se pueden justificar porque en el grupo 3A se arrancan electrones de orbitales p que son de mayor energía, por lo tanto se necesita agregar menos para producir la liberación.

Al pasar del 5A al 6A también se produce una inversión de la Energía de Ionización que se justifica porque en el grupo 5A los electrones p se encuentran desapareados, mientras que en el 6A hay un par de electrones en un orbital p que, debido a la repulsión, permite que se lo arranque con más facilidad.

Al recorrer un grupo, la energía de ionización disminuirá desde arriba hacia abajo, pues, a medida que avanzamos en ese sentido los electrones externos están más alejados del

núcleo, por lo que son menos retenidos por él, o sea que reciben menos carga nuclear efectiva, situación que se puede verificar si se calcula el Zef a través de las Reglas de Slater. $A(g) + I1(energía) \rightarrow A+(g) + e$ EI= kJ/mol

Podemos representar la energía de ionización (EI) mediante la siguiente ecuación

$$A_{(g)} + I_1(energia) \rightarrow A_{(g)}^+ + e^ EI = KJ/mol$$

Afinidad electrónica

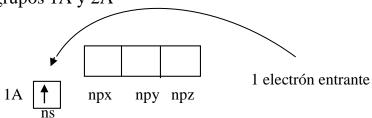
"La afinidad electrónica es el cambio en la energía cuando se añade un electrón a un átomo neutro en estado gaseoso"

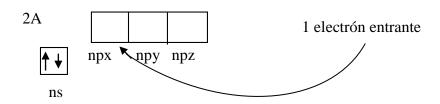
Un átomo de un elemento del lado derecho de un período determinado, donde la Zef es mayor, debería aceptar un electrón más fácilmente que el átomo de un elemento del lado izquierdo del mismo período. Por lo tanto, aquellos de la derecha liberarán más energía y tendrán valores negativos más grandes para sus afinidades.

Dentro de un grupo, añadir un electrón a un átomo es menos favorable cuanto más grande es dicho átomo, pues ese electrón está más lejos de la carga nuclear.

Podemos verificar estas tendencias en la siguiente figura, aunque existen algunas excepciones

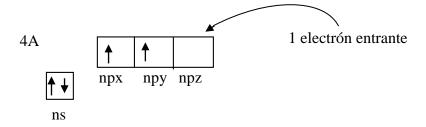
1A							8A
H - 77	2A	3A	4A	5A	6A	7A	He (21)
Li	Be	B	C	N	O	F	Ne
-58	(241)	-23	-123	0	-142	-333	(29)
Na	Mg	Al	Si	P	S	Cl	Ar
-53	(230)	- 44	- 120	- 74	- 200	- 348	(35)
K	Ca	Ga	Ge	As	Se	Br	Kr
- 48	(154)	(-35)	118	- 77	195	-324	(39)
Rb	Sr	In	Sn	Sb	Te	I	Xe
47	(120)	- 34	121	101	190	- 295	(40)
Cs	Ba	T1	Pb	Bi	Po	At	Rn
- 45	(52)	-48	101	- 100	?	?	?

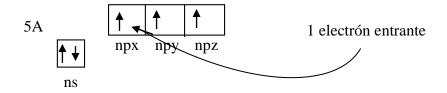

Veamos esas excepciones y como las podemos justificar:


Horizontalmente podemos observar dos excepciones:

1. Al pasar del grupo 1A al 2A se produce una inversión en el orden

2. Entre el grupo 4A y 5A también se produce el mismo fenómeno pero menos marcado


El primer caso se explica utilizando los diagramas de orbitales de los elementos de los grupos 1A y 2A



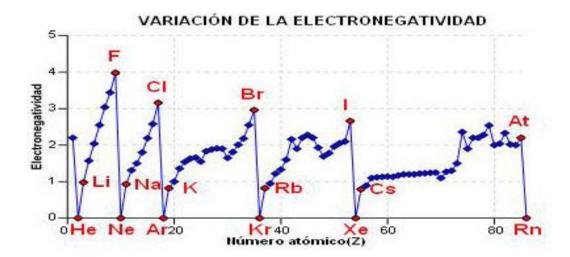
Un electrón entrante, en el caso del grupo 1A lo hace en un orbital **ns** de menor energía que el **np** del grupo 2A, por lo tanto se liberará mayor cantidad de energía.

La segunda excepción también se explica teniendo en cuenta el conjunto de diagramas de orbitales.

Como vemos, el electrón entrante en un elemento del grupo 4A ocupa el orbital **np** vacío, mientras que para un elemento del grupo 5A lo debe hacer sobre un orbital **np** que ya tiene un electrón, venciendo la repulsión electrón-electrón por lo que añadir un electrón se hace más difícil, a pesar de la mayor carga nuclear efectiva.

Verticalmente también hay una excepción entre los elementos del segundo y tercer período, por ejemplo entre F y Cl, que se pueden justificar en el hecho de que los elementos del 2° período son mucho más pequeños que los elementos del 3°, por tanto es mucho más difícil que estos elementos pequeños acoplen un electrón debido a mayores repulsiones electrón-electrón.

Podemos representar la afinidad electrónica (AE) mediante la siguiente ecuación


$$X_{(g)} + e^- \rightarrow A_{(g)}^- + E_1(energia)$$
 $AE = KJ/mol$

Electronegatividad

Recordemos que la electronegatividad la definimos como "la capacidad de un átomo, en una molécula, para atraer electrones hacia sí mismo".

Es de esperar que la electronegatividad se incremente a lo largo del período debido al incremento del Zef y que disminuya al descender en el grupo debido al incremento del tamaño atómico.

En general, para la electronegatividad no encontramos excepciones similares a las vistas para las energías de ionización y afinidades electrónicas.

• Principio de singularidad

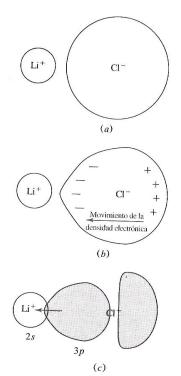
Este principio hace referencia a la notable diferencia de la química de los elementos del 2° período (Li, Be, B, C, N, O, F, Ne) respecto al resto de los elementos de sus respectivos grupos.

Tanto es así, que se puede hacer una clasificación tomando el segundo elemento de cada grupo (Na, Mg, Al, Si, P, Cl, Ar) como el más representativo.

Se pueden encontrar tres razones para explicar las diferencias: 1) su excepcional pequeño tamaño, 2) su intensa habilidad para formar enlaces **pi** y 3) la indisponibilidad de los orbitales **d** en estos elementos.

1. El pequeño tamaño de los primeros elementos

Los primeros elementos son excepcionalmente pequeños en comparación con sus congéneres. Ello tiene sus consecuencias en algunas propiedades, como por ejemplo en las afinidades electrónicas que, en estos elementos, son inesperadamente bajas (por ejemplo: la afinidad electrónica del fluor no es mayor que la del cloro).


Se puede justificar pensando que los electrones unidos a esos átomos pequeños y compactos experimentan más repulsiones electrónicas, y por tanto es más difícil añadir un electrón a esos átomos.

Otra consecuencia del inusual pequeño tamaño de estos primeros elementos (particularmente Li, Be, B y C) es el relativamente alto grado de carácter covalente que presentan sus compuestos.

Un ejemplo de ello lo podemos ver en los halogenuros de litio o de berilio, que podríamos esperar que, como los otros elementos del grupo 1 y 2 sean iónicos, sin embargo estos compuestos tienen un mayor carácter covalente.

Esto se puede justificar atendiendo al fenómeno de polarización que puede generar un catión pequeño frente a un anión grande, tal como se representa en la siguiente figura.

El ion litio, en este caso, puede llegar muy cerca de la nube electrónica llena del anión cloro, produciendo una **distorsión o polarización** en la misma. Esta distorsión hace más efectivo el solapamiento entre los orbitales de los iones, lo que se reconoce como un enlace covalente.

También se puede considerar que cuanto más grande es la carga positiva del catión, mayor es su poder de distorsión o de polarización y por tanto mayor el carácter covalente del enlace.

Se suele decir que cuanto mayor sea la relación carga/radio (Z/r) del catión (o densidad de carga), mayor es su poder polarizante.

Reflexionemos: ¿En qué tipo de solventes será más soluble el LiCl?

2. Mayor probabilidad de enlaces π en los primeros elementos

Los primeros elementos presentan una mayor tendencia que sus congéneres a formar enlaces dobles y triples (C=C, O=O, C=O, C = C, N = N, etc.).

Como sabemos, para formar este tipo de uniones es necesario utilizar enlaces sigma y pi.

La formación de enlaces π implica un solapamiento lateral de orbitales \mathbf{p} o \mathbf{d} , que en átomos grandes será menos efectivo que en átomos pequeños.

3. Ausencia de disponibilidad de orbitales d en los primeros elementos.

Una tercera razón para la singularidad de los primeros elementos en cada grupo es la ausencia de disponibilidad de orbitales **d.**

Los elementos a partir del 3º período tienen orbitales **d** de energía lo suficientemente baja que pueden ser ocupados sin un necesario gasto de "energía de promoción". Esto hace posible los octetos expandidos, situación que no es factible en el primer elemento del grupo.

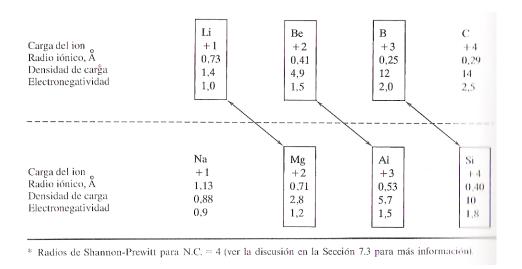
Esto tiene algunas consecuencias, como por ejemplo: el carbono solo puede formar compuestos como el CF_4 , mientras que el silicio es capaz de formar el ión SiF_6^{2-} .

También podemos ver ejemplos de este tipo en los halógenos.

El flúor solo puede formar enlaces sencillo como HF, NaF, mientras que el cloro puede formar compuestos como ClF₃ o ClO₃⁻.

Sería importante que, en función de los que conocemos de Teoría del Enlace de Valencia y de Hibridaciones, propongas las estructuras que les corresponderían a estos compuestos.

• El efecto diagonal


Al menos en los tres primeros grupos se da una "*relación diagonal*" entre la química del 1° elemento de un grupo y el 2° del grupo siguiente.

Así: el **Li** y el **Mg** son sorprendentemente similares, como también el **Be** y **el Al, el B** y el **Si.**

Se pueden considerar 3 factores para justificar estas semejanzas: "tamaño iónico, densidad de carga, electronegatividad".

Si observamos la tabla siguiente: (tabla 9.2 pag 274)

Vemos que: el radio iónico del Be²⁺ es más cercano al de Al³⁺ que al de Mg²⁺. Esto hará que el Be y el Al sean más intercambiables en redes cristalinas que el Be y el Mg, que es de mayor tamaño.

Si analizamos los valores de electronegatividad vemos, por ejemplo, que tanto el Be como el Al tienen un valor de 1,5; por tanto los enlaces Be-X y Al-X deberían ser similares en carácter covalente.

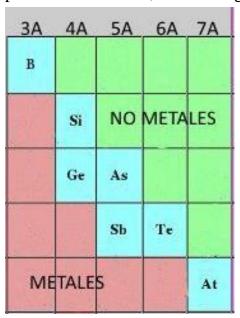
En cuanto a la densidad de carga, vemos que también hay similitud diagonal, por tanto polarizará en forma similar al átomo X en el enlace M-X y darán un carácter covalente adicional equivalente.

Debemos advertir que los iones que se han listado en la tabla, particularmente B³⁺, C⁴⁺, Si⁴⁺, no existen realmente como tales. Si existieran momentáneamente polarizarían inmediatamente a los aniones que los acompañan y se formarían enlaces covalentes.

• El efecto del par inerte.

Este nombre hace referencia a que los electrones de valencia $\mathbf{ns^2}$ de los elementos metálicos, particularmente aquellos $\mathbf{5s^2}$ y $\mathbf{6s^2}$ que siguen a los metales de la 2° y 3° serie de transición, son menos reactivos de lo que se podría esperar basándose en las tendencias de la carga nuclear efectiva, tamaño iónico y energías de ionización.

Así el In, Tl, Sn, Pb, Sb, Bi, y en algunos casos Po, no siempre muestran su máximo estado de oxidación, sino que a veces forman compuestos donde el estado de oxidación es dos unidades menor que la esperada valencia del grupo.


Este efecto tiene una explicación menos detallada que las ideas anteriores y puede tener su justificación en que los electrones 5s y 6s están menos apantallados por el núcleo, debido a los subniveles llenos **d** y **f**, por tanto reciben una mayor carga nuclear efectiva que la esperada y, consecuentemente, los electrones son más difíciles de arrancar.

• Metales, no metales y metaloides.

En la Tabla Periódica se ubican los "metales" en la parte inferior izquierda, los "no metales" en la superior derecha y los "semimetales" o "metaloides" en la zona intermedia.

Con los principios organizativos visto en nuestra "red" podemos asegurar que los metales (con sus bajas energías de ionización y bajas afinidades electrónicas) tienden a ceder electrones para formar iones positivos. Inversamente los no metales (alta energía de ionización y altas afinidades electrónicas negativas) tienden a ganar electrones para formar iones negativos.

Existe una división entre metales y no metales que es la familiar escalera diagonal que aparece en las tablas, como la figura siguiente:

A los elementos de esta zona se los llama "metaloides" o "semimetales".

GRUPO 1: METALES ALCALINOS

Li - Na - K - Rb - Cs - Fr

CONFIGURACION Y UBICACIÓN EN LA TABLA PERIÓDICA

Tienen configuración de valencia ns¹. Por su ubicación a la izquierda de la Tabla Periódica son metales muy activos y electropositivos que forman con facilidad cationes grandes. Son metales blandos y conductores de la corriente eléctrica.

Los compuestos de Na y K son los más conocidos desde hace mucho tiempo y son elementos esenciales para la vida animal, con importante rol biológico. Li tiene interés industrial y Rb y Cs tienen interés académico.

PROPIEDADES PERIÓDICAS

Analicemos esta tabla:

Símbolo Número atómico	Li					
Número atómico		Na	K	Rb	Cs	Fr
	3	11	19	37	55	87
Peso atómico	6,939	22,99	39,10	85,47	132,9	(223)°
Electrones de valencia	2s1	$3s^{i}$	$4s^1$	$5s^1$	6s1	$7s^1$
Puntos de fusión, °C	186	97,5	63,65	38,89	28,5	27
Puntos de ebullición, °C	1326	889	774	688	690	677
Densidad g/cm ³	0,534	0,971	0,862	1,53	1,87	_
Volumen atómico	13,1	23,7	45,3	55,9	70,0	-
Radio atómico, A	1,52	1,86	2,31	2,44	2,62	_
Radio iónico, A	0,60	0,95	1,33	1,48	1,69	_
EN de Pauling	1,0	0,9	0,8	0,8	0,7	0,
Z _{ef} /r ²	0,97	1,01	0,91	0,89	0,86	0,
Potencial normal	-3,05	-2,71	-2,92	-2,93	-2,92	_
Estados de oxidación	+1	+1	+1	+1	+1	_
Energía de ionización *	124	119	100	96	90	-
Calor de vaporización	35,4	25,9	19,4	18,1	19,4	_
Descubridor	Arfvedson	Davy	Davv	Bunsen v	Bunsen y	Per
Descubitdor	Mireason	Davy	2,	Kirchhoff	Kirchhoff	
Fecha del descubrimiento	1817	1807	1807	1861	1860	193
	Li ₂ O	Na ₂ O,	K,O,	RbO₃	CsO ₂	-
prc* O ₂ puro	LI ₂ O	Na ₂ O,	KO ₂	11002	002	
. 110	LiOH	NaOH	KOH	RbOH	C-OH	_
prc H ₂ O	AB 1 1 1 1 1 1	ninguno	ninguno	ninguno	ninguno	_
prc N ₂	Li ₃ N LiX	NaX	KX	RbX	CsX	_
prc halógenos	Li ⁺ H ⁻	Na+H-	K+H-	Rb+H-	Cs+H-	_
prc H ₂			violeta	púrpura	azul	
Color de la llama	rojo carmín	0.4	0,5	0.3	ul°	_
Dureza de Mohs Estructura cristalina	0,6 cúbico c.°	cúbico c.	cúbico c.	cúbico c.	cúbico c.	

^{*} Los pesos atómicos dados entre paréntesis son los del isótopo más estable. Todas las energías y calores expresan en kcal/mol. Las letras prc significan «producto de reacción con el»; cúbico c = cúbico centrado en el cu po; ul = usualmente líquido; en cuanto a las abundancias, véanse las tablas 1-2 y 1-3.

Tienen un solo electrón de valencia y como el 1^{er} potencial de ionización (PI) es bajo lo pierden con facilidad, quedando con configuración de gas noble:

$$M^0_{(g)} \to M^+_{(g)} + 1e^-$$

El $2^{\underline{do}}$ PI es muy elevado y por lo tanto no se los encuentra como divalentes en ninguna combinación.

Al aumentar el número atómico (Z), disminuye el PI, por lo tanto aumenta el carácter iónico y el carácter metálico, son cada vez más electropositivos, disminuye la contribución covalente al enlace de sus compuestos.

Con el aumento del número atómico aumenta el radio atómico y en consecuencia decrece la energía entre átomos, por lo tanto cuesta menos fundirlos. Así vemos que al aumentar Z, disminuye los PF (°C) y Peb (°C). También por lo tanto disminuye la dureza.

Este mismo análisis puede hacerse entre los grupos I y II. Al pasar del grupo I (ns¹) al grupo II (ns²) aumenta el **z efectivo**; esto genera una disminución de los radios aumentando la energía de enlace entre átomos. Por lo tanto los alcalino - térreos son más duros y de mayor PF y Peb., que los correspondientes alcalinos.

La comparación de dureza entre los grupos I y II puede analizarse por teoría de las bandas. El grupo I tiene la banda s llena solamente hasta la mitad; en el grupo II está totalmente llena lo que significa enlaces más fuertes entre átomos y en consecuencia mayor dureza.

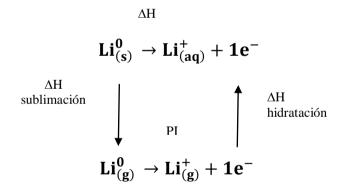
Resulta difícil establecer una periodicidad en cuanto a conductividad. El grupo I tiene la banda s semillena y el grupo II la tiene llena pero intermezclada con la banda p. Solamente podemos decir que son conductores ya que en ambos casos hay movilidad de electrones, sin poder establecer relaciones periódicas ya que para ello deberemos tener datos cuantitativos de la conductividad originada por cada tipo de banda.

Conductividad en microohm⁻¹cm⁻¹

Grupo I	Li 0,117	Na 0,238	K 0,163	Rb 0,089	Cs 0,05
Grupo II	Be 0,375	Mg 0,299	Ca 0,255	Sr 0,043	Ba

Vemos que salvo el caso Rb/Sr, los del grupo II resultan más conductores que los respectivos elementos del grupo I.

Poder polarizante e hidratación


Al aumentar el número atómico aumenta el radio y por lo tanto disminuye el poder polarizante (carga/radio). Así el más polarizante es el litio y por lo tanto Liº y Li⁺ poseen más capacidad de hidratación que el resto. Esto se pone de manifiesto al analizar los valores de Energía de Hidratación en la Tabla de propiedades anterior.

Poder reductor y Potencial de Ionización

El poder reductor aumenta de Na al Cs, pero el Litio es el más reductor del grupo, E^0 : $Li^+/Li^\circ = -3,02$ v. Esto se explica de la manera siguiente: Si bien litio tiene el mayor PI lo que indicaría muy difícil de oxidar (pérdida de electrones), su poder polarizante hace que se hidrate con facilidad y que el ΔH de la reacción sea muy favorable (exotérmica).:

$$Li^0_{(s)} \to Li^+_{(aq)} + 1e^-$$

Este ΔH se calcula estableciendo el siguiente ciclo:

 $\Delta H = \Delta H$ sublimación + PI + ΔH hidratación

TRATAMIENTO DIFERENCIAL DE LITIO

Por su pequeño radio, litio tiene gran poder polarizante y Li^o y Li⁺ presentan propiedades diferentes al resto del grupo. Sus sales se presentan generalmente hidratadas.

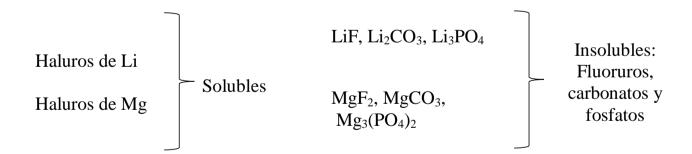
Por su similitud de radios presenta **analogía diagonal** con el magnesio. Veamos ejemplos de esta similitud:

1) Forman nitruros por combinación con N₂ como Li₃N y Mg₃N₂. Estos nitruros por hidrólisis dan amoníaco:

$$\text{Li}_3\text{N} + 3\text{H}_2\text{O} \rightarrow 3\text{LiOH} + \text{NH}_3$$

 $\text{Mg}_3\text{N}_2 + 6\text{H}_2\text{O} \rightarrow 3\text{Mg}(\text{OH})_2 + 2\text{NH}_3$

2) Forman carburos (acetiluros) con el carbono: Li₂C₂, MgC₂, Mg₂C₃. Estos carburos dan acetileno por hidrólisis:


$$LiC \equiv CLi + 2H_2O \rightarrow HC \equiv CH$$

3) Los carbonatos y nitratos se descomponen con facilidad térmicamente

$$\begin{aligned} \text{Li}_2\text{CO}_3 &\rightarrow \text{Li}_2\text{O} + \text{CO}_2 \\ \text{MgCO}_3 &\rightarrow \text{MgO} + \text{CO}_2 \end{aligned}$$

Esto se explica por la relación de radios r $_{\rm Li}^+/o^=$: Como Li $^+$ es muy chico y CO $_3^{2-}$ es muy grande no hay relación de radios adecuada para ningún hueco y entonces pasa a Li $_2$ O donde O $^-$ es más chico y la relación r $_{\rm Li}^+/o^=$ es adecuada para huecos tetraédricos (estructura antifluorita)

3) Presenta similitud en la solubilidad de sus sales:

REACTIVIDAD DE LOS METALES ALCALINOS

Reactividad frente al oxígeno y al agua. Dan uniones iónicas y por lo tanto esta reactividad aumenta con el número atómico:

$$2M + \frac{1}{2}O_2 \rightarrow M_2O$$

$$M + H_2O \rightarrow MOH + \frac{1}{2}H_2$$

ÓXIDOS - PERÓXIDOS - SUPERÓXIDOS

Dan estos tres tipos de óxidos: O^{2-} (óxido), O^{2-} (peróxido) y O_2^{-} (superóxido). La estabilidad de los peróxidos y superóxidos aumenta con Z, esto también puede justificarse por la relación de radios ya que son aniones grandes y por lo tanto prefieren cationes también grandes. Así existe:

ÓXIDOS	PERÓXIDOS	SUPERÓXIDOS
Li_2O	No forma	No forma
Na_2O	Na_2O_2	NaO_2
		Solo em condiciones especiales de P y T
K_2O	K_2O_2	KO_2
Rb_2O	Rb_2O_2	RbO_2
Cs_2O	Cs_2O_2	CsO_2

Los óxidos normales tienen estructura de antifluorita AX_2 , excepto el Cs_2O que la relación de radios (catión grande) es del tipo anti - $CdCl_2$ en capas donde, Cs ocupa huecos octaédricos distorsionados.

La hidrólisis de óxidos, peróxidos y superóxidos da respectivamente:

$$M_2O + H_2O \rightarrow 2MOH$$

$$M_2O_2 + 2H_2O \rightarrow 2MOH + H_2O_2$$

$$2MO_2 + 2H_2O \rightarrow 2MOH + H_2O_2 + O_2$$

FORMACIÓN DE SALES

Haluros: Dan haluros iónicos solubles, livianos con estructura de tipo NaCl, y pesados con estructura de tipo CsCl. No siempre cumplen con la relación de radios y por lo tanto hay que analizar otras variables como constantes de Madelung¹, poder polarizante, etc.

Cuanto más chico sea el catión y más grande el anión, mayor será el efecto polarizante del catión sobre el anión. Así en LiI tenemos el catión más polarizante y el anión más polarizable y por lo tanto el que presenta mayor carácter covalente al estado gaseoso.

¹ Cada tipo de red tiene una disposición diferente de cationes y aniones y, por tanto, su propia serie convergente. Los valores numéricos de estas series se conocen como *constantes de Madelung*.(pág 97, Rayner-Canham, Geoff Química inorgánica descriptiva, 2da. Edición)

Oxoaniones: Dan fosfatos, sulfatos, carbonatos, nitratos, etc. Por lo general solubles (recordar que fluoruro; carbonato y fosfato de litio son insolubles). La estabilidad térmica de los carbonatos aumenta con Z explicable por la relación de radios. Así por ejemplo en el caso de los carbonatos se descomponen dando:

$$M_2CO_3 \rightarrow M_2O + CO_2$$

$$MHCO_3 \rightarrow M_2O + CO_2 + H_2O$$

A bajas temperaturas los bicarbonatos de descomponen dando

$$2MHCO_3 \rightarrow M_2CO_3 + CO_2 + H_2O$$

Hidróxidos: Son muy iónicos, por lo tanto se disocian con mucha facilidad. Así son muy básicos variando la basicidad con el aumento de Z. A mayor Z, mayor basicidad.

Coloración a la llama

El electrón de valencia (ns¹) puede ser excitado a un nivel superior mediante energía calorífica. Al regresar al estado fundamental emite la energía ganada a una frecuencia determinada del visible. Por ello se observa un color característico dando lugar a un espectro de emisión. Cada metal tiene su espectro específico.

Hidruros: Son hidruros salinos o iónicos, sólidos e incoloros, funden o se descomponen por encima de 600°C. Se pueden obtener por síntesis directa a elevadas temperaturas:

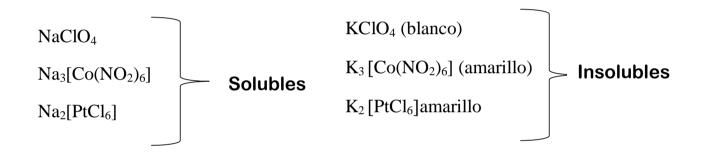
$$2M + H_2 \rightarrow 2MH$$

En el caso de Li y Na los hidruros correspondientes pueden obtenerse también al calentar los nitruros en corriente de hidrógeno:

$$2M_3N + 3H_2 \rightarrow 6MH + N_2$$

La estabilidad disminuye con Z y dan:

Por hidrólisis:


$$LiH + H_2O \rightarrow LiOH + H_2$$

Por electrólisis:

$$H^- \rightarrow H^0 + 1e^- (\text{ánodo})$$

 $Li^+ + 1e^- \rightarrow Li^0 (\text{cátodo})$

Reacciones diferenciales de Na y K

El comportamiento de estos elementos es muy similar, pero tienen algunas reacciones diferentes, sobre todo en lo referente a solubilidad, esto debido a diferencias en energía reticular, los compuestos de K son precipitados mientras que los de Na son solubles.. Así:

Estado Natural

Generalmente en forma de haluros en grandes depósitos denominados "salinas".

NaCl (halita)

KCl (silvita)

KCl. MgCl₂. 6H₂O (carnalita)

KAlSi₃O₈ (feldespato)

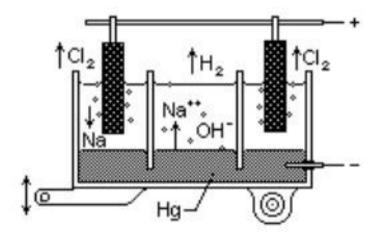
4 SiO₂. Al₂O₃. Li₂O (espodumeno)

El Na en agua de mar: 3%

Na y K forman el 3% de la corteza terrestre.

OBTENCIÓN

Se los obtiene por electrólisis de sus sales fundidas


Método de Dons	Método de Castner		
$NaCl (fundido) \rightarrow Na^+ + Cl^-$	$NaOH \rightarrow Na^+ + OH^-$		
$2Cl^- \rightarrow Cl_2 + 2e^- (\acute{a}nodo)$	$20H^- \to H_2 O + \frac{1}{2} O_2 + 2e^-$		
$Na^+ + 1e^- \rightarrow Na^0(c\acute{a}todo)$	$Na^+ + 1e^- \rightarrow Na^0$		

Si no se utiliza una sal fundida ocurre que el sodio en solución (por ejemplo al querer hacer la electrólisis de salmuera) depositado en el cátodo reaccionan con el agua para dar:

$$Na^0 + H_2O \rightarrow NaOH + 1/2 H_2$$

Sin embargo con un dispositivo especial es posible obtener sodio por electrólisis de salmuera. Consiste en utilizar un cátodo de Hg para que sodio forme la amalgama Na-Hg cuando se deposita evitando su reacción con agua. El fondo de la cuba es un plano inclinado y el mercurio va circulando y de esa manera es posible recoger la amalgama en la parte inferior. Posteriormente la amalgama se destruye por calentamiento.

El cloro obtenido en el ánodo puede utilizarse como tal, por reacción con hidrógeno obtener HCl, por reacción con NaOH obtener NaClO (en frío) o NaClO₃ (en caliente), por reacción con agua obtener HClO + HCl.

Rubidio y Cesio pueden obtenerse también por reducción directa con calcio o magnesio:

$$2 CsCl + Mg \rightarrow MgCl_2 + 2 Cs^0$$

$$2RbCl + Ca \rightarrow CaCl_2 + 2Rb^0$$

PROPIEDADES Y USOS PARTICULARES DE ESTOS ELEMENTOS Y SUS COMPUESTOS

Litio:

- Es un elemento escaso.
- Tiene alto calor específico (0,784 cal/gr °C). Por ello se utiliza como líquido enfriador en intercambiadores de calor, pero es muy corrosivo.
- Tiene dos isótopos principales ₃⁶Li (7,3 %). ⁷₃Li (92,7%) ₃⁶Li se utiliza en la obtención de tritio.
- Se utiliza en la fabricación de grasas, jabones, cosméticos, etc.; sobre todo cuando hay cambios de temperatura ya que estos compuestos de litio resisten altas y bajas temperaturas.

$$\begin{array}{ccc}
(R)_n & & (R)_n \\
 & + Li^+ & \longrightarrow & \begin{pmatrix}
 & (R)_n \\
 & (R)_n
\end{pmatrix}$$
COOLi

- Rol biológico: "No distingue las células". Puede reemplazar a Ca y Mg produciendo intoxicación.
- Aplicación biológica: LiBr se usa en siquiatría como sedante.

Sodio:

- Las sales más importantes son NaCl, NaNO₃, Na₂CO₃, NaHCO₃.
- 1.- NaCl se obtiene en las salinas por método que incluyen: concentración natural, extracción, lavado, secado, centrifugación, clasificación, agregado de silicatos de Al y Na para prevenir humedad, agregado de NaIO₃ como profilaxis contra deficiencias en el funcionamiento de la glándula tiroides.

Sus usos importantes son alimentos, curtiembre, solución fisiológica, reacciones químicas.

2.- NaNO₃ (nitrato de Chile). Se utiliza en fabricación de pólvora y en métodos para la obtención de HNO₃. Se lo llama nitro de conversión ya que:

$$NaNO_3 + KCl \rightarrow KNO_3 + NaCl$$

3.- Na₂CO₃. Se lo obtiene por el **método de Solvay** que utiliza como materias primas a CaCO₃, NaCl, NH₃ y H₂O según las siguientes reacciones:

$$egin{aligned} & ext{CaCO}_3
ightharpoonup \text{CaO}_2 \\ & ext{CO}_2 + \text{NH}_3 + \text{H}_2\text{O}
ightharpoonup \text{NH}_4\text{HCO}_3 \\ & ext{NH}_4\text{HCO}_3 + \text{NaCl}
ightharpoonup \text{NaHCO}_3(\text{en frio}) + \text{NH}_4\text{Cl (soluble)} \end{aligned}$$

en esta etapa el NaHCO₃ se separa de NH₄Cl por diferencia de solubilidad.

$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$$
 (recuperable)

Recuperación de NH₃:

$$2NH_4Cl + CaO \rightarrow CaCl_2 + H_2O + NH_3$$

El Na₂CO₃ se utiliza en: la fabricación del vidrio junto con SiO₂.

En la fabricación de jabones: (R)_n -COONa

En la obtención de NaOH: $Na_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2NaOH$

- 4.- NaHCO₃ tiene uso farmacéutico para combatir la acidez estomacal.
- 5.- Na⁺ en su rol biológico actúa a nivel extracelular en las células.

Potasio:

Sus sales son menos higroscópicas que las del sodio (analizar poder polarizante) y son más solubles en compuestos orgánicos. De allí la preferencia en usos analíticos tal como KMnO₄ en lugar de NaMnO₄ o el uso de KNO₃ en la fabricación de la pólvora.

- Pólvora negra:

$$2KNO_3+C+S \rightarrow K_2SO_4+N_2+CO_2$$

- Rol biológico: Elemento que actúa a nivel intercelular. Constituye además parte de las proteínas. Tiene importancia en la vida vegetal.
- Tiene un isótopo importante $_{19}^{40}$ K $\xrightarrow{\beta+}$ $_{18}^{40}$ Ar (justifica la abundancia del argón)

Rubidio:

Presenta propiedades semejantes a talio por tener radios similares.

- Tienen un isótopo importante utilizado en geocronometría:

$$^{87}_{37}Rb \rightarrow \beta + ^{87}_{38}Sr$$

Para los compuestos de sodio y potasio que en definitiva son los más utilizados podemos resumir:

- Los compuestos de sodio son más económicos que los de potasio.
- Los compuestos de potasio son más solubles en compuestos orgánicos.
- Los compuestos de potasio son menos higroscópicos.
- Na⁺ actúa a nivel extracelular y K⁺ a nivel intercelular.

REACCIONES DE RECONOCIMIENTO

Litio:

$$Li^+ + CO_3^{-2} \rightarrow Li_2CO_3$$
 (precipitado blanco)

Sodio:

$$Na^{+} + [Zn(UO_{2})_{3}(CH_{3}COO)_{9}]^{-} + 9H_{2}O \rightarrow Na[Zn(UO_{2})_{3}(CH_{3}COO)_{9}]. \ 9H_{2}O(ptdo. \ amarillo)$$

Potasio:

$$K^+ + ClO_4^- \rightarrow KClO_4$$
(precipitado blanco)

GRUPO 2: METALES ALCALINO-TÉRREOS Be - Mg - Ca - Sr - Ba - Ra

Configuración. Ubicación en la tabla periódica

La configuración de la capa de valencia es ns^2 . Por su ubicación en la tabla son menos electropositivos que los correspondientes alcalinos. La Z_{efec} es mayor para el grupo II, en consecuencia el radio atómico y el radio iónico son menores frente a los radios de los alcalinos. Esto determina que los metales del grupo sean más duros, de mayores puntos de fusión y ebullición frente al grupo I.

Son metales menos activos que el correspondiente alcalino y las sales del grupo presentan generalmente menos solubilidad.

Propiedades periódicas

	Berilio	Magnesio	Calcio	Estroncio	Bario	Radio
Símbolo	Ве	Mg	Ca	Sr	Ba	Ra
Número atómico	4	12	20	38	56	88
Peso atómico	9,012	24,31	40,08	87,62	137,34	226,05
Electrones de valencia	$2s^2$	$3s^2$	4s2	$5s^2$	$6s^2$	$7s^2$
Punto de fusión, °C	1283	650	845	770	725	700
Punto de ebullición, °C	2970	1120	1420	1380	1640	1140
Densidad, g/cm ³	1,85	1,74	1,55	2,60	3, 51	5
Volumen atómico	5,0	14,0	29,9	33,7	39,0	-
Radio atómico, A	1,11	1,60	1,97	2,15	2,17	2,20
Radio iónico, A	0,31	0,65	0,99	1,13	1,35	-
EN de Pauling	1,5	1,2	1,0	1,0	0,9	0,9
Z_{ef}/r^2	1,47	1,23	1,04	0,99	0,97	0,97
Potencial normal	-1,85	-2,37	-2,87	-2,89	-2,90	-2,92
Estados de oxidación	+2	+2	+2	+2	+2	+2
Energía de ionización*	215	176	141	131	120	-
Caior de vaporización,	73,9	30,6	40,1	36,8	35,7	-
Descubridor *	Vauquelin	Bussy	Berzelius	Davy	Davy	Curie
Fecha del descubrimiento	1798	1831	1808	1808	1808	1911
prc* O₂ puro	BeO	MgO	CaO	SrO, SrO ₂		RaO
prc H ₂ O	ninguno	ninguno	$Ca(OH)_2$	$Sr(OH)_2$	$Ba(OH)_2$	Ra(OF
prc N ₂	ninguno	Mg_3N_2	Ca_3N_2	$\mathrm{Sr_3N_2}$	$\mathrm{Ba_3N_2}$	Ra_3N_2
prc halógenos	BeX_2	MgX_2	CaX_2	SrX_2	BaX_2	RaX_2
prc H₂	ninguno	MgH_2	CaH ₂	SrH_2	BaH_{2}	_
Color de la llama	- '	_	rojo ladrillo	común	verde	_
Dureza de Mohs	4	2,0	3	1,8	1,5	_
Estructura cristalina	hexagonal	hexagonal	c.c.c.	c.c.c.	c.c.	-

^{*} prc = producto de reacción con c.c.c. = cúbico de caras centradas; c.c. = cúbico centrado; «descubridor» refiere al primer aislamiento; el Mg, Ca y Ba eran conocidos desde tiempos antiguos; todas las energías se exesan en kcal/mol; los potenciales se dan en volts.

Tienen 2 electrones de valencia (ns^2) que se transfieren con facilidad generando iones M^{2+} , cuya configuración electrónica es igual al gas noble anterior en la tabla.

$$M^0 \rightarrow M^{2+} + 2e^-$$

Al aumentar el Nº atómico disminuye el PI del metal, por lo tanto aumenta el carácter metálico y el carácter iónico del enlace en sus compuestos; correlativamente, disminuye la tendencia a la formación de enlaces covalentes ya que los metales son cada vez más electropositivos.

- Con el aumento de z crece también el tamaño, atómico, disminuyendo la Energía de Enlace entre los átomos del cristal metálico, por lo que disminuye la dureza, el punto de fusión y el de ebullición, estas tres propiedades son mayores que la del correspondiente elemento alcalino. De acuerdo a la teoría de capas, los alcalinos - térreos presentan la banda s llena y eso justifica mayor dureza con respecto a los alcalinos.

La conductividad eléctrica no puede justificarse en forma sencilla mediante alguna propiedad periódica. En general son mejores conductores que el alcalino anterior y dentro del grupo la conductividad disminuye con el aumento de z.

- Con el aumento de z crece el radio iónico y disminuye el poder polarizante del catión (expresado por la relación carga/radio iónico). Así se explica que Be²⁺ tiene el máximo poder polarizante del grupo y presenta la mayor tendencia a la hidratación en sus sales.
- El poder reductor aumenta desde el Be° al Ra° y en este grupo Be° no presenta el valor anómalo del potencial de reducción como ocurre en el caso del Li°. En efecto, el ΔH para la reacción:

$$M_{(s)}^0 \to M_{(aq)}^{2+} + 2e^-$$

no compensa el valor de PI y de la Energía de sublimación (ver el ciclo de Born - Haber correspondiente en metales alcalinos). Debido a lo anterior, el poder reductor sigue el mismo orden que los PI. (Aumenta con la disminución del PI)

- Con el aumento de z también aumenta: a) La estabilidad térmica de carbonatos y nitratos, b) basicidad de los hidróxidos y c) basicidad de los ácidos.

La solubilidad de las sales del grupo varía sistemáticamente en el grupo (valores de los Kps pueden encontrarse en la guía de T.P.).

Con el aumento de z:

- DISMINUYE la solubilidad de los SO₄-2 SeO₄-2, CrO₄-2 y NO₃-
- AUMENTA la solubilidad de oxalatos e hidróxidos.
- Presentan mínima variación las solubilidades de CO₃-2 e IO₃-.

- El aumento de z disminuye el PI y la contribución covalente del enlace en los compuestos.

Así mientras la química de los compuestos de Be es netamente covalente, la del Mg es covalente iónica (similitud diagonal en la tabla periódica). Ca, Sr y Ba tienen bajos PI y su química es iónica.

El **radio** es radiactivo, siendo el isótopo 226 Ra un alfa emisor con $t_{1/2}$ = 1600 años.

Por las consideraciones anteriores, puede entenderse por qué se consideran elementos representativos del grupo al Ca, Sr y Ba.

Estados de Oxidación:

Los elementos del grupo siempre aparecen como bipositivos, aunque podríamos preguntar por qué no existe el estado monopositivo en su química, en solución. Una justificación adecuada se tiene analizando los $\Box H$ de hidratación de los cationes considerando:

$$Ca^+ + H_2O \rightarrow Ca^+_{(aq)} \Delta H = -76 \text{ kcal/mol}$$

$$Ca^{2+} + H_2O \rightarrow Ca^{2+}_{(aq)} \Delta H = -395 \text{ kcal/mol}$$

La formación e hidratación de un catión divalente es un proceso mucho más estable que la formación de un monopositivo.

Que tampoco existan los cationes monopositivos en el estado sólido, o que dichos compuestos sean muy inestables, se explica bien teniendo en cuenta que en los cationes M²⁺ los valores de energía de red son elevados. Por eso las sales de catión alcalinotérreos monopositivos se dismutan con gran facilidad:

$$2MgF \to MgF_2 + Mg^0$$

Comportamiento diferencial del berilio (Be)

Debido al pequeño radio iónico, el Be^{2+} tiene alto poder polarizante, inclusive superior al Li^+ [Ri (Be^{2+}) < Ri (Li^+)].

La química de los compuestos de Be es netamente covalente (Su PI es el mayor del grupo) y sus compuestos se justifican por dos tipos de híbridos: BeX_2 lineales, **hibridación sp**, y moléculas complejas [BeX₄] tetraédricas, **hibridación sp**³.

El valor del radio es similar al del aluminio, generándose comportamiento químico similar y resultando otra analogía en la tabla periódica. Algunos ejemplos:

- 1.- Los metales son resistentes al ataque por ácidos, ya que se recubren de capas de óxido superficiales.
- 2.- Reaccionan con HO⁻ (medio básico) para dar los hidróxidos correspondientes.
- 3.- Los hidróxidos son anfóteros:

Al (OH)₃
$$H^+$$
 [Al (H₂O)₆]³⁺ HO [Al (H₂O)₂ (HO)₄]

Be
$$(OH)_2$$
 H^+
 $[Be (H_2O)_4]^{2+}$
 $HO^ [Be (OH)_4]^{-2}$

- Los óxidos Al₂O₃ y BeO son muy refractarios, tienen elevados puntos de fusión.

Estado natural

Con excepción del berilio, los elementos del grupo se encuentran como CO3⁻² y SO4⁻².

El **berilio** se encuentra formando parte de un silicato llamado **"Berilio"** cuya composición es: 6 SiO₂. BeO. Al₂O₃

Magnesio y calcio. Algunos de los minerales más comunes son:

Dolomita: CaCO₃ . MgCO₃

Calizas: CaCO₃ mineral puro: Calcita

Yeso: CaSO₄ .2H₂O

SrSO₄

Bario: Baritina: BaSO4

Métodos de obtención

1.- Electrólisis de Sales Fundidas: (BeF₂, NaF) (CaF₂ o CaCl₂) etc.

$$c\acute{a}todo(-): Ca^{2+} + 2e^{-} \rightarrow Ca^{0}$$

$$anodo(+): 2Cl^- \rightarrow Cl_2 + 2e^-$$

2.- Métodos de Reducción con agentes químicos:

$$BeCl_2 + Ca^0 \rightarrow CaCl_2 + Be^0$$

$$MgO + C \rightarrow CO + Mg^0 - 200^{\circ}C$$

$$MgO + CO \rightarrow CO_2 + Mg$$

$$3BaO + 2Al^0 \rightarrow Al_2O_3 + 3Ba^0 \ \ (Aluminiotermia)$$

$$CaO.MgO + Fe - Si \rightarrow Mg^0 + silicatos \ de \ calcio \ e \ hiero$$

Fe-Si es una aleación denominada comúnmente ferrosilicio.

3.- Obtención de radio

A partir de minerales de uranio, ya que el radio aparece en la serie de desintegración

$$A = 4n + Z$$

COMPUESTOS BINARIOS:

1.- ÓXIDOS: Todos cristalizan en la red tipo NaCl, con excepción del BeO que cristaliza como wurzita (SZn hexagonal).

Obtención de óxidos:

$$M^0 + \frac{1}{2}O_2 \to MO \ (M^0 = metal \ alclinotérreo)$$

$$MCO_3 \to MO + CO_{2(g)}$$

$$M(HCO_3)_2 \to MCO_{3(insoluble)} + CO_2 + H_2O \ (bajas \ temperaturas)$$

Las **temperaturas de calcinación** de los carbonatos del grupo (T° de descomposición a óxidos) son:

	BeCO ₃	MgCO ₃	CaCO ₃	SrCO ₃	BaCO ₃
°C	100	450	900	1290	1360

La estabilidad térmica aumenta con z y esto puede explicarse mediante el concepto de la relación de radios, tal como se analizó para los carbonatos de metales alcalinos.

Carácter ácido-base de los óxidos

BeO + H₂O
$$\rightarrow$$
 Be(OH)₂ Kps = 1, 6 * 10⁻²⁶ (anfótero)
MgO + H₂O \rightarrow Mg(OH)₂ Kps = 3, 9 * 10⁻¹²

El óxido de magnesio es prácticamente insoluble en agua, no analizamos su basicidad.

Ca0 + H₂O
$$\rightarrow$$
 Ca(OH)₂ Kps = 1, 3 * 10⁻³
SrO + H₂O \rightarrow Sr(OH)₂ Kps = 3, 2 * 10⁻⁴
BaO + H₂O \rightarrow Ba(OH)₂ Kps = 5, 9 * 10⁻³

Son relativamente solubles, la basicidad de los mismos aumenta con z. Son menos solubles y menos básicos que los correspondientes compuestos del grupo I.

Peróxidos Alcalino-térreos:

Ca, Sr y Ba forman peróxidos cuya estabilidad aumenta con z, hecho justificable en base al concepto de la relación de radios.

$$0$$

$$M \stackrel{\bigcirc{}}{\triangleleft}$$

$$0$$

$$+2H - OH \rightarrow M(OH)_2 + H_2O_2$$

$$0$$

2.- Carburos

Los elementos del grupo dan carburos que realmente son acetiluros. La hidrólisis de estos compuestos genera acetileno.

$$\begin{array}{ccc} C & & CH \\ M & & +2H-OH \rightarrow M(OH)_2 + & & \parallel \\ & & CH & & \end{array}$$

El MgC₂ calentándose a 500 °C en exceso de carbono se transforma en C₃Mg₂ que por hidrólisis da (CH=C-CH₃).

Obtención de Acetiluros. Por reacción a elevada temperaturas entre CaO y C.

Horno eléctrico

$$CaO + 3C \rightarrow CaC_2 + CO(g)$$
$$CO + \frac{1}{2}O_2 \rightarrow CO_2(g)$$

3.- Hidruros

Compuestos cuya estabilidad disminuye con el incremento de z. Se obtienen por síntesis:

$$Ca^0 + H_2 \rightarrow CaH_2$$

El enlace covalente se encuentra parcialmente polarizado, siendo también en este caso el H₂ más electronegativo que los elementos alcalinos-térreos. Se usan como reductores, por la tendencia que presenta el ión hidruro (H⁻) a la oxidación:

$$H^- \rightarrow H^0 + e^-$$

Hidrólisis: Por hidrólisis se obtiene el hidróxido correspondiente con desprendimiento de H₂:

$$\text{CaH}_2 + 2\text{H}_2\text{O} \rightarrow \text{Ca}(\text{OH})_2 + 2\text{H}_2$$

El magnesio forma compuestos del tipo MgXH, donde el hidrógeno puede reemplazarse por radicales orgánicos R: MgXR, utilizados en las reacciones de Grignard.

4.- Nitruros

Fundamentalmente el magnesio forma Mg_3N_2 , similarmente a lo que ocurre en el caso de Li $^{\circ}$ y Be.

Los restantes también forman M_3N_2 , pero pueden formarse con otras estequiometrías. La hidrólisis del nitruro de magnesio libera amoníaco:

$$Mg_3N_{2(cristalino-incoloro)} + 6H_2O \rightarrow 2NH_3 + 3Mg(OH)_2$$

5.- Haluros

Todos forman los haluros MX_2 , generalmente con estructura tipo fluorita. Los fluoruros son generalmente los menos solubles. Los haluros de Be son covalentes, mientras que los de Mg ya son iónicos y con tendencia a formar haluros básicos, por ejemplo

Mg(OH)Cl.

Los haluros de Ca, Sr y Ba son delicuescentes, en especial CaCl₂ que puede utilizarse como agente deshidratante.

6.- Oxoaniones

Existen todas las sales de los oxoaniones más comunes: SO₄-2, CO₃-2, NO₃-, C₂O₄-2, etc.

Son sales muy cristalinas, mucho más insolubles que las correspondientes alcalinas. Se descomponen térmicamente para dar los óxidos respectivos. Algunos, como el CaSO₄, cambian con facilidad su estado de hidratación:

$$\text{CaSO}_4.\ 2\text{H}_20 \to \text{CaSO}_4.\ ^1\!\!/_2\,\text{H}_20 + ^1\!\!/_2\,\text{H}_20 \quad \text{Yeso plástico}$$

$$\text{CaSO}_4.\ ^1\!\!/_2\,\text{H}_20 + ^1\!\!/_2\,\text{H}_20 \ \to \text{CaSO}_4.\ 2\text{H}_20 \quad \text{etapa de fraguado}$$

7.- Complejos

Los compuestos quelantes pueden formar complejos con iones M^{2+} en soluciones alcalinas:

$$\begin{split} & Ca^{2+}(aq) + EDTA^{4-} \rightarrow [Ca(EDTA)]^{2-} \\ & Mg^{2+}(aq) + EDTA^{4-} \rightarrow [Mg(EDTA)]^{2-} \end{split}$$

Algunas Propiedades particulares de los Elementos Alcalino-térreos:

Berilio: Es de uso importante en química nuclear en la obtención de neutrones:

$${}_{4}^{9}\text{Be} + {}_{2}^{4} \propto \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$

- También se lo utiliza para la construcción de pantallas de rayos X.
- La Alejandrita es un óxido de Be y Al que tiene la propiedad de cambiar de color cuando se ilumina con luz natural (toma color verde) o con luz artificial (toma color rojo):

$$O = Al - O$$
 \searrow Be $O = Al - O$ \swarrow

- **Berilio** y sus compuestos son tóxicos. Destruyen el tejido pulmonar cuando se inhalan y producen distintas afecciones sobre la piel.

Magnesio: Forma gran variedad de silicatos:

Silicatos ácidos: talcos, asbestos, amiantos.

Silicatos de Fe y Mg denominados olivinas.

Rol biológico: forma parte de las clorofilas. MgSO₄ tiene efecto purgante sobre el organismo.

Algunos reactivos de uso analítico para magnesio: Los PO₄³⁻, PO₄ (NH₄) y P₂O₇⁴⁻ solubles con Mg²⁺ para formar los correspondientes compuestos insolubles: Mg₃(PO₄)₃, Mg(NH₄) PO₄ y P₂O₇Mg₂.

- Jabones de magnesio: Los jabones comunes solubles en agua son sales de Na⁺. Cuando el agua contiene altas cantidades de sales solubles de Ca²⁺ y Mg²⁺, reaccionan para formar los jabones de calcio y magnesio que tienen poca solubilidad. Este fenómeno es conocido como problema de las aguas duras.

$$2R-COONa+Ca^{2+} \acute{o} Mg^{2+} \rightarrow R-COO_2 Mg+R-COO_2 Ca+2Na^+$$

<u>Calcio</u>: Considerando su potencial de reducción, puede desplazar el H₂ a partir del agua o de ácidos. Al igual que magnesio, se lo utiliza como reductor en procesos químicos y también en mineralurgia.

Rol biológico: Como fosfato es constituyente principal de huesos, dientes y uñas.

- En la industria de la construcción como constituyentes de los cementos (SiO₃²⁻), cal viva (CaO) y yeso (CaSO₄).

Estroncio: El isótopo ⁹⁰Sr es un emisor gamma que aparece como producto de escisión.

- $Sr(NO_3)_2$ es una de las sales utilizadas en pirotecnia.
- El Sr(OH)₂ se utiliza en la industrialización de la remolacha azucarera, ya que permite la recuperación de diversos sacaratos para formar sacarosa:

sacaratos solubles (melazas) + $Sr(OH)_2 \rightarrow Sacarato de Sr (insoluble)$

Sacarato de $Sr + CO_2 \rightarrow Sr(CO_3)(precipitado blanco) + sacarosa$

<u>Bario</u>: El peróxido se utiliza en la obtención de H₂O₂. BaCl₂ es tóxico, mientras que Ba(NO₃)₂ se utiliza en pirotecnia. BaSO₄ se usa como constante de Rx y también en pinturas.

GRUPO 13: B, Al, Ga, In, Tl

Configuración - Propiedades periódicas

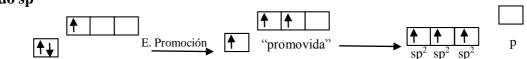
		Anna Carlo			NAME AND DESCRIPTION OF THE PROPERTY OF THE PR
Símbolo	В	Al	Ga	In	Trì
Número atómico	5	13	31	49	Tl
Peso atómico	10,81	26,98	69,72		81
Electrones de valencia	$2s^22p^1$	$3s^23p^1$	$4s^24p^1$	$114,82$ $5s^25p^1$	204,37
Punto de fusión, °C	2300	660	29,78		$6s^26p^1$
Punto de ebullición, °C	2550	2327	2403	156,6 2000	303,5
Densidad, g/cm ³	2,34	2,70	5,91		1457
Volumen atómico	4,6	10,0	11,8	7,31	11,85
Radio atómico, A	0,88	1,43	1,22	15,7	17,2
Radio iónico, A	,	0,50	0,62	1,62	1,71
EN de Pauling	2,0	1,5	1,6	0,81	0,95
$Z_{\rm ef}/r^2$	2,01	1,47	1,82	1,7	1,8
Potencial normal	-0,90	-1,66	-0,56	1,49	1,44
Estados de oxidación *	covalente 3	+3	+1, +3	-0,34	-0,33
Energía de ionización *	191	138	138	+1, +2, +3 133	+1, +3
Calor de vaporización	128	67,9	68,8	55,4	141
Aislados por	Gay-Lussac	Wöhler	Boisbaudran	Reich	38,8
Fecha de aislamiento	1808	1827	1875	1863	Crookes
prc O₂ puro	B ₂ O ₃ , 1200°C	Al ₂ O ₃ , 800° C			1861
prc H₂O	ninguno	ninguno	ninguno	C In ₂ O ₃ , 600°C	Tl ₂ O, 40
prc N₂	BN, 1200° C	AlN, 740°C	ver el texto	ninguno	ninguno
prc halógenos	BX ₃ , 400° C	Al ₂ X ₆ , 200° C	Ga_2X_6	ver el texto	ninguno
prc H ₂	ver el texto	ver el texto	ver el texto	In_2X_6	TlX
Color de la llama	verde hierba	ver er texto	violeta	ver el texto azul violeta	ver el tex verde
Dureza de Mohs	9,3	2,5	0.0	0.0 - 1	claro
Estructura cristalina	hexagonal	2,5 c.c.c.	2,0	0,9 B*	2 B
		L.L.L.	cúbico	tetragonal	hexagona

La configuración de la capa de valencia es $ns^2 np^1$, y de acuerdo a ella se esperan los siguientes estados:

1. Electrovalencia +**3:** Aluminio produce el Al³⁺, lo mismo que Ga, In y Tl por pérdida de 3 e⁻. Los valores del 3^{er} potencial de ionización permite esto.

$$Al^{\circ}$$
 \longrightarrow $Al^{3+} + 3e^{-}$

La variación de los PI (ver tabla) no es tan sistemática como en los grupos I y II, dado su menor carácter electropositivo. Esto se justifica por el llenado previo de los orbitales "d" que produce un efecto de pantalla e influye sobre la capacidad de pérdida de electrones externos.


2.- Electrovalencia +1: Esto se produce por pérdida de un electrón, quedando la configuración del par inerte.

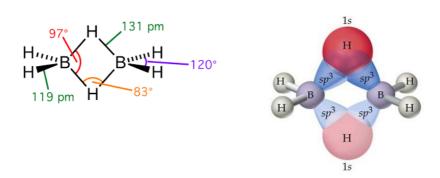
El par inerte se estabiliza con Z, por lo tanto este estado se incrementa hacia el talio dando Tl⁺. Además talio tiene alta energía de promoción del electrón del orbital "s" al "p", lo que impide la covalencia normal y por ello siempre está como Tl⁺.

3.- Covalencia 3: Comparte 3 electrones. La covalencia se incrementa hacia el boro. Boro tiene una química netamente covalente debido a su pequeño tamaño. El carácter covalente del boro queda demostrado por sus altos PF y PE (ver tabla) y además por no tener E_{hidratación}, ni E^o_{red M}³⁺/_Mo.

La valencia puede justificarse por:

a) híbrido sp²

Por estructura de Lewis:

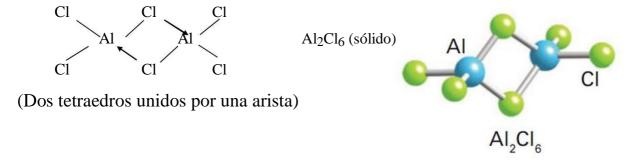

106

Vemos que existe una deficiencia de un par de electrones para completar el octeto y por lo tanto estos compuestos aceptan un par de e con facilidad comportándose como ácidos de Lewis. Así reaccionan con NH₃ o aniones (:NR₃, piridilo, etc.) dando compuestos llamados aductos.

Esto ocurre fundamentalmente en los haluros.

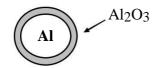
b) híbridos sp³, donde reciben una unión dativa.

c) Formación de orbitales tricéntricos extendidos como en el diborano:



Es imposible que boro exista como B³⁺ ya que para las reacciones:

$$B(g)$$
 B^{3+} (aq) Energía de hidratación B^{3+} (cristal) Energía reticular


las respectivas energías son sumamente altas.

Este grupo tiene covalencia más acentuada que los grupos I y II. Aquí la covalencia penetra hasta aluminio, ya que éste da algunos compuestos covalentes.

Conclusión: Boro no metálico y el resto del grupo presentan carácter metálico, aumentando éste hacia el talio (sin variación sistemática).

Aluminio tiene bajo $E^{o}_{reduc} = -1,67 \text{ v}$ (ver tabla) y por lo tanto se oxida con muchísima facilidad (es reductor enérgico) a Al^{3+} . Se oxida rápidamente al aire formando una capa superficial de Al_2O_3 que impide el posterior ataque.

108

Esto se llama "pasividad" del Alº y puede evitarse por amalgamación con Hgº, comprobándose en este caso que Alº (dado su Eº_{red.}) es capaz de desplazar al H⁺ del agua.

$$2 \text{ Al - Hg} + 3 \text{ H}_2\text{O} \longrightarrow \text{Al}_2\text{O}_3 + 3 \text{ H}_2^{\dagger} + 2 \text{ Hg}^{\circ}$$

La basicidad de los óxidos varía de la siguiente manera: boro da óxido ácido, aluminio y galio dan óxidos anfóteros e indio y talio dan óxidos básicos.

Propiedades diagonales

Recordemos que aluminio presenta propiedad diagonal con berilio (Anfoterísmo de óxidos, hidróxidos, resistencia al ataque de ácido, alto PF (°C) de los óxidos).

Boro presenta similitudes diagonales con el silicio y diferencias apreciables con aluminio y el resto del grupo. Así podemos ejemplificar esta similitud diagonal:

- **1.-** B₂O₃ y H₃BO₃ son ácidos como SiO₂ y H₂SiO₃. El Al(OH)₃ es básico con anfoterísmo como Ga(OH)₃.
- 2.- Los boratos y silicatos tienen estructura tetraédrica formando cadenas, anillos, etc.
- **3.-** Los haluros de B y Si se hidrolizan fácilmente mientras que los de Al son sólidos y se hidrolizan parcialmente.
- **4.-** Los hidruros de B y Si son volátiles, inflamables, fácilmente hidrolizables. El de Al es un polímero (AlH₃)n.

ESTADO NATURAL: En general como oxoanión y óxidos.

Boro: Na₂B₄O₇.10 H₂O (Bórax)

Aluminio Al₂O₃. nH₂O (bauxita) constituye el

Al₂O₃. 2 SiO₂. 2 H₂O (caolín) 8% de la corteza

Na₂ [AlF6] (criolita) terrestre

Galio, Indio, Talio:

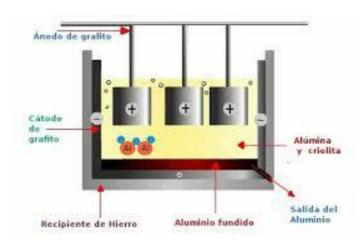
Poco abundantes

En las minas de Zn (ZnS) (Ga - In)

En piritas (FeS) (Tl)

Metalurgia:

En general por reducción directa.


Boro: Es difícil de obtener dado su alto PF y la naturaleza corrosiva del líquido. Se puede obtener boro amorfo por reducción directa con Magnesio o Hidrógeno.

$$B_2O_3 + 3 Mg^{\circ}$$
 \longrightarrow $3 MgO + 2 B^{\circ}$
 $2 BCl_3 + 3 H_2$ \longrightarrow $6 HCl + 2 B^{\circ}$

El B₂O₃ y BCl₃ se obtienen a partir del Borax.

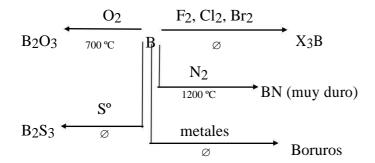
Aluminio: Por electrólisis de Bauxita - Criolita - fluoruro de calcio (fundente) en medio fundido.

El esquema de la cuba electrolítica es:

(ánodo)
$$30^{2-} \rightarrow \frac{3}{2} O_2 + 6e^{-}$$

 $O_2 + C($ ánodo) $\rightarrow CO_2$
(cátodo) $Al^{3+} + 3e^{-} \rightleftharpoons Al$

Este método es caro, ya que con 96.500 coulombios se depositan solamente 9 gramos. Por otro camino redox no se puede obtener (usando reductores) dado el elevado E^{o}_{oxid} M^{o}/M^{3+} del aluminio.


Galio, Indio, Talio: Como sub productos en metalurgia de blenda, pirita, minerales de plomo. Por reducción directa de sus óxidos con carbono o hidrógeno:

$$M_2O_3 + 3 C \longrightarrow 2 M^o + 3 CO$$

 $M_2O_3 + 3 CO \longrightarrow 2 M^o + 3 CO_2$
 $M_2O_3 + 3 H_2 \longrightarrow 2 M^o + 3 H_2O$

Estudio diferencial del boro.

Elemento: Todas las variedades alotrópicas son duras, de elevados PF y PE. El elemento es extremadamente inerte, no lo atacan el HCl, ni HF hirvientes, sólo se oxida lentamente en presencia de HNO₃ (c), cuando está finamente dividido. Es un semiconductor. Presenta brillo metálico (pero no es tal).

Reacciones directas:

Boratos: El principal es el bórax: $Na_2B_4O_7$. 10 H_2O que contiene el ión $B_4O_7^{2-}$ (tetraborato). También existen los BO_2^{-} (metaboratos). Son sólidos de color blanco. Bórax en solución presenta carácter alcalino:

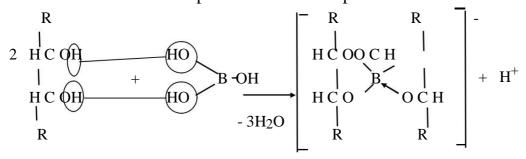
$$B_4O_7^{2^-} + 3 H_2O \longrightarrow 2 BO_2^- + 2 H_3BO_3$$

 $2 BO_2^- + 4 H_2O \longrightarrow 2 H_3BO_3 + 2 OH^- (alcalino)$

Reacciona frente a ácidos fuertes para producir ácido bórico, ya que el ácido correspondiente H₂B₄O₇ es inestable (prácticamente no existe)

$$2 \text{ HCl} + \text{Na}_2\text{B}_4\text{O}_7$$
. $10 \text{ H}_2\text{O} \longrightarrow 4 \text{ H}_3\text{BO}_3 + 5 \text{ H}_2\text{O} + 2 \text{ NaCl}$

Óxido y Ácido Bórico: Los dos son sólidos blancos 1) El óxido puede obtenerse por descomposición térmica del ácido bórico:


Química Inorgánica

metabórico

2) En agua, el ácido bórico se ioniza comportándose como un ácido de Lewis débil monoprótico:

$$H_3BO_3 + H_2O \longrightarrow H^+ + [B(OH)_4]^-$$
monoprótico débil

3) la acidez del ácido bórico puede titularse con polialcoholes

El protón puede luego titularse con NaOH.

Haluros:

Esta variación de los PF demuestra la unión covalente de boro, ya que está de acuerdo con el aumento de dicha unión al aumentar el tamaño del haluro.

Los más importantes son los dos primeros. Son ácidos de Lewis entre los más potentes que se conocen.

Es interesante analizar la hidrólisis de los mismos

4 BF₃ + 6 H₂O
$$\longrightarrow$$
 3 H₃O⁺ + 3 (BF₄)⁻ + H₃BO₃ (Parcial)

Esta solución se suele llamar "ácido fluorbórico"

BCl₃ + 3 H₂O \longrightarrow 3 HCl + H₃BO₃ (Total)

Hidruros: (Boranos)

Responden a dos Fórmulas Generales: B_nH_{n+4} y B_nH_{n+6} , siendo la primera serie la más estable.

Arden con facilidad al aire y se hidrolizan fácilmente, veamos como ejemplo el caso del diborano.

$$B_2H_6 \qquad + \ 3 \ O_2 \qquad \qquad -482 \ \text{Kcal/mol} \quad B_2O_3 \ + \ 3 \ H_2O$$

$$B_2H_6 + 6 H_2O \longrightarrow 2 H_3BO_3 + 6 H_2$$

La estructura del diborano se explica planteando una hibridación no definida entre orbitales **s** y **p** del boro y posterior formación de dos orbitales tricéntricos extendidos (con 2 e⁻ cada uno) denominados también enlace "tipo banana".

Resultan de interés los borohidruros salinos, sobre todo los de sodio y litio utilizados en síntesis orgánica, que contienen el ión [BH₄]⁻ (tetraédrico)

Química de Aluminio, Galio, Indio y Talio

Los elementos: Presentan carácter metálico. **Aluminio** es maleable y conductor de la electricidad. Es muy reductor dado el E^{o}_{red} (Al^{3+}/Al^{o})= -1,67 v. Su superficie se cubre de una capa de óxido inerte que impide el posterior ataque. **Galio, indio y talio** son metales blancos, blandos y relativamente reactivos que se disuelven en ácidos. **Talio**, sin embargo, se disuelve lentamente en HCl y H_2SO_4 , dada la pequeña solubilidad de los sales de Tl (I).

Tanto Aluminio como galio, son anfóteros, mientras que indio y talio son básicos y se disuelven sólo en ácidos.

$$Al^{0} \qquad \begin{array}{c} H^{+} & [Al(H_{2}O)_{6}]^{3+} + H_{2} \\ \\ OH^{-} & [Al(OH)_{4} (H_{2}O)_{2}]^{-} + H_{2} \end{array}$$

Ídem para galio.

Química en solución: Todos presentan el estado +3. Al³⁺ es tan pequeño que es muy polarizante, lo que hace que en solución se encuentra como \Box Al (H₂O)₆ \Box ³⁺, y dado la fortaleza de la unión Al - O presentan carácter ácido:

$$[Al (H2O)6]^{3+}$$
 — $[Al (OH) (H2O)5]^{2+}$ + H^{+} $Ka= 1 \times 10^{-5}$

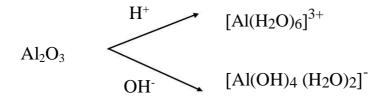
Es decir que Al(III) en solución presenta carácter ácido semejante a la acidez del acético.

Galio presenta la misma ionización en agua con una Ka= 10⁻³ (más fuerte que Al(III))

Óxidos: Todos los metales reaccionan con el O_2 formando los óxidos respectivos. El que más calor desprende (Δ es el aluminio. Ga, In y Tl tienen ya Δ H°j menor

$$4 \text{ Al} + 3 \text{ O}_2$$
 \longrightarrow $2 \text{ Al}_2\text{O}_3$ $\Delta \text{H}^{\circ}_{\text{f}} = -400 \text{ Kcal/mol}$ $4 \text{ Ga} + 3 \text{ O}_2$ \longrightarrow $2 \text{ Ga}_2\text{O}_3$ $\Delta \text{H}^{\circ}_{\text{f}} = -258 \text{ Kcal/mol}$

Dado el ΔH°_f del Al₂O₃, se aprovecha esta reacción para obtener otros metales por el proceso metalúrgico de "aluminiotermia", para lo cual se debe cumplir que:


$$\Delta H^{o}_{f}$$
 (Al₂O₃) ΔH^{o}_{f} (M₂O₃) M^{o} = metal a obtener

Así por ejemplo:
$$Al^{\circ} + Cr_2O_3 \longrightarrow 2 Cr^{\circ} + Al_2O_3$$

La formación del Al₂O₃ implica mayor desprendimiento de calor que la del

$$Cr_2O_3$$
. $\Delta H^o_f(Al_2O_3) > \Delta H^o_f(Cr_2O_3)$

Tanto Al₂O₃ como Ga₂O₃ son anfóteros, mientras que In₂O₃ y Tl₂O₃ son básicos. Idem Ga₂O₃

Al₂O₃ presenta las siguientes formas alotrópicas:

 α Al_2O_3 (Corindón) - Estructura tipo, con $Al^{3\scriptscriptstyle +}$ en huecos octaédricos. Es duro y refractario

 γAl_2O_3 (Alumina) - Tipo espinela distorsionada.

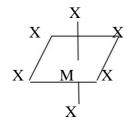
 γ Al₂O₃.nH₂O (bauxita)

También existe Al (OH)₃, precipitado blanco gelatinoso, que presenta carácter anfótero.

$$H^{+}$$
 $[Al(H_{2}O)_{6}]^{3+}$ OH^{-} $[Al(OH)_{4} (H_{2}O)_{2}]^{-}$

Hidruros: A diferencia del boro, Aluminio forma hidruros polímeros (AlH₃)_n y también hidruros mixtos como LiAlH₄ que poseen carácter reductor (utilizados en síntesis orgánicas).

Los de galio tienen comportamiento similar.


Indio presenta un hidruro mixto: In (AlH₄)₃.**Haluros:** Salvo los Fluoruros, los haluros de Al y Ga son covalentes, mientras que los de indio y talio son por lo general iónicos. No existe el TlI₃ como tal, sino que es TlI. I₂. Veamos en la tabla siguiente como varía la coordinación (4-6) y el carácter iónico covalente.

	F ⁻	Cl ⁻	Br ⁻	I-
Al^{3+}	iónico (6)	covalente (6-4)	covalente (4)	covalente (4)
Ga ³⁺	iónico (6)	covalente (4)	covalente (4)	covalente (4)
In ³⁺	iónico (6)	iónico (6)	covalente (6)	ión - covalente (4)
T1 ³⁺	iónico (6)	iónico (6)	covalente (4)	ITl.I ₂

A medida que avanzamos hacia F⁻ (más electronegativo) y hacia Tl³⁺ (mayor carácter metálico) aumenta el carácter iónico y la coordinación 6 octaédrica.

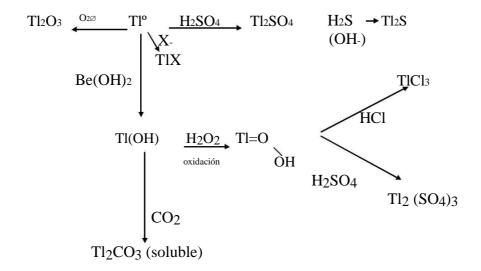
A veces estos haluros se presentan como dímeros y las estructuras que pueden presentar son:

(volátiles - hidrolizables)

sólidos cristalinos

Oxisales: Existen la mayoría de las oxisales, como compuestos solubles. Son importantes los alumbres: K_2SO_4 . Al₂ $(SO_4)_3$. 24 H_2O cristales octaédricos y los alumino-silicatos donde Al^{3+} reemplaza a Si^{4+} en la red.

El carbonato de aluminio no existe en solución debido a que \Box Al $(H_2O)_6\Box^{3+}$ es un ácido más fuerte que H_2CO_3


$$3CO_3^{2-} + 2[Al(OH)_6]^{3+} \rightarrow 2Al(OH)_3 + CO_2 + H_2O$$
B1 A2 B2 A1

El Al $(H_2O)_6^{3+}$ ácido fuerte desplaza al CO_3^{2-} formando $CO_2 + H_2O$ (ácido débil) y por lo tanto no puede formarse el Al₂ $(CO_3)_3$ en solución.

Química del talio: Talio presenta el estado Tl⁺, iónico justificable por la configuración resultante frente a elementos electronegativos: Así frente a cloro.

$$6 S^{2} 6 p^{0}$$
 $3 S^{2} 3 p^{5}$ CI^{-}

La química de Tl⁺ es más importante que la del Tl³⁺. Sus sales son tóxicas y por lo general insolubles, debido a su radio iónico se asemejan a las de Ag⁺ y Pb²⁺. Las principales reacciones pueden resumirse:

Propiedades y usos Particulares Boro

- Se usa en aleaciones duras, lo mismo que NB de dureza semejante al diamante.
- Tiene el isótopo 5^{10} B importante: 5^{10} B (α,μ) 7^{13} N 5^{10} B (μ,α) 3^7 Li.
- Bórax y ácido bórico son antisépticos suaves, se usan en lavados oculares. Bórax se usa también como fundente.
- Los boranos como combustible, tienen un ΔH muy favorable pero son inestables.
- BF₄, BH₄ son promotores o catalizadores de reacciones orgánicas.

Aluminio

- Aplicaciones como metal (muy maleable).
- Como reductor en aluminotermia.
- En aleaciones: magnalio (Mg Al), duraluminio (Mn Mg Cu Al).
- Isótopo importante 13²⁷Al.

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

- Al₂O₃ (alúmina) se utiliza en placas de cromatografía.
- Al₂(SO₄)₃ se hidroliza en H₂O formando Al(OH)₃ gelatinoso que arrastra la sustancia orgánica. Se utiliza para clarificar agua en las piletas de natación y en plantas potabilizadoras.
- Al(CH₃COO)₂OH diacetato de aluminio se utiliza como antiséptico y astringente.
- LiAlH₄, AlCl₃ como promotores y catalizadores en síntesis orgánica.

Galio: Dado que su punto de fusión es de aproximadamente 30 °C, y al gran intervalo como líquido (PE 2.227 °C) se lo usa en termómetros para altas temperaturas.

Indio: Tiene un isótopo aplicado en bio-medicina: 49¹¹³In.

Talio: Son compuestos tóxicos (producen la caída del cabello). Se los utiliza como raticidas.

Estos elementos no cumplen un rol biológico.

Grupo 14

C-Si-Ge-Sn-Pb

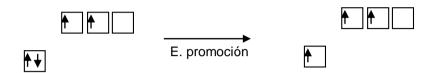
CONFIGURACIÓN – ESTADOS – PROPIEDADES PERIÓDICAS

La configuración de valencia del grupo es ns² np²

De acuerdo a ella podemos deducir los estados de oxidación posibles

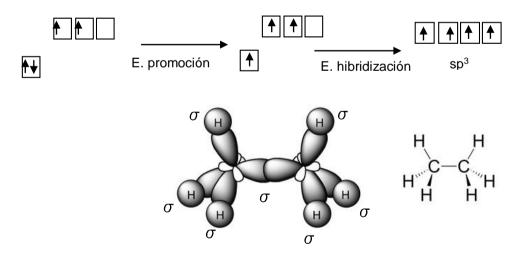
1- Perder los 4 electrones de valencia, quedar con la configuración de gas noble y formar iones **M**⁴⁺. Esto se incrementa con el aumento de número atómico hasta Sn, ya que para Pb se estabiliza mucho más el **Pb** (**II**) que el Pb (**IV**)

Para C y Si el estado 4+ es imposible por los valores de Potencial de Ionización y su electronegatividad.

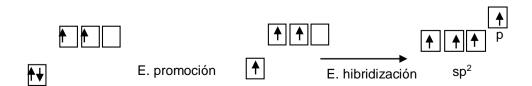

2- Perder 2 electrones, quedar con la configuración de **par inerte** y forma iones \mathbf{M}^{2+} . Este estado se estabiliza hacia Pb. Para Pb ya resulta más estable el estado +2 que el estado +4, ya que éste es oxidante:

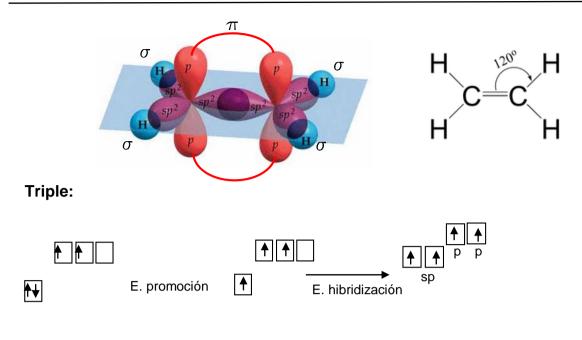
$$Pb^{2+} + 2e^- \rightleftharpoons Pb^{2+}$$

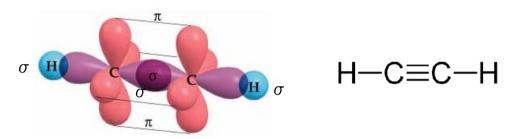
Para Sn también es más estable el +2, pero con tendencia a pasar al +4. Es decir que los compuestos Sn (II) **presentan carácter reductor acentuado:**


$$Sn^{2+} \rightleftharpoons Sn^{4+} + 2e^{-}$$

- 3- Ganar 4 electrones, quedar con el octeto completo y formar iones M^{-4} . Esta tendencia se incrementa hacia los más electronegativos que tienen tendencia a ganar electrones, sobre todo carbono en los **carburos iónicos o salinos** que forman C^{-4} y C_2^{2-} .
- 4- **Covalencia cuatro** se justifica mediante una configuración promovida, que se da para los más electronegativos, sobre todo para **silicio y carbono**.




Carbono y Silicio presentan (salvo excepción) una **química netamente covalente.** Ambos presentan la propiedad de formar cadenas (**catenación**). Además carbono puede dar dobles y triples enlaces utilizando uniones **pi**, siendo el único del grupo que presenta esta particularidad. Por lo tanto **Si**, **Ge**, **Sn**, **Pb** podrán dar solamente simples ligaduras. Las simples, dobles y triples ligaduras en carbono se justifican por híbridos **sp**³, **sp**², **sp** respectivamente.


Simple:

Doble:

Analizando los valores de energía de enlace para C-C, C-O, Si-Si, Si-O podemos concluir:

C-C (83 Kcal/mol) C-C (82 Kcal/mol) Las energías son similares y por lo tanto existen compuestos C-C (hidrocarburos), tan estables como aquellos con unión C-O (óxidos, etc..)

Si-Si (52 Kcal/mol) Si-O (88 Kcal/mol) La energía para Si-O es mucho mayor que para Si-Si. por lo tanto abundan como mas estables los de Si-O (silicatos) frente a los Si-Si (silanos). Estos últimos se oxidan con facilidad para lograr Si-O de mayor energía de enlace.

Carácter metálico

Aumenta con el número atómico; carbono y silicio tienen química de no metales, covalente; germanio es un semimetal típico (semiconductor) y ya estaño y plomo son metálicos presentando los estados +4 y +2.

La **basicidad de los óxidos** aumenta con el número atómico de la forma siguiente: los de **carbono y silicio** son ácidos ya que existen **H**₂**CO**₃, **H**₂**SiO**₃, **H**₄**SiO**₄; el resto son anfóteros, formado por hidróxidos pero con anfoterismo. Es decir que la basicidad es menos marcada que para los grupos anteriores.

La **estabilidad de los hidruros** decrece con el número atómico, como decrece su abundancia. Carbono es el elemento que más hidruros forman

Silicio es poco reactivo y resistente al ataque de los ácidos, solo lo ataca el ácido fluorhídrico:

$$Si + 4HF \rightarrow SiF_4 + 2H_2$$

Estado natural

En general se encuentran como oxoaniones, óxidos, sulfuros.

Carbono: en los distintos carbones naturales (hulla, lignito, antracita, etc.)

Silicio: En todos los silicatos (feldespatos, arcillas, etc.)

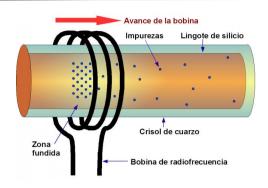
Germanio: En pequeñas cantidades en la Germanita (Cu,Fe,Zn,Ga,Ge,S,As)

Estaño: SnO₂ (casiterita)

Plomo: PbS (galena)

Metalurgia

En general por reducción o tostación-reducción.


Silicio: Por reducción directa

→ se corta

Si es para semiconductores el Silicio se purifica con fusión zonal en Silicio "súper puro"

zona fundida

Silicio sólido impuro

Germanio: Cloración – hidrólisis – reducción.

$$Germanita + HCl \rightarrow GeCl_4(vol\acute{a}til)(cloraci\acute{o}n)$$

$$GeCl_4 + 2H_2O \rightarrow GeO_2 + 4HCl(hidrólisis)$$

$$GeO_2 + 2H_2 \rightarrow Ge^0 + 2H_2O(reducci\acute{o}n)$$

El germanio puede también purificarse por fusión zonal.

Estaño: por reducción directa

$$SnO_2 + 2C \rightarrow Sn^0 + 2CO(alto\ horno)$$

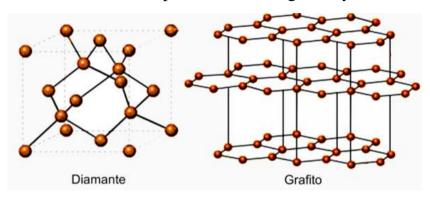
$$SnO_2 + 2CO \rightarrow Sn^0 + 2CO_2$$

El estaño se puede purificar por métodos electrolíticos.

Plomo: Por tostación y reducción (con reacción)

Tostación:

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$
$$2PbS + 2O_2 \rightarrow 2PbSO_4$$


Reducción:

$$2PbS + 2PbO \rightarrow 3Pb^{0} + SO_{2}$$

$$PbS + 2PbSO_{4} \rightarrow Pb^{0} + 3SO_{2} + 2PbO$$

El plomo también puede purificarse por métodos electrolíticos.

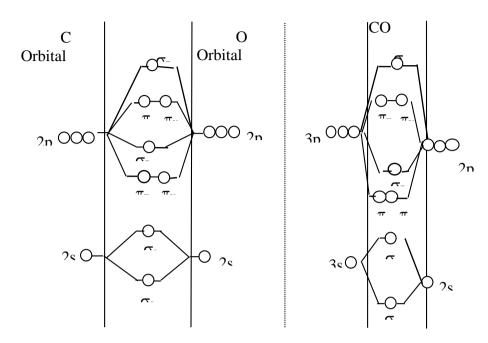
Estudio diferencial del carbono

Elemento: Dos de los estados alotrópicos del C son: grafito y diamante

Forman cadenas (catenación) de orden infinito; C=C, C=C, C-C no así los silanos y germanos

 $H-(SiH_2)_n-H$ n=1 a 6 (silanos) $H-(GeH_2)_n-H$ n=1 a 9 (germanos)

El **n** es bajo por la debilidad de las uniones metal-metal. Carbono es el único capaz de formar dobles y triples enlaces por formación de uniones p-pi. Por ello los otros elementos (Si, Ge, Sn) dan siempre cadenas simples


Sus isótopos importantes son: ¹²C (98,8%), ¹³C (1,11%), ¹⁴C (trazas)

Óxidos:

Los principales óxidos son: CO y CO₂ (también existe C₃O₂)

Monóxido de carbono: es tóxico y se obtiene quemando carbono en atmósfera pobre en oxígeno. Es reductor y se comporta como base de Lewis débil.

La estructura se justifica para TOM

Es diamagnético y de orden enlace 3.

El monóxido de carbono, a pesar de ser una base de Lewis débil, actúa como ligando frente a los metales de transición, en los complejos "carbonilos metálicos" en los que suministra un par de electrones para la formación del enlace M-CO. Además los electrones de los orbitales "d" del metal son transferidos a los orbitales moleculares del **pi** vacíos en la molécula de CO ($\P_x^* \P_y^*$) fortaleciendo el enlace M CO; de ahí que el CO sea un ligado pi-ácido.

Estabiliza los estados inferiores, así por ejemplo: [Ni(CO)4]⁰ [Fe(CO)5]⁰

Los carbonilos metálicos son fácilmente volátiles y muy tóxicos y tienen relativa estabilidad a temperatura ambiente.

Son importantes no solo en química de complejos, sino en tecnología, así el [Ni(CO)₄]⁰ participa en la metalurgia del níquel, transformándolo de impuro en puro (ver níquel).

Es poco soluble en agua, y no presenta carácter acido en dicha solución. No es el anhídrido del ácido fórmico, a pesar que se puede formar a partir del mismo:

$$H_2SO_4$$
 H -COOH \longrightarrow CO + H_2O

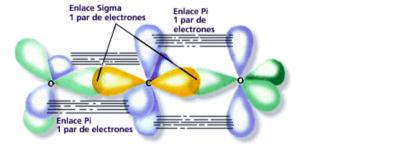
Se reconoce con I₂O₅, en presencia del almidón.

$$CO + I_2O_5 \longrightarrow I_2 + CO_2$$
 el yodo da color azul con el almidón.

Dióxido de carbono: **Tóxico**, pero solo por asfixia, se disuelve en agua presentando carácter ácido débil. Podemos plantear los siguientes equilibrios:

$$H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$$
 $Ka = 10^{-7} d\acute{e}bil$

$$HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$$
 muy débil


Los carbonatos tienen los siguientes equilíbrios:

$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^- + HO^-$$

$$HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + HO^-$$

Equilibrios más fuertes que los anteriores, por lo tanto, carbonatos y bicabonatos presentan carácter alcalino.

La molécula de dióxido de carbono se justifica planteando hibridización **sp** para el carbono:

$$\mathbf{O} = \mathbf{C} = \mathbf{O}$$

$$\mathbf{\sigma}$$

La teoría de la valencia no justifica la polaridad encontrada experimentalmente; por ello planteamos la teoría de la resonancia

$$^{\delta(+)}0 - C \equiv 0^{\delta(-)} \leftrightarrow ^{\delta(-)}0 \equiv C - 0^{\delta(+)}$$

Otra forma es plantear orbitales tricéntricos (ver Christen)

Termodinámica de los óxidos del carbono

Existen dos equilibrios importantes:

$$CO_2 + C \rightleftharpoons 2CO \quad \Delta H = +42Kcal/mol$$

Es favorable solamente a altas temperaturas (mayores a 950°K)

Este equilibrio es importante en las reducciones de sustancias orgánicas y óxidos metálicos, ya que a elevadas temperaturas dará CO y a bajas temperaturas CO₂.

Otro equilibrio importante:

$$CO + \frac{1}{2}O_2 \rightleftharpoons CO_2 \Delta H = -2067 Kcal/mol$$

Muy favorable termodinámicamente, pero dado la inercia química del CO, esta reacción sucede por encima de 1500°C. De allí que por encima de 1500°C se asegura que estos equilibrios presentados se desplazan hacia la derecha.

Haluros: Existen los cuatro tetrahaluros, y de acuerdo a sus energías de enlace o ligaduras se deducen su inestabilidad térmica y fotoquímica.

F – C	Cl - C	Br – C	I – C
116 Kcal/mol	81 Kcal/mol	68 Kcal/mol	57 Kcal/mol
CF ₄	CCl ₄	CBr ₄	CI ₄
	Líquido	Sólido	Sólido cristalino

El orden de las energías de enlace no dice nada respecto del estado de agregación.

Hidrólisis de los haluros:

$$CCl_4 + 2H_2O \rightleftharpoons CO_2 + 4HCl$$
 $G^0 = -66, 5 \text{ Kcal/mol}$
$$SiCl_4 + 2H_2O \rightleftharpoons SiO_2 + 4HCl$$
 $G^0 = -90 \text{ Kcal/mol}$

Carburos

-Salinos o lónicos:

-Acetiluros (C_2^{2-}) $(-C=C-)^{2-}$

$$CaC_2$$
, Cu_2C_2 , Ag_2C_2

La hidrólisis de estos acetiluros de cómo producto acetileno.

-Metánidos (C⁴⁻)

Por hidrólisis dan metano

-Intersticiales:

Son de P. de fusión muy elevados, gran dureza y conductividad eléctrica metálica

Presentan el carbono en huecos octaédricos del empaquetamiento metálico.

-Covalentes:

Se forman con elementos electronegativos.

Los de boro y silicio son duros, infusibles, no reactivos CB4, SiC.

Otros compuestos:

Cianógeno (CN)2: Gas inflamable

Una mezcla de cianógeno con oxígeno arde con la llama más caliente que se conoce producida por una reacción química (5050°K)

El cianógeno desproporciona en medio alcalino, en forma similar al **cloro**, de allí que sea un **pseudohalógeno**.

$$(CN)_2 + 20H^- \rightleftharpoons CN^-(cianuro + OCN^-(cianato) + H_2O$$

Ácido cianhídrico HCN:

Sustancia covalente similar a los haluros de hidrogeno, que se ionizan en solución, dado carácter ácido. Es extremadamente venenoso. Se obtiene tratando un CN⁻ con ácido.

Sulfucianuro SCN⁻:

Se obtiene por reacción de un cianuro con azufre. Es mucho más importante que el ion OCN⁻. Actúa como ligando.

Diclorodifluormetano CF₂Cl₂:

Se conoce como gas "freón", se utiliza en los aerosoles.

Fosgeno COCl₂:

Líquido amarillo. Solvente de olor desagradable, tóxico, poco inflamable.

SILICIO – GERMANIO – ESTAÑO – PLOMO

Los elementos **Silicio y Germanio** se presentan de una sola forma alotrópica y es del tipo "diamante", debido a que no forman uniones dobles (p-pi) para dar grafito.

El **estaño** se presenta en tres formas

La forma "gris" es la denominada "peste del estaño"

Plomo presenta una sola forma metálica (empaquetamiento cúbico compacto).

Hidruros:

La estabilidad e hidrólisis de los hidruros aumenta hacia el carbono, mientras que silicio y germanio forman series limitadas. \mathbf{H} -(\mathbf{SiH}_2)_n- \mathbf{H} n=1 a 6, para Ge n=1 a 9

Los silanos aumentan el P.Eb. con la cadena y se inflaman con facilidad al aire, dado lo débil de la unión Si-Si, también se hidrolizan con facilidad.

$$Si_2H_6 + \frac{7}{2}O_2 \rightarrow 2SiO_2 + 3H_2O$$
 (combustión)
 $Si_2H_6 + H_2O \rightarrow SiO_2.nH_2O + H_2$ (hidrólisis)

Este comportamiento es igual al de los **boranos.** (Recordar propiedades diagonales)

Estaño presenta SnH4 y Sn2H6; y para plomo existe el PbH4 solamente

Haluros

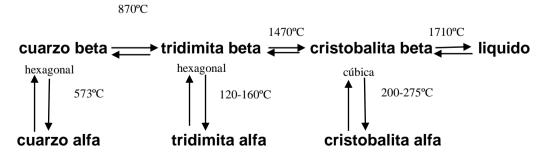
Se conocen todos los tetrahaluros menos PbBr₄ y PbI₄. Su no existencia es atribuible a que Br₂ y I₂ no oxidan el Pb(II) a Pb (IV); el siguiente equilibrio se desplaza a la izquierda:

$$PbBr_2 + 2Br^0 \rightleftharpoons PbBr_4$$

Importante es el SiF₄ que ataca al Si, SiO₂ y silicatos.

$$\begin{aligned} \text{SiO}_2 + 2\text{H}_2\text{F}_2 &\rightarrow \text{SiF}_4 + 2\text{H}_2\text{O} \\ \text{SiF}_4 + 2\text{H}_2\text{F}_2 &\rightarrow \text{H}_2[\text{SiF}_6] \end{aligned}$$

$$\begin{aligned} \text{SiF}_4 + 2\text{H}_2\text{O} &\rightarrow \text{SiO}_2.\text{H}_2\text{O} + \text{H}_2\text{F}_2 \end{aligned}$$


Óxidos:

Los óxidos están bien caracterizados.

La unión Si-O tiene bastante de contribución iónica y siempre se encuentra en coordinación tetraédrica. El Si es menos electronegativo que el hidrogeno (H-O), por eso la contribución iónica al enlace covalente (Si-O)

Veamos como varía la cantidad de estados alotrópicos y la coordinación de Si, Ge, Sn y Pb en los óxidos.

SiO₂

Siempre el Si esta en huecos tetraédricos

GeO₂

$$\begin{array}{ccc} GeO_2 & \longrightarrow & GeO_2 \\ \hline rutilo & cristobalita \\ \text{baja temp.} & \text{alta temp.} \end{array}$$

SnO₂

PbO₂

La cantidad de estados alotrópicos y la coordinación tetraédrica disminuye con el número atómico.

Basicidad de los óxidos

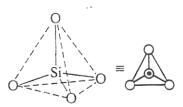
SiO₂ es un óxido ácido

GeO₂ no es fuertemente ácido ni básico

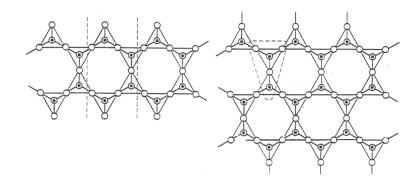
SnO₂ presenta anfoterismo

$$SnO_2 + HCl \rightarrow [SnCl_6]^{2-} + H_2O$$

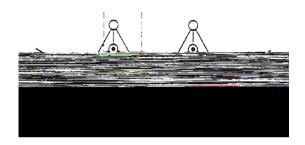
$$SnO_2 + OH^- \to [Sn(OH)_6]^{2-} + 2H_2O$$


PbO₂ es inerte

Oxoaniones


Los mejores estudiados son los silicatos (SiO₄⁴⁻)

Los silicatos presentan estructuras tetraédricas, y se pueden clasificar en simples, cíclicos y cadenas


Simples:

Cíclicos:

Cadenas:

Complejos:

Al estado de oxidación cuatro forman complejos con coordinación octaédrica

 $[SiF_6]^2 \hspace{1cm} [GeCl_6]^2 \hspace{1cm} [SnBr_6]^{2\text{-}} \hspace{1cm} [PbCl_4]^{2\text{-}}$

La tendencia a formar complejos aumenta con el carácter metálico.

Química del estado +2

Silicio y germanio lo dan solamente a temperaturas elevadas y son inestables.

Este estado aumenta su estabilidad con el número atómico, lo que se puede comprobar a través de las reacciones de adición de cloro a los dicloruros y por el poder reductor

$$\begin{aligned} \text{GeCl}_2 + \text{Cl}_2 &\rightarrow \text{GeCl}_4 \quad (\text{rápida}) \\ &\quad \text{SnCl}_2 + \text{Cl}_2 \rightarrow \text{SnCl}_4 \quad (\text{lenta}) \\ \\ \text{PbCl}_2 + \text{Cl}_2 &\rightarrow \text{PbCl}_4 \quad (\text{en ciertas condiciones}) \\ \\ \text{PbBr}_2 + \text{Br}_2 &\rightarrow \text{PbBr}_4 \quad (\text{no se produce}) \\ \\ \text{PbI}_2 + \text{I}_2 &\rightarrow \text{PbI}_4 \quad (\text{no se produce}) \end{aligned}$$

También ya mencionamos que Sn(II) es más reductor que Pb(II), ya que tiende a pasar a Sn(IV), mientras que Pb(II) no pasa, o lo hace con dificultad.

Veamos una síntesis de la química de Sn(II) y Pb(II)

Estaño (II)

- No existe como tal en solución, ya que hidroliza dando [Sn(OH)4]²⁻ si el medio es alcalino, o [SnCl4]²⁻ si el medio es ácido (HCl).
- Estos compuestos son reductores débiles.
- Existe **SnO** en dos variedades alotrópicas.
- Existe **SnS** precipitado.
- En medio alcalino forma estannatos $[Sn(OH)_4]^2$.

Plomo (II)

- No existe como tal en solución, hidroliza dando [**Pb(OH)**₄]²⁻ en medio alcalino y [**PbCl**₄]²⁻ cuando el medio es ácido (**HCl**).
- Estos compuestos no son reductores.
- Existe **PbO** en dos variedades alotrópicas.
- Existen **PbS** muy estable e insoluble.
- En medio alcalino forman plumbatos [Pb(OH)₄]².
- Da haluros insolubles similares a **TI**⁺ **y Ag**⁺, solubles en exceso de halogenuros por formación de [**PbX**₄]²⁻.
- Da sales poco solubles, **PbSO₄**, **PbCl₂**, excepto **NO₃** y **acetato**.

Propiedades y aplicaciones particulares

Carbono:

- Participa del ciclo vital. El CO₂ es necesario para las plantas, que lo utilizan en el proceso de fotosíntesis.
- El carbono se utiliza como reductor en metalurgia
- Aplicación como combustible
- Carbono activado: en fenómenos de adsorción y como decolorante
- Base de la Química Orgánica
- Monóxido de carbono: como reductor
- Dióxido de carbono: en bebidas gaseosas

- Carburos: en la fabricación de acetileno, que a su vez es utilizado como materia prima para polímeros.

Silicio

- Aplicación como semiconductor.
- SiO₂ (cuarzo): tiene piezoelectricidad (produce chispas), se utiliza en cerámicas.
- Silicatos: industria cerámica, vidrio, arcilla, abrasivos, talcos.
- Siliconas.

Germanio

- Semiconductor típico

Estaño

- Como metal: en aleaciones, bronce, hojalata, etc.
- SnCl₂ como reductor.

Plomo

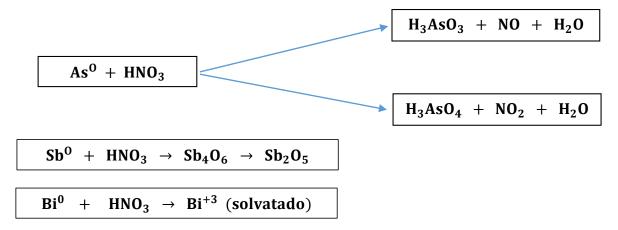
- Como metal
- Es toxico, produce saturismo
- Protector en radioquímica
- Tetraetilplomo: antidetonante en naftas.
- Pinturas anticorrosivas.
- Acumuladores de plomo.

$$Pb^0 \rightarrow Pb^{2+} + 2e^- \quad (-)$$

$$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O \quad (+)$$

GRUPO 15 N - P - As - Sb - Bi

Configuración Electrónica - Estados - Propiedades Periódicas

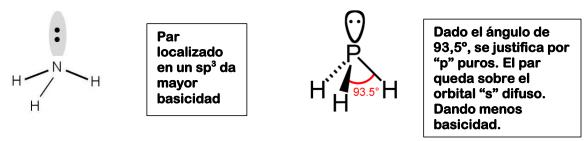

Poseen la siguiente configuración de valencia:

$$\begin{array}{c|c}
\uparrow \downarrow \\
ns^2 & np^3
\end{array}$$

De acuerdo a esta configuración es posible:

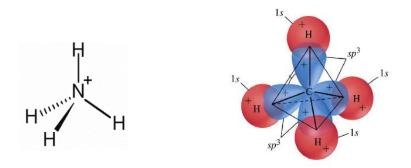
- 1) **Perder cinco electrones**: y quedar con configuración de gas noble. Pero el P.I necesario es muy alto y en definitiva no resulta posible. Si existiera en medio acuoso se hidrolizaría con mucha facilidad y sólo podría existir en medio ácido muy fuerte. El único elemento con capacidad para poder darlo sería Bi⁵⁺, pero este elemento prefiere el estado Bi³⁺. Conclusión: el estado 5+ en el grupo es inestable.
- 2) Perder tres electrones: y quedar con configuración de par inerte, este estado incrementa su estabilidad con el número atómico por lo tanto se estabiliza hacia bismuto, siendo prácticamente el único que lo da y en medio ácido ya que en medio neutro o básico hidroliza a BiO⁺ (bismutilo). Este ión y su existencia en ciertas condiciones demuestran que hacia el bismuto se incrementa el carácter metálico pero de todas maneras resulta pobre para el grupo V. Las siguientes consideraciones demuestran como varía la estabilidad del estado 3+ y el carácter metálico en el grupo:
- a) La secuencia de las especies siguientes van de covalentes a iónicas:

AsO₂-; AsO₃³-SbO+ antimonilo Bi³⁺ (medio ácido) b) El ataque de estos elementos por ácido nítrico:



Vemos como pasamos de oxoaniones en el caso de arsénico, a óxidos para antimonio y finalmente a Bi³⁺ para bismuto variando pues hacia él, el estado 3+ y el carácter metálico.

c) La hidrólisis de los trihaluros:


Vemos como pasamos de una especie netamente covalente como NH₃, a oxoaniones para el caso del arsénico y fósforo, y antimonilo y bismutilo para antimonio y bismuto (iones positivos) con lo que se demuestra también la variación del carácter metálico y la estabilidad del estado 3+ en el grupo V.

3) Covalencia normal 3: Con participación de los 3 electrones de los orbitales "p". Esta covalencia se estabiliza hacia el nitrógeno dando especies piramidales que pueden justificarse por hibridación sp³ con un par libre como el caso del amoníaco o directamente utilizando los orbitales "p" puros como en el caso de PH₃.

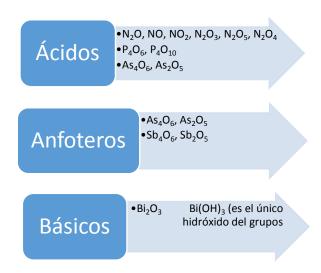
El par de amoníaco está mucho más localizado que el de fosfina y puede aportarlo con más facilidad. De allí que la basicidad de los hidruros aumente también en ese sentido.

4) Covalencia cuatro: Se justifica también por el híbrido sp³, donde ahora el par libre actúa coordinado. Esta covalencia se estabiliza también hacia el nitrógeno, siendo para este elemento la máxima covalencia posible ya que no dispone de orbitales "d" para poder dar covalencia 5 o 6. Un ejemplo es el ion amonio NH₄⁺

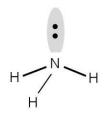
5) Covalencia cinco y seis: Se justifica por promoción del electrón "s" al "d" y posterior hibridación sp³d (piramidal) y sp³d² (octaédrico) respectivamente. Ejemplos de estas covalencias son los pentahaluros y los compuestos como Na [PF₆].

$$\begin{bmatrix}
\mathsf{CI} & \mathsf{Sp}^3 \\
\mathsf{CI} & \mathsf{Sp}^3 \\
\mathsf{F} & \mathsf{F}
\end{bmatrix}$$

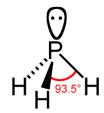
$$\begin{bmatrix}
\mathsf{F} & \mathsf{F} \\
\mathsf{F} & \mathsf{F}
\end{bmatrix}$$


$$\mathsf{Sp}^3 d^2$$

Ya que nitrógeno no puede dar estas covalencias por no disponer de orbitales "d" cercano para poder promover al electrón "s" (necesita mucha energía de promoción), las mismas aumentan en estabilidad desde el bismuto hasta el fósforo. Por lo tanto las covalencias 5 y 6 se dan con más facilidad en fósforo.


6) Captar tres electrones: y completar el octeto con configuración de gas noble, dando los iones M^3 . Dada la electronegatividad del nitrógeno este estado se estabiliza hacia este elemento dando compuestos denominados nitruros.

En base a estos estados podemos concluir en las siguientes **Propiedades Periódicas**:


- 1) Es un grupo de no metales sin mucha analogía entre ellos. Se puede encontrar algunas semejanzas para los pares P As y Sb Bi. Solamente bismuto presenta un cierto carácter metálico.
- 2) Dado su pequeño radio atómico, **nitrógeno presenta un marcado comportamiento diferencial** en el grupo, así
 - N₂ (gas), los restantes son sólidos y con otra atomicidad P₄, As₄.
 - Tiene como covalencia máxima 4, los otros pueden dar cinco y seis.
- 3) Los óxidos: Aumentan su abundancia hacia el nitrógeno, dando este, compuestos altamente covalentes. La basicidad de los mismos aumenta hacia el bismuto de la siguiente manera:

4) Los hidruros: Aumentan su estabilidad hacia el nitrógeno (electronegativo), dado también el carácter covalente de sus uniones. En ese sentido aumenta la basicidad de los mismos ya que el par más localizado.

Par localizado en un orbital híbrido sp³. Justificable por el ángulo de la unión H - N - H

Dado el ángulo experimental de 93,5° no es posible el hibrido sp³

Así NH₃ dirige mejor su par en las uniones coordinadas presentando mayor basicidad (base de Lewis). En solución:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$
 (base débil)
$$PH_3 + H_2O \rightleftharpoons PH_4^+ + OH^- \qquad \begin{array}{c} \text{(base mas débil)} \\ \text{(no se conoce en solución)} \end{array}$$

- **5.- Compuestos M³-:** Su estabilidad también aumenta hacia el nitrógeno dando arseniuros, fosfuros, nitruros siendo estos últimos los más estables. Nitruros también hay de tres tipos como vimos para carburos e hidruros:
 - Nitruros iónicos o salino: Realmente existe el ión N³-, los da con los metales del grupo I y II, y por hidrólisis dan NH₃ y presentan carácter básico:

$$N^{3-} + 3H_2O \rightleftharpoons NH_3 + 3OH^-.$$

- Nitruros intersticiales: Nitrógeno ocupa huecos octaédricos en la red metálica de los elementos de transición con deformación o no de la misma dependiendo del radio del metal.
- Nitruros covalentes: Con unión típicamente covalente con elementos de similar electronegatividad. Así NB que es un compuesto muy duro.

6.- Trihaluros:

Los trihaluros incrementan su estabilidad hacia el bismuto por su mayor tendencia a formar uniones iónicas. Ellos hidrolizan y volatilizan con facilidad. Los primeros son moléculas gaseosas con estructura piramidal y algunos forman redes moleculares. Los yoduros de As(III), Sb(III) y Bi(III) cristalizan en capas sin tener moléculas discretas (no metálicas). BiF₃ presenta una red iónica. Existen todos, son 20 en total. Los pentahaluros son esencialmente covalentes y de allí que aumentan su estabilidad hacia fósforo, que presenta cuatro (PF₅, PCl₅, PBr₅, PI₅). Arsénico y antimonio solo dan el pentafluoruro y pentacloruro y bismuto solamente el pentafluoruro, 7 en total. Son bipirámides de base trigonal, justificables por híbridos sp³d.

Estado Natural

Nitrógeno: Como principal componente del aire. Alrededor del 78%

➤ En minerales de NaNO₃

Fósforo: Principalmente como fosfatos:

➤ Ca₃ (PO₄)₂ apatita

➤ Ca₃ (PO₄)₂. Ca (F.Cl)₂ fluorapatita o cloroapatita según el caso

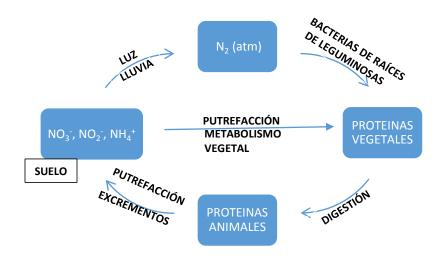
➤ Ca₃ (PO₄)₂. Ca (OH)₂ fosforita

Arsénico y antimonio: Como sulfuros junto a los de Cu, Ag y Pb

Bismuto: Como sulfuro Bi₂S₃

Obtención y metalurgia

Nitrógeno: A partir del aire por licuación, destilación, absorción y desorción sobre C ° activado (ver gases nobles)


Fósforo: Por reducción directa en horno eléctrico:

$$2 Ca_3 (PO_4)_2 + 10 C + 6 SiO_2 \ \rightarrow P_4 + 6 Ca SiO_3 + 10 CO$$

Arsénico, Antimonio y Bismuto: Por tostación de los sulfuros y posterior reducción con C o H₂.

Química del Nitrógeno

1.- Participa en el ciclo vital del nitrógeno, de interés biológico

2.- Hidruros:

El principal hidruro es el amoníaco NH₃ (gas). La obtención del mismo puede realizarse:

En la industria por el método de Haber

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
 $\Delta H = -11 \frac{Kcal}{mol}$ (Analizar termodinámicamente y cinéticamente)

En el laboratorio; por reacción ácido - base a partir de una sal de amonio

$$NH_4Cl + Ca(OH)_2 \rightleftharpoons CaCl_2 + 2NH_3 + 2H_2O$$

Por hidrólisis presenta carácter alcalino:

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

Las sales de amonio presentan carácter ácido en solución y dado el radio de NH₄⁺ presentan comportamiento similar a K⁺ y Rb⁺ (sales isoestructurales, solubilidades similares)

$$NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$$

NH₃ solidifica dando hidratos del tipo NH₃. H₂O y NH₃. 2H₂O a -79 °C mediante enlaces puente hidrógeno.

Otro hidruro importante del nitrógeno es la hidracina:

de la cual es importante analizar la combustión y la hidrólisis que presenta. La combustión es muy favorable con un ΔH = -148,6 Kcal/mol

$$N_2 H_{4(l)} + \ O_2 \ \to \ N_2 + \ H_2 O$$

podría utilizarse como combustible pero uno de los problemas que presenta es que solidifica por encima del 0°C.

La hidrólisis de hidracina presenta carácter alcalino (básico)

$$N_2H_{4(l)} + H_2O \rightarrow N_2H_5^+$$
 (hidracinio) + OH^- (cáracter básico)

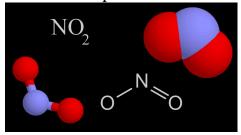
Otro compuesto importante es la hidroxilamina: NH2OH (sólido)

3.- Óxidos y Oxoaniones

 $ightharpoonup N_2O$ Óxido Nitroso: Es un gas hilarante; incoloro y poco reactivo. Se obtiene por descomposición de NH_4NO_3

$$NH_4NO_3 \rightarrow HNO_3 + NH_3$$

$$NH_4NO_3 \xrightarrow{>250^0\text{C}} N_2O + 2H_2O$$


NO Óxido Nítrico: Gas incoloro - líquido azul; reactivo moderado

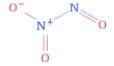
Se obtiene por la acción de HNO₃ diluido sobre Cobre:

$$HNO_{3(d)} + \ Cu^0 \ \rightarrow NO + Cu(NO_3)_2 + \ H_2O$$

Equilibrar por el método de óxido reducción

Tiene una estructura plana y la única manera de justificar por Lewis es que quede un electrón desapareado:

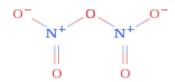
De allí que resulte paramagnético y trate de compartirlo para cual se dimeriza dando lugar al N_2O_4 (en equilibrio con NO_2 en estado gaseoso) o directamente lo pierda formando el ión NO_2^+ (nitronio).



El NO₂ se obtiene por la acción del nítrico concentrado frente a cobre:

$$\label{eq:hno_3c} \text{HNO}_{3(c)} + \text{Cu} \ \rightarrow \text{NO}_2 + \text{Cu}(\text{NO}_3)_2 + \ \text{H}_2\text{O}$$

Equilibrado por el método de óxido - reducción


▶ N₂O₃ Trióxido de dinitrógeno: Es un compuesto inestable, que sólo se estabiliza al estado sólido (azul)

$$N_2O_{3(g)} \ \rightarrow NO + NO_2$$

N₂O₅ Pentóxido de dinitrógeno: Es un sólido cristalino.

Se obtiene por deshidratación de HNO₃ con pentóxido de Fósforo.

ión NO₃ (nitrato) La mejor manera de justificar la estructura de este ión es por la teoría de la resonancia:

El oxácido correspondiente es el nítrico (fuerte y oxidante) cuya obtención industrial se realiza por el método de Ostwald, por oxidación catalítica de NH₃.

- 1. $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ catalizada por platino a $800^{\circ}C$
- $2. \quad 2NO + O_2 \rightarrow 2NO_2$
- 3. $4NO_2 + H_2O \rightarrow 3HNO_3 + NO$

En el laboratorio por una reacción tipo ácido – base

$$2NaNO_3 + \ H_2SO_4 \ \rightarrow 2HNO_3 + Na_2SO_4$$

ión NO₂- (nitrito) La mejor manera de justificar la estructura de este ión también es por la teoría de la resonancia:

No se conoce el ácido libre como tal ya que es muy inestable y una vez obtenido se descompone:

$$Ba(NO_2)_2 + H_2SO_4 \rightarrow HNO_2 + BaSO_4$$

Por ser inestable el ácido HNO₂ se descompone rápidamente en:

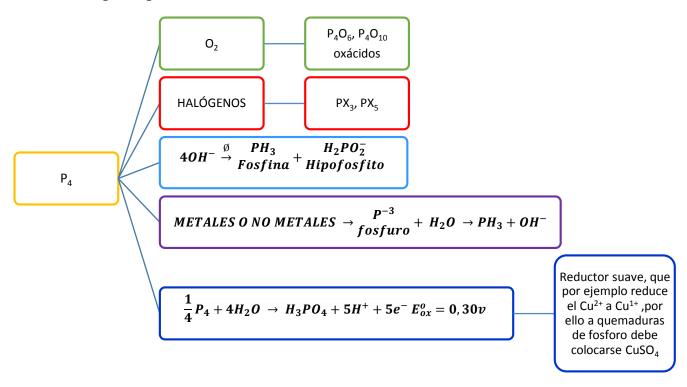
$$HNO_2 \stackrel{\emptyset}{\rightarrow} H_3O^+ + NO_3^- + 2NO$$

Química del fósforo

Estados alotrópicos: En general al estado elemental P, As, Sb y Bi presentan dos estados: **uno metálico** y el otro **no metálico** que presentan las siguientes características:

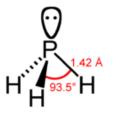

Forma no metálicas

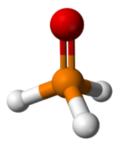
- Red molecular finita
- Moléculas tetraédricas
- P₄, As₄, Sb₄
- Color blanco o amarillo
- Poco densa
- Volátil
- Soluble en solventes orgánicos
- Muy reactivo


Forma metálica

- Estructura en capas (covalentes, infinitas)
- Color negro u oscuro
- Muy densa
- Poco volátil
- No solubles en solventes orgánicos
- Poco reactivo

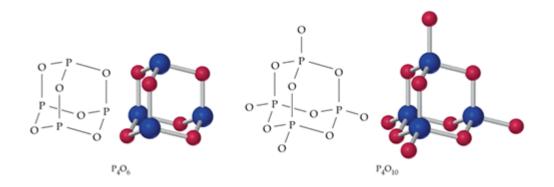
Específicamente para fósforo existen estas dos formas y una tercera de naturaleza no muy dilucidada:




Reacciones principales del fósforo:

Hidruro.

PH₃ (**fosfina**) Estructura piramidal por uniones de "p" puros - gas - tóxica. No se conoce en solución. Menos básica que NH₃. Se obtiene por hidrólisis de un fosfuro o por reacción del fósforo en medio alcalino (ver reacciones principales).


Óxidos.

P₄O₆ (sólido)

Obtención: Por combustión del elemento en atm. Pobre de aire. Funde a 23°C. Hierve a 175°C

P₄O₁₀ (sólido delicuescente)

Obtención: Por combustión completa del elemento en el aire. Sublima a 360°C

Oxoaniones

NO CONDENSADOS

Es monoprótico según:

$$\begin{array}{c} H[H_2PO_2] \\ Hipofosforoso \end{array} \rightarrow \ H_2PO_2^- + \ H^+ \ Ka = 10^{-2} \ (d\acute{e}bil) \end{array}$$

El ácido es diprótico según:

$$\begin{array}{c} H_2[HPO_3] \\ Ac.\ Ortofosforoso \end{array} \rightarrow HPO_3^{-2} + 2H^+$$

El ácido ortofosforoso puede obtenerse por hidrólisis del trihaluro o por hidrólisis del P₄O₆

El ácido es triprótico según:

$$\begin{array}{c} H_3PO_4\\ Fosf\'{o}rico \end{array} \rightarrow PO_4^{-3} + 3H^+$$

Es un ácido fuerte, se lo obtiene calentando ácido ortofosforoso:

$$4H_3PO_3 \ \rightarrow 3H_3PO_4 + PH_3$$

o también:

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$$

$$Ca_{3}(PO_{4})_{2} + H_{2}SO_{4} \rightarrow H_{3}PO_{4} + CaSO_{4}$$

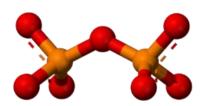
sólido blanco que funde a 42 °C

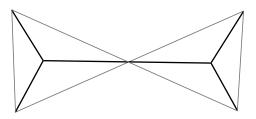
Los fosfatos en solución presentan carácter básico:

$$PO_4^{-3} + H_2O \rightleftharpoons HPO_4^{-2} + OH^-$$

Existen por lo general en sus formas de HPO₄²⁻ (fosfato monoácido) y H₂PO₄⁻ (fosfato diácido). Los fosfatos por lo general son insolubles, menos los del grupo I y II que son solubles (a excepción de Li y Mg).

CONDENSADOS:


Estas especies existen según los siguientes equilibrios:


$$H_2PO_4^- + 2HPO_4^{-2} \rightarrow P_3O_{10}^{-5} + H_2O$$
 Trifosfato (condensado)

Trifosfato (condensado)

№ P₂O₄ (pirofosfato)

Su estructura es la de dos tetraedros unidos por un vértice.

$(PO_3)_n^{n-}$ (metafosfato)

Esta especie polimeriza, generalmente con n=3 siendo tres tetraedros unidos por vértices.

P₃O₁₀⁵- (trifosfato)

La estructura de este ión consiste en tres tetraedros en forma de anillo, unido por los vértices.

Todos los oxoaniones del fósforo sean condensados o no presentan estructuras tetraédrica.

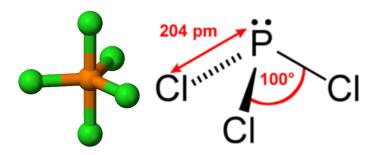
$$H-O-P-O-H+H-O-P-O-H \rightarrow H-O-P-O-P-O-H+H_2O$$

$$H_2O \text{ eliminated } O$$

$$H_2O \text{ eliminated } O$$

$$H_3O \text{ eliminated } O$$

$$O \text{ thophosphoric acid, } H_3PO_4$$


$$(phosphoric acid)$$

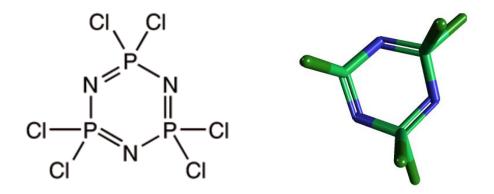
$$Diphosphoric acid, H_4P_2O_7$$

$$(pyrophosphoric acid)$$

Haluros

(Trihaluros y pentahaluros). Los pentahaluros son los más estables del grupo PF₅, PCl₅, PBr₅, son covalentes y por lo tanto con tendencia a hidrolizar y volatilizar con facilidad. Recordar la hidrólisis de los trihaluros vista con anterioridad.

Otros compuestos importantes del Fósforo


1.- Compuestos de fosfonio

Donde existe el ión PH₄⁺; este tipo de ión no lo da As, Sb, Bi. La sal mejor caracterizada es el ioduro de fosfonio PH₄I que por hidrólisis de fosfina:

$$H_4I_{(s\'olido)} + H_2O \xrightarrow{hidr\'olisis} H_3O^+ + I^- + PH_{3(g)}$$

2.- Haluros de fosfonitrilos

Son polímeros del tipo (PNCl₂)_n, se hidrolizan fácilmente y son los denominados cauchos sintéticos.

Química del Arsénico, Antimonio y Bismuto

1.-Metales

Son brillantes y de aspecto definidamente metálicos desde el punto de vista físico. Sus estructuras son semejantes al fósforo negro (variedad alotrópica metálica) y por lo tanto tienen todas las propiedades ya vistas.

Arsénico y antimonio presentan carácter anfótero disolviéndose en medio básico concentrado dando los AsO₃³⁻ (arsenitos) y [Sb(OH)₄]⁻ (antimonitos)

2.- Compuestos M³⁻

Presentan los arseniuros y antimoniuros pero ya son menos estables que fosfuros y nitruros.

3.- Hidruros

La que resulta importante es AsH₃ (arsenamina), gas tóxico menos estable que fosfina. Puede obtenerse:

$$\begin{aligned} & AsCl_3 + 3H_2 &\rightarrow 3HCl + AsH_3 \\ & Na_3As + 3H_2O &\rightarrow 3NaOH + AsH_3 \end{aligned}$$

Este compuesto se reduce por el calor y se deposita en forma de espejo de arsénico. Esta reacción se utiliza en el ensayo de Marsh para reconocer arsénico:

$$AsH_3 \overset{\emptyset}{\to} As^0$$

La estibina SbH₃ también es tóxica pero menos estable que arsenamina.

Química del estado cinco:

Los principales compuestos son óxidos y oxoaniones. La química de los pentóxidos refleja claramente el aumento de estabilidad del estado 3+ con Z, del carácter metálico y de la basicidad:

No se obtienen por oxidación directa del elemento al aire sino atacándolo con HNO₃. Los arseniatos tienen estructuras similares a los fosfatos

AsO₄³⁻, HAsO₄²⁻, H₂AsO₄⁻, As₂O₇⁴⁻, AsO₃⁻ que en estado sólido son cristalinos.

Los arseniatos en medio ácido se comportan como oxidantes:

$$\frac{AsO_4^{-3}}{Arseniato} + 4H^+ + 2e^- \rightarrow \frac{AsO_2^-}{Metarsenito} + 2H_2O$$

El ácido antimónico H₃SbO₄ no se conoce como tal sino como la especie H[Sb(OH)₆]

Pentahaluros

Ver lo analizado para fósforo.

Química del estado tres

Es interesante también la química de los óxidos y oxoaniones

$$Bi_2O_3 \xrightarrow{OH^-} Bi(OH)_3$$
 Básico

El As(III) en solución se encuentra según el siguiente equilibrio dependiendo del pH:

$$2H^{+} + \frac{AsO_{3}^{-3}}{Ortoarsenito} \rightleftharpoons \frac{AsO_{2}^{-}}{Metaarsenito} + 2H_{2}O$$

Los arsenitos en medio básico son reductores enérgicos:

$$AsO_2^- + 4OH^- \rightleftharpoons AsO_4^{-3} + 2H_2O + 2e^-$$

Trihaluros

Analizar todo lo visto con anterioridad.

Otros compuestos de interés

1.- Complejos: Estos elementos forman complejos tanto al estado cinco como en el tres, son hidroxo o halo complejos:

M(V) coordinación 6 octaédrica [M(OH)₆]⁻, [MCl6]⁻

M(III) coordinación 4 tetraédrica [M(OH)₄]⁻, [MCl₄]⁻

2.- Sulfuros: Estos compuestos aumentan en abundancia hacia el fósforo y también justifica la variación del carácter metálico y estado +3 hacia el bismuto:

precipitados amarillos - naranjas

Sb₂S₃, Sb₂S₅

Bi₂S₃ precipitado negro

3.- Aniones mixtos: Generalmente resultan de reemplazar el oxígeno de un oxoanión por azufre dando lugar a los compuestos denominados (tio):

 SbS_4^{3-} SbO_3S^{3-} AsS_4^{3-} AsO_3S^{3-}

tetratioantimoniato monotioantimoniato tetratioarseniato monotioarseniato

Propiedades particulares y usos de cada elemento

Nitrógeno

- Es importante su ciclo vital
- Presenta dos compuestos de importancia industrial y de laboratorio: NH₃ y HNO₃
- Importante es el ión nitrato, usado entre otras cosas como fertilizantes
- La hidracina N₂H₄ puede utilizarse como combustible
- Los nitritos son reductores y como tales se los utiliza.

Fósforo

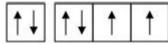
- El elemento, como P₄, tiene variados usos en laboratorio
- El ácido fosfórico es el más importante de los oxácidos. Es fuerte y oxidante
- Fósforo produce el fenómeno de fosforescencia
- PO₄³- se utiliza como fertilizante
- HPO₄²⁻/ H₂PO₄⁻ es un regulador de pH (buffer) biológico
- Ca₃(PO₄)₂ es el constituyente principal de los tejidos duros de mamíferos (huesos, uñas, dientes)
- El hidruro PH₃ (fosfina) es un gas tóxico.

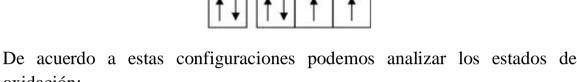
Arsénico

- Los compuestos de arsénico, incluido el elemento son tóxicos, y como tales se los utiliza.
- son reductores enérgicos en medio alcalino, mientras que los ${\rm AsO_4^{3^-}}$ son oxidantes en medio ácido.

Antimonio y bismuto

- Como metales, en aleaciones
- el ion SbO⁺ es un reactivo de la Vitamina A.


oxidación:


Grupo 16 (Calcógenos)

$$O - S - Se - Te - Po$$

Configuración electrónica y estados de oxidación.

La configuración electrónica de valencia es ns² np⁴

- 1.- Electrovalencias +6 y +4: (perder 6 o 4 electrones y quedar con configuración de gas noble y par inerte respectivamente). No existen, ya que son electronegativos y por lo tanto los PI son muy altos.
- 2.- Electrovalencia -2: Si existen, ya que tienen capacidad para aceptar electrones y completar octeto. Su estabilidad crece hacia oxígeno. Los iones que se forman se llaman calcogenuros. Ellos son O²- (óxido), S²- (sulfuro), Se²- (selenuro), Te²- (teleruro).
- 3.- Covalencias: Oxígeno solo tiene covalencia normal 2, ya que no dispone de orbitales d para hibridizar. Los otros dan covalencia 2, 4, 6 de acuerdo a las promociones que se realicen de los orbitales s y p a los orbitales d.

Propiedades periódicas (ver Bibliografía Glen Rodger)

Símbolo	O	S	Se	Te	Po
Número atómico	8	16	34	52	84
Peso atómico	15,999	32,064	78,96	127,60	(210)°
Electrones de valencia	$2s^22p^4$	$3s^23p^4$	$4s^24p^4$	$5s^25p^4$	$6s^26p^4$
unto de fusión, °C	-218	112	217	450	254
unto de ebullición, °C	-183	444	685	990	962
Densidad, g/cm ³	1,43 g/litro	2,07 a°	4,79	6,24	9,32
Volumen atómico	=1 6/	15,5	16,5	20,5	22,5
	0,66	1,04	1,21	1,41	1,65
Radio atómico, Å Radio iónico (+5), Å	1,40	1,84	1,98	2,21 2,1	1,69
EN de Pauling	3,5	2,5	2,4	2,1	2,0
Z _{ef} /r ²	3,50	2,44	2,48	2,01	1,76
Potencial normal c*	+1,229	+0,141	-0.40	-0,72	-1,0
Estados de oxidación	-1, -2	-2 a + 6	-2 a +6	-2 a +6	
Energía de ionización*	313,9	239	225	208	
Calor de vaporización	3,00	3,01	3,34	11,9	
Aislado por	Priestlev	antig.	Berzelius	Mueller	Curie
Fecha del aislamiento	1774	antig.	1817	1782	1898
pre O ₂ puro	2	SO_9 , SO_3	SeO_2	TeO_2	
prc H ₂ O	ninguno	ninguno	ninguno	ninguno	
prc N ₂	NO _x , 1200° C	b°	ninguno	ninguno	
•	140 x, 1200 0	S ₂ X ₂ to SX ₆		TeX_2	
pre halógenos	H,O, 500° C	H _o S. 400° C	H,Se, 400° C	b	
orc H ₂	azul pálido	amarillo claro	rojo ladrillo c*	pardo c	
Color del elemento	azui pando	2	2	2,3	
Dureza de Mohs Estructura cristalina		ortorrómb, a*	hexag.	hexag.	

155

Al aumentar Z:

- 1) Disminuye la electronegatividad, por lo tanto decrece la capacidad de formar iones M^{2-}
- 2) Decrece la estabilidad térmica de los hidruros MH₂
- 3) Aumenta el carácter metálico y la posibilidad de formar complejos: [SeBr₆]
- 4) Disminuye la estabilidad de los compuestos con número de oxidación 4 y 6 covalentes.

Propiedades diferenciales del oxígeno

Como se ha venido analizando para los otros grupos, en este grupo el primer elemento presenta características diferentes al resto de los elementos del grupo, así para Oxígeno:

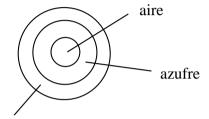
- 1.- Su molécula, O₂, es gas en CNPT, mientras que los otros elementos son sólidos.
- 2.- El H₂O es muy diferente al resto de los hidruros que son ácidos, gases, tóxicos.

Los tipos de uniones que forma Oxígeno son:

- Ganar dos electrones y dar el ion óxido.
- Compartir los dos electrones en ligaduras simples: H₂O.
- Compartir los dos electrones en ligaduras dobles: R- COOH.
- Ganar un electrón y formar un solo enlace: OH⁻.
- Mediante una unión dativa dar covalencia tres: H₃O⁺ y con menos frecuencia covalencia 4 tetraédrica.

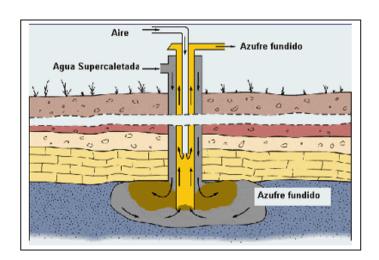
En el otro extremo del grupo Polonio también presenta comportamiento distinto. Es radioactivo con tiempo de vida media corta de 137 días, es sólido con marcado carácter metálico (único del grupo). Se encuentra en pequeñas cantidades en minerales de uranio.

AZUFRE - SELENIO - TELURO

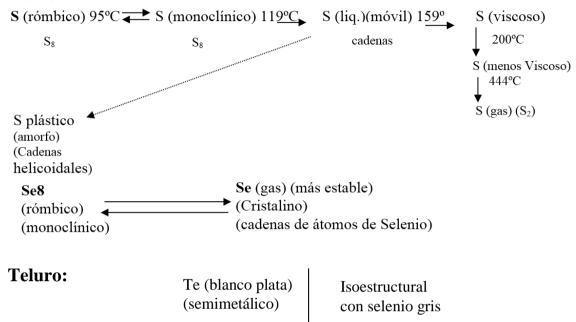

Estos elementos son los que tienen mayor semejanza entre sí.

Estado normal:

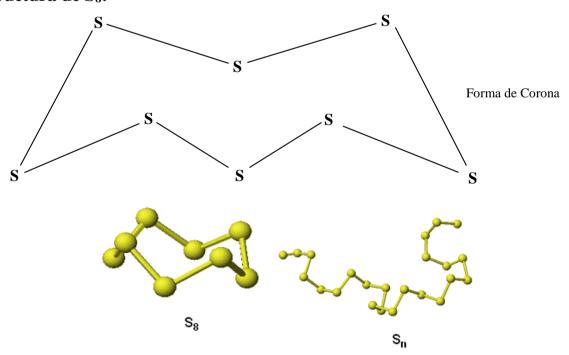
- La relación de abundancia es: 50.000/60/1 respectivamente.


- Azufre se halla libre o combinado como sulfuros y sulfatos.
- Selenio y Teluro como selenuros y telenuros acompañando a los sulfuros.

Obtención: Azufre por el método de Frach. Se extrae de profundidades (200 m) con 3 tubos concéntricos: Por el tubo externo se inyecta H₂O sobrecalentada y por el central, aire comprimido. Por el tubo intermedio, se extrae azufre (como espuma) que se deja secar sobre superficies de madera.

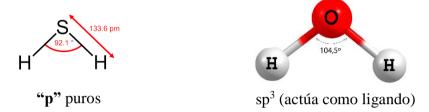

Se y Te de la combustión de los sufuros donde se encuentran sobre todo de Ag y Cu

H₂O(sobrecalentada)


VARIEDADES ALOTRÓPICAS:

Azufre:

Esta variación justifica la variación del carácter metálico hacia Te.


Estructura de S₈:

Compuestos con iones M²-:

- Forman este tipo de compuestos con hidrógenos y metales S^{2-} (sulfuro) Se^{2-} (seleniuro) Te^{2-} (teleruros)
- 1) Con hidrógeno: Tienen marcado carácter covalente y en solución presentan carácter ácido. Son gases nauseabundos.

a) Estructuras:

b) En solución:

$$SH_2(g) + H_2O \rightleftharpoons SH^- + H_3O^+ \quad Ka = 10^{-7}$$

$$SH^- + H_2O \rightleftharpoons S^{2-} + H_3O^+ \quad Ka = 10^{-14} (d\acute{e}bil)$$

Al aumentar el número atómico, disminuye la fuerza covalente y por lo tanto se disocian más fácilmente y son más ácidos.

c) Tienen carácter reductor:

Ejemplos:

$$2SH_2 + 3O_2 \rightarrow 2SO_2 + 2H_2O$$

$$2SH_2 + O_2 \rightarrow S^o + SO_2 + 4H^+ + 4e^-$$

$$3SH_2 + 2HNO_3(d) \rightarrow 3S^o + 2NO + 4H_2O$$

Este carácter reductor aumenta con el nº atómico, ya que se vuelven menos estables al disminuir la fuerza covalente.

d) Obtención de SH₂:

$$FeS + 2HCl \rightarrow H_2S + FeCl_2$$

2) Con metales: Forman los sulfuros, seleniuros y teleruros.

a) No son compuestos iónicos puros, sino que constituyen estructuras de transición iónicas covalentes o iónicas metálicas. Cristalizan según:

b) Son compuestos insolubles (excepto con los elementos alcalinos los de mayor carácter iónico). Algunos muy insolubles: HgS, Ag₂S, CuS. $Kps_{HoS} = 10^{-53}$

c) En solución presentan carácter alcalino:

$$S^{2-} + H_2O \rightleftharpoons SH^- + OH^-$$

 $SH^- + H_2O \rightleftharpoons SH_2 + OH^-$

- **d**) Existen polisufuros: Formando cadenas $(S_n)^{2-}$ que se obtienen por reacción de S y S^{2-} en medio alcalino.
- e) Existen sulfanos: H Sn H (líquido amarillo) n = 1 a 15. Su viscosidad aumenta con el Masa Molecular.

ÓXIDOS – OXACIDOS (Número de oxidación +4)

1.- Estructuras

Al estado gaseoso $SO_2 = SeO_2$ (justificables por resonancia y teoría de valencia)

Al estado sólido:

Justificación de SO₂ (gas)

(ídem ozono)

$$\delta$$
- 0 S 0 δ - 0 δ -

Obtención:

El más importante es el SO₂: gas, incoloro, asfixiante.

Obtención - Calentando azufre:
$$S + O_2 \xrightarrow{\sigma} SO_2$$
-Tostación de un sulfuro: $ZnS + 3/2O_2 \rightarrow ZnO + SO_2$

$$-2H_2SO_4(c) + Cu^{\circ} \xrightarrow{\sigma} SO_2 + CuSO_2 + 2H_2O$$

$$-SO_3^{2-} + 2H^+ \xrightarrow{\sigma} SO_2 + H_2O$$

El SO_2 puede ser reductor u oxidante $S^{\circ} \leftarrow SO_2 \rightarrow SO_3$ Pero generalmente actúa como reductor.

OXOACIDOS

1) En solución acuosa el SO₂ forma el ácido sulfuroso (no caracterizado como tal), sino como SO₂.nH₂O. Pero el ion SO₃²⁻ existe en las sales.

$$SO_2 \cdot 2H_2O \leftrightharpoons HSO_3^- + H_3O^+(Carácter ácido)$$

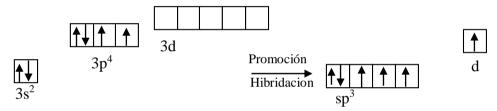
También existe el ácido selenioso, como libre, SeO(OH)₂ es sólido. No existe el teluroso. Sí existen los selenitos y teluritos.

Carácter reductor

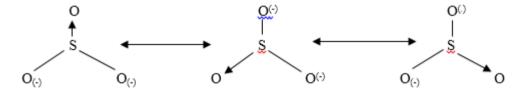
2) Sulfitos son fundamentalmente reductores.

Er: 0, 5v|
$$SO_3^{2-} + H_2O \rightleftharpoons SO_4^{-2} + 2H^+ + 2e^-$$
 (medio acido)
Er: -0, 9v| $SO_3^{2-} + 2OH^- \rightleftharpoons SO_4^{-2} + H_2O + 2e^-$ (medio alcalino)

Selenitos y teluritos son fundamentalmente oxidantes.


$$Er = 0.70v$$
| $SeO_3^{-2} + 6H^+ + 4e^- \rightleftharpoons Se^0 + 3H_2O$

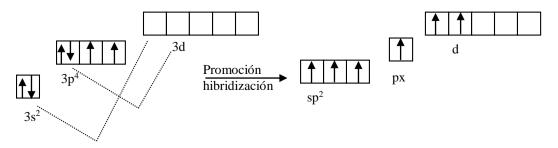
 Hidrólisis de sulfitos y sulfitos ácidos Sulfitos tienen hidrólisis alcalina Sulfitos ácidos tienen hidrólisis acida


$$SO_3^{2-} + H_2O \leftrightharpoons SO_3H^- + OH^-(alcalino)$$

$$SO_3H^- + H_2O \leftrightharpoons SO_3^{2-} + H_3O^+(\acute{a}cido)$$

4) Estructura de sulfito: Piramidal

Resonancia:

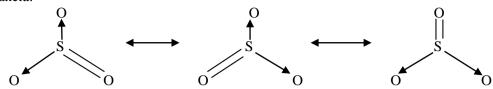


Número de Oxidación 6: Óxidos y Oxoácidos

Óxidos:
$$SeO_3$$
 TeO_3 de poca utilidad

1) Estructuras:

Justificación del SO3 gas:


^{*} Comparar con carbonatos y bicarbonatos

UNIVERSIDAD NACIONAL DE CUYO

Facultad de Ciencias Aplicadas a la Industria

Química Inorgánica

Resonancia:

Oxácidos:

H₂SO₄

_____ Ácido fuerte

Oxidante moderado

Deshidratante enérgico

Forma sulfatos e hidrogeno sulfatos

H₂SeO₄ Sólido, funde a 57°C, semejante al sulfúrico, forman seleniatos e hidrógeno seleniatos.

Te(OH)Diferente a los otros. Se obtiene por oxidación enérgica del Te.
No tiene comportamiento de hidróxidos. Son ácidos, hay covalencia.

Obtención de SO₃ y H₂SO₄

SO₃:
$$V_2O_5 (600^{\circ}c)$$
 $V_2O_5 (600^{\circ}c)$ $V_2O_5 (600^{\circ}c)$ $V_2O_5 (600^{\circ}c)$ $V_2O_5 (600^{\circ}c)$

H₂SO₄

A) Contacto: (más usado)

$$SO_2 + \frac{1}{2}O_2 \xrightarrow{V_2O_5 (600^{\circ}c)} SO_3(g) \Delta H^0 = -99 \text{ KJ/mol}$$

El aumento de temperatura mejora la velocidad de la reacción pero desfavorece termodinámicamente.

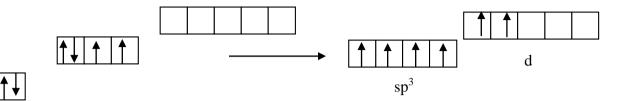
 $1\frac{1}{2}$ mol $\rightarrow 1$ mol

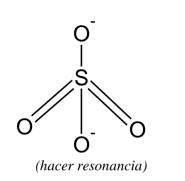
$$SO_3(g) + H_2SO_4 \rightarrow H_2S_2O_7(pirosulfúrico)$$

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$
 $\Delta H^0 = -880 \text{ KJ/mol}$

Un exceso de oxígeno es favorable en el rendimiento de la reacción.

No se realiza directamente la reacción del SO_3 con H_2O ya que reacciona con vapores de agua, polimerizando $(SO_3)_x$ llegando a formar un sólido.


B) Cámaras de Plomo: (método antiguo)


$$S + O_2 \rightarrow SO_2$$

$$SO_2 + HNO_3 \rightarrow NOHSO_4$$

$$2\text{NOHSO}_4 + \text{H}_2\text{O} \rightarrow 2\text{H}_2\text{SO}_4 + 2\text{HNO}_3 \\ \hline -\text{H}_2\text{O} \\ \hline \text{NO}_2 + \text{NO}$$

2) Estructura de SO₄²⁻ (tetraedro)

• Tiosulfato S₂O₃²-

No existe el ácido correspondiente.

La obtención del tiosulfato es: $SO_3 + S^0 \rightarrow S_2O_3^{2-}$

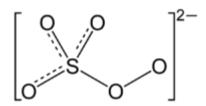
Este ión $S_2O_3^{2-}$ actúa como ligando y se oxida a $S_4O_6^{2-}$

• Tetrationato: S₄O₆²-

Existe el ácido H₂S₄O₆ (tetratiónico)

La obtención del
$$S_4O_6^-$$
 es: $2S_2O_3^{2-} + I_2 \xrightarrow[Oxidacion]{} S_2O_6 + 2I^-$

164


• Peroxodisulfato: S₂O₈²⁻

Existe el ácido H₂S₂O₈ (ácido peroxodisulfúrico)

Este ion se obtiene por electrolisis de sulfato a baja T°C.

Este ion $S_2O_8^{2-}$ participa en un método de obtención de H_2O_2 .

• Peróxomonosulfato: SO₅-2

Existe el ácido: H₂SO₅ (peroxomonosulfúrico).

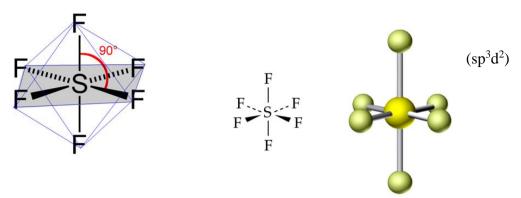
Este ion se obtiene por hidrólisis del S₂O₈²⁻ (ver obtención del H₂O₂).

• Pirosulfato: S₂O₇²-

Existe el ácido H₂S₂O₇ (ácido pirosulfúrico)

Se obtiene: $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$

H₂S₂O₇ participa en la obtención del H₂SO₄ (método de contacto).


Haluros: Existen aquellos de fórmulas:

 M_2X_2

 MX_2

MX₄ El más importante es SF₆ (MX₆)

 MX_6

Debido a su inercia química y fuerza dieléctrica alta es utilizada como aislante gaseoso en generadores de alta tensión.

Destaca por ser un gas inodoro, incoloro, no tóxico y aproximadamente cinco veces más pesado que el aire. Al ser muy inerte y muy poco soluble en agua, es un gas de interés en aplicaciones industriales, sin embargo su uso ha sido duramente criticado debido a su alta contribución como gas de efecto invernadero.

Así también a altas temperaturas cercanas a los 400 °C se descompone en sustancias toxicas como Ácido Fluorhídrico y dióxido de azufre.

Polonio

Obtención: El polonio es obtenido principalmente de los minerales de Uranio durante el procedimiento de purificación, sin embargo se conocen procedimientos para su síntesis de manera artificial a partir del bombardeo de Bismuto con neutrones.

Aplicaciones: Siendo un elemento extremadamente toxico, radiactivo y volátil, su manejo se limita a la radioquímica como fuente de neutrones y a los satélites y sondas espaciales como fuente de calor debido a que 1g de Po²¹⁰ puede generar 130 V de potencia calórica.

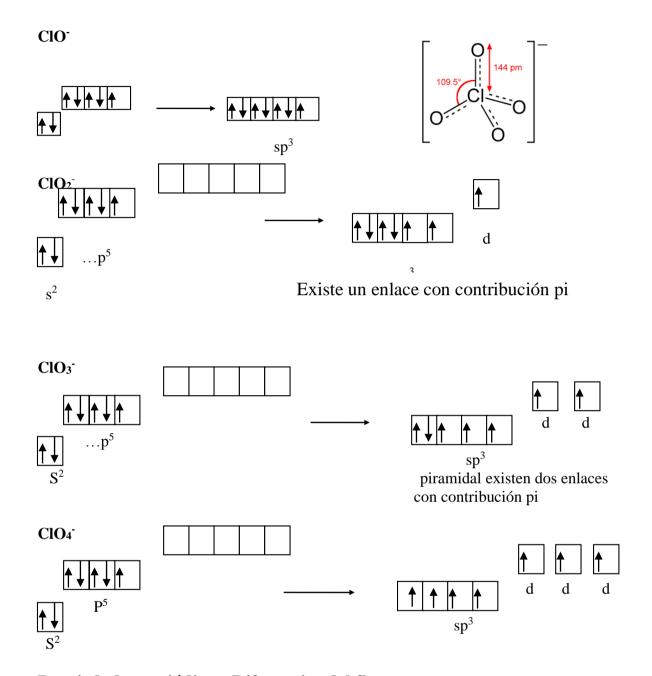
Controversia: Desde los años 60′ las industrias tabacaleras han sido duramente asediadas por demandas debido a la llamativa presencia de esta sustancia en el humo del tabaco. Estas han intentado fallidamente, eliminarlo usando distintos sustitutos sin, sin embargo los resultados nunca han sido publicados. Se estima que causa aproximadamente 12.800 muertes por cáncer de pulmón.

GRUPO 17: LOS HALÓGENOS:

FLUOR - CLORO - BROMO - IODO - ASTATO

Prop	oieda	des	perió	dicas.

	Flúor	Cloro	Bromo	Yodo	Astato
Símbolo	F	Cl	Br	1	At
Número atómico	9	17	35	53	85
Peso atómico	18,999	35,453	79,909	126,904	(210)°
Electrones de valencia	$2s^{2}2p^{3}$	$3s^23p^5$	$4s^24p^5$	$6s^26p^5$	$7s^27p^5$
Punto de fusión, °C	-220	-101	-7,3	114	
Punto de ebullición, °C	-188	-34	58,8	184	
Densidad, g/cm3	1,81 g/litro	3,21 g/litro	3,12	4,94	
Volumen atómico	12,8	14,5	23,5	25,7	
Radio atómico, A	0,64	0,99	1,14	1,33	
Radio iónico (-1), Å	1,36	1,81	1,95	2,16	
EN de Pauling	4,0	3,0	2,8	2,5	2,2
Z_{el}/r^2	4,10	2,83	2,74	2,21	1,9
Potencial normal	+2,87	+1,36	+1,07	+0,54	+0,3
Estados de oxidación	-1	-1 a +7	-1 a + 7	-1 a +7	
Energía de ionización *	401,7	300,0	273	241	
Calor de vaporización	2,76	2,85	3,58	4,98	
Aislado por	Moissan	Scheele	Balard	Courlois	CMS*
Fecha de su aislamiento	1886	1774	1826	1811	1940
prc* O ₂ puro	O ₂ F ₂ d. cl.°	ninguno (i)*	ninguno (i)	ninguno (i)	
prc H₂O	HF, O_2, O_3	HCl, HOCl	HBr, HOBr	ні, ноі	
prc N₂	ninguno	ninguno .	ninguno	ninguno	
pre halógenos		ver la sección s			genos
prc H ₂	HF	HCl	HBr	HI	
Color del elemento	amarillo pálido	amarillo verdos	o rojo oscuro	negro	
Dureza de Mohs Estructura cristalina			ortorrómb.	ortorrómb.	


Configuración electrónica y estados de oxidación

La configuración electrónica de valencia de los halógenos es $\mathbf{ns^2}$ $\mathbf{np^5}$

De la misma podemos concluir que le resulta fácil tomar un electrón y formar iones X- (ión haluro: fluoruro, cloruro, etc.). Esta capacidad tiene que ver con la electronegatividad que aumenta en el grupo al disminuir el número atómico. De esta manera completan el octeto y adquiriendo en consecuencia la configuración electrónica del gas noble vecino.

Las combinaciones al número de oxidación +1, +3, +5 y +7 son covalentes y se justifican por promoción de electrones \mathbf{p} y \mathbf{s} a orbitales \mathbf{d} con hibridación \mathbf{sp}^3 para formar los iones XO^- (hipohalito), XO_2^- (halito), XO_3^- (halato), XO_4^- (perhalato). Fluor no tiene orbitales d disponibles para ejecutar las promociones correspondientes y esto justifica que no presente especies de este tipo. Es así que no existen iones tales como hipofluorito, fluorato y perfluorato.

Veamos las estructuras de estas especies: Como ejemplo: las de Cloro, Bromo, iodo son iguales.

Propiedades periódicas. Diferencias del fluor

Son todos no metales, electronegativos y por lo tanto como vimos tienen gran tendencia a captar un electrón y completar el octeto. Todos son abundantes en la naturaleza menos el astato descubierto en 1940.

$$^{209}_{83}\text{Bi} + {}^{4}_{2}\text{He} \rightarrow {}^{211}_{85}\text{At} + 2{}^{1}_{0}\text{n}$$

Parta astato existen dos isótopos importantes solamente: ²¹¹At (tl/2= 7,5 hrs y ²¹⁰ At tl/2 de 8,3 hrs. Astato se parece a iodo en su comportamiento: es volátil, soluble en tetracloruro de carbono y forma sales insolubles con Ag⁺ y Tl⁺.

En C.N.P.T **fluor** es un gas, **cloro** es gas, **bromo** es líquido, **iodo y astato** son sólidos. Las moléculas son diatómicas y se explican por Orbitales Moleculares

	F	Cl	Br	I
Energía de	402	300	273	241
ionización				
Radio iónico	1,33	1,81	1,96	2,19
(X ⁻)				
Punto de	54	172	266	687
Fusión (°K)				
Energía de	37,7	57,2	45,4	35,5
disociación				

Los halógenos son muy reactivos; comparemos los valores de energías de disociación por ejemplo con N_2 = 225 Kcal, con H_2 = 103 Kcal y con O_2 = 118 Kcal. La anomalía en la energía de disociación que presenta flúor puede justificarse por la repulsión de los pares de electrones ya que la distancia de unión es corta:

F-F corta.

El flúor presenta diferencias al resto del grupo como ocurre con el resto de los grupos de la Tabla Periódica:

- 1.- Actúa solamente como F⁻ o monocovalente debido a la ausencia de orbitales d para efectuar promociones de electrones.
- 2.- Las solubilidades de Fluoruros son diferentes al resto: cloruros, bromuros, ioduro.
- 3.- El HF es más débil con respecto a HCl, HBr, HI son más fuertes.
- 4.- Los metales muestran un mayor carácter iónico al combinarse con fluor. Por ejemplo AlF₃ y SnF₄ son iónicos mientras que AlCl₃ y SnCl₄ son covalentes.
- 5.- Flúor es el elemento más electronegativo, se le asigna valor 4 en la escala de Pauling, por esta razón puede desplazar a los demás halógenos de sus haluros iónicos. Por ejemplo:

$$2NaCl + F_2 \rightarrow 2NaF + Cl_2$$

La alta reactiva de este elemento se debe a su energía de enlace anormalmente baja respecto de los demás halógenos, este bajo valor se atribuye a la repulsión entre electrones no enlazantes de los átomos de flúor.

En contraste con esta baja energía, los enlaces que forma flúor con otros elementos son generalmente muy fuertes. Por ejemplo en la formación del fluoruro covalente CF₄ (g), a partir de C (s) y F₂ (g) requiere 609 KJ/mol y la formación del fluoruro iónico NaF requiere 411 KJ/mol.

Estado natural y obtención:

Flúor se lo encuentra en minerales como F₂Ca (fluorita) y Na₃ [AlF₆] (criolita). Se obtiene por electrólisis ya que F⁻ no puede oxidarse por métodos químicos. Se utiliza HF - KF. El KF se agrega para aumentar la conductividad.

Cloro se encuentra fundamentalmente como cloruro de sodio (sal gema). Se obtiene por electrólisis de NaCl (fundido o solución) o de HCl (hacer hemireacciones de cada caso). En el laboratorio se obtiene por la reacción redox:

$$MnO_2 + 4HCl \rightarrow Cl_2 + MnCl_2 + 2H_2O$$

Bromo se encuentra en agua de mar como Br⁻. Se obtiene mediante corrientes de cloro, aplicando la variación del poder oxidante de los halógenos:

$$2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^-$$

Iodo se lo encuentra en algas marinas y también como IO₃⁻ impurificando a NaNO₃ (nitro de Chile). Se obtiene en forma similar al bromo.

$$2I^- + Cl_2 \rightarrow I_2 + 2Cl^-$$

También a partir de los IO₃⁻

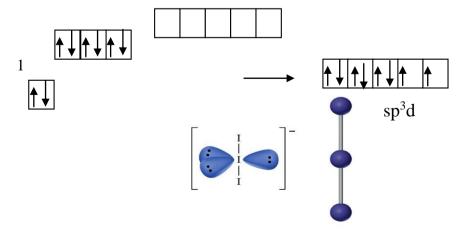
$$2{\bf I}{\bf 0_3}^- + 5{\bf S}{\bf 0_3}{\bf H}^- \to {\bf I_2} + 5{\bf S}{\bf 0_4}^{2-} + 3{\bf H}^+ + {\bf H_2}{\bf 0}$$

Carácter oxidante de los halógenos

Aumenta el poder oxidante

Dado estos potenciales flúor desaloja a todos los otros de sus haluros, cloro a bromo y iodo, bromo a iodo.

Reacción frente a agua. Ion I₃⁻. Reacción con álcalis o bases


La hidrólisis de los halógenos presenta diferencia para flúor:

$$F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$$
 $Cl_2 + H_2O \rightarrow 2HCl + HClO$
 $Br_2 + H_2O \rightarrow 2HBr + HBrO$
 $F_2 + H_2O \rightarrow poco soluble$

Iodo se solubiliza en ioduro de potasio por formación del ión triyoduro:

$$I_2 + I^- \rightarrow I_3^-$$
 (soluble)

La estructura de este ión triyoduro se explica realizando una hibridación sp³d al ión ioduro (I⁻):

Frente a los álcalis, exceptuando al flúor, presentan dismutación dependiendo de la temperatura: Así por ejemplo:

Haluros - hidrácidos

Los hidrácidos se obtienen utilizando ácidos fuertes, que si bien no tienen Ka mayores, las reacciones son espontáneas lo mismo ya que se obtienen ácidos volátiles y por lo tanto por Le Chatelier el equilibrio se desplaza hacia los productos.

$$\begin{aligned} \text{CaF}_2 &+ \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{F}_2 \uparrow &+ \text{CaSO}_4 \\ & 2\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow 2\text{HCl} \uparrow + \text{Na}_2\text{SO}_4 \\ & \text{NaBr} + \text{H}_3\text{PO}_4 \rightarrow \text{HBr} \uparrow + \text{NaH}_2\text{PO}_4 \\ & \text{KI} + \text{H}_3\text{PO}_4 \rightarrow \text{HI} \uparrow + \text{KH}_2\text{PO}_4 \end{aligned}$$

Para obtener HBr y HI no se puede utilizar sulfúrico ya que este actúa como oxidante y por lo tanto oxida a Br⁻ y I⁻ a Br₂ y I₂ respectivamente.

En agua todos producen reacción ácida pero el fluorhídrico es el más débil de todos, seguramente por su capacidad de formar puente hidrógeno disminuyendo la tendencia del ácido a perder el protón hidrógeno y por la fuerza de unión ya que F⁻ es más electronegativo:

además:

Por lo tanto la fuerza como ácido de los hidrácidos aumenta desde el H₂F₂ hasta HI. Todos forman haluros con mucha facilidad:

Iónicos: Preferentemente el flúor en los fluoruros. Forma redes más estables dado su menor tamaño

Haluros MX

Covalentes: Preferentemente con no metales (CCl_4 , BF_3) o con metales de radio muy pequeño polarizante como litio, berilio, aluminio.)

Óxidos y oxácidos

Los óxidos que existen los podemos resumir en el siguiente cuadro.

F_2O	Cl_2O	Br_2O	I_2O_5	Los más abundantes son los del cloro.		
G1.0	D 0			Son oxidantes e inclusive explosivos F_2O_2		
ClO_2	BrO_2			como los de cloro. Carecen de utilidad práctica salvo I ₂ O ₅ que se utiliza para		
	Cl_2O_6	BrO_3		reconocer CO.		
	Cl_2O_7					

$$I_2O_5 + 5CO \rightarrow I_2 + CO_2$$

Los oxácidos que existen los resumimos en el siguiente cuadro:

F	Cl	Br	I
Ninguno	HClO	HBrO	HIO (inestable)
	HClO ₂	HBrO ₃	HIO ₃
	HClO ₃		H ₃ IO ₆ (parayódico)
	HClO ₄		H ₄ I ₂ O ₉ (mesodiyódico)

Para cloro existen todos y por lo general actúan como oxidantes:

aumenta poder oxidante

$$\begin{aligned} \text{ClO}_4^{\,-} & \xrightarrow{\text{E}^\circ = 1,19} \text{ClO}_3^{\,-} & \xrightarrow{\text{E}^\circ = 1,21} \text{ClO}_2^{\,-} & \xrightarrow{\text{E}^\circ = 1,63} \text{ClO}^{\,-} & \xrightarrow{\text{E}^\circ = 1,63} \text{Cl}_2 \\ & \text{BrO}_3^{\,-} & \xrightarrow{\text{E}^\circ = 1,49} \text{BrO}^{\,-} & \xrightarrow{\text{E}^\circ = 1,59} \text{Br}_2 \end{aligned}$$

El poder como oxidante aumenta por lo tanto al disminuir el número de oxidación. Veamos ahora algunas características para cada uno de ellos.

Hipo - halosos: Se obtienen de la siguiente manera:

$$X2 + H2O \rightarrow HX + HXO$$
 HClO $Ka = 10^{-8}$ HBrO $Ka = 10^{-9}$ Disminuye HIO $Ka = 10^{-11}$ Acidez

Como sales son importantes los de alcalinos y alcalino - térreos. Se utiliza como oxidantes y decolorantes (Ej. El agua lavandina).

Halosos: Existe solamente el del cloro HClO₂ es inestable, se estabiliza por su sal, que se obtiene:

$$2 ClO_2 + Na_2O_2 \rightarrow 2 NaClO_2 + O_2$$

que en medio ácido da HClO₂.

La Ka para este ácido es de 10⁻² por lo que podemos decir que no es tan débil como los hipo - halosos.

Hálicos: Existen HClO₃, HBrO₃, HIO₃. Son ácidos fuertes de Ka= 10² - 10³

En general se obtienen por dismutación o desproporción (auto óxido - reducción) de XO-:

$$3X0^- \rightarrow 2X^- + X0_3^-$$

Las sales XO₃⁻ son solubles en agua y el HIO₃ es sólido cristalino.

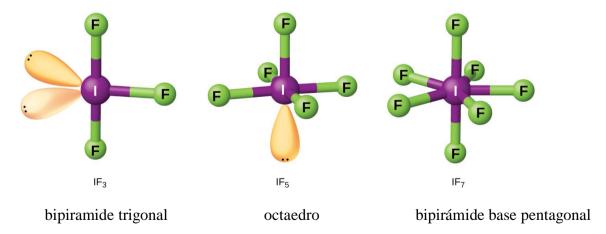
El HClO₄ es el más fuerte de los ácidos inorgánicos (Ka=10⁶). Se lo obtiene destilando un perclorato con ácido sulfúrico:

$$ClO_4^- + H_2SO_4 \rightarrow HClO_4 + HSO_4^-$$

Las sales son poderosos oxidantes. La mayoría de los percloratos son generalmente solubles menos los de K, Cs, Rb y NH₄⁺. Son importantes las sales de alcalinos y alcalino térreos.

Los ácidos periódicos son débiles, el más importante es el parayódico, la estructura ortoperyódico es octaédrica:

Interhalógenos


Son combinaciones entre los halógenos. Sus moléculas resultan polar a diferencia de las moléculas de los halógenos que son no polares. El más electronegativo se encuentra con número negativo y el otro positivo. Los más importantes son:

ClF	BrF		N=1
ClF ₃	BrF ₃		N=3
	BrF ₅	IF ₅	N=5
	BrCl	ICl	N=1
		IBr	
		IF ₇ *	N=7

^{*}Reactivo y altamente inestable

En este cuadro destacamos que la estabilidad decrece con el aumento de n.

Si analizamos las estructuras en el espacio de estas moléculas encontramos distintas conformaciones anteriormente estudiadas:

Nota: Observese en primer lugar que el compuesto heptafluoruro iódico posee uma conformacion muy inusual presentada por pocos compuestos.

Pseudohalógenos

No existe una definición rigurosa para ellos, pero son sustancias que se comportan como los halógenos. Sus iones se asemejan a los haluros e hipohalitos.

Ejemplo: (CN₂) cianógeno y N₃ azidas.

Particularidades y usos

FLUOR

Tiene una importancia enorme desde el punto de vista industrial. El freón (anticongelante), la resina de teflón o el mismo ácido fluorhídrico.

F actúa atacando a la sílice (SiO₂) y silicatos. HF - HNO₃ mezcla oxidante.

CLORO

ClO oxidante, decolorante, desinfectante. Debido a esto los derivados son generalmente usados en la industria textil, papelera. Asi también es usado en la esterilización de agua.

HClO₄, NaClO₃ oxidantes. Tienen acción hemolítica sobre los glóbulos rojos.

Aplicaciones como ácidos inorgánicos

KClO₃ + S° mezcla muy explosiva. Utilizado en algunas pólvoras y explosivos.

BROMO

Es un agente en extremo caustico al punto de reaccionar rápidamente con los tejidos orgánicos y evitar su regeneración. Sin embargo sus derivados como algunos bromuros son usados como sedantes

BrO y BrO3 en la industria de la panificación, en la actualidad está prohibido su uso.

IODO

Importante para el funcionamiento de la glándula tiroides. Se estudia con

$$^{131}_{53}I^{\beta-}
ightarrow ^{131}_{54}Xe$$

Alcohol - I₂ - NaI: Alcohol iodado. Uso como germicida en microbiología. Y la Iodopovidona es el anticeptico domestico más utilizado

 I_2O_5 : Es el reactivo para reconocer CO en ambientes ya que se forma I_2 que puede reconocerse por su color oscuro o en presencia de almidón que da azul.

OXÍGENO - AGUA - GASES NOBLES

OXÍGENO

Estado natural - estados alotrópicos.

El oxígeno posee tres isótopos:

Se puede obtener concentrados de ¹⁸₈O por destilación fraccionada del agua hasta un 97% de átomos de ¹⁸₈O.

Este isótopo (1880) ha sido muy empleado como trazador en estudios de mecanismos de reacción de compuestos oxigenados.

El ¹⁷8O posee spin nuclear pero su poca abundancia y la dificultad para detectarlo por resonancia magnética nuclear, limitan su uso.

El oxígeno se presenta en dos estados alotrópicos moleculares: el O₂ y el O₃ (ozono).

La molécula de O₂ tiene alta estabilidad ya que su energía de disociación es elevada:

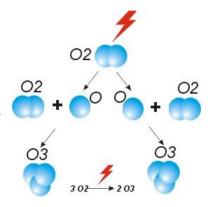
$$O_{2(g)} \rightarrow O_{(g)} + O_{(g)} \Delta H: 117 \text{ Kcal/mol}$$

Su estructura de acuerdo a orbitales moleculares (OM) predice correctamente el orden de unión y su paramagnetismo: $\sigma_1^2 \sigma_1^{*2} \pi^4 \sigma_2^2 \pi^{*2}$.

En los orbitales π^{*2} antiligantes se encuentran dos electrones no apareados, responsables del paramagnetismo de la molécula.

Paramagnetismo: propio de las moléculas, iones o átomos que presentan electrones no apareados. Se manifiesta como atracción para las líneas de fuerza de un campo magnético aplicado sobre las sustancias.

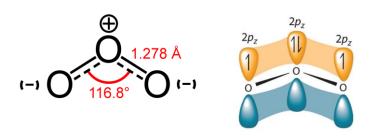
Diamagnetismo: lo presentan la mayoría de las sustancias, pues depende de la presencia de capas completas de electrones.


Este fenómeno se expresa como repulsión a las fuerzas generadas por un campo magnético.

El oxígeno gaseoso es incoloro, poco soluble en agua. Al estado líquido y sólido es azul claro (P_{eb} : -183°C P_f : -218,9°C).

El ozono (O_3) se puede preparar a partir del O_2 sometiendo a éste a la acción de una carga eléctrica o al exponerlo a los rayos ultravioleta.

$$\frac{3}{2}$$
 $O_2 \rightleftharpoons O_3 \quad \Delta H: 34 \text{ Kcal/mol}$


Debido a que se produce por acción de los rayos ultravioleta sobre el oxígeno, se lo encuentra en las capas altas de la atmósfera con una concentración máxima a 25 Km de altitud. Como el ozono tiene una intensa banda de absorción centrada alrededor de los 2900 A°, ésta capa de ozono actúa como un filtro, protegiendo a la tierra de la radiación ultravioleta emitida por el sol.

El O_3 en estado gaseoso es de color azul claro; en estado líquido es de color azul y en estado sólido violeta - negro.

Forma mezclas con el O₂, una de 25% de ozono que es estable; otra de 70% de ozono que es explosiva, lo mismo que el ozono líquido puro.

La estructura del ozono es angular. El ángulo entre los oxígenos es de 116.8°.

La unión posee un apreciable carácter de doble enlace. Por teoría de la resonancia pueden formularse las siguientes estructuras:

$$O^{1,278A^{\circ}}O$$

Comparando la actividad de O_2 y O_3 , se observa una mayor actividad del O_3 (mayor poder oxidante), sobre todo en ½ ácido.

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^0 = +1,229v$
 $O_2 + 2H_2O + 4e^- \rightarrow 4HO^ E^0 = +0,401v$
 $O_2 + \frac{4H^+}{pH = 7} + 4e^- \rightarrow 2H_2O$ $E^0 = +0,815v$
 $O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$ $E^0 = +2,07v$
 $O_3 + H_2O + 2e^- \rightarrow O_2 + 2HO^ E^0 = +1,24v$

En medio ácido, el poder oxidante del O_3 es superado sólo por el F_2 , el oxígeno atómico, los radicales HO.

El ozono es algo más soluble en agua que el oxígeno.

Óxidos

Clasificación

El oxígeno forma compuestos con prácticamente todos los elementos excepto He, Ne y Ar. Se combina en forma directa con todos los elementos, excepto halógenos, algunos metales nobles y gases nobles. La corteza terrestre contiene casi un 50% en peso de oxígeno. Los

compuestos del oxígeno están presentes prácticamente en todos los capítulos de la química inorgánica.

El átomo posee estructura $1s^2$, $2s^2$, $2p^4$, por tanto tenderá a completar su último nivel con 8 electrones a través de alguno de los siguientes mecanismos:

- a) Ganancia de un par de electrones para formar el ion O⁻².
- b) Formación de 2 enlaces covalentes simples: R O R o un enlace doble O C O.
- c) adquisición de un electrón y formación de un enlace simple: H O⁻.
- d) Formación de tres o cuatro uniones covalentes: R₂OH⁺; H₃O⁺.

Los compuestos binarios que forman se denominan **óxidos.** Las propiedades de los mismos dependen fundamentalmente del tipo de enlace que mantiene el oxígeno con el otro elemento que varía de esencialmente iónico a covalente.

Óxidos iónicos

Aparentemente no sería fácil la formación de óxidos iónicos porque es considerable la energía para formar O⁻²:

$$\frac{1}{2}O_{2(g)} \,\rightarrow\, O_{(g)} \quad \Delta H = 59 \; Kcal/mol$$

$$O_{(g)} + 2e^- \rightarrow O_{(g)}^{-2}$$
 $\Delta H = 157 \; Kcal/mol$

En total ΔH = 216 Kcal/mol. A esto hay que sumar la energía necesaria para vaporizar e ionizar el metal.

Sin embargo se conocen numerosos óxidos iónicos estables. Esto se debe a la gran energía reticular que poseen los cristales debido al ión O⁻², pequeño y con doble carga negativa.

A veces la elevada energía reticular permite la formación de óxidos con metales en estado de oxidación singularmente altos. Ejemplos: MnO₂; Ag₂O.

Óxidos covalentes

En algunos metales y en los no metales ocurre que la energía reticular no alcanza para producir la ionización completa y las uniones van adquiriendo carácter covalente, el que es máximo en los elementos más electronegativos. Ejemplos: BeO; B₂O₃; CO₂; SO₂.

También en el caso de los óxidos covalentes se pueden estabilizar estados de oxidación singularmente altos como sucede en el OsO₄; CrO₃; SO₃; etc.

Es conveniente realizar una clasificación de los óxidos de acuerdo a su comportamiento en agua desde el punto de vista ácido – base:

Óxidos básicos

Los iones O⁻² provenientes de la disolución de un óxido iónico no tienen existencia real o importante en agua porque la reacción hidrolítica tiene alta constante.

$$0^{-2} + \; H_2 0 \; \rightarrow 20 H^- \quad K > 10^{22}$$

De otra forma, podemos decir que el O⁻² es una base muy fuerte y la disolución de un óxido iónico produce el aumento de la concentración de iónes OH⁻.

A estos óxidos se los considera básicos.

Los óxidos iónicos insolubles en agua se pueden disolver en un medo ácido:

$$MgO_{(s)} + 2H_{(aq)}^+ \rightarrow Mg_{(aq)}^{+2} + H_2O$$

lo que también está demostrando su carácter básico.

Óxidos ácidos

Los óxidos covalentes de los no metales poseen en general carácter ácido al disolverse en agua:

$$SO_2 + H_2O \rightleftharpoons H_2SO_3 \rightleftharpoons HSO_3^- + H^+$$

 $SO_3 + H_2O \rightleftharpoons H_2SO_4 \rightleftharpoons HSO_4^- + H^+$
 $Cl_2O + H_2O \rightleftharpoons 2HClO \rightleftharpoons 2H^+ + 2ClO^-$

Los insolubles podrán ser disueltos, entonces en soluciones alcalinas:

$$Sb_2O_5 + 2HO^- + 5H_2O \rightarrow 2Sb(OH)_6^-$$

Los óxidos básicos y ácidos se combinan entre sí para formar sales:

$$Na_2O + SiO_2 \xrightarrow{fusión} Na_2SiO_3$$

Óxidos anfóteros

Estos óxidos de algunos metales como Zn, Al, Sn reaccionan como ácidos frente a las bases fuertes y como bases frente a ácidos fuertes.

$$Zn0 + 2H^+_{(aq)} \to Zn^{+2} + \ H_20$$

$$ZnO + OH^- + H_2O \rightleftharpoons Zn(OH)_4^{-2}$$

Otros óxidos

Algunos óxidos son inertes frente a ácidos y bases como CO, MnO₂, N₂O. Cuando el MnO₂ reacciona con ácidos por ejemplo HCl, la reacción es redox y no ácido - base.

También existen óxidos no estequiométricos que se forman con metales con número de oxidación variable. Así por ejemplo la composición del óxido ferroso probablemente no corresponde nunca a la fórmula FeO, en realidad está comprendida entre FeO_{0,90} FeO_{0,95} de acuerdo con el método y las condiciones de la preparación.

También hay óxidos metálicos mixtos: Al₂ MgO₄; CaTiO₃.

Para un elemento dado, los óxidos formados por el estado de oxidación mayor será el más ácido y luego irán decreciendo en dicha fuerza. Ejemplo: Cl₂O₇ (muy ácido); Cl₂O₅ > Cl₂O₅ > Cl₂O; o bien CrO (básico) Cr₂O₃ (anfótero); CrO₃ (ácido).

Ion hidróxido

Existe como tal sólo en los hidróxidos de los elementos más electropositivos NaOH, KOH, Mg(OH)₂, Ca(OH)₂ al disolverse en agua se produce iones HO⁻ hidratados:

$$LiOH + \ H_2O \ \rightarrow LI^+_{(aq)} + HO^-_{(aq)}$$

En el caso de los hidróxidos anfóteros pueden producirse dos fenómenos distintos según se disuelven en medio ácido o básico.

$$Al(OH)_3 + 3H^+ \rightleftharpoons Al^{+3} + 3H_2O$$

 $Al(OH)_3 + OH^- \rightleftharpoons Al(OH)_4^-$

Además el ión hidróxido es captado en la hidrólisis de los iones metálicos:

$$[Al(H_2O)_6]^{+3} + H_2O \rightleftharpoons [Al(H_2O)_5(OH)]^{+2} + H_3O^+$$

$$Al^{+3} + H_2O \rightleftharpoons Al(OH)^{+2} + H^+$$

Uniones del oxígeno - Número de coordinación

Coordinación Dos: Este es el número de coordinación normal del oxígeno y forma dos uniones simples covalentes como el agua, éteres, alcoholes, etc.

El ángulo de unión X - O - X es más cercano al tetraédrico que a 90° (que sería el ángulo si utilizara dos orbitales p puros para la unión), lo que hace suponer la existencia de un **hibridación** \mathbf{sp}^3 , aunque no queda con ello totalmente explicado el fenómeno pero de todas maneras los dos pares de electrones no utilizados quedarían en orbitales híbridos dirigidos.

Coordinación tres: Estos tipos de compuestos son los iones.

Oxonio como H_3O^+ ; R_2OH^+ ; ROH_2^+ . Esto es consecuencia de la capacidad dadora de los compuestos R_2O , de los cuales el tipo más frecuente es H_2O . También debemos suponer un predominio de la hibridación sp³.

Enlace múltiple: Posee marcada tendencia a formar enlace doble. Pueden ser de tipo p^{π} - p^{π} como en CO, CO₂, N₂O, ácidos carboxílicos, NO, NO₂-, NO₃-.

Compuestos del oxígeno:

Ya se han visto muchos compuestos del oxígeno y otros se desarrollarán en capítulos siguientes. No obstante veremos algunos importantes o distintos.

El catión dioxigenilo:

Es posible que el O₂ pierda un electrón para transformarse en O₂⁺ (catión dioxigenilo). El potencial de ionización es de 12,1 v. Sólo podrá formarse frente a un compuesto o ión con

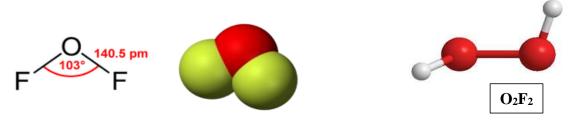
afinidad electrónica suficientemente grande. Por ejemplo el PtF_6 para formar O_2PtF_6 donde se pueda suponer una fórmula $O_2^+[PtF_6]^-$. La distancia O - O en el catión dioxigenilo es 1,12 O a valor menor que la unión O - O en el O2 porque pierde un electrón de un orbital antiligante y el orden de unión pasa a 2,5.

El O₂PtF₆ es un sólido anaranjado que sublima a 100°C al vacío y es hidrolizado por el agua.

Fluoruros del oxígeno

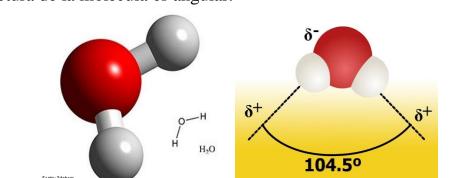
Por ser el Flúor más electronegativo que el oxígeno, corresponde hablar de fluoruros y no de óxidos.

Así tienen existencia algunos fluoruros de fórmula. OF₂; O₂F₂; O₃F₂; O₄F.

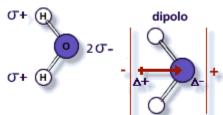

El difluoruro de oxígeno, OF₂ se puede obtener pasando rápidamente una corriente de F₂ a través de una solución de NaOH al 2%, o por hidrólisis acuosa de HF - KF. Es poco reactivo. Produce explosiones por descarga eléctricas o en mezclas de Cl₂, Br₂, y I₂ a temperaturas ambiente.

Libera los restantes halógenos de sus ácidos o sales no oxigenadas.

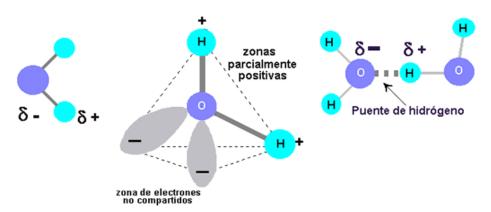
$$0F_2 + 4HX_{(aq)} \rightarrow 2X_2 + 2HF + H_2O$$


El difluoruro de dioxigenilo, O₂ F₂, es un líquido de color rojo, que se obtiene por acción de una descarga sobre una mezcla de fluor y oxígeno a bajas temperaturas. Este producto congela a -160°C, dando un sólido de color naranja, sin embargo por encima de los -95°C experimenta una descomposición térmica que impide la determinación de un punto de ebullición.

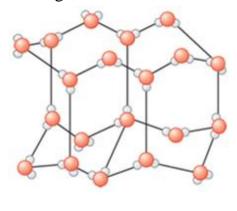
Las estructuras de estos óxidos son aproximadamente:

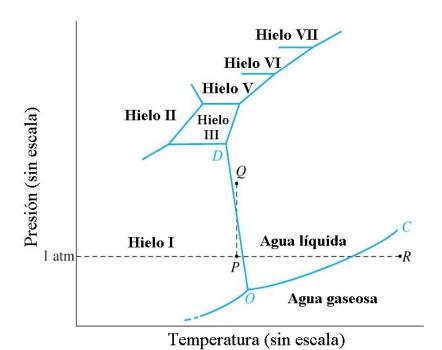


AGUA


Es el compuesto más frecuente de los que contienen oxígeno. La estructura de la molécula es angular.

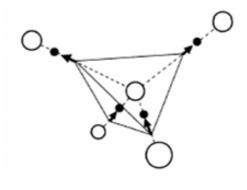
Cada enlace es covalente polar presentando la molécula un marcado momento dipolar con una zona correspondiente a los hidrógenos positiva y una zona negativa que es la correspondiente al oxígeno.


La atracción entre la parte positiva de una molécula y la parte negativa de la otra da lugar a la asociación de las moléculas de agua tanto en el estado líquido como en el sólido.



Estructura del hielo

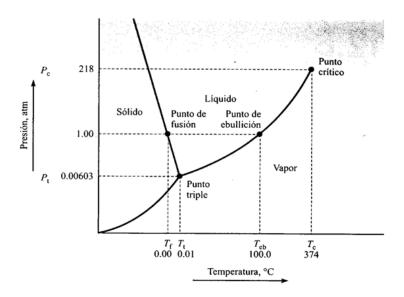
Se pueden obtener distintos tipos de estructura (por lo menos VII) según los valores de presión y temperatura.


En el hielo I, II, III cada átomo de oxígeno está rodeado tetraédricamente por otros 4 átomos de oxígeno.

En el hielo I la longitud de enlace O – O es de 2,76A° y constituye una estructura abierta que le confiere una densidad pequeña al hielo I.

Entre cada dos átomos de oxígeno se coloca un átomo de hidrógeno, de manera tal que cada átomo de O tiene dos hidrógeno unidos a una distancia de aproximadamente 1A° y dos de hidrógeno a una distancia mayo

Solo a temperaturas bajas (-183°C) cada molécula de agua llega a formar por completo los cuatro enlaces por puente de hidrógeno que es capaz de presentar. A medida que la temperatura aumenta, se forman asociaciones en que una molécula solo queda unida a las demás por dos o tres de este tipo, con lo que la estructura llega a ser algo desordenada. Esta tendencia continúa a la temperatura de fusión y a temperatura más alta, hasta que por fin tiene lugar la completa ruptura de la


estructura por puentes de H₂ llegando a la fase de vapor con moléculas individuales.

Estructura del agua líquida:

A 0°C en fase líquida el agua mantiene en gran parte la estructura abierta del hielo, pero a medida que se eleva la temperatura y se rompen los enlaces de hidrógeno, aparece una tendencia hacia la formación de estructuras compactas de máxima densidad.

A 3,98°C como consecuencia de un cambio en el equilibrio de estas dos estructuras se obtiene la máxima densidad.

Al aumentar la temperatura la estructura se va haciendo menos compacta con pérdida gradual de uniones hidrógeno. A 40°C existen aún más del doble de las uniones de H₂ posibles. Recién podemos confirmar que a 100°C se produce ruptura de la casi totalidad de enlaces hidrógeno para constituirse en fase vapor.

Propiedades físicas

La diferencias que presentan estas propiedades para el agua respecto a los restantes compuestos hidrogenados del grupo VI (H₂S; H₂Se; H₂Te) tienen su explicación en la asociación molecular del agua por uniones hidrógeno. Asi se observan valores mayores a los esperados para:

Punto de ebullición

Punto de fusión

Calor de vaporización

Tensión superficial

Calor de fusión, etc.

Propiedades químicas

Las propiedades ácido - base ya han sido descritas ampliamente.

Nos referimos ahora a sus posibilidades oxidantes y reductoras; y para ello veamos los potenciales respectivos.

$$H^+(10^{-7}M) + e^- \rightarrow {}^1_2H_2 \qquad E^0 = -0.41v$$

$$H_2O + e^- \rightarrow \frac{1}{2}H_2 + HO^- \qquad E^0 = -0.828v$$

$$\begin{array}{ll} \frac{1}{2}O_2 + 2H^+(1M) + 2e^- \, \longrightarrow \, H_2O & E^0 = 1,229v \\ \\ \frac{1}{2}O_2 + 2H^+(10^{-7}M) + 2e^- \, \longrightarrow \, H_2O & E^0 = 0,815v \\ \\ \frac{1}{2}O_2 + \, H_2O + 2e^- \, \longrightarrow 2OH^-\,(1M) & E^0 = 0,401v \end{array}$$

Si le damos una interpretación práctica a estos valores podemos decir:

Agentes reductores con potenciales menores de -0,414v podrán reducir al agua (para liberar hidrógeno) pero para reducir al agua en soluciones alcalinas ((HO⁻)= 1M) tendran que poseer valores menores de -0,828 v.

Por otra parte la oxidación del agua será más fácil en soluciones alcalinas (liberación de oxígeno). Así agentes oxidantes con potenciales mayores que 0,401v podrán liberar oxígeno de soluciones alcalinas ([HO⁻]= 1M).

En agua pura ([H⁺]= 1M) los agentes oxidantes tendrán que tener potencial mayor que 1,229v.

Tipos de agua incorporadas a compuestos inorgánicos:

▶ Agua de composición: Aunque el término no es quizás el adecuado, es la que forma parte de los hidróxidos y sales básicas. Ejemplos: Ca(HO)₂; BiNO₃OH; HONO₂.

Puede separarse por calentamiento.

$$2Fe(OH)_3 \stackrel{\emptyset}{\rightarrow} Fe_2O_3 + 3H_2O$$

Agua de coordinación: Es la que se encuentra asociada en proporción estequiometria con los cationes. Es discutible si la unión es de tipo coordinativa, como los complejos de coordinación.

Agua ligada al anión: Se observa en algunos cristales, sobre todo en sulfuros hidratados. Se producirá unión puente de hidrógeno entre el H₂O y el anión.

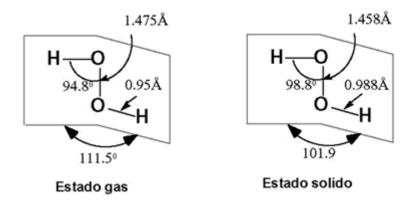
Ejemplo: CuSO₄. 5H₂O

Al calentar la sal se puede establecer que la eliminación de las moléculas de agua se produce en el siguiente orden: Primero las moléculas coordinadas al catión y posteriormente a mayor temperatura la molécula ligada al anión.

Agua reticular: se encuentra en proporciones estequiométricas y ocupa posiciones definidas en la red cristalina pero no está asociada con ningún catión ni anión.

Esto se presenta en cristales donde el catión y el anión no presentan tendencia a atraer moléculas de agua. Ejemplo: BaCl₂.2H₂O; CoBr₃.3H₂O.

PEROXIDO DE HIDROGENO: H₂O₂


El peróxido de hidrógeno es un líquido incoloro (PEb: 152,1°C; PF: -0,41°C). Se parece al agua en muchas de sus propiedades físicas e incluso está más fuertemente asociado mediante enlace de hidrógeno, con una densidad a O°C de 1,4694. Posee una alta constante dieléctrica (93,7) que aumenta al disminuir su concentración en solución acuosa hasta un máximo de 120 para 65% de riqueza, constituye por tanto un excelente solvente electrolítico pero su estabilidad está limitada por su fuerte naturaleza oxidante y su fácil

descomposición en presencia de trozos de núcleos iones de metales pesados de acuerdo con la ecuación:

$$2H_2O_2 \longrightarrow 2H_2$$
 $\Delta H= -99kj/ml$ $1cal= 4,184 \text{ Julios (j)}$ $\Delta H= -23.6 \text{ Kcal/ml}$

La molécula H₂O₂ posee una estructura pesada tipo cadena.

El enlace O - O coincide en su longitud con un enlace simple.

Obtención:

Existen dos métodos para la producción de peróxido de hidrógeno en gran escala. Una es la autooxidación de un antraquinol, como el 2 - etilantraquinona

La antraquinona se reduce con gas H₂ obtenido del cracking del butano y un catalizador de Pd. El H₂O₂ se extrae de la solución orgánica empleando columnas de contracorriente,

obteniéndose solución acuosa al 20% en peso de H₂O₂. Este proceso consume solo O₂, H₂ y H₂O como materias primas.

El método más caro y más antiguo es el de la oxidación electrolítica del ácido sulfúrico o de soluciones de ácido sulfúrico - sulfato de amonio para formar ácido peroxodisulfúrico que luego se hidroliza hasta que se obtiene H_2O_2 .

$$2HSO_4^- o HO_3S - O - O - SO_3H + 2e^ H_2S_2O_3 + H_2O o H_2SO_5 + H_2SO_4$$
 (rápida)
 $H_2SO_5 + H_2O o H_2SO_4 + H_2O_2$ (lenta)
 $H_2SO_5 = \text{Acido Peroxomonosulf\'urico}$

Por destilación fraccionada puede obtenerse a continuación H₂O₂ del 90 a 98%

Propiedades químicas.

Su disociación en soluciones diluidas es más intensa que la del agua:

$$H_2O_2 \rightarrow HO_2^- + H^+ K = 1, 5. 10^{-12}$$

Por tanto en soluciones ácidas predomina H_2O_2 y en alcalinas HO_2 -(dioxihidroxílo). Puede actuar tanto como oxidante o reductor, según las ecuaciones siguientes:

1.
$$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$$
 $E^0 = 1,77v$
2. $H_2O_2 \rightarrow 2H^+ + 2e^ E^0 = -0,68v$
3. $HO_2^- + H_2O + 2e^- \rightarrow 3HO^ E^0 = 0,87v$

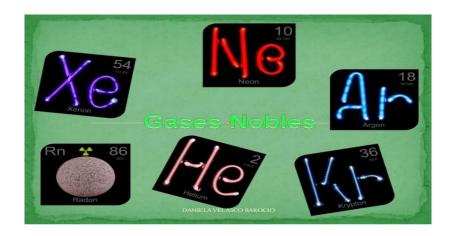
Las oxidaciones en medio ácido son más lentas que en medio alcalino, a pesar de que el potencial es mayor en medio ácido. Las reacciones 1) y 3) indican su capacidad como oxidantes y la 2) su acción como agente reductor. Sólo frente a oxidantes muy fuertes como el H_4O_4 actúa como reductor. En la mayoría de los casos actúa como oxidante.

Una medida de la concentración del agua oxigenada es expresar la misma en volúmenes: "es el volumen en litros, CNPT, de O_2 que se libera a partir de un litro de H_2O_2 , según la ecuación que sigue:

$$H_2O_2 \rightarrow H_2O + 1/2O_2$$

Otros peróxidos

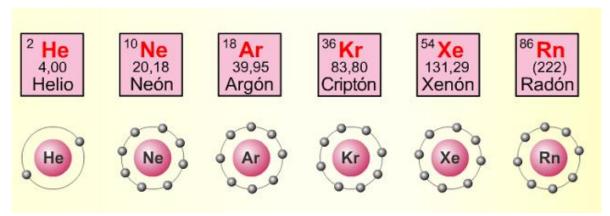
Los peróxidos iónicos donde se puede considerar la presencia de O²⁻ se forman con los metales alcalinos y con Ca, Sr, y Ba. El peróxido de sodio (Na₂O₂) se forma por oxidación directa del sodio con oxígeno en dos etapas. El peróxido de Bario se forma por acción del aire en O₂ sobre BaO. Esta reacción es lenta a temperaturas menores de 500°C y como el BaO₂ se descompone por encima de 600°C, el intervalo adecuado es entre 500 y 600°C. Este peróxido se ha utilizado para preparar soluciones diluidas de H₂O₂, haciéndolo reaccionar con H₂SO₄ diluido.


Todos los peróxidos iónicos reaccionan con el agua o ácidos diluidos para dar H_2O_2 . También se comportan como agentes oxidantes poderosos. Así, los productos orgánicos son convertidos en carbonatos, aún a temperaturas moderadas.

Frente a algunos oxidantes fuertes, como H₄O₄-, pueden actuar como reductor.

Superóxidos

Algunos pocos metales (K, Rb, Ca) pueden reaccionar con el oxígeno para formar sólidos cristalinos de color naranja de fórmula MO₂. Presentan paramagnetismo debido a que cada dos átomos de oxígeno hay un electrón desapareado lo que supone la existencia de iones O₂⁻. Las fórmulas reactivas serían KO₂; RbO2; CsO2. Son agentes oxidantes poderosos. Con el agua reaccionan vigorosamente.

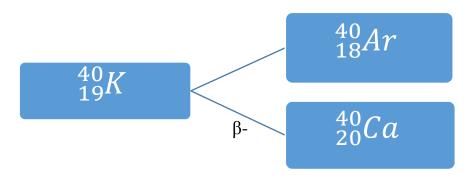

$$2O_{2}^{-} + H_{2}O \rightarrow O_{2} + HO_{2}^{-} + HO^{-}$$

 $2HO_{2}^{-} \rightarrow 2HO^{-} + O_{2}$

Elemento	Configuración de capa exterior	Potencial de ionización ev.	Energía de promoción ns ² np ⁶ , ns ² np ⁵ (n+1)s ¹ ev	Volumen % en la atmósfera
He	$1s^2$	24,58		5,24 x 10 ⁻⁴
Ne	$2s^22p^6$	21,56	16,6	1,82 x 10 ⁻³
Ar	$3s^23p^6$	15,76	11,5	0,934
Kr	$4s^24p^6$	14,00	9,9	1,14 x 10 ⁻³
Xe	$5s^25p^6$	12,13	8,3	8,7 x 10 ⁻⁶
Rn	$6s^26p^6$	10,75	6,8	

Excepto el He(1s²), todos los gases nobles poseen la última capa con ocho electrones (ns²np⁶). Esta estructura electrónica es de máxima estabilidad, lo que explica la casi nula reactividad de todos ellos. Los potenciales de ionización son muy elevados, decreciendo del

He al Rn lo que indica que la actividad química aumenta con el número atómico.


Esto está demostrado ya que recién el Kr comienza a tener actividad química, con la limitación inherente a su radioactividad.

Son todos gases a temperaturas ambiente con puntos de ebullición muy bajos que aumentan del He al Rn, de igual manera que lo hacen los calores de vaporización.

Estado natural

Obtención - aplicaciones:

Se encuentran en la atmósfera en proporciones relativamente pequeñas (0,95%). De ellos Ar tiene el 0,93% y su gran abundancia frente a los otros se justifica por la existencia del isótopo ⁴⁰K en la naturaleza que da:

El Rn es el menos abundante: 5.10⁻¹²%. Son todos isótopos radioactivos.

El He también se encuentra en algunos hidrocarburos gaseosos en EEUU y ocluido en ciertos minerales radiactivos que emiten partículas alfa.

$$\alpha + 2e^- \rightarrow He$$

Los electrones necesarios provienen de la oxidación del metal.

$$M^0 \rightarrow M^{+2} + 2e^-$$

El He, Ne, Ar, Kr, Xe, pueden obtenerse en el comercio como productos de fraccionamientos del aire líquido.

Aplicaciones:

Helio:

- -Reemplaza al N₂, en los usos de busos ya que es menos soluble que nitrógeno en sangre.
- En el llenado de dirigibles reemplaza al hidrógeno ya que no es inflamable.
- Para el llenado de tubos Geiper. Fabricación de láseres.

Neón:

- Para rellenar tubos de descarga (color anaranjado).
- Para rellenar tubos mezclados con mercurio (color azul).

Argón:

- Para llenar lámparas eléctricas, válvulas de radio, Gelper, etc.
- Para producir atmósfera inerte.

Kriptón:

- Para rellenar lámparas de flash de fotografía.

Radón:

- Como fuente de partículas alfa en el tratamiento del cáncer.

Propiedades químicas

Química del Xenón:

Es muy reciente el estudio de reacciones y compuestos donde participan gases nobles.

Particularmente lo estudiado se circunscribe a la química del Xenón, y lo poco que se conoce sobre el Kriptón y el Radón indica un comportamiento similar.

La comparación del potencial de ionización de la molécula de O_2 y del Xe (12,1 e.v), prácticamente iguales, hizo pensar que podría reaccionar con los mismos elementos que el catión O_2^+ . Así se obtuvo un sólido rojo, cristalino del Xe con el Pt F_6 , que se puede escribir como $Xe^+(PtF_6)^-$ pero que hoy se sabe que es de naturaleza más compleja.

El Xe se combina directamente solo con el fluor, y utiliza estados de oxidación II, IV, VI, aunque indirectamente se une a otros elementos y puede llegar a utilizar hasta estado de oxidación VIII.

El difluoruro de xenón (XeF₂): se puede obtener por reacción directa del Xe y el F₂ calentándose en un tubo de níquel a 400°C.

El tetrafluoruro de xenón (XeF₄): es el más fácil de preparar de los tres. Se calienta durante varias horas una mezcla de Xe y el F_2 , en la proporción de 1:5 en un recipiente de níquel a 400°C y a presión de 6 atmósferas.

El hexafluoruro de xenón (XeF_6): es difícil de preparar. Requiere una relación F_2/Xe de alrededor de 20, presión de 50 atm. y 200 - 250°C para obtener una conversión de 95%.

Los tres fluoruros son sólidos cristalinos incoloros, estables, que se pueden conservar bien, secos y puros, en recipientes de níquel. El XeF₆ es muy reactivo incluso con el cuarzo:

$$2XeF_6 + SiO_2 \rightarrow 2XeOF_4 + SiF_4$$

XeOF₄: oxifluoruro de xenón.

También actúa como receptor de F-, al reaccionar con fluoruros alcalinos para dar heptaoctofluoruros:

$$XeF_6 + RbF \rightarrow RbXeF_7$$
 (Heptafluoroxenato de Rb) $2RbXeF_7 \rightarrow XeF_6 + Rb_2XeF_8$ (Octofluorxenato de Rb)

Los octofluorxenatos de Rb y Cs son los compuestos más estables de Xenón que se conocen.

Química en solución acuosa

Compuestos oxigenados:

El XeF₂, en solución acuosa alcalina se hidroliza rápidamente:

$$XeF_2 + 2HO^- \rightarrow Xe + \frac{1}{2}O_2 + 2F^- + H_2O$$

En medio ácido se disuelve dando soluciones de olor picante y oxidantes fuertes. Tanto el XeF₄ como el XeF₆ se hidrolizan totalmente en agua dando XeO₃ sin disociar:

$$3XeF_4 + 6H_2O \longrightarrow XeO_3 + 2Xe + \frac{3}{2}O_2 + 12HF$$

$$XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$$

Las soluciones acuosas de XeO₃ no conducen la corriente eléctrica (no se disocia). Si se evapora el solvente se puede obtener el XeO₃ sólido, que es explosivo poderoso. En soluciones alcalinas fuertes, la especie predominante es HXeO₄⁻.

$$HXeO_4^- \rightleftharpoons XeO_3 + HO^- K = 7.10^{-4}$$

La especie que se desproporciona lentamente para producir XeVIII y Xe.

$$2HXeO_4^- + 2HO^- \rightarrow XeO_6^{-4} + Xe^- + O_2 + 2H_2O$$

Las soluciones de perxenatos (XeO₆⁴⁻) son oxidantes fuertes.

Química de otros gases nobles:

Se conoce un fluoruro de Criptón (KrF₂). Es un sólido cristalino blanco, sublimable, por debajo de cero grado. Es un agente fluorurante muy activo.

Del radón se ha descripto un fluoruro del que no se conoce la composición debido a que la energía liberada por su descomposición radioactiva impide conocer una estabilidad y reactividad propias.

ELEMENTOS DE TRANSICIÓN - PRIMERA SERIE

TITANIO

El **titanio** recibió su nombre de los titanes, primeros hijos de la Tierra según la mitología. Después de haber sido identificado como elemento en 1791, se tardaron 119 años en aislarlo en forma de metal. La razón de esta dificultad es que el titanio se combina ávidamente con el nitrógeno, carbono, oxígeno y con casi todos los demás elementos.

-Estado natural:

El **titanio** es el cuarto de los elementos metálicos en orden de abundancia y tiene tal resistencia mecánica y ligereza que podría permitir economizar cantidades enormes de peso y combustible en los vehículos.

El mineral más importante del titanio es la **ilmenita** (**FeTiO**₃), un mineral negro brillante que es un componente del granito.

Otros minerales importantes que lo contienen son: perovskita (CaTiO₃)

Rutilo (TiO₂)

-Estado de oxidación:

El titanio tiene configuración de valencia: $4s^2 3d^2$ y sus estados de oxidación posibles: -1, 0, II, III, IV, siendo los más estables III y IV.

Se cumple que el mayor estado es igual al número de electrones de valencia.

"el más estable es el IV".

- Electropositividad:

El titanio es bastante electropositivo, siendo atacado por los ácidos, con los que produce reacciones como la siguiente:

$$2Ti^{0} + 3H_{2}S0_{4} \longrightarrow 2Ti^{3+} + 3SO_{4}^{-2} + 3H_{2}$$

La presencia del H₂ reductor evita que pase a Ti (IV).

-Metalurgia:

Los métodos metalúrgicos habituales no dan resultado cuando se aplican a titanio; si se intenta la reducción con **carbono** se forma un **carburo** estable e inerte; el intento de reducción del óxido mediante **metales activos** conduce a la formación de mezclas de óxidos y compuestos intermetálicos; la **calefacción del óxido con hidrógeno** conduce a la formación de un hidruro intersticial.

Método de Kroll: se basa en la transformación del titanio contenido en el mineral en **tetracloruro de titanio**, el que luego se lo puede reducir. Para ello se trata el mineral con **carbono** en una atmósfera de **cloro:**

$$TiO_2 + 2 Cl_2 + C \longrightarrow TiCl_4 + CO_2$$

posteriormente:

$$TiCl_4(g) + 2 Mg^0(s) \xrightarrow{en atm de Ar} Ti^0(s) + 2 MgCl_2(l)$$

- Características del metal:

Titanio es un metal duro, refractario (alto punto de fusión y de ebullición), buen conductor del calor y la electricidad. Resistente a la corrosión. Después del **platino** es el metal que posee máxima resistencia a la corrosión por el agua de mar. Tiene el 57% de la densidad del acero y mayor resistencia mecánica.

- Química del estado de oxidación más estable:

En solución acuosa o en presencia de oxígeno, todos los estados de oxidación terminan oxidándose a Ti (IV). **Es el estado más estable.**

Los cuatro primeros potenciales de ionización son muy altos por lo que **no se encuentra como Ti**⁴⁺, **sino en uniones covalentes.**

- Compuestos oxigenados:

El más importante es el TiO2 rutilo. Es bastante inerte y anfótero.

1) La reacción con ácido sulfúrico es lenta:

$$TiO_2 + H_2SO_4 \longrightarrow TiOSO_4 + H_2O$$

En solución existe el ión titanilo TiO²⁺ y no Ti⁴⁺

El ión **titanilo** se reconoce con H_2O_2 , da un compuesto de color naranja.

2) Con bases:

$$TiO_2 + 2 NaOH \longrightarrow Na_2TiO_3 + H_2O$$

Las sales de Ti (IV) en medio alcalino parecen precipitar TiO₂ hidratado.

No se conoce Ti (OH)₄, lo que demuestra el carácter no metálico de este estado.

Halogenuros:

De acuerdo al comportamiento **no metálico**, los halogenuros **son covalentes** y con posibilidad de **hidrólisis**. El más conocido es el **TiCl**₄; se comporta como ácido de Lewis formando (**TiCl**₆)²⁻ o aductos con bases de Lewis.

$$TiCl_4 + H_2O \longrightarrow TiOCl_2 + 2 HCl \text{ (hidrólisis parcial)}.$$

$$TiCl_4 + 2 H_2O \longrightarrow TiO_2. \text{ n } H_2O + 4 HCl \text{ (hidrólisis total)}$$

- Estado de oxidación III:

El estado de oxidación III **es más metálico** que el IV, según las propiedades generales. En efecto, **en medio alcalino se obtiene Ti (OH)**₃ que no es anfótero.

Se obtienen sales de Ti (III) atacando Ti⁰ con H₂SO₄ o reduciendo Ti (IV). Por ejemplo:

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

TiO²⁺ con Zn en ½ ácido:

$$TiO^{2+} + 2 H^{+} \longrightarrow Ti^{+3} + H_2O$$

Los compuestos de Ti (III) son reductores suaves y deben aislarse del aire que lo oxida con el tiempo.

El carácter metálico se observa en medio acuoso donde existe el complejo:

$$[Ti (H_2O)_6]^{3+}$$
 (violeta) y la sal $[Ti (H_2O)_6]Cl_3$.

En medio acuoso Ti (III) por el oxigeno del aire pasa a TI (IV).

Los otros estados son fuertes reductores y pasan a Ti (III) y Ti (IV).

Tanto Ti (III) como Ti (IV) tienen coordinación octaédrica.

-Aplicación:

La mayor parte del **titanio** producido hasta ahora se ha utilizado para la construcción de piezas de motores de propulsión a chorro y en construcción aeronáutica, por su elevada resistencia a la corrosión y su gran resistencia mecánica en relación con el peso, lo hacen recomendable para la construcción de trenes, automóviles, camiones y bicicletas. Se utilizan en las instalaciones químicas porque resiste a todos los ácidos inorgánicos, incluso al cloro seco.

El **rutilo** (**TiO**₂) se utiliza como pigmento blanco en pinturas.

VANADIO

El **vanadio** no significa mucho para la mayoría de la gente, sin embargo el acero el vanadio es la aleación del hierro más resistente entre las que se conocen y tiene una gran demanda en la fabricación de partes para automóviles y camiones.

- Estado natural:

Existe muy diseminado en unos 60 minerales, de los que se destacan:

Pb5(VO₄)₃Cl Vanaditina

K(UO₂)VO₄ 3/2 H₂O Carnotita

Estados de oxidación:

El **vanadio** tiene configuración de valencia $4s^2$ $3d^3$ y sus estados de oxidación posibles son: - I, 0, I, II, III, IV, V, siendo los más estables III, IV, V.

Se cumple que el mayor estado es igual a la suma de los electrones s y d.

"el más estable es el IV"

- Electropositividad:

Es menos electropositivo que **Ti**⁰. Se disuelve en **ácido sulfúrico**, **nitrito**, **agua regia**. En trozos grandes es resistente al ataque. Es resistente a la corrosión y tiene punto de fusión elevado. Forma carburos intersticiales y no estequiométricos que elevan el P.F.

- Metalurgia:

Tampoco se puede utilizar reducción directa con **carburos** por su alta reactividad a altas temperaturas para dar **carburos**, **nitruros**, **etc.**

- Química del estado más estable (IV): d1

En solución el **vanadio** (**IV**) es más estable ya que el **vanadio** (**V**) se reduce con reductores suaves.

Ejemplo:
$$VO_2^+ + SO_3^2 \rightarrow VO^{2+} + SO_4^{2-}$$

VO²⁺ oxovanadio o vanadilo (IV)

A su vez las soluciones de **vanadio** (III) se oxidan lentamente a **Vanadio** (IV) por el oxigeno del aire.

También, debido a los altos potenciales de ionización, no se encuentra como ión V^{4+} en solución.

- Compuestos oxigenados:

Existe VO_2 sólido de color azul oscuro. Es anfótero, igual que TiO_2 .

$$VO_2 + H_2 SO_4 \longrightarrow VOSO_4 + H_2O$$
 (ión vanadilo (IV))

$$VO_2 + 4 NaOH \rightarrow Na_4VO_4 + 2 H_2O$$
 (vanadato (IV))

Tampoco se conoce $V(OH)_4$ como en el caso del titanio (IV).

Halogenuros:

Forma halogenuros covalentes, que se hidrolizan. Es decir que el vanadio (IV) actúa como un no metal.

$$VCl_4 + H_2O$$
 \longrightarrow $VOCl_2 + 2 HCl$ Cloruro de vanadilo

- Química del estado (V): d⁰

Es estable en solución acuosa, pero menos que el IV.

Las especies existentes dependen del pH.

El comportamiento también es **no metálico**, como corresponde a un estado de oxidación mayor.

Existe V_2O_5 , poco soluble, con carácter anfótero.

$$V_2O_5 + H_2SO_4$$
 $(VO_2)_2SO_4 + H_2O$ (vanadilo V)
 $V_2O_5 + 6 \text{ NaHO}$ $2 \text{ Na}_3VO_4 + 3 \text{ H}_2O$ (vanadato V)

Las especies, en solución alcalina o ácida, no son tan sencillas, sino que existen diferentes equilibrios:

En medio alcalino:

$$2 \text{ VO}_3^- + 2 \text{ HO}^- \longrightarrow \text{ V}_2\text{O}_7^{4-} + \text{H}_2\text{O}$$

$$V_2O_7^{4-} + 2 HO^{-} \longrightarrow 2 VO_4^{3-} + H_2O$$

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

Todo ello a pH = 10

En cambio a **pH menor a 6,8** existen varias especies como $H_2V_{10}O_{28}^{4-}$ y $HV_{10}O_{28}^{5-}$, $V_{10}O_{28}^{6-}$ recién a **pH muy ácido:** VO_2^+ .

- Estado de oxidación (III): d²

Se oxida con el oxigeno del aire.

Existe el V_2O_3 que en medio alcalino da $V(OH)_3$, en ácidos da V^{3+} .

Esto demuestra que es más básico que **VO**₂ y **V**₂**O**₅. Esto justifica la variación del carácter metálico.

El catión existe en solución acuosa como $[V(H_2O)_6]^{3+}$ con índice 6.

- Aplicaciones:

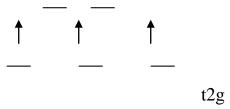
- Como metal, en aleaciones con **hierro**, llamada **ferrovanadio**, da ductilidad y resistencia al choque. También se fabrican **aceros al vanadio**.
- El V₂O₅ se utiliza como catalizador, sobre todo en la obtención de ácido sulfúrico.

CROMO

Estado natural

FeCr₂O₄ Cromita donde Cr(III) ocupa huecos octaédricos y Fe(II) tetraédricos

Propiedades generales del metal


Es un metal blanco, duro, brillante y frágil que funde a 1.890°C. Es extremadamente resistente a la corrosión (aceros inoxidables). Es electropositivo y se ataca por ácidos inorgánicos no oxidantes, como HCl y H₂SO₄.

Estados de oxidación

 $4s^1 3d^5$

Existen: -II, -I, 0, I, II, III, IV, V, VI. El VI es suma de electrones s + d

La estabilidad del estado VI es menor que V (VI) y Ti (IV), o sea es más oxidante. Los estados V y IV son también más inestables porque se reducen al estado III. La estabilidad que adquiere el estado III se puede explicar porque cada electrón ocupa un nivel t2g y esta configuración tiene una estabilidad adicional (como nivel semillero).

Los estados bajos son reductores enérgicos, ya que se oxidan a Cr³+ . La coordinación del estado III es 6 y en algunos casos 4 y otras màs raras 8 o 7.

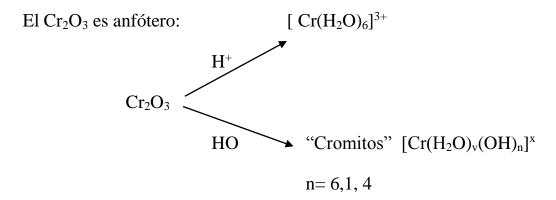
Metalurgia

Si no se lo requiere puro:

$$FeCr_2O_4 + 4C$$
 Θ $Fe^0 + Cr^0 + 4CO$ ferrocromo

Si se necesita puro:

$$Cr_2O_3 + 2 Al$$
 alumniotermia $Al_2O_3 + 2 Cr^0$


Química del estado (III) (d³)

Para sus soluciones acuosas el Cr (III) es el más estable y con mayor carácter metálico. Da una cantidad grande de complejos.

Óxido de cromo (III): sólido, verde, se obtiene:

$$(NH_4)_2Cr_2O_7$$
 $N_2 + Cr_2O_3 + 4 H_2O$

En medio alcalino las sales de Cr(III) precipitan Cr(OH)₃ lo que demuestra el carácter metálico.

Halogenuros: Existen CrF₃, CrCl₃, CrBr₃ y formas hidratadas.

En solución no hidrolizan (carácter metálico), y dan los halogenuros acuocomplejos

$$CrCl_3 + 6 H_2O \longrightarrow [Cr(H_2O)_6] Cl_3$$

tiene isomeria de hidratación.

Complejos de cromo (III): Existen muchos, tanto puros (hidroxoacuo) como mixtos (halógenoauo, aminoacuo)

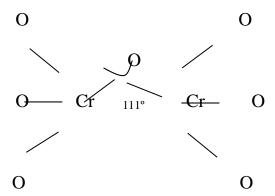
$$[CrX_6]^{3-}$$
 $X=F,Cl^-,Br^-,SCN^-,CN^-$
 $[Cr(H_2O)_6]^{3+}$ $[Cr(OH)_6]^{3-}$

En los complejos del cromo se han visto todos los tipos de isomerías existentes.

Química del estado (VI):

Presenta características **no metálicas**. No existe el Cr⁶⁺, sino que son enlaces covalentes. La estabilidad es menor que para el estado III, ya que todos los compuestos de Cr(VI) son oxidantes enérgicos.

Óxidos y Oxoaniones:


El óxido es CrO₃, que en solución es ácido. Algunos interpretan la formación de:

$$CrO_3 + H_2O \longrightarrow H_2CrO_4$$

Es muy soluble y por calentamiento da Cr₂O₃

La química de los oxoaniones no es tan extensa como para **vanadio.** Las dos especies realmente importantes son:

El cromato es tetraédrico, el dicromato son dos grupos piramidales Cr₂O₃ unidos por puente oxígeno

Por lo general CrO_4^{2-} da sales insolubles (menos com el grupo I) y $Cr_2O_7^{2-}$ sales solubles. Ambos son oxidantes:

$$Cr_2O_7^{2-} + 14 H^+ + 6 e^- - 2 Cr^{3+} + 7 H_2O$$

$$CrO_4^{2-} + 4 H_2O + 3 e$$
 $Cr(OH)_3 5 OH^{-}$

Sales de cromilo

Existen varias sales de cromilo

$$CrO_3 + 2 HCl_{(g)}$$
 anhidro $CrO_2Cl_2 + H_2O$

líquido rojo de bajo P.Eb.

$$K_2CrO_4 + 4 NaCl + 3 H_2SO_4(anhidro)$$
 $2CrO_2Cl_2 + K_2SO_4 + 2 Na_2SO_4 + 3 H_2O$

Aplicaciones:

- **Metal:** Acero inoxidables. Depósito eletrolítico sobre superfícies para evitar la corrosión (cromados). Aleaciones anticorrosivas.
- $(NH_4)Cr_2O_7 \longrightarrow Cr_2O_3 + N_2 + 4 H_2O$ obtención de **nitrógeno** en laboratorio
- Dicromato y cromato como agentes oxidantes
- K₂Cr₂O₇ + H₂SO₄ (mezcla sulfocrómica) desengrasante para limpiar material de vidrio

MANGANESO

Estado natural: Es relativamente abundante 0,085%. Se lo encuentra como MnO₂ (pirolusita), MnCO₃ (rodocrosita)

Propiedades generales: 4s²3d⁵

Existen todos los estados de oxidación posibles de acuerdo a su configuración:

I, II, IV, V, VI, VII. También se alcanza el máximo estado que coincide con la suma de **s**+ **d** de valencia.

El estado más estable en solución es el **II**+, ya que para manganeso sigue la tendencia de la disminución de estabilidad de estados superiores. Los estados VI, V, IV y III son intermedios de la reducción de **Mn(VII)** a **Mn(II)** y entre los intermedios el más estable es el **IV**.

Aquí se pueden sacar mejores conclusiones de la configuración. Los compuestos de Mn en estado de oxidación alto son fuertes oxidantes.

Metal: El metal es bastante electropositivo. Se disuelve en ácidos minerales no oxidantes. En sus propiedades físicas y químicas se asemeja al Fe. Con los no metales es reactivo a temperaturas elevadas. Ej.: MnCl₂, MnF₂, MnF₃, Mn₃N₂. Forma fácilmente aleaciones.

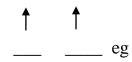
Metalurgia: Por aluminiotermia

$$3 \text{ MnO}_2 + 4 \text{ Al}^0 \longrightarrow 2 \text{ Al}_2\text{O}_3 + 3 \text{ Mn}^0$$

Química del estado II (más estable)

Se puede ver que es el más estable por los potenciales de reducción:

$$MnO_4$$
 Mn^{3+} 1,5 y Mn^{2+} -1,18v Mn^0


Por lo tanto en soluciones ácidas o neutras existe $[Mn(H_2O)_6]^{2+}$ difícilmente oxidable. Sin embargo en medio alcalino o reacciones sólidas se oxida a MnO_2

Ejemplo:

El Mn(OH)₂ es básico. Mn(II) forma un gran número de sales solubles, excepto: PO_4^{3-} , CO_3^{2-} , S^{2-} , Se^{2-} , Te^{2-}

Complejos de Mn (II). d⁵

Forma complejos menos estables que Fe²⁺ y Cu²⁺, debido a que no tiene energía de estabilización por campo cristalino

$$E=3(-2/5 \Delta_o) + 2(3/5 \Delta_o)=0$$

Los de spin bajos son escasos

Por ejemplo no existen los aminocomplejos en solución, solamente con NH₃ líquido puede obtenerse $[Mn(NH_3)_6]^{2+}$. Si bien existen los $[Mn(SCN)_6]^{4-}$, $[Mn(CN)_6]^{4-}$ y mixtos, son inestables los halocomplejos.

Los de índice de coordinación 4 no son estables en solución acuosa, sino en estado sólido. Son muy coloreados (amarillo-verdoso) a diferencias de los tenues rosados de los octaédricos.

Química del Mn(IV):

Es muy limitada. Son pocos los compuestos estables: MnO₂, MnCl₄, Mn(SO₄)₂

El MnO₂ se reduce con facilidad:

$$MnO_2 + 2 HCl \longrightarrow MnCl_2 + Cl_2 + 2 H_2O$$

Se comporta más como ácido, ya que a altas temperaturas reacciona con óxidos básicos (alcalinos y alcalino-térreos) para dar **manganitos**.

La reducción de Mn(VII) en medio alcalino produce una forma de MnO₂.4H₂O

Química del Mn(VI) y (VII):

En el **VI** solo existe como MnO_4^{2-} . el comportamiento es **no metálico**. Enlaces covalentes, tetraedro. Es intensamente **verde** y existen las sales de K_2MnO_4 y Na_2MnO_4 .

Si el medio no es fuertemente alcalino el ión MnO₄²⁻ se desproporciona (auto óxidoreducción)

$$3 \text{ MnO}_4^{2-} + 4 \text{ H}^+ \longrightarrow 2 \text{ MnO}_4^- + \text{ MnO}_2(s) + 2 \text{ H}_2\text{O}$$
verde acético violeta marrón

Otra manera de obtener MnO₄²⁻

$$MnO_2 + 2 K_2O + O_2 \longrightarrow 2 K_2MnO_4$$

En el VII, los MnO₄ son los más comunes

Se obtienen a partir de MnO₄²⁻ en medio sulfúrico. (ver desproporción)

Las soluciones de MnO₄-son muy inestables y se descomponen lentamente en medio ácido

$$4 \text{ MnO}_4^- + 4 \text{ H}^+ \underline{\quad luz \quad} 4 \text{ MnO}_2 + 2 \text{ H}_2\text{O} + 3 \text{ O}_2$$

Esta reacción es catalizada por la luz, de modo que MnO₄- se debe guardar en frascos olor caramelo.

La reducción depende del pH

$$MnO_4^- + 8 H^+ + 5e$$
 \longrightarrow $Mn^{2+} + 4 H_2O$ $E^0 = 1.51v$

$$MnO_4^- + 2 H_2O + 3e$$
 \longrightarrow $MnO_2 + 4 OH^ E^0 = 1.23v$

Mn₂O₇: muy inestable. Disolviendo KMnO₄ en H₂SO_{4©} se obtiene una solución verde de la que puede separarse el Mn₂O₇

Química del Mn(II)

El compuesto importante es Mn₂O₃, por oxidación de Mn o MnO a 470-600°C.

El Mn(III) puede estabilizarse en soluciones acuosas por complejación con C₂O₄²⁻, SO₄²⁻ EDTA⁴⁻

Aplicaciones

Metal: Aleaciones ferromanganeso (Fe-Mn-C), Aceros especiales

MnO₂: Fabricación de pilas secas, Catalizador

KMnO₄: Oxidante, Reactivo analítico

COBALTO

- Estado natural:

El cobalto no se encuentra libre, sino asociado con el níquel y con el arsénico. Los minerales más importantes son:

Esmaltita CoAs₂

Cobaltita CoAsS

Pero las fuentes técnicas más importantes de cobalto son los residuos llamados "speisses" que se obtienen en la fusión de los minerales arsenicales del níquel, cobre y plomo.

- Propiedades generales del metal:

El cobalto es un metal duro, de color blanco azulado (PI: 1493°, Peb: 3100°C). Es lentamente atacado por ácidos diluidos para dar Co(II). Esto demuestra que no es muy electropositivo (E° Cu²⁺/Cu°= -0,27v). Es relativamente poco reactivo, no se combina directamente ni con hidrógeno ni con el nitrógeno, pareciendo no existir ni nitruros ni hidruros. El metal se combina al calentarlo con el carbono, fósforo y azufre. Es también

atacado por el oxígeno atmosférico y por el vapor de agua, a temperaturas elevadas, dando **CoO**.

- Configuración electrónica y estados de oxidación:

Co:
$$4s^2 3d^7$$

En el cobalto sigue la tendencia de la inestabilidad de los estados superiores, tal que para cobalto son realmente importantes los estados II y III, siendo aquí más estables el II que al III.

El III solo se estabiliza por complejación.

- Metalurgia

La separación del metal puro es algo complicado y en general implica todos los minerales para convertirlos en CoO, que después se reduce con carbono, aluminio o hidrógeno.

$$CoO + H_2$$
 $Co + H_2O$

$$Co_3O_4 + 4 H_2$$
 ______ 3 Co + 4 H₂O

- Química del cobalto (II) (3d⁷)

. Óxidos:

El CoO sustancia de color verde claro se puede obtener calentando el metal en presencia de oxígeno a 1100 °C o bien al calentar el carbonato, el nitrato, etc.

Tiene una estructura tipo NaCl y al calentarlo entre 400 a 500 °C se obtiene el óxido Co₃O₄. Se conocen otros óxidos, Co₂O₃ y CoO₂ y un oxocobaltato (II) Na₁₀ [Co₄O₉] de color rojo.

Halogenuros

Los halogenuros anhidros se pueden preparar por deshidratación de los halógenos hidratados, y para CoF₂ por acción del HF sobre el CoCl₂. El cloruro es de color azul brillante.

. Sulfuro:

Se forma CoS, sólido de color negro, por acción del H₂S sobre soluciones de Co²⁺.

. Sales:

Forma la mayoría de las sales por cristalización en solución acuosa. Basta hacer reaccionar $Co(OH)_2$ con el ácido correspondiente. Son sales rosadas en la que existe el ión $[Co(H_2O)_6]^{2+}$.

. Complejos:

El ión acuoso $[Co(H_2O)_6]^{2+}$ es el complejo más simple del cobalto (II).

En soluciones acuosas que no contengan agentes complejantes, es muy desfavorable la oxidación a Co^{III}.

$$[Co(H_2O)_6]^{2+}$$
 \longrightarrow $[Co(H_2O)_6]^{3+}$ + $1e^ E^{\circ}ox = -1.84v$.

La presencia de ligandos fuertes aumenta la posibilidad de oxidación.

$$[Co(NH_3O)_6]^{2+}$$
 $Co(NH_3O)_6]^{3+} + 1e^{-}$ $E^{\circ}ox = -0.1v$.

Por lo tanto la química del Co(III) es importante solo para complejos con ligantes fuertes que serán complejos de bajo spin.

El Co^{II} forma numerosos complejos de coordinación 6 y 4. Es el ion metálico de la 1^{ra} serie que más coordinación da fundamentalmente en distribución tetraédrica de sus ligantes.

En los octaédricos el Co tiene mucha afinidad por N como átomo dador. Así forma:

$$[Co(NH_3O)_6]^{2+}$$
, $[Co(en)_3]^{2+}$, $[Co(dipy)_3]^{2+}$, $[Co(EDTA)]^{2-}$.

Los tetraédricos los dan con ligandos aniónicos monodentados como Cl-, Br-, I-, SNC-, HO-

y también con una combinación de dos de estos ligandos y dos neutros formando complejos del tipo $[\text{CoL}_2\text{X}_2]$

El Co^(II) complejado es oxidado con facilidad por el oxigeno del aire. Esto se utiliza para obtener complejos de Co^(III).

$$[Co(H2O)6]2+ + 6 L \qquad [CoL6]2+ + 6 H2O$$

$$[CoL6]2+ + O2 \xrightarrow{\text{catalizador}} [CoL6]3+$$

NIQUEL

- Estado natural

El níquel se encuentra en la naturaleza principalmente en combinación con arsénico, antimonio y azufre por ejemplo:

millerita NiS

garmenita (silicato de Mg y Ni de composición variable)

También se encuentra níquel elemental aleado con hierro en numerosos meteoritos. Se cree además que las regiones centrales de la tierra contienen cantidades considerables.

- Propiedades generales del metal:

El níquel es un metal de color blanco plata, típicamente metal, muy buen conductor eléctrico y térmico. (PF 1452°) se puede además, laminar, forjar y pulir.

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

Es muy resistente al ataque por aire o agua a temperaturas comunes cuando se encuentra en forma compacta y se utiliza por tanto en galvanoplástia para dar una capa protectora.

El metal es moderadamente electropositivo:

$$Ni^{2+} + 2e^{-} \longrightarrow Ni \quad E^{\circ} = -0.24v.$$

y se disuelve fácilmente en ácidos minerales diluidos.

- Configuración electrónica y estados de oxidación:

Ni: $4s^23d^8$

Existen los estados II y III. El realmente importante es el estado II cumpliendose la disminución de la estabilidad de los estados superiores. Así el níquel IV existe solo en limitadas condiciones y el Ni(III) es menos estable que el Co(III).

- Metalurgia:

La metalurgia del níquel es complicada en sus detalles, muchos de los cuales varían notablemente con el material en particular que se procese.

Los procesos que llevaron a obtener Ni metálico se pueden resumir.

1) Tostación del mineral que contiene Ni₂S₃ se realiza al aire

$$Ni_2S_3 + 4O_2 \longrightarrow 2 N_2O + 3 SO_2$$

2) Reducción del NiO con carbono

$$NiO + C \longrightarrow Ni^{o} + CO$$

3) Purificación:

Se basa en l formación del complejo Ni(CO)₄: El Ni metálico en tanto reacciona fácilmente con CO a 50°C y da el tetracarbonil niquel, Ni(CO)₄ volátil, del cual se puede obtener el metal puro (99,9 o 99,99%) por una simple pirólisis del carbonilo a 200°C aproximadamente.

$$Ni + 4 CO \xrightarrow{50^{\circ}C} [Ni(CO)_4] \text{ volátil}$$

$$[Ni(CO)_4] \xrightarrow{200^{\circ}C} Ni + 4 CO$$

- Química del níquel II

. Óxidos NiO es un sólido de color verde con estructura tipo NaCl, que se puede obtener cuando se calienta el hidróxido, el carbonato, el oxalato o el nitrato de níquel (II).

Es insoluble en agua pero se disuelve fácilmente en ácidos demostrando entonces carácter básico.

. **Hidróxido:** Ni(OH)₂ se puede precipitar de soluciones acuosas de sales de Ni^(II) por adición de hidróxido de metales alcalinos. Es un gel de color verde.

Es soluble en ácidos y en NH_3 por formación de $[Ni(H_2O)_6]^{2+}$ y $[Ni(NH_3)_6]^{2+}$ No muestra anfoterismo.

. Halogenuros:

Se conocen los cuatro halogenuros como ahidros o hexahidratados NiX₂ NiX₂.6H₂O menos el fluoruro que hidratado existe como Ni.F₂.3H₂O.

.Cianuro:

Se forma el $Ni(CN)_2$ precipitado amarillo que se redisuelve en exceso de CN^- para dar $[Ni(CN)_4]^{2-}$.

. Otras sales:

Aquí incluimos las oxosales, que se forman en gran número y se presentan con mayor frecuencia como hidratadas, siendo por lo general solubles en agua, a excepción de NiCO₃.6H₂O y Ni₃(PO₄)₃.7H₂O.

. Complejos:

En solución acuosa existe como $[Ni(H_2O)_6]^{2+}$ de color verde, siendo muy lábil, característica general de los complejos de $Ni^{(II)}$.

En general forman numerosos complejos, la mayoría octaédricos. Pero también los hay tetraédricos, cuadrados plano e incluso pentacoordinados.

Es característica importante del Ni^(II) los complicados equilibrios que existen en los distintos tipos estructurales que generalmente depende de la temperatura y de las concentraciones.

Complejos octaédricos:

Muchos ligandos neutros, especialmente aminos o ligantes con N como átomo dador, desplazan al H_2O del $[Ni(H_2O)_6]^{2+}$ total o parcialmente y dan complejos como:

 $[Ni(NH_3)_4(H_2O)_2]^{2+}$; $[Ni(en)_3]^{2+}$, etc. que son usualmente de color azul o púrpura en contraste con el verde brillante del hexacromoníquel(II).

Todos poseen 2 e⁻ desapareados y por tanto son paramagnéticos.

. Complejos tetraédricos: (son paramagnéticos)

Responden en general a la siguiente estequiometría: $[NiX_4]^{2-}$, $[NiX_3L]$, $[NiX_2L_2]$, $[Ni(L-L)_2]^{2+}$ donde X: haluro y L ligante neutro (amonio, fosfino) y L-L un ligante bidentado.

Se distinguen de los octaédricos: 1) Son de color azul bastante intenso. Ya que necesitan menor energía en las transiciones.

2) Presentan mayor absorbancia.

. Complejos cuadrados planos:

Son la inmensa mayoría de los complejos tetraocoordinados del níquel(II). Son diamagnéticos. Con frecuencia son de color rojo, amarillo o café debido a una absorción de moderada intensidad.

Son ejemplos: $[Ni(CN)_4]^{2-}$ amarillo

 $[Ni(DMG)_2]$

bisdimetiiglioximato de níquel(II) rojo

O H O

$$N \longrightarrow N$$
 $N \longrightarrow N$
 $C \longrightarrow C$
 $N_1 \longrightarrow C$
 $N_2 \longrightarrow C$
 $N_3 \longrightarrow C$
 $N_4 \longrightarrow C$
 $N_4 \longrightarrow C$
 $N_5 \longrightarrow C$
 $N_7 \longrightarrow C$
 $N_8 \longrightarrow C$

COBRE

- Estado natural

El cobre está ampliamente distribuido en la naturaleza, como metal, en sulfuros, arséniuros, cloruros, carbonatos, etc.

Algunos de ellos son por ejemplo:

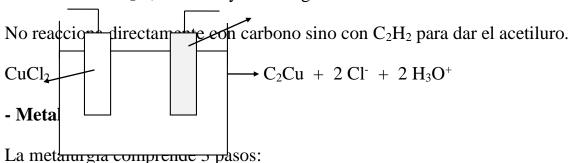
Azurita: 2CuCO₃.Cu(OH)₂ azul

Malaquita: $CuCO_3.Cu(OH)_2$ verde

- Propiedades generales del metal:

Es de color rojizo, blando, dúctil, altamente conductor de la corriente y el calor.

Dado su potencial E°oxid= -0,34v. No es atacado por ácidos minerales. Si por el HNO₃, también por el KCN, carbonato de NH₄ y el NH₃ en presencia de oxígeno.

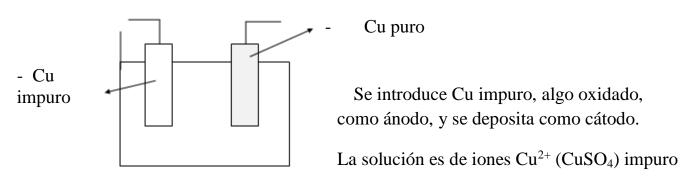

$$(Cu^{\circ} + H_2O + 4CN^{-} \longrightarrow [Cu(CN)_4]^{2-} + \frac{1}{2}H_2 + OH^{-}).$$

222

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

$$Cu^{\circ} + 2 NH_3 \xrightarrow{-0,12v} [Cu(NH_3)_2]^{+} \xrightarrow{-0,01v} [Cu(NH_3)_4]^{2+}$$

También puede ser atacado por no metales como el oxígeno para dar CuO y a temperaturas más elevadas Cu₂O; el azufre y los halógenos.


1) Tostación del sulfuro (en presencia de SiO₂)

$$4 \text{ CuFeS}_2 + 3,5\text{O}_2 \xrightarrow{\varnothing} \text{Cu}_2\text{O} + \text{Cu}_2\text{S} + 4 \text{ FeS} + 3 \text{ SO}_2$$

2) Autorreducción

$$2 Cu_2O + Cu_2S$$
 6 $Cu^o + SO_2$

3) Refinación electrlitico.

Ánodo:
$$Cu^{\circ}$$
 $\longrightarrow Cu^{2+} + 2e^{-}$

- Configuración electrónica y estados de oxidación.

Cu: 4s¹3d¹⁰

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

Presenta los estados I y II siendo el más estable el II.

El (I) se caracteriza por ser el único (I) estable de la 1^{era} serie.

A pesar de tener un solo electrón **s** como los alcalinos, tiene muy poco en común con ellos pues parece que la capa **d** es menos eficaz que la de un gas noble para proteger al electrón **s** de la carga nuclear. Por tanto en el cobre ese electrón **s** está más fuertemente tomado que en los alcalinos.

- Química del cobre (I) 3d10

Los compuestos de Cu^(I) son diamagnéticos e incoloros excepto cuando el color sea el resultado de un anión.

La estabilidad del estado (I) depende del equilibrio:

$$Cu^{\circ} + Cu^{2+} \longleftrightarrow 2 Cu^{+} \quad E^{\circ} = -0.37v$$

$$K = \frac{[Cu^{2+}]}{[Cu^{+}]} = 10^{6}$$

O sea que por este equilibrio Cu(I) debiera existir en pequeñas concentraciones.

El desplazamiento del equilibrio depende de los ligantes que puedan estabilizar al Cu(I).

Así:

$$[Cu(NH_3)_4]^{2+} + Cu^{o}$$
 2 $[Cu(NH_3)_2]^{+}$ K=10²

son complejos lineales como los que Ag^(I) y An^(I).

. Otros compuestos.

Dos compuestos importantes de Cu(I) son el Cu_2O y el Cu_2S que térmicamente son más estables que los de Cu(II).

$$2 \text{ CuO} \longrightarrow \text{Cu}_2\text{O} + \frac{1}{2} \text{O}_2$$

cristales rojos

En cuanto a los halogenuros, no se conoce el fluoruro mientras el cloruro y el bromuro se pueden preparar hirviendo una solución ácida de una sal de Cu(II) con un exceso de Cu.

$$Cu^{2+} + 2 X^{-} + Cu^{o} \xrightarrow{\frac{1}{2} H^{+}} 2 CuX$$
 CuCl blanco

hirviendo CuBr amarillo pálido

La adición de I⁻ a una solución de Cu²⁺ forma un precipitado que rápida y cuantitativamente se descompone en CuI y I.

$$2 \ Cu^{2+} \ + \ 4 \ I^{-} \qquad \qquad 2 \ CuI_2 \qquad \qquad \qquad 2 \ CuI \ + \ I_2$$

Los halogenuros son muy insolubles en aguas.

- Química del cobre II.

Es el estado más estable de cobre y tiene comportamiento metálico. La mayoría de los compuestos de Cu(I) se oxidan con gran facilidad a Cu(II).

. Óxido - Hidróxido

El CuO se obtiene por descomposición térmica del nitrato, carbonato o de otras oxosales, CuNO₃ \longrightarrow CuO + NO₂

Es reducido a Cuº con H₂ o CO a 250°C.

$$CuO + H_2 \xrightarrow{250^{\circ}C} Cu + H_2O$$

$$CuO + CO \longrightarrow Cu + CO_2$$

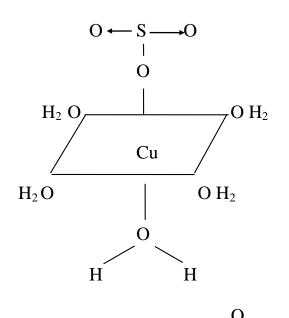
El hidróxido $Cu(OH)_2$ tiene cierto carácter anfótero, ya que se disuelve con ácidos y con cierta dificultad con hidróxidos alcalinos concentrados para dar hidroxocomplejos de color azul oscuro probablemente del tipo $[Cu_n(OH)_{n+2}]^{2-}$.

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

Este hidróxido de Cu(II) en soluciones amoniacales da el complejo tetramincobre(II) de color azul intenso. $[Cu(NH_3)_4]^{2+}$

. Halogenuros:

Son el CuF₂ incoloro


CuCl₂ amarillo

CuBr₂ casi negro

En exceso de X⁻ forman complejos.

. Oxosales:

Existen sales solubles. La más conocida s el CuSO₄.5 H₂O de color azul que contiene cuatro moléculas de agua en el plano, con átomos de O de los grupos SO₄ ocupando las posiciones axiales y la quinta molécula de agua cuando por medio de enlace de H.

Se puede deshidratar hasta llegar a una sustancia anhidra de color virtualmete blanco.

Complejos:

La mayoría de las sales de Cu(II) son solubles en agua dando el ión $[Cu(H_2O)_6]^{2+}$, pero en este ion complejo 2 moléculas de agua se encuentran más lejos el átomo metálico que las otras cuatro.

La adición de ligantes a dichas soluciones lleva a la formación de complejos por desplazamiento sucesivo de las moléculas de agua. Por ejemplo, con NH_3 se forman de manera normal las especies $[Cu(NH_3)(H_2O_5]^{2+}......$ $[Cu(NH_3)_4(H_2O)_2]^{2+}$, pero la adición de la quinta y sexta molécula de NH_3 resulta difícil. Tal es así que la sexta molécula de NH_3 solo es posible añadirla en NH_3 líquido.

Se conocen muchos complejos de aminas de Cu(II) y todos son de color azul mucho más intenso que el del ion acuoso.

HIERRO

Después del Al el Fe es el metal más abundante y el cuarto elemento en abundancia en la corteza terrestre se considera que el núcleo de la tierra es Fe – Ni y dada su presencia en los meteoritos es abundante en el sistema solar.

- Estado natural:

Fe₂O₃ hematita Fe₃O₄ magnetita FeO(OH) limonita FeCO₃ siderita

- Propiedades generales del metal:

El hierro puro es blanco, brillante, funde a 1528 °C. No es resistente a la corrosión. Con el aire húmedo se oxida formando el óxido hidratado que se desprende con facilidad. Se combina en caliente con diversos no metales: Cl₂, X₂, S, P, B y sobre todo **con C y Si** que confieren diferentes propiedades a los aceros.

Es **bastante electropositivo** y se disuelve rápidamente con ácidos minerales a Fe (II). El O₂ disuelto o atmosférico lo oxida a Fe (III).

- Configuración y estado de oxidación: 4s² 3d⁶

Continúa la tendencia a la inestabilidad del estado superior. Fe no da estado VIII (suma de s + d) y solo da VI pero muy oxidante. Se le conocen los estados: -II, 0, I, II, III, IV, V, VI. Los importantes son II y III. La facilidad de oxidación del II nos da como más estable el III, esto puede atribuirse a la configuración d^5 (muy estable) que presenta Fe (III).

- Metalurgia (Siderurgia):

Se efectúa en altos hornos:

Hay 3 tipos de temperaturas diferentes y las reacciones son:

$$3 \operatorname{Fe_2O_3} + \operatorname{C} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO}$$

$$3 \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO_2}$$

$$500 - 600 \, ^{\circ}\operatorname{C}$$

$$\operatorname{Fe_3O_4} + \operatorname{C} \longrightarrow 3 \operatorname{FeO} + \operatorname{CO}$$

$$\operatorname{Fe_3O_4} + \operatorname{CO} \longrightarrow 3 \operatorname{FeO} + \operatorname{CO_2}$$

$$800 - 900 \, ^{\circ}\operatorname{C}$$

$$\operatorname{FeO} + \operatorname{C} \longrightarrow \operatorname{CO} + \operatorname{Fe^0}$$

$$\operatorname{FeO} + \operatorname{CO} \longrightarrow \operatorname{CO_2} + \operatorname{Fe^0}$$

El efecto del aire caliente es: 1) Crear el gradiente de temperatura $\frac{1}{2}$ que $2C + O_2$ 2CO es exotérmica y libera mucho calor.

2) Arrastrar el CO y CO₂ formado, desplazando los equilibrios hacia los productos.

El hierro así obtenido se denomina ARRABIO y debe purificarse. La purificación consiste en oxidar las impurezas, hay dos métodos:

1) Bessemer:

$$P_{4} + 5 O_{2} \longrightarrow P_{4}O_{10}$$

$$As_{4} + 5 O_{2} \longrightarrow As_{4}O_{10}$$

$$S + O_{2} \longrightarrow SO_{2}$$

$$2C + O_{2} \longrightarrow 2 CO$$

Se controla por el color de la llama.

2) <u>Siemmens – Martin:</u>

Se agrega además chatarra y Fe₂O₃ y se calienta con corriente de aire. Las reacciones son:

$$3 P_4 + 10 Fe_2O_3$$
 \longrightarrow $20 Fe^0 + 3 P_4O_{10}$
 $3 S + 2 Fe_2O_3$ \longrightarrow $4 Fe^0 + 3 SiO_2$
 $3 Si + 2 Fe_2O_3$ \longrightarrow $4 Fe^0 + 3 SiO_2$

El SiO₂ reacciona con el CaO o MgO de las paredes del horno para dar: CaSiO₃ o MgSiO₃.

Aceros:

Se denomina aceros a las aleaciones del Fe con distintos metales. También contienen C en proporción de 0,05 al 21 %, hay muchos tipos, entre otros:

Acero inoxidables: Fe – Cr.

Resistentes a la corrosión: Fe – Cr (18%)- Nb – Ta (1%).

Abrasivos, duros: Mn (14%) C (1 − 1,5%)

Otros aceros duros: Fe – W.

- Química del hierro (II): 3 d⁶

1) Halogenuros: Existen los cuatro en forma anhidra o hidratada.

FeF₂.8H₂O incoloro

FeCl₂.6H₂0 verde pálido

FeBr₂.6H₂O verde pálido

FeI₂. 4H₂O verde pálido

2) **Otras sales:** Forma sales estables con todos los aniones estables. Solubles con excepción de carbonatos y sulfuros. Tienden a oxidarse. La existencia de Fe(OH)₂ es prueba del carácter metálico.

Una sal muy importante es la sal MOHR (NH₄)2 SO₄. Fe (SO₄). 6H₂O que es bastante estable a la oxidación y pérdida de agua. Se usa para preparar soluciones valoradas de Fe (II).

3) Química en solución:

En solución existe como $[Fe(H_2O)_6]^{2+}$ de color verde (azulado) pálido. Se oxida con facilidad con oxígeno del aire tanto en medio ácido como en medio alcalino.

2
$$Fe^{2+} + \frac{1}{2}O_2 + 2 H^+$$
 \longrightarrow 2 $Fe^{3+} + H_2O$ $E^0 = + 0.46v$

4) Complejos:

Forma numerosos complejos, la mayoría octaédricos. Pueden oxidarse a férrico y sus potenciales nos indican como se puede estabilizar un estado por complejación de acuerdo al ligando utilizado. Así:

$$[Fe (CN)_6]^{3-} + 1 e^{-}$$
 $[Fe (CN)_6]^{4-}$ $E^0 = +0.36 \text{ v.}$

$$[Fe (H_2O)_6]^{3+} + 1 e^{-}$$
 $Fe (H_2O)_6]^{2+}$ $Fe (H_2O)_6$

[Fe (fen)₃]³⁺ + 1 e⁻
$$\longrightarrow$$
 [Fe (fen)₃]²⁺ \to E⁰ = + 1.12 v

Vemos como el Fe (II) se estabiliza al pasar de CN, H_2O a fen. Los aminocomplejos no existen en solución si en fase gaseosa dada la Fe – O fuerte. Da quelatos con fen, en, py, $C_2O_4^{2-}$, etc.

Los complejos tetraédricos son pocos, más coloreados y presentan también una banda de absorción en el visible.

- Química del hierro (III): 3d⁵
- 1) **Halogenuros:** Son estables los siguientes: FeF₃, FeCl₃, FeBr₃ pero no lo es el FeI₃ ya que:
- 3 $I^- + Fe^{3+}$ 3/2 $I_2 + Fe^{2+}$. Se puede obtener por halogenación directa del metal.
- <u>2) Otras sales</u>: Forma sales solubles con aniones que no reduzcan el Fe (III) a Fe (II). Por eso no existe FeS₃. Son sales rosadas claras o blancas (como Mn (II) (d⁵)).
- 3) Química en solución:

El Fe (III) tiene tendencia a la complejación y a la hidrólisis. <u>Hidrólisis</u>: Demuestra el poder polarizante de Fe³⁺

[Fe
$$(H_2O)_6$$
]³⁺ [Fe $(H_2O)_5(OH)$]²⁺ + H⁺

[Fe (H₂O)₅(OH)]²⁺
$$\longrightarrow$$
 [Fe (H₂O)₄(OH)₂]⁺ + H⁺

[Fe
$$(H_2O)_4(OH)_2$$
]⁺ _____ [Fe $(H_2O)_3(OH)_3$]⁰ + H⁺

La existencia de Fe(OH)₃ parece ser más un Fe₂O₃. n H₂O (pardo). Solamente a pH: 0 se calcula tener al Fe³⁺ como hexacuocomplejos, ya a pH: 2.3 tenemos hidroxoacuocomplejos (amarillos) y a pH: 8 ya tenemos el supuesto Fe(OH)₃ (ppdo. Pardo) y Fe₂O₃. n H₂O.

4) Complejos del Fe (III):

La mayoría son octaédricos. Algunos solamente son tetraédricos como [FeCl₄]⁻. El Fe prefiere al O como átomo dador y no al N; por ello no existe los aminocomplejos en solución. Las aminos estables son quelatos fen, dipy, EDTA que forman complejos de bajo spin

Los $[Fe (CN)_6]^{3-}$ Y $[Fe (CN)_6]^{4-}$ son importantes ya que con Fe^{2+} y Fe^{3+} simultáneamente forman $Fe_3[Fe(CN)_6]_2$ y $Fe_4[Fe(CN)_6]_3$.

- Estado de oxidación VI:

Como FeO₄²⁻ (ferrato) es oxidante, más poderoso que MnO₄⁻ ión tetraédrico. En medio ácido se descompone:

2 FeO₄²+ 10 H⁺
$$\longrightarrow$$
 2 Fe³⁺ + 3/2 O₂ + 5 H₂O

- Óxidos del hierro:

Existen tres óxidos que no son estequiométricos cuyas composiciones ideales son FeO – Fe₂O₃ – Fe₃O₄.

Debido a las relaciones estructurales entre ellos se escriben juntos más que separados por distintos estados de oxidación.

El FeO (polvo negro) se obtiene por descomposición térmica de oxalato de hierro (II). Se desproporciona cuando se enfría lentamente en :

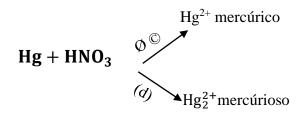
$$Fe + Fe_3O_4 \longrightarrow 4 FeO \longrightarrow Fe + Fe_3O_4$$

El Fe₂O₃ sólido de color café rojizo se encuentra en la hematina o se puede obtener bajo ciertas condiciones del FeO(OH).

El Fe₃O₄ óxido mixto, cristales negros, en la magnetita.

ELEMENTOS DE POSTRANSICIÓN Zn – Cd – Hg

	Zn	Cd	Hg
CONFIGURACIÓN	$(n-1) d^{10} nS^2$		
Estado de Oxidación	+2	+2	+2 (+1)
P.F (°C)	419	321	-38,87
P.E (°C)	907	767	357
E°red. (M ²⁺ /M ⁰) (V)	-0,76	-0,40	+0,85
Radio iónico	0,69	0,92	0,93

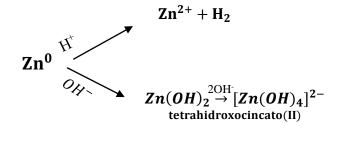

Analizando esta tabla podemos deducir:

Tiene configuración de valencia d¹⁰ tanto en su estado elemental y en el estado 2+, por lo tanto no son elementos de transición, se lo llama de "post- transición".

El estado más estable es el 2+ ya que quedan con configuración de valencia d¹0. La única desviación la constituye Hg, que da también Hg (I) como dímero.

Tienen bajo Punto de Fusión y Ebullición; Hg es líquido con elevada presión de vapor lo que hace que se vaporice con facilidad produciendo vapores tóxicos que absorben la luz ultravioleta.

Analizando los potenciales redox, vemos que Zn y Cd se oxidan con cierta facilidad, no así Hg°, se comporta como metal noble y sólo se ataca con HNO₃.


Analizando los radios iónicos, se observa que los similares son los de Cd y Hg. Sin embargo, a pesar de esta similitud, las propiedades semejantes se presentan entre Zn y Cd, constituyendo este comportamiento una anomalía a la habitual entre la segunda y la tercera serie. Veamos algunos ejemplos:

Zn y Cd se atacan con ácido minerales (electropositivos) mientras que Hg no (semejante a metal noble).

Zn y Cd son sólidos, mientras que Hg es líquido (uso en termómetros).

Éstos presentan solamente el estado 2+, Hg también da Hg₂²⁺.

Ambos dan complejos de estabilidad semejante. Son anfóteros, Hg no.

Zn y Cd forman aleaciones (bronces), Hg forma amalgamas, algunos son verdaderos compuestos estequiométricos Hg₂Na.

ESTADO NATURAL Y OBTECIÓN

Son poco abundantes y se los encuentra como sulfuros. Se los obtiene por tostación y reducción. Hg puede obtenerse también por destilación directa del HgS:

$$HgS \rightarrow Hg^0 + S^0 (700^{\circ}C)$$

PRINCIPALES COMPUESTOS DE Zn y Cd

Óxido e hidróxidos:

Los óxidos son de color blanco y cambia el color con la temperatura, presentan entorno tetraédrico y el ZnO es un compuesto no estequiométrico ($Zn_{1+x}O$). Se obtienen por descomposición de CO_3^{2-} u oxidación directa del metal. Los hidróxidos son precipitados que se disuelven por complejación con OH^- , NH_3 .

UNIVERSIDAD NACIONAL DE CUYO Facultad de Ciencias Aplicadas a la Industria Química Inorgánica

Sulfuros:

Son sólidos cristalinos con redes tipo blenda o wurzita solubles en ácidos a excepción del Hg (II) que es muy insoluble.

Halogenuros:

Los Cl⁻, Br⁻, I⁻, tienen uniones con alta contribución covalente y forman estructuras en capas, mientras que los F⁻ presentan un mayor carácter iónico.

Oxisales:

Son compuestos solubles y existen la mayoría de ellas.

PRINCIPALES COMPUESTOS DE Hg (II):

Óxidos:

Tienen una estructura en cadena, presentándose rojo o amarillo de acuerdo al tamaño de partículas. Se descompone fácilmente por el calor (diferencia con Zn y Cd).

$$HgO \rightleftharpoons Hg^0 + 1/2O_2$$

Sulfuro:

Compuesto de color negro muy insoluble: Kps= 10⁻⁵⁴

Haluros y Oxisales:

Son compuestos solubles en medio ácido, ya que en medio neutro o alcalino hidrolizan formando HgO.

QUÍMICA DEL Hg (I):

El Hg (I) dímero:

Este ion tiene estructura dímera (Hg-Hg)²⁺ donde la unión sigma es efectuada por los electrones 6S. Esta forma dímera se justifica por:

- **1-Medidas de susceptibilidad magnética:** indican que los compuestos del Hg (I) son diamagnéticos, confirmando la dimerización. Si estuviera como Hg⁺ sería paramagnético.
- **2-Conductividad eléctrica:** la conductividad eléctrica es comparable a la de iones dipositivos; lo que confirma la forma Hg_2^{2+} .
- 3-Medidas de Rx: en compuestos sólidos se observa el dímero en sitios de la red.
- 4-Medidas de potencial de una pila de concentración:

Hg+/Hg²⁺ La concentración de la solución mercúrica y mercuriosa es conocida.

Si la pila trabajase según:

$$Hg^+ \rightleftarrows Hg^{2+} + 1e^-$$

Principales compuestos. Justificaciones de su escasez.

Son pocos los compuestos de Hg (I), esto se debe:

1-A la facilidad para desproporcionarse:

$$Hg_2^{2+} \rightleftharpoons Hg^0 + Hg^{2+}AE^0 = -0, 13 \text{ V}$$

Esta desproporción se logra por reacciones de precipitación o complejación que disminuyen la concentración de Hg²⁺ en el equilibrio, favoreciendo este proceso:

$$AE = AE^{0} - \frac{RT}{nF} ln \frac{[Hg^{2+}]}{[Hg_{2}^{2+}]}$$

$$AE = -0, 13 - 0, 03 ln \frac{[Hg^{2+}]}{[Hg_2^{2+}]}$$

Si disminuye [Hg²⁺] por precipitación o complejación, el cociente disminuye, el ln se hace negativo y en definitiva el AE positivo. Y como ΔG =-nF ΔE , ΔG es negativo y se favorece el desplazamiento: (desproporción)

$$\begin{array}{c} & \left[\begin{array}{c} 2 \; OH^- \longrightarrow Hg^0 + HgO \downarrow + H_2 \textit{O} \\ \\ 2 \; CN^- \longrightarrow Hg^0 + Hg(CN)_2 \stackrel{2CN^-}{ \longrightarrow } [Hg \; (CN)_4]^{2-} \\ \\ 2 \; I^- \longrightarrow Hg_2 I_2 \downarrow \stackrel{2I^-}{ \longrightarrow } [HgI_4]^{2-} + Hg^0 \\ \\ 4 \; NH_3 \longrightarrow Hg^0 + [Hg \; (NH_3)_4]^{2+} \end{array} \right. \end{array}$$

2-Potencial redox:

Tanto Hg (I) y Hg (II) pueden obtenerse a partir de Hg⁰:

$$2 \ Hg^0 \to Hg_2^{2^+} + 2e^- \qquad E^0 ox = -0,79 \ V$$

$$Hg^0 \to Hg^{2^+} + 2e^- \qquad E^0 ox = -0,85 \ V$$

Luego para obtener Hg(I) debemos utilizar un oxidante cuyo E⁰red está comprendido entre 0,79 v y -0,85 v (intervalo pequeño). Si es menor que 0,79 la oxidación no es espontánea, y si es mayor que 0,85 se obtiene Hg(II).

Como consecuencia de estas dos fundamentaciones existen pocos compuestos mercuriosos:

$$Hg_2X_2\ muy\ insolubles\ ej.\colon Hg_2Cl_2\ calomel$$

$$SO_4^{2-}$$
, NO_3^- , ClO_4^- , ClO_3^- solubles

Compuestos de coordinación

Fundamentalmente son complejos tetraédricos, Cd también tiene tendencia a dar coordinación octaédrica y Hg(II) lineales.

Dado que son iones d¹⁰, son incoloros y diamagnéticos.

	Zn	Cd	Hg
Típico: X ⁻ , CN ⁻ , SCN ⁻ , NH ₃ , PR ₃	H.N.	H ₁ N NH,	H,N NH,

Menos común	H.N. NH	Pocos
Solo Hg(II) NH ₃ , SCN ⁻ , S ₂ O ₃ ²⁻		H ₃ N NH,

Dan compuestos organometálicos del tipo ZnXR, CdR₂, HgXR, HgR₂.

Resultan interesantes los complejos de forma Hg(II) con NH₃, ya que su estructura depende de las condiciones utilizadas:

Usando Cl⁻

$$HgCl_2 + 2NH_3 \rightarrow [Hg(NH_3)_2]Cl_2$$
 precipitado

Usando ClO₄

$$Hg(\text{ClO}_4)_2 + 4\text{NH}_3 \rightarrow [Hg(\text{NH}_3)_4]^{2+} + 2\text{ClO}_4^- soluble$$

Usando [HgI₄]²⁻ en medio alcalino (reactivo de Nessler)

$$2[HgI_4]^{2-} + NH_3 + 30H^- \rightarrow [Hg_2NI.H_2O] + 2H_2O + 7I^-$$
precipitado rojo ladrillo

Este reactivo se utiliza para el reconocimiento de NH₃por formación de coloro característico. Ya que NH₃ se desprende en procesos de descomposición biológica es útil para evidenciar la existencia de estos procesos.

Los compuestos de Cu(II), Zn(II) y Hg(II) son fungicidas y plaguicidas.