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Abstract: A closed form solution for elastic global buckling of twin girder systems interconnected with cross frames is derived. Current
design specifications for such systems only consider individual girder buckling between cross frames. The solution, which is suitable for
design specifications, was developed for a uniform moment loading condition. Finite-element analyses �FEAs� were used to verify the
closed form solution and extend it to more practical loading conditions. FEA showed that the load height condition had only a minor effect
for twin girders compared to the published effects on single girders. Both singly and doubly symmetric sections were studied and showed
that the girder spacing and the in-plane moment of inertia of the girders are the principal variables controlling global buckling of twin
girders. The number and size of the intermediate cross frames had little effect. A method for improving the global buckling capacity
through the use of a partial top flange lateral bracing system is presented along with a design example.
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Introduction

Lateral-torsional buckling �LTB� of a girder is a failure mode that
involves lateral movement and twist of the girder cross section.
The classic solution for LTB of a simply supported girder �Ti-
moshenko and Gere 1961� bent about the strong axis by a uniform
moment, Mo, is

Mo =
�

Lb
�EIyGJ +

�2E2IyCw

Lb
2 �1�

where, Lb�distance between points along the length where twist
is prevented; E�modulus of elasticity; G�shear modulus �usu-
ally taken as E /2.6 for metals�; Iy�weak axis �lateral� moment of
inertia; J�torsional constant; and Cw�warping constant. For
I-shaped girders J=��wt3 /3�, where w and t are the respective
width and thickness of each of the plate elements that make up
the girder cross section. For a doubly symmetric I-shaped section
Cw= Iy�ho /2�2, where ho is the distance between flange centroids.
It should be noted that Eq. �1� was derived using only the no twist
condition at each end of the unbraced length. Pure lateral dis-
placement of the cross section at the brace points does not affect
the critical buckling moment.

1Professor Emeritus in Civil Engineering, Univ. of Texas at Austin,
10100 Burnet Rd., Bldg. 177, Austin, TX 78758.

2Assistant Professor, Univ. of Texas at Austin, 10100 Burnet Rd.,
Bldg. 177, Austin, TX 78758 �corresponding author�. E-mail: thelwig@
mail.utexas.edu

3Research Assistant Professor, Dept. of Civil Engineering, John
Hopkins Univ., Latrobe Hall 210, Baltimore, MD 21218.

4Senior Specialist, Technip USA, 11700 Old Katy Rd., Houston, TX
77079.

Note. Associate Editor: Benjamin W. Schafer. Discussion open until
February 1, 2009. Separate discussions must be submitted for individual
papers. The manuscript for this paper was submitted for review and pos-
sible publication on July 26, 2007; approved on March 3, 2008. This
paper is part of the Journal of Structural Engineering, Vol. 134, No. 9,
September 1, 2008. ©ASCE, ISSN 0733-9445/2008/9-1487–1494/

$25.00.

JOURNAL OF

Downloaded 07 Jun 2012 to 128.230.234.162. Redistribution subject 
The design equations for LTB of doubly symmetric beams in
bridge and building design specifications are based on Eq. �1�. In
many applications, braces are used to reduce Lb thus increasing
Mo so that yielding, not buckling, controls the strength of the
girder. Although a lateral truss system can be used to stabilize the
compression flange of girders, diaphragms or cross frames inter-
connecting two girders spaced at a distance S as shown in Fig. 1
are frequently used. Properly designed cross frames as shown in
Fig. 1�c� act as torsional braces �restrain twist� that force com-
pression flange lateral movement of individual girders to occur
between braces as shown by the dashed line in Fig. 1�a�. Design
methods for torsional braces are given in AISC �2005� and Yura
�2001�.

Current design specifications only consider the lateral buckling
of individual girders. Although the common design practice is to
evaluate the lateral buckling capacity of the girder between
braces, a lower global system buckling mode over the span Lg

represented by the dotted lines in Fig. 1�b� may occur depending
on the geometry of the girders. The global buckling of the girder
system has traditionally not been a design consideration because
it appears that system bending is about the weaker x-x axis. When
bending occurs about the smaller of the two principal axes of a
doubly symmetric system �both cambered and uncambered�, lat-
eral buckling will not be a practical design consideration. A his-
tory and critique of this concept which initiated more than 100
years ago with Michell �1899�, is given by Yura and Widianto
�2005�. If there is a properly designed lateral diagonal truss sys-
tem connecting the two girders, then the system moment of inertia
about the y-axis, Iys, will be greater than the system x-axis mo-
ment of inertia, Ixs=2Ix. However, if only cross frames intercon-
nect the two girders, Iys�2Iy, so Ixs� Iys and global buckling is a
possibility.

Some recent bridge failures during construction have been at-
tributed to global lateral buckling. The Marcy Pedestrian Bridge
was a U-shaped girder with internal K-frames connected to the
two webs that failed during casting of the concrete deck
�Weidlinger 2003�. The authors are also aware of a bridge widen-

ing project in Texas where a twin girder with several cross frames
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twisted significantly during the deck pours. Multigirder systems
interconnected by cross frames or diaphragms with large span-to-
width ratios are susceptible to global lateral buckling. Although
twin girder systems are the most susceptible to the global mode,
systems with more girders can also fail globally if the girders are
relatively closely spaced.

Komatsu et al. �1983� presented a global solution for twin
girders interconnected by diaphragms. The out-of-plane rigidity
of the diaphragm was the controlling variable �Vierendeel action�.
If the diaphragm connection detail provides zero out-of-plane re-
straint, the Komatsu global solution resolves to the sum of the
buckling capacity of the two individual girders. The in-plane stiff-
ness of the diaphragms is ignored.

The purpose of this paper is to develop a method for determin-
ing the global lateral buckling capacity of multigirder systems
interconnected by cross frames suitable for use in design specifi-
cations. In the next section the global lateral buckling solution for
a doubly symmetric twin girder system subjected to uniform mo-
ment is derived. The girders are interconnected by cross frames or
diaphragms that are assumed to prevent relative twist between the
girders. In the later sections of the paper, finite-element analyses
�FEA�, are used to study the effects of distributed load, load
height, in-plane cross frame stiffness, and girder monosymmetry.
Adjustments to the basic solution are developed to account for
these effects. Although twin girder systems are particularly sus-
ceptible to the system mode, systems with large span/width ratios
having more than two girders were also considered in the inves-
tigation. An example problem in the Appendix illustrates the ap-
plication of the design recommendations. Finally a technique for
improving the global lateral buckling capacity through the selec-
tive application of a few top flange diagonal braces is discussed.

Derivation of Basic Solution

The differential equations of lateral bending and torsion used by
Timoshenko to derive Eq. �1� are equally applicable for the dou-
bly symmetric twin girder system shown in Fig. 1�c�. The only
variation necessary is the evaluation of the lateral bending rigidity
and torsional rigidity of the system. It is assumed that the cross
frames are sufficiently stiff in their plane to maintain the same
angle of twist for both girders as shown in Fig. 2 �cross frame
omitted�. It is also assumed that the cross frame-girder connection

Fig. 1. Twin I-girder system
details are pinned so there is no cross-frame Vierendeel effect.
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With these assumptions, the cross frames will not affect the lateral
bending system rigidity, which is 2EIy.

Referring to Fig. 2, the torsional resistance of the system has
three components: shear stresses in the individual plates �St. Ve-
nant�, lateral flange bending �warping�, and vertical Ix bending
�system warping�. The St. Venant rigidity is 2GJ. The total warp-
ing rigidity �two girders plus system� is

2E
Iyho

2

4
+ 2E

IxS
2

4
�2�

Substituting 2EIy, 2GJ, and Eq. �2� for the EIy, GJ, and ECw,
respectively, in Eq. �1� gives the total elastic global lateral buck-
ling moment of the twin girder system, Mg

Mg = 2
�

Lg
�EIyGJ +

�2E2Iy

4Lg
2 �Iyho

2 + IxS
2� �3�

All the section properties in Eq. �3� are those of the single girder.
Eq. �3� is valid for girders that have twist restrained at the ends of
the girders and warping deformation unrestrained. The global
buckling moment given by Eq. �3� is similar to Eq. �1� except for
the addition of the IxS

2 term. For many twin girder geometric
arrangements, the IxS

2 term dominates. Retaining only the term
containing IxS

2 under the radical gives the following conservative
estimate of the global buckling moment

Mgs =
�2SE

Lg
2

�IyIx �4�

The simplified global buckling moment, Mgs, provides a reason-
able estimate of the buckling capacity and is recommended for
determining if global buckling is a concern. For the twin girder
system, the global critical moment per girder is one half of the
value given by Eqs. �3� or �4�.

In Table 1 the results from Eqs. �3� and �4� are compared with
independent buckling results from the ANSYS �2003� finite-
element program for a twin girder system subjected to uniform
moment. The girders were simply supported with a span of

Fig. 2. System twist

Table 1. Global Lateral Buckling Solutions

Buckling stress �MPa�

Girder spacing S

Analysis type 2.03 m 2.77 m 3.81 m

FEA 147 197 267

Eq. �3� 148 196 270

Eq. �4� 143 195 268
2008
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51.8 m. The cross section consisted of 810 mm�18.7 mm flange
plates and a 1,925 mm�25.4 mm web plate. The span, depth, Ix,
and cross-frame spacing are similar to the Marcy girder. The criti-
cal buckling moments for the three girder spacings shown in
Table 1 were determined and converted to buckling stresses by
dividing by the section modulus. The results from ANSYS and
Eq. �3� are nearly identical. On average, the simplified Eq. �4� is
only 1.2% conservative. All the buckling stresses are below the
yield stress of typical bridge materials indicating that global buck-
ling is a serious issue for the example shown. Eq. �4� indicates
that the global lateral buckling strength is directly proportional to
the girder spacing. When the girder spacing is less than the girder
depth, Eq. �3� should be used because Mgs will become too con-
servative. Eqs. �3� and �4� were derived for the case of uniform
moment and doubly symmetric sections. In the following sec-
tions, adjustments are developed through FEA analyses to account
for more practical loading conditions and singly symmetric sec-
tions. The interaction between cross-frame stiffness and global
lateral buckling will also be demonstrated.

Finite-Element Model

The finite-element program ANSYS �2003� was used to study the
buckling behavior of twin girder systems with cross frames for
bracing. Linear elastic materials were utilized in all analyses. The
cross sections of the two girders that were studied are shown in
Fig. 3. Section #1 is a doubly symmetric section, while Section #2
is a singly symmetric section. Analyses were conducted with two
orientations for the singly symmetric section: �A� the small flange
subjected to compression; and �B� the large flange subjected to
compression. The cross sections of the girders were modeled
using eight-node shell elements: two shell elements for each
flange and four elements through the web depth. The number of
elements along the girder length was typically selected so that the
element aspect ratios were as close to unity as possible. Shell
elements were also used to model transverse web stiffeners at
supports and at the locations of concentrated loads.

Twin girder systems with simple supports were analyzed with
loading that caused compression in the top flange. Although twist
was restrained by cross frames at the ends of the girders, the cross
sections were free to warp. In addition to uniform moment load-
ing, two other loading cases were considered in the investigation:

Fig. 3. Cross sections studied �mm�
a single concentrated load applied at midspan, and a uniformly

JOURNAL OF

Downloaded 07 Jun 2012 to 128.230.234.162. Redistribution subject 
distributed load applied along the member length. Analyses were
conducted with points of load application located at the top
flange, midheight, and bottom flange. Several different values of
the cross frame spacing along the girder length were studied.

The single diagonal cross frame shown in Fig. 4 was modeled
using truss elements, thus eliminating Vierendeel action. Al-
though most cross frames have two diagonals, the members that
are employed often consist of angles, which have relatively low
buckling strengths. The “tension-only” cross-frame system con-
servatively neglects the compression diagonal and its relatively
low buckling strength. The cross frames were full depth members
that framed into the girders at the top and bottom of the web. The
three members comprising the cross frame had the same area.
Although span-to-depth ratios of 15–25 were considered, the re-
sults presented will focus on systems with span-to-depth ratios of
20. Similar trends were observed with the other span-to-depth
ratios that were analyzed.

Twin Girder FEA Results

Buckling analyses were conducted on different twin girder sys-
tems with varying cross-frame stiffness. The stiffness of a single
diagonal cross frame, �b, is �Yura 2001�

�b =
AbES2ho

2

2Ld
3 + S3 �5�

where Ab�area of each cross-frame horizontal and diagonal
member; and Ld=�ho

2+S2�length of the diagonal. For a given
geometry, the cross-frame stiffness is directly proportional to Ab.
The critical buckling moments of the twin girder system, Mcr, are
nondimensionalized by the buckling moments of the two indi-
vidual girders 2Mo given by Eq. �1� with Lb taken as the span
length. In all cases considered in this section, the span length of
the simply supported girders was 24.4 m. At the end supports,
twist and lateral movement are prevented but warping is
permitted.

Doubly Symmetric Section

Effect of Diaphragm Stiffness
Fig. 5 shows FEA results that demonstrate the effect of �b on the
LTB of twin girder systems with girders spaced at 1.52 and
3.05 m. In both cases, there were three evenly spaced intermedi-

Fig. 4. Tension-only cross frame
ate cross frames. The twin girders were subjected to uniform mo-
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ment. Sketches depicting the plan view of the FEA buckled shape
are shown on the graph. For S=1.52 m, the FEA model always
buckled in a global half-sine buckled shape. For very small values
of �b, the system behaves as two independent girders, governed
by Eq. �1�. As the cross-frame stiffness increases the critical
moment approaches the dashed line given by Eq. �3�. In the
derivation of Eq. �3�, the diaphragms were assumed very rigid all
along the length �no distortion as depicted in Fig. 2�. At
�b=20,000 kN m / rad, the FEA results are 6% smaller than pre-
dicted by Eq. �3�. Cross frames constructed with relatively small
L51�51�6.4 �United States L2�2�0.25� angle sections
provide this level of stiffness. Cross frames with five times this
stiffness �100,000 kN m / rad� only increase the critical moment
by 0.6%.

When the girder spacing increases from 1.52 to 3.05 m, the
global buckling moment given by Eq. �3� is almost doubled.
However, the twin girder system never gets to this load level. The
FEA results show that when �b�17,000 kN m / rad, buckling of
the compression flange occurs between the diaphragms instead of
global buckling. Mcr for buckling between cross frames is also
predicated by Eq. �1� with Lb=24.4 m /4=6.1 m.

The global mode of buckling can also be predicted from the
LTB equation for a beam with continuous torsional bracing along
the length in Yura �2001�

Mg = ��Mo
2� + EIy�̄T � M1 �6�

where �̄T�effective torsional brace stiffness per unit length of

girder. For the number �n� of intermediate cross frames, �̄T

=n�T /Lg. Mg is limited to M1, the moment corresponding to
buckling between cross frames. Eq. �6� is based on the Taylor and
Ojalvo �1966� torsional bracing solution with the brace stiffness
adjusted to account for in plane flexibility of the girders �Helwig
et al. 1993�. The relationship between �b and �T is given by

1

�T
=

1

�g
+

1

�b
�7�

where �g=12S2EIx /L3. In Fig. 5 the results from Eq. �6� follow
the trend of the FEA results and provide reasonable estimates of
the buckling capacity. For the system mode of buckling that oc-
curred with S=1.52 m, Eq. �6� overestimates the capacity relative
to Eq. �3� by approximately 10%.

Increasing the number of cross frames for the case of
S=1.52 m does not significantly affect the global buckling capac-

Fig. 5. Effect of cross-frame stiffness
ity as illustrated in Fig. 6. The horizontal axis shows the total
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cross frame stiffness applied to the span ��b�n�. The curves for
three, four, and five cross frames are almost identical, indicating
that for global buckling the sum of the cross frame stiffness is the
dominate variable and not the actual number or spacing of the
cross frames.

Loading Conditions
Eqs. �1� and �3� were derived for beams subjected to uniform
moment. Distributed and concentrated loads produce moment
gradients along the span. For single girders, Eq. �1� is typically
modified by a Cb factor to account for moment gradient. For
uniform vertical load applied at the centroid Cb=1.12; for a con-
centrated vertical load at midspan, Cb=1.35 �SSRC 1998�.

FEA were conducted on the S=1.52 m, three cross-frame sys-
tem shown in Fig. 5 with uniformly distributed vertical load and
with a single concentrated vertical load at midspan. The cross-
frame member area was varied and the relationship between Mcr

and �b followed the trend shown in Fig. 5. The ratio of Mcr for the
distributed load to Mcr for uniform moment was 1.12, which is
exactly the same as the Cb value for single girders. Similarly, the
Mcr ratio for the concentrated load case was 1.35. Therefore, Eqs.
�3� and �4� can be adjusted directly by the published Cb values for
single girders.

The position of the load on the cross section for single girders
can have a significant effect on the LTB capacity. Top flange
loading reduces Mcr for centroid loading by an approximate factor
of 1 /1.4=0.7 �Helwig et al. 1997; SSRC 1998�, whereas bottom
flange loading improves the buckling strength by a 1.4 factor. To
study the effects of top and bottom flange loading conditions,
finite-element analyses for the S=1.52 m twin girder system were
performed. The ratio of top flange Mcr to centroid Mcr was 0.956
for the distributed load and 0.952 for the concentrated load at
midspan. The top flange loading effect was less than 5%. Similar
results were obtained for bottom flange loading. Thus for doubly
symmetric twin girder systems, the load height effect can be
ignored.

Singly Symmetric Sections

The LTB formula for a doubly symmetric single girder given by
Eq. �1�, cannot be used for a singly symmetric section when the
smaller flange is in compression as depicted in Fig. 7. The ap-
proach given in AASHTO �2002� in which Eq. �1� is used but
with 2Iyc substituted for Iy where Iyc is the moment of the com-

Fig. 6. Effect of number of cross frames
pression flange about the y-y axis is fairly accurate compared to
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the exact solution by Galambos �1968�. For torsionally braced
singly symmetric girders, Yura �2001� showed that an effective
moment of inertia, Ieff= Iyc+ �b /c�Iyt, should be substituted for Iy

in the bracing term of Eq. �6� where Iyt�moment of inertia of the
tension flange and b and c�distances from the centroidal axis to
the tension and compression flanges, respectively �see Fig. 7�.
Substituting 2Iyc and Ieff into Eq. �3� and including the Cb factor
gives the following design formula for global LTB for both singly
and doubly symmetric twin girders:

Mgl = 2Cb

�E

Lg

�IycJ

1.3
+

�2Iyc
2 ho

2

Lg
2 +

�2IeffIxS
2

4Lg
2 �8�

or conservatively

Mgls = Cb

�2SE

Lg
2

�IeffIx �9�

FEA solutions and Eq. �8� are compared in Fig. 8 for twin
girder Sections #2A and #2B subjected to uniform moment. The
girders are spaced at 1.52 m as in the previous cases. Four inter-
mediate cross frames were required to avoid buckling between the
cross frames. At �b=50,000 kN m / rad, which represents a prac-
tical brace stiffness that is easily attainable with relatively small
structural shapes, Eq. �8� is within 1% of the FEA solutions. Top
flange uniform loading for Sections 2A and 2B give ratios of Eq.
�8�/FEA of 1.08 and 1.06, respectively. Midspan concentrated
loads applied at the top flange for Sections 2A and 2B gave ratios
of Eq. �8�/FEA of 1.15 and 1.08, respectively. The top flange
loading effect for the concentrated vertical load at midspan is
more significant �15% when the compression flange is the smaller
flange� than the top flange loading effect noted earlier for the

Fig. 7. Singly symmetric I-shape

Fig. 8. Singly symmetric global buckling
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doubly symmetric section �5%�. Therefore, for singly symmetric
sections loaded at the top flange, reasonable accuracy of the criti-
cal global buckling can be obtained by using 0.9Mgl from Eq. �8�.

The failure of the Marcy Pedestrian Bridge due to system
buckling was mentioned in the “Introduction” of the paper. The
Marcy Bridge consisted of a trapezoidal box girder section that
did not have a top flange lateral truss. Eq. �8� could be directly
applied to an open box girder system such as the Marcy Bridge
with reasonable accuracy provided only half of the bottom flange
is used in the calculation of the Ieff. However, box girder systems
�straight and curved� should be designed with top flange lateral
trusses to improve the torsional stiffness of each girder. The stiff-
ness of the quasi-closed box girder system will be extremely high
and girder stability from the system mode of buckling will gen-
erally not be an issue.

Systems with More Than Two Girders

Although twin girder systems are the most susceptible to the sys-
tem global mode, finite-element analyses showed that global LTB
can also occur on systems with three or more closely spaced
I-girders. It was found that Eq. �8�, which was derived for twin
girder systems, could be adjusted for three or more girders. For a
three girder system, replace Iyc and J in Eq. �8� with 3 /2Iyc and
3 /2J, and define S as 2S, which is the distance between the two
exterior girders. For four girders, replace the Iyc, J, and S terms in
Eq. �8� with 2Iyc, 2J, and 3S, respectively. In the simplified for-
mulations, Eqs. �4� and �9�, substitute the distance between exte-
rior girders for S.

Improving Global LTB Strength

When global LTB controls the strength of I-girder systems inter-
connected with cross frames, options for increasing the strength
are somewhat limited. Based on Eq. �9�, the global LTB strength
can be improved by increasing either the girder spacing S or the
cross-section moment of inertia. Geometry may limit the increase
in S and an increase in cross section for a condition that exists
only during the construction stage may not be economical. An
alternative is to add a top-flange diagonal system for a few panels
at the supports. For U-shaped steel girders �trapezoidal steel gird-
ers� such as those used in the Marcy Bridge �Weidlinger 2003�,
top flange diagonal bracing applied over a distance of 0.2Lg at
each end provided warping end restraint corresponding to “fixed
ends” �Yura and Widianto 2005�. With such a partial top flange
diagonal system, Eqs. �8� or �9� can be used to predict the global
LTB strength, Mglw, by substituting an effective length to account
for the end restraint. A true fixed end condition would correspond
to an effective length of 0.5Lg but would require diagonals with
infinite stiffness. Practical designs for the diagonal would result in
some flexibility so an effective length of 0.60Lg in Eq. �8� is
recommended based on FEA. For beams with lateral end restraint,
Cb=1.0 for all loading conditions �SSRC 1966�.

For global buckling with pinned end conditions, the slope of
the buckled shape at the end supports is y�=�	 /Lg where 	 is the
lateral displacement at midspan �Timoshenko and Gere 1961�.
Assuming that the end slope is reduced to 0.1y� by the warping
restraint provided by a partial top flange diagonal systems as
shown in Fig. 9�a�, the end warping stiffness requirement, Mws
�kN m / rad�, is
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Mws =
3�Mu − Mgl�Lg

ho
�10�

where Mu�factored design moment requirement; and Mgl�global
strength without warping restraint from Eq. �8�. The warping mo-
ment stiffness can be transformed into a top flange shear stiffness,
Vd /
, �see Fig. 9�b�� by noting that Mws�Vd /S and the end slope
is 
 /S. Thus, Vd /
=Mws /S2, where 
�relative end displacement
of the two girders. For a single diagonal system, the truss member
stiffness area requirement, Ad, is determined from

�Ada2E

Lw
3 + S3 =

Mws

S2 �11�

where �Ad=mAd with m�number of braced panels; a�panel
width; and Lw�diagonal length as shown in Fig. 9�a�. Eq. �11�
assumes that the struts and diagonals of the top lateral system
have the same area.

Second-order analyses established that the shear forces gener-
ated in the diagonals of the partial top lateral bracing system are
related mainly to the magnitude of the initial out-of-straightness
of the compression flange and the ratio of Mu /Mglw. However, the
development of an exact analytical expression for the brace forces
is beyond the scope of this paper. Lacings in built-up columns are
designed for a shear component of 2% of the total column force
�AISC 2005�. Finite-element studies of some sample designs
showed that the 2% concept could be applied to the partial top
flange diagonal system resulting in the following brace strength
requirement:

Fd = 0.02
Mu

ho

Lw

a
�12�

where Fd�force in the diagonal. The area required for the diag-
onal to satisfy Eq. �12� must be compared to the area required to
satisfy Eq. �11� to determine whether stiffness or strength controls
the member size. If a diagonal bracing system is used in the
negative moment regions of continuous girders, the force in the
diagonals caused by in-plane bending of the girders �Fan and
Helwig 1999�, should be added to the brace force requirement
from Eq. �12�.

A design example illustrating the application of the global
buckling equation is given in the Appendix. The use of a partial
top flange lateral truss systems to improve the global strength is

Fig. 9. End warping restraint
also considered.
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Summary and Conclusions

Twin steel girders supporting a concrete slab and interconnected
with diaphragms or cross frames are susceptible to global lateral-
torsional buckling during construction. Current building and
bridge design specifications for lateral buckling are only appli-
cable for single girders. Some bridge failures have been attributed
to global buckling. A closed form �global buckling� solution, Eq.
�3�, was derived for a system subjected to uniform moment. The
dominating variables controlling global buckling were the dis-
tance between the girders and the strong axis moment of inertia of
the individual girders. Finite-element analyses were used to verify
the closed form solution and investigate other loading and con-
struction conditions. The following are findings from the finite-
element studies of doubly symmetric twin girders:
1. The closed form solution Eq. �3� was verified;
2. The Cb factors for uniform loading �Cb=1.12� and for a con-

centrated load at midspan �Cb=1.35� for single girders are
applicable for the twin girder system;

3. Within practical ranges of design, the size and spacing of the
cross frames has little effect on global buckling; and

4. Top flange loading effects are much smaller for twin girder
systems than for single girders.

A general global buckling solution, Eq. �8�, that is also applicable
to singly symmetric girders was developed. Simplified global
buckling solutions, Eq. �4� for doubly symmetric and Eq. �9� for
singly symmetric sections, were presented. Adjustments to the
twin girder solutions for systems with more than two girders were
provided. Design recommendations for a partial top-flange lateral
system to increase the global buckling strength were given.

All solutions derived in this paper are intended for applications
with linear elastic materials. Critical situations will likely involve
casting of a concrete slab on the girder system, and the construc-
tion stresses will usually be below the elastic limit �0.7Fy in the
AISC specification �AISC 2005��. Without additional work on the
inelastic system buckling behavior, engineers should avoid
closely spaced girder systems with two or three girders in which
the bare steel girder stresses are greater than 0.7Fy.

Appendix. Design Example „k-in. Units…

Two simply supported steel girders spaced 96 in. apart with a
span of 1,800 in. must support a factored moment of 34,700 k in.
in each girder during the construction stage. The cross section and
other pertinent geometric details are given in Fig. 10. There are
five intermediate cross frames spaced at 300 in. Assuming the

Fig. 10. Example �all dimensions are inches�
deck will be poured in one continuous operation, establish the
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safety of this structure during construction. The yield strength of
the steel is 50 ksi, E=29,000 ksi and G=E /2.6. The properties
of one girder are Ix=49,700 in.4, Iy =289 in.4, J=13.8 in.4,
Cw=375,000 in.6, Sx=1,360 in.3, and ho=72 in.

Maximum bending stress:

Mu/Sx = 34,700/1,360 = 25.5 ksi � 50 ksi

LTB between cross frames use Lb=300 in. with Eq. �1�

Mo =
��29,000�

300
�289�13.8�

2.6
+

�2�289��375,000�
3002 = 35,200

� 34,700 k in.

Global LTB: Eq. �9� with Cb=1.12, Ief f = Iy

Mgls = 1.12
�2�96��29,000�

�1,800�2
�289�49,700� = 36,000 � 2

� 34,700 k in. NG

Check end-restrained global buckling: Eq. �9� with Cb=1.0
and 0.6Lg

Mglw =
�2�96��29,000�
�0.6 � 1,800�2

�289�49,700� = 89,300 � 2

� 34,700 k in. OK

Therefore, add three panels of top flange diagonal bracing �L4
�3�3 /8, A=2.68 in.2� at each end, a=100 in., Lw=139 in.

Check brace stiffness: Eqs. �10� and �11�

Mws =
3�2 � 34,700 − 36,000�1,800

72
= 2,500,000 k in./rad

Ad =
�2,500,000��1393 + 963�

3�96�2�100�229,000
= 1.13 � 2.68 in.2 OK

Check brace force: Eq. �12�

Fd =
0.02�2 � 34,700�

72

139

100
= 26.8 k

The L4 � 3 � 3/8 can support this load

Notation

The following symbols are used in this paper:
Ab � area of each cross frame member;
Ad � area of top lateral system member;
a � panel spacing of top flange lateral system;
b � distance from centroid to tension flange of singly

symmetric section;
Cb � moment diagram modification factor;
Cw � warping constant;

c � distance from centroid to compression flange of
singly symmetric section;

E � modulus of elasticity;
Fd � force in diagonal of top lateral system;
G � shear modulus of elasticity;
ho � distance between flange centroids;
Ieff � effective moment of inertia of torsionally braced
singly symmetric girder;
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Ix, Iy � moment of inertia about horizontal and vertical
centroidal axes, respectively;

Ixs, Iys � moment of inertia about horizontal and vertical
centroidal axes of twin girders;

Iyc, Iyt � moment of inertia about y-axis of compression
and tension flanges, respectfully;

J � torsional constant;
Lb � distance between cross frames;
Ld � diagonal length of cross frame;
Lg � span length;
Lw � diagonal length of top flange bracing system;

Mcr � buckling moment of twin girder system;
Mg � global buckling moment for twin girders under

uniform moment loading;
Mgl � global buckling moment for twin girder systems;

Mgls � simplified global buckling moment for twin
girder systems;

Mglw � global buckling moment with laterally restrained
ends;

Mgs � simplified global uniform buckling moment;
Mo � lateral-torsional buckling moment of single

girder;
MT � buckling moment of single girder with continuous

torsional restraint;
Mu � factored design moment;

Mwf � warping moment strength requirement;
Mws � warping moment stiffness;
M1 � critical moment for girder buckling between

cross frames;
m � number of top flange braced panels at each end;
n � number of intermediate cross frames;
S � girder spacing;
t � plate thickness;

w � plate width;
y� � end slope of buckled shape;
�b � torsional stiffness of single diagonal cross frame;
�g � in-plane flexibility of twin girders;
�T � effective torsional stiffness of single cross frame;

�̄T � effective torsional stiffness per unit length;
	 � lateral displacement at midspan; and

 � relative top flange end displacement of twin

girders.
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