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The elegance of the Eshelby-Stroh sextic formalism in dealing with equations of plane strain elasticity (e.g. 

[1]) motivated several investigators to extend its applicability towards the complex potential treatment of 

classical laminate plate theory (CLPT) equations [2-4]. Moreover, equivalent, though perhaps less elegant, 

complex variable formulations and applications have also appeared (e.g. [5, 6]) and continue to appear 

(e.g., [7, 8]) for more than a decade. It can therefore be said that, apart from the numerous, relevant 

boundary value problem applications that might follow, these efforts have successfully resolved the issue as 

far as complex potentials formalisms of the CLPT equations are concerned. 

CLPT is however adequate for accurate prediction of through thickness averaged displacements, as 

well as force and moment resultants, of very thin laminates only. This well-known drawback of CLPT led 

to its replacement with refined, two-dimensional laminate plate theories that take also into consideration the 

effects of transverse shear deformation. The most popular among them are the laminate extension [9] of the 

Reissner - Mindlin plate model that assumes uniform distribution of transverse shear strains across the plate 

thickness, and the more recent theory that assumes parabolic though thickness distribution of those strains 

[10, 11]. These refined models are certainly more accurate than CLPT as far as the accurate prediction of 

averaged displacements, force and moment resultants of moderately thick laminates is concerned. A 

subsequent generalization [12] that includes those theories as particular cases, became however the basis of 

the development of a two-dimensional model that is further capable of predicting accurate stress 

distributions through the laminate plate thickness [13].  

It then becomes evident that, at least as far as potential boundary value problem applications are 

concerned, there is much greater scope in using complex potential formalisms in connection with refined 

than with CLPT equations. The main difficulty in developing such formalisms arises from the fact that, 

unlike their classical counterparts, the equilibrium equations of refined models do not occur in the form of 

homogeneous partial differential equations when expressed in terms of their main unknown displacement 

components. Due to this difficulty, this is the first attempt towards the development of complex potential 

formalisms in connection with refined plate theories. An initial step that works out such formalisms in 

connection with the bending problem of shear deformable homogeneous plates and laminates having a 

special type of inhomogeneity along their thickness direction is about to appear in the literature [14]. This 

development is based on the equations of the generalized shear deformable plate theory presented in [12] 

with the adopted type of inhomogeneity being general enough to include the class symmetric laminates as a 

particular case. Further developments that are based on the most general “equivalent single layer” plate 

theory available [15] (see also [13]) are also available. These take into consideration the effects of both 



transverse normal deformation and bending-stretching coupling due to arbitrary through thickness 

inhomogeneity. It is important to note that corresponding complex variable formalisms concerned with 

earlier and therefore more popular relevant theories (e.g. [9-11]) can be obtained as particular cases of the 

present, generalized plate theory formalisms.   
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