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Corollarial and Theorematic Experiments With Diagrams 
 

I hope that, before I cease to be useful in this world, I 
may be able to define better than I now can what the 
distinctive essence of theoric thought is. I can at present 
say this much with some confidence. It is the directing of 
the attention to a sort of object not explicitly referred to 
in the enunciation of the problem at hand ... 
("Specimens of Mathematical Amazes", 1908, NEM III, 
622) 

 
The central aspect of Peirce’s doctrine of diagrammatical reasoning is 
the idea of using diagrams as tools for making deductions by 
performing rule-bound experiments on the diagram. Famously, Peirce 
distinguished between two classes of diagram proofs, "corollarial" and 
"theorematic", respectively – a distinction he himself saw as his first 
major discovery. As opposed to the simpler corollarial reasoning with 
diagrams, theorematic reasoning concerns diagram experimentation 
involving the introduction of new material – this chapter investigates 
the issue of the structure of theorematic diagram experiments and 
proposes three types of such experiments. 
  The increasing interest in Peirce's philosophy of logic as well as 
his philosophy of science highlights the importance of his notion of 
deductive reasoning as based on diagrams. As argued by several 
authors in Moore (2010) –Tiercelin and Cooke – this can be taken as 
providing an original solution of the so-called Benacerraf's Dilemma 
which has haunted much philosophy of mathematics since 
Benacerraf's famous 1973 "Mathematical Truth" article against 
Platonism (in Benacerraf and Putnam 1983). Benacerraf's paper 



argued against Platonism and the existence of abstract objects in 
mathematics by setting up the following dilemma: 1) Mathematics 
claims the existence of abstract objects outside of time and space 2) 
Acquisition of knowledge takes place by means of a causal process 
connecting an object with a knowing subject. But as abstract objects 
are causally inert, we must either accept Platonism and reject causal 
epistemology – or we must embrace causal epistemology and refuse 
Platonism. Due to the prominence of causal reference theories at the 
time, Benacerraf's choice seemed obvious: abstract objects and 
Platonism must be discarded in the face of the seeming evidence of 
causal epistemology. Literally taken, Benacerraf's argument would, in 
fact, eliminate not only abstract objects but a series of other aspects of 
the world, such as many properties (color, pitch, shape ...) which may 
also be suspected of being causally inert in the billard-ball causation 
theory of the second horn of the dilemma. 
  Causal reference theories hardly hold the attraction which they 
did in the 1970s, and the role of diagram experiments in an alternative, 
Peircean way of cutting the cake is the following. To Peirce, deduction 
and mathematical reasoning are one and the same. Mathematics is 
defined by two things, methodologically and substantially, 
respectively. The former comes from the definition of mathematics 
that Peirce inherited from his father, the mathematician Benjamin 
Peirce: mathematics is the science that draws necessary conclusions. 
Peirce's own addition to this doctrine pertains to status of the subject 
matter of those necessities: the object of mathematics is hypotheses 
concerning the forms of relations. All mathematical knowledge thus 
has a hypothetical structure: if such and such entities and structures 
are supposed to exist, then this and that follows. We might call this 
weaker variant of commitment to abstract objects "hypothetical 
Platonism". This admission liberates you, of course, from the 
presupposistion of a strange, space-timeless realm of real existence – 
but it commits you, on the other hand, to further modes of being in 
addition to that of particular individuals, which is why diehard 
nominalists will hardly feel attracted by Peirce's alternative. Peirce's 
doctrine operates with no less than two further modes of being than 
that of individuals, namely that of possibility – "May-Bes" – and that 
of real possibility – "Would-Bes". Mathematics, being hypothetical 



through-and through, then forms a subset of the latter. The crucial 
roles of diagrams, now, is that the notion of reasoning by diagram 
experiments furnishes an epistemological alternative to Benaceraffian 
causal reference. The idea is that diagrams form the epistemological 
means of accessing hypothetical abstract objects. They do that in two 
steps, as it were. One step is taking a diagram token, a drawing on 
paper, blackboard, computer screen, or in the imagination, and 
subjecting it to "prescission", the imaginary stripping it of accidental 
qualities so that only the relevant, controllable, general, schematic 
relations are left – permissing the observer to grasp, through the token, 
its type. This process of prescission, of course, is neither arbitrary nor 
subjective and is governed by symbols and rules, explicitly or 
implicitly. Once the type is grasped, it may, by the intermediary of its 
physical token, be subjected to experimental manipulation, in the 
imagination or using a physical diagram replica, or both. Certain types 
of transformation are allowed, others not so, corresponding to truth-
preserving logical reasoning steps. So diagram experimentation 
incarnates the if-then hypothetical structure of mathematics and thus 
gives mathematical knowledge its conditional, modal character. The 
observation of diagram tokens/types, of course, is prefigured in the 
perception of ordinary objects as tokens of types – just like the 
prescission process stripping the token of its accidental qualities in 
order to access its type is a more formalized version of similar 
processes when we address natural kinds by stripping away accidental 
properties in order to constitute categories like red, chairs, running – 
or even the category of an individual persisting in time despite its 
changing appearances. General structures and shapes of reality are 
present already in the perceptual stream, and it is no wonder that we, 
as biological beings, have become adapted to focus upon such features 
in perceptual structures. This very ability, however, may now be 
recycled apart from its basis in real objects to be put to use vis-a-vis 
purified imaginary objects like those of mathematics. 
  This argument pertains to pure, mathematical diagram 
reasoning; now what about the vast amount of applied diagrams 
representing empirical states-of-affairs? Peirce's system of the 
sciences offers an explanation of the efficacy of such diagrams – 
namely that they inherit, explicitly or implicitly, some mathematical 



structure of pure diagrams and add further constraints to those 
diagrams, constraints stemming from the special science of the 
domain to which they pertain.i Thus, all deductive reasoning, everyday 
or scientific, is taken to involve a mathematical-diagrammatical 
scaffolding, and necessary inferences in all sciences as well as in 
everyday reasoning employ mathematics, implicitly or explicitly. In 
Stjernfelt (2007) I have attempted a reconstruction of Peirce's overall 
doctrine of diagrams and diagrammatical reasoning, arguing that this 
cluster of ideas forms the center of a Peircean epistemology as well as 
it constitutes an important contribution to contemporary realist 
semiotics in general. 
  In this chapter, I shall take a closer look at the notion of diagram 
experiment based on Peirce's famous distinction between two such 
classes of experiments, giving rise to Corollarial and Theorematic 
reasoning, respectively. On the base of the introduction of this 
distinction, a series of issues are addressed. To what degree does this 
distinction capture different formal classes of problem difficulty? How 
may we distinguish between different types of Theorematic 
reasoning? And what is the relation between diagram experiments and 
hypostatic abstraction? 
  In the years after 1900, Peirce returns over and over again to the 
Corollarial/Theorematic-distinction, famously celebrating it as his 
own first "real discovery" (in his Carnegie application 1902). The 
overall idea is that corollarial deduction gives a conclusion which may 
be read off the diagram, once it succeeds in fashioning a synthesis of 
the premises – thus conforming to the Kantian idea of logical 
conclusions offering nothing which was not already there in the 
premises. By contrast, theorematic (or theorematogenic, or theoretic, 
or theoric, or theôric) reasoning forms a more demanding and creative 
type of reasoning where some new activity or elements must be 
experimentally added to the premises in order to reach the conclusion. 
  Take a simple example: asking the question of the size of the 
perimeter of a square with the side s, the conclusion may be reached 
based on the very definition of a square as a quadrangle with four 
equal sides – or by a very simple diagram experiment of counting 
sides, using the following diagram: 
 



      
   The perimeter of square with the side s 

 
The result of 4s is easily reached by both of these means. By 
comparison, the famous Euclidean proof of the angle sum of the 
triangle being equal to two right angles may serve as a simple example 
of theorematic reasoning: 
 
 
 
 
 
 
 
 
 
 
 
 
 

The angle sum of a triangle 
 
This proof requires the addition of auxiliary lines to the triangle – here 
CE and CD, parallel to AB and prolonging BC, respectively – to 
establish the proof based on the fact that the three angles now meeting 
at C have the same sizes as those of the triangle. BCA participates in 
both of the two sums, ACE is equivalent to BAC, while ECD is 
equivalent to ABC.ii The sum of the three angles meeting at C – BCA, 
ACE, and ECD – is obviously two right angles. But this is impossible 



to derive from mere definitions of "angle" and "triangle" just as it is 
impossible to prove from the triangle diagram without any additions. 
  The terminology of corollarial/theorematic comes from Euclid 
whose later editors named simple inferences corollaries (from the 
margin indication of them by means of a wreath – Greek "corolla") – 
while propositions to be proved were theorems. Peirce judges that 
some of Euclid's theorems are, in fact, mere corollaries – the overall 
distinction is taken to rely upon the necessity of experimenting by 
adding new elements to the diagram, elements which disappear again 
in the final, general statement of the proof. The theorem that the angle 
sum of a triangle equals two right angles does not, for example, in any 
way refer to the subsidiary lines necessary to reach the proof. The 
basic issue behind this distinction is, of course, the doublesidedness of 
mathematics, being apodictic and inexhaustible at one and the same 
time. How is it possible that mathematicians find results by necessity 
while at the same time new, unexpected discoveries abound among 
these results, just like in the empirical sciences? This issue troubled 
Peirce for a long time. Already when constructing his first formal 
language for logic, in his 1885 masterpiece "On the Algebra of 
Logic", he reasoned: "It has long been a puzzle how it could be that, 
on the one hand, mathematics is purely deductive in its nature, and 
draws its conclusions apodictically, while on the other hand, it 
presents as rich and apparently unending a series of surprising 
discoveries as any observational science. Various have been the 
attempts to solve the paradox by breaking down one or other of these 
assertions, but without success. The truth, however, appears to be that 
all deductive reasoning, even simple syllogism, involves an element of 
observation; namely, deduction consists in constructing an icon or 
diagram the relations of whose parts shall present a complete analogy 
with those of the parts of the object of reasoning, of experimenting 
upon this image in the imagination, and of observing the result so as to 
discover unnoticed and hidden relations among the parts." ("On the 
Algebra of Logic", 1885, 3.363) Here, the inexhaustibility of 
mathematics is explained by means of Peirce's first, germ-like diagram 
reasoning doctrine – as a generalization, interestingly, of his linear 
algebra of logic, far from the ordinary conception of diagrams. The 
"unnoticed and hidden" relations obtainable by diagram observation, 



of course, are what are later taken to require theorematic deduction, in 
addition to mere inference from definitions.  
  Even if the problem addressed by the distinction is thus an early 
concern in Peirce, it seems to be only in the years after 1900 that he 
makes the corollarial/ theorematic distinction explicit and sets out to 
elaborate it. Only in 1901 do we seem to witness the nascent 
terminology of the distinction appearing: "1901 Oct 12 If my present 
view, held for four or five years, is right that Abduction Deduction 
Induction are Premarian, Secundarian, and Tertian, then there ought to 
be two types of Deduction & three of Induction (...) Now I don't 
recognize any such two types of Deduction. (...) We can distinguish 
Deductions into those which are corollarific and those which are 
theorematogeneous. The former merely require the careful 
consideration of the conclusion, the latter involve outside 
considerations, – subsidiary lines, etc. But this seems a methodeutic 
not a critical distinction" (Logic Notebook Ms. 339, 362; earlier on the 
page, Peirce attempts to distinguish proposition deductions and term 
deductions). Later, Peirce will include the corollarial/theorematic 
distinction in his critical table of inference types – but this early quote 
points to the fact that the latter part of the distinction sits uneasily on 
the critical/ methodeutic divide (today, we would rather speak of logic 
versus heuristics or theory of science). Theorematic reasoning requires 
an inventiveness or even ingenuity which makes it alien to a narrow 
concept of logic – even if its results, on the other hand, remain purely 
deductive. This apparently simple distinction covers a whole bunch of 
interesting issues: that of the much more outspoken experimental 
character of theorematic reasoning as compared to corollarial 
reasoning, that of the strategy of finding suitable new elements to add, 
that of instantiating those elements in particulars (only particular sets 
of lines in the angle sum example will lead to the proof), that of the 
character of those elements, that of the relation of the diagram 
experiment to verbal instructions and definitions. Probably for this 
reason, Peirce's description of theorematic reasoning differs to some 
extent from time to time and is in need of a synthetic reconstruction. 
 
Theorematic diagram experiments in Peirce 
 



Let us run through Peirce's different definitions. 
 
1) The basic idea is the indirect conception that theorematic reasoning, 
unlike corollarial reasoning, is not reducible to inferences from 
concept definitions, that is, conceptual analysis: "An accurate 
definition of Corollarial Demonstration would require a long 
explanation; but it will suffice to say that it limits itself to 
considerations already introduced or else involved in the Explication 
of its conclusion; while Theorematic Demonstration resorts to a more 
complicated process of thought" ("A Neglected Argument for the 
Reality of God", 1908, EP II 442, 6.471). This brief definition of 
theorematic reasoning, of course, is merely negative and contrastive 
vis-à-vis Kant's description of logic as tautological, and most of 
Peirce's descriptions of the pair of concepts take their point of 
departure in the inability of certain theorems to be proved by 
corollarial reasoning: "Deductions are of two kinds, which I call 
corollarial and theorematic. The corollarial are those reasonings by 
which all corollaries and the majority of what is called theorems are 
deduced; the theorematic are those by which the major theorems are 
deduced. If you take the thesis of a corollary, i.e., the proposition to be 
proved, and carefully analyze its meaning, by substituting for each 
term its definition, you will find that its truth follows." ("On the Logic 
of Drawing History ...", 1901, EPII, 96, 7.204 – after which the quote 
continues with a more positive definition of theorematic reasoning (cf. 
below)). Even if corollarial reasoning counts as the ideal and should 
be preferred whenever possible because of its simplicity, a certain 
class of "major theorems" require more than careful description in 
terms of conceptual analysis. This necessity stems from the general 
impossibility of defining things, in all cases, so that all their properties 
will be corollaries from their definition. This impossibility, of course, 
is connected to the conception of natural classes as possessing 
properties transgressing definitions. Peirce addresses this when 
claiming that the best translation of Greek "episteme" is 
"comprehension" – which is "... the ability to define a thing in such a 
manner that all its properties shall be corollaries from its definition. 
Now it may be that we shall ultimately be able to do that, say for light 
or electricity. On the other hand, it may equally turn out that it forever 



remains as impossible as it certainly is to define number in such a way 
that Fermat's or Wilson's theorems should be simple corollaries from 
the definition" ("On Science and Natural Classes", 1902, EPII 129, 
1.232). Even if much in arithmetics is corollarial (such as Kant's 
famous 7+5=12 which Peirce refuses to grant the status of synthetic a 
priori for the same reason), complicated theorems of arithmetics are 
not. So the impossibility of defining things, in all cases, so that all 
their essential properties easily flow from the definition, obviously 
forms the first argument for the necessity of theorematic reasoning. 
 
2) A basic way of describing theorematic reasoning more positively, 
now, is as involving the addition of new elements to the premises 
(abstractions or not, foreign ideas or existential instantiations of 
general objects the existence possibility of which is granted by the 
universe of discourse). Peirce seems to have received this idea about 
the introduction of a new element from no less than George Boole's 
widow in 1898: "The widow of the great Boole has lately written a 
little book in which she points out that, in solving a mathematical 
problem, we usually introduce some part or element into the 
construction which, when it has served our purpose, is removed. Of 
that nature is a scale of quantity, together with the apparatus by which 
it is transported unchanged from one part of the diagram to another, 
for the purpose of comparing those two parts. Something of this 
general description seems to be indispensable in mathematics" ("The 
Logic of Mathematics in Relation to Education", 1898, 3.561) – and 
Peirce's overall development of the corollarial/theorematic distinction 
now covers the following decade. Here, as simple an addition as that 
of a ruler counts as theorematic. The addition of such objects is taken 
to be the subject of an additional lemma to the premises, supported by 
a postulate. Continuing the above quote from "On the Logic" (1901), 
Peirce writes: "But when it comes to proving a major theorem, you 
will very often find you have need of a lemma, which is a 
demonstrable proposition about something outside the subject of 
inquiry; and even if a lemma does not have to be demonstrated, it is 
necessary to introduce the definition of something which the thesis of 
the theorem does not contemplate. In the most remarkable cases, this 
is some abstraction; that is to say, a subject whose existence consists 



in some fact about other things. Such, for example, are operations 
considered as in themselves subject to operation; lines, which are 
nothing but descriptions of the motion of a particle, considered as 
being themselves movable; collections; numbers; and the like. " ("On 
the Logic", 1901, EP II 96, 7.204). In Peirce's debatable analysis, lines 
are abstractions from the trajectories of particles (why not from 
contours of objects or the intersections of planes, etc.?) – so the 
auxiliary lines in the angle sum proof are taken to be examples of the 
introduction of abstractions. Be that as it may,iii the quote given here 
overlooks the important issue of the selection of those lines. The 
postulate in Euclid that given a line and a point, a line through the 
point may be drawn which is parallel to the line given, obviously lies 
behind the lemma of introducing the two particular auxiliary lines in 
the proof. But not any old lines added to the original triangle would 
lead us to the proof. So the selection of which particular objects to add 
becomes an important issue. Hintikka, in his development of Peirce's 
notion of theorematic reasoning, takes this "existential instantiation" 
in the shape of "witness individuals" to constitute the core of 
theorematic reasoning, adding further quantified variables to those 
referred to in the premises. Sun-Joo Shin (2010) emphasizes the 
importance of this individualizing step in reasoning: much has been 
spoken, since the British empiricists, of the access to the triangle in 
general, but the inverse movement, that of selecting the right 
individuals to add in a proof, has received much less attention. But the 
right selection of individuals is seminal for conducting the proof. 
Hintikka insists that the addition of individuals to the premises 
constitutes the very core of Peirce's idea: "What makes deduction 
theorematic according to Peirce is that in it we must envisage other 
individuals than those needed to instantiate the premise of an 
argument" (1980, 110) – also other than needed to express its 
conclusion, we may add. This is what constitutes the basis of Peirce's 
"brilliant insight (...) that this geometrical distinction can be 
generalized to all deductive reasoning." (109). Thus, in Hintikka's 
reconstruction, "... a valid deductive step is theorematic, if it increases 
the number of layers of quantifiers in the proposition in question" 
(110). To Hintikka, this solves the ancient Aristotelian riddle of 
logical incontinence – how can it be that one may fail to grasp the sum 



total of logical consequences of the amount of knowledge in one's 
possession? This is because many of those consequences require the 
theorematic addition of further individuals for their proof, and 
Hintikka surmises that the difficulty of a problem is roughly 
proportional to the number of new individuals needed for its solution 
(113; Stjernfelt 2007 107-8). This particularity of auxiliary 
individuals, much discussed after Hintikka's reinterpretation of 
theorematic reasoning, is surprisingly rarely addressed in Peirce; 
however, this late quote connects the basis of the additional elements 
in a general postulate with the particularity of those elements: "Of my 
two divisions of Deductions, one is into Corollarial and Theorematic 
Deduction. The former requires nothing more than a logical analysis 
of the premisses to furnish the conclusion. The latter involves as one 
of its premisses a postulate, or proposition asserting the possibility of 
any object which lies in certain definite general relation to any 
existing objects of a certain kind. E.g. Between any two points on a 
line it is possible to place a third. Now to derive from this postulate 
the particular consequence that will lead to the conclusion required, 
[one needs] not merely sagacity or Aristotle's eustokha (...) but also 
imaginative genius in all its complexity of resources" (Ms. 764, 
unpaginated, the 29th page in the Ms, late, seemingly 1910-11). Here, 
the requirement of imaginative genius – implicitly compared to the 
laborious teasing out of corollarial definition consequences – is 
highlighted as required for finding the appropriate particular elements 
to add. Shin (2010) more precisely insists upon the importance of 
selecting the right individuals, among many possible, to conduct the 
proof.iv 
  Other times, it is rather the general or abstract (which is not the 
same) character of the added elements which is emphasized: "To the 
Diagram of the truth of the Premisses something else has to be added, 
which is usually a mere May-be, and then the conclusion appears" 
(letter to James 25. dec 1909, EPII, 502). A May-be, in Peirce's late 
metaphysics, is a possibility which is, of course, vague. Again, 
selecting the right one among possibilities is crucial. Especially when 
talking about the added elements in this general way, Peirce insists 
they are foreign to the theorem which the proof intends to establish: 
"What I call the theorematic reasoning in mathematics consists in so 



introducing a foreign idea, using it, and finally deducing a conclusion 
from which it is eliminated. Every such proof rests, however, upon 
judgments in which the foreign idea is first introduced, and which are 
simply self-evident" (Carnegie Application 1902, Ms. L75, NEM IV, 
42).v 
  So are the additional elements particular instantiations selected 
on the basis of general possibilities granted in the relevant universe of 
discourse (like the subsidiary lines of the angle sum proof granted by 
Euclid's postulates), or do they consist in the addition of a new general 
principle or idea? Judson Webb, in an important paper on Hintikka's 
philosophy of logic, also points to the fact that, in discussing different 
proofs of Desargues' theorem, Peirce mentions different types of 
theorematic reasoning: "There are just two distinct kinds of things we 
can introduce into a proof that do not appear in such a theorem: 
auxiliary lines and the idea of length. The former are only new objects 
of the same kind occurring in the theorem, while the latter is a new 
concept that is "foreign" to it" (Webb 2006, 249). Peirce, however, did 
not seem to pay explicit attention to this important distinction to which 
we shall return later. He did, however, introduce another distinction 
between subtypes of theorematic reasoning. In the famous description 
of the two kinds of deduction in the Carnegie application, the 
description in terms of new elements gives rise to a subdivision of 
theorematic reasoning based on the abstract or non-abstract character 
of that reasoning: "My first real discovery about mathematical 
procedure was that there are two kinds of necessary reasoning, which I 
call the corollarial and the theorematic, because the corollaries affixed 
to the propositions of Euclid are usually arguments of one kind, while 
the more important theorems are of the other. The peculiarity of 
theorematic reasoning is that it considers something not implied at all 
in the conceptions so far gained, which neither the definition of the 
object of research nor anything yet known about could of themselves 
suggest, although they give room for it. Euclid, for example, will add 
lines to his diagram which are not at all required or suggested by any 
previous proposition, and which the conclusion that he reaches by this 
means says nothing about. I show that no considerable advance can be 
made in thought of any kind without theorematic reasoning. When we 
come to consider the heuretic part of mathematical procedure, the 



question how such suggestions are obtained will be the central point of 
the discussion. Passing over smaller discoveries, the principal result of 
my closer studies of it has been the very great part which an operation 
plays in it which throughout modern times has been taken for nothing 
better than a proper butt of ridicule. It is the operation of abstraction, 
in the proper sense of the term, which, for example, converts the 
proposition "Opium puts people to sleep" into "Opium has a dormitive 
virtue". This turns out to be so essential to the greater strides of 
mathematical demonstration that it is proper to divide all theorematic 
reasoning into the non-abstractional and the abstractional. I am able to 
prove that the most practically important results of mathematics could 
not in any way be attained without this operation of abstraction. It is 
therefore necessary for logic to distinguish sharply between good 
abstraction and bad abstraction" (Carnegie Application 1902, Ms. 
L75, Draft C, 90-102, NEM IV 49). This distinction between 
abstractional and non-abstractional theorematic reasoning has been 
taken up by Stephen Levy and Michael Hoffmann (1997; 
forthcoming) in their efforts to outline taxonomies of theorematic 
reasoning – is it so that this idea might, simultaneously, constitute a 
basis for the distinction between theorematic reasoning by means of 
existential instantiation on the one hand and the introduction of new, 
foreign ideas on the other? Peirce does not further develop his 
distinction between abstractional and non-abstractional theorematic 
reasoning, so it is difficult to decide. Suffice it to say that it is not 
evident that these two distinctions are identical or even co-extensive; 
the introduction of certain abstract objects may be permitted in the 
formalism used and in that sense not being new or foreign (just like 
the introduction of lines in a geometry proof or a variable in an 
equation) – the foreign idea seems to comprise a special class of 
abstractions only. 
 
3) An interesting feature of the descriptions in terms of added 
elements quoted here is that they do not refer to deductions in terms of 
diagram experiments. Diagram experiment, however, is taken to 
constitute the center of deduction in general, and of theorematic 
deduction in particular. In a parallel draft of the Carnegie application, 
Peirce thus characterizes theorematic reasoning as follows: 



"Theorematic deduction is deduction in 
which it is necessary to experiment in the imagination upon the image 
of the premiss in order from the result of such experiment to make 
corollarial deductions to the truth of the conclusion. The subdivisions 
of theorematic deduction are of very high theoretical importance" 
(Carnegie Application 1902, Ms. L75, NEM 4:38, 1902). The year 
after, in the Syllabus accompanying his Lowell lectures, Peirce 
connects the experimental character of theorematic reasoning to the 
ingenuity required as well as to observation; it ".... is one which, 
having represented the conditions of the conclusion in a diagram, 
performs an ingenious experiment upon the diagram, and by the 
observation of the diagram so modified, ascertains the truth of the 
conclusion" (Syllabus, 1903, EP II 298, 2.267). In one of the drafts of 
the Lowell lectures, Peirce connects these two descriptions, now 
taking the addition of new material to be a subtype of experiment: "I 
draw a distinction between Corollarial consequences and Theorematic 
consequences. A corollarial consequence is one the truth of which will 
become evident simply upon attentive observation of a diagram 
constructed so as to represent the conditions stated in the conclusion. 
A theorematic consequence is one which only becomes evident after 
some experiment has been performed upon the diagram, such as the 
addition to it of parts not necessarily referred to in the statement of the 
conclusion" (Lowell Lectures, Ms. 456, 49; transcription by Helmut 
Pape). Here, it is not made explicit which other types of experiment 
there might be besides the addition of new elements – but such 
addition is in itself experimental for the reason that it may be an issue 
of trial-and-error to find the right instantiations. In an early account 
for diagram experimentation, however, Peirce provides such an 
example: "Deduction is that mode of reasoning which examines the 
state of things asserted in the premisses, forms a diagram of that state 
of things, perceives in the parts of that diagram relations not explicitly 
mentioned in the premises, satisfies itself by mental experiments upon 
the diagram that these relations would always subsist, or at least 
would do so in a certain proportion of cases, and concludes their 
necessary, or probable, truth. For example, let the premiss be that 
there are four marked points upon a line which has neither extremity 
nor furcation. Then, by means of a diagram,  



 
 

 
 
we may conclude that there are two pairs of points such that in passing 
along the line in any way from one to the other point of either pair, 
one point of the second pair will be passed an odd number of times 
and the other point an even (or zero) number of times. This is 
deduction." (Untitled manuscript, c. 1896, 1.66)vi 
  In this example, the diagram experiment is undertaken by 
following a trajectory along the closed curve, until realizing that each 
full turn will add 2 to the number of passages of each point pair – so 
with respect to odd/even, the result will stay the same as the very first 
half trajectory, passing one point 1 time, the other point 0 times. This 
experiment hardly introduces any new ideas at all, but it does involve 
instantiation, this time of following a trajectory moving in the 
diagram. So the new elements added may also be actions performed 
on the diagram. In the "Minute Logic" of 1902, Peirce hints at those 
other experiment possibilities: "Just now, I wish to point out that after 
the schema has been constructed according to the precept virtually 
contained in the thesis, the assertion of the theorem is not evidently 
true, even for the individual schema; nor will any amount of hard 
thinking of the philosophers' corollarial kind ever render it evident. 
Thinking in general terms is not enough. It is necessary that something 
should be DONE. In geometry, subsidiary lines are drawn. In algebra 
permissible transformations are made. Thereupon, the faculty of 
observation is called into play. Some relation between the parts of the 
schema is remarked. But would this relation subsist in every possible 
case? Mere corollarial reasoning will sometimes assure us of this. But, 
generally speaking, it may be necessary to draw distinct schemata to 
represent alternative possibilities. Theorematic reasoning invariably 
depends upon experimentation with individual schemata." ("Minute 
Logic", 1902, 4.233).  



 Here, the mere introduction of new elements or ideas as additional 
general terms is not deemed sufficient – the experiment is supposed to 
perform an action manipulating the diagram – drawing the auxiliary 
lines – or, in the algebraical example undertaking transformation 
granted by the relevant symbol manipulation rules. In the Euclidean 
example, transformations including the movements of geometrical 
objects in the plane permitted (rotations, mirrorings, translations, etc.) 
obviously form a class of experiments different from those of 
introducing new elements, just like, in arithmetics, the transformation 
possibilities given by calculation rules (and more generally, in algebra, 
symbol manipulation rules), provide such experiment possibilities. 
  An important issue here – both related to the "addition of new 
elements or foreign ideas" and to the "experiment" aspects – is the 
relation between theorematic reasoning and abduction. A finished 
piece of theorematic reasoning, of course, is deductive – the 
conclusion follows with necessity from the premises. But in the course 
of conducting the experiment, an abductive phase appears when 
investigating which experimental procedure, among many, to follow; 
which new elements or foreign ideas to introduce. This may require 
repeated, trial-and-error abductive guessing, until the final structure of 
the proof is found – maybe after years or centuries. Exactly the fact 
that neither premises nor theorems need to contain any mentioning of 
the experiment or the introduction of new elements makes the 
abductive character of experimentation clear. Of course, once the right 
step has been found, abductive searching may cease and the deductive 
character of the final proof stands out. 
 
4) A further description of the corollarial/theorematic distinction 
makes it correspond to reasoning with words or schemata, 
respectively. The quote just given from the "Minute Logic" continues 
with the conclusion that "We shall find that, in the last analysis, the 
same thing is true of the corollarial reasoning, too; even the 
Aristotelian "demonstration why." Only in this case, the very words 
serve as schemata. Accordingly, we may say that corollarial, or 
"philosophical" reasoning is reasoning with words; while theorematic, 
or mathematical reasoning proper, is reasoning with specially 
constructed schemata" ("Minute Logic", 1902, 4.233). This 



complicated claim identifies corollarial reasoning with philosophical 
reasoning in words (implicitly placing a severe limitation on the 
powers of such reasoning), as compared to the constructive power of 
theorematic reasoning using specially constructed schemata and being 
able to make "demonstration that".vii Immediately, however, words are 
also taken to constitute such schemata, even if maybe simpler and less 
directly accessible than "specially constructed" schemata. The 
ubiquity of schemata also outside of science (maps, graphs and tables 
in newspapers, media, commodities, etc.) points to the fact that the 
distinction between words and constructed schemata does not, as it 
might be immediately asumed, coincide with that of everyday 
reasoning and science. The issue becomes even more complex when 
we consider that also corollarial reasoning is often able to use 
diagrams. So words/simple schemata/simple use of schemata are all 
opposed to theorematic reasoning. Rather, the idea that conceptual 
reasoning forms a simple version of schematic reasoning points to the 
idea of the distinction between corollarial and theorematic as being a 
gradient continuum rather than two mutually exclusive classes – also 
supported by the fact that theorematic reasoning examples differ 
enormously in complexity and the amount of new elements required. 
We shall return to this below. 
 
5) A final characterization of theorematic reasoning is that of 
requiring a new point of view of the problem, as e.g. a Gestalt shift. 
We find a simple version of this in Ms. 773 ("Third Lecture on 
Methodeutic Induction", undated (but late), one unpaginated sheet, 
page 2-3 of the microfilm): "I spoke of Deduction as the compulsive 
kind of reasonings. Almost all the theoric inferences are positively 
creative. That is, they create, not existing things, but entia rationis 
which are quite as real. This blackboard is black. Theoric deduction 
concludes that the board possesses the quality of blackness and that 
blackness is a simple object, called an ens rationis because that theoric 
thought created it." Here, the hypostatic abstraction from "black" to 
"blackness" is taken as an example of theoric deduction. 
  Here is a terminological problem. In many cases, "theoric" is 
used interchangeably with "theorematic"; in other contexts, Peirce 
seems to intend a slightly different meaning by the concept "theoric" 



(or "theöric"). One of his paradigm examples is that of Desargues' 
theorem (two triangles which are centrally in perspective are also 
axially in perspective, usually referred to by Peirce as "the ten point 
theorem")viii – a 17th C geometry proof recently rediscovered in 
Peirce's time by von Staudt in the context of projective geometry. 
Here, Peirce uses the notion of "theoric" to refer to the "new point of 
view" which may introduce a third dimension to the diagrammatical 
representation of the 2-d theorem, thereby making it much more 
immediately graspable than much more cumbersome proofs using 
lengths of lines:  
 
 

 
 
 
 
The two triangles lying in a central perspective as seen from the point 
0 have the intersections of their sides coinciding on the same line 
(axial perspective). This figure (Hilbert and Cohn-Vossen, quoted 
from Hoffmann, forthcoming, 18) shows how a three-dimensional 
interpretation of the originally 2-D planar diagram makes it easy to 
grasp that the two planes of the triangles meet at the line g, because 
the 2-D case now appears as a special case of the more general 3-D 
problem.  Peirce returns over and over again to this proof, taking it as 



a central example of "theoric" or "theorematic" reasoning. An 
alternative proof restricted to two dimensions is possible but rests 
upon another theorematic addition, namely that of the length of lines 
which is also not mentioned in the original theorem. 
  Michael Hoffmann has made a strong case that this adoption of 
a new point of view should be called "theoric", differing from 
theorematic reasoning because simply constituting a gestalt shift in the 
conception of the problem rather than the necessary experimental 
introduction of new elements in the deduction process (Hoffmann, 
forthcoming). Hoffmann's interpretation is based on the use of the 
term "theoric" in Ms. 318 and Ms. 754, both of them from 1907. From 
the large Ms. 318 on pragmatism, Hoffmann quotes the following 
description of "theoric" reasoning which consists "... in the 
transformation of the problem, – or its statement, – due to viewing it 
from another point of view" (ibid., 68). In the brief Ms. 754 (notes for 
a "talk to the Phil. club" April 12 1907), Peirce writes: "I formerly, 
quite dubiously, divided Deductions into the Corollarial & the 
Theorematic. Explain these. Deduction will better be called 
Demonstration. But further study leads me to lop off a corollarial part 
from the Theorematic Deductions, which follows that part that 
originates a new point of view. This part of the theorematic procedure, 
I will call theôric reasoning. It is very plainly allied to retroduction, 
from which it only differs as far as I now see in being indisputable." 
(Hoffmann, forthcoming, p. 27, n13)ix The core of theorematic 
reasoning, following this quote, is taken to be the theoric introduction 
of a new viewpoint – the rest seems to be mere corollarial reasoning. I 
am not convinced, though, that Peirce, by the introduction of the term 
"theoric" in 1907 intends a wholly new concept, completely different 
from that of "theorematic". In the Ms. 754 quote just given – which 
forms a hapax, the only place, to my knowledge, where Peirce uses 
both of the notions "theoric" and "theorematic" simultaneously – the 
former is introduced as the central part of the latter. Shortly 
afterwards, in the April 1908 issue of The Monist, Peirce publishes the 
"Amazing Mazes" in whose "First curiosity" he defines "theoric" in 
complete parallel to the usual definitions of "theorematic" contrasting 
"corollarial": "I shall term the step of so introducing into a 
demonstration a new idea not explicitly or directly contained in the 



premisses of the reasoning or in the condition of the proposition which 
gets proved by the aid of this introduction, a theoric step." (4.613). So, 
I just take "theoric" to be another example of Peirce's proliferating 
neologisms where the same concept gives rise to the coining of many 
different terminological expressions for that concept. Hoffmann, on 
the other hand, remains right in pointing to the fact that Peirce's 
analysis of the recurrent example of Desargues' theorem does not 
coincide with his other examples and descriptions of theorematic 
reasoning – I would say it adds a further aspect to the description of 
varieties of theorematic reasoning. Adding a third dimension to the 
diagram of Desargues' theorem is adding a new element in an 
importantly different way than adding a particular line to an Euclidean 
diagram, because it induces a "transformation" in the whole way of 
viewing the problem. When returning to Desargues' theorem the next 
year, in a letter to William James in 1909 (Ms. L224, NEM III, 471), 
Peirce now characterizes the Desargues proof as "theorematic" and the 
introduction of a third dimension as yet another example of "additions 
to the diagram." The "theoric" examples thus rather point to the fact 
that the range of possible additions and experiments in theorematic 
reasoning is fairly large, involving elements of highly different 
dimensionality, generality, and abstractness.  
  To sum up Peirce's different descriptions of theorematic 
reasoning, we can say they exceed the mere explication from the 
combination of definitions by introducing something further, be it new 
elements (particular or general), be it experiments by diagram 
manipulation, be it the substitution of schemata for words, or be it the 
gestalt shift of seeing the whole problem from another point of view.x 
 
Theorematic reasoning, relative to intelligence? – or to logic systems 
chosen? 
 
But why could we not conceive of the differences between corollarial 
reasoning and the different types of theorematic reasoning as a 
difference in reasoning capacity only? The former reasonings are 
generally taken to be easy while the latter require ingenuity – could 
we not reduce the difference between them to a difference between 
psychological resources needed to solve the problems? When we are 



taught which lines to select in the angle sum proof or how to introduce 
the third dimension in Desargues' proof, these proofs become just as 
easy to conduct as corollarial proofs. Would the 
corollarial/theorematic distinction be reduced to one of psychology of 
learning, of the peculiarity of human reasoning capabilities to which 
some problems may appear easy and others may appear more 
difficult? Peirce, always hostile to psychologism in logic, does not 
consider this possibility and maintains the idea that it is the very 
structure of the problem and the formal resources for its proof itself 
which gives rise to the distinction.xi Here, we take Peirce's stance in 
assuming that the difference in problem complexity is no purely 
psychological phenomenon. 
  A related idea rests on the fact that proofs of the same theorem 
may take many different forms – cf. the Desargues example – and so a 
logical parallel to such psychological proposals will be the following 
question: After a successful theorematic proof, could we not simply 
add the theorematic ideas to the original set of premises, the original 
statement of the problem – then the ensuing proof would become 
corollarial only and easy to perform? From time to time, Peirce toyed 
with the idea that proofs once having been theorematic might be 
transformed into the simpler form of corollarial reasoning by the 
change of logical system: "Perhaps when any branch of mathematics 
is worked up into its most perfect form all its theorems will be 
converted into corollaries" ("Sketch of Dichotomic Mathematics", c. 
1903?, NEM III 289). That corollarial proofs must be preferred to 
theorematic proofs for the same theorems, if available, follows from 
the obvious ideal that simpler proofs must be preferred to more 
complicated proofs of the same theorem – but this ideal does not grant 
that all of the latter may, in fact, be translated into the former. And 
even if some theorematic proofs may be translated into corollarial 
proofs, Peirce generally finds such an idea – comparable to a positive 
solution to Hilbert's Entscheidungsproblem – impossible, as we 
already saw in the 1902 quote where he deemed it impossible "... to 
define number in such a way that Fermat's or Wilson's theorems 
should be simple corollaries from the definition" ("On Science and 
Natural Classes", 1902, EPII 129). 
 On one occasion, in the "Amazing Mazes", Peirce clearly 



distinguished between theorematic reasoning as such and the 
repetition of an already established theorematic proof, as well as 
between proofs necessarily requiring theorematic tools and 
theorematic proofs reducible to corollaries (as in the "Amazing 
Mazes" in general, Peirce here uses "theoric" for "theorematic"). A 
theorematic proof which may – if possible – be transformed into a 
simpler corollarial proof caused by the introduction of a better formal 
representation system, is called a "theorem-corollary" – somewhat a 
misnomer. The repetition of a theorematic proof, once it has become 
familiar, "a matter of course", and thus as easy as corollarial 
reasoning, he terms "theoremation" – this must, of course, be 
distinguished from the former by still possessing the theorematic 
structure. Finally, the theorematic introduction of the new element in 
order to establish the proof is, by contrast, named a "major theorem": 
"Now to propositions which can only be proved by the aid of theoric 
steps (or which, at any rate, could hardly otherwise be proved), I 
propose to restrict the application of the hitherto vague word 
"theorem," calling all others, which are deducible from their 
premisses by the general principles of logic, by the name of 
corollaries. A theorem, in this sense, once it is proved, almost 
invariably clears the way to the corollarial or easy theorematic proof 
of other propositions whose demonstrations had before been beyond 
the powers of the mathematicians. That is the first secondary 
advantage of a theoric step. The other such advantage is that when a 
theoric step has once been invented, it may be imitated, and its 
analogues applied in proving other propositions. This consideration 
suggests the propriety of distinguishing between varieties of 
theorems, although the distinctions cannot be sharply drawn. 
Moreover, a theorem may pass over into the class of corollaries, in 
consequence of an improvement in the system of logic. In that case, 
its new title may be appended to its old one, and it may be called a 
theorem-corollary. There are several such, pointed out by De 
Morgan, among the theorems of Euclid, to whom they were theorems 
and are reckoned as such, though to a modern exact logician they are 
only corollaries. If a proposition requires, indeed, for its 
demonstration, a theoric step, but only one of a familiar kind, that has 
become quite a matter of course, it may be called a theoremation. If 



the needed theoric step is a novel one, the proposition which employs 
it most fully may be termed a major theorem; for even if it does not, 
as yet, appear particularly important, it is likely eventually to prove 
so. If the theoric invention is susceptible of wide application, it will 
be the basis of a mathematical method" ("Amazing Mazes", 1908, 
4.613)  
  The terminology of these distinction seems not particular well-
chosen, one referring to the process ("theoremation") two to the result 
("theorem-corollary", "major theorem"), and the syncretistic notion 
"theorem-corollary" ill-chosen to indicate that the proposition in 
question is a corollary of one set of axioms, but not of another. The 
overall conceptual argument, however, clearly establishes the 
distinction between theorematic reasoning as such on the one hand, 
the issue of its dependency upon axiom and rule systems on other 
hand – and, finally, the psychological issue of its becoming familiar 
with repetition. As Hintikka (1983, 112) argues, the fact that some 
theorematic proofs become corollarial under other rule systems does 
not at all obliterate the corollarial-theorematic distinction, rather it 
makes clear that the distinction is relative to the logic system used and 
will remain, albeit differently, in any such system. 
 
Types of theorematic diagram experiments 
 
As we have seen, Peirce developed the distinction of corollarial and 
theorematic diagram deductions during the last 15 years of his life, 
and both explicitly and implicitly, he proposed different subtypes of 
theorematic deductions. He explicitly proposed a distinction between 
theorematic reasoning with or without abstractions, and more 
implicitly, distinctions may be inferred from his examples: 
manipulating with the diagram versus adding new material; the new 
elements added being objects, foreign ideas or new points of view. 
Apparently, he realized that all this laid out a whole field for further 
investigation: "I wish a historical study were made of all the 
remarkable theoric steps and noticeable classes of theoric steps. I do 
not mean a mere narrative, but a critical examination of just what and 
of what mode the logical efficacy of the different steps has been. 
Then, upon this work as a foundation, should be erected a logical 



classification of theoric steps; and this should be crowned with a new 
methodeutic of necessary reasoning" ("Amazing Mazes", 1908, 4.615) 
 The ultimate goal for such a research, as so much in Peirce, is 
heuristic ("methodeutic"): it should be undertaken in order to find 
better methods for deduction within the confines of the research 
process as such. The plurality of theorematic subtypes involved, 
already more or less vaguely glimpsed, may be no wonder, given the 
basic negative definition of somehow transgressing the merely 
definition-based corollarial reasoning. In how many ways is it possible 
to transcend corollarial reasoning? Given Peirce's overall continuism, 
we might surmise that these different subtypes of theorematic 
reasoning rather form a continuum from the simplest corollarial 
examples in the one end to the most complicated theorematic 
specimens in the other end. Hintikka proposed one arithmetic 
measuring stick for such a gradual scale – the number of additional 
individuals needed in the proof. But this only goes for one subtype of 
theorematic reasoning, that of the introduction of further quantified 
particulars. 
  Among the many species of theorematic reasoning to 
investigate, we shall propose three logical levels of theorematic 
diagram experiment. Let us go back to the simple Euclidean example 
with the angle sum proof. Here, the introduction of auxiliary lines 
gives a basic example of the introduction of new particular objects. 
They are not in any way extraordinary – their very possibility is 
granted by basic Euclidean axioms and postulates. The only 
extraordinary thing about them is, as Shin argues, the selection of the 
right lines among the infinity of those possible. 
  A higher level of diagram experiment addresses the change of 
selected details of the very formalism making the former experiment 
possible. The famous geometrical example, of course, is the change of 
the parallel axiomxii which made possible the angle sum proof in the 
first place. As is well known, this axiom was originally changed in 
order to try to find an ad absurdum proof: if a negated parallel axiom 
lead to inconsistencies in geometry, this would prove the parallel 
axiom was a theorem of the theory, and the rather cumbersome 
postulate could change status and become a theorem of geometry 
rather than part of the premises. Famously, these attempts failed and 



led, instead, to new, consistent systems of non-Euclidean geometries 
by Bolyai, Lobachevsky, Riemann, etc. in the mid-19 century. The 
parallel axiom could be changed, now, in two basic directions: instead 
of one possible parallel, given a line and a point, no parallel lines 
could be drawn through the point, or an infinity of parallel lines could 
be drawn – resulting in elliptic and hyperbolic geometries, 
respectively. But the change of the parallel axiom is obviously an 
experiment of a wholly different status than the addition of auxiliary 
lines in the angle sum proof. Here, the very definition of which objects 
are taken to be possible in the formalism is changed – and a theorem 
such as the angle sum theorem will consequently be revised – in the 
former case, the angle sum will be more than 180 degrees, in the 
latter, less. Generally, experiments varying axioms, postulates, object 
definitions, transformation rules etc. of a theory must be ascribed a 
different status than the mere introduction of an object allowed by the 
existing rule system. 
  A still higher level, now, may be grasped from the same 
example. After the realization that three different types of geometries 
may result from the change of the parallel axiom, an experiment on an 
even higher level was possible: to vary and synthesize all such 
geometries and organize them on one continuum so that Euclidean 
geometry now forms a point with zero curvature of space on a line 
with a continuum of different elliptic geometries having different 
positive curvatures, hyperbolic geometries having different negative 
curvatures (Bolyai, Riemann). By doing so, those pioneers undertook 
a step characterized by Peirce before he discovered the corollarial-
theorematic distinction: "Mathematical reasoning consists in thinking 
how things already remarked may be conceived as making a part of a 
hitherto unremarked system, especially by means of the introduction 
of the hypothesis of continuity where no continuity had hitherto been 
thought of" ("Review of Spinoza’s Ethic" (1894), in Peirce, 1975–
1987 II,84-85). This third step realizes how Euclidean geometry and 
the infinite number of elliptic and hyperbolic geometries form part of 
"a hitherto unremarked system" given by variation of curvature –
exactly by taking them to be connected by the continuous variation of 
curvature. Of course, still higher syntheses are possible – in geometry, 
the generalizations of the Erlangen program, defining different 



geometries by which invariances their transformation procedures 
allow for (thus finding a higher-order unremarked system of which 
both (non-)Euclidean geometries, projective geometry, and topology 
form a part) – or the generalization by Hilbert, taking the axiomatic 
structure of geometries as fixed while the interpretation of which 
model of objects they refer to could be subject to variation – or, again, 
the generalization of category theory allowing for the coarticulation of 
geometry with different branches of mathematics, etc. Such syntheses, 
however, seem to repeat the two latter types of theorematic 
experiments on higher levels. Thus, the three theorematic levels 
distinguished here - the introduction of a new object, and the two 
types of introducing a foreign idea, the experiment with one or more 
of the basic object or rule definitions, and the establishment of a 
system of different versions of those definitions, seem to to give us a 
hypothesis of three different levels of theorematic diagram 
experiment. 
 
The three levels in applied diagrams 
 
Let us argue by example in discussing diagram experiments of these 
three kinds in applied diagrams, taking the geographical example of 
topographical maps. Here, the tracing of a route on the map from one 
location to another must constitute an example of corollarial 
reasoning. It does introduce new elements – the real or imaginary 
drawing of a line on the map, respecting, in addition to the 
mathematical aspects of the diagram, additional features of physico-
geographical ontology: the trajectory should follow roads, not cross 
lakes, swamps, buildings, mountains etc. Geography, of course, is no 
fully axiomatized science, and the regional ontology of geography 
makes the additional geographical diagram constraints considerably 
more vague than the exact mathematical aspects of the same diagram.  
  A practical example of corollarial map reasoning may be the 
Danish police detective Jørn "Old Man" Holm's computer program, 
immediately plotting on a topographical map huge amounts of cell 
phone information related to suspects:  
 



 
 
 
The map shows calls made in a selected, typically shorter, period; 
calls from the same cell phone are marked by the same colour. This 
diagram representation does not add anything new to previously 
existing information – except for the synthesizing a lot of isolated 
informations on one map, information which would otherwise have to 
be gathered from long lists of single pieces of longitude-latitude 
information of cell phone masts, cell phone numbers and call-up 
times. The synthesis of such information on one and the same diagram 
makes it possible to grasp in one glance gestalt information about cell 
phone trajectories on the map which would otherwise require 
complicated, time-demanding and not immediately convincing 
argumentation in court. Diagrammatic argumentation, by contrast, 
proves highly efficient in court where Holm has been called as an 
expert witness in many severe cases about drug smuggling, trafficking 
etc. Obviously, it becomes harder for a defendant to stay with his 
explanation that he spent the whole day in front of his tv set when a 
diagram proves that his cell-phone travelled from one end of the 
country to the other and back again the same day. Such information 
synthesis on a diagram constitutes an example of corollarial reasoning 



– unproblematically adding to the geometrical diagram aspects of 
points and lines those of the regional ontologies of geography and 
human communication. 
  Now, we may argue, like Peirce above, that the introduction of a 
new object in the diagram, e.g. in the shape of a ruler, marks a first 
small step in theorematic reasoning. It permits us to compare distances 
across the map – and even if having become an everyday utensil in our 
time and automatized in GPS and elsewhere, the ruler must have been 
a major breakthrough when the first distance calculation on a map was 
actually performed. 
 Still higher species of diagram experiment with maps may be 
gathered from science. A recent such example stems from Jared 
Diamond's celebrated volume Guns, Germs, and Steel, tracing the 
roots of domesticated agriculture on Earth since the beginning of the 
neolithic era. A basic argument in the book comes from Diamond's 
diagram experiment with a world map (Diamond 2005, 177):  
 
 

 
 
Diamond's basic observation is that among the three major continental 
complexes, Eurasia, Africa, and the Americas, there is a seminal 
difference – the former is grossly oriented East-West, while the latter 
two are both oriented North-South. This almost trivial diagram 



experiment receives its nontriviality (which qualifies it as a piece of 
theorematic reasoning) from the underlying combination of 
biogeography with human culture in the regional ontology of the 
diagram. The domestication of plants and animals is a watershed event 
in human culture giving rise to the agricultural revolution and the 
development of large-scale, layered societies. Domestication 
presupposes the presence of easily domesticated species and the stable 
human settlement over many generations in the environment favoring 
the survival of these species. But local domestications only get the 
ability to deeply influence the development of human civilization if 
they are able to spread from there to other areas and cultures. 
Biogeographically, species are tied to local climate, – and local 
climate roughly depends on the latitude, forming isotherms across a 
temperature gradient falling from Equator towards the Poles. So the 
piecing together of these pieces of geographical ontology into a 
system depends upon a diagram experiment: once you have 
domesticated a species, where may it spread? Most favourably it 
spreads in the overall East-West direction, along isotherms, keeping 
climate conditions approximately constant – as opposed to traveling in 
the North-South direction where climate changes drastically with 
latitude. By this piece of a priori diagram reasoning – based on the 
combination of biogeographical ontology and the ontology of human 
culture development – Eurasia stands out as a privileged site for the 
original domestication of agricultural species (as opposed to Africa 
which might immediately be taken as a better candiate, original cradle 
of the human species as it is). Empirical findings subsequently 
corroborate this piece of theorematic reasoning: the fertile crescent of 
present-day Israel, Palestine, Syria, Turkey, and Iraq seems to form 
the origin of many of the most important domestic species of the 
whole world, while the Far East comes in second. These areas were 
able to communicate domestications along the East-West axis and thus 
export them to Europe and the Far East. Of course, theorematicity 
must be a less precise concept in empirical examples like this, where 
the ontologies of biogeography and of culture are not exhaustively 
described, but still an argument may be made which runs as follows. 
The complex of three basic propositions 1) domestication of a species 
is a local event, 2) requiring stable human settlement in the natural 



niche of the species 3) and the spread of such species must favor 
isotherms, combined with the diagram experiment of searching the 
world map where the most favorable isotherms occur, constitutes a 
piece of theorematic reasoning. It introduces a new object on the map 
– the possible spreading trajectories of domesticated animal and plant 
species – and thus hypothesizes a general regularity on the globe. This 
experiment on the map involves the combination of concepts from 
different regional ontologies, of geography, biogeography, 
meteorology, cultural history – in some sense, it synthesizes different 
world maps charting findings in these different disciplines as a 
prerequisite of the experiment. Thus, it provides a new argument for 
which cultures were able to survive. But it does not introduce a 
foreign idea. 
  A further geographical example may be the more famous 
diagram experiment by the German geographer and explorer Alfred 
Wegener, ultimately leading to the plate-tectonics of current geology. 
Famously, Wegener was observing a map and noticing that the West 
coast of Africa strangely fit like a puzzle piece into the East coast of 
South America;xiii 
 



 
 
Ill. : The coastline fit of South America and Africa, supplemented with 
geological similarities, from Wegener 1929, p. 73 (the illustration 
adapted by Wegener from Alexander du Toit). 
 
This lead to Wegener's groundbreaking 1912 idea ("Die Entstehung 
der Kontinente") that these continents had once been one – a 
controversial argument initially ridiculed, but later corroborated by the 
findings of geological and biological similarities along the two coasts 



and finally accepted after the discovery of the mid-Atlantic mountain 
range as the decisive indication that the ocean does in fact "grow" in 
the middle. This 
diagram experiment would then belong to a second level as compared 
to the Jared Diamond example. Here, not only new objects or 
connections are introduced – here a completely novel idea is 
introduced, namely that of continents moving over time. Taken on the 
level of pure diagrams, of course, nothing is strange – all Wegener did 
was to take a geometrical object and make a classical rigid Euclidean 
movement in order to let it face another object. This is permitted by 
geometry, of course, but not by the regional ontology of pre-Wegener 
geography. So Wegener's diagram experiment changed an axiom of 
geography, as it were – the assumption of long-term stability of large-
scale features of the Earth surface – and so introduced not only a new 
object, but a foreign idea, that of continents moving on a geological 
timescale. 
  An example of a third level diagram experiment in geography 
might be taken from the same piece of history of science: the 
reinterpretation of the whole of the surface of the Earth in terms of 
moving continental plates, inverting their present movements and 
extrapolating them into the past in order to trace the origins of the 
continents. Mountain ranges now became seen as the results of 
continent collisions and volcanic areas as the result of chasms between 
plates going in different directions. This permitted the systematic, 
coordinated diagram experiment reconstructing the original ur-
continent of Pangaea. Wegener had already presented the idea of the 
ur-continent in his 1915 book; it was baptized Pangaea at a 1928 
conference, and was presented like this in the 1929 version of his book 
Die Entstehung der Kontinente und Ozeane (19) shortly before his 
death in 1930: 
 



 
Here, the particular change of an axiom lead to the systematic 
reinterpretation of the whole conceptual structure of geographical and 
geological ontology, effectively integrating the two into one discipline 
by seeing the same forces at work all over the surface of the Earth – in 
some ways comparable to the systematization of geometries after 



degrees of curvature. 
 
Conclusion 
 
Based on the hypothesis of these three levels of Theorematic 
reasoning: 
 
1) Addition of new individuals to the premises, already allowed for in 
the ontology of the Universe of Discourse 
2) Higher-level experiment with variation of axiom, transformation 
rule, or ontological assumption 
3) Establishment of system of different axioms or rules 
 
– how do they now relate to Hypostatic Abstraction – the procedure 
Peirce described as making a second-level substantive out of a first-
level predicate, thereby creating a new object of thought? As we have 
seen in this paper, Peirce sometimes distinguishes non-abstract from 
abstract theorematic reasonings; but in an early quote he almost 
identifies abstraction with theorematic reasoning. Immediately, the 
talk about individual instantiation in the first theorematic reasoning 
type seems to preclude that abstraction should play any role here. 
Peirce's debatable analysis of lines as abstractions from the trajectories 
of moving particles would make the subsidiary lines in the angle sum 
proof abstract objects added in the proof. In any case, the importance 
of this step lies in the selection of the particular individual lines 
needed for the proof which is not a matter of abstraction. Likewise, 
such lines do not add an idea which could be said to be foreign to the 
theorem to be proved. Maybe the first-level addition of new 
individuals could comprise both abstract and non-abstract cases. 
  Different, however, seems the case of the second level of 
theorematic reasoning, implying that some basic feature in the rule 
system is taken as the object of an experiment, leading to the 
introduction of a "foreign idea". If the parallel axiom is what defines 
the hypostatic abstraction of "parallelness" or "being parallel", then 
the variation of that axiom introduces competing definitions of that 
abstraction – the "foreign ideas" of that example; the abstraction of 
"continental drift" in the map example.  



  The third level, then, would be that of making a whole system 
out of hypostatic abstractions – this system constituting in itself, then, 
a complex hypostatic abstraction on a higher level, involving such 
new hypostatic terms as "curvature of space", or in geology, the whole 
doctrine of "plate tectonics". This level seems characterized by a 
generalized version of Poncélet's continuity principle, "the 
introduction of the hypothesis of continuity where no continuity had 
hitherto been thought of", as Peirce had it – establishing continua of 
hypostatic abstractions from the second level. 
  No doubt, the relation between theorematic reasoning and 
abstraction allows for further sophistications which it lies beyond our 
scope to investigate here. This must be left for future investigations. 



	

i Taking Comte's principle (a science is below a another science from which it 
takes its principles, and above another science whose principles borrows from 
it) as basis for his classifications of the sciences, Peirce places mathematics on 
top as the science from which all other sciences borrow principles. 
ii These equivalences between alternate angles, of course, are granted by 
Euclid's Proposition 29 : If two straight lines are parallel, then a straight line 
that meets them makes the alternate angles equal. 
iii As abstractions come in many levels, and abstract/concrete is not coextensive 
with general/particular, the issue whether the subsidiary lines should be taken as 
abstractions or particulars or both needs not bother us. 
iv The selection of the right elements to add is abductive. In the angle sum case, 
the addition of parallel lines is probably prompted by the previous knowledge of 
Proposition 29 dealing with the relation between parallel lines and the size of 
alternate angles – because the theorem to be proved is about angle sizes. So 
even if the selection itself is not deductive but merely abductive, the abduction 
is motivated by a certain likeness between the theorem and possibilities offered 
by previous theorems proved. 
v A parallel quote, emphazising the theorematic step as the addition of a new 
idea, is the following: "I shall term the step of so introducing into a 
demonstration a new idea not explicitly or directly contained in the premisses of 
the reasoning or in the condition of the proposition which gets proved by the aid 
of this introduction, a theoric step." ("Amazing Mazes", 1908,  4.613) 
vi The shortest presentation is probably: “For mathematical reasoning consists in 
constructing a diagram according to a general precept, in observing certain 
relations between parts of that diagram not explicitly required by the precept, 
showing that these relations will hold for all such diagrams, and in formulating 
this conclusion in general terms. All valid necessary reasoning is in fact thus 
diagrammatic.” (“Lessons from the History of Science”, 1896, 1.54) The object 
of mathematics will be pure diagrams of any kind, while ordinary reasoning as 
well as the empirical sciences will use diagrams applied in being constrained by 
existing relations – empirical data and regional ontology – as well. 
vii In scholastic proof theory "demonstration that" differs from "demonstration 
why" which is able to go all the way from definitions. "Demonstration that" is 
taken to fall short of this ideal; Peirce obviously takes explanations not 
reducible to definitions to require more complicated machinery. 
viii A detailed attempt at developing the distinction between corollarial and 
theorematic reasoning in "The Logic of History" (1901, NEM IV) takes the 
proof of (x + y) + z = x + (y + z) as example of the former and the proof that 
"every multitude is less than a multitude" (≈ there is no largest set) as example 
of the latter. The overall argument, however, is not very clear. Especially the 
latter proof which seems to be a sort of diagonal argument implying a power set 

																																																								



																																																																																																																																																																												
construction is not very clearly presented, and even if Peirce concludes it 
"requires the invention of an idea not at all forced upon us by the terms of the 
thesis", he does not make explicit what that new idea should be, apart from not 
being derivable from the definition of the concept "fewer" (a clearer example of 
Peirce's version of Cantor's power set theorem can be found a few years earlier 
in"The Logic of Relatives", 1897, 3.548). Similarly, at the end of "Logic of 
History", Peirce has a brief and clear summary of the Power Set Theorem: "I 
proved that there is no maximum multitude by considering the collection of all 
possible collections of the numbers of a collection. Now a collection is an 
abstraction ..." (1901, NEM IV, 11), but still there is no indication of what the 
"new idea" introduced should be. Certainly not the abstraction of "collection" 
which is presupposed by the multitudes of the premisses – rather the power set 
notion of the set of all possible subsets of a given set. Peirce seems to have 
realized the early discussion of corollarial/theorematic in "The Logic of 
History" was less than satisfying; according to the Robin catalogue on the Ms. 
(691), Peirce added the following note to the Ms.: "These pages are to be used 
in the chapter of the Logic treating Deductive Reasoning. But the theory needs 
completion." 
ix Here, I quote Ms. 754 from Hoffmann (forthcoming) as the relevant page is 
missing from the Microfilm edition where it seems to belong between pages 5 
and 6. 
x Maybe the very concept of theorematic reasoning is necessarily open – given 
the inexhaustibility of mathematics, it may not be granted we should be able to 
chart all possible subtypes of such reasoning beforehand? 
xi A related issue is the degree of conscious access to reasoning processes: "If, 
however, as the English suppose, the feeling of rationality is the product of a 
sort of subconscious reasoning--by which I mean an operation which would be a 
reasoning if it were fully conscious and deliberate--the accompanying feeling of 
evidence may well be due to a dim recollection of the experimentation with 
diagrams." ("Minute Logic", 1902, 2.172) The experience of evidence resulting 
from rational reasoning may, in some cases, depend upon subconscious 
reasoning. A recurring argument in Peirce, however, points to the fact that such 
reasoning – and, even more, that of computers – lacks self-control as the 
hallmark of real reasoning. As to mechanization of reasoning, Peirce often 
discusses the corollarial/theorematic distinction with reference to computers 
("logic machines"). His overall idea is that the former will generally be 
mechanizable, while the latter lie beyond mechanization because their 
introduction of new elements by experiment requires creativity and ingenuity. 
These ideas might be seen as a vague anticipation of later discoveries of 
decision limitations in the philosophy of mathematics and computation (Gödel's 
incompleteness theorem, or Turing's related halting problem), but they are not 
simply equivalent. These limitations has another character than Peirce's 
distinction, because they limit the range even of purely mechanical decision 



																																																																																																																																																																												
procedures which Peirce would, in all probability, categorize as corollarial. 
xii Strictly speaking, the parallel postulate; it has become common usage to call 
it an axiom. 
xiii Wegener was not the first to observe the similarity between the coastlines 
which seems to have been a theme already in the 17. Century. He seems to have 
been the first, however, to actually take the similarity as an argument, investing 
geological ontology in his diagram experiment.  


