Physics 861 \{ Fall 01
 Problem set 10 - Due Thursday, Nov 29

1. The stress-strain relation in an isotropic solid can be written

$$
\begin{equation*}
E_{i j}=A\left(S_{i j}+p_{+j}\right)+A Q_{ \pm+j} \tag{1}
\end{equation*}
$$

where $\mathrm{p}=\mathrm{i}\left(\mathrm{S}_{11}+\mathrm{S}_{22}+\mathrm{S}_{33}\right) \Rightarrow$ is the pressure.
(a) Relate the constants A and A^{0} to the bulk modulus B and shear modulus ${ }^{1}$.
(b) Relate the constants A and A^{0} to Y oung's modulus E and Poisson's ratio O° :
[T he next questions can be answered independently of (a) and (b]
(c) In the limit (near melting, perhaps) when an isotropic solid becomes like a liquid with bulk modulus B , what are the values of $\mathrm{E},{ }^{1}$ and 0 ?
(d) In a cubic crystal, the Cauchy relations reduce to $\mathrm{C}_{12}=\mathrm{C}_{44}$. W hen C_{11} i $\mathrm{C}_{12}=$ ${ }^{2} \mathrm{C}_{44}$ the crystal becomes an isotropic solid. K nowing this, - nd the values of $\mathrm{E},{ }^{1}$ and \cong for an isotropic solid of bulk modulus B when C auchy's relations are satis ${ }^{-}$ed.
(e) You will see from the above that a solid that obeys Cauchy's relations cannot transform continuously into a liquid. Why not?
2.

Problem 2, page 486, of Ashcroft - M ermin
3.

Problem 7, page 640, of Ashcroft - M ermin.
(a) Answer the questions posed by Ashcroft- M ermin.
(b) In eq. (30.36), what is the value of G for an isotropic crystal in terms of the standard elastic constants B; E; ${ }^{\mathbf{1}} \boldsymbol{\circ}$ ㅇ? Try to get the simplest answer, rather than an awful combination of constants.
(c) What is the displacement u_{z} as a function of x and y ? Here z is the dislocation axis and $r^{2}=x^{2}+y^{2}$. A ssume, again, an isotropic crystal.
(d) A ssume that the dislocation is paral lel to one of the axes in a cubic crystal. Recall that the equations of elastic equilibrium are, quite generally,

$$
\begin{align*}
& \text { X } \\
& \text { © }_{\mathrm{ij}}=@ \mathrm{x}_{\mathrm{j}}=0 \tag{2}\\
& \text { j }
\end{align*}
$$

Is u_{z} of the same form as in part (c), for the appropriate value of G , and how is G related to $\mathrm{C}_{11} ; \mathrm{C}_{12}$ and C_{44} ?

