State of the Black Sea Spiny Dogfish (Squalus acanthias Linnaeus, 1758

1. Basic Identification Data

Scientific name: Squalus acanthias	Common name: Spiny/Picked Dogfish	ISSCAAP Group: 38
Geographical sub-area: 29		
Stock assessment method: trawl survey, VIT and YPRLEN 2.1		
Authors: Gheorghe RADU and Valodea MAXIMOV with consultancy for data from STECF/BS stock assessment working group		
Affiliation:National Institute for Marine Research and Development "Grigore Antipa" Constanta		

2. Stock identification and biological information

2.1 Stock unit

Piked dogfish inhabits the whole Black Sea shelf at the water temperatures 6 $15^{\circ} \mathrm{C}$ - Fig. 2.1.1 and Fig 2.1.2. It undertakes extensive migrations. In autumn feeding migrations are aimed at the grounds of the formation of the wintering concentrations of anchovy and horse mackerel in the vicinity of the Crimean, Caucasus and Anatolian coasts. With their disintegration picked dogfish disperses all over the shelf. Reproductive migrations of viviparous picked dogfish take place towards the coastal shallows with two peaks of intensity - in spring and autumn. The autumn migration for reproduction covers more individuals usually (Radu G.and Radu E., 2008).

Piked dogfish belongs to long-living and viviparous fish, therefore reproduction process includes copulation and birth of fries. Near the coasts of Bulgaria, Georgia, Romania, Russian Federation and Ukraine the intense spawning season is in March-May. Two peaks of birth of juveniles can be distinguished - spring period (April-May) and summer-autumn (August-September, Serobaba et al., 1988). To give birth of juveniles the females approach the coastal zone in depth $10-30 \mathrm{~m}$ (Maklakova, Taranenko, 1974). At this time males keep separately from females in depth $30-50 \mathrm{~m}$. The birth of picked dogfish juveniles takes place at the temperature of water $12-18^{\circ} \mathrm{C}$.

In autumn piked dogfish aggregates into large schools, accompanying anchovy and horse mackerel, which migrate to wintering grounds along eastern and western coast. During wintering the densest concentrations of picked dogfish are observed, where picked dogfish feeds intensively. They are associated, above all, with major wintering areas of anchovy in the waters of Georgia and Turkey.

In the North-western Black Sea in the waters of Ukraine and Romania in depth from $70-80 \mathrm{~m}$ down to $100-120 \mathrm{~m}$ abundant wintering concentrations of picked dogfish are also observed, where they are located on the grounds of whiting and sprat concentrations (Kirnosova, Lushnicova, 1990).

(Radu G., 2003)

Fig. 21.1 Distribution and migration routes of the piked dogfish at Romanian littoral (Radu et al.,2008, 2010).

(Ivanov L. and Beverton R.J.H., 1985)
Fig. 2.1.2 Distribution and migration routes of the piked dogfish at Black Sea level.

2.2 Growth and maturity

Piked dogfish is a major demersal predator, reaching in the Black Sea the length of about 1.50 m . According to investigations conducted in former USSR waters, Kirnosova, (1993) found that the piked dogfish maximum age is 20 years. The parameters in VBGF and natural mortality parameters are:
Males: $\mathrm{K}=0.029 \mathrm{t}_{0}=-3.84 ; \mathrm{L}_{\infty}=272 \mathrm{~cm} ; \mathrm{W}_{\infty}=47 \mathrm{~kg} ; \mathrm{M}=0.20 \div 0.23$
Females: $\mathrm{K}=0.026 \mathrm{t}_{0}=-3.32 ; \mathrm{L}_{\infty}=303 \mathrm{~cm} ; \mathrm{W}_{\infty}=196 \mathrm{~kg} ; \mathrm{M}=0.15 \div 0.20$
Age and length, at which 50% of individuals are mature, are 10.49 years and 87.57 cm for males and 11.99 years and 102.97 cm for females, respectively. Mean biennial fecundity is 19.4 eggs and 12.9 pups. The linear relationship between fecundity and length is: $F_{e}=0.09 \times$ TLp $+2.12(r=0.5)$ for pups and $F_{0}=0.27 \times T \operatorname{Lp}-21.59(r=0.7)$ for eggs
(Demirhan and Seyhan, 2007).
Ukrainian data for the period 1971-2001 are: $\mathrm{L}_{\infty}=282$; $\mathrm{t}_{0}=-3.6684$ (year); a = $0.00000677 ; b=2.9593$. For period $2002-2012 a=0.00000640 ; b=3.0000$

Romanian data for 2011 are the following: $L \infty=136.3 \mathrm{~cm}$; $\mathrm{t}_{0}=-1.30$ (year); $\mathrm{a}=$ $0.0117 ; \mathrm{b}=2.76694 ; \mathrm{k}=0.191$ (year $^{-1}$); $\mathrm{M}=0.258$ (Radu, 2011).

Life-history parameters and food diet of picked dogfish (Squalus acanthias) from the SE Black Sea were studied (Demirhan and Seyhan, 2007). Picked dogfish at age 1 to 14 years old were observed, with dominance of 8 years old individuals for both sexes. The length-weight relationship was $\mathrm{W}=0.0040^{*} \mathrm{~L}^{2.95}$ and the mean annual linear and somatic growth rates were 7.2 cm and 540.1 g , respectively. The estimated parameters in VBGF were: $\mathrm{W}_{\infty}=12021$ (g), $\mathrm{L}_{\infty}=157$ (cm), $\mathrm{K}=0.12$ (year $^{-1}$) and $\mathrm{t}_{0}=-1.30$ (year). The size at first maturity was 82 cm for males and 88 cm for females. Mean biennial fecundity was also found to be 8 pups per female. The relationships fecundity-length, fecundity-weight and fecundity-age were found to be:
$F=-17.0842+0.2369 * \mathrm{~L}(\mathrm{r}=0.93)$
$F=0.3780+0.0018^{*} W(r=0.89)$
$F=-0.7859+1.1609^{*} \mathrm{~A}(r=0.94)$, respectively.
In conformity with Ukrainian data, the maturity ogive for last years is the following:

Year/ Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
$\mathbf{2 0 1 1}$	0	0	0	0	0	0	0	0	0.10	0.25	0.45	0.55	0.75	0.95	1.0	1.0	1.0	1.0	1.0

Maturity ogive from Romanian data (Radu et al., 2011b)

Year/ Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
$\mathbf{2 0 1 1}$	0	0	0.45	0.7	0.95	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table2. 1: Maximum size, size at first maturity and size at recruitment at Romanian littoral in 20102011

Somatic magnitude measured (LH, LC, etc) ${ }^{*}$	Lt	Units *	cm				
Sex		Fem	Mal	Both	Unsexed		
Maximum size observed			157		Reproduction season	Spring and autumn	
Size at first maturity	88	82	85		Reproduction areas	BS shelh, coastal zone	
Recruitment size			75		Nursery areas	coastal zone	

Table-2.2: Growth and length weight model parameters

M (vector by length or age)				$\mathrm{M}=0.1-0.2$	

sex ratio (\% females/total)	15.6%

In Romanian waters the overall sex ratio of males was significantly positive with a rate of 84.29% compared to only 15.61 females (Maximov et al., 2008b; 2010a,b). In Bulgarian waters, the majority of the piked dogfish were females.

Fig.2.2.1: Structure on length classes for dogfish in 2011, total catches in Romanian area

3. Fisheries information

3.1 Description of the fleet

3.1.1 Table Bulgarian and Romanian Dogfish catches in 2008-2011

Country	Year	Vessel length	Gear	Mesh size range	Fishery	GSA	Species	$\begin{aligned} & \text { Catche } \\ & \text { (t) } \end{aligned}$	Discards (t)
BUL	2008	VL0006	LLS	400DXX	DEMSP	SA 29	DGS	0.7	0
BUL	2008	VL0612	LLS	400DXX	DEMSP	SA 29	DGS	7.9	0
BUL	2008	VL1218	LLS	400DXX	DEMSP	SA 29	DGS	7.3	0
BUL	2008	VL1824	OTM	20D40	SPF	SA 29	DGS	6.8	0
BUL	2009	VL2440	OTM	20D40	SPF	SA 29	DGS	31.4	0
BUL	2009	VL0006	LLS	400DXX	MDPSP	SA 29	DGS	2.4	0
BUL	2009	VL0612	LLS	400DXX	MDPSP	SA 29	DGS	3.4	0
BUL	2009	VL1218	LLS	400DXX	MDPSP	SA 29	DGS	2.7	0
BUL	2010	VL1218	OTM	20D40	SPF	SA 29	DGS	53	0
BUL	2010	VL1824	OTM	20D40	SPF	SA 29	DGS	2.9	0

BUL	2010	VL0006	LLS	400DXX	MDPSP	SA 29	DGS	3.9	0
BUL	2010	VL0612	LLS	400DXX	MDPSP	SA 29	DGS	50.8	0
BUL	2011	VL0612	LLS	400DXX	MDPSP	SA 29	DGS	4.9	0
BUL	2011	VL0612	LLD	400DXX	MDPSP	SA 29	DGS	8.8	0
BUL	2011	VL0612	OTM	20D40	SPF	SA 29	DGS	1	0
BUL	2011	VL1218	GNS	50D100	MDPSP	SA 29	DGS	1	0
BUL	2011	VL1218	LLS	400DXX	MDPSP	SA 29	DGS	23.4	0
BUL	2011	VL1218	OTM	20D40	SPF	SA 29	DGS	6.4	0
BUL	2011	VL1218	LLD	400DXX	MDPSP	SA 29	DGS	19.9	0
BUL	2011	VL1824	LLS	400DXX	MDPSP	SA 29	DGS	9.9	0
BUL	2011	VL1824	OTM	20D40	SPF	SA 29	DGS	1.9	0
BUL	2011	VL1824	LLD	400DXX	MDPSP	SA 29	DGS	1.3	0
BUL	2011	VL2440	OTM	20D40	SPF	SA 29	DGS	3018	0
ROM	2008	VL1224	GNS	100D400	DEMF	SA 29	DGS	1.054	0
ROM	2008	VL0612	GNS	100D400	DEMF	SA 29	DGS	8.079	0.103
ROM	2008	VL0006	GNS	100D400	DEMF	SA 29	DGS	1.047	0
ROM	2009	VL2440	GNS	100D400	DEMF	SA 29	DGS	0.415	0
ROM	2009	VL1824	GNS	100D400	DEMF	SA 29	DGS	0.06	0
ROM	2009	VL0612	GNS	100D400	DEMF	SA 29	DGS	3.763	0
ROM	2009	VL0006	GNS	100D400	DEMF	SA 29	DGS	0.092	0
ROM	2010	VL0612	GNS	100 D 400	DEMF	SA 29	DGS	3.069	0
ROM	2011	VL1824	GNS	100D400	DEMF	SA 29	DGS	0.5	0
ROM	2011	VL0612	LLS	none	DEMF	SA 29	DGS	1.766	0
ROM	2011	VL0612	GNS	100D400	DEMF	SA 29	DGS	1.544	0.26
ROM	2011	VL0006	GNS	100D400	DEMF	SA 29	DGS	0.155	0

In 2011, only Romania gives data regarding number of gillnets on vessel length:
Table 3.1.2 Number of fishing gillnets for dogfish in the Romanian area

Vessel length (m)	Number of gillnets for dogfish
$<6 \mathrm{~m}$	10
$6-12 \mathrm{~m}$	205
$18-24 \mathrm{~m}$	50
Total	265

In last years, only Romania gives data regarding commercial CPUE for 2009-2011 period and CPUE in at sea surveys for 2010 and 2011.

Table 3.1.3 Romanian CPUE in commercial fishing.

YEAR	Fishing	CPUE
2009		
LOA	$6-12$	gillnets
LOA	$0.24 \mathrm{~kg} / \mathrm{gear} /$ day	
LOA	24-40	gillnets
gillnets	$0.40 \mathrm{~kg} /$ gear/day	
$\mathbf{2 0 1 0}$		

LOA	$6-12$	gillnets	$0.18 \mathrm{~kg} /$ gear/day
2011			
LOA	$6-12$	gillnets	$0.248 \mathrm{~kg} /$ gear/day
LOA	$18-24$	gillnets	$0.91 \mathrm{~kg} /$ gear/day

3.3 Catches as used in the assessment
3.3.1 Catches as used in the assessment - 2011 data (N)

Age class	Bulgaria	Georgia	Romania	Russian Federation	Turkey	Ukraine
$\mathbf{1}$						
$\mathbf{2}$						
$\mathbf{3}$						
$\mathbf{4}$						
$\mathbf{5}$						
$\mathbf{6}$						
$\mathbf{7}$	36	1	4	3	25	29
$\mathbf{8}$	152	6	16	14	106	122
$\mathbf{9}$	168	7	18	16	117	134
$\mathbf{1 0}$	460	18	48	44	320	369
$\mathbf{1 1}$	633	25	67	60	441	508
$\mathbf{1 2}$	555	22	58	53	387	446
$\mathbf{1 3}$	752	30	79	71	524	604
$\mathbf{1 4}$	604	24	63	57	420	484
$\mathbf{1 5}$	652	26	69	62	454	523
$\mathbf{1 6}$	869	34	91	82	605	697
$\mathbf{1 7}$	503	20	53	48	350	403
$\mathbf{1 8}$	190	7	20	18	132	152
$\mathbf{1 9}$	48	2	5	5	34	39
$\mathbf{2 0}$						
Total	5622	222	591	533	3914	4511

3.3.2 Catches as used in the assessment - average 1989-2011 data (N)

Age class	Bulgaria	Georgia	Romania	Russian Federation	Turkey	Ukraine
$\mathbf{1}$	0	0	0	0	0	0
$\mathbf{2}$	0	0	0	0	0	0
$\mathbf{3}$	0	0	0	0	0	0
$\mathbf{4}$	0	0	0	0	0	0
$\mathbf{5}$	0	0	0	0	0	0
$\mathbf{6}$	0	0	0	0	0	0
$\mathbf{7}$	0	60	0	34	1019	232
$\mathbf{8}$	0	253	0	143	4298	979
$\mathbf{9}$	0	279	0	157	4744	1081
$\mathbf{1 0}$	0	767	0	432	13021	2967
$\mathbf{1 1}$	0	1055	0	595	17924	4083
$\mathbf{1 2}$	$\mathbf{4 6 2}$	926	133	522	15727	3583

$\mathbf{1 3}$	595	1254	170	707	21299	4852
$\mathbf{1 4}$	3039	1007	871	568	17096	3895
$\mathbf{1 5}$	2180	1087	625	613	18465	4207
$\mathbf{1 6}$	198	1449	57	817	24609	5607
$\mathbf{1 7}$	132	838	38	472	14231	3242
$\mathbf{1 8}$	0	317	0	179	5380	1226
$\mathbf{1 9}$	0	81	0	45	1369	312
$\mathbf{2 0}$	0	0	0	0	0	0
Total	$\mathbf{6 6 0 6}$	$\mathbf{9 3 7 3}$	$\mathbf{1 8 9 3}$	$\mathbf{5 2 8 5}$	$\mathbf{1 5 9 1 8 2}$	$\mathbf{3 6 2 6 5}$

3.2 Historical trends

In the Black Sea the largest catches of piked dogfish are along the coasts of Turkey, although this fish is not a target species of fisheries, being yielded as by-catch in trawl and purse seine operations mainly in the wintering period. In the 1989-1995 annual catches of Turkey are 1055-4558 t (Shlyakhov, Daskalov, 2008). In subsequent years, they have decreased about 2 times and did not exceed 2400 t .

In the waters of Ukraine most of piked dogfish is harvested in spring and autumn months by target fishing with gill-nets of 100 mm mesh-size, long-lines, and as by-catch of sprat trawl fisheries. As in Turkish waters, in the last 20 years the maximum annual catches of picked dogfish are observed in 1989-1995, reaching 1200-1300 t. After 1994 the catches went down being between 20 and 200 t .

In the rest of countries piked dogfish is harvested mainly as by-catch, annual catches are usually lower than the Ukraine. The maximum annual catches of picked dogfish in 1989-2005 were: Bulgaria - 126 t (2001), Georgia - 550 t (1998), Romania - 52 t (1992), Russian Federation - 183 t (1990).

It should be noted that in the waters of Bulgaria, the highest catches were observed in the early 2000's. In Romania dogfish is caught mainly as by-catch of the sprat trawl fishery. The catches decreased very much because of decreasing of the trawling effort (Maximov et al., 2008, 2010; Radu et al., 2009, 2010).

In Turkey piked dogfish lost its commercial importance in recent years. In the last 20 years, the decrease of dogfish landing may be may be due to over-fishing (Demirhan , phD thesis,)

Table 3.2 Picked Dogfish catches in the Black Sea area (BSC2011, BS stock assessment working group, 2011,2012)

Year	Bulgaria	Georgia	Romania	Russian Federation	Turkey	Ukraine	TOTAL
$\mathbf{1 9 8 9}$	28	217	30	135	4558	1191	$\mathbf{6 1 5 9}$
$\mathbf{1 9 9 0}$	16	128	45	183	1059	1330	$\mathbf{2 7 6 1}$
$\mathbf{1 9 9 1}$	21	18	26	67	2017	775	$\mathbf{2 9 2 4}$
$\mathbf{1 9 9 2}$	15	14	52	15	2220	595	$\mathbf{2 9 1 1}$
$\mathbf{1 9 9 3}$	12	131	6	5	1055	409	$\mathbf{1 6 1 8}$
$\mathbf{1 9 9 4}$	12	45	2	11	2432	148	$\mathbf{2 6 5 0}$
$\mathbf{1 9 9 5}$	80	31	7	90	1562	67	$\mathbf{1 8 3 7}$
$\mathbf{1 9 9 6}$	64	71	5	19	1748	44	$\mathbf{1 9 5 1}$
$\mathbf{1 9 9 7}$	40	1	5	9	1510	20	$\mathbf{1 5 8 5}$
$\mathbf{1 9 9 8}$	28	550	5	6	855	38	$\mathbf{1 4 8 2}$
$\mathbf{1 9 9 9}$	25	18	5	9	1478	94	$\mathbf{1 6 2 9}$
$\mathbf{2 0 0 0}$	102	21	5	12	2390	71	$\mathbf{2 6 0 1}$
$\mathbf{2 0 0 1}$	126	27	5	27	576	134	$\mathbf{8 9 5}$
$\mathbf{2 0 0 2}$	100	65	5	19	316	97	$\mathbf{6 0 2}$

$\mathbf{2 0 0 3}$	51.3	40	5	29	184	172	$\mathbf{4 8 1 . 3}$
$\mathbf{2 0 0 4}$	47.2	31	5	34	211	93	$\mathbf{4 2 1 . 2}$
$\mathbf{2 0 0 5}$	14.5	35	5	19	102	75	$\mathbf{2 5 0 . 5}$
$\mathbf{2 0 0 6}$	6.226	10	9	17	193	67	$\mathbf{3 0 2 . 2 2 6}$
$\mathbf{2 0 0 7}$	23.98	2	17	32	91	45	$\mathbf{2 1 0 . 9 8}$
$\mathbf{2 0 0 8}$	22.75	0.4	10	59	35	79	$\mathbf{2 0 6 . 1 5}$
$\mathbf{2 0 0 9}$	9.46	1.5	4	14	159	47	$\mathbf{2 3 4 . 9 6}$
$\mathbf{2 0 1 0}$	42	1.5	3	8.54	16	27	$\mathbf{9 8 . 0 4}$
$\mathbf{2 0 1 1}$	38.06	1.5	4	3.61	26.5	30.537	$\mathbf{1 0 4 . 2 0 7}$

3.3 Management regulations

Romanian fisheries regulatory framework includes between others the following laws:

- Law on Fishing Fund, Fishery and Aquaculture No. 23 /2008;
- Annual Order on the Fishing Prohibition;
- Order no. 342/2008 on minimal size of the aquatic living resources;
- Order nr. 449/2008 on technical characteristics and practice conditions for fishing gears used in the commercial fishing.

Regarding Spiny dogfish, for protecting the reproduction and rehabilitation of the stock were adopted the following measures (Radu G. and Nicolaev S., 2010):

- in period April - June, 60 days, the fishing is prohibited;
- it is banned to use the trawl in marine zone under the 20 m depths;
- mesh size for dogfish gillnets: $\mathrm{a}=100 \mathrm{~mm}, 2 \mathrm{a}=200 \mathrm{~mm}$;
- minimum admissible length in catches is 120 cm (TL)

In the Black Sea Fishes list IUCN status presented on the Black Sea Commission website (www.blacksea-commission.org) is included and categorized Squalus acanthias as follows (Table 3.3.1.1) in the BSC, 2011:

Table 3.31.1. .The IUCN status of spiny dogfish in the Black Sea countries

Country	BG	GE	RO	RF	TR	UK
IUCN status	N/A	LC	NT	N/A	EN	NT

LC - least concerned; NT- near threatened; EN- endangered; N/A - no data

3.4 Reference points

Reference Points	F	YPR	SSB/R	TSB/R
F-zero	0.000000	0.000000	19036.640242	27482.638943
F0.1	0.227000	1630.065081	7333.681895	15746.881160
F-max	1.100000	1854.713847	1905.248354	10231.715141
F at 25\% of MSP	0.389000	1790.293295	4768.058109	13161.086947

Mean Fc $=0.255$ for the period 1989-2011
Mean Fc = 0.262 for 2011

4 Fisheries independent information

4.1 Swept area method
4.1.1 Brief description of the chosen method and assumptions used

In the Romanian waters was used the bottom trawl 22/27-34 with horizontal opening of 13 m . The average speed of the vessel was of $2.3-2,5$ knots, the trawling time was standardized at 60 minutes. Have been registered the following elements: geographical coordinates for trawling points, water depth (m), the average trawling speed (knots), time of trawling, total catch and structure on species. For every trawling was taken one random sample for small size species and for big species like turbot and dog-fish each specimens were registered and measured.

Having data regarding horizontal opening of the trawl, trawling speed and time have been calculated the surveyed area, catch per surveyed area, extrapolated catch per square Nm for each species and biomass.

4.1.2 Spatial distribution of the resources

In Romanian waters the agglomerations are distributed on the entire shelf, but especially at depth deeper than 20 m . Two peaks of intense spawning and of birth of juveniles are in spring and autumn period at Romanian littoral.

Fig. 4.1.2.1. Distribution of picked dogfish agglomeration during demersal trawl survey in 2009, Romanian Black Sea area.

Fig. 4.1.2.2. Distribution of piked dogfish catches during demersal trawl survey in 2010, Romanian Black Sea area.

2011- Spring

2011- autumn

Fig 4.1.2.33.1.1.3. Distribution of piked dogfish catches during demersal trawl survey in 2011, Romanian Black Sea area.

4.1.3 Historical trends

In the former USSR and later in Ukraine, to assess the piked dogfish stock, the swept area technique using bottom trawl surveys, as well as dynamic model of an isolated population, were applied (Shlyakhov, 1997). The abundance and biomass of picked dogfish in the waters adjacent to Georgia, the Russian Federation and Ukraine were assessed. Whole population of picked dogfish in 1972 - 1992 was assessed by VPA. The obtained results from stock assessments for whole Black Sea (Prodanov et al., 1997, Daskalov 1998), the former USSR and Ukrainian waters (Shlyakhov, Charova, 2006) in 1989-2005 are presented in table 4.1.3.1
According to the assessments, in 1989 - 2005 the stock of picked dogfish in the shelf area of the Black Sea and in Ukraine waters tends to be gradually reduced. Observed dynamics
of stock corresponds with increasing CPUE in Turkish waters.
Table. 4.1.3.1 Commercial stock of picked dogfish in the Black Sea and along the coast of the former USSR and in the water of Ukraine, th. tones.

Years	Whole Black Sea shelf	Waters of Ukraine, the Russian Federation and Georgia		Waters of Ukraine	
	VPA	Trawl survey		Modeling	Trawl survey
Modeling					
$\mathbf{1 9 8 9}$	117.8	58.5	63.5	34.6	-
$\mathbf{1 9 9 0}$	112.9	58.7	63.2	48.8	-
$\mathbf{1 9 9 1}$	97.9	$17.2 / 69.9^{*}$	64.0	$14.4 / 58.5^{*}$	-
$\mathbf{1 9 9 2}$	90.0	62.9	60.3	56.9	-
$\mathbf{1 9 9 3}$	-	-	57.1	30.2	-
$\mathbf{1 9 9 4}$	-	-	52.9	36.0	42.1
$\mathbf{1 9 9 5}$	-	-	-	-	37.6
$\mathbf{1 9 9 6}$	-	-	-	-	32.1
$\mathbf{1 9 9 7}$	-	-	-	-	31.0
$\mathbf{1 9 9 8}$	-	-	-	32.0	30.8
$\mathbf{1 9 9 9}$	-	-	-	-	28.0
$\mathbf{2 0 0 0}$	-	-	-	-	24.3
$\mathbf{2 0 0 1}$	-	-	-	-	22.3
$\mathbf{2 0 0 2}$	-	-	-	-	21.0
$\mathbf{2 0 0 3}$	-	-	-	-	22.1
$\mathbf{2 0 0 4}$	-	-	-	-	22.3
$\mathbf{2 0 0 5}$	$\boldsymbol{-}$		-	-	-

* stock assessment is reduced to the average area of the registration (survey) zone.

According to the assessments of Prodanov et al. (1997) and Daskalov (1998) picked dogfish stock has increased until 1981, after that it began to decrease. The authors explained the increase in picked dogfish with the increased abundance of main food species (whiting, sprat, anchovy and horse mackerel), and its subsequent reduction partially with intensification of the dogfish fishery during the period 1979-1984.

In Romanian waters the swept area method was applied for stock assessment of piked dogfish. Results for estimated piked dogfish biomasses in spring and autumn of 2009-2011 in Romanian waters are given in the following tables (Maximov et al.2010a,b; Radu et al. 2010, 2011a,b, Radu, 2011). In May 2009 the biomass of dogfish was evaluated at 741 t , extrapolated to 967 t for the shelf till 50 Nm from the shore. In May 2010 the biomass of dogfish was evaluated at 2437 t , extrapolated to 5635 t for the shelf till 50 Nm from the shore. In the autumn period the biomass agglomeration increased at 2541 t (2009) and 13051 tons (2010).

Table 4.1.3.2 Assessment of piked dogfish biomass in spring 2009 by demersal trawl, Romanian Black Sea area.

No. polygon	Surveyed area $\left(\mathbf{N m}^{2}\right)$	Range (t/Nm $\left.\mathbf{N}^{\mathbf{2}}\right)$	Average $\left(\mathbf{t} / \mathbf{N m}^{2}\right)$	Total t in polygon (t)	Notes
1	$1,227.13$	0.00	0.00	0.0	Extrapolated
2	242.25	$0.27-0.43$	0.35	$84.78 \quad$ at 967 t for	
3	165.00	$0.23-0.28$	0.26	42.90	the shelf till
4	116.00	0.28	0.28	32.48	50 Nm from
5	724.25	0.530 .76	0.63	456.27	shore
6	478.25	$0.23-0.28$	0.26	124.35	
7	265.63	0.00	0.0	0.00	

| Total | $3,218.5$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Table 4.1.3.2 Assessment of dogfish agglomeration in the Romanian area in spring 2010, sampling gear demersal trawl

No. polygon	Polygon area (Nm^{2})	Range ($\mathbf{t} / \mathbf{N m}^{2}$)	Average ($\mathrm{t} / \mathrm{Nm}^{2}$)	Total tons in polygon(t)	Total on the shelf (t)
1	630.50	0.00	0.00	0.00	Extrapolated at 5635 tons for the shelf till 50 Nm from shore (about 5000 Nm2), including the new area (near Snake Island)
2	567.75	0.21-1.41	0.63	357.68	
3	216.75	0.24-0.68	0.47	101.87	
4	1155.00	0.56-5.62	2.11	2437.00	
Total	2570			2897.00	

Table 4.1.3.3. Assessment of picked dogfish biomass by demersal trawl in autumn 2009, Romanian Black Sea area.

No. polygon	Surveyed Area(Nm^{2})	Range ($\mathbf{t} / \mathbf{N m}{ }^{\mathbf{2}}$)	Average ($\mathrm{t} / \mathrm{Nm}^{2}$)	Total tin polygon (t)	Notes
1	926.25	0.26-0.81	0.41	379.76	Extrapolated at $2,541 \mathrm{t}$ for the shelf till 50 Nm from shore
2	2,404.13	0.39-2.04	0.68	1,634.81	
Total	3,330			2,015	

Table 4.1.3.4 Assessment of dogfish agglomeration in the Romanian area in the autumn 2010, sampling gear demersal trawl

No. polygon	Polygon area $\left(\mathbf{N m}^{\mathbf{2})}\right.$	Range (t/ $\mathbf{N m}^{\mathbf{2})}$	Average $\left(\mathbf{t} / \mathbf{N m}^{\mathbf{2})}\right.$	Total tons in polygon(t) $)$	Total on the shelf $\mathbf{(t)}$
1	40	164.48	164.48	6579.2	Extrapolated at 13051 tons for the shelf till 50
2	56	5.82	5.82	325.9	Nm from shore (about
3	1201	$0.00-0.89$	0.46	552.5	5000 Nm2), including
4	315	0.00	0.00	0.00	the new area (near
5	570	0.00	0.00	0.00	Snake Island)
6	868	$0.28-1.01$	0.58	503.44	
TOTAL	$\mathbf{3 0 5 0}$			$\mathbf{7 9 6 1 . 0 4}$	

Table 4.1.3.5 Assessment of dogfish agglomeration in the Romanian area in the spring 2011, sampling gear demersal trawl

Range of depths (\mathbf{m})	$\mathbf{0 - 3 0}$	$\mathbf{3 0 - 5 0}$	$\mathbf{5 0 - 7 0}$	Total
Area $\left(\mathbf{N m}^{\mathbf{2}}\right)$	675	1050	500	2225
Range of $\mathbf{t} / \mathbf{N m}^{\mathbf{2}}$	$0.00-0.00$	$0.00-1.11$	$0.00-2.53$	
Biomass (\mathbf{t})	00.00	205.8	316	522.3^{*}

[^0]Table 4.1.3.6 Assessment of dogfish agglomeration in the Romanian area in the autumn 2011, sampling gear demersal trawl

Range of depths (\mathbf{m})	$\mathbf{0 - 3 0}$	$\mathbf{3 0 - 5 0}$	$\mathbf{5 0 - 7 0}$	Total
Area $\left(\mathbf{N m}^{\mathbf{2}}\right)$	650	1225	1700	3575
Range of $\mathbf{t} / \mathbf{N m}^{2}$	$0.00-0.00$	$0.00-1.53$	$0.00-2.53$	
Biomass (\mathbf{t})	00.00	561.86	650.969	1212.8

* extrapolated at 1696 tons

5 Ecological information

5.1 Protected species potentially affected by the fisheries

5.2 Environmental indexes

6 Stock assessment

6.1 Name of Model VIT and YPR-LEN 3.1

I used the VIT program for estimation of abundance and fishing mortality and YPR-LEN (NOAA Fisheries Toolbox Version 3.1) for obtaining the reference points for dogfish in the Black Sea.
The program VIT is conceived for the analysis of fisheries where the available information is limited. VIT is designed for the analysis of marine populations, exploited by one or several gears, based on single species' catch data (structured by age or size). The main assumption underlying the model is that of steady state, because the program works with pseudo-cohorts and it is therefore not suitable for historical data series.
The program uses the catch data and ancillary parameters for rebuilding the population of the species and the mortality vectors affecting it by means of Virtual Population Analysis (VPA).
Once the virtual population has been rebuilt, an analysis of the fishery can be carried out with the aid of several tools: Comprehensive VPA results, Yield-per-Recruit analysis based on the fishing mortality vector, analysis of sensitivity to parameter values and transition analysis. The latter permits non-equilibrium analysis of how a shift in exploitation regime is reflected in the fisheries. All these tools can be applied to specific studies of competition among fishing gears.

6.1.1 Model assumptions

The VIT software was applied to assess population parameters based on pseudocohort analyses of average 1989-2011 data and 2011 data.
The two scenarios were run with the following parameters:
$\mathrm{L}_{\infty}=157 \mathrm{~cm}$
$\mathrm{k}=0.12$
$\mathrm{t}_{0}=-1.31$
$\mathrm{a}=0.0117$
$\mathrm{b}=2.769$
$\mathrm{M}=0.15$

6.1.2 Scripts

6.1.3 Results

The VIT software was applied to assess population parameters based on pseudocohort analyses of average 1989-2011 data (6.1.3.1) and 2011 data (Table 6.1.3.2). In the first variant the main share in total catch was represented by Turkey and Ukraine and in the last option the main share is divided between Bulgaria, Turkey and Ukraine.

Three scenarios were run with $M=0.1, M=0.15$, and, $M=0.2$. The presented results are with $M=0.15$.

From average of the catches by countries in the last 23 years (1989-2011), have been obtained $\mathrm{Fc}=0.255$, and $\mathrm{SSB}=410579 \mathrm{t}$, while for 2011 data the $\mathrm{Fc}=0.262$, SSB $=35263 \mathrm{t}$.
Table 6.1.3.1 Summary results for 1989-2011 data

---	Catch mean age	Catch mean length	Mean F	$\begin{gathered} \hline \text { Global } \\ F \end{gathered}$	Total catch	$\begin{gathered} \hline \text { Catch/ } \\ \text { D \% } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Catch/ } \\ \mathbf{B} \% \end{gathered}$	B/R	28368.24
Total	13.985	130.65	0.255	0.069	$1.04 \mathrm{E}+11$	38.4	9.36	SSB/R	10489.63
BG	14.69	133.811	0	0	$1.79 \mathrm{E}+08$	0.07	0.02	Y/R	2654.105
GE	13.984	130.646	0.001	0	$3.4 \mathrm{E}+08$	0.13	0.03	Y/R BG	4.568
RO	14.69	133.811	0	0	14769381	0.01	0	Y/R GE	8.699
RF	13.984	130.643	0	0	$1.08 \mathrm{E}+08$	0.04	0.01	Y/R RO	0.377
TR	13.984	130.644	0.241	0.065	$9.81 \mathrm{E}+10$	36.28	8.84	Y/R RF	2.766
UK	13.984	130.645	0.013	0.003	$5.09 \mathrm{E}+09$	1.88	0.46	Y/R TR	2507.542
								Y/R UK	130.152
Current Stock Mean Age			10.353						
Current Stock Critical Age			8						
Virgin Stock Critical Age			8						
Current Stock Mean Length			116.558						
Current Stock Critical Length			105.63						
Virgin Stock Critical Length			105.63						
Number of recruits, R			39141358.44						
Mean Biomass, Bmean (g)			$1.11037 \mathrm{E}+12$						
Spawning Stock Biomass, SSB (g)			$4.10579 \mathrm{E}+11$						
Biomass Balance, D			$2.70558 \mathrm{E}+11$						
Natural death/D			61.6						
Bmax/Bmean			14.09						
Turnover, D/Bmean			24.37						

Table 6.1.3.2 Summary results for 2011 data.

| Summary Results 2011data for Spiny Dogfish | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| --- | Total | BG | GE | RO | RF | TR | UK | |
| Catch mean age | 13.985 | 13.985 | 13.984 | 13.98 | 13.995 | 13.985 | 13.984 | |
| Catch mean length | 130.647 | 130.647 | 130.663 | 130.629 | 130.684 | 130.646 | 130.646 | |
| Mean F | 0.262 | 0.122 | 0 | 0.001 | 0.001 | 0.059 | 0.078 | |
| Global F | 0.08 | 0.037 | 0 | 0 | 0 | 0.018 | 0.024 | |
| Total catch | 3.77693 | 1.75645 | 2.73526 | 1.94084 | 1.57877 | 8.51702 | 1.13084 | |
| | $3 \mathrm{E}+09$ | $6 \mathrm{E}+09$ | $6 \mathrm{E}+06$ | $9 \mathrm{E}+07$ | $7 \mathrm{E}+07$ | $3 \mathrm{E}+08$ | $3 \mathrm{E}+09$ | |
| Catch $/ \mathrm{D} \%$ | 47.07 | 21.89 | 0.03 | 0.24 | 0.2 | 10.62 | 14.09 | |
| Catch/B\% | 10.71 | 4.98 | 0.01 | 0.06 | 0.04 | 2.42 | 3.21 | |

B/R	SSB/R	Y/R	Y/R BG	Y/R GE	Y/R RO	Y/R RF	Y/R TR	
B/R	SSB/R	Y/R	Y/R BG	Y/R GE	Y/R RO	Y/R RF	Y/R TR	$\begin{aligned} & \text { Y/R } \\ & \text { UK } \end{aligned}$
31761.055	$\begin{aligned} & 31761.0 \\ & 55 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 3401.77 \\ 3 \end{array}$	1581.98	2.464	17.481	14.22	767.103	$\begin{aligned} & 1018 . \\ & 517 \end{aligned}$
Current Mean Age Stock	10.503							
Current Stock Critical Age	9							
Virgin Critical Age	10							
Current Stock Mean Length	117.205							
Current Stock Critical Length	111.439							
Virgin Stock Critical Length	116.591							
Number of recruits, R	$\begin{aligned} & 1110283 . \\ & 68 \\ & \hline \end{aligned}$							
Mean Biomass, Bmean	$\begin{aligned} & 3.52637 \\ & 8 \mathrm{E}+10 \end{aligned}$							
$\begin{aligned} & \text { Spawning Stock } \\ & \text { Biomass, SSB } \end{aligned}$	$\begin{aligned} & 3.52637 \\ & 8 \mathrm{E}+10 \end{aligned}$							
Biomass Balance, D	$\begin{aligned} & 8.02354 \\ & 1 E+09 \end{aligned}$							
Natural death/D	52.93							
Bmax/Bmean	13.29							
Turnover, D/Bmean	22.75							

Table 6.1.3.3 Reference points

Reference Points	F	YPR	SSB/R	TSB/R
F-zero	0.000000	0.000000	19036.640242	27482.638943
F0.1	0.227000	1630.065081	7333.681895	15746.881160
F-max	1.100000	1854.713847	1905.248354	10231.715141
F at 25\% of MSP	0.389000	1790.293295	4768.058109	13161.086947

Mean Fc $=0.255$ for the period 1989-2011
Mean Fc = 0.262 for 2011

Fig. 6.1.3.4 Fishing Mortality related to Y/R and SSB/R

Fig. 6.1.3.5 Fishing Mortality related to catch numbers

Fig. 6.1.3.6 Fishing Mortality related to YPR

Fig. 6.1.3.7 Fishing Mortality related toSSB/R

Fig. 6.1.3.8 Fishing Mortality related to \% MSP

Fig. 6.1.3.9 Length related to maturity

6.2 Robustness analysis

6.3 Assessment quality

7 Stock predictions

7.1 Short term predictions

Comparing the obtained results it seems that in a period of 20 years the stock biomass has decreased almost of 30 times. On the other hand historical estimates for 1972-1992
(including a period of pre-industrial exploitation) using XSA and tuned by survey data have shown maximum SSB of about 100 000t (Daskalov 1998) that is 4 times less than the average SS B estimated here for 1989-2011.
We estimated F $0.1=0.227$ (Fmsy proxy) as a limit reference point consistent with high long term yields and low risk of fishery collapse for dogfish in the Black Sea. Taking into account that the current $F=0.262$ the stock is considered to be overexploited.

7.2 Medium term predictions

7.3 Long term predictions

8 Draft scientific advice

Gaps that need to be addressed in the near future include:

- Low quality of the input data for assessments (in terms age and size composition, fishing effort, CPUE and research surveys);
- The lack of quality survey information deteriorates the estimates of the current population parameters (abundance and mortality) in stock assessments and decreases the reliability of the short term predictions and management advice.
- Insufficient knowledge of stock units
- Lack of knowledge, evaluations and monitoring programs for assessing the IUU and discards
- Lack of reliable frameworks of assessing and standardizing of the commercial fleets fishing effort and CPUE

Management advice and recommendations

- Reducing fishing mortality;
- Improve selection pattern;
- Close spawning seasons in spring and autumn;
- Obligation for pregnant females to be discarded;
- Regional management measures

References

Demirhan, S., Seyhan, K., 2007 - Maturity and Fecundity of Spiny Dogfish (Squalus acanthias L. 1758)
in the Eastern Black Sea, Turk. J. Zool., 31, (2007), 301 - 308;
Kirnosova I. P., Lushnicova V. P., 1990 - Feeding and food requirements of spiny dogfish (Squalus acanthias L.). Biological resources of the Black Sea. Collected papers - USSR, Moscow: VNIRO, 45-57. (in Russian)
Maklakova I.P., Taranenko N.F., 1974 - Some information on biology and distribution of spiny dogfish and Raja rays in the Black Sea and recommendations for their fisheries. USSR, Moscow, VNIRO Proceedings, vol. 104, p.27-37. (in Russian)
Maximov V., G. Radu, E.Anton, Tania Zaharia 2008a - Analysis of evolution of fishing and biological characteristics of main fish from the Romanian Pontic basin, between 2000 and 2007, Cercetări Marine/ Marine Research v. 37, p. 491-499;
Maximov V.,, I. Staicu, 2008. Evolution of Demersal Fish Species catches from the Romanian Marine Area between 2000 and 2007; Cercetări marine (Recherches Marines), v. 37, p: 305-323;
Maximov V., S. Nicolaev, G. Radu, I. Staicu, 2008b- Estimation of growing parameters for main demersal fish species in the Romanian Marine Area. Cercetări marine/Recherches Marines nr. 37: p. 289-304 ;

Maximov V., E. Patras, L. Oprea, G. Radu T. Zaharia, 2010a - Contributions to the knowledge of the biological characteristcs of the main marketable fish species from the Black Sea Romanian area, between 2005-2009; J. of Environmental Protection and Ecology (JEPE), vol. 3, p. 990-999;
Maximov V., E. Patras, L. Oprea, G. Radu T. Zaharia, 2010b -The Analysis of the Evolution of Fishing and the Biological Characteristics of the Main Species from the Romanian Pontic Basin, between 2000 and 2008, J. of Environmental Protection and Ecology (JEPE), vol. 3, p. 999-1007;
Radu G., 2003 - Management of Fisheries and Other Living Marine Resources, National Report and Data Sheets in Romania. Workshop on Responsible Fisheries in the Black Sea and the Azov Sea, and Case of Demersal Fish Resources, April 15-17 2003, Şile, İstanbul, BSEP Programme, Country Report, TÜDAV/BSEP/ UNDP/GEF
Radu, Gh. \& Radu, E. 2008. Determinator al principalelor specii de pesti din Marea Neagra. Editura VIROM, Constanta, 558 p. (In Romanian).
Radu G., E. Anton, Mariana Golumbeanu, V. Raykov, Maria Yankova, Marina Panayotova, V. Shlyahov, M. Zengin, 2010 - Evolution and state of the main Black Sea commercial fish species orrelated with ecological conditions and fishing effort. Journal of Ecology and Environmental Protection - JEPE, vol. 12, No. 2, p. 549558, http://www.jepe.gr, ISSN 1311-5065;
Radu G., S. Nicolaev, 2010 - The regulation of Black Sea fish stocks. International Association for Danube Research- IAD Danube News 22-5. Editor DANUBE NEWS Alumnus: Swiss Federal Institute of Aquatic Science and Technology (Eawag), Ueberlandstrasse 133; CH-8600 Dübendorf, Switzerland;
Radu G., S. Nicolaev, V. Maximov, E. Anton, 2011a - The Dynamics of Marine Fisheries at the Romanian Coast During 1950-2009. The joint 3rd biannual Black Sea Scientific Conference and up-grade BS-Scene Project Joint Conference. "Black ea Outlook" Conference 31 October - 4 November 2011.
Radu G., V. Maximov, E. Anton, 2011b - Research on the status of the dogfish (Squalus acanthias) population in the Romanian marine area. Summary data on dogfish at Black Sea level. FAO / GFCM Workshop on Stock Assessment of Selected Species of Elasmobranchs in the GFCM Area. Brussels, Belgium, 12-16 December;
Radu G., 2011- Romanian Fishery Report 2010. 14 ${ }^{\text {th }}$ regular FOMLR AG meeting of the BSC, Black Sea Commission Permanent Secretariat Premises, Istanbul, Turkey, $19-20^{\text {th }}$ of September, 2011;
Serobaba I.I., Domashenko G.P., Yuriev G.S., Malyshev I.I., Gapishko A.I., Shlyakhov V.A., Kirillyuk M.M., Kaminer K.M., Domashenko Yu.G., Vinarik T.V., Timoshek N.G., Kirnosova I.P., Mikhailyuk A.N., Korkosh N.I., Akselev O.I., Chashchin A.K., Zhigunenko A.V., Litvinenko N.M., 1988 Commercial Fishery Description of the Black Sea (section Characteristics of the commercial species - Description of fishing grounds); AzcherNIRO, Publishing House of the Chief Department of Navigation and Oceanography of the Ministry of Defense for the Ministry of Fisheries of the USSR, p: 48-96 (in Russian).
Shlyakhov V. A., Daskalov G. M., 2008 - Chapter 9 The state of marine living resources/ State of the Environment of the Black Sea (2001-2006/7), Edited by Temel Ogus. Publication of the
commission on the Protection of the Black Sea Against Pollution (BSC). - Istanbul, Turkey, 2008.- 3.- pp. 321-364;

[^0]: * extrapolated at 1173 tons

