
File 

Structures 

Sequential Files, 

 Indexed Sequential Files 

 



File 

 A file is an external collection of related data 

treated as a unit. 

 Files are stored in auxiliary/secondary 

storage devices. 

Disk 

Tapes 

 A file is a collection of data records with 

each record consisting of one or more fields. 

Introduction 



ACCESS 

METHODS 

13.1 



Figure 13-1 Taxonomy of file structures 

 The access method  
determines how records can be retrieved: 
sequentially or randomly.  

• One record after another,  

   from beginning to end 

• Access one specific record  

  without having to retrieve all records before it 



SEQUENTIAL 

FILES 



Figure 13-2 Sequential file 

 Sequential file – 
records can only be accessed sequentially, 
one after another, from beginning to end. 



While Not EOF 

{ 

 Read the next record 

Process the record 

} 

Program 13.1 Processing records in a sequential file 



Updating sequential files 
 sequential files must be updated periodically to 

reflect changes in information. 

 The updating process –  
all of the records need to be checked and updated  
(if necessary) sequentially.  
 New Master File 

Old Master File 

 Transaction File –  
contains changes to be applied to the master file. 
 Add transaction 

 Delete transaction 

 Change transaction 

 A key is one or more fields that uniquely identify the data in the file.  

 Error Report File 



Updating a sequential file 



Updating sequential files 

 To make updating process efficient, all files are 

sorted on the same key. 

 The update process requires that you compare : 

[transaction file key]  vs.  [old master file key]  

 <  :  add transaction to new master 

 =  :   

 Change content of  master file data  (transaction code = R(revise) ) 

 Remove data from master file (transaction code = D(delete) ) 

 >  :  write old master file record to new master file  

       (transaction code = A(add) ) 



Updating process 



INDEXED 

FILES 



Mapping in an indexed file 

 To access a record in a file randomly, 
you need to know the address of the record. 

 An index file can relate the key to the record address. 



Indexed files 
 An index file is made of a data file, which is a sequential file, 

and an index. 

 Index – a small file with only two fields: 
 The key of the sequential file 

 The address of the corresponding record on the disk. 

 To access a record in the file : 
1. Load the entire index file into main memory. 

2. Search the index file to find the desired key. 

3. Retrieve the address the record. 

4. Retrieve the data record. (using the address) 

 

 Inverted file – 
you can have more than one index, each with a different key. 



inverted file 

 A file that reorganizes the structure of an existing data file to enable 
a rapid search to be made for all records having one field falling 
within set limits. 

 

 For example, a file used by an estate agent might store records on 
each house for sale, using a reference number as the key field for 
sorting. One field in each record would be the asking price of the 
house. To speed up the process of drawing up lists of houses falling 
within certain price ranges, an inverted file might be created in which 
the records are rearranged according to price. Each record would 
consist of an asking price, followed by the reference numbers of all 
the houses offered for sale at this approximate price. 

http://www.tiscali.co.uk/reference/dictionaries/computers/data/m0025640.html


Logical view of an indexed file 



HASHED 

FILES 



Mapping in a hashed file 

 A hashed file uses a hash function to map the key to the 
address. 

 Eliminates the need for an extra file (index). 

 There is no need for an index and all of the overhead 
associated with it. 



Hashing methods 

 Direct Hashing –  
the key is the address without any algorithmic manipulation.  

 

 Modulo Division Hashing – (Division remainder hashing) 
divides the key by the file size and  
use the remainder plus 1 for the address. 

 

 Digit Extraction Hashing –  
selected digits are extracted from the key and used as the 
address. 



Direct hashing 

 Direct Hashing –  
the key is the address without any algorithmic manipulation.  



Direct Hashing  

 the file must contain a record for every possible key. 

 Adv. – no collision. 

 Disadv. – space is wasted. 

 

 Hashing techniques –  
map a large population of possible keys into  
        a small address space.  



Modulo division 

 address = key % list_size + 1 

 list_size : a prime number produces fewer collisions  

A new employee numbering system  

that will handle 1 million employees. 



Digit Extraction Hashing  

 selected digits are extracted from the key  
and used as the address. 

 

 For example :                       1,3,4 

6-digit employee number → → → 3-digit address 

 125870 → 158 

 122801 → 128 

 121267 → 112 

 … 

 123413 → 134 



Collision 
 Because there are many keys for each address in the file, 

there is a possibility that more than one key will hash to the 
same address in the file. 

 Synonyms – the set of keys that hash to the same address. 

 Collision – a hashing algorithm produces an address for an 
insertion key, and that address is already occupied.  

 Prime area – the part of the file that contains all of the home 
addresses. 

 

Home address 



Collision Resolution 

 With the exception of the directed hashing,  
none of the methods we discussed creates one-to-one 
mapping. 

 

 Several collision resolution methods : 
 Open addressing resolution 

 Linked list resolution 

 Bucket hashing resolution 



Figure 13-11 
Open addressing resolution 

 Resolve collisions in the prime area. 

 The prime area addresses are searched for an open or 
unoccupied record where the new data can be placed. 

 One simplest strategy –  
the next address (home address + 1) 

 Disadv. –  
each collision resolution increases the possibility of future 
collisions. 



Linked list resolution 

 The first record is stored in the home address (prime area), 
but it contains a pointer to the second record. (overflow area) 



Figure 13-13 Bucket hashing resolution 

 Bucket –  
a node that can accommodate more than one record. 



Applications 

 Applications –  

that need to access all records from beginning to end.  

 Personal information 

 Because you have to process each record, 

sequential access is more efficient and easier than 

random access. 

 

 Sequential file is not efficient for random access. 



 Q. Explain Sequential file organization. 


