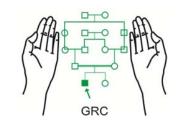
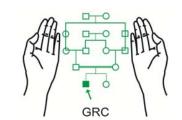


Maj Gen (R) Suhaib Ahmed, HI (M)

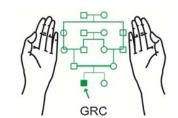
MBBS; MCPS; FCPS; PhD (London)


Genetics Resource Centre (GRC) Rawalpindi

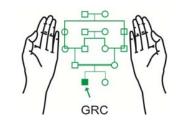
Consanguinity

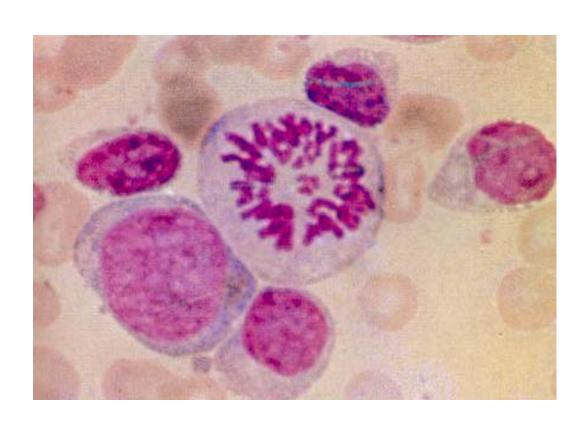

The predominant Western stereotype of inbreeding (consanguinity) is of a poor and remote community, a large number of whose inhabitants suffer from obscure physical disorders and exhibit obvious symptoms of mental subnormality.

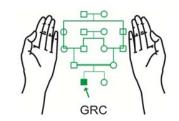
Consanguinity


- Eight states in USA treat consanguineous marriage as a criminal offence
- In 22 states they are illegal

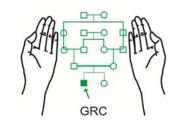
Burden of Diseases in Pakistan: Distribution by Cause:

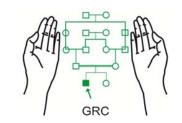

•	Cor	38.4%		
	_	Infectious and Parasitic diseases	20.4%	
	_	Respiratory Infections	8.1%	
	_	Childhood Cluster	6.7%	
	_	Sexually Transmitted	2.2%	
	_	Tropical Cluster	1.0%	
•	Noi	n-Communicable Diseases:		37.7%
	_	Cardiovascular	10.0%	
	_	Nutritional/Endocrine	5.8%	
	_	Malignant Neoplasms	4.3%	
	_	Digestive System	3.4%	
	_	Chronic Respiratory	2.6%	
	_	Neuro-Psychiatric	3.2%	
	_	Congenital Abnormalities	3.5%	
	_	Other Non-Communicable	4.9%	
•	Maternal and Perinatal Conditions:			12.5%
	_	Maternal	2.8%	
	_	Perinatal	9.7%	
•	• Injuries:			11.4%

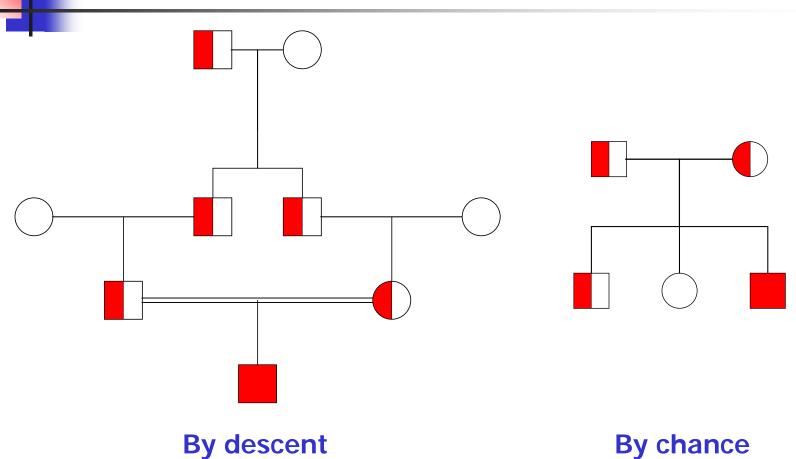


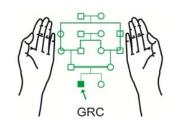

Genetic Effects of Consanguineous Marriage

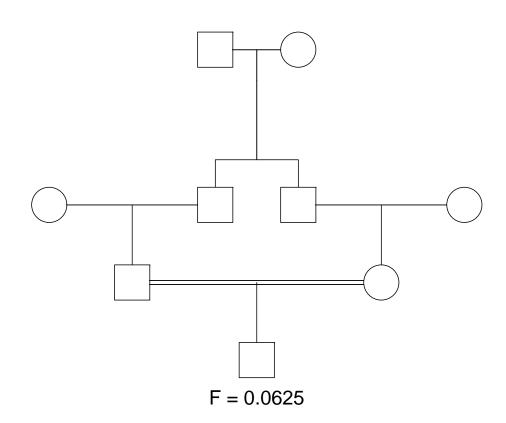
- Genetic
- Consanguineous Marriage
- Effects
 - Facts
 - Artifacts

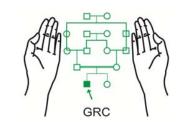



Every character in our body is controlled by at least one pair of genes

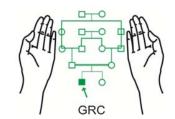

Genetics


- Genes
 - Dominant
 - Recessive
- Heterozygotes
- Homozygotes

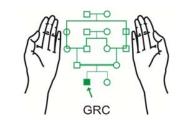

Identical Genes



Coefficient of Inbreeding (F)

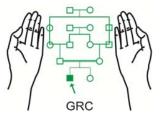


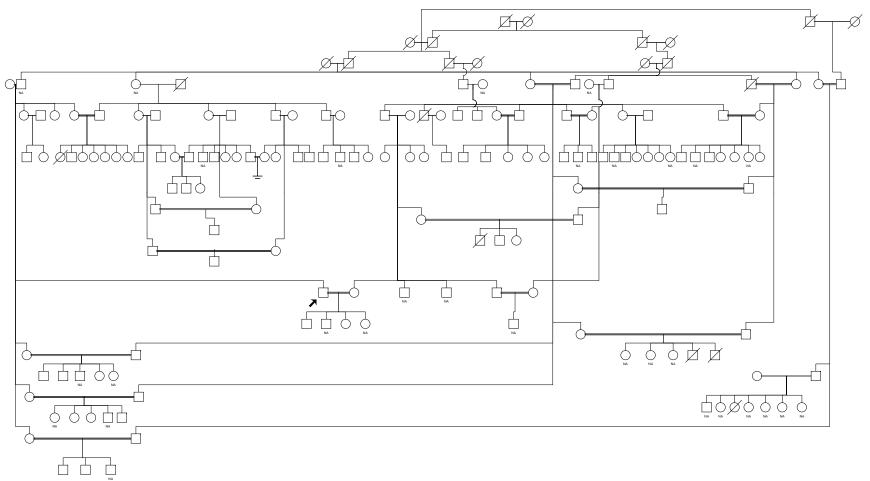
Coefficient of Inbreeding (F)


Relationship:	Coefficient of Inbreeding (F)
Siblings	0.25
Double 1st Cousins	0.125
1 st cousins	0.0625
1 ½ cousins	0.0313
2 nd cousins	0.0156
2 ½ cousins	0.0078
3 rd cousins	0.0039
3 ½ cousins	0.0020
4 th cousins	0.0010

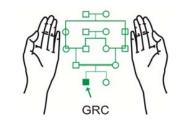
Consanguineous Marriage

- Marriage between individuals who have at least one, not too remote, common ancestor
- Marriage beyond 2nd cousins is considered unrelated

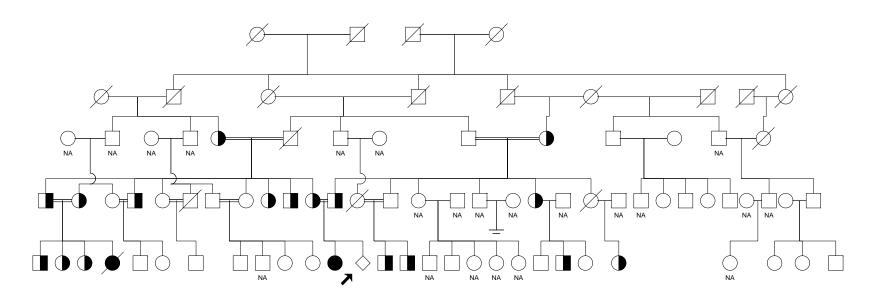




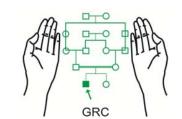
Genetic Effects of Consanguinity


- Proportion of Homozygotes is increased
 - Normal
 - Abnormal (Pathological)
 - Beneficial
 - Neutral
- The increase in Homozygotes is directly proportional to the Coefficient of Inbreeding (F)

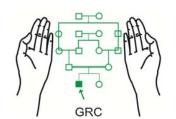
Consanguinity and Normal Genes



(S. Ahmed, 1998)

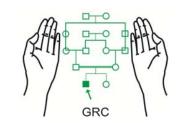


Consanguinity and Abnormal Genes


(S. Ahmed, 1998)

Consanguinity and Rare Recessive Genes

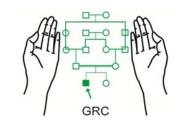
- Every individual carries on an average 1.4 lethal recessive genes
- Prenatal period
 - Higher miscarriage rates
- Pre-reproductive period
 - Deaths are 4.4% higher amongst 1st cousin couples than in the unrelated couples
- Adult age



Consanguineous marriage and Genetic Diseases

- Affected
 - Autosomal recessive
 - Rare
 - Common

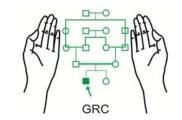
- Not affected
 - Autosomal Dominant
 - X-linked
 - Chromosomal
 - Polygenic



Consanguinity and Beneficial Genes

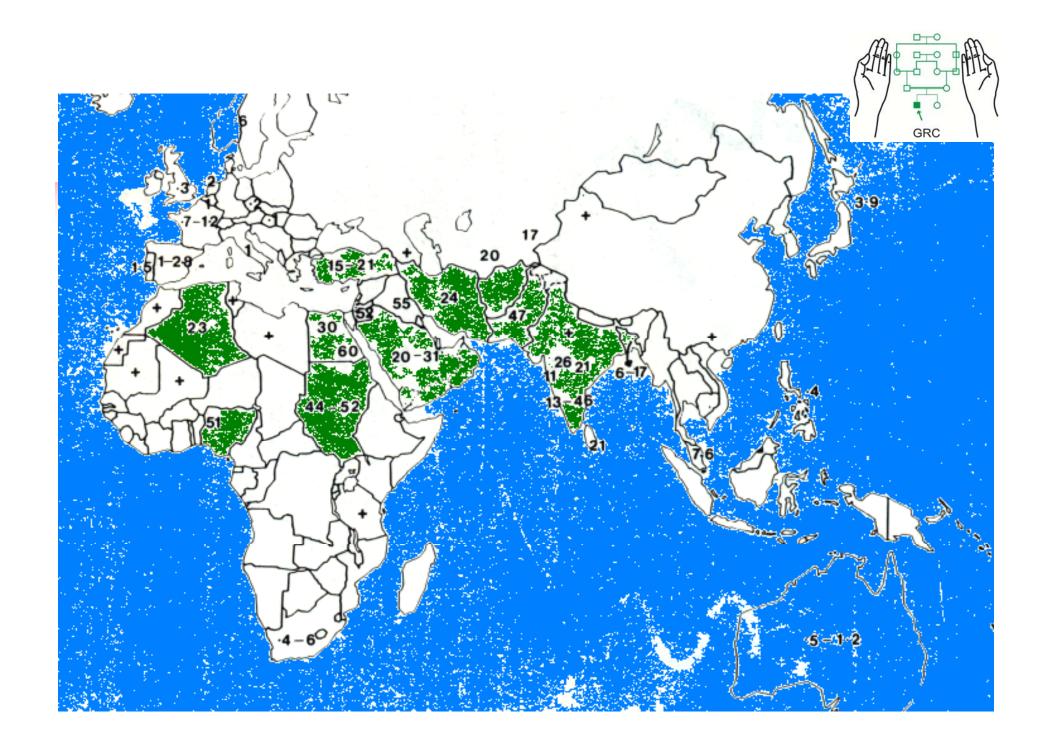
Xmn-I Genotype:	Thal Intermedia:	Thal Major :	Normal:
-/-	12 (30.8%)	30 (76.9%)	30 (51.7%)
-/+	13 (33.3%)	9 (23.1%)	20 (34.5%)
+/+	14 (35.9%)	None	8 (13.8%)
Total:	39 (100%)	39 (100%)	58 (100%)

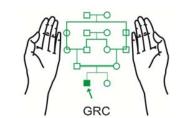
(S. Ahmed, 1998)



Consanguinity: The Facts

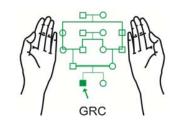
- The total population effect of consanguineous marriage is quite modest and is far less than has often been stated.
- There is an average 4.4% increase in infant mortality among the off-springs of 1st cousins compared with unrelated controls.


(Bittles AH, Clinical Genetics 2001)



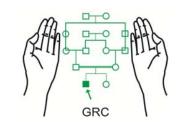
Consanguinity: The Artifacts

- Personal biases
- Lack of population based data
- Failure to control for the confounding variables:
 - Lack of education
 - Poverty
 - Others



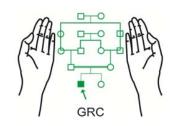
Consanguineous Marriage in Pakistan

Double 1st cousins	1%
1 st cousins	37%
1½ cousins	12%
2 nd cousins	1%
Biradri/tribe members	33%
Unrelated	16%

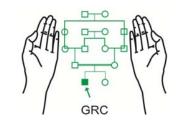

(Bittles AH, 1994)

Consanguineous marriage

The Solution ?

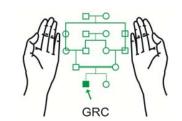


Mac Keith Meetings: Consanguineous marriage in the UK: Implications for health service policy and practice (4 - 5 Sep 2001, RSM London)

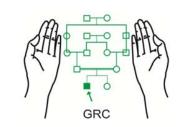


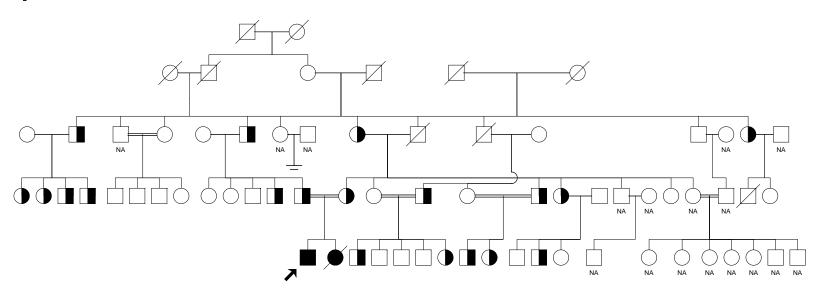
EXTENDED FAMILY TESTING FOR A RECESSIVE DISORDER: EXPERIENCE IN PAKISTAN

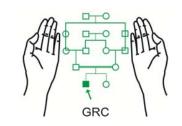
Thalassaemia


- Classical example of a recessive disorder
- Common (5% carrier rate)
- Carriers can be detected by a simple blood test

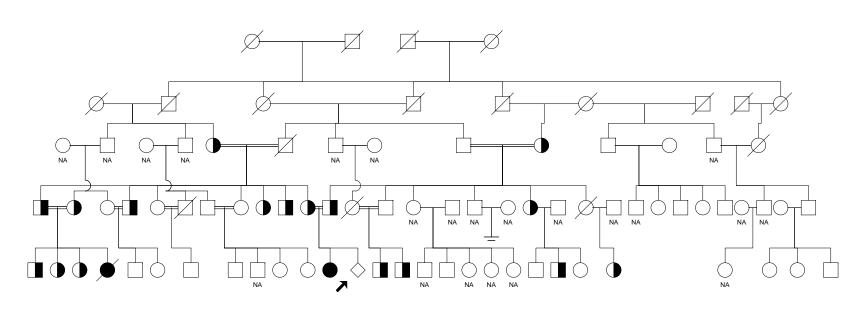
The Hypothesis

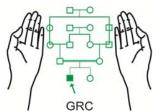

- In families that practice frequent consanguineous marriage, genes are effectively trapped within the extended family network.
- An index child with a recessive disorder in such families could provide an opportunity to detect a large number of present and future at risk couples.

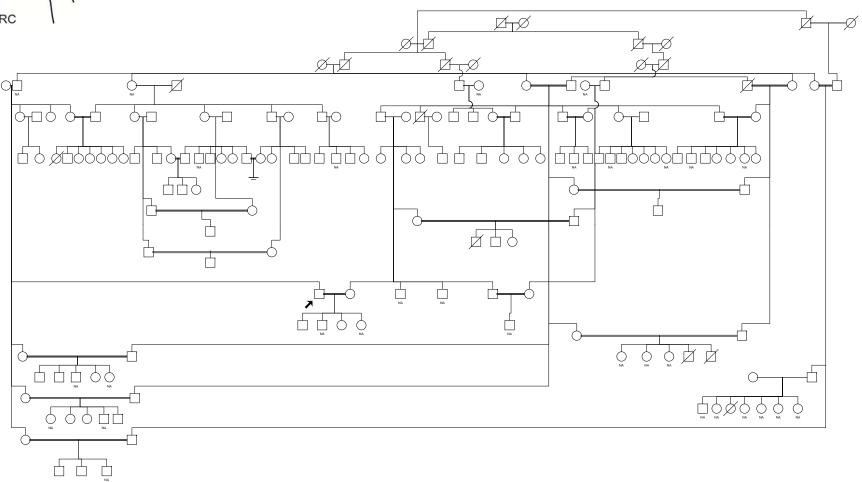


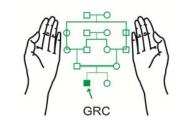

Extended Family Testing

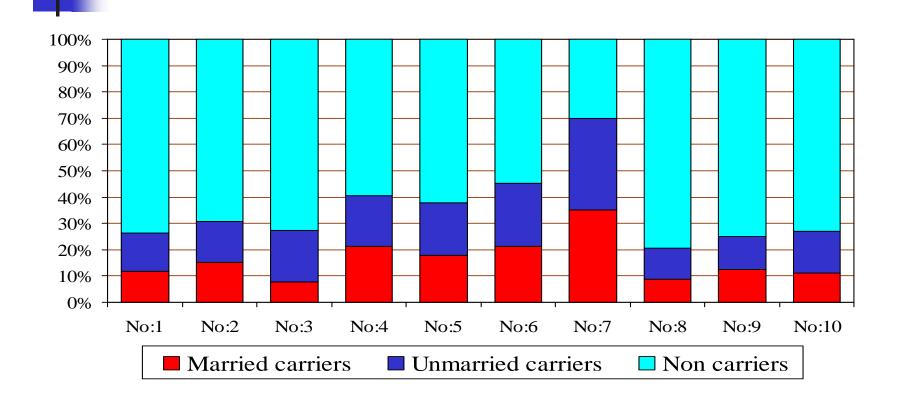
Families:	Offered:	Accepted:	Declined:
Index:	16	10	6
Control:	8	5	3
Total:	24	15	9

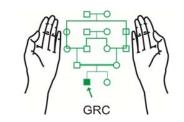


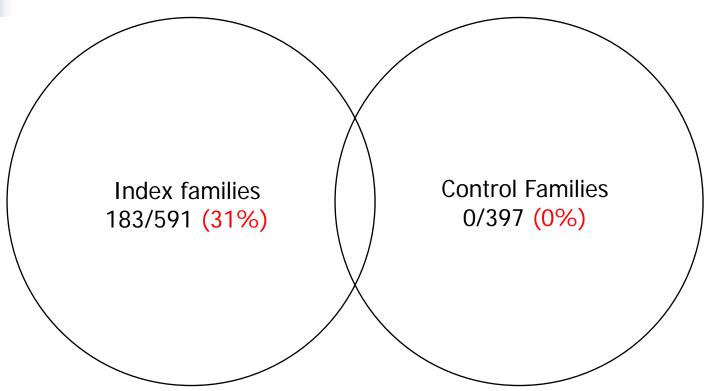


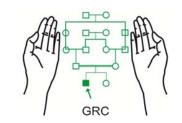




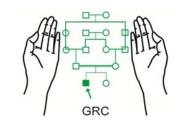




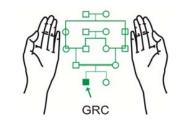


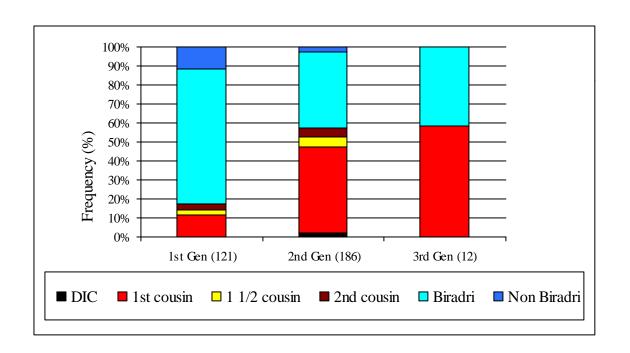


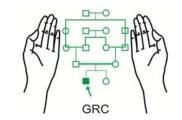
Carrier Rate for Thalassaemia


General Population (5%)

At risk couples in the Index Families

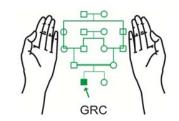

Total:	17
Prospectively detected:	2
Detected through history:	6
Parents of index children:	9




Effect on Choice of Partner

- Seven families were followed-up for five years
- Seven marriages/engagements took place
- Six couples were consanguineous and one was between Biradri members
- Test results were taken in to account in all seven marriages/engagements
- One carrier male had problems in marriage
- No reports that a marriage was explicitly avoided because both partners were carriers

Consanguineous Marriage in Families



Summary

- Over 90% of marriages in Pakistan are either consanguineous or within the Biradri.
- Discouraging this practice on genetic grounds alone is not only ethically unacceptable, it is also totally unrealistic.
- The only real option for providing genetic counselling lies in a way that is compatible with the social mores and kinship structure of the Pakistani population and provides accurate carrier testing and precise risk information.
- Targeted family screening focuses on high risk families, and produces a high yield of carriers and at risk couples.
- It avoids the problem of a low level of literacy, because information and personal experiences are communicated directly amongst the family members.
- It is realistic to visualise expanding the recommended approach across the spectrum of inherited diseases wherever consanguineous marriage is common.

- Be careful in providing information
- People develop antibodies to information
- De-sensitization may be a very slow process