

Radiosity Introduction	Solving the rendering equation
The radiosity approach to rendering has its basis in the theory of heat transfer. This theory was applied to computer graphics in 1984 by Goral et al.	$L(\mathbf{x}', \vec{\omega}') = E(\mathbf{x}') + \int_{c} \rho(\mathbf{x}') L(\mathbf{x}, \vec{\omega}) G(\mathbf{x}, \mathbf{x}') V(\mathbf{x}, \mathbf{x}') d\mathbf{A}$
Surfaces in the environment are assumed to be perfect (or Lambertian) diffusers, reflectors, or emitters. Such surfaces are assumed to reflect incident light in all directions with equal intensity.	L is the radiance from a point on a surface in a given direction ω E is the emitted radiance from a point: E is non-zero only if x' is emissive V is the visibility term: 1 when the surfaces are unobstructed along the direction ω , 0 otherwise
A formulation for the system of equations is facilitated by dividing the environment into a set of small areas, or <i>patches</i> . The radiosity over a patch is constant.	G is the geometry term, which depends on the geometric relationship between the two surfaces x and x' Photon-tracing uses sampling and Monte-Carlo integration Radiosity uses finite elements: project onto a finite set of basis functions (piecewise constant)
The radiosity, <i>B</i> , of a patch is the total rate of energy leaving a surface and is equal to the sum of the emitted and reflected energies:	Ray tracing computes L [D] S* E Photon tracing computes L [D S]* E Radiosity only computes L [D]* E
Kadiosity was used for Quake II	Lecture 20 Slide 6 6.837 Fall '01

