Two New Species of the Henicopid Centipede Henicops (Chilopoda: Lithobiomorpha) from Queensland and Victoria, With Revision of Species from Western Australia and a Synoptic Classification of Henicopidae

Lauren M. Hollington ${ }^{1}$ and Gregory D. Edgecombe ${ }^{2 *}$
${ }^{1}$ School of Biological Sciences, University of Sydney NSW 2006, Australia
lmhollington@ bigpond.com
${ }^{2}$ Australian Museum, 6 College Street, Sydney NSW 2010, Australia
greged@austmus.gov.au

Abstract

Henicops Newport, 1844, is the most commonly recorded Australian genus of Henicopidae, the main southern temperate clade in Lithobiomorpha. Henicops is widespread throughout eastern and southwestern Australia and New Zealand, and is represented in New Caledonia by H. brevilabiatus (Ribaut, 1923) n.comb. New species are H. tropicanus n.sp. from northeastern Queensland and H. milledgei n .sp. from Victoria. The two nominal species from the southwest of Western Australia, H. dentatus Pocock, 1901a, and H. oligotarsus Attems, 1911, are synonymous, this species being distinguished from the Queensland H. tropicanus by details of the mandibular gnathal edge and female gonopod. Other characters used for diagnosing species and supraspecific groups within Henicops include the segmentation of the tarsi, tergite shape, and the position of the Tömösváry organ. All species of Henicopidae are listed with synonymies, generic assignments and geographic occurrences.

Hollington, Lauren M., \& Gregory D. Edgecombe, 2004. Two new species of the henicopid centipede Henicops (Chilopoda: Lithobiomorpha) from Queensland and Victoria, with revision of species from Western Australia and a synoptic classification of Henicopidae. Records of the Australian Museum 56(1): 1-28.

The lithobiomorph genus Henicops Newport, 1844, is one of Australia's most commonly found centipede taxa, with abundant records through all eastern states and southwestern Western Australia, as well as a broad distribution in New Zealand. Despite its abundance, systematic work on Henicops has been limited to brief descriptions of four named species.

Excluding those species that were transferred to Lamyctes Meinert, 1868, after that genus was established, the nominal species of Henicops are the type, H. maculatus Newport, 1844, H. impressus Hutton, 1877, H. dentatus Pocock, 1901a, and H. oligotarsus Attems, 1911. Henicops * author for correspondence
maculatus was established for Tasmanian material, and the species has also been recorded from New Zealand, Victoria and New South Wales (Pocock, 1901a; Chamberlin, 1920; Archey, 1917, 1937). Henicops impressus, described from Dunedin and Queenstown, New Zealand, is considered a synonym of H. maculatus, which is widespread and common in New Zealand (Archey, 1937). Henicops dentatus was erected for specimens from Perth, Western Australia, and H. oligotarsus from various sites in southwestern Western Australia. The possible synonymy of these Western Australian species was suggested by Archey (1937: 75). The most recent taxonomic work on Henicops is Archey's www.amonline.net.au/pdf/publications/1392_complete.pdf
(1937) description of New Zealand material of H. maculatus, with a subsequent summary of that species' distribution in Tasmania (Mesibov, 1986).

The existing literature pre-dates most collections in Australian museums. These collections indicate that the distribution of Henicops is more extensive than previously recorded, notably ranging to the Cape York Peninsula in Queensland (Fig. 1). The present study is based on a survey of Henicops samples in the collections of state museums in Australia and the Australian National Insect Collection. The overwhelming majority of specimens were collected in wet sclerophyll forest and rainforest during litter invertebrate surveys, primarily since the 1970s. This study documents two new species from Queensland and Victoria, and revises Western Australian species that are considered to be closely allied to the Queensland species. To summarize the current state of henicopid taxonomy, the new species and all confamilials are placed in a synoptic classification of Henicopidae.

Methods and terminology

Scanning electron micrographs were captured using a LEO 435 VP , most using a Robinson backscatter collector.

In all species descriptions, length of specimens was measured from the anterior margin of the head shield to the
end of the telson. Because this measure is affected by telescoping, length or width of the head shield is used as a measure of body size (Andersson, 1978). Terminology used throughout species descriptions follows that used by Edgecombe (2001), with terminology pertaining to the mandible following Edgecombe et al. (2002). For new species, "Other material" is not part of the type series.

The following abbreviations are used for repositories of the specimens examined:

AM Australian Museum, Sydney
ANIC Australian National Insect Collection, Canberra CAS California Academy of Sciences, San Francisco MV Museum Victoria, Melbourne
NMW Naturhistorisches Museum, Wien
QM Queensland Museum, Brisbane
WAM Western Australian Museum, Perth
ZIUH Zoologisches Institut und Zoologisches Museum der Universität Hamburg

Abbreviations for collectors are: GBM, G.B. Monteith; JMW, J.M. Waldock; MSH, M.S. Harvey; RWT, R.W. Taylor. Other abbreviations for label data are: ANZSES, Australian and New Zealand Scientific Exploration Society; Berl., ANIC Berlesate sample; NP, National Park; Ra, Range; rf, rainforest; SF, State Forest.

Fig. 1. Distribution of Henicops dentatus Pocock, 1901, H. milledgei n.sp. and H. tropicanus n.sp.

Systematics

Chilopoda Latreille, 1817
Order Lithobiomorpha Pocock, 1902
Family Henicopidae Pocock, 1901b
Subfamily Henicopinae Pocock, 1901b
Tribe Henicopini Chamberlin, 1912

Henicops Newport, 1844

Type species. Henicops maculatus Newport, 1844; by original designation.

Diagnosis. Member of Lamyctes-Henicops Group with 2951 antennal articles; maxillipede coxosternum subtrapezoidal, dental margin moderately wide, with $3+3$ or $4+4$ teeth (exceptionally up to $6+6$), lacking pseudoporodont; mandibular aciculae abundant, arranged in two (inner and outer) rows; several laciniate or plumose setae amidst simple setae on coxal process of first maxilla; projections on (at least) tergites 9,11 and 13 ; last distal spinose projection of tibia on leg 14 ; subdivision of basitarsus of legs $1-12$ indicated by paired larger setae; tarsi of legs 13 and 14 divided into three or four tarsomeres; distitarsus of leg 15 divided into at least two tarsomeres; first genital sternite of male divided longitudinally into two sclerites; male and female gonopods abundantly setose, with numerous distally curved setae on male gonopod.

Assigned species. Lamyctes brevilabiatus Ribaut, 1923; Henicops dentatus Pocock, 1901a (=H. oligotarsus Attems, 1911, n.syn.); H. milledgei n.sp.; H. tropicanus n.sp.

Discussion. The genus Henicops was erected by Newport (1844), with his concept of Henicops corresponding to the modern concept of the family Henicopidae. Two species of Henicops were originally named, Henicops maculatus from Tasmania and H. emarginatus Newport, 1844, from New Zealand. The latter was subsequently transferred to Lamyctes Meinert, 1868, and is a senior subjective synonym of the type species, L. fulvicornis Meinert, 1868 (Eason, 1996).

In erecting a new genus, Paralamyctes, Pocock (1901b) rediagnosed Henicops with emphasis on the division of the tarsi into tarsomeres. Henicops was again rediagnosed by Archey (1917), who included in that diagnosis the presence of plumose setae on the coxal process of the first maxilla, a character previously used to distinguish Lithobiidae from Henicopidae (Chamberlin, 1912). The "plumose" setae on the coxal process of the first maxilla in Henicops vary from laciniate (Fig. 15J; Edgecombe et al., 2002: fig. 8H for H. maculatus) to plumose, though the latter differ in detail from the complex plumose setae of lithobiids (Edgecombe \& Hollington, 2002: fig. 9C,E). The present study frames the generic diagnosis around synapomorphies that identify Henicops as a monophyletic group within a clade that also includes Lamyctes (=Lamyctinus Silvestri, 1909a; see Edgecombe \& Giribet, 2003a), Lamyctopristus Attems, 1928, Analamyctes Chamberlin, 1955, Easonobius Edgecombe, 2003a, and apparently Pleotarsobius Attems, 1909. The monophyly of this Lamyctes-Henicops Group is strongly supported by sequence data from multiple molecular markers (Edgecombe et al., 2002; Edgecombe \& Giribet, 2003b), and notably by insertions in the 18 S rRNA.

Henicops is united with the South African Lamyctopristus Attems, 1928 (Edgecombe, 2004a: fig. 34D) by the mandibular aciculae being divided into inner and outer rows (Figs. 5F, 10C). This two-row arrangement is associated with a larger number of aciculae (about 20) in Henicops than in allied henicopines. Previous diagnoses (Archey, 1917, 1937; Attems, 1928) cited three joints in legs 1-13 as diagnostic of Henicops, but this is now observed to pertain to most but not all species (at least two undescribed species have only two tarsomeres on legs $1-12$). A more general characterization of the Henicops tarsal condition is that subdivision of the basitarsus of legs $1-12$ is indicated by paired larger setae. Where the tarsus has only two tarsomeres, a pair of strong, divergent setae is situated on the basitarsus in the same position as those larger setae immediately proximal to the most proximal tarsomere articulation in species with three tarsomeres, i.e., the tripartite arrangement on the tarsi of legs $1-12$ in H. maculatus and the three species described herein occurs by subdivision of the basitarsus. Concerning the distitarsus, all species of Henicops uniquely share a division of the distitarsus of leg 15 into tarsomeres, a state not otherwise developed in the Henicopini (see Table 1 for a comparison of tarsal segmentation between species). The bipartite first genital sternite in males (Figs. 6I, 11B, 16F) is invariant in Henicops. Elsewhere in Henicopidae, the division of this sternite into two sclerites is observed only in some members of Lamyctes, in those mostly African species split off by Verhoeff (1941) as Metalamyctes. The abundance of setae on the gonopods in both sexes is added to the generic diagnosis here, the number of setae in Henicops substantially exceeding that in most other Henicopinae, including other members of the Lamyctes-Henicops Group. This abundance could be explicitly defined in terms of the male gonopod having about 15 setae on the basal article and about 10 on the second and third. Among these are many distally curved setae (Figs. 4E, 12C).

Table 1. Tarsal segmentation in Henicops, showing number of tarsomeres in basitarsus and distitarsus (e.g., $2 / 1$ indicates two segments in basitarsus and one in distitarsus).

	$1-12$	13	14	15
Henicops maculatus	$2 / 1$	$2 / 2$	$2 / 3$	$2 / 4(5)$
Henicops dentatus	$2 / 1$	$2 / 2$	$2 / 2$	$2 / 3$
Henicops tropicanus	$2 / 1$	$2 / 2$	$2 / 2$	$2 / 3$
Henicops milledgei	$2 / 1$	$1 / 2$	$1 / 3$	$1 / 4$

Additional distinction from Lamyctes is provided by the presence of tergal projections, subdivision of the tarsi, and a wider dental margin of the maxillipede coxosternum. A species that presents incongruence is the New Caledonian Lamyctes brevilabiatus Ribaut, 1923. Sequences from nuclear ribosomal as well as mitochondrial markers, separately as well as in combination, indicate that this species is more closely related to Henicops than to Lamyctes (Edgecombe \& Giribet, 2003a,b). The molecular data more precisely indicate an alliance with members of the Henicops dentatus Group as defined below. Apomorphic morphological characters shared with Henicops include the relatively large number of antennal articles (38-47), a
relatively wide dental margin of the maxillipede coxosternum with $3+3$ teeth and no pseudoporodont, laciniate setae on the coxal process of the first maxilla, and a bipartite first genital sternite in the male (AM KS82626, Mt Humboldt). The spines beneath the posterior pretarsal accessory claw are short, as in Henicops (Fig. 14L), rather than long and needle-like as in Lamyctes (Edgecombe \& Giribet, 2003a: figs. 34, 36). The New Caledonian species lacks, however, several characters shared by all other members of Henicops. It has transverse (rather than projected) posterior margins of TT11 and 13, the last distal spinose projection is on the tibia of leg 13 (rather than 14), and the tarsi of legs 13-15 are bipartite, with no trace of a subdivision of either tarsomere. Legs 1-12 have indistinct tarsal articulations. The mandible differs from other members of Henicops in having relatively few (nine) aciculae in a single row (Fig. $2 \mathrm{~B}, \mathrm{C}$), rather than having about 20 aciculae in two rows. Cladistic analysis of morphological evidence resolves brevilabiatus as sister group of Henicops as diagnosed above in some minimal length cladograms, but as a member of Lamyctes in others, whereas combination of the morphological data with molecular data favours an ingroup position within Henicops (Edgecombe \& Giribet, 2003b). Based on strength of the molecular support together with the presence of several apomorphies of Henicops listed above, the species is reassigned to Henicops.

Henicops dentatus Group

Diagnosis. Henicops with 29-40 (most commonly 36) antennal articles, with a relatively gradual change in length of articles along antenna; Tömösváry organ deep, outer edge at margin of cephalic pleurite; TT7, 9, 11 and 13 with subquadrate emargination (posterior margin with transverse medial sector with independent curvature from lateral sectors); three moderate sized teeth on dental margin of maxillipede coxosternum; groove in accessory denticle field lacking on mandibular teeth; mandibular aciculae variable in structure, differentiated into some with pronounced serrations on both margins and others with a simple margin along most or all of length; ventral branching bristles of mandible lacking spine-like branches on basal part; three tarsomeres in legs 1-12; four tarsomeres in legs 13 and 14, basitarsus and distitarsus with two tarsomeres each; five tarsomeres in leg 15, basitarsus having two, distitarsus three.

Assigned species. Henicops dentatus Pocock, 1901a (=H. oligotarsus Attems, 1911); H. tropicanus n.sp.

Discussion. The diagnosis above lists characters that unite Henicops dentatus and H. tropicanus n.sp. that are either unique within Henicops or permit distinction from H. maculatus or other species. Several of these can be regarded as synapomorphies for H. dentatus and H. tropicanus.

Fig. 2. Henicops brevilabiatus (Ribaut, 1923). QM S60651, \uparrow, Me Maoya, New Caledonia, mandible: (A) gnathal edge, scale $50 \mu \mathrm{~m}$; (B) ventral part of gnathal edge, scale $50 \mu \mathrm{~m} ;(C)$ aciculae, scale $10 \mu \mathrm{~m} ;(D)$ dorsal teeth and furry pad, scale $10 \mu \mathrm{~m}$.

Character polarity is evaluated in the context of Henicops being sister to a clade that includes Lamyctes, Analamyctes, Easonobius and Lamyctopristus (Edgecombe et al., 2002; Edgecombe, 2003a, 2004a; Edgecombe \& Giribet, 2003b) (see synoptic classification below).

Indistinct grooves in the accessory denticle field on the mandibles (Figs. 5D,I, 10A,F) are restricted to the H. dentatus Group within Henicops. Grooves or grooved ridges (see Fig. 14D,F for their presence in H. milledgei) are observed in most Henicopini, including other members of the Lamyctes-Henicops Group (Fig. 2A). The "notched"

margin of tergite 7 in the H. dentatus Group (Figs. 3, 7A) is distinctive for those two species within Henicops, though the same shape of this tergite is observed in some other Henicopinae, e.g., within Paralamyctes and in Zygethobiini. Tergite shapes were noted by Pocock (1901a) as subquadrately emarginate TT7, 9, 11 and 13, serving as a distinguishing character of H. dentatus and H. tropicanus relative to H. maculatus and H. milledgei.

A differentiation of the mandibular aciculae into an outer row with serrated margins and an inner row with simple or weakly scalloped margins (Figs. 5G, 10C,D) is shared with Henicops milledgei (Fig. 14I). This differentiation is apparently apomorphic relative to the uniform structure of the aciculae in H. maculatus (Edgecombe et al., 2002: fig. 5C) and H. brevilabiatus (Fig. 2B), the latter being shared by outgroups. Likewise, H. milledgei and the H. dentatus Group share a narrow base to the ventralmost bristles in the fringe of branching bristles along the mandibular gnathal edge. These bristles have no or few spine-like projections
basally（the entire basal half of the bristle lacks spines in H ． dentatus：Fig．5H），but branch evenly along their distal part （Figs．10E，14H）．This is also apparently apomorphic relative to the evenly spine－covered bristles in H ．maculatus （Edgecombe et al．，2002：fig．5C），which have spines on their bases．The latter state is possessed by other taxa in the Lamyctes－Henicops Group（for Lamyctes，see Edgecombe et al．，2002：fig．6D，Edgecombe \＆Giribet，2003a：fig．27； Fig．2B herein for H．brevilabiatus）and other Henicopini generally．

The relatively even length of the antennal articles in the H ．dentatus Group is potentially apomorphic relative to the groups of shortened articles occurring in pairs in other congeners because other genera of the Lamyctes－Henicops Group（e．g．，Lamyctes，Analamyctes，Easonobius， Lamyctopristus）have the paired，shortened articles．The deep，submarginally positioned Tömösváry organ in the H ． dentatus Group（Figs．6L，9D－F）is unique within Henicops， but is shared by most non－Henicops Henicopini．The deep， submarginal organ is thus apparently plesiomorphic relative to the shallow organ situated medially on the cephalic pleurite in H．maculatus（Edgecombe et al．，2002：fig．1G） and H．milledgei（Fig．15D，E）．This character suggests that the H ．dentatus Group is possibly sister to all other species of Henicops．

Henicops dentatus Pocock， 1901

Figs．3－6
Henicops dentatus Pocock，1901a： 454.
Henicops oligotarsus Attems，1911：150；new synonym．
Henicops oligotarsus．－Borucki，1996：fig． 102.
Diagnosis．Member of Henicops dentatus Group with female gonopod having two small，bullet－shaped or distally truncated spurs；outer spur up to 50% wider than inner spur； branching bristles on mandibular gnathal edge narrow in dorsal part of fringe；ventral bristles in fringe lacking spines on their basal third or more．

Type material．Syntypes：BM1893．7．4．17，ㅇ（Fig．3B）， BM1893．7．4．18，ô，Perth，WA，H．W．J．Turner．

Other material．Types of Henicops oligotarsus Attems，1911： LECTOTYPE：WAM 13／7172（Fig．3A），\uparrow ，Brunswick Junction，WA （station 139 of Michaelsen \＆Hartmeyer，1907）， $33^{\circ} 15^{\prime} \mathrm{S} 115^{\circ} 50^{\prime} \mathrm{E}, \mathrm{W}$ ． Michaelsen \＆R．Hartmeyer， 7 Oct 1905，designated here．A lectotype is selected to fix the name to a single type locality；the chosen specimen is the most intact large individual from a locality represented by both sexes in the WAM and NMV．Paralectotypes：WAM， $2 \sigma^{\star}{ }^{\circ}$ ，from type locality．NMV：3907， 1 ㅇ，Boyanup（station 146）；3908， 1 ㅇ， 2 ơ ${ }^{\text {on }}$ ， Brunswick（station 139）；3909， 1 ㅇ，Albany（station 165）．ZIUM： 6 ㅇ 9 ， $2 \delta^{\star}$ ô，Lion Mill（station 99）； 1 ㅇ， 1 ô，Mundaring Weir（station 101）； $1 \delta^{\hat{*}}$ ，Bridgetown（station 144）； 1 ㅇ，Beverly（station 156）．Attems（1911） listed additional syntypes from Wooroloo，East Fremantle，Jarrahdale， and Gooseberry Hill that we have not located．

Western Australia：WAM：25／822， 1 ㅇ，Dandaragan， $30^{\circ} 40^{\prime} \mathrm{S}$ $115^{\circ} 42^{\prime}$ E，L．Glauert，Sep 1925；28／740， $1 \delta^{\circ}$ ，Serpentine， $32^{\circ} 22^{\prime}$ S $115^{\circ} 58^{\prime}$ E，L．Glauert，Aug 1928；14／987， 1 ㅇ，Denmark， $34^{\circ} 57^{\prime}$ S $117^{\circ} 21^{\prime}$ E，W．B．Alexander，May 1914；T42434， 4 ㅇ ， $1 \delta^{\text {o }}$ ，Hepburn Heights， $31^{\circ} 49^{\prime} 02^{\prime \prime}$ S $115^{\circ} 46^{\prime} 13{ }^{\prime \prime} \mathrm{E}$ ，MSH \＆JMW， 13 Jul－25 Sep 1995； T42435， 3 웅，Warwick Open Space， $31^{\circ} 50^{\prime} 34^{\prime \prime}$ S $115^{\circ} 48^{\prime} 50^{\prime \prime} \mathrm{E}$ ，MSH \＆JMW， 25 Sep－28 Nov 1995；T42436， 7 ¢ \uparrow（Figs．4F，5F－I，6H）， 2 ठ ơ （Fig．4E），Warwick Open Space， $31^{\circ} 50^{\prime} 33^{\prime \prime} \mathrm{S} 115^{\circ} 49^{\prime} 00{ }^{\prime \prime} \mathrm{E}$ ，MSH \＆JMW， 25 Sep－28 Nov 1995；T42437， 1 i，Balannup Lake，Gosnells，E．G． Cockett， 24 Dec 1968；T42438， 1 q，Bald Head，Albany，D．D．Giuliani， 10 May 1969；T42439， 1 ठ̂，Bentley，B．Anderson， 8 Sep 1976；T42440，

1 오，Boranup，G．M．Riley， 10 Sep 1965；T42441， 1 § ，Peppermint Forest， 5 mi N Busselton，R．J．McKay \＆R．W．George， 22 Oct 1969；T42442， 1 ㅇ，T42443， 1 ㅇ，Cape Freycinet， $34^{\circ} 06^{\prime} \mathrm{S} 114^{\circ} 59^{\prime} \mathrm{E}$ ，T．F．Houston， $15-$ 18 Nov 1986；T42444， 1δ ，Cape Naturaliste NP，catchment of Yallingup Brook， $33^{\circ} 38^{\prime} 50$＂S $115^{\circ} 02^{\prime} 10$＂E，J．Mitchell et al．， $1-10$ Dec 2000； T42445， 1 ㅇ，Fossil Deposit SF， 4 mi W cape，G．H．Riley \＆G．Kendrick， 8 Sep 1969；T42446， 1 ㅇ，Cocanarup Timber Reserve， $33^{\circ} 38^{\prime} \mathrm{S} 119^{\circ} 54^{\prime} \mathrm{E}$ ， G．Harold，Nov 1993；T42447， 1 ठ̃，Worsley Alumina Project，Collie off Fletcher Rd，D．Walford \＆M．Sawle，Jul 1980；T42448， 1 ㅇ，Crowea， S．J．Curry， 31 Oct 1980；T42449， $1 \widehat{\delta}^{\widehat{3}}$ ，Dog Pool on Shannon River， $34^{\circ} 46^{\prime}$ S $116^{\circ} 22^{\prime} \mathrm{E}$ ，MSH \＆JMW，27－30 Apr 1990；T42450， 1 it， 3 km N Dog Pool， $34^{\circ} 45^{\prime}$ S $116^{\circ} 13^{\prime} \mathrm{E}$ ，MSH \＆JMW， 30 Apr 1990；T42451，
 R．G．C．Mineral Sands， 10 km S Eneabba， $29^{\circ} 50^{\prime} \mathrm{S} 115^{\circ} 15^{\prime} \mathrm{E}$ ，L．P McMillan \＆P．West， 22 Jul 1997；T42456， 5 ㅇ $9,1 \delta^{\text {o }}$ ，Fitzgerald River NP，West Mt Barren，NE slope， $34^{\circ} 13^{\prime}$ S $119^{\circ} 26^{\prime} \mathrm{E}$ ，MSH \＆JMW， 28 May 1994；T42457， 1 ㅇ，Fitzgerald River NP，Twertup， $34^{\circ} 01^{\prime} \mathrm{S} 119^{\circ} 20^{\prime} \mathrm{E}$ ， MSH \＆JMW， 29 May 1994；T42458， $1 \delta^{\star}$ ，＂Glenbourne＂，Old Ellens Brook Rd， $33^{\circ} 53^{\prime} \mathrm{S} 115^{\circ} 00^{\prime} \mathrm{E}$ ，L．Marsh et al．，27－28 Oct 1996；T42459， $1 \delta^{\star}$ ，＂Glenbourne＂，Spring Rd S Gracetown， $33^{\circ} 53^{\prime} \mathrm{S} 115^{\circ} 00^{\prime} \mathrm{E}, 28-30$ Jun 1997，L．M．Marsh et al．；T42460， $1 \delta^{\star}$ ，＂Glenbourne＂，S Gracetown， $33^{\circ} 54^{\prime} 32^{\prime \prime} \mathrm{S} 115^{\circ} 00^{\prime} 24^{\prime \prime} \mathrm{E}$ ，L．Marsh et al．， 30 Oct－1 Nov 1999；T42461， $1 \delta^{\star}$ ，Gleneagle， $32^{\circ} 15^{\prime}$ S $116^{\circ} 10^{\prime}$ E，J．A．Springett， 22 Oct 1971；T42463， 1 ¢， 12.5 mi NE Katanning，E．J．Car and G．M．Riley， 28 Oct 1964； T42464， 1 б九，Leeman，R．P．McMillan， 31 Aug 1981；T42465， 1 ㅇ， T42466， 1 ＇ ，Ludlow Tuart Forest， $33^{\circ} 34^{\prime}$ S $115^{\circ}{ }^{\circ} 9^{\prime}$ E，J．A．Springett， 31 Aug 1971；T42467， 4 아 ㅇ，Margaret River，L．E．Koch，22－24 Aug 1973； T42468， 1 ㅇ，T42469， $1 \delta^{\circ}, 6.5 \mathrm{~km}$ and 5.5 km NW Meelup， $33^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{S}$ $115^{\circ} 01^{\prime} 45^{\prime \prime} \mathrm{E}, \mathrm{G} . \mathrm{A}$. Harold，22－27 Oct 1985；T42470， $1 \delta^{\hat{}}$ ，Mt Cooke， near summit， $32^{\circ} 25^{\prime}$ S $116^{\circ} 18^{\prime}$ E，MSH，JMW \＆M．Peterson， 7 Aug 1990； T42471，1ठ́，same locality，MSH \＆JMW， 1 Oct 1990；T42472， 1 个， same locality and collectors， 16 Dec 1990；T42473， 2 ㅇ $ㅇ$ ，same locality， 31 Jul 1991；T42474， 1 ㅇ，same locality， 19 Sep 1991；T42475， 1 ㅇ， 1 ठ， base of Mt Dale，W side， $32^{\circ} 08^{\prime} \mathrm{S} 116^{\circ} 18^{\prime} \mathrm{E}$ ，JMW et al．， 27 Sep 1998 ； T 42477 ， 1 む，T42478， 1 ¢，T42479， 1 む，T42485， 1 む，c． 4 km NNE Mt Lesueur， $30^{\circ} 08^{\prime} \mathrm{S} 115^{\circ} 12^{\prime} \mathrm{E}$ ，K．Gaull et al．，9－12 Jul 1989；T42481， $1 \delta^{\star}$ ， 1.6 km N Mt Lesueur， $30^{\circ} 10^{\prime} \mathrm{S} 115^{\circ} 12^{\prime} \mathrm{E}$ ，K．Gaull et al．， 11 Jul 1989 ； T42482， 1 ㅇ，c． 5 km NE Mt Lesueur， $30^{\circ} 09^{\prime} \mathrm{S} 115^{\circ} 15^{\prime} \mathrm{E}$ ，K．Gaull et al．， 9 Jul 1989；T42486， 2 す̊ すิ， 7 km NE Mt Lesueur， $30^{\circ} 07^{\prime} \mathrm{S} 115^{\circ} 15^{\prime} \mathrm{E}$ ，K． Gaull et al．，1989；T42487， 1 ㅇ， 4.5 km E Mt Peron， $30^{\circ} 06^{\prime} \mathrm{S} 115^{\circ} 12^{\prime} \mathrm{E}$ ， K．Gaull et al．， 7 Jul 1989；T42488， 1 万，North Tarin Rock Reserve，D． Kitchener et al．，17－27 May 1971；T42489， 1 ㅇ，Pemberton，Allis Rd， $34^{\circ} 30^{\prime}$ S $116^{\circ} 00^{\prime} \mathrm{E}$ ，J．A．Springett， 9 Nov 1971；T42490， $1 \delta^{\star}$ ，Bluff Knoll， Stirling Ranges，D．D．Giuliani， 13 May 1969；T42491， 2 đ ô，Stirling Range NP，Ellen Peak， $34^{\circ} 21^{\prime} 32^{\prime \prime} \mathrm{S} 118^{\circ} 19^{\prime} 45^{\prime \prime} \mathrm{E}, 1000 \mathrm{~m}, \mathrm{~S}$ ．Barrett， 4 Apr 1995；T42492，4 $\begin{gathered}\text { ठิ } \\ \text { ，Swan River Dist，} 15-18 \text { Jul 1924；T42493，}\end{gathered}$ 19 ，The Cascades， 8 km SSW Pemberton， $34^{\circ} 30^{\prime} \mathrm{S}, 116^{\circ} 00^{\prime} \mathrm{E}$ ，MSH \＆ JMW， 3 May 1990；T42494， $1 \delta^{\star}$ ，Torbay hill，boundary track， $35^{\circ} 05^{\prime}$ S $117^{\circ} 37^{\prime}$ E，B．Y．Main， 20 Feb－6 Mar 1983；T42495， $1 \delta^{\lambda}$ ，Torbay Head， $35^{\circ} 05^{\prime}$ S $117^{\circ} 38^{\prime}$ E，B．Y．Main， 9 Aug－7 Sept 1985；T42496， 1 \＆，Torbay Head，B．Y．Main， 20 Jun 1986；T42497， 1 §，Torndirrup NP，Sharp Point Rd， $35^{\circ} 06^{\prime} 42^{\prime \prime}$ S $117^{\circ} 52^{\prime} 55^{\prime \prime}$ E，JMW， 14 Nov 1998；T42498， 1 ㅇ，Two People Bay，G．Smith， 15 Sep 1976；T42499， 1 ㅇ，Tutanning Reserve， Pingelly，E．Mercer， 28 Aug 1980；T42500， 1 đ̃，Walyunga NP，M．Archer \＆E．Jeffreys， 4 May 1969；T42501， 1 q，Wanneroo， $33^{\circ} 54^{\prime} 32^{\prime \prime} \mathrm{S}$ $115^{\circ} 00^{\prime} 24^{\prime \prime} \mathrm{E}$, R．P．McMillan， 18 Aug 1952；T42502， 1 ㅇ，West Cape Howe NP，Lake William， $35^{\circ} 04^{\prime}$ S $117^{\circ} 37^{\prime} \mathrm{E}$ ，B．Y．Main， 26 Mar－5 Apr 1985；T42503， 1 \＆，West Cape Howe NP，West Cape Howe， $35^{\circ} 08^{\prime}$ S $117^{\circ} 36^{\prime}$ E，B．Y．Main， $15-24$ Jan 1988；WAM， 1 ㅇ， $1 \delta^{\star}$ ，Rottnest Island， Mt Herschell， $31^{\circ} 59^{\prime}$ S $115^{\circ} 31^{\prime} \mathrm{E}$ ，L．Glauert，Sep 1927.

AUSTRALIAN MUSEUM：KS15269， 3 ¢ \uparrow ， $2 \sigma^{\text {o }}$ ，Dombalup SF，Marri Rd， $34^{\circ} 30^{\prime}$ S $116^{\circ} 00^{\prime}$ E，M．R．Gray， 15 Jan 1979；KS15361（Fig．4A－D），c． 200 individuals，Treen Brook SF， 8 km W Pemberton， $34^{\circ} 26^{\prime} \mathrm{S} 116^{\circ} 04^{\prime} \mathrm{E}$ ， M．R．Gray， 13 Feb．1979；KS35584， 1 ㅇ， 3 す̊ す̊，Walpole－Nornalup NP， $34^{\circ} 57^{\prime} \mathrm{S} 116^{\circ} 16^{\prime} \mathrm{E}$, M．R．Gray， 15 Feb 1979；KS35644， 1 ㅇ， $2 \delta^{\circ}$ ơ，Pine $^{\circ}$ $\mathrm{Ck}, 0.5 \mathrm{~km}$ from Quarty Rd，Nannup－Pemberton area， $34^{\circ} 15^{\prime} \mathrm{S} 115^{\circ} 50^{\prime} \mathrm{E}$ ， M．R．Gray， 14 Feb 1979；KS77589， 1δ ，Pemberton Forest Park，Karri Bush Walk， $34^{\circ} 27^{\prime}$ S $116^{\circ} 01^{\prime} 30^{\prime \prime}$ S E，G．D．Edgecombe \＆Z．Johanson， 23 Feb 2001；KS83629， 1 ¢（Fig．6G，M），KS83630， 1 ơ（Figs．5A－E，J－ O，6A－F，I－L），Gloucester NP，crossing of Bibbulmun Track and Burma Rd， $34^{\circ} 27^{\prime} \mathrm{S} 116^{\circ} 03^{\prime} \mathrm{E}$ ，G．D．Edgecombe \＆Z．Johanson， 23 Feb 2001.

CALIFORNIA ACADEMY OF SCIENCES（leg．E．S．Ross \＆D．Cavagnaro）： 29 ㅇ， 30° ơ，Darlington， $450 \mathrm{ft}, 5$ Sep 1962； 1 q， $20 \mathrm{mi} \mathrm{S} \mathrm{Borden} 200 \mathrm{~m},$,23 Sep
 Naturaliste， 5 m， 27 Sep 1962； 1 ठ， 7 mi NE Busselton， $50 \mathrm{~m}, 28$ Sep 1962.

 4

 14; (D) leg 15. $(E, F) \widehat{\jmath}$, \uparrow, WAM T42436, terminal segments and gonopods, Warwick Open Space, WA. Scales 0.5 mm.

Fig. 5. Henicops dentatus Pocock, 1901. (A-E, J-O) ơ AM KS83630, Gloucester NP, Pemberton, WA: (A) dorsal view of head shield, scale $60 \mu \mathrm{~m}$; (B) anterior part of head shield, showing transverse and antennocellar sutures, scale $50 \mu \mathrm{~m} ;(C)$ antennal articles, scale 100 $\mu \mathrm{m} ;(D, E)$ outer (anterior) and inner (posterior) views of gnathal edge of right mandible, scales $60 \mu \mathrm{~m}, 50 \mu \mathrm{~m}$; (J) first maxillae, scale $130 \mu \mathrm{~m} ;(K)$ coxal processes of first maxillae, scale $60 \mu \mathrm{~m} ;(L)$ cluster of sensilla microtrichoidea between telopodite and coxal process of first maxilla, scale $15 \mu \mathrm{~m}$; (M) distal article of telopodite of first maxilla, scale $60 \mu \mathrm{~m}$; (N) second maxillae, scale $300 \mu \mathrm{~m}$; (O) tarsus and pretarsus (claw) of second maxilla, scale $20 \mu \mathrm{~m} .(F-I) \nsubseteq$ WAM T42436, Warwick Open Space, WA, left mandible: (F) ventral part of gnathal edge, scale $50 \mu \mathrm{~m} ;(G)$ aciculae, scale $10 \mu \mathrm{~m} ;(H)$ fringe of branching bristles, scale $10 \mu \mathrm{~m}$; (I) dorsal teeth and furry pad, scale $30 \mu \mathrm{~m}$.

Distribution. Southwest Western Australia, north to Eneabba ($29^{\circ} 50^{\prime} \mathrm{S} 115^{\circ} 15^{\prime} \mathrm{E}$), east to Cocanarup ($33^{\circ} 38^{\prime} \mathrm{S}$ $119^{\circ} 54^{\prime} \mathrm{E}$) (Fig. 1), sclerophyll forest.

Discussion. Henicops dentatus is identical to or within the range of variation of H . tropicanus, described in full below, in most respects except for the female gonopods and details

Fig. 6. Henicops dentatus Pocock, 1901. (A-G,I-M) Gloucester NP, Pemberton, WA. (A-F,I-L) ô AM KS83630: (A) clypeus and labrum, scale $180 \mu \mathrm{~m} ;(B)$ labrum, scale $70 \mu \mathrm{~m} ;(C)$ telopodite and dental margin of maxillipede, scale $180 \mu \mathrm{~m} ;(D, E)$ ventral and dorsal views of maxillipede, scales $300 \mu \mathrm{~m} ;(F)$ dental margin of maxillipede coxosternum, scale $70 \mu \mathrm{~m} ;(I, J)$ gonopods and detail of right gonopod and penis, scales $100 \mu \mathrm{~m}, 30 \mu \mathrm{~m}$; (K) terminal process of gonopod, scale $30 \mu \mathrm{~m}$; (L) cephalic pleurite, showing Tömösváry organ, scale $100 \mu \mathrm{~m}$. (G, M) ㅇ AM KS83629: (G) gonopods, scale $100 \mu \mathrm{~m}$; (M) tarsus and pretarsus of leg 12 , scale $70 \mu \mathrm{~m}$. (H) ㅇ WAM T42435, Warwick Open Space, WA. Spurs on gonopods, scale $30 \mu \mathrm{~m}$.
of the mandibular gnathal edge. Distinction between the two is discussed under the latter species.

The present study of a large sample of southwest Western Australian specimens of Henicops, including the syntypes of both H. dentatus and H. oligotarsus, corroborates Archey's (1937) suspicion that the two named Western Australian species are synonymous. When naming H. oligotarsus, Attems made no mention of the previously named H. dentatus. Attems (1928:63) later acknowledged
H. dentatus in a key to Henicops species. He distinguished the two Western Australian species on the basis of tergites 7, 9, 11 and 13 of H. oligotarsus being "toothed" and the corresponding tergites of H. dentatus and H. maculatus being "rounded", in addition to leg 15 of H. oligotarsus having five tarsomeres as opposed to six tarsomeres in H. dentatus and H. maculatus. Both of these alleged differences are unfounded. Description of a "toothed" condition of tergites in H. oligotarsus refers to the triangular projections
of the posterior angles of TT7, 9, 11 and 13 . This is a more or less accurate description of the tergites of Attems' specimens (Fig. 3A), but it is identical to the condition of these tergites in the types of H. dentatus (Fig. 3B). Indeed, no Henicops specimens from anywhere in the range of H. dentatus ($=$ H. oligotarsus) have tergites 7, 9, 11 and 13 that could be described as "rounded". Leg 15 of all Western Australian specimens has five tarsomeres (Fig. 4D) so no specific distinction can be made based on some specimens having five and others having six. The types of H. dentatus lack legs 14 and 15 (and seemingly lacked these legs when Pocock described the species, for no mention was made of them), so Attems' claim of a difference from H. oligotarsus has no basis. In the absence of any morphological characters to support the presence of multiple taxa in Western Australia, all specimens are recognized as a single species, using the older name, H. dentatus. The description of H. oligotarsus (Attems, 1911:150) stated that the species has 33-35 antennal articles but among the syntypes are large specimens with 29-36 articles. Other collections extend the range to 38 articles, though as in H. tropicanus the most common number is 36 .

Henicops tropicanus n.sp.

Figs. 7-11
Etymology. For the Wet Tropics of northeastern Queensland, where the species occurs.

Diagnosis. Member of Henicops dentatus Group with female gonopod having two (exceptionally three) large, elongate, bullet-shaped spurs; legs 14 and 15 relatively sparsely setose, with few setae on tibia and basitarsus of leg 15.

Type material. Holotype: \uparrow QM S39941 (Fig. 7A), from head of Roots Creek, 12 km WNW Mossman, Queensland, $16^{\circ} 24^{\prime} 46^{\prime \prime}$ S $145^{\circ} 16^{\prime} 03$ "E, $1200 \mathrm{~m}, 28$ Dec 1989-11 Jan 1990, ANZSES, pitfall. Paratypes: đ QM S39941, from type locality, collection data as for holotype; S39869, 3 ㅇ \uparrow, S39873, 1 ô, S39898, 2 여 (Figs. 8A-D, 10D-F,K, 11C,H,J), $1 \delta^{\text {o (Figs. 9B-D,F-J, 10A-C,G-H,J,M, 11D,E,I), }}$ S39934, 2 ㅇ 9, Mossman Bluff Track, $5-10 \mathrm{~km}$ W Mossman, GBM, G. Thompson \& ANZSES, 20 Dec 198915 Jan 1990.

Other material. Queensland: QM: S22632, 1 i, 14.4 km N Wudjl Wudjl, $15^{\circ} 52^{\prime}$ S $145^{\circ} 19^{\prime}$ E, R. \& S. Raven, P. \& E. Lawless, 28 Nov 199218 Apr 1993; S39861, 2 ㅇ $9,1 \delta^{\top}$, Mt Dalrymple, $21^{\circ} 03^{\prime} \mathrm{S} 148^{\circ} 38^{\prime} \mathrm{E}, 1200$ m, ANZSES, 21 Dec 1992-10 Jan 1993; S39863, $1 \delta^{\star}$, Eungella, Pease's Lkt, $21^{\circ} 07$ 'S $148^{\circ} 31^{\prime} \mathrm{E}, 900 \mathrm{~m}$, D. Cook \& GBM, 17 Nov 1992-Apr 1993; S39866, 2 ㅇ 9, S39899, Maalan Rd, 2 km S Palmerston Hwy, $17^{\circ} 36^{\prime} \mathrm{S} 145^{\circ} 42^{\prime} \mathrm{E}, 750 \mathrm{~m}, \mathrm{GBM} \& \mathrm{~J}$. Hasenpusch, 10 Jan-7 Mar 1995; S39870, 1 \& , Wongabel SF, $17^{\circ} 19^{\prime} 30^{\prime \prime}$ S $145^{\circ} 29^{\prime} 45^{\prime \prime} \mathrm{E}, \mathrm{R}$. Raven, P. \& E. Lawless \& M. Shaw, 23 Jul-26 Nov 1992; S39872, 2 i 9 , Longlands Gap SF, $17^{\circ} 27^{\prime} 30^{\prime \prime}$ S $145^{\circ} 28^{\prime} 45^{\prime \prime}$ E, R. Raven, P. \& E. Lawless \& M. Shaw, 23 Jul-26 Nov 1992; S39874, 1 ㅇ, 1 đ̊, S39875, Karnak-Devils Thumb, 8-12 km NW Mossman, 1100 m, ANZSES, 26 Dec 1989-15 Jan 1990; S39884, 2 ㅇ 우, $4 \delta^{\hat{\prime}} \delta^{\prime}$, Hughes Rd, Topaz, $17^{\circ} 26^{\prime} \mathrm{S} 145^{\circ} 42^{\prime} \mathrm{E}, 650 \mathrm{~m}, \mathrm{GBM}$ \& Breeden, Sep-Dec 1993; S39930, $1 \delta^{\circ}$, same locality, GBM, D. Cook \& H. Jantezki, 6 Dec 1993-25 Feb 1994; S39892, 4 우, Kjelberg Rd turnoff, $17^{\circ} 32^{\prime} \mathrm{S} 145^{\circ} 36^{\prime} \mathrm{E}, 850 \mathrm{~m}$, GBM \& J. Hasenpusch, 7 Mar-15 May 1995; S39961, 2 ㅇ $ㅇ$, , same locality, 25 Nov 1994, 10 Jan 1995; S39896, 4 우 ㅇ, Kjelberg Rd, Mt Fisher, $17^{\circ} 32^{\prime}$ S $145^{\circ} 33^{\prime} \mathrm{E}, 1000$ m, J. Hasenpusch, 1 Dec 1993-25 Feb 1994; S39902, 1 \&, S39962, 1 ㅇ, Big Tableland, $15^{\circ} 43^{\prime}$ S $145^{\circ} 17^{\prime} \mathrm{E}, 740 \mathrm{~m}$, ANZSES, 20 Dec 1990-8 Jan 1991; S39906, 1 ㅇ, Eungella NP, Mt William, $21^{\circ} 02^{\prime} \mathrm{S} 148^{\circ} 36^{\prime} \mathrm{E}, 1200 \mathrm{~m}, \mathrm{GBM}$,

19 Apr 1979, rf; S39924, 1 ¢, $1 \delta^{\text {on }}$, Pandanus Ck, Cathu SF, $20^{\circ} 48^{\prime} \mathrm{S}$ $148^{\circ} 33^{\prime} \mathrm{E}, 80 \mathrm{~m}, \mathrm{GBM}, 22$ Apr 1979; S39925, $4 \delta^{\star} \delta^{\circ}$ (Fig. 7C), 2.5 km S Mt Hartley, $15^{\circ} 47$ 'S $145^{\circ} 19^{\prime}$ E, L. Roberts, 8 Dec 1993-2 Feb 1994; S39927, 2 ㅇ 9,3 juveniles, Mt Fisher, 7 km SW Millaa Millaa, $17^{\circ} 33^{\prime} \mathrm{S}$ $145^{\circ} 33^{\prime} \mathrm{E}, 1000 \mathrm{~m}, \mathrm{GBM} \&$ D.K. Yeates, 3 May 1983, rf; S39928, 3 ㅇ ㅇ, $3 \delta^{\star} \delta^{\circ}$, Westcott Rd, Topaz, $17^{\circ} 25^{\prime} \mathrm{S} 145^{\circ} 42^{\prime} \mathrm{E}, 680 \mathrm{~m}$, GBM, Jul-Dec 1993; S39940, 1 ¢, 2 km SE Mt Spurgeon via Mt Carbine, $1^{\circ}{ }^{\circ} 27^{\prime} \mathrm{S}$ $145^{\circ} 12^{\prime} \mathrm{E}, 1100 \mathrm{~m}, \mathrm{GBM} \& \mathrm{G}$. Thompson, 20 Dec 1988, rf; S39946, $1 \delta^{\star}, 2$ juveniles, Mt Bartle-Frere, W base, $17^{\circ} 23^{\prime} \mathrm{S} 145^{\circ} 46^{\prime} \mathrm{E}, 700 \mathrm{~m}$, GBM \& J. Hasenpusch, 25 Nov 1994-10 Jan 1995; S39947, 2 우, 1 đ̊, Lamins Hill, $17^{\circ} 22^{\prime} \mathrm{S} 145^{\circ} 42^{\prime} \mathrm{E}, 880 \mathrm{~m}, \mathrm{GBM} \& \mathrm{~J}$. Hasenpusch, 1 Dec 1993-25 Feb 1994; S39954, 1 ㅇ, Eungella NP, Broken R, $21^{\circ} 10^{\prime}$ S $148^{\circ} 30^{\prime} 30^{\prime \prime}$ E, P. Lawless, R. Raven \& M. Shaw, 10 Nov 1991-29 Jul 1992; S39955, 1 ㅇ, same locality, 29 Jul-4 Dec 1992; S39956, 1 ㅇ, Malaan SF, $17^{\circ} 35^{\prime} 30^{\prime \prime}$ S $145^{\circ} 36^{\prime} 45^{\prime \prime} \mathrm{E}, \mathrm{R}$. Raven, P. \& E. Lawless \& M. Shaw, 25 Jul-26 Nov 1992; S39967, 1 iq, 1.5 km SE Mt William, $21^{\circ} 02^{\prime} \mathrm{S}$ 148ํํㄱ'E, 1060 m, ANZSES, 21 Dec 1992-10 Jan 1993; S39973, 1 ㅇ, Malaan SF, V.E. Davies \& R. Raven, 20-24 Apr 1978.

Australian Museum: $1 \delta^{\star}$, Eungella NP, Broken River campsite, G.D. Edgecombe, 18 Apr 1998, rf; 1 ¢, KS83631, 2 đ đ (Figs. 9A,E,K-M, 10I,L, 11A,B,F,G,K), Eungella NP, Dalrymple Rd, 1.7 km and 2.9 km NE Snake Rd, G.D. Edgecombe, 21 Apr 1998, rf.

Australian National Insect Collection: $2 申 9,9 \mathrm{~km}$ ENE Mt Tozer (ex. Berl. 1059, 1062), $12^{\circ} 43^{\prime} \mathrm{S} 143^{\circ} 17$ 'E, T. Weir, 10-16 Jul 1986; 2 ㅇ 오, juveniles, larval stadia LII-IV, 3 km NE Mt Webb (ex. Berl. 692, 721), $15^{\circ} 03^{\prime} \mathrm{S} 145^{\circ} 09^{\prime} \mathrm{E}$, T. Weir, $1-3$ Oct 1980,3 May $1981 ; 1$ iq, 14 km W by N Hope Vale Mission (ex. Berl. 729), $15^{\circ} 16^{\prime} \mathrm{S} 144^{\circ} 59^{\prime} \mathrm{E}, \mathrm{A}$. Calder \& J. Feehan, 7-10 May 1981; 2 여 ㅇ, $3 \delta^{\top}{ }^{\circ}$, Mt Windsor Tableland (ex. Berl. 490), $16^{\circ} 18^{\prime} \mathrm{S} 145^{\circ} 05^{\prime} \mathrm{E}, 850 \mathrm{~m}, \mathrm{RWT}, 20 \mathrm{Mar} 1975$, rf; 1 i , Mt Tiptree (ex. Berl. 1006), $17^{\circ} 03^{\prime}$ S $145^{\circ} 37^{\prime}$ E, B. Halliday, 13 Jul 1984, rf; 1 ㅇ, 3.2 km N Atherton (ex. Berl. 275), $17^{\circ} 14^{\prime} \mathrm{S} 145^{\circ} 29^{\prime} \mathrm{E}$, J.G. Brooks, 5 May 1970, rf; 2 우 , Mulgrave R (ex. Berl. 316), $17^{\circ} 15^{\prime} \mathrm{S} 145^{\circ} 46^{\prime} \mathrm{E}, 75$ m, RWT \& J. Feehan, 19 Jun 1971, rf; 1 \&, Barrine NP (ex. Berl. 486), $17^{\circ} 16^{\prime} \mathrm{S} 145^{\circ} 38^{\prime} \mathrm{E}, 760 \mathrm{~m}$, RWT, 21 Mar 1975, rf; 1 古, Eacham NP (ex. Berl. 484), $17^{\circ} 18^{\prime}$ S $145^{\circ} 37^{\prime} \mathrm{E}$, RWT, 23 Mar 1975, rf; 1 ㅇ, 20 km S Ravenshoe (ex. Berl. 358), $17^{\circ} 45^{\prime}$ S $145^{\circ} 32^{\prime}$ E, 800 m , RWT \& J. Feehan, 3 Jul 1971, rf; 1 ㅇ, Paluma (ex. Berl. 207), $19^{\circ} 00^{\prime} \mathrm{S} 146^{\circ} 12^{\prime} \mathrm{E}, 810 \mathrm{~m}$, E.
 488), $21^{\circ} 09^{\prime} \mathrm{S} 148^{\circ} 29^{\prime} \mathrm{E}, 780 \mathrm{~m}$, RWT, 26 Mar 1975, rf; 1 ㅇ, 16 km N Eungella (ex. Berl. 493), $21^{\circ} 03^{\prime}$ S $148^{\circ} 35^{\prime} \mathrm{E}$, RWT, 13 Sep 1975.
Distribution. Queensland: throughout Wet Tropics, south to Eungella, north to Mt Tozer, Cape York Peninsula (Fig. 1), mostly in rainforest, 75-1200 m, mostly above 650 m .

Description. Length up to 24 mm ; width of head shield up to 2.85 mm . Colour (based on specimens in absolute ethanol): antenna yellow to pale orange with several dark pigment spots occasionally present on dorsal side of articles in proximal third of antenna; head shield yellow with brown mottled network; tergites pale yellow to pale orange with dark (sometimes tinged with purple) mottling concentrated in longitudinal median band and near margins; dark pigment spots often present near tergal margins; maxillipedes pale orange; sternites pale yellow to pale orange with some faint purple mottling around margins; prefemur to tibia pale to moderate yellow with purple mottling, tarsi a slightly deeper orange; genital sternite and gonopods yellow.

Head shield smooth. Frontal margin with strong median notch; posterior margin transverse or weakly concave; border slightly wider posterolaterally than medially. Median furrow incised for about $1 / 6$ length to transverse suture, shallow throughout. Antennal length 4.1-5.7 times width of head shield, usually extending back to tergite 5 (Fig. 7A); 33-40 articles, majority of specimens examined with 36 ; basal two articles much larger than succeeding two; relatively gradual change in length of articles along rest of antenna (Fig. 10G,H), articles 3 to $8-10$ typically wider than long, gradually elongating along antenna with more

Fig. 7. Henicops tropicanus n.sp. (A) holotype, \uparrow QM S39941, 12km WNW Mossman, QLD. (B) $\xlongequal[(]{ } \uparrow \text { QM S39911, terminal segments }$ and gonopods, Mossman Bluff camp, W Mossman, QLD. (C) ơ QM S39925, terminal segments and gonopods, Mt Hartley, QLD. Scales 0.5 mm .
distal articles up to twice as long as wide (Fig. 10I); gradational increase in density of setae to about tenth article, then more or less constant. Ocellus moderately large, overhanging lateral margin of head (Fig. 9A), usually translucent, sometimes whitish to dark purple, domed. Tömösváry organ small, deep, longitudinally elliptical, outer edge at anterolateral margin of cephalic pleurite (Fig. 9D-F).

Small transverse seta projects medially from pit in labral sidepiece (Fig. 9C). Labral margin with rounded shoulder beside midpiece, with pronounced break in curvature where branching bristles overhang margin; fringe composed of up to 30 densely grouped bristles with many short, spinelike projections along their length, a few longer spines at distal end (Fig. 9G).

Fig. 8. (A-D) Henicops tropicanus n.sp. $\xlongequal{ }$ QM 39898, Mossman Bluff track, W Mossman, QLD: (A) leg 12, (B) leg 13, (C) leg 14, (D) leg 15 . Scale 0.5 mm .

Maxillipede coxosternum trapezoidal to subsemicircular, dental margin broad, each half weakly convex (Fig. 9H-K); median notch lacking; teeth moderately large, triangular projections, invariably $3+3$, usually with a slightly wider space between the outer tooth and middle tooth (Fig. 9K) but ranging from equidistant to space between outer and middle tooth nearly twice that between inner and middle tooth. Coxosternum bearing moderate number of large, scattered setae, usually with distinctly denser setation behind dental margin and anterolaterally (Fig. 9I,K). Tarsungulum with long, slender pretarsal section, as much as twice length of tarsal section (Fig. 9H,L). Setae on telopodite somewhat more abundant on inner part of femur, tibia and tarsal section of tarsungulum than on outer part, these setae moderately long.

Mandible: Four paired teeth on right mandible, left with smaller flattened fifth tooth adjacent to furry pad (Fig. 10A,B). Approximately 20 aciculae differentiated into two rows (Fig. 10C,D); aciculae in dorsal part of outer row with pronounced serrations on both margins along distal half, those in ventral part of outer row with a simple margin or with weak scalloping distally; aciculae of inner row with simple margin (Fig. 10C,D). Fringe of branching bristles skirts aciculae, with transition to rows of scales with multifurcating spine fringes adjacent to midpoint of the second most ventral tooth; scales gradually shortening dorsally (Fig. 10F) to terminate before reaching furry pad (Fig. 10K); ventralmost bristles in fringe narrow-based, lacking spine-like projections on basal sixth to eighth of bristle, spine-like projections abundant and even along remainder of bristle (Fig. 10E); bristles branching into a few spines distally. Accessory denticle field without grooves
between rows of denticles or at margin of denticle field (Fig. $10 \mathrm{~A}, \mathrm{~F}$); largest accessory denticles bluntly conical, grading into smaller triangular denticles then small elongate rods near fringe of scale-like bristles; band of unsculpted cuticle on dorsalmost tooth separates accessory denticles from furry pad; furry pad with many elongate, simple bristles (Fig. 10 K), some bristles with bifid terminations.

First maxilla: Minute wedge-shaped sternite (Fig. 10L). Coxal process trapezoidal, with a few plumose setae and up to 10 simple setae on anteromedial edge (Fig. 10J), this cluster slightly separated from a few simple setae on inner edge of coxal process; plumose setae with numerous short, spine-like branches along their distal third. Cluster of about six barb-like sensilla microtrichoidea on posterolateral part of coxal process (Fig. 10J). Distal article of telopodite with two rows of about 15 plumose setae along inner margin; branches developed along distal half of these setae (Fig. 10M); shorter simple setae on membranous strip alongside inner margin; main field of distal article of telopodite bearing a few setae anteriorly.

Second maxilla: Sternite small, fused with coxae. Band of $8-11$ short setae along anterior part of coxa. Tarsus bearing numerous simple setae on outer surface, cluster of many plumose setae on membranous patch on inner surface (Fig. 11D,E); branches on plumose setae mostly confined to distal half. Claw small, composed of five digits, median digit long, thick, with shorter, slender digit between median and each outer digit (Fig. 11E).

Tergites weakly wrinkled. T1 generally trapeziform, smaller than T3, slightly narrower than head shield (Fig. 7 A), about 70% width of widest tergite (T8), posterior

Fig. 9. Henicops tropicanus n.sp. ($A, E, K-M$) đ AM KS83631, Eungella NP, QLD: (A) dorsal view of head shield, scale $300 \mu \mathrm{~m}$; (E) cephalic pleurite, scale $100 \mu \mathrm{~m}$; (K) ventral view of maxillipede dental margin, scale $300 \mu \mathrm{~m}$; (L) telopodite of maxillipede, scale 300 $\mu \mathrm{m}$; (M) dorsal view of posterior tergites, scale $300 \mu \mathrm{~m}$. ($B-D, F-J$) ot QM S39898, Mossman Bluff track, QLD: (B) ventral view of head, scale $300 \mu \mathrm{~m} ;(C)$ clypeus and labrum, scale $100 \mu \mathrm{~m} ;(D)$ cephalic pleurite, scale $100 \mu \mathrm{~m}$; (F) Tömösváry organ, scale $30 \mu \mathrm{~m} ;(G)$ labral margin, scale $30 \mu \mathrm{~m}$; (H) ventral view of maxillipede, scale $300 \mu \mathrm{~m}$; (I, J) ventral and dorsal views of maxillipede dental margin, scales $300 \mu \mathrm{~m}$.
angles rounded, posterior margin transverse; lateral margins subparallel in T3, slightly convex in T5, posterior angles rounded in both, posterior margin faintly concave in TT3 and 5; TT1 and 3 bordered posteriorly; borders of TT5 and 7 incomplete posteriorly; posterior margin of T7 with transverse or convex medial sector, having independent curvature from lateral sectors, posterior angles gently triangular, rounded; lateral margins of TT4-14 convex, all bordered laterally; posterior margin of T8 weakly concave,
posterior angle blunt, TT10 and 12 posterior margins gently concave, posterior angles with obtuse, blunt corners; TT6, 9,11 and 13 embayed with transverse posteromedial third, posterior angle of T6 rounded, T9 blunt, TT11 and 13 with sharp triangular projections; posterior margin of T14 concave, with blunt posterior angles.

Short to moderate, slender setae along lateral borders of all tergites, often with 3-5 longer, thicker setae concentrated on anterolateral border; often cluster of several short setae

Fig. 10. Henicops tropicanus n.sp. ($A-C, G-H, J, M$) ơ QM S39898, Mossman Bluff track, QLD: (A, B) outer (anterior) and inner (posterior) views of gnathal edge of left mandible, scale $50 \mu \mathrm{~m} ;(C)$ mandibular aciculae, scale $15 \mu \mathrm{~m} ;(G, H)$ antennal articles, scales $200 \mu \mathrm{~m}, 150 \mu \mathrm{~m}$; (J) coxal processes of first maxillae, scale $50 \mu \mathrm{~m}$; (M) plumose setae on inner margin of first maxillary telopodite, scale $10 \mu \mathrm{~m}$. ($D-F, K$) \ddagger QM S39898, right mandible: (D) aciculae, scale $30 \mu \mathrm{~m}$; (E) fringe of branching bristles, scale $30 \mu \mathrm{~m}$; (F) teeth, showing accessory denticles, and fringe of branching bristles, scale $50 \mu \mathrm{~m}$; (K) dorsal tooth and furry pad, scale $30 \mu \mathrm{~m}$. (I,L) ठ AM KS83631, Eungella NP, QLD: (I) antennal articles, scale $100 \mu \mathrm{~m}$; (L) first maxillae, scale $150 \mu \mathrm{~m}$.
on posterior angles of tergites; few short, slender setae scattered sparsely over surface of most tergites. A few moderate to long setae on margins of sternites, $1-3$ setae at anterolateral corner most prominent anteriorly in trunk; setae along posterolateral and posterior margins more prominent in posterior segments; posterior margin fringed by $6-10$ setae on sternites $13-15$; consistently strong pair of setae on anteromedial part of sternites.

Legs: Strong, pointed distal projections with sclerotized tips on tibiae of legs $1-14$. Prefemur of legs $1-13$ with short to moderate setae scattered on anterior and posterior faces,
some longer, thicker setae on ventral edge of prefemur, femur and tibia; longest setae on femur and tibia equal to (Fig. 8B) or shorter than (Fig. 8A) longest on prefemur; a few thickened setae encircling distal margin of femur; strong, pigmented seta at ventrodistal end of tibia on anterior face of legs 1-13; tarsus with combination of slender setae of fairly even length, and four pairs of thicker, divergent, pigmented setae on ventral side of legs 1-13 (Fig. 11K), two of these just proximal to articulations between tarsomeres, one near midlength of distal tarsomere. Setae on legs 14 and 15 more uniformly slender and sparsely

Fig. 11. Henicops tropicanus n.sp. $(A, B, F, G, K) \not{ }^{\star}$ AM KS83631, Eungella NP, QLD: (A) terminal process of $\begin{gathered} \\ \text { gonopod, scale } 30 \mu \mathrm{~m} \text {; }\end{gathered}$ (B) ventral view of terminal segments and gonopods, scale $100 \mu \mathrm{~m} ;(F, G)$ anteroventral views of pretarsus of leg 14 , scales $30 \mu \mathrm{~m}, 10$ $\mu \mathrm{m} ;(K)$ tibia, tarsus and pretarsus of leg 12, scale $100 \mu \mathrm{~m} .(C, H, J) 甲$ QM S39898, Mossman Bluff track, QLD: (C) gonopods, scale 50 $\mu \mathrm{m} ;(H)$ tarsus and pretarsus of leg 15 , scale $300 \mu \mathrm{~m} ;(J)$ ventrolateral view of gonopods, scale $100 \mu \mathrm{~m}$. (D,E,I) ठे QM S39898, Mossman Bluff track, QLD: (D, E) distal part and claw of second maxilla, scales $100 \mu \mathrm{~m}, 50 \mu \mathrm{~m} ;(I)$ tibia, tarsus and pretarsus of leg 13, scale $300 \mu \mathrm{~m}$.
distributed than on preceding legs, especially sparse on tibia and basitarsus of leg 15 . Three tarsomeres in legs 1-12 (Fig. 8A), with divided basitarsus. Condyle at joint between basitarsus and distitarsus on legs 13-15 only. Four tarsomeres in legs 13 and 14, basitarsus and distitarsus with two parts each (Figs. 8B,C, 11I); proximal tarsomere nearly 70% length of basitarsus and $55-60 \%$ length of distitarsus on leg 14. Leg 15 with five tarsomeres, basitarsus having two, distitarsus three (Figs. 8D, 11H). Distitarsus 70-80\%
length of basitarsus on leg 15; basitarsus 12-14 times longer than broad; proximal tarsomere 55-65\% length of basitarsus; three tarsomeres comprise about 45-50, 15-20 and 30-40\% (proximal to distal) length of distitarsus. Pretarsal claws (Fig. 11F,G) as described below for H . milledgei.

Coxal pores round or ovate (Fig. 7B,C), commonly 5,6,6,6/5,6,6,6 in large males and females, males maximum $5,6,6,6 / 5,6,6,6$, minimum $3,4,4,4 / 3,4,4,4$; females maximum $7,7,7,7 / 7,7,7,7$, minimum $3,4,5,5 / 3,4,5,5$. Coxal
pore field set in shallow groove，distal pore（s）partly concealed by anteroventral face of coxa．Anal pores large in both sexes．

Female（Fig．7B）：Sternite of segment 15 transverse or convex posteromedially．Tergites of first genital segment and telson usually well sclerotized．Sternite of first genital segment large，posterior margin concave between condyles of gonopods except for small median projection，posterior two－thirds fairly evenly scattered with setae of varied length； short setae concentrated in a band along posteromedial margin．First article of gonopod bearing two（three in one speci－ men）large，bullet－shaped spurs，inner spur slightly smaller than outer；spurs gently curved such that tip points up（Fig．11C，J）； first and second articles of gonopod with mix of many short， moderate and long setae，up to 56 on first article，up to 37 on second；third article with up to 10 setae，mostly moderate，one or two long ones（Fig．11J）．Claw large，undivided．

Male（Fig．7C）：Sternite of segment 15 rounded posteriorly．Sternite of first genital segment small，divided， with transverse posterior margin，bearing numerous moderately long setae，short setae concentrated in a band near posterior margin（Fig．11B）．Gonopod of three articles and tapering，seta－like terminal process that bears many short spine－like projections（Fig．11A），the three articles each bearing numerous short to moderately long setae， typically about $15,10-12$ and 10 for first to third articles， respectively；extended penis approximately equal in length to first article of gonopod．

Larval stadia（identified by correspondence to leg and limb－bud pairs in Lamyctes emarginatus：Andersson，1979， 1984）（ANIC Berl．1062）：Stadium LII with 8 pairs of legs and two pairs of limb－buds； 14 antennal articles．Stadium LIII with 10 pairs of legs and two pairs of limb－buds； 25 antennal articles．Stadium LIII with 12 pairs of legs and three pairs of limb－buds； 25 antennal articles．Stadia LII－IV all with 3＋3 teeth on dental margin of maxillipede coxosternum．

Discussion．As discussed above under the Henicops dentatus Group，H．dentatus and H．tropicanus n．sp．share numerous characters distinguishing them from other species of Henicops，and they appear to be sister taxa．In spite of their geographic separation，the two species are remarkably similar．They can consistently and most readily be disting－ uished by the morphology of the female gonopod，in particular the size and shape of the spurs on the basal article． Henicops dentatus has two，small bullet－shaped（Fig．6G） or distally－truncated（Figs．4F，6H）spurs，with the outer spur as much as 40% longer and 50% wider than the inner spur．In contrast，the gonopods of H．tropicanus（Figs．7B， 11C）bear spurs that are larger and more elongate（with the outer spur of H．tropicanus being approximately 40% the length of the inner margin of the first article of the gonopod， compared to approximately 20% in H ．dentatus）and both spurs are of more nearly equal size．Though the shape of the spurs varies within H ．dentatus，they are consistently shorter and stouter than in H．tropicanus．In contrast to the distinction made possible by the female gonopods，the male gonopods of the three species of Henicops treated herein（Figs．4C，7C，12C） provide no obvious characters for specific distinction．

Two features of the mandibular gnathal edge permit distinction between Henicops tropicanus and H．dentatus． The Western Australian H．dentatus has a narrower fringe of branching bristles on the dorsal part of the mandible（Figs． 5D，I versus 10F），this including the entire row of scale－like bristles．As well，the branching bristles on the ventral part
of the fringe have a longer non－spinose（basal）extent（Fig． 5 H versus 10 E ）．In both of these characters，the state in H ． tropicanus is plesiomorphic，being shared with H ．maculatus （Edgecombe et al．，2002：figs．4A，5C），H．milledgei（Fig． 14H），H．brevilabiatus（Fig．2A，B，D）and outgroups．

Specimens of Henicops tropicanus often have a narrower medial sector to＂notched＂tergites 7， 9 and 11 than does H ． dentatus（compare Fig． 3 with Fig．7A）but this difference is inconsistent．Setation of legs 14 and 15 often also serves to distinguish between the two species：H．tropicanus typically has fewer setae on legs 14 and 15 （Fig．8C，D）than H．dentatus （Figs．4C，D），most notably on the tibia and basitarsus of leg 15 （Fig．11H），and has gracile setae on the prefemur of leg 15 versus sometimes spine－like setae in H ．dentatus．

Henicops tropicanus normally has two spurs on the female gonopod，only one specimen（QM S38899）having three spurs． Three－spur variants are also exceptional in other members of the Henicopinae．For example，specimens of Lamyctes mauriesi Demange，1981，are recorded as normally having two conical spurs on each gonopod，but single specimens from Tenerife and Gran Canaria have two such spurs on one gonopod and three on the other（Eason \＆Enghoff，1992）．

Henicops milledgei n．sp．

Figs．12－16
Etymology．For Graham Milledge，who collected this species throughout most of its range．

Type material．Holotype：MV NOH－2207，$甲$（Fig．12A），Strzelecki Ra，Tarra－Bulga NP，VIC， 0.5 km NNE Tarra Valley Picnic Area， $38^{\circ} 26^{\prime} 40^{\prime \prime} \mathrm{S} 146^{\circ} 32^{\prime} 30^{\prime \prime} \mathrm{E}$ ，Nothofagus cunninghamii forest，G．A． Milledge， 14 Nov 1995－10 Jan 1996．PARATYPES：NOH－2208， 1 ¢，3 $\begin{gathered}\text { ず，}\end{gathered}$ from type locality， 10 Jan－5 Mar 1996；NOH－2209， 1 ㅇ， 1δ ，type locality， 5 Mar－7 Mar 1995；NOH－2211， 1 ¢， 1 ठ，Tarra－Bulga NP， 0.2 km W Tarra Valley Picnic Area， $38^{\circ} 27^{\prime}$ S $146^{\circ} 32^{\prime} \mathrm{E}, 14$ Sep－14 Nov 1995；NOH－ 2212， 1 đิ，same locality， 14 Nov 1995－10 Jan 1996；NOH－2213， 1 đิ， same locality， 14 Nov 1995－10 Jan 1996；NOH－2214， 1 ㅇ， 3 ठิ ठิ，same locality， 10 Jan－5 Mar 1996；NOH－2215， $1 \delta^{\star}$ ，same locality， 7 May－16 Jul 1996；NOH－2220， 1 ㅇ， 2 o $^{\text {ot }}$ ，same locality， 5 Mar－7 May 1996；NOH－ 2217， 1 ㅇ，Tarra－Bulga NP，Bulga Picnic Area， $38^{\circ} 25^{\prime} 30^{\prime \prime} S 146^{\circ} 34^{\prime} 20^{\prime \prime} \mathrm{E}$ ， 14 Nov 1995－10 Jan 1996；NOH－2218， 1 ठิ，same locality， 10 Jan－5 Mar 1996；NOH－2219， 2 ㅇ \uparrow ，1ơ，same locality， 5 Mar－7 May 1996.

Other material．Victoria：MV：OTWAY RA，leg．G．A．Milledge： NOH－1045， 2 우， $1 \delta^{\star}$ ，Philips Track， 0.5 km N Triplet Falls， $38^{\circ} 40^{\prime} \mathrm{S}$ $143^{\circ} 29^{\prime} \mathrm{E}, 6$ Sep－15 Nov 1994；NOH－1046， 1 it， $1 \delta^{\imath}$ ，same locality， 15 Nov 1994－31 Jan 1995；NOH－1047， 3 ㅇ q ，same locality， 31 Jan－11 Apr 1995；NOH－1048， 1 §̊，same locality， 11 Apr－14 Jun 1995；NOH－ 1049， 1 ㅇ，same locality， 14 Jun－29 Aug 1995；NOH－1050， 2 우， 2 ơ ơ， Young Creek Rd， 0.4 km NW Triplet Falls， $38^{\circ} 40^{\prime} \mathrm{S} 143^{\circ} 29^{\prime} \mathrm{E}$ ， 6 Sep－ 15 Nov 1994；NOH－1052， 7 ¢ $\uparrow, 3$ ô $\widehat{\sigma}$ ，same locality， 15 Nov 1994－31 Jan 1995；NOH－1053， 1 ㅇ，same locality， 31 Jan－11 Apr 1995；NOH－1054， 3 ㅇ $ㅇ$ ，same locality， 11 Apr－14 Jun 1995；NOH－1055， 3 우， $1 \delta^{\star}$ ，Young Creek Rd， 0.2 km NE Ciancio Ck Crossing， $38^{\circ} 40^{\prime} \mathrm{S} 143^{\circ} 29^{\prime} \mathrm{E}, 6$ Sep－15 Nov 1994；NOH－1056， 1 \＆，same locality， 15 Nov 1994－31 Jan 1995；NOH－ 1058， 2 오 ㅇ，1 $\widehat{\delta}, 31$ Jan－11 Apr 1995；NOH－1059， 1 ㅇ（Figs．14K，L，15F， 16G－J）， $2 \delta^{\star}$ ô，same locality， 11 Apr－4 Jun 1995；NOH－1060，1 ${ }^{\text {o }}$ ，Aire Crossing Tk， 0.5 km N Aire R．Crossing， $38^{\circ} 40^{\prime} \mathrm{S} 143^{\circ} 29^{\prime} \mathrm{E}$ ， 6 Sep－15 Nov 1994；NOH－1061， 2 o * oै，Beauchamp Falls， $38^{\circ} 39^{\prime} \mathrm{S} 143^{\circ} 36^{\prime} \mathrm{E}, 6$ Sep－15 Nov 1994；NOH－1062， 7 우， 1δ ，same locality， 15 Nov $1994-$ 31 Jan 1995；MV NOH－1063， 8 우， 1 ઠิ，same locality， 31 Jan－11 Apr 1995.

Central Highlands，leg．G．A．Milledge：NOH－1778， 1 larval stadium LII， 2 larval stadia LIII，Cement Creek Reserve， 2.2 km ESE Mt Donna Buang， $37^{\circ} 43^{\prime} \mathrm{S} 144^{\circ} 42^{\prime} 15^{\prime \prime} \mathrm{E}, 13$ Dec 1994；NOH－1779， 2 우오， $1 \delta^{\circ}$（Figs． 14B，C，H－J，15B，D，E，G，L，M，16A，D－F，K，L），same locality， 29 Nov 1994－20 Jan 1995；NOH－1784， 3 ¢ 9 ，same locality， 21 Jan－7 Apr 1995； MV NOH－1782， 4 ㅇ （Fig．12B），4ठ亍 ${ }^{\text {on，}} 1$ larval stadium LII，Donna

Fig．12．Henicops milledgei n．sp．（A）holotype $\&$ MV NOH－2207，dorsal view，Tarra－Bulga NP，Strzelecki Ranges，VIC．（B）q MV NOH－1782，terminal segments and gonopods，1km SW Mt Donna Buang，Central Highlands，VIC．（C）ô MV NOH－1792，terminal segments and gonopods，Acheron Gap，Central Highlands，VIC．Scales 0.5 mm ．

Buang Rd， 1 km SW Mt Donna Buang， $37^{\circ} 43^{\prime} \mathrm{S} 144^{\circ} 40^{\prime} \mathrm{E}, 29$ Nov $1994-$ 20 Jan 1995；NOH－1783， 6 우 ㅇ， 1 ઠ九，same locality， 21 Jan－7 Apr 1996；
 3.4 km WSW Mt Donna Buang， $37^{\circ} 43^{\prime} \mathrm{S} 144^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{E}, 29$ Nov 1994－20 Jan 1995；NOH－1787， 5 아， $3 \delta^{\top}{ }^{\circ}$ ，same locality， 21 Jan－7 Apr 1995； NOH－1788， 1 \＆，Road 26， 0.2 km WNW Donna Buang Rd junct．， $37^{\circ} 43$＇S $144^{\circ} 39^{\prime} 30$＂E， 16 Feb 1995；NOH－1790， 1 \＆，Acheron Gap， 6 km NE Mt Donna Buang， $37^{\circ} 40^{\prime} 43^{\prime \prime} \mathrm{S} 144^{\circ} 44^{\prime} 20$＂E， 20 Feb 1996；NOH－1792， 2 す ${ }^{\star}$ （Fig．12C），same locality， 26 Oct－28 Dec 1995；NOH－1793， 2 i ㅇ，same locality， 28 Dec 1995；NOH－1794， 4 우 ，same locality， 21 Feb－23 Apr

1996；NOH－1795， 1 if，same locality， 23 Apr－25 Jun 1996；NOH－1796， 2 우， 2 o * ， 0.7 km N Acheron Gap， 7 km NE Mt Donna Buang， $37^{\circ} 40^{\prime} 17^{\prime \prime} \mathrm{S}$ $144^{\circ} 44^{\prime} 20^{\prime \prime} \mathrm{E}, 21 \mathrm{Feb}-23$ Apr 1996；NOH－1797， 4 ơ $^{\circ}$ ， ，same locality， 28 Dec 1995－21 Feb 1996；NOH－1800， 1 larval stadium LIII，The Big Culvert， 2.5 km ENE Mt Observation，37³3＇36＂S 14552＇15＂E， 28 Dec 1995.

Strzelecki Ra，leg．G．A．Milledge：NOH－2222， 1 larval stadium LIII， Tarra－Bulga NP，Bulga Picnic Area， $38^{\circ} 25^{\prime} 30 " \mathrm{~S} 146^{\circ} 34^{\prime} 20^{\prime \prime} \mathrm{E}, 7$ May－ 16 Jul 1996；NOH－2225， 1 ¢（Fig．13A－D）， 2 す̊ す̋，Gunyah－Toora Rd， 2 km SSW Gunyah Gunyah， $38^{\circ} 32^{\prime} 30^{\prime \prime} \mathrm{S} 146^{\circ} 19^{\prime} \mathrm{E}$ ， 14 Nov 1995－10 Jan

Fig. 13. Henicops milledgei n .sp. \odot MV NOH-2225, Mt Donna Buang, Strzelecki Ranges, VIC: (A) leg 12, (B) leg 13, (C) leg 14, (D) leg 15. Scale 0.5 mm .

1996; NOH-2227, 1 ? , Jeeralang West Rd, 0.1 km N Binns Hill Junction, $38^{\circ} 26^{\prime} 30^{\prime \prime}$ S $146^{\circ} 29^{\prime} \mathrm{E}, 10$ Jan-5 Mar 1996.

Australian Museum: KS35864, 1 \& , Otway Ra, $38^{\circ} 27^{\prime} \mathrm{S} 143^{\circ} 58^{\prime} \mathrm{E}$, A. Frazer, Aug 1979; KS35869, $1 \delta^{\star}$, Otway Ra, Lavers Hill, $38^{\circ} 41^{\prime}$ S $143^{\circ} 24^{\prime}$ E, A. Frazer, 24 Feb 1979; KS83632, 1 ¢, Otway NP, Sandy Ridge, Spur Road, $38^{\circ} 46.12$ 'S $143^{\circ} 32.9^{\prime} \mathrm{E}, 278 \mathrm{~m}, \mathrm{G}$. Cassis et al., 9 Nov 2002; KS83633, 2 여 (Figs. 14A,D-G, 15A,C,H,K, 16B,C), Grampians NP, Wonderland Range, Silverband Rd, 1.2 km S Rosea Campground, $37^{\circ} 10^{\prime} 28^{\prime \prime} \mathrm{S}$ $142^{\circ} 30^{\prime} 29^{\prime \prime}$ E, G.D. Edgecombe \& Z. Johanson, 15 Feb 2000, fern gully.

Distribution. Victoria: Otway Ranges, Strzelecki Ranges, Central Highlands, mostly from Nothofagus cunninghamii forest; Grampians, sclerophyll forest (Fig. 1).

Diagnosis. Henicops with 36-43 (most commonly 40 or 41) antennal articles. Uneven change in length of articles in proximal part of antenna, with short paired articles interspersed between longer articles; T7 with rounded, concave margin; Tömösváry organ small and weak, centrally located on cephalic pleurite; groove in accessory denticle field pronounced on mandibular teeth; female gonopod with two moderately large, bullet-shaped spurs (shared with H. maculatus). Mandibular aciculae differentiated into outer row with serrated margins and inner row with mostly simple margins; branching bristles of mandible with sparse spinelike branches on basal part of bristle (shared with H. dentatus Group). Uniquely: 3+3 moderate sized teeth on maxillipede coxosternum, with space between outer and middle teeth invariably more than twice the space between inner two teeth; three tarsomeres in leg 13, four in leg 14, five in leg 15 , basitarsus undivided in legs 13-15; proximal coxal pores elliptical, distal pores round.
Description. Length up to 28 mm ; width of head shield up to 3.3 mm . Colour (based on specimens in absolute ethanol): antenna dark orange, with dark pigment spots usually present, especially on dorsal side and proximally but also
common on ventral side of antenna and more distally; head shield dark orange with chestnut mottled network; tergites dark orange with dark mottling covering most of tergite, concentrated in longitudinal median band and near margins, and dark pigment spots concentrated on margins; maxillipedes orange; sternites pale orange with purple mottling around margins, becoming more concentrated in the three posterior sternites; prefemur to tibia pale to moderate yellow with purple mottling; tarsi pale to moderate yellow; genital sternite and gonopods orange with faint purple mottling on genital sternite.

Head shield smooth. Frontal margin with strong median notch and short median furrow; posterior margin transverse; border very slightly wider posterolaterally than posteromedially. Antennal length 3.1-4.7 times width of head shield, usually extending back to tergite 5 (Fig. 12A); 3643 articles, commonly 40 or 41 ; basal two articles much larger than succeeding two (Fig. 14A); antenna with a markedly uneven change in the length of articles in proximal part, with short paired articles interspersed between longer articles (Fig. 14B); articles mostly substantially longer than wide in distal half of antenna; antenna densely setose along most of length, with many short, curved sensilla interspersed with long trichoid sensilla (Fig. 14C). Ocellus moderately large, overhanging lateral margin of head, usually translucent, whitish to dark purple, domed. Tömösváry organ small, fairly shallow, longitudinally elliptical, situated inward of anterolateral margin of cephalic pleurite (Fig. 15D,E).

Clypeus with transverse band of six setae medially just in front of labrum (Fig. 15B), cluster of 10 setae at clypeal apex (Fig. 15A). Labral margin with rounded shoulder beside midpiece, with gradual break in curvature where fringe of branching bristles overhangs margin (Fig. 15B); most bristles with short, spine-like projections along their length, some branching into long, slender spines distally (Fig. 15C).

Fig. 14. Henicops milledgei n.sp. $(A, D-G) \nsubseteq$ AM KS83633, Grampians NP, VIC: (A) dorsal view of head shield, scale $100 \mu \mathrm{~m} ;(D, E)$ outer (anterior) and inner (posterior) views of gnathal edge of left mandible, scales $10 \mu \mathrm{~m}$; (F) mandibular teeth, scale $10 \mu \mathrm{~m}$; (G) aciculae, scale $30 \mu \mathrm{~m}$. ($B, C, H-J$) ơ MV NOH-1779, Cement Creek Reserve, Central Highlands, VIC: (B, C) antennal articles, scales 30 $\mu \mathrm{m}, 10 \mu \mathrm{~m} ;(H)$ aciculae and fringe of branching bristles of mandible, scale $50 \mu \mathrm{~m}$; (I) inner (posterior) view of mandibular aciculae, scale $30 \mu \mathrm{~m} ;(J)$ accessory denticles and furry pad of mandible, scale $30 \mu \mathrm{~m} .(K, L) \nsubseteq \mathrm{MV}$ NOH-1059, Otway Range, VIC: (K) anterior view of pretarsus of leg 12 , scale $30 \mu \mathrm{~m} ;(L)$ posterior view of pretarsus of leg 12 , scale $10 \mu \mathrm{~m}$.

Maxillipede coxosternum trapezoidal to subsemicircular, dental margin broad, each half gently convex (Fig. 16A,B); median notch at most narrow, shallow (Fig. 16D); teeth small, triangular projections, invariably $3+3$, with space between outer tooth and adjacent tooth more than twice space between inner two teeth (Fig. 16C-E), inner tooth smaller than the others. Coxosternum bearing moderate number of small to moderate sized setae (Fig. 16D), mostly confined to anterior half of coxosternum (Fig. 16A,B). Tarsungulum with long, slender pretarsal section (Fig. 16A,B). Setae on telopodite denser on inner part of femur, tibia and tarsal section of tarsungulum than on outer part, especially long on tarsungulum (Fig. 16C).

Mandible as described for H. tropicanus except for the following: ventral aciculae in outer row of aciculae with
both margins serrated along their distal fifth to third (Fig. $14 \mathrm{G}, \mathrm{I})$; grooved ridge on accessory denticle field of all but ventralmost paired tooth (Fig. 14D,F); ventral bristles in fringe of branching bristles lacking spine-like projections on basal fifth of bristles (Fig. 14H); fringe of scale-like branching bristles extends to furry pad (Fig. 14J); bristles of furry pad curved towards dorsalmost tooth (Fig. 14F,J).

First maxilla (Fig. $15 \mathrm{H}-\mathrm{J}$) as described for H. tropicanus except: coxal process with a few short simple setae, several laciniate and plumose setae with intermediates between these (some with a few terminal spines, others with numerous short, slender projections along their distal halves) (Fig. 15J); distal article of telopodite with several simple setae scattered over its main field (Fig. 15I). Second maxilla (Fig. $15 \mathrm{~K}-\mathrm{M}$) as described for H. tropicanus.

Fig. 15. Henicops milledgei n.sp. (A,C,H-K) $\xlongequal{ }$ AM KS83633, Grampians NP, VIC: (A) ventral view of head, scale $300 \mu \mathrm{~m}$; (C) labral margin, scale $30 \mu \mathrm{~m}$; (H) first maxillae, scale $300 \mu \mathrm{~m}$; (I) coxal processes and telopodites of first maxillae, scale $100 \mu \mathrm{~m}$; (J) setae on coxal process of first maxilla, scale $30 \mu \mathrm{~m}$; (K) distal part of telopodite of second maxilla, scale $100 \mu \mathrm{~m} .(B, D, E, G, L, M) \not{ }^{\hat{\alpha}}$ MV NOH1779, Cement Creek Reserve, Central Highlands, VIC: (B) clypeus and labrum, scale $300 \mu \mathrm{~m}$; (D) cephalic pleurite, scale $300 \mu \mathrm{~m}$; (E) Tömösváry organ, scale $30 \mu \mathrm{~m} ;(G)$ ventral view of pretarsus of leg 15 , scale $100 \mu \mathrm{~m}$; (L) distal part of telopodite of second maxilla, scale $200 \mu \mathrm{~m}$; (M) tarsus and claw of second maxilla, scale $30 \mu \mathrm{~m}$. $(F) \circ$ MV NOH-1059, Otway Range, VIC. Tibia, tarsus and pretarsus of leg 13, scale $300 \mu \mathrm{~m}$.

Tergites wrinkled, faintly so anteriorly but considerably so in posterior half of trunk. T1 trapeziform, about as wide as head shield (Fig. 12A), about 80% width of widest tergite (T8), posterior angles rounded and posterior margin gently concave; lateral borders subparallel in TT3 and 5, posterior angles rounded, posterior margins gently concave; TT1, 3 and 5 bordered posteriorly; border of T7 incomplete
posteriorly; posterior margin of T7 evenly concave, posterior angle blunt; posterior margins of TT8 moderately, fairly evenly concave, posterior angles obtuse, blunt; posterior margins of TT6, 11 and 13 all evenly concave, increasingly so more posteriorly; T9 variably with nearly transverse median sector; posterior angle of T6 rounded, TT9, 11 and 13 with triangular projections; posterior margin of T14

Fig. 16. Henicops milledgei n.sp. (A,D-F,K,L) ơ MV NOH-1779, Cement Creek Reserve, Central Highlands, VIC: (A) ventral view of maxillipede, scale $500 \mu \mathrm{~m}$; (D) ventral view of dental margin of maxillipede coxosternum, scale $300 \mu \mathrm{~m}$; (E) dorsal view of dental margin of maxillipede coxosternum, scale $300 \mu \mathrm{~m} ;(F)$ ventral view of terminal segments and gonopods, scale $300 \mu \mathrm{~m}$; (K) distal end of gonopod, scale $100 \mu \mathrm{~m}$; (L) terminal process of gonopod, scale $30 \mu \mathrm{~m} .(B, C)$ ㅇ AM KS83633, Grampians NP: (B) ventral view of maxillipede, scale $500 \mu \mathrm{~m} ;(C)$ setation of telopodite and dental margin of maxillipede, scale $100 \mu \mathrm{~m}$. ($G-J$) $\uparrow \mathrm{MV}$ NOH-1059, Otway Range, VIC: (G) ventral view of sternite of first genital segment and gonopods, scale $300 \mu \mathrm{~m} ;(H, I)$ ventral and ventrolateral views of sternite of first genital segment and gonopods, scales $300 \mu \mathrm{~m}$; (J) gonopods, scale $100 \mu \mathrm{~m}$.
moderately concave, with obtuse posterior angles; tergite of intermediate segment with weakly concave posterior margin in female, moderately concave margin in male. Tergal surface and margins scattered with short setae, in some specimens relatively numerous, e.g., posterior margins of TT3 and 4 fringed by about 20 setae. Longitudinal median furrow confined to anterior part of sternites, not more than one-third length of sternite.

Legs: Distal spinose projections on tibiae strong, pointed on legs 1-14. Setae relatively uniformly distributed along
length of legs, with similar setal density on inner and outer faces of all podomeres; legs 14 and 15 (Fig. 13C,D) with similar setal density as 1-13 (Fig. 13A,B). Three tarsomeres in legs $1-12$ (Fig. 13A), with divided basitarsus; tarsal articulations discontinuous on dorsal side of leg in anterior part of trunk; three pairs of consistently strong, pigmented, divergent setae on tarsi of legs $1-12$, one just proximal to each articulation between tarsomeres, one near midlength of distal tarsomere. Basitarsus-distitarsus joint with a condyle in legs 13-15 only, basitarsus undivided in these
three legs; three tarsomeres in leg 13 (Figs. 13B, 15F); four tarsomeres in leg 14 (Fig. 13C), distitarsus about 65\% length of basitarsus, three tarsomeres comprise about 45-55, 1525 and $25-35 \%$ (proximal to distal) length of distitarsus; five tarsomeres in leg 15, the proximal distitarsal podomere about 50-55\% length of distitarsus, second and third shorter than fourth (Fig. 13D). Distitarsus 70-85\% length of basitarsus in leg 15; basitarsus 10-12 times longer than broad. Pretarsus with anterior and posterior accessory claws on all legs, about 30% length of main claw, inserted on dorsolateral side of main claw, with gentle dorsoventral curvature (Fig. 14K). Main claw gently curved, divided into many elongate, scales along most of its length, with short, polygonal scales ventrolaterally in region beneath proximal part of accessory claws, a few pores between these scales (Fig. 14L), pore openings in the middle of small polygons; scales weakly defined proximally beneath bases of accessory claws and on proximoventral surface of main claw, well defined dorsoproximally. Posteroventral spine ('sensory spur' of Eason, 1964: fig. 486) present on legs 114 (Fig. 14L), absent on leg 15 (Fig. 15G), about 15% length of main claw, directed distally, bearing slender subsidiary spine that parallels it on its dorsoproximal half (Fig. 14L); accessory claws and posteroventral spine with surface ornament of linear grooves and ridges.

Coxal pores round, transversely ovate, or elliptical, typically with round distal pores and elliptical proximal pores (Fig. 12B); overwhelmingly $6,5,5,5 / 6,5,5,5$ in large females (width head shield $>1.75 \mathrm{~mm}$), $5,4,4,4 / 5,4,4,4$ in large males; maximum in males $5,5,5,5 / 5,5,5,5$. Coxal pore field set in shallow groove. Anal pores large in both sexes.

Female (Fig. 12B): Sternite of segment 15 transverse or convex posteromedially, with about a dozen setae along posterolateral and posteromedial margins. Tergites of first genital segment and telson usually well sclerotized; sternite of first genital segment large, posterior margin concave, with median bulge, between condyles of gonopods, surface scattered with setae, longest and densest posterolaterally (Fig. 16G). First article of gonopod bearing two moderately large, bullet-shaped spurs, inner spur slightly smaller (Fig. $16 \mathrm{G}-\mathrm{J}$); spurs gently curved such that tip points up (Fig. 16I); first article usually bearing more than 30 setae in large specimens (up to 38), second article with 12-20 moderately long setae; third article with three to eight setae. Claw large, undivided, numerous pores with sensilla coeloconica on dorsodistal surface of claw (Fig. 16J).

Male (Fig. 12C): Sternite of segment 15 with subtransverse (Fig. 12C) to moderately convex (Fig. 16F) posteromedial margin. Sternite of first genital segment small, divided, with transverse posterior margin, bearing about 20 moderate to long setae on each half with slight to moderate concentration near posterior margin. Gonopod of three articles and tapering, seta-like terminal process (Fig.
$16 \mathrm{~K}, \mathrm{~L}$), with many short spine-like projections along its inner margin; articles of gonopod each typically bear 1012 setae; many setae on gonopod and first genital sternite curved, at least distally.

Larval stadia: Stadium LII with 8 pairs of legs and two pairs of limb-buds; 14 antennal articles, all elongate; $3+3$ teeth on dental margin of maxillipede coxosternum, outer tooth more distant than inner pair; tarsi unjointed. Stadium LIII with 10 pairs of legs and two pairs of limb-buds; 25 antennal articles; maxillipede dentition as in stadium LII; single tarsal articulation faintly defined on many legs.

Discussion. All specimens of Henicops milledgei share a large space between the outer and middle tooth of the maxillipede coxosternum (more than twice the distance between the inner and middle tooth), exceeded only by H. brevilabiatus. No notable geographic variation has been detected between populations of H. milledgei from different regions of Nothofagus forest in Victoria.

Segmentation of the larval antenna of Henicops milledgei and H. tropicanus presents a character that may be autapomorphic for Henicops or a group within the genus. Larval stadium LIII in both species has a uniquely high number of antennal articles (25), a count retained in larval stadium LIV in H. tropicanus at least. In comparison, Lamyctes emarginatus (=fulvicornis) and L. coeculus have only 14 articles in stadium LIII, and Lithobiidae have 1417 articles in this stadium (Andersson, 1979: table III). Of Lithobiomorpha for which larval ontogeny has been described, only Cermatobius longitarsis approaches Henicops in having 20-24 articles in stadium LIII (Murakami, 1960; Andersson, 1979).

Synoptic classification of Henicopidae

Synoptic classifications of Henicopidae were most recently published by Attems (1914, 1928). These predate the description of many species, particularly by R.V. Chamberlin, and changes to generic classification. The following list encapsulates the current classification of henicopid species, together with distributional data.

Type species are indicated by an asterisk. Junior subjective synonyms are indicated following the senior synonym. Many of the named species of Lamyctes may, upon restudy, fall into synonymy, but published names that have not been synonymized in published work are listed as valid. Literature sources for synonymies are indicated.

Division of Henicopini into two clades (Edgecombe \& Giribet, 2003b) is accommodated by a Lamyctes-Henicops Group and Paralamyctes.

Family Henicopidae Pocock, 1901b

(= Cermatobiidae by ICZN Opinion 1228)
Subfamily Henicopinae Pocock, 1901b
Tribe Henicopini Pocock, 1901b

Lamyctes-Henicops Group

Analamyctes Chamberlin, 1955
*Analamyctes tucumanus Chamberlin, 1955 (Argentina: Tucumán)
Paralamyctes andinus Silvestri, 1903 (Argentina: Mendoza)
Easonobius Edgecombe, 2003a

* Easonobius tridentatus Edgecombe, 2003a (New Caledonia)

Paralamyctes humilis Ribaut, 1923 (New Caledonia)
Henicops Newport, 1844
*Henicops maculatus Newport, 1844 (Australia: Tasmania, Victoria, New South Wales, Australian Capital Territory; New Zealand) (=Henicops impressus Hutton, 1877 fide Archey, 1937) (New Zealand)
Lamyctes brevilabiatus Ribaut, 1923 (New Caledonia)
Henicops dentatus Pocock, 1901a (=Henicops oligotarsus Attems, 1911; n.syn.) (Australia: Western Australia)
Henicops milledgei n.sp. (Australia: Victoria)
Henicops tropicanus n.sp. (Australia: Queensland)
Lamyctes Meinert, 1868 (=Lamyctinus Silvestri, 1909a; Metalamyctes Verhoeff, 1941)
Lamyctes (Lamyctes) Meinert, 1868

* Lamyctes fulvicornis Meinert, 1868 (junior subjective synonym of Henicops emarginatus Newport, 1844 fide Eason, 1996)
Lamyctes adisi Zalesskaja, 1994 (Brazil: central Amazonas)
Lamyctes albipes Pocock, 1894 (Java) (=?L. mauriesi Demange, 1981 fide Eason \& Enghoff, 1992) (Guadeloupe, Canary Islands, Seychelles)
Lamyctes anderis Chamberlin, 1955 (Peru; Bolivia)
Lamyctes andinus Kraus, 1954 (Peru) (=L. neglectus Chamberlin, 1955; L. rectus Chamberlin, 1955; ?L. subtropicalis Chamberlin, 1955; synonymies fide Kraus, 1957) (Chile; Peru)
Lamyctes caducens Chamberlin, 1938 (USA: New Mexico)
Lamyctes cairensis Chamberlin, 1921 (Egypt)
Lamyctes calbucensis Verhoeff, 1939 (Chile)
Lamyctes cerronus Chamberlin, 1957 (Peru)
Lithobius coeculus Brölemann, 1889 (Italy and other European greenhouse records; Canary Islands; Australia: New South Wales, Lord Howe Island; Argentina (Tucumán); Venezuela; Cuba; Mexico; USA: Hawaii, Illinois; Israel; Tanzania; Democratic Republic of Congo) (type species of Lamyctinus Silvestri, 1909a)
Lamyctes cuzcotes Chamberlin, 1944 (Peru) (=L. alancayanus Chamberlin, 1955 fide Kraus, 1957) Lamyctes diffusus Chamberlin \& Mulaik, 1940 (USA: Texas)
Henicops emarginatus Newport, 1844 (=Lamyctes chathamensis Archey, 1917; L. kermadecensis Archey, 1917; ?L. munianus Chamberlin, 1920; ?L. navaianus Chamberlin, 1920; L. neozelanicus Archey, 1917; L. tasmanianus Chamberlin, 1920; L. zelandicus Chamberlin, 1920; synonymies fide Archey, 1937) (Chatham Islands; New Zealand; Fiji; Kermadec Islands; Tasmania) (=L. fulvicornis Meinert, 1868 fide Eason, 1996) (widespread in Europe and USA; Greenland; Iceland; Kurile Islands; eastern Africa: Ethiopia, Kenya, Somalia, Tanzania; Brazil: central Amazonas; Canary and Azore Islands; New Caledonia; Australia: Western Australia, South Australia, Victoria, New South Wales) (=L. fulvicornis var. hawaiiensis Silvestri, 1904 fide Zapparoli \& Shelley, 2000) (Hawaii)

Lamyctes gracilipes Takakuwa, 1940 (Ôagari, Ryukyu Islands)
Lamyctes guamus Chamberlin, 1946 (Guam; Torijima Island)
Lamyctes guamus koshiyamai Shinohara, 1957 (Japan)
Lamyctes hellyeri Edgecombe \& Giribet, 2003a (Australia: Tasmania, probably introduced)
Henicops inermipes Silvestri, 1897 (Argentina: Salta)
Lamyctes insulanus Verhoeff, 1941 (Fernando Po)
Lamyctes leon Chamberlin, 1944 (Mexico)
Lamyctes leleupi Matic \& Darabantu, 1977 (Saint Helena)
Lamyctes liani Larwood, 1946 (India)
Lamyctes medius Chamberlin, 1951 (Angola; Democratic Republic of Congo; Gabon)
Lamyctes neotropicus Turk, 1955 (Peru)
Lamyctes nesiotes Chamberlin, 1952 (Bahamas)

Lamyctes omissus Kraus, 1957 (Peru)
Lamyctes orthodox Chamberlin, 1951 (Angola; Gabon)
Lamyctes oticus Archey, 1921 (New Zealand)
Lamyctes pachypes Takakuwa, 1941 (Japan; far eastern Russia)
Lamyctes pacificus Silvestri, 1905 (Chile) [subspecies of L. inermipes (Silvestri) fide Demange \& Silva, 1976]
Lamyctes pinampus Chamberlin, 1910 (USA: Nevada, California)
Lamyctes pius Chamberlin, 1911a (USA: North Carolina, Georgia, New Jersey, Pennsylvania)
Lamyctes remotior Chamberlin, 1955 (Bolivia)
Lamyctes taulisensis Kraus, 1954 (Peru) (=L. brattstroemi Chamberlin, 1955 fide Kraus, 1957) (Chile)
Lamyctes tivius Chamberlin, 1911a (USA: Mississippi, Louisiana, Alabama)
Lamyctes tolucanus Chamberlin, 1943 (Mexico)
Lamyctes transversus Chamberlin, 1962 (Chile)
Lamyctes (Metalamyctes) Verhoeff, 1941
*Henicops africanus Porat, 1871 (South Africa: widespread; Cameroon; Gabon; Democratic Republic of Congo; Madagascar; Juan Fernandez; Madagascar; Hawaii; Western Australia) (=H. insignis Pocock, 1891 fide Attems, 1928)
Lamyctes baeckstroemi Verhoeff, 1923 (erected as subspecies of L. insignis (Pocock)) (Juan Fernandez)
Lamyctes castaneus Attems, 1909 (South Africa: Western Cape, Eastern Cape, KwaZulu-Natal, Northern Province; Lesotho; Zimbabwe)
Lamyctes microporus Attems, 1909 (South Africa: Northern Cape)
Lamyctes neglectus Lawrence, 1955a (South Africa: KwaZulu-Natal); homonym of L. neglectus Chamberlin, 1955
Lamyctes robustus Lawrence, 1955b (South Africa: Eastern Cape; Lesotho; Namibia; Zimbabwe)
Henicops tristani Pocock, 1893 (Tristan d'Acunha; Madagascar)
Lamyctopristus Attems, 1928
Lamyctopristus (Lamyctopristus) Attems, 1928
*Lamyctopristus validus Attems, 1928 (South Africa: Western Cape) (=Lamyctopristus granulosus Lawrence, 1955b) (South Africa: Western Cape)
Lamyctopristus (Eumyctes) Chamberlin, 1951 (=Neomyctes Chamberlin, 1951)
*Henicops sinuatus Porat, 1893 (South Africa: Western Cape, Northern Cape)
Lamyctes denticulatus Attems, 1907 (South Africa: Western Cape; Democratic Republic of Congo)
Lamyctes ergus Chamberlin, 1951 (type of Neomyctes Chamberlin, 1951) (Angola)
Lamyctes numidicus Latzel, 1886 (Algeria; Gabon)
?Lamyctes setigerus Lawrence, 1955b (South Africa: KwaZulu-Natal, Northern Province; Zambia) Pleotarsobius Attems, 1909
*Lamyctes heterotarsus Silvestri, 1904 (Hawaii)

Paralamyctes Group

Paralamyctes Pocock, 1901b (=Haasiella Pocock, 1901b; Triporobius Silvestri, 1917)
Paralamyctes (Paralamyctes) Pocock, 1901b (=Triporobius Silvestri, 1917)
*Paralamyctes spenceri Pocock, 1901b (South Africa: Western Cape, KwaZulu-Natal, Northern Province; Swaziland; Madagascar)
Paralamyctes asperulus Silvestri, 1903 (South Africa: Western Cape, Eastern Cape) (=P. tabulinus Attems, 1928 fide Edgecombe, 2003b)
Lamyctes bipartitus Lawrence, 1960 (Madagascar)
Paralamyctes harrisi Archey, 1922 (New Zealand)
Paralamyctes levigatus Attems, 1928 (South Africa: Western Cape)
Paralamyctes (Paralamyctes) monteithi Edgecombe, 2001 (Australia: Queensland)
Paralamyctes (Paralamyctes) neverneverensis Edgecombe, 2001 (Australia: New South Wales)
Triporobius newtoni Silvestri, 1917 (India)
Paralamyctes (Paralamyctes) prendinii Edgecombe, 2003b (South Africa: Western Cape)
Paralamyctes quadridens Lawrence, 1960 (Madagascar)
Paralamyctes tridens Lawrence, 1960 (Madagascar)
Paralamyctes weberi Silvestri, 1903 (South Africa: Western Cape)
Paralamyctes (Haasiella) Pocock, 1901b (=Wailamyctes Archey, 1917)
*Henicops insularis Haase, 1887 (New Zealand: Auckland Islands) (=Wailamyctes munroi Archey, 1923 fide Johns, 1964) (New Zealand: Auckland Islands)
Paralamyctes (Haasiella) cammooensis Edgecombe, 2004a (Australia: Queensland, New South Wales)
Paralamyctes (Haasiella) ginini Edgecombe, 2004a (Australia: New South Wales, Australian Capital Territory)
Wailamyctes halli Archey, 1917 (New Zealand)
Paralamyctes (Haasiella) subicolus Edgecombe, 2004a (Australia: Tasmania)

Wailamyctes trailli Archey, 1917 (New Zealand)
Paralamyctes (Nothofagobius) Edgecombe, 2001

* Paralamyctes (Nothofagobius) cassisi Edgecombe, 2001 (Australia: New South Wales)

Paralamyctes (Nothofagobius) mesibovi Edgecombe, 2001 (Australia: Tasmania)
Paralamyctes (Thingathinga) Edgecombe, 2001

* Paralamyctes (Thingathinga) grayi Edgecombe, 2001 (Australia: New South Wales)

Paralamyctes (Thingathinga) hornerae Edgecombe, 2001 (Australia: New South Wales)
Paralamyctes validus Archey, 1917 (=P. dubius Archey, 1917 fide Archey, 1921, 1937) (New Zealand)
Paralamyctes subgen. undet.
Henicops chilensis Gervais in Walckenaer \& Gervais, 1847 (Chile; Argentina: Neuquén, Rio Negro)
Paralamyctes wellingtonensis Edgecombe, 2003c (Chile)

Tribe Zygethobiini Attems, 1914

Buethobius Chamberlin, 1911a
*Buethobius oabitus Chamberlin, 1911a (USA: Mississippi)
Buethobius arizonicus Chamberlin, 1945a (USA: Arizona)
Buethobius conjugans Chamberlin, 1911b (USA: California)
Buethobius heustoni Williams \& Hefner, 1928 (USA: Ohio)
Buethobius translucens Williams \& Hefner, 1928 (USA: Ohio)
Cermatobius Haase, 1885 (=Esastigmatobius Silvestri, 1909a fide Würmli, 1977)
*Cermatobius martensii Haase, 1885 (Indonesia: Adenara)
Esastigmatobius japonicus Silvestri, 1909a (Japan) (type species of Esastigmatobius Silvestri, 1909a)
Esastigmatobius curticornis Chamberlin \& Wang, 1952 (Japan)
Esastigmatobius kirgisicus Zalesskaja, 1972 (Kirghizia)
Esastigmatobius longicornis Takakuwa, 1939 (Japan; Taiwan)
Esastigmatobius longitarsis Verhoeff, 1934b (Japan; Taiwan)
Hedinobius Verhoeff, 1934a
*Hedinobius hummelii Verhoeff, 1934a (western China)
Yobius Chamberlin, 1945b

* Yobius haywardi Chamberlin, 1945b (USA: Utah)

Zygethobius Chamberlin, 1903 (=Zantethobius Chamberlin, 1911a)
*Henicops dolichopus Chamberlin, 1902 (USA: Utah, California)
Zygethobius columbiensis Chamberlin, 1912 (Canada: British Columbia)
Zygethobius ecologus Chamberlin, 1938 (USA: Oregon)
Zygethobius (Zantethobius) pontis Chamberlin, 1911a (USA: Virginia, Tennessee) (type of Zantethobius Chamberlin, 1911a)
Zygethobius sokariensis Chamberlin, 1911b (USA: California)

Henicopinae of uncertain affinity

Remylamyctes Attems, 1951
*Remylamyctes straminae Attems, 1951 (Madagascar)

Subfamily Anopsobiinae Verhoeff, 1907

Anopsobius Silvestri, 1899 (=Promethon Chamberlin, 1962; =Tasmanobius Chamberlin, 1920)
*Anopsobius productus Silvestri, 1899 (Chile)
Anopsobius actius Chamberlin, 1962 (Chile)
Anopsobius (Promethon) diversus Chamberlin, 1962 (Chile)
Dichelobius giribeti Edgecombe, 2004b (Australia: New South Wales, Australian Capital Territory, Victoria, Lord Howe Island)
Anopsobius macfaydeni Eason, 1993 (Falkland Islands)
Anopsobius neozelanicus Silvestri, 1909a (New Zealand)
Anopsobius patagonicus Silvestri, 1909a (Argentina: Santa Cruz)
Anopsobius patagonicus calcaratus Attems, 1928 (South Africa: Western Cape; possibly introduced fide Lawrence, 1984)
Tasmanobius relictus Chamberlin, 1920 (Australia: Tasmania)
Dichelobius schwabei Verhoeff, 1939 (Chile)
Anopsobius wrighti Edgecombe, 2003d (Australia: New South Wales)
Anopsobiella Attems, 1938
*Anopsobius (Anopsobiella) dawydoffi Attems, 1938 (Vietnam)
Catanopsobius Silvestri, 1909b
*Catanopsobius chilensis Silvestri, 1909b (Chile)

Dichelobius Attems, 1911
*Dichelobius flavens Attems, 1911 (Australia: Western Australia)
Dichelobius bicuspis Ribaut, 1923 (New Caledonia)
Ghilaroviella Zalesskaja, 1975
*Ghilaroviella valiachmedovi Zalesskaja, 1975 (Tajikistan)
Rhodobius Silvestri, 1933
*Rhodobius lagoi Silvestri, 1933 (Rhodes)
Shikokuobius Shinohara, 1982
*Anopsobius japonicus Murakami, 1967 (Japan)

ACKNOWLEDGMENTS. For hosting collection studies and arranging loans, we thank M. Colloff (Australian National Insect Collection), M. Harvey and J. Waldock (Western Australian Museum), P. Lawless, G.B. Monteith and R. Raven (Queensland Museum), and K. Walker (Museum Victoria). Additional loans were facilitated by J. Beccaloni (Natural History Museum), H. Dastych (Universität Hamburg), C. Griswold (California Academy of Sciences), and V. Stagl (Naturhistorisches Museum Wien). We thank Suzanne Bullock, Sue Lindsay, and Yongyi Zhen for their expert work on illustrations. R. Mesibov and W.A. Shear kindly provided comments on the manuscript.

References

Andersson, G., 1978. An investigation of the post-embryonic development of the Lithobiidae-some introductory aspects. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 22/22: 63-71.
Andersson, G., 1979. On the use of larval characters in the classification of lithobiomorph centipedes (Chilopoda, Lithobiomorpha). In Myriapod Biology, ed. M. Camatini, pp. 73-81. London: Academic Press.
Andersson, G., 1984. Post-embryonic development of Lamyctes fulvicornis Meinert (Chilopoda: Henicopidae). Entomologica scandinavica 15: 9-14.
Archey, G., 1917. The Lithobiomorpha of New Zealand. Transactions and Proceedings of the New Zealand Institute 49: 303-318.
Archey, G., 1921. Notes on New Zealand Chilopoda. Transactions and Proceedings of the New Zealand Institute 53: 181-195.
Archey, G., 1922. Notes on New Zealand Chilopoda. Records of the Canterbury Museum 2: 73-76.
Archey, G., 1923. A new Genus of Chilopoda from British Guiana, and a new species of Wailamyctes from Auckland Island. Records of the Canterbury Museum 2: 113-116.
Archey, G., 1937. Revision of the Chilopoda of New Zealand. Part 2. Records of the Auckland Institute and Museum 2: 71-100.

Attems, C., 1907. Die Myriopoden der deutschen SüdpolarExpedition 1901-1903. Deutsche Südpolar-Expedition 19011903 9. Zoologie, pp. 415-433. Berlin: Georg Reimer.
Attems, C., 1909. Myriapoda. In Zoologische und anthropologische Ergebnisse einer Forschungsreise im westlichen und zentralen Südafrika ausgeführt in den Jahren 1903-1905, ed. L. Schultze. Denkschriften der Medizinisch-naturwissenschaftlichen Gesellschaft zu Jena 14: 1-52. Jena: Gustav Fischer.
Attems, C., 1911. Myriapoda exkl. Scolopendridae. Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwestaustralischen Forschungsreise 1905 3: 147-204. Jena: Gustav Fischer.
Attems, C., 1914. Die indo-australischen Myriapoden. Archiv für Naturgeschichte, Abteilung A 4: 1-398.
Attems, C., 1928. The Myriapoda of South Africa. Annals of the South African Museum 26: 1-431.
Attems, C., 1938. Die von Dr. C. Dawydoff in Französisch Indochina gesammelten Myriopoden. Mémoires du Muséum national d'Histoire naturelle, Paris 6(2): 187-353.

Attems, C., 1951. Myriapodes d'Afrique, de Madagascar et de la Réunion. Mémoires de l'Institut scientifique de Madagascar, Série A, 5(1): 173-186.
Borucki, H., 1996. Evolution und Phylogenetisches System der Chilopoda (Mandibulata, Tracheata). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 35: 95-226.
Brölemann, H., 1889. Contributions à la faune myriapodologique méditerranéenne. Annales de la Société Linnéenne de Lyon 35: 273-284.
Chamberlin, R.V., 1902. Henicops dolichopus, a new chilopod from Utah. Proceedings of the United States National Museum 24: 797-800.
Chamberlin, R.V., 1903. Henicops. Entomological News 14: 335.
Chamberlin, R.V., 1910. The Chilopoda of California I. Pomona College Journal of Entomology 2: 363-374.
Chamberlin, R.V., 1911a. The Lithobiomorpha of the southeastern states. Annals of the Entomological Society of America 4: 32-48.
Chamberlin, R.V., 1911b. Some Lithobiomorpha from the region of San Francisco Bay. The Canadian Entomologist 63: 378-385.
Chamberlin, R.V., 1912. The Henicopidae of America north of Mexico. Bulletin of the Museum of Comparative Zoology at Harvard College 57: 1-36.
Chamberlin, R.V., 1920. The Myriopoda of the Australian region. Bulletin of the Museum of Comparative Zoology at Harvard College 64: 1-269.
Chamberlin, R.V., 1921. New Chilopoda and Diplopoda from the East Indian Region. Annals and Magazine of Natural History, Series 9(7): 50-87.
Chamberlin, R.V., 1938. On eighteen new lithobiomorphous chilopods. Annals and Magazine of Natural History, Series 11(2): 625-635.
Chamberlin, R.V., 1943. On Mexican centipeds. Bulletin of the University of Utah, Biological Series 33: 1-55.
Chamberlin, R.V., 1944. Chilopods in the collections of the Field Museum of Natural History. Field Museum of Natural History, Zoological Series 28: 175-216.
Chamberlin, R.V., 1945a. Notes on a small collection of chilopods from Arizona and adjacent parts. Pomona College Journal of Entomology and Zoology 17: 53-54.
Chamberlin, R.V., 1945b. A new henicopid centiped from Utah. Entomological News 56: 153-154.
Chamberlin, R.V., 1946. A new milliped and two new centipeds from Guam. Proceedings of the Biological Society of Washington 59: 161-163.
Chamberlin, R.V., 1951. On Chilopoda collected in North-East Angola by Dr. A. de Barros Machado. Museo do Dundo, Subsídios para o Estudo da Biologia na Lunda, pp. 97-111. Lisboa: Companhia de Diamantes de Angola, Servicos Culturais.
Chamberlin, R.V., 1952. The centipeds (Chilopoda) of South Bimini, Bahama Islands, British West Indies. American Museum Novitates 1576: 1-8.
Chamberlin, R.V., 1955. The Chilopoda of the Lund University and California Academy of Science Expeditions. Reports of the Lund University Chile Expedition 1948-49. 18. Lunds Universitets Årsskrift 51: 1-61.

Chamberlin, R.V., 1957. A new henicopid chilopod from Peru. Entomological News 68: 126-127.
Chamberlin, R.V., 1962. Chilopods secured by the Royal Society Expedition to southern Chile in 1958-59. University of Utah Biological Series 12: 1-23.
Chamberlin, R.V., \& S. Mulaik, 1940. On a collection of centipeds from Texas, New Mexico and Arizona (Chilopoda). Entomological News 51: 107-110, 125-128, 156-158.
Chamberlin, R.V., \& Y.M. Wang, 1952. Some records and descriptions of chilopods from Japan and other Oriental areas. Proceedings of the Biological Society of Washington 65: 177-187.
Demange, J.-M., 1981. Scolopendromorphs et Lithobiomorphes (Myriapoda, Chilopoda) de la Guadeloupe et dépendances. Bulletin du Muséum national d'Histoire naturelle 3: 825-839.
Demange, J.-M., \& G.F. Silva, 1976. Contribution à la connaissance de Lamyctes inermipes et L. inermipes pacificus Silv. par l'examen des spécimens types de la collection de F. Silvestri. Bollettino del Laboratorio di Entomologia Agraria «Filippo Silvestri», Portici 33: 44-52.
Eason, E.H., 1964. Centipedes of the British Isles. London: Frederick Warne \& Co.
Eason, E.H., 1993. A new species of Anopsobius from the Falkland Islands, with commentary on the geographical distribution of the genus (Chilopoda: Lithobiomorpha). Myriapodologica 2: 83-89.
Eason, E.H., 1996. Lithobiomorpha from Sakhalin Island, Kamchatka Peninsula and the Kurile Islands (Chilopoda). Arthropoda Selecta 5: 117-123.
Eason, E.H., \& H. Enghoff, 1992. The lithobiomorph centipedes in the Canary Islands (Chilopoda). Entolomologica scandinavica 23: 1-9.
Edgecombe, G.D., 2001. Revision of Paralamyctes (Chilopoda: Lithobiomorpha: Henicopidae), with six new species from eastern Australia. Records of the Australian Museum 53(2): 201-241.
http://www.amonline.net.au/pdt/publications/1328_complete.pdf
Edgecombe, G.D., 2003a. A new genus of henicopid centipede (Chilopoda, Lithobiomorpha) from New Caledonia. Memoirs of the Queensland Museum 49: 269-284.
Edgecombe, G.D., 2003b. Paralamyctes (Chilopoda: Lithobiomorpha: Henicopidae) from the Cape region, South Africa, with a new species from Table Mountain. African Entomology 11: 97-115.
Edgecombe, G.D., 2003c. A new species of Paralamyctes (Chilopoda: Lithobiomorpha: Henicopidae) from southern Chile. Zootaxa 193: 1-12.
http://www.mapress.com/zootaxa/2003f/zt00193.pdf
Edgecombe, G.D., 2003d. A new species of the Gondwanan centipede Anopsobius (Chilopoda: Lithobiomorpha) from New South Wales, Australia. Zootaxa 204: 1-15.
http://www.mapress.com/zootaxa/2003//zt00204.pdf
Edgecombe, G.D., 2004a. The henicopid centipede Haasiella (Chilopoda: Lithobiomorpha): new species from Australia, with a morphology-based phylogeny of Henicopidae. Journal of Natural History 38: 37-76.
Edgecombe, G.D., 2004b. A new species of the henicopid centipede Dichelobius (Chilopoda: Lithobiomorpha) from southeastern Australia and Lord Howe Island. Proceedings of the Linnean Society of New South Wales 125: 189-203.
Edgecombe, G.D., \& G. Giribet, 2003a. A new blind Lamyctes (Chilopoda; Lithobiomorpha) from Tasmania with an analysis of molecular sequence data for the Lamyctes-Henicops Group. Zootaxa 152: 1-23.
http://www.mapress.com/zootaxa/2003f/zt00152.pdf
Edgecombe, G.D., \& G. Giribet, 2003b. Relationships of Henicopidae (Chilopoda: Lithobiomorpha): new molecular data, classification and biogeography. In Proceedings of the 12th International Congress of Myriapodology, ed. M. Hamer. African Invertebrates 44: 13-38.

Edgecombe, G.D., G. Giribet \& W.C. Wheeler, 2002. Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. Systematic Entomology 27: 31-64.
Edgecombe, G.D., \& L. Hollington, 2002. Morphology and distribution of Australobius scabrior (Chilopoda: Lithobiomorpha: Lithobiidae). Memoirs of the Queensland Museum 48: 103-118.
Haase, E., 1885. Zur Morphologie der Chilopoden. Zoologischer Anzeiger 210: 1-4.
Haase, E., 1887. Die indisch-australischen Myriapoden. I. Chilopoden. Abhandlungen und Berichte des Königlichen Zoologischen Anthropologisch-Ethnographischen Museums zu Dresden 5: 1-118.
Hutton, F.W., 1877. Descriptions of New Species of New Zealand Myriapoda. Annals and Magazine of Natural History, Series 4(20): 114-117.
Johns, P.M., 1964. Insects of Campbell Island. Chilopoda, Diplopoda (Preliminary note on the Myriapoda of the New Zealand Subantarctic Islands). Pacific Insects Monograph 7: 170-172.
Kraus, O., 1954. Myriapoden aus Peru, 1. Senckenbergiana 34: 311-323.
Kraus, O., 1957. Myriapoden aus Peru, VI): Chilopoden. Senckenbergiana biologica 38: 359-404.
Larwood, H.J.C., 1946. Some new Indian Lithobiidae. Journal of the Bombay Natural History Society 46: 133-139.
Latreille, P.A., 1817. Les Myriapodes. In Le Régne Animal. 3, ed. G.L.C.F.D. Cuvier. Paris: Deterville.

Latzel, R., 1886. Les Myriapodes de la Normandie (2^{e} liste) suivie de diagnoses d'espèces et de variétés nouvelles (de France, Algérie et Tunisie). Bulletin de la Société des Amis des Science naturelles, Rouen 71: 165-177.
Lawrence, R.F., 1955a. A revision of the centipedes (Chilopoda) of Natal and Zululand. Annals of the Natal Museum 13: 121-174.
Lawrence, R.F., 1955b. Chilopoda. In South African Animal Life. Results of the Lund University Expedition in 1950-1951, 2, ed. B. Hanström, P. Brinck \& G. Rudebeck, pp. 4-56. Stockholm: Almqvist \& Wiksell.
Lawrence, R.F., 1960. Myriapodes: Chilopodes. Faune de Madagascar 12: 1-122. Publications de l'Institute de Recherche Scientifique, Tananarive-Tsimbazaza.
Lawrence, R.F., 1984. The Centipedes and Millipedes of Southern Africa: A Guide. Cape Town, Rotterdam: A.A. Balkema.
Matic, Z., \& C. Darabantu, 1977. Chilopoda. In: La Faune Terrestre de l'Île de Sainte-Hélène: Quatrième Partie. Musée Royal de l'Afrique Centrale, Annales, Sciences zoologiques 220: 345-359.
Meinert, F., 1868. Danmarks Scolopender og Lithobier. Naturhistorisk Tidskrift 5: 241-268.
Mesibov, R., 1986. A Guide to Tasmanian Centipedes. Zeehan: published by the author.
Michaelsen, W., \& R. Hartmeyer, 1907. Reisebericht. Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwestaustralischen Forschungsreise 1905 1: 1-116. Jena: Gustav Fischer.
Murakami, Y., 1960. Postembryonic development of the common Myriapoda of Japan IX. Anamorphic stadia of Esastigmatobius longitarsis Verhoeff (Chilopoda; Henicopidae). Zoological Magazine 70: 430-434.
Murakami, Y., 1967. Postembryonic development of the common Myriapoda of Japan XXIV. A new species of the Family Henicopidae. Zoological Magazine 76: 7-12.
Newport, G., 1844. A list of the species of Myriapoda, order Chilopoda, contained in the cabinets of the British Museum, with a synoptic description of forty-seven species. Annals and Magazine of Natural History 13: 94-101.

Pocock, R.I., 1891. Descriptions of some new species of Chilopoda. Annals and Magazine of Natural History, Series 6(8), 152-164.
Pocock, R.I., 1893. Report upon the Myriopoda of the "Challenger" Expedition, with Remarks upon the Fauna of Bermuda. Annals and Magazine of Natural History, Series 6(11): 121-142.
Pocock, R.I., 1894. Chilopoda, Symphyla and Diplopoda from the Malay Archipelago. In Zoologisches Ergebnisse einer Reise in niederländisch Ost-Indien 3, ed. M. Weber, pp. 307-400. Leiden: Brill.
Pocock, R.I., 1901a. The Chilopoda or centipedes of the Australian Continent. Annals and Magazine of Natural History, Series 7(8): 451-463.
Pocock, R.I., 1901b. Some new genera and species of Lithobiomorphous Chilopoda. Annals and Magazine of Natural History, Series 7(8): 448-451.
Pocock, R.I., 1902. A new and annectant type of chilopod. Quarterly Journal of Microscopical Science 45: 417-448.
Porat, C.O. von., 1871. Myriopoda Africae australis, in Museo Regio Holmiensi asservata, recensuit. Öfversigt af Kunglika Vetenskaps-akademiens Förhandlingar 9: 1135-1167.
Porat, C.O. von, 1893. Myriapoder fråan Vest-och Syd-Afrika. Bihang till Svenska Vetenskaps-akademiens Handlingar 18: 1-15.
Ribaut, H., 1923. Chilopodes de la Nouvelle-Calédonie et des Iles Loyalty. In Nova Caledonia. Recherches scientifique en Nouvelle-Calédonie et aux Iles Loyalty. A. Zoology 3(1), ed. F. Sarasin \& J. Roux, pp. 1-79. Berlin, Weisbaden: C.W. Kreidel's Verlag.
Shinohara, K., 1957. Taxonomical and morphological study of Myriapoda 2. Lamyctes species found in Japan and its vicinity (Henicopidae, Chilopoda). Zoological Magazine 66: 27-30.
Shinohara, K., 1982. A new genus of centipede of the Subfamily Anopsobiinae (Henicopidae, Chilopoda). Proceedings of the Japanese Society of Systematic Zoology 24: 41-46.
Silvestri, F., 1897. Viaggio del Dott. Alfredo Borelli nel Chaco boliviano e nella Repubblica Argentina, IV. Chilopodi e Diplopodi. Bollettino del Musei di Zoologia ed Anatomia comparata della R. Università di Torino 12: 1-11.
Silvestri, F., 1899. Contribución al estudio de los quilópodos chilenos. Revista chilena de História natural 3: 141-152.
Silvestri, F., 1903. Contribuzione alla conoscenza dei Chilopodi. II. Nuove specie di Paralamyctes. Redia 1: 256-257.

Silvestri, F., 1904. Myriopoda. Fauna Hawaiiensis 3: 323-338.
Silvestri, F., 1905. Myriapoda. Fauna chilensis. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere, Supplement 6: 715-772.
Silvestri, F., 1909a. Contribuzioni alla conoscenza dei Chilopoda, III. Descrizione di alcuni generi e specie di Henicopidae. Bollettino del Laboratorio di Zoologia Generale e Agraria, Portici 4: 38-50.
Silvestri, F., 1909b. Descrizioni preliminari di varî Arthropodi, specialmente d'America. V. Nuovi genere di Henicopidae (Chilopoda). Rendiconti della R. Accademia dei Lincei 18: 270-271.
Silvestri, F., 1917. On some Lithobioidea (Chilopoda) from India. Records of the Indian Museum, Calcutta 13: 307-314.
Silvestri, F., 1933. Nuovi contributi alla conoscenza della fauna delle isole italiane dell'Ageo. I. Descrizione di un nuovo genere di Chilopodo Henicopino. Bollettino del Laboratorio di Zoologia generale e agraria, Portici 27: 58-60.

Takakuwa, Y., 1939. Dei Esastigmatobius-Arten aus Japan. Zoological Magazine 51: 581-585.
Takakuwa, Y., 1940. Eine neue Lamyctes-Art (Chilopoda) aus Japan. Transactions of the Natural History Society of Formosa 30: 197-198.
Takakuwa, Y., 1941. Eine neue leuchtende Spirobolellus-Art (Diplopoda) und eine neue Lamyctes-Art (Chilopoda). Transactions of the Natural History Society of Formosa 31: 84-86.
Turk, F.A., 1955. The chilopods of Peru with descriptions of new species and some zoogeographical notes on the Peruvian chilopod fauna. Proceedings of the Zoological Society of London 125: 469-504.
Verhoeff, K.W., 1907. Chilopoda. Systematik. In H.G. Bronn's Klassen und Ordnungen des Tier-Reichs 5(2): 217-264. Leipzig: C.F. Winter'sche Verlagshandlung.
Verhoeff, K.W., 1923. Über Myriapoden von Juan Fernandez und der Osterinsel. In The Natural History of Juan Fernandez and Easter Island 3: 403-418, ed. C. Skottsberg. Uppsala: Almqvist \& Wiksells.
Verhoeff, K.W., 1934a. Schwedisch-chinesische wissenschaftliche Expedition nach den nordwestlichen Provinzen Chinas. Arkiv för Zoologi 26A(10): 1-41.
Verhoeff, K.W., 1934b. Beiträge zur Systematik und Geographie der Chilopoden. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 66:1-112.
Verhoeff, K.W., 1939. Von Dr. G.H. Schwabe in Chile gesammelte Isopoda terrestria, Diplopoda und Chilopoda. Archiv für Naturgeschichte, Zeitschrift für Wissenschaftliche Zoologie Abteilung B, 8: 301-324.
Verhoeff, K.W., 1941. Myriapoden der Insel Fernando Po. X. Beitrag zu den wissenschaftlichen Ergebnissen der Forschungsreise H. Eidmann nach Spanisch-Guinea 1939/40. Zoologischer Anzeiger 136, 89-98.
Walckenaer, M.LeB., \& M.P. Gervais, 1847. Histoire naturelle des Insectes. Aptères, 4. Paris: Libraire Encyclopédique de Roret.
Williams, S.R., \& R.A. Hefner, 1928. The millipedes and centipedes of Ohio. Ohio Biological Survey Bulletin 18: 91147.

Würmli, M., 1977. Wiederbeschreibung und Identität von Cermatobius martensii, des vermeintlichen Bindegliedes zwischen Scutigeromorpha und Lithobiomorpha (Chilopoda: Cermatobiidae). Entomologica Germanica 3: 361-366.
Zalesskaja, N.T., 1972. A new species of the genus Esastigmatobius (Lithobiomorpha, Henicopidae). Zoologicheskii Zhurnal 51: 608-611.
Zalesskaja, N.T., 1975. New genera and species of Chilopoda (Lithobiomorpha) from central Asia and Far East. Zoologicheskii Zhurnal 54: 1316-1325.
Zalesskaja, N.T., 1994. The centipede genus Lamyctes MEINERT, 1868, in the environs of Manaus, Central Amazonia, Brazil (Chilopoda, Lithobiomorpha, Henicopidae). Amazoniana 8: 59-64.
Zapparoli, M., \& R.M. Shelley, 2000. The centipede order Lithobiomorpha in the Hawaiian Islands (Chilopoda). I. The epigean fauna. Records of the Hawaii Biological Survey for 1999. Bishop Museum Occasional Papers 63: 35-49.

Manuscript received 26 March 2003, revised 24 June 2003 and accepted 25 June 2003.
Associate Editor: M.S. Moulds.

