• Principle: proteins when applied to a membrane and exposed to a charge gradient, separate and can be visualized by protein or haem stain.

- Sample: Packed red cells; if whole blood used paraprotein or high concentration of polyclonal Ig may produce a band.
- Membrane: filter paper, cellulose acetate membrane, starch gel, citrate agar gel or agarose gel.
- Protein stain: see carbonic anhydrase band, behind HbA2.

- Cellulose acetate at alkaline pH: initial procedure.
- Separation is largely determined by electrical charge.
- At this pH Hb is negatively charged and moves toward the positively charged anode.

• With good technique: Hb F levels >2% can be recognized; split A2 can be seen ( seen with alpha chain variant)

Next step: Citrate agar or agarose gel at acid
 pH

|                    | Cellu | lose a | cetate – | pH 8.2-8.6 |   | Agarose gel – pH 6.2 |     |   |  |
|--------------------|-------|--------|----------|------------|---|----------------------|-----|---|--|
|                    | A     | F      | S        | С          | F | А                    | S   | C |  |
| Control            | 0     | 0      | Ò        | Ò          | 0 | Ó                    | Ò   | Ó |  |
| S                  |       |        |          |            |   |                      | 0   |   |  |
| D-Iran, D-Punjab,  |       |        | Ö        |            |   | Ó                    |     |   |  |
| G-Philadelphia,    |       |        |          |            |   |                      |     |   |  |
| G-Ferrara, Lepore, |       |        |          |            |   |                      |     |   |  |
| D-Ouled Rabah      |       |        |          |            |   |                      |     |   |  |
| Korle-Bu           |       |        | 0        |            |   | Ò                    |     |   |  |
| Hasharon           |       |        | Ò        |            |   |                      | 0   |   |  |
| D-Norfolk          |       |        | 0        |            |   | Ó                    |     |   |  |
| Handsworth         |       |        | 0        |            |   |                      | 0   |   |  |
| Q-India            |       |        | 0        |            |   |                      | 0   |   |  |
| c                  |       |        |          | Ó          |   |                      |     | Ó |  |
| E, A <sub>2</sub>  |       |        |          | Ó          |   | Ò                    |     |   |  |
| O-Arab             |       |        |          | <b>(</b>   |   |                      | 0   |   |  |
| Siriraj            |       |        | 0        |            |   |                      |     |   |  |
| Setif              |       |        | 0        |            |   |                      | - 0 |   |  |
| C-Harlem           |       |        |          | Ó          |   |                      | Ò   |   |  |

|             |   | Cellulose | acetat | e – pH 8. | 2-8.6 |   | Agaro | ose gel – pH 6 | 5.2 |
|-------------|---|-----------|--------|-----------|-------|---|-------|----------------|-----|
|             |   | A         | F      | S         | С     | F | Α     | S              | (   |
| Control     |   | Ò         | Ó      | Ò         | Ò     | Ò | Ò     | Ò              |     |
| Н           | 0 |           |        |           |       |   | Ò     |                |     |
| Bart's      | 0 |           |        |           |       |   | Ó     |                |     |
| N-Baltimore | 0 |           |        |           |       |   | Ó     |                |     |
| I-Baltimore | 0 |           |        |           |       |   | Ó     |                |     |
| I-Toronto   | 0 |           |        |           |       |   | Ó     |                |     |
| Detroit     | 0 |           |        |           |       |   | Ö     | rel emil       |     |
| Гасота      |   | 0         |        |           |       |   | Ó     | to Table       |     |
| K-Ibadan    | 0 |           |        |           |       |   | Ó     | di difia       |     |
| Hofu        | 0 |           |        |           |       |   | Ó     |                |     |

|                    | Cellulose acetate - pH 8.2-8.6 |   |   | Citrate agar – pH 6.2 |            |   |      |          |  |
|--------------------|--------------------------------|---|---|-----------------------|------------|---|------|----------|--|
|                    | Α                              | F | S | C                     | F          | Α | S    | C        |  |
| Control            | 0                              | Ó | Ò | Ò                     | Ó          | Ó | Ò    | Ó        |  |
| S                  |                                |   | Ò |                       | - 6        |   | 0    |          |  |
| D-Iran, D-Punjab,  |                                |   | Ò |                       | _ 3.58     | Ó |      |          |  |
| G-Philadelphia,    |                                |   |   |                       |            |   |      |          |  |
| G-Ferrara, Lepore, |                                |   |   |                       | - Filebess |   |      | AT III 7 |  |
| D-Ouled Rabah      |                                |   |   |                       |            |   | 18 0 |          |  |
| Korle-Bu           |                                |   | 0 |                       |            | Ó |      |          |  |
| Hasharon           |                                |   | Ò |                       |            |   | 0    |          |  |
| Q-India            |                                |   | 0 |                       |            | 0 |      |          |  |
| С                  |                                |   |   | Ò                     |            |   |      | Ò        |  |
| E, A <sub>2</sub>  |                                |   |   | Ó                     |            | Ò |      |          |  |
| O-Arab             |                                |   | i | Ò                     |            | 0 |      |          |  |
| C-Harlem           |                                |   |   | Ò                     | F==3Y (42) |   | Ò    |          |  |



On cellulose acetate using a Tris-EDTA-borate buffer at an alkaline pH 7.4. In this system hemoglobins migrate according to their charge as shown in the diagram.

In agar gel using an acetic acid-acetate buffer at an acid pH 6.0. In this system hemoglobins migrate only partly due to their charge but also due to a complicated interaction with the agar called electroendosmosis.

#### **HEMOGLOBIN ELECTROPHORESIS**



Paragon (Alkaline) Hb

Paragon Acid Hb

## HEMOGLOBIN ELECTROPHORESIS AT pH 8.6 (Cellulose acetate) Relative mobilities



#### Group

A

F

S

 $\mathbf{C}$ 

#### **Principal hemoglobins**

A, M, some unstable Hbs

F

S, D, G, Lepore

C, E, A2, O Arab

## Isoelectric focusing

• Principle: net charge of a protein depends on the pH of the surrounding solution. At low pHcarboxylic gp is uncharged and amino gp is charged with a net + charge and vice versa. In IEF, various Hb are separated according to their isoelectric point (pI), the point at which they have no charge

## Isoelectric focusing

- Bands are sharper
- Hbs that can not be distinguished from each other by electrophoresis can be separated by IEF eg D and G variants



### **HPLC**

- Retention time of different Hb varies
- Retention time of A2 and E are the same





 $\label{eq:proposed} \textbf{Fig. 2.13} \ \ \textbf{Typical elution patterns for normal and variant haemoglobins with the Bio-Rad variant high performance liquid chromatography (HPLC) system. Unless specified, heterozygosity is illustrated: (a) some clinically relevant haemoglobins; (b) some haemoglobins that have the same mobility as haemoglobin S on cellulose acetate electrophoresis at alkaline pH but can be distinguished by HPLC; (c) some variant haemoglobins that are 'fast' on cellulose acetate electrophoresis at alkaline pH; (d) miscellaneous variant haemoglobins.$ 



Fig. 2.13 Continued



Fig. 2.13 Continued



a 2 13 Continued





| GLOE        | GLOBIN CHAIN GENES |            |  |  |  |  |  |
|-------------|--------------------|------------|--|--|--|--|--|
| GENE        | NUMBER             | CHROMOSOME |  |  |  |  |  |
| α           | 2/2                | 16         |  |  |  |  |  |
| ۳<br>۲<br>۵ | 1/1<br>1/1         | 11<br>11   |  |  |  |  |  |
| δ           | 1/1                | - 11       |  |  |  |  |  |
| В           | 1/1                | 11         |  |  |  |  |  |
|             |                    |            |  |  |  |  |  |



## Hemoglobin molecule is a tetramer

Subunits:  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\zeta$ ,  $\epsilon$ Hg A( $\alpha 2\beta 2$ ), Hg A2( $\alpha 2\delta 2$ ), F( $\alpha 2\gamma 2$ ), Gower 1( $\zeta 2\epsilon 2$ ), Gower 2 ( $\alpha 2\epsilon 2$ ), Portland ( $\zeta 2\gamma 2$ )



The switch in percentages occurs as a result of an increase in beta chain production and a decrease in gamma chain production beginning at the 6th month of fetal life.

Delta chain production is minimal at birth and reaches normal levels (about 3% of total) at about one year of life. This list shows some of the commoner tests used to investigate the hemoglobinopathies.

#### **Blood count**

Hemoglobin electrophoresis: Cellulose acetate pH 8.4, Citrate agar pH 6

**Solubility tests** 

**Quantitation: Hb A2, Hb F, Hb Barts** 

Tests for unstable hemoglobins

Gene analysis



#### **THALASSEMIA**

MAJOR - Lifelong transfusion requirement

INTERMEDIA - Moderate anemia

Minimal or no transfusion need

MINOR - Slight anemia at worst

"SILENT" - Detectable only by: Family studies

Gene analysis





| Alpha Genes | Clinical             | Hemoglobin A | bnormalitie |
|-------------|----------------------|--------------|-------------|
| Deleted     | Disorder             | Newborn      | Adult       |
|             |                      | Hb Barts     | нь н        |
| One         | None                 | 1-3%         | 0%          |
| Two         | Thalassemia<br>Minor | 4-10%        | 0%          |
| Three       | Hb H Disease         | 15-25%       | 10-25%      |
| Four        | Fetal death          | 100%         | -           |



#### Electrophoresis of Hb Barts and Hb H Cellulose acetate pH 8.4

- 1. Hb Barts with Hb A and HbF and albumin in newborn
- 2. Hb H, Hb A and albumin in an adult
- $3. \,\,\,\, ext{Hb J}$  and  $ext{Hb A}$  in an adult.

| # THAI                         | ASSEMIA SUE                                                | STYPES                                                                        |  |  |
|--------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| β Thalassemia<br>Type          | Heterozygote                                               | Homozygote                                                                    |  |  |
| β°                             | Thalassemia Minor<br>Hb A <sub>2</sub> 3.5-8%<br>Hb F 1-5% | Thalassemia Major<br>Hb A <sub>2</sub> 2-10%<br>Hb F 90-98%                   |  |  |
| β <sup>+</sup> (Mediterranean) | Thaiassemia Minor                                          | Thalassemia Major<br>Hb A 5-30%<br>Hb A <sub>2</sub> 2-5%<br>Hb F 70-90%      |  |  |
| β * (American Black)           | Thalassemia Minor                                          | Thalassemia Intermedia<br>Hb A 5-75%<br>Hb A <sub>2</sub> 2-5%<br>Hb F 20-40% |  |  |



Healthy 25 year old African-American man.

Blood count:

Hb 15.0g/dl

RBC 5.5 10<sup>0</sup>/l

MCV 82 micro

RDW 13.1

Hb electrophoresis, cellulose acetate pH 8.4

Diagnosis: HPFH (heterozygote)

There are also 2 examples of sickle cell trait on this plate.



#### Other examples of HPFH

Hb electrophoresis. cellulose acetate pH 8.4

- 1. Normal adult
- 2. HPFH (heterozygote)
- 3. Hb S--HPFH
- 4. Hb C--HPFH
- 5. Normal newborn



A 32 year old oriental lady with a lifelong history of anemia had the following blood count:

Hb 7.9 g/dl RBC 6.4 10<sup>12</sup>/l MCV 67 microns RDW 32.6 Hemoglobin electrophoresis on cellulose acetate at pH 8.4. Patient shown by \*

Comment. A large band of Hb A and a small band of Hb H are seen. The history and findings are typical of Hb H disease, usually due to the inheritance of a total of three deleted alpha chain genes. Hb H is an unstable hemoglobin which causes a hemolytic anemia



This hemoglobin electrophoresis on cellulose acetate at pH 8.4 contains the following:

- 1. Patient 2. Patient's mother. 3. Patient's father
- 4. Cord blood with Hb Barts.
- 5. 5 month old with Hb Barts and Hb H All were applied heavily so that the minor bands could be seen.
- Comment: The patient (#1) shows Hb A, Hb H(\*) and a faint band ahead of the point of application marked with the hand.
- This represents **Hb Constant Spring** a common abnormal hemoglobin in southeast Asia.



This diagram shows the abnormality in the alpha chain of Hb Constant Spring.

- In the normal alpha gene the 142nd "message" is a terminator.
- In the Constant Spring alpha gene this codon has been mutated to a codon for glutamine.
- This is followed by 29 codons for various amino acids before another terminator is arrived at.
- Thus the alpha chain of lib Constant Spring has 172 amino acids instead of 141.

This abnormal hemoglobin occurs in 5% to 10% of some populations in southeast Asia.

When one of the four alpha genes is programmed for Hb Constant Spring one would expect to find about 25% of the hemoglobin to be Hb Constant Spring but this hemoglobin is difficult to manufacture and in such a person only about 1.5% is abnormal (when two alpha genes are affected then only about 3.0% of the total hemoglobin is Hb Constant Spring). Thus this hemoglobin is very similar to a deletion of an alpha gene and when an individual inherits two alpha gene deletions from one parent and a Hb Constant Spring gene from the other he develops Hb H disease.

```
a 142 UAA (Terminator)
                    HbA
     CAA (Gln) Hb Constant Spring
     AAA (Lys) Hb Icaria
     UCA (Ser) Hb Koya Dora
     GAA (Glu) Hb Seal Rock
```

Other elongated alpha chains. The mutation of the terminator codon in Hb Constant Spring is only one of four that have been described.

This list shows the 4 possibilities (in addition to normal Hb A) that have been described. Hb Constant Spring is the only one that is common

#### **HEMOGLOBINOPATHIES**

- 1. Quantitative defects (the thalassemia syndromes) imbalance of globin chain production
- 2. Qualitative defects
  Substitution, addition or deletion
  of one or more amino acids
- 3. Hereditary persistence of fetal hemoglobin (HPFH)

Nine most important hemoglobinopathies (In order of world wide prevalence) are: S, E, C, D-Los Angeles, G-Philadelphia, O-Arab, H, Lepore, and Koln

# Clinical and hematologic manifestations of hemoglobinopathies

- Normal health, nl hem parameters
- Sickling disorders (S, C, D, O)
- Thalassemia syndromes (E, Lepore)
- Life-long cyanosis (Kansas, Freiburg, M-Chicago)
- Hemolytic anemia (H, Koln)
- Erythrocytosis (three dozens of Hg, high O2 affinity, example Malmo)

- -Mutation could occur either in the beta or alpha chains
- S, C, E, D are beta chain variants
- G and J may be either alpha or beta variants

#### STRUCTURAL ALTERATIONS

Amino acid substitutions

e.g. Hb S a 2 B glu- val

Amino acid deletions

e.g. Hb Leiden a 2 8 glu (or 7 glu) deleted

Amino acid additions

e.g. Hb Constant Spring a241-17282

**Fusion chains** 

e.g. Hb Lepore a<sub>2</sub>(δβ)<sub>2</sub>

### Hemoglobin S: $\beta$ 6(A3)Glu $\rightarrow$ Val

- 8% of American Blacks Hg AS
- 1 in 500 newborn AB Hg SS
- Hg S also in Italians, Turks, Greeks, Arabs and Asian Indians

#### Hemoglobin C: $\beta$ 6(A3)Glu $\rightarrow$ Lys

- About 2% AB have C trait (Hg AC)
- Some areas of Africa up to 20%, also Italians, Greeks, Arabs
  - Clinically entirely well
  - -A:C=60:40
- Homozygotes (Hg CC): mild hemolytic anemia, abundant targets, no Hg A
- Hg SC (more often than CC): moderate to severe sickle cell anemia

### Hemoglobin E: $\beta$ 26(B8)Glu $\rightarrow$ Lys

- South East Asians
- Hg AE: A- 70%, E- 30%
  - Inocuous, no anemia, slight microcytosis, mildly thalassemic blood picture
- Hg EE: no A, E 99%, about 1% F
  - Not a serious disorder, marked hypochromia and microcytosis
- E/ $\beta$ -thal: severe thalassemia similar to classic  $\beta$ -thal major

# Hemoglobin D (D-Los Angeles, D-Punjab): β 121(DH4)Glu→Gln

- English, Irish, Scotch ancestry
- Uncommon in N.America (AD < 1:5000)
- India & Pakistan (Punjab) 3% D trait
- AD (A:D= 50:50): entirely well, hematologically normal,
- DD: very rare, not disabling Dz
- S/D: severe sickling disorder

# Hemoglobin G (G-Philadelphia): α68(E17)Asn→Lys

- The only alpha chain variant common in US (AB and African Blacks, not in other ethnic groups)
- AG (A:G=75:25): no physical or hem abn
- GG: ??
- S/G-Phil: clinically well, no hem abn
  - Three major bands: 1)A, 2)S+G, 3)SG (in A2 position)

# Hemoglobin O (Arab): β 121(GH4)Glu→Lys

- First described in an Arab indiv, most common in BA (trait in 0.4%), also Bulgaria
- Trait (Hg AO) innocuous, no hem abn
- Homozygotes very rare: hypochromia, microcytosis, but no disability
- S/O-Arab: severe sickling disorder

#### Hemoglobin H: β4 tetramer

- Deletion of 3 of 4  $\underline{\alpha}$  genes (S.E.Asia)
- Unstable Hg
- Moderate to severe anemia, jaundice, splenomegaly
- Blood: microcytosis, hypochromia, target cells, polychromasia

# Hemoglobin Lepore-Boston: $\delta(1-87)$ $\beta(115-146)$

- Fusion Hb, nonhomologous crossing-over
- Mainly Mediterranian ancestry
- Trait: mild thalassemia minor (mild microcytosis and mild anemia)
- pH 8.6 at S position (10-15% of total Hg)
- A2, F (2-10%) like  $\delta\beta$ -thal
- Lepore homozygotes or Lep/ $\beta$ -thal: thalassemia major-like disorder

# Hemoglobin Koln: β98 (FG5)Val→Met

- Unstable Hg
- Nothern Europeans
- Mild congenital hemolytic anemia (AD, maybe mistaken for hereditary spherocytosis)
- Hypochromia, macrocytosis
- Broad smudge in the S position
- Homozygotes not reported



Healthy 5 year old with the following blood count:

Hb 11.9g/dl

RBC 6.3 10<sup>12</sup>/l

MCV 63 microns

•A typical thalassemia minor blood count
Hemoglobin electrophoresis on cellulose acetate pH 8.4 \*

Patient with four permal adults and one cickle trait on cit

Patient with four normal adults and one sickle trait on either side

#### Comment:

Approximately 10% of a hemoglobin migrating like Hb S In an untransfused patient (a most important part of the history) this small amount of Hb S is never found. Hemoglobin electrophoresis in acid agar would show this abnormal hemoglobin migrating as Hb A.

#### Diagnosis: Hb Lepore

Hb Lepore has an abnormal "beta" chain made up of the beginning of the delta chain and the end of the beta chain. This arises from a cross over between the two chromosomes 11 as shown in the diagram.



The delta-beta chain is difficult to manufacture and instead of the expected 50% in the heterozygote there is only 10%. This imbalance explains the thalassemic blood count.



- 1. is the control
- •6. is an example of Hb Lepore trait (see Case 10)
- •5. is an example of Hb S with alpha thalassemia, There is significantly more Hb A than Hb S. A typical finding when a beta chain abnormality (e.g Hb S or Hb C) is coinherited with alpha thalassemia.
- •4. is an example of sickle cell trait (heterozygous Hb S) where there is almost equal amounts of Hb A and Hb S.
- •3. is an example of Hb S with beta thalassemia. There is significantly less Hb A than Hb S plus a band of Hb F. The beta thalassemia gene is in this case beta+: beta gene activity is reduced but not absent as in beta-O. hence the presence of some, but not a normal amount of Hb A.
- •2. is an example of sickle cell anemia (homozygous Hb S) with no Hb A. It could just as well be a double heterozygote for Hb S and beta-O thalassemia where the patient is unable to produce any beta-A chains and therefore no Hb A.



The abnormal hemoglobin migrates as Hb C on cellulose acetate and as Hb A in acid agar.

Diagnosis: Hb E trait (heterozygote for Hb E)



A healthy African American with a normal blood count Hemoglobin electrophoresis on cellulose acetate at pH 8.4

- 1. Control
- 2. Patient
- 3. Hb C trait (HbAC)



Hemoglobin electrophoresis in acid agar at pH 6.0
\* marks the patient
The other two electrophoreses are from:
a mother with Hb O Arab trait (heterozygote for Hb O)
her newborn son also with Hb O trait

Diagnosis. Hb CO (double heterozygote for Hb C and Hb O)

## COMMON HEMOGLOBINS MIGRATING AS Hb C

Hb C  $\beta^6$  glu  $\rightarrow$  lys

Hb E  $\beta^{26}$  glu  $\rightarrow$  lys

Hb O  $\beta^{121}$  glu  $\rightarrow$  lys



An African American woman with a history of intermenstrual bleeding. Her gynecologist ordered a blood count which showed a **Hb 20.0 g/dl**, normal white cell count and platelet count and normal morphology.

Hgb electrophoresis on cellulose acetate at pH 8.4

- 4. The patient.
- 1. Normal newborn with Hb Barts
- 2. Hb C disease
- 3. Hb SC
- 5. Hb S trait in newborn

**Diagnosis**: Hb SN, double heterozygote for Hb S (the solubility test was positive) and Hb N Baltimore.

Comment: There are equal amounts of Hb S and the fast Migrating Hb N (about the same speed as Hb Barts) Hb N has a beta chain abnormality. Hb N acts like normal Hb A. therefore this combination is similar to Hb S trait.

#### RELATIVE CLINICAL SEVERITY

- O SG, SN, CO, and heterozygotes
- 1 00, EE
- 2 CC
- 3 SC, SD
- 4 SS, SO



Hemoglobin electrophoresis on cellulose acetate pH 8.4

- 1. Normal adult
- 2. Case 15
- 3. Case 14
- 4. Hb AS (sickle cell trait)

Diagnosis: Case 14 Hb CG Philadelphia (double heterozygote Hb C and Hb G)

Case 15 Hb SG Philadelphia (double heterozygote Hb S and Hb G)



In this diagram the possible combinations in Case 14 are listed 4 different hemoglobins can be produced:

Hb A

Hb C

Hb G

Hb CG hylrid

Hb A migrates as Hb A

Hb C migrates as Hb C

Hb G migrates as Hb S

The hybrid Hb CG, adding the slow migration of Hb C to that of Hb G, migrates even slower, adding the distance from Hb A to Hb G to the distance from HbA to HbC.

| GENES          | HEMOGLOBINS                                                  |
|----------------|--------------------------------------------------------------|
| a <sup>A</sup> | α2Aβ2A Hb A                                                  |
| a <sup>G</sup> | a <sub>2</sub> <sup>A</sup> β <sub>2</sub> <sup>S</sup> Hb S |
| βA             | a <sub>2</sub> <sup>G</sup> β <sub>2</sub> <sup>A</sup> Hb G |
| β8             | a2 β2 Hb SG hybrid                                           |

In this diagram the possible combinations in Case 15 are listed 4 different hemoglobin are again produced but only 3 bands:

HbA

Hb G and Hb S migrating together (as a thick band) Hb SG hybrid

**Comments**: The hybrid Hb SG, adding the slow migration of Hb S to that of Hb G, migrates as Hb C.

#### **Screening of newborn (cord blood)**

- •The normal newborn has about 70% Hb F
- •The amount of an abnormal hemoglobin, such as Hb S in sickle cell trait, will only be about 15%
- •Therefore more lysate must be used in the electrophoresis
- •There is virtually no Hb A2 in cord blood. If present it indicates the admixture of maternal blood and the electrophoresis cannot be interpreted correctly.
- •The solubility test cannot be relied on since the maximum amount of Hb S, in a homozygote, would be about 30% and in the presence of a lot of Hb F would not give a positive result.

```
CORD BLOOD SCREENING

Hb Barts Quantitation

< 2% Normal
2-3% Probable 1 gene deletion a thalassemia
3-4% Correlate with MCV
4-15% Probable 2 gene deletion a thalassemia
> 15% Probable Hb H disease
```

Making a diagnosis of alpha thalassemia minor (two gene deletion type) on the basis of a high level of Hb Barts in the newborn is very useful, because in later life he will have a typical thalassemia minor blood count but no positive diagnostic finding to suggest alpha (as opposed to beta) thalassemia.



Report

