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Abstract

One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional
structure of a macromolecule thanks to the acquisition of many particle images representing different
poses of the sample. By estimating the orientation of each projected particle, it is possible to recover
the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in
real space. However, the reconstruction from the projected images works under the assumption that all
particles in the dataset correspond to the same conformation of the macromolecule. Although this requi-
site holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced arte-
facts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction
Technique called ZART, which is able to include continuous flexibility information during the reconstruc-
tion process to improve local resolution and reduce motion blurring. The conformational changes are mod-
elled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the
macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also
proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall
aspect of the reconstructed maps by improving their local and global resolution.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).

Introduction

CryoEM SPA1 has proven to be one of the most
successful techniques to recover the structure of a
macromolecule at near-atomic resolution. In addi-
tion, its ability to capture different macromolecular
states is driving the CryoEM field towards a new
way of analyzing and understanding macromolecu-
lar flexibility.
However, the reconstruction of structures at high

resolution is compromised when the sample is
heterogeneous, as the reconstruction algorithms

assume that all particles involved in the
reconstruction process are compatible with a
single underlying 3D map. To overcome the
current challenges arising with heterogeneous
datasets, it is possible to take advantage of 3D
classifications2 to isolate the particles belonging to
a given conformation to improve the resolution of
the reconstruction. Nevertheless, the classification
process will decrease the number of particles that
are available to reconstruct a given conformation,
compromising again the maximum resolution
achievable. In addition, new methods specifically
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developed to estimate richer conformational land-
scapes are also appearing in the field.3–8 However,
these algorithms focus on the estimation of new
conformational states, but they do not take advan-
tage of the estimated heterogeneity information to
further improve the resolution in those areas exhibit-
ing larger degrees of flexibility.
In this work, we propose a novel reconstruction

algorithm called ZART (Zernike3D-based
Algebraic Reconstruction Technique), an ART-
based1 9 multiresolution reconstruction method able
to take advantage of the estimated per-particle con-
tinuous heterogeneity computed by the Zernike3D
algorithm to correct particle inhomogeneities.10

Thanks to the previous correction, it is possible to
improve the local resolution of the reconstructions.
Additionally, ZART has been designed to improve
the features of the final maps even if motion correc-
tions are not considered, helping with the tracing of
the map to achieve better structures. Finally, a mul-
tiresolution approach has been adopted to adapt
the local complexity of the reconstructed map to the
estimated local resolution.
Compared to the first implementation of ZART

presented in,10 this work proposes a major change
in the algorithm, allowing to reconstruct hetero-
geneity corrected maps even if the Zernike3D infor-
mation was estimated in particles with a larger
sampling rate. Also, in our previous implementation,
the reconstruction sampling rate was restricted to
the particles’ sampling rate used during the land-
scape estimation, thus compromising the maximum
resolution possible. Now, we have dropped this
constraint as we are able to adapt the Zernike3D
coefficients to any pixel size of interest.
In addition, the multiresolution reconstruction

mode of ZART is also introduced, which provides
a new approach to further improve the quality of
the reconstructions compared to the previous
implementation.

Results

SARS-CoV-2 spike phantom reconstruction

The main objective of the following results is to
analyze the characteristics of ZART through the
reconstruction of a synthetic dataset. To that end,
we simulated a SARS-CoV-2 Coulomb potential
map using the EASFs2 11 from the PDB 6VSB.12

The map was then projected to generate a gallery
of 18,309 images with a sampling rate 2.40 �A/px.
The motivation behind downsampling the images is
to get a dataset where the sharpening effect of ZART
can be more easily assessed. It is worth mentioning
that the images were not further processed to include
noise or the CTF3 of the microscope. Our aim at this
moment is to produce an ideal dataset that allows

characterizing ZART capabilities in optimal condi-
tions. Later in the article, we will use experimental
data in which noise and CTF are naturally present.
We compared the reconstructions by ZART and

Fourier gridding13 as implemented in Xmipp.14

The resulting maps are shown in Figure 1(a) and
Figure 1(b). As can be seen from the 3D volumes
and the slices, ZART yields a reconstruction with
finer details, simplifying the interpretation of the
map features compared to a standard Fourier
reconstruction.
Since the simulated particles constitute an ideal

homogeneous dataset, no motion correction was
applied during the reconstruction of the ZART
map. Therefore, the main reason behind the
improvement in the features of the map comes
from the deconvolution with a Gaussian implied by
our method. This idea is further discussed in
Section ‘Zernike3D Algebraic Reconstruction
Technique’.
In addition to the evaluation of the quality of the

reconstructions, Figure 1(c) also includes the
convergence curve extracted from the
reconstruction error computed during the first
iteration of the ZART algorithm for every image.
The plot shows that a meaningful reconstruction
(in terms of convergence) can be achieved after
processing 5000 images from the original
phantom dataset. However, it is important to note
that the convergence speed has a strong
dependence on the relaxation factor chosen to
reconstruct a given dataset. A more detailed
discussion of the importance of the relaxation
factor in the reconstruction process is available in
Section ‘Zernike3D Algebraic Reconstruction
Technique’.
Figure 2 shows amore detailed comparison of the

reconstructed Fourier and ZART maps against the
structure used to generate the phantom data.
Thanks to the intrinsic sharpening of ZART, the
reconstructed map is able to define better the
local features present in the spike atomic structure.

Arabinofuranosyltransferase reconstruction

In order to assess the performance of our ZART
reconstruction algorithm on a more realistic
scenario, the dataset EMPIAR-10391 was used
for this task.15 This dataset was processed inside
Scipion following a complete workflow to extract a
complete particle set of 35 k images with a sampling
rate 1.06�A/px. The alignment and CTF information
associated with the particles was estimated with
Relion.16

The particles were afterwards reconstructed with
Relion and ZART and in all cases sharpened with
3DEMhancer.18 In the case of ZART, we followed
three different reconstruction approximations: a
standard reconstruction and two multiresolution
reconstructions with M ¼ 3 and M ¼ 6 multiresolu-
tion levels respectively. Heterogeneity correction
was not applied in this cases in order to compare

1 Algebraic Reconstruction Technique.

2 Electron Atomic Scattering Factors.

3 Contrast Transfer Function.
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Figure 1. Results obtained for the comparison of ZART and Fourier-based reconstruction for the SARS-CoV-2
spike phantom images. (a) shows the original phantom simulated from PDB 6VSB, and the Fourier and ZART
reconstruction from the phantom images. The map comparison shows that ZART provides a sharper representation
of the different features of the spike. (b) shows some slices of the maps represented in a). Similarly to the conclusion
drawn from the maps, ZART provides a sharper representation of the features compared to Fourier, providing a more
meaningful representation. (c) shows the convergence curve of ZART during the first iteration of the algorithm. As can
be seen from the curve, around 5000 images are needed to be processed to get a meaningful reconstruction in terms
of convergence. Together with the original scatter data, the Savitzky–Golay filtered curve is also provided to aid in the
visualization of the plot.

Figure 2. Comparison of Fourier and ZART reconstructions against the atomic structure 6VSB used to simulate the
phantom particles. Thanks to the intrinsic sharpening characteristics of ZART, the reconstruction is able to define
more accurately different areas of the map. The panels were generated with ChimeraX software,17 and histogram
thresholds were set to 0.388 and 0.209 for Fourier and ZART respectively.
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more effectively the standard and multiresolution
reconstruction modes. The resulting reconstructed
maps are shown in Figure 3(a). The colormap rep-
resents the local resolution estimation in Angstroms
for each voxel, computed with MonoRes.19 As can
be seen from the maps and their corresponding
local resolutions, ZART provides a reconstruction
with improved local resolution and better features
compared to the Relion reconstruction.
In order to provide a more quantitative

comparison of the maps, the local resolution
histograms computed with MonoRes were also
compared. Figure 3(b) shows the comparison of
the resolution histogram of Relion and ZART
multiresolution map with M ¼ 6 resolution levels.
As can be seen from the histograms, ZART
pushes a larger number of voxels towards the

high-resolution regime in the range of 2.5 �A–3.2 �A.
Thanks to this push, the average of the local
resolutions improves from 7.0 �A to 4.0 �A.
We also computed the FSC curves of all the

reconstructions analyzed during this section. The
resulting curves are shown in Figure 3(c). It can
be noted that ZART also improves the global
resolution of the map from 3.3 �A to 3 �A. This
implies an improvement of 0.3 �A due to ZART and
of 0.5 �A compared to the reported resolution of
the originally published maps, thanks in this latter
case of the quality of the complete workflow used
in this work.
Another effect that can be observed when

comparing the standard and multiresolution
reconstructions in ZART is that multiresolution can
further improve the local resolution histograms of

Figure 3. Reconstructions of the Arabinofuranosyltransferase from the EMPIAR-10391 dataset. (a) shows a
comparison of the Relion and ZART reconstructions sharpened by DeepEMhancer18 software. In the case of ZART,
we perform two multiresolution reconstructions with 3 and 6 levels respectively and a standard reconstruction without
multiresolution. The map comparison suggests that ZART provides a sharper representation with improved local
resolution. However, this is difficult to appreciate directly on these small representations and for that, we are making a
quantitative assessment in other panels of this Figure. Panel (b) shows the local resolution histograms of the maps
shown in (a) computed with MonoRes.19 The histograms show that ZART pushes a large number of voxels towards
the high-resolution regime. (c) shows the FSC curves of the maps shown in (a). As shown in the previous panels, our
new reconstruction method pushes the overall resolution of the map around 0.3 �A. (d) Comparison of the local
resolution between the ZART reconstructions both in standard and in multiresolution mode. The comparison shows
that multiresolution supposes a little improvement in the local resolution values thanks to the consideration of
multiresolution grids with variable Gaussian widths.
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the reconstructed volumes, although the difference
is small. Figure 3(d) shows the comparison of the
local resolution histograms between the final
reconstruction of ZART (in standard mode) and
the ZART in multiresolution mode (with 6
multiresolution levels). The two histograms show a
similar type of distribution of the local resolutions,
although multiresolution pushes a larger amount
of values towards the high-resolution regime. In
addition, multiresolution implementation has little
impact on the performance of every reconstruction
iteration, allowing to achieve maps in a similar
time compared to the standard reconstruction
mode.
Figure 4 shows amore detailed comparison of the

Relion and ZART reconstructions against the
original structure published with the dataset. In
order to make the comparison more reliable, the
structural model has not been further refined
against any of the two previous maps, and no
sharpening was applied to the volumes. The result
illustrates how the sharpening applied by ZART
leads to a reconstruction representing more

accurately the features of the
arabinofuranosyltransferase.
Additionally, a comparison of ZART with

CryoSPARC non-uniform refinement was
performed, in order to better assess the
performance against other algorithms applying a
de-blur to the resulting map. The results are
provided in Figure 5. Overall, both CryoSPARC
and ZART maps show similar features, although
for some regions ZART showed a better definition
of the molecular structure. We also provide a
comparison of the local resolution histograms
associated with the two previous reconstructions,
together with some measurements drawn from
them in Supplementary Figure 1.

P. falciparum 80S ribosome reconstruction

The P. falciparum 80S ribosome of EMPIAR-
1002820 has become a quite standard dataset to
evaluate the performance and accuracy of continu-
ous heterogeneity algorithms, due to the presence
of significant conformational changes that can be
extracted directly at particle level.

Figure 4. Comparison of Relion and ZART reconstructions (without sharpening) against the original atomic
structure published with the EMPIAR-10391 dataset (PDB entry 6WBX). Thanks to the intrinsic sharpening
characteristics of ZART, the reconstruction is able to better define different map regions at similar map thresholds.
The panels were generated with ChimeraX software,17 and histogram thresholds were set to 0.012 and 0.255 for
Relion and ZART respectively.
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Therefore, we decided to evaluate the ability of
ZART to revert conformational changes and
improve motion-blurred areas with the EMPIAR-
10028 dataset. To that end, we processed the
submitted data inside Scipion to get a set 50 k
particles with CTF and alignment information.
Both, the alignment and CTF were estimated with
CryoSPARC21 in two independent runs, followed
by a consensus step22 to improve the accuracy of
the measurements. The sampling rate of the
images fed to the reconstruction algorithms was
1.34 �A/px.
We estimated the per-particle conformational

changes with the Zernike3D algorithm.10 This
method relies on a mathematical basis able to
express a deformation field that can be used to
approximate any particle conformation in 3D at the
level of CryoEM maps or atomic structures.
In this example, the estimated deformation fields

are considered during the reconstruction process
to reduce the structural differences among the
particles and reduce motion blur artefacts. The
application of the deformation field compensation
can be done either using the standard ZART
reconstruction algorithm or its multiresolution
version. However, in this case, and with the aim of
reducing the number of parametric choices and
concentrating only on the differences due to
motion correction, the reconstruction of the
ribosome was done using standard ZART.

The comparison of the map reconstructed with
CryoSPARC21 and ZART with motion correction is
provided in Figure 6(a). The maps were coloured
according to their local resolution value estimated
with MonoRes. As can be seen from the results,
ZART provides better features (mostly on moving
regions, such as the small subunit of the ribosome)
thanks to the per-particle structural corrections.
Figure 6(b) shows the comparison of the local

resolution histograms computed with MonoRes.
Similarly to the results offered in the previous
section, the application of ZART with motion
correction increases the resolution of a larger
number of voxels, mainly in the range from 3.0 �A
to 4.5 �A. The average of the local resolution is
also improved from 5.5 �A to 5.2 �A. The
comparison of the FSC curves is also provided in
Figure 6(c). In this case, ZART pushes the FSC
around 0.1 �A.
Figure 7 shows amore detailed comparison of the

differences between the CryoSPARC and ZART
reconstructions in regions of high flexibility. The
figure shows the comparison of the CryoSPARC
and ZART reconstructions against the original
structural model published together with the
dataset. The structural model has not been further
refined considering any of the two maps to
simplify the comparison. Thanks to the correction
of the ribosome motions, ZART is able to define
better different features in flexible regions such as

Figure 5. Comparison of CryoSPARC non-uniform refinement and ZART reconstructions (without sharpening)
against the original atomic structure published with the EMPIAR-10391 dataset (PDB entry 6WBX). The comparison
shows that the de-blurring applied by the two algorithms leads to similar results, although ZART is able to define better
some structural features. The panels were generated with ChimeraX software,17 and histogram thresholds were set to
0.85 and 0.255 for CryoSPARC and ZART respectively.
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Figure 7. Comparison of CryoSPARC and ZART reconstructions (with motion blur correction) against the original
atomic structure published with the EMPIAR-10028 dataset (PDB entries 3J79 and 3J7A). Thanks to the correction of
each particle conformation during the reconstruction, ZART is able to define better the features usually hidden due to
motion blur artefacts. The panels were generated with ChimeraX software.17

Figure 6. Comparison of ZART and CryoSPARC reconstructions for the P. falciparum 80S ribosome from EMPIAR-
10028 dataset. (a) shows a comparison of the Cryosparc and ZART reconstructions sharpened by DeepEMhancer18

software. In the case of ZART, we perform a standard reconstruction with no multiresolution, but correcting the motion
blur artefacts thanks to the Zernike3D deformation fields computed for each particle in the dataset. The map
comparison shows that ZART provides a sharper representation with improved local resolution. (b) shows the local
resolution histograms of the maps in (a) computed with MonoRes.19 The histograms show that ZART pushes a large
number of voxels towards the high-resolution regime, being most of the voxels at the range 3.0�A–4.5�A. (c) shows the
FSC curves of the maps shown in (a). For this case, ZART improves the overall resolution of the map by around 0.1�A.
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loops and key residues, as shown in the figure,
producing information that can now be used to
further refine the traced structural model starting
from the ZART map, leading to better results.
We also provide a more in-depth comparison of

the signal of different map slices in Supplementary
Figure 2. As can be seen from the slice
comparison, ZART provides a better
representation of the features in the map,
including the small subunit of the ribosome thanks
to the heterogeneity correction coming from the
Zernike3D deformation fields. Negative values
have been excluded from the slices of CryoSparc
and ZART to enhance the visualization of the
protein signal.
In addition, ZART reconstruction was compared

against the previous CryoSPARC map after

applying a Bfactor to better assess the intrinsic
sharpening capabilities of ZART against other
sharpening methods. In addition, both ZART and
CryoSPARC Bfactor-corrected maps were post-
process with DeepEMHancer using wide target
mode, in order to decrease the noise of the
reconstruction while keeping as reliably as
possible the original information of the volumes.
The comparison is provided in Figure 8. The

application of the Bfactor improves the quality of
the ribosome core features, as this region is more
rigid. However, the low SNR of the high-flexibility
regions prevents them from being recovered
appropriately after the Bfactor correction.
In contrast, the motion correction applied by

ZART provides a better definition of the moving
regions in the ribosome, which are properly

Figure 8. Comparison of Bfactor corrected CryoSPARC reconstruction and ZART reconstructions (with motion blur
correction). Both maps were post-process with DeepEMHancer18 software in order to decrease the noise of the maps
and improve the interpretability of the results. The Bfactor correction applied to the Relion reconstruction enhances
the features located mostly on the core of the ribosome as observed in (c) compared to ZART. However, flexible
regions are not properly recovered, being lost due to their low SNR as shown in (a) and (b). In contrast, ZART motion
correction helps reducing the motion blur induced by the molecular motions, thus yielding a more complete map even
after applying its intrinsic sharpening and DeepEMHancer. The panels were generated with ChimeraX software.17

Table 1 Execution times for the ZART algorithm (note that the standard ZART version has been the one used for this
reporting). N and M are the parameters defining the size of the Zernike3D base. We show the performance for N ¼ 3 and
M ¼ 2, which corresponds to our most common choice of parameters when estimating deformation fields, and also the
one for N=– and M=–, which refers to the case when no motion correction is considered during the reconstruction. We
observe that for one million particles of size 300x300 pixels the time goes from three-quarters of an hour to an hour and a
half, depending on whether we consider or not the deformation field correction (on a powerful CPU server, the GPU
version is still under development).

Performance metrics for ZART algorithm

Image size N M Iteration time 106 particles (hours - 150 threads)

300 3 2 1.407

300 - - 0.746
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recovered even after applying the intrinsic
sharpening of ZART and DeepEMHancer.
Table 1 provides some metrics about the

computational performance of ZART.

Conclusions

We have introduced a new ART-based
reconstruction method called ZART in this
manuscript. Thanks to the modification in the
interpolation scheme and volume recovery
process, ZART is able to improve the local
resolution of the reconstructed maps, without the
need to further modify or refine the alignment and
CTF information of the input particles.
Moreover, ZART can also create amapwhere the

estimated Zernike3D deformation field per particle
can be compensated for, or computationally
“reverted”, thus reducing motion blurring during
the reconstruction and increasing the resolution of
very flexible areas in the macromolecule.
Compared to the implementation introduced in,10

ZART reconstructions are no longer limited to the
sampling rates used during the estimation of confor-
mational landscapes. Therefore, is now possible to
correct the heterogeneity-induced blurring of maps
without compromising resolution, allowing ZART
to reach high-resolution heterogeneity-corrected
maps.
In addition, in this work we described the ZART

multiresolution reconstruction approach, which
takes advantage of the local resolution
estimation of the maps reconstructed every two
iterations to determine the resolution that should
be used to further update different regions of the
map. Multiresolution has proven to be a useful
approach, as it leads to high-quality results
without the need for so many ZART iterations,
reducing the execution times compared to the
initial implementation introduced in.10 Finally, a
multiresolution approach has intrinsically the
potential to be less prone to be trapped in local
minima.23 Although we have not observed this
effect in the cases presented in this work, these
characteristics remain to be further explored in
other data sets.

Methods

The Algebraic Reconstruction Technique

We express the reconstructed map in a series
expansion with a basis function b rð Þ:
V rð Þ ¼

X
j

x j b
r � r j
r

� �
ð1Þ

where r is a coordinate in the 3D space, rj represents the

location of the j-th basis function and r its scale. The
basis functions chosen are Gaussian functions. If all
sigmas are equal, then the expression above can be
expressed as a convolution.

V rð Þ ¼
X
j

x jd r� rj
� � !

Hb
r

r

� �
ð2Þ

These Gaussians are distributed in a regular,
rectangular grid with a step of r pixels. Our
motivation for this choice is that Gaussians can
approximate a partition of unity with a very low
error24 when the spacing between two Gaussians
is equal to their standard deviation. Partition of unity
is an important property of basis functions that guar-
antees that they can reproduce any Sobolev func-

tion of the space W 2 (that is, sufficiently smooth,
square-integrable functions). Additionally, Gaus-
sians are spherically symmetric and their projection
does not depend on the projection direction, making
them very computationally efficient.
The projection of this volume onto an image is

modelled as the line integral of this map. The
projection direction and the in-plane shift are given
by an Euler matrix, E , that acts on the spatial
coordinates.25 We define the auxiliary matrix eHt

that will help to transform the 2D coordinate of the
image into a 3D coordinate of the volume and will
also help to perform the line integral as

eHT
t ¼

1 0 0

0 1 0

0 0 t

0B@
1CA ð3Þ

Then, the projection is given by

I sð Þ ¼ R
V E�1 eHT

t s
� �

dt

¼ R X
j

x j b
E�1eHT

t
~s�r j

r

� � !
dt

¼
X
j

x j

R
b

E�1 eHT
t
~s�r j

r

� �� �
dt

ð4Þ

Tildes above represent homogeneous
coordinates.
The projection of a 3DGaussian is a 2DGaussian

of the samer. Let us refer to the 2DGaussian asG.
Then, the projection above can be simplified to

I sð Þ ¼
X
j

x jG
s�Er j
r

� �
ð5Þ

If there is an in-plane shift, s0, then the model
above has to be modified to

I sð Þ ¼
X
j

x jG
s�s0ð Þ�Er j

r

� �
ð6Þ

For a particular pixel si we will have

I sið Þ ¼
X
j

x jG
si � s0ð Þ � Er j

r

� �
¼
X
j

x jaE ;s0 ;ij ð7Þ

where the coefficient aE ;s0 ;ij represents the projection of

the j-th basis of the volume onto the i-th pixel of the
image whose alignment parameters are given by the

matrix eE and the in-plane shift s0.
We may collect all experimental images into a

single vector, I, and construct the corresponding
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matrix, A, with all the matrices for the individual
projections. Then, the reconstruction problem boils
down to solve a linear equation system of the form

Ax ¼ I ð8Þ
Among the possible algorithms to solve this

equation system, we have chosen Block-ART as it
provides a good balance between computational
complexity and convergence speed.9

The 3D reconstruction process starts with an
initial solution, x 0ð Þ, typically an empty vector of
zeroes. Then, it iterates over the different
experimental images and updates the k -th
estimate of the 3D reconstruction according to

x kþ1ð Þ ¼ x kð Þ þ kk
X
i

I i � ai ; x
kð Þ

kaik2
ai ð9Þ

where ai is a vector with all the contributions of all the j
basis functions onto the pixel i , and i goes over the
selected image (different for each k ). kk is a relaxation
factor between 0 and 2.
The closer to 1 the faster the algorithm will

converge, although this is only feasible if the
experimental measurements are of good quality.
In CryoEM, the Signal-to-Noise Ratio of the
projections is in the order of 0.01. For this reason,
k is typically kept low.
Our output is the vector xj , that is, the Gaussian

coefficients. By doing this, we are deconvolving
the map with a Gaussian at the same time that we
reconstruct it. In the multiresolution section below,
we will show that the width of this Gaussian is
locally defined and that we are, thus, doing a local
deconvolution based on the local resolution of the
map.

Zernike3D Algebraic Reconstruction
Technique

One of the main reasons to choose ART as the
basis for the ZART algorithm is the freedom it
gives to supply prior knowledge during the
reconstruction process. In the case of ZART, this
information is related to the structural information
of each particle, which is computed by the
Zernike3D algorithm.
The Zernike3Dmethod26 is a novel approach able

to describe per-particle conformational changes
based on the estimation of a deformation field gL,
so that the relationship between the deformed and
the undeformed volume is
V deformed rð Þ ¼ V undeformed rþ gL rð Þð Þ ð10Þ
where the deformation field is expressed in terms of the
Zernike3D basis Z l ;n;m and a series of Zernike3D

coefficients al ;n;m as:

gL rð Þ ¼
XL
l¼0

XN
n¼0

Xl

m¼�l

ax
l ;n;m

ay
l ;n;m

az
l ;n;m

0B@
1CAZ l ;n;m rð Þ ð11Þ

The estimation of the deformation field amounts
to estimating the a coefficients in the equation

above. Once they are determined, we may use
incorporate them in the series expansion to have
a deformation, projection model (see Eq. 6):

Ideformed sð Þ ¼
X
j

x jG
s�s0ð Þ�E r jþgL rjð Þð Þ

r

� �
¼
X
j

x jaE ;s0 ;gL ;ij

ð12Þ
That is, in the deformed projection, the

coefficients of the undeformed map, x j , have to be
projected to a point given by the projection
direction and the deformation field. The term
aE ;s0;gL;ij now encodes the projection, in-plane
shift, and deformation.
The main advantage of including the

heterogeneity information in the ART
reconstruction process through the Zernike3D
deformation fields is the possibility to properly
correct the non-rigid alignments associated with
macromolecular motions. In a normal
reconstruction process, the reconstruction volume
is assumed to be the conformational state
represented by all the particles in the dataset.
However, the previous assumption does not hold
when the macromolecule exhibits large degrees of
flexibility, leading to a motion-induced blurring in
the resulting map. The per-particle deformation
fields introduced a non-rigid alignment able to
correct for the heterogeneity inconsistencies of the
particles, making the dataset more consistent
during the reconstruction process and thus
reducing motion blur artefacts.
The unknowns of the linear equation system in

Eq. 8, x j , refer to the undeformed map. However,
the A matrix contains projections of the deformed
images. In this way, we obtain the remarkable
result that ZART can reconstruct an undeformed
map with information coming from the deformed
particles together with the deformation field. Still,
we should warn that since the calculation of the
deformation field itself will never be perfect due to
the image noise, errors in this estimation will
translate into the “estimated” undeformed map; in
other words, the quality of the reconstructed
undeformed map depends on the capacity of the
Zernikes to faithfully reproduce the observed
deformations.
In order to improve the aspect of the final maps,

ZART only uses the Gaussian convolution for the
computation of the volume projections that will be
compared to the experimental image. Once the
correction image has been computed, ZART will
look at the Gaussian coefficients to update the
reconstruction. Since the Gaussian coefficients
are sharper than the Gaussian itself, the
reconstructed map will be sharper, making it
easier to choose an appropriate threshold to
visualize the reconstruction.
Regarding the CTF, particles should be

previously corrected (for example, by means of a
Wiener2D filter) before inputting them in ZART.
The current criterion to stop iterations in ZART is

D. Herreros, J. Kiska, E. Ramı́rez-Aportela, et al. Journal of Molecular Biology 435 (2023) 168088

10



by reaching a maximum number of iterations
specified by the user (by default, 10). Still, the
user can decide whether to save or not the partial
reconstructions for every iteration, in order to
analyze how the reconstruction evolves and
determine which iteration is yielding better results.

Multiresolution reconstruction

In addition, we have exploited the almost partition
of unity property of Gaussians to propose a
multiresolution reconstruction scheme. The
resolution of the reconstructed map is limited by
the standard deviation of the basis of the series
expansion. Large standard deviations will lead to
lower-resolution maps as we are introducing a
stronger low-frequency component during the
reconstruction. But, because the separation
between bases is equal to the standard deviation,
we will also require fewer coefficients and they will
be less affected by noise.
Our multiresolution implementation discretizes

the possible r’s to a finite set of possible values
determined by the local resolution. Let us assume
that we have M multiresolution levels, each one
with a rm . Then, we have M superposing grids (at
locations rmj ), and the series expansion above
becomes:

V rð Þ ¼
X
m

X
j

xm
j d r� rmj

� � !
Hb

r

rm

� � !
ð13Þ

Our multiresolution reconstruction algorithm
follows the next steps:

1. Initially, ZART performs two ART iterations to com-
pute an initial even/odd reconstruction with the parti-
cles. At this moment, a large and fixed Gaussian
spacing and standard deviation are used.

2. The two half maps are used to measure the current
local resolution of the reconstruction with
MonoRes.19 We calculate the histogram of the local
resolution and divide it into M equally populated bins.
Then, we approximate the local resolution at the loca-
tion rj by the centre of its local resolution bin, let us

refer to it as bR rj
� � ¼ bRm . We associate a Gaussian

standard deviation to each one of these bin centres:

rm ¼
bRm

2T s

being T s the sampling rate of the particles involved in
the reconstruction. In this way, the Nyquist resolution
corresponds to a value r ¼ 1:0, which defines the
size of the Gaussian fulfilling the partition of unity.

3. Once the local standard deviations have been com-
puted, ZART performs another two ART iterations
in multiresolution mode. In our implementation, for
each of the M grids, only the xm

j coefficients of the

series expansion whose local resolution is associated
with rm are updated, while all the rest remain as 0.

4. Steps 2 and 3 are then repeated according to the total
number of ART iterations specified by the user.

Figure 9. Diagram of the ZART reconstruction process in standard mode. (1) represents the steps followed when
heterogeneity information is not available. (2) shows the motion blur correction workflow thanks to the estimation of
the Zernike3D deformation fields for every particle in the dataset.
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When the multiresolution mode is selected, the
user can determine the number of Gaussians
(referred to as “levels” in the program) that will be
used during the reconstruction (i.e. if M ¼ 3 levels
are chosen, the reconstruction will be able to use
up to three Gaussians of different spacing and
standard deviation).
A visual representation of the reconstruction

process of both, standard and multiresolution
modes is provided in Figure 9 and Figure 10.

Data Availability

The data used to test the ZART algorithm are
publicly available in EMPIAR under the entries
10028 and 10391.

Code Availability

The ZART algorithm has been implemented in
Xmipp14 and it is available through Scipion 3.027

under the plugin scipion-em-flexutils.

CRediT authorship contribution
statement

D. Herreros: Conceptualization, Methodology,
Software, Validation, Writing – original draft. J.
Kiska: Software. E. Ramirez: Resources. J.
Filipovic: Software, Supervision. J.M. Carazo:
Supervision, Writing – review & editing. C.O.S.
Sorzano: Supervision, Writing – review & editing.
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Suplemmentary Fig. 1: Local resolution statistics computed from the CryoSparc [1] non-uniform and ZART (mul-
tiresolution with no heterogeneity correction) reconstructions of the arabinofuranosyltransferase [2]. a) shows the
local resolution histogram computed with MonoRes [3] using the reconstructed half maps. b) shows different his-
togram measurements drawn from the local resolution values. In this table, IQR stands for interquartile. Both
results confirm that the multiresolution reconstruction of ZART pushes a larger number of voxels towards the high-
resolution regime.

1



Suplemmentary Fig. 2: Comparison of several slices of CryoSparc [1] and ZART (with heterogeneity correction
applied). In the EMPIAR-10028 [4] dataset, the small subunit of the ribosome has a larger degree of flexibility,
leading to a motion-induced blur as shown in the CryoSparc slices. Our ZART approach produces a more detailed
reconstruction of this region thanks to the application of the Zernike3D [5] deformation fields during the reconstruc-
tion process. In addition, the intrinsic sharpening of ZART leads to a better representation of the overall signal.
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