

PAPERS AND PROCEEDINGS

ANI)

REPORT

OF THE
ROYAL SOCIETY

UF

TASMANIA,

FOK
1875.

TASMANIA:

> MRISTED at The "Mercler" stelit press offlce, holiaki town. $$
1876 .
$$

PAPERS AND PROCEEDINGS

ANII

REPORT

()F WHF。

ROYAL SOCIETY

 OF
TASMANIA,

 トORI875.

TASMANIA:
PRINTED AT TIIF, "MERCURY" STEAM IRESS OFFICE, HOBART TOWN. 1876.

derata

Page 37. -Fourth line from bottom, for "Plalangesta," read "P'lutangista."
Page 43.-Line 19, for "Pulmo branchicta," read "Putmolranchiata."
Page 45.-Line 15, for "by the chair," reat "from the chair."
Page 122.-In sub-heading of tables [I] and [K] for " Age at Death," read "Age."
Page 125.-In sub-heaving of last table for " Ige at $A \mathrm{ge}$," read "Age at Death.'

The responsibility of the statements and opinions given in the following Papers and Discussions rests with the individual authors the Society as a body merely places them on record.

Conntents.

Pace.
Proceedings for March, 1875 1.
Wool, on Treatment of :
Galena, Argentiferous... :
Proceedings for April, 1875 \square
May, 1875 7
Kestrel, Nankeen, Occurrence of in Tasmania s
Reed Warbler, ditto s
Blue Cium (E'uealyptus globulus), preservation of !
Domain, Improvement of, Mr. Sayce's letter on... 9
On some Tentary Fossils from Tahle Cape. liy the Rev. Julian E. Tenison-Woods, F.L.S., F.G.S., \&c. $1:$
(In sumb Now Species of Tasmanian Marine Shells. By the Rev. Sulian E. Temison-Woods, F.G.S., F.L.S., \&c. $\because 7$
Proceerlings for June 3
Domain, Improvement of, Mr. Abbott's letter on $: 2$
His Excellency's remarks on :3.
Proceedings for July $: 7$
Domain, Improvement of, Discussion on :
Procecelings for August, 41
Aboriginal Stone Implements, Mr. J. Scott, on 41
Shells, Freshwater, liemarks on the Study of. By liev. J. F. 'l'enison- Woorls, F.G.S., F.L.S., \&c. 42
On the (ienus Fenestellis. By the Rev. Iulian E. Tenison-Woods, F.G.S., F.L.S., \&ंc. 415
Further Notes on the Salmon Experiment. Ly Morton Allport, F. L.S., r.Z.S., \&.c. 51
Notes on the Chlamylosaurus or Frilled Jizarl of Queensland (Chlumydoscturus Kingii, (rray), ant the Discovery of a Fossil Species on the Darling Downs, Queenslanl. By G. Bennett, M.D., I. I.s., Correspomling Member of the lioyal Society of Tasmania in
On the L゙mplectellu Asperyillum, Owen; or "Venus's Flower Basket," a Species of Sponge belonging to the Alcyonoid Family, aud a Notice of the Hy/alonema, or "Glass Rope" Sponge. By G. Bennett, M.D., F.J.S., Comesponding Member of the Royal Suciety of Tasmania 59
On the Fieshwater -hells of Thamatia. His the Rev. J. E. Tenison- Woorls, I.G.S., F.L.S., \&c. 4if
Proceerlings for September -i;
Lemaths on Flint Implements and Antiquity of Cave Remains. Dy Rev. J. E. 'Terison-Woods, F. G. S., \&c. 84
Frost Finh (Lepidolus romluthis) washel on shore at lattery looint sis
1roceedings for October A1
Page
Herbarium, Dr. Milligan's, remarks on, by Rev. W. W. Spicer 87
Australian Trees, growth of, on Isle of Arran, Frith of Clyde 85
Proceedings for November 91
Introduction to paper on new Tasmanian Shells. By Rev. J. E. Tenison-Woods, F.G.S., \&c. 92
Proceedings for November, 1875 91
Port Davey in 1875. With diagrams. By the Hon. James Reid Scott, M.L.C. 9
On the Vital Statistics of Tasmania, with Especial Reference to the Mortality of Children. By E. C. Nowell, Government Statistician 10.3
Our Grasses (Queensland). By J. M. Bailey, Brisbane, ('orrespouding Member of the Royal Society of Tasmania 127
Description of New Tasmanian Shells. By the Rev. J. E. Tenison- Woods, F.G.S., F.L.S., \&c. $1: 3$
Descriptive Notes on a New Vaccinium from Samoa. By Baron Ferd. Von Mueller, C.M.G., M.D., F.R.S. 16.
Meteorology for January, 1875 i.
February, 1875 ii.
,, March, 1875 is.
,, April, 1875 vi.
", May, 1875 vii.
, June, 1875 ix.
, July, 1875 xi.
,, August, 1875 xii.
,, September, 1875 xv.
,, October, 1875 xri.
," November, 1875 xviii.
December, 1875 xx.
Monthly Means of Observations taken at New Norfolk for 1875 xxi.
Report of Council for 1875

ROYAL SOCIETY.

MARCH, 1875.

The monthly evening meeting of the Society was held on Tuesday, the 9 th March, M. Allport, Esq., V.P., in the chair.

The following gentlemen, who had previously been nominated by the Council, were balloted for, and declared duly elected as Fellows of the Society, viz., Ilis Honor Sir Francis Simith, the liev. Thos. Kelsh, Messrs. John Kenrick Lewis, H. A. Perkins, and C. Dowdell.

Professor IV. Harkness, of the United States Naval observatory; Henry Heylin Layter, Esf., Government Statist, Victoria; Fredk. MI. Bailey, Esil., Brisbane, (Yueensland; and A. Thozet, Esq., Botanist, Rockhampton, were elected as corresponding members.

The Hus. Sberetary (1)r, Agnew) laid before the meeting the usual monthly returns as under:-

1. Number of visitors to Museum in January, 1,509 ; in February, 1,221 .
2. Ditto to Gardens ditto, 3,893 ; ditto, 2, 923.
3. Plants, \&e., received at and sent from Gardens during January and February.
4. Time of leafing, \&c., of a few standard plants in Botanic (iardens during February.
5. Books and periodicals received.
6. Presentations to Musenm.

Meteorological Returns-

1. Hobart Town, from F. Abbott, Esc., 「tables for January and February.
2. New Norfolk, from W. E. Shoobridge, Esq., ditto ditto.
3. Mount Nelson, from Marine Board, ditto ditto.
4. Goose Island, from ditto, table for January.
5. Port Arthur, from J. Coverdale, Eisq., tables for January and February.
6. Sylney, from II. C. Tussell, Esq., B.A.-Printed tables for Sep* tember, 1874.
7. Melbourne, from R. L. J. Ellery, Esq.-Ditto, for August, 1874.

The presentations to the Museum were as follows-

1. From Mr. II. G. Lloyd, New Norfolls.-Three specimens of wood, and three of fossil wood, from Queensland.
2. From F. A. Blackman, Eisfy. -Two smakes, I lizaril, 1 bat, 1 large beetle, and a collection of land and fresh water shells, from Warro, Port Curtis, Queensland.
3. From the liev. J. F.. Tenison Wools. - Three specimens of gold from Devonian Rock, Smithfield Reef, Gympie, Queensland.
[Remarkable for being in close proximity to fossils (Devomian), and occurring partly in quart\% and partly in greenstone. The goled is not pure, as will be seen from its colour, containing ten per cent. of silver, and traces of copper, lead and iron.]
4. From C. E. Morton, Viscı, (irafton, New South Wales,-A femalo specimen of a species of "Walking-leaf Insect," probably Extatosoma tiaratum. (See British Mruserm catalogne of Orthop-

5. From Mr. R.J. Harris, Sorell. - A large Black Snake (IIoplorrphiretus curtus).
6. From M. Allport, Esq.-A smaller ditto.
7. From "Jonah," a native teacher from Samoa.-A model of a Samoan fishing canoe, made by him when in Tasmania, and presented through the Rev. G. Brown, Wesleyan missionary. A large sheet of Tapa cloth.
8. From Mr. D. Hancock, O'Brien's Bridge.-A specimen of Spirifera bisulcata, from slope of Mount Wellington. [An unusually large and very perfect example of the fossil.]
9. From J. W. Graves, Esq.-A bivalve shell (Crassatella castanect) from the North Coast of Tasmania.
10. From Mr. J. Ferguson.-A crab from Tinder Box Bay.
11. From Mr. S. H. Wintle.-Samples of iron ore, limestone, and coal, from the River Don, Tasmania.
12. From J. Simpson, Esq., Mercury office.-Sample of stream tin, from Mount Horror, Dorset, Tasmania.
13. From Mr. E. N. Spong.-A collection of sponges, rock specimens, portion of old telegraph cable, \&c., \&c., from King's Island.
14. From Mr. C. H. Hall.-Specimen of tin in lode, stream tin, tin nuggets, gallena, antimony, \&c., from Mount Bischoff.
15. From Mr. F. J. Davies.-Samples of tin, antimony, silver ore, peacock copper ore, \&c.-From Stanthorpe, Queensland.
16. From Col. Crawford. -Sample of tin smelted from Mount Bischoff ore.
17. From H. Hopkins, Esq.-20 Chinese "cash." A "Caltrop "-A sharp four-pronged instrument used in the late war by the Chinese for scattering about the ground to embarrass the advance of hostile troops.
18. From Mr. Lewis, Geelong.-A large Echinus, from the Pacific.
19. From Master H. Hull.-Egg of the Native Companion, or Australian Crane (Grus Australasianus.)
20. From Mr. W. L. May, Muddy Plains.-A curious marine incrustation on shell of Pecten, from Frederick Henry Bay.
21. From W. A. Kermode, Lsq.-Two samples of salt from Saltpan Plains, Mona Vale.
22. From His Excellency F. A. Weld, Esq.-Two Lizards from Western Australia. A collection of ornaments, nets, and other implements made by the Aborigines of that colony.
23. From John Macfarlane, Esq.-Two specimens of the "Glass Thread Sponge" (Hyalonema mirabilis), from Japan.
[The Rev. J. E. Tenison Woods made some observations on this very remarkable object, and expressed his intention of giving further details in reference to it at the next meeting.]
24. From N. J. Browne, Esq., M.H.A. - Specimens of Opalized Wood from Meadow Banks.
25. From Mr. Prescott-Two specimens of the gladius or "pen" of a species of Squid.
26. From the Hon. J. Maclanachan, Esq.-A Mountain Duck (Casarca tadornoides).
27. From Mr. Hissey.-Skin of the "White Bird" of Kerguelen's Land (Chionis necrophaga).
28. From Mrs. Buckland.-A framed portrait of the late Sir Henry Young.
The following presentations to the Library were reported :-
From the Royal Colonial Institute.- Proceedings for 1873-4.
From the Rev. J. E. Tenison Woods. - "Hume's overland journey from Lake George to Port Phillip, 1824." Roots, \&c., used as food
by the Aboriginals of Northern Queensiand ;" by A. Thozet. "Extract from Bulletin of the Acclimatisation Society of France, Tuly, 15\%..." "Lectures delivered at Industrial and Technological Museum, Melbonrue, 1872." "Hortus Kewensis, Epitome to ;" by W. 'T. Ayton, 1814. "Geology of Queenslaud,-Notes on, by R. Daintree, F.G.S."
From the author, F. M. Bailey, Esq., "Handbook of Queensland Ferus."
From the author, Professor A. Liversidge, Sydney University, "Iron and Coal deposits at Wallerawang, New South Wales." "Nickel Minerals from New Caledonia" (two pamphlets.) "On Dendritic Spots." "The Bingera Diamond Field." "The Deniliquin, or Baratta Meteorite."
From the Royal Socicty of New South Wales.-"Transactions," 15シン.3.
From the Malacolocical Society of Belgium. - Reports of Proceedings of vol S, 1873 ; vol.3, 1874.
From the Eatomological suciety of Belgium. -Transactions of, series 2, Nos. 1, 2, 3, Nos. 96 to 100.
From the Department of Agriculture, United States. - Annual Lieports of Department for 1570-1-2 ; monthly ditto for 1871-2-3.
A specimen of Argentiferous Galena, accompanied by the following memorandum, and forwarded by Mr. S. H. Wintle was exhibited. "This specimen of argentiferous galena is Tasmanian, and according to Melbourne assay yields I am assured, 82 per cent. of combined metal, of which 48 per cent. is silver. The actual locality is not at the present time made known to the public. I have not been able to find time to make any test of it myself, but regarding it from its outward appearance it justifies all that has been said of it."

A subsequent communication from Mr. Wintle was read to the effect that the specimen submitted for analysis was a picked one, and as far as he could judge from a rough assay with the blowpipe, the sample of the ore exhbited yielded little over 60 per cent. of combined metalsilver being a little in excess of the lead.

Dr. Agnew read a note from Mr. W. A. B. Gellibrand mentioning that in reply to some enquiries rirected to Mr. L. C. Miall, of Leeds, he had recently rectived from England, a pamphlet and some papers upon wool, together with the following note :-

$$
\text { "Keighley, Nov. 30th, } 1874 .
$$

"Dear Miall,-The best authority that I know has been in London at the sales for some time back or I would have replied earlier. As to New Zealand wools;
" 1. It is better to wash with cold water if the fleese will 'scour' or cleanse well ; if it will not scour, tepid water and little soft soap must be used.
" 2 . The wool must he washed before shearing the sheep; thus the wool dries easily and naturally.
"3. The fleece shouk not be 'sorted,' that is, made into different qualities, but only the dirt and locks taken off. Every spinner has his own idea of the kind of division he requires in the qualities of the fleece.
" 4. Wool that is 'dumperl,' or hard packerl, is not really injured, but the illea is provalent among importers that it does not sell so well ; as the appearance of the wool is injured by pressure. Herewith you have printed information from the Chamber of Commerce, and
remarks in the two reports containing replies to former encuiries on similar subjects.
" Yours very truly, " John Brig.."
[The pamphletand papers will be left on the table at the Museum for the inspection of any person who may wish to peruse them.]

The Rev. J. E. Tenison Woods, F.G.S., F.R.G.S., a corresponding member of the Society, read a paper "On some Tertiary Fossils from Table Cape." [In alluding to the various works which he had occasion to consult when writing his paper, the author took occasion to compliment the Society on the richness of its library. He was both astonished and pleased at being able to refer to so many authorities, and it was evident that great care and intelligence had been exerted in forming a collection of books, of which, especially when the limited number of its members was considered, the Society had certainly just reason to be proud.]
A short discussion ensued, after the reading of the paper, in which the members expressed their extreme gratification at the help given by it to the subject of Tasmanian palæontology. In answer to several questions from Bishop Bromby, Mr. Woods stated that the Cretaceous formation, upper and lower, were extensively found on the western side of the dividing range in Northern Queensland. He added that fossiliferous beds of all the leading formations were found in Australia, including the Oolite, Lias, and Trias.
A special vote of thanks was then moved by Bishop Bromby to the reverend gentleman for his able and interesting paper. He was sure the members of the Society would agree with him in saying that their thanks were more especially owing because the author was known to have left himself but little leisure for such studies from the higher and holier labours to which, as every one knew, he had so completely dedicated himself, and at a time when barely recovered from a long and serious illness, he had made this effort to fulfil a former promise to them. The present instance was one which showed how the highest interest in the cause of God was combined with ardent admiration and knowledge of God's works, and it must command their warmest commendation as well as their thanks. Mr. Barnard seconded the motion, which was carried by acelamation, and the meeting separated.

APRIL, 1874.

The monthly evening meeting of the society was held on Tiesday, the 13th April. P. 'T. Smith, Esq., in the chair.

The following gentlemen, who had previously been nominated by the 'ouncil, were hallotted for and declared duly elected as Fellows of the suciety, viz., the liev. W. W. Spicer, of Jutland, New Town; and A. Simson, Esq., of Brighton.

The Necretary submitted the following returns for the month of March :-

1. Visitors to Museum, 1155.
2. Ditto to Gardens, 3113.
3. Plants received at Gardens-From Mr. W. Bull, London, 12 tuberons rooted Begonias, and 1 packet of seeds. From Jules de Cock et Sceur, France, 25 packets seeds. From the North China Branch, Royal Asiatic Society, 1 packet of seeds and bulbs. From the Rev. J. E. 'I'enison Woods, 4 species of Dendrobium, from Queensland.
4. P'ants, de., sent from fardens-To Department of Agriculture, Washington, U.S. America, 3 I'ree Ferns, and 10 packets seeds.
5. Time of leating, flowering, and fruiting of a few standard plants in Society's Gardens during March.
6. Books and periodicals received.
7. Presentations to Museum.

Mcteorological Returns-

1. Hobart Town, from F. Abbott, Esq.-Table and summary for March.
2. Mount Nelson, from Marine Board.-Table for March.
3. New Zealand, from Dr. J. Hector, F.R.S., \&c.-Meteorologica Report for 1873 ; printed abstract tables from various stations foi August to December, 157. Monthly tables from Wellington, September, 1874 to January, 1875.
The presentations to the Museum were as follows :-
4. From R. Butler, Esq.-A young Black Snake (Hoplocephalus curtus), beautifully marked.
5. From Mrs. Hooper, Battery Point.-A young Cuttle Fish, taken from the stomach of a fish.
6. From J. Miller, Esq., Carrick, per J. W. Graves, Esq.-A young Kangaroo, from the pouch.
7. From Mr. H. Judd, Franklin.-A curious Spider, found among tree ferns.
8. From Mr. F. Salier.-A Crab from Howe's Island.
9. From Mr. Radcliffe.-A specimen of Ibacus Peronḯ from East Coast Tasmania.
10. From Mr. J. Mezger.-Specimen of the Port Jacisson Shark (Cestracion Phillipi), from Adventure Bay.
11. From Lady Dry.-A young Cuckoo.
12. From Mrs. Parsons.-An albino variety of the common Opossum. (Plalangista fuliginosa). A White Hawk (Leucospiza Novce Hollandice). A yellow-bellied Beaver Rat (Hydromys Chrysogaster). A Rat (Mus fuscipes ?). Specimen of (Antichinus Swainsonii). A Bandicoot (Perameles Gunnii). A Petrel.
13. From Mr. C. Weeding.- $;$ stone implements of Tasmanian Aborigines. Specimen of Native Bread (Mylitta Australis). Two pieces of fossil Wood, ploughed up at the Eastern Marshes.
14. From J. E. Calder, Eisrl- - A collection of bones of Native animals procured in 1870 from a cave at Glenorchy.
In reference to this presentation, the Secretary read a note from Mr. Calder, from which the following is an oxtract:- "I beg to send you
the bones promised yesterday, that I got from what is called a bonecave on one of the basaltic ridges of Glenorchy, but which is only a deep narrow hole, or fissure in the rocks." (A full account of the finding of the bones was published immediately afterwards in the Tasmanian Times.)
15. From Dr. G. Bennett, F.Z.S.-A collection of Fossils from New South Wales; viz., teeth of Diprotodon and Nototlerium, jaws of fossil Kangaroo, Thylacine, \&c.
This very valuable and interesting contribution was examined with great attention by the meeting. The Secretary at the same time mentioned what he was sure would give great pleasure to the Fellows, that Dr. Bennett during his recent visit had taken great interest both in the Museum and in the affairs of the Socicty generally, and that he had promised still further contributions to the Museum, and also papers for their publications.

The Secretary read a paper on "Some New Species of Tasmanian Shells," by the Rev. J. E. Tenison Woods, F.(t.S., F.R.G.S., \&c. This paper, which was descriptive of eight new shells procured by Mr. W. Legrand by dredging in Long Bay, D'Entrecasteaux Channel, will be published in the next number of the Society's Transactions.

The Chairian having reminded the meeting that the question of undertaking the supervision of works for the improvement of the Domain had on a former occasion occupied their attention, begged to know if anything further had been done in the matter. The meeting was informed that a letter on the subject had been addressed to Government, but that no reply had been received. It was understood, however, that the subject was under the favourable consideration of the Government, and that the necessary works were only delayed on account of the present scarcity of labour.

A vote of thanks to the author of the paper and to the donors of presentations closed the proceedings.

MAY, 1875.

The monthly evening meeting was held on Tuesday, the 11th May, M. Allport, Esq., V.P., in the chair.

Joseph Broughton, Lsq., of New Town, who had proviously been nominated by the Council, was ballotted for, and declared duly elected, as a Fellow of the Society.

The Secretary brought under notice the following returns for the month of April :-

1. Visitors to Museum, 1163.
2. Ditto to Gardens, 2522.
3. Seeds received at Gardens-From Messrs. Macfarlane Bros., 10 packets seeds from Japan. From A. Simpson, Es l_{I}, Queensland Ferns.
4. Plants sent from Gardens-To Monsieur A. Verschaffelt, Ghent, Belgium, 12 Tree Ferns.
5. Time of leafing, \&c., of a fow standard plants in the Botanic Gardens during April.
6. Books and Periodicals received.
7. Presentations to Museum.

Meteorological Returns-

1. Hobart Town, from F. Abbott, Esq.--Table for April.
2. Port Arthur, from J. Coverdale, Esq.-Ditto.
3. New Norfolk, from W. E. Shoobridge, Esq.--Summary of observations taken during 1874.
4. Mount Nelson, from Marine Board. -Table for April.
5. Melbourne, from the Govermment Observatory.-Printed tables for September, October, and November, 1874.
6. From the Meteorological Office, London.-Hourly readings of self-registering instruments, at seven observatories, during October, 1874 (one sheet)

The presentations to the Museum and Library were as follows :-

1. From Mr. C. Allen, Port Cygnet.-An Opossum (Phalangista fuliginosa).
2. From E. D. Swan, Esq.-Nest and egg of Reed Warbler (Calamoherpe Australis).
3. From Mr. W. Peacock, Sorell.-A Nankeen Kestrel (Tinnunculus cenchroides), shot in that locality.
4. From J. K. Clark, Esq.-Specimens of Quartz, with penetrating crystals of rutile, from New South Wales.
5. From A. K. Chapman, Esq.-Specimens of a species of Fluke, taken from a large diamond snake.
6. From J. W. Graves, Esq.-Fossil Wood from Risdon.
7. From Mr. J. Bidencope.-Samples of Felt in various stages of preparation for hat making.
[This material is the first of the kind which has been produced in the colony. The various stages of its preparation, from the unwashed wool to the perfect article, are well shown in the presentation.]
8. From the author, Dr. J. Barnard Davis, F.R.S.-An illustrated treatise on the osteology and peculiarities of the Tasmanian aborigines.
[The Secrethry requested the special attention of the Fellows to this treatise. The illustrations were admirably executed, and as a record of a race which has virtually just passed away from amongst us, it was of peculiar interest to the Society.]
9. From the India Office, London.-Part 3 of "The Flora of British India," by J. D. Hooker, C.B., M.D., F.R.S., \&c., \&c.
10. From Mr. S. H. Wintle.-The following specimens, obtained by qualitative assays :-Bismuth and Copper, Mt. Iiamsay, from Sulphide. Bismuth freed from Copper, Mt. Ramsay. Copper from Mt. Nicholas coal, Ditto, from Ferro-cuproous Pyrites in New Town coal.

In reference to this presentation the secretary read the following note addressed to him by the donor :-
"11th May, 1875.
"Dear Sir, -The samples of metal on the card accompanying this are the result of qualitative analysis only. The copper from such a source, i.e., coal is invested with interest. The gold I obtained by employing the iodine process, which is quite modern, vide 'Crookes Select Methods in Chemical Analysis,' p. $\because 71$. Neither Gold or Copper exist in sufficient quantity to have a commercial value. The crude sulphide of Bismuth contains about 15 per cent. of copper.
" I remain, etc., etc., "s. H. Wintle."
Presentations Nos. 2 and 3 were examined with much interest, and in connection with them the ('ramamin offered the following remarbs:About the middle last month Mr. Wm. Peacock, of Sorell, presented to the Museum the beautiful specimen of the Nankeen Kestrel (Timmисиlus cenchroides) now before you. Tasmania is not given as a habitat of this charming hawk by Gould, and this is probably the first instance of its presence here being publicly recorded, though I find another specimen in the Museum labelled from Clarence Plains, and presented by Mr. Luckman in April, 1873. These specimens are unquestionably a great addition to the Museum, but it shonld be borne in mind by farmers and gardeners that this bird, like its European congener, preys far more on insects than on any other food, and is therefore not only a source of attraction when wheeling in circles far over head, or poised for minutes together apparently motionless, but is also earning our gratitude by destroying heaps of grasshoppers and other insect pests. Mr. Edward Swan has presented the Museum with the nest and one egg of the Reed Warbler (Catamolerpe Australis) obtained by him in Victoria, and has written me from Launceston, recording the presence of the bird in Tasmania as follows:-
"St. Leonards, 21st April, 1875."
"My Dear Allport,-During the past summer I observed a pair of Reed Warblers (Calamoherpe Australis) that had taken up their quarters among a bed of reeds on the banks of the North Esk, near Launceston. They arrived there in September, remained till Marcb, and then disappeared. As the Reed Warbler is not allowed by Gould to inhabit Tasmania, and has not, so far as I am aware, been previously noticed in this colony, knowing the interest you take in all matters ornithological, I have much pleasure in informing you of its appearance among us, in order that you may add auother to your list of Tasmanian birds. I did not find their nest, though I knew from the actions of the old bircls that they had either eggs or young near at hand; but I readily obtained several nests in Victoria along the river Yarra, and in other localities. These were, for the most part, supported by three or four reeds, or isuspended from the branches of willows overhanging the water, so that they could not be reached from land. In one case the nest was built at a greater height than usual, on a tree growing some distance from the water. The Reed Warbler is a late breeder ; the nest, which with an egge is forwardel you, was not finished till near the end of January, nor the eggs laid till February. It is probable there are two broods, for the young had left some of the nests found a month earlier. As a songster, it is a success, its only rival here being the striated Reed Lark (Calemantluts striatus), with which and the little Grass-bird (Sphenceacus gromineus) it may have been confounded, or, I think, it would have becn oftener noticed, as it most likely occurs in other parts of the colony similar to the one indicated. The Melbourne bird-stuffers did not possess any skins of this kind, else I would have procured
specimens. Ciould's is a good illustration, and to him I refor you for description of plumage.

> " Yours sincerely,
"Ebward D. Sivan."
A letter from Mr. A. K. Chapman, addressed to the secretary, was read. The following is an extract :-
"Sir,-I have the honour to bring under the notice of the Royal Nonciety the desirability of some steps being taken to restore the rapidly diminishing stock of our most valuable timber tree, the blue gum (Eucalyptus globutus).
"The blue gum is so eagerly sought after by shipbuilders that most of the available timber has been cleared from the accessible spots in the Huon district and other localities where blue gum formerly abounded. Hundreds of young trees, of little present value as timber, but inestimably valuable in a few years time if allowed to grow, are annually felled merely for the sake of the seed, which is exported in large quantities to countries, the imhabitants of which have more forethought than ourselves. " In France, Spain, Algeria, Egypt, California, the Mauritius, and, coming nearer home, in the colonies of Victoria and New Zealand, the Tasmanian blue gum is now being grown in large quantities, and is highly esteemed, not only as an ornamental and useful timber tree, but for the protection afforded by its shade, and for the valuable medicinal qualities of its leaves.
"Even in the cold climate of England an attempt is being made by certain enterprising perfumers to grow blue gum trees extensively for the sake of distilling the aromatic oil contained in their foliage. While so much is being done to encourage the growth of this valuable tree elsewhere, we in Tasmania seem to be doing our best to render it extinct, and it is with a view to reverse this very undesirable proceeding that I now address your society.

I would recommend that the society should direct its attention to the question of preserving the blue gum from extinction, and would suggest that the Government be requested to reserve a portion of the Crown land in the vicinity of Port Arthur as a state forest and nursery for young trees. Much of the laud on Tasman's Peninsula is practically valueless except for the purpose of growing timber, but with care and attention I believe this land could be made a source of public wealth if devoted to the purposes I have indicated."

Discussion ensued, but the generally expressed feeling was, that considering the enormous extent of country covered with the tree referred to, it was scarcely necessary to take any immediato action towards its preservation.

The Secretary, after reminding the meeting that the Society on a former occasion had addressed the Government on the subject of the improvement of the Domain, mentioned that Mr. P. T. Smith had recently taken a warm interest in the matter and had lately requested a visitor to the colony, who was versed in matters of the kind, to inspect the Domain with a view to giving such hints towards possible improvements as he might think necessary. This he was kind enough to do, and subsequently addressed the letter to Mr. Smith which he (Dr. Agnew) would now proceed to read to the meeting :-
" 24 th April 1875.
"P. T. Smith, Esq., Macquarie-street.
"My dear Sir, -Since I had the pleasure of the drive throngh a portion of the (Uueen's Domain with yourself and Dr. Agnew, my opinion respecting that reserve for the purpose mentioned by you, is, that although unrivalled as a site for an ornamental park, not only for the very exquisite views it commands, but from the natural conformation of the surface,
yet from the extreme shallowness of the soil overlying a generally impervious rock of considerable depth, it is ruite unsuitable, without enormous cost, for the successful culture of trees of large growth ; and the stunsed appearance of the existing trees, is abundantly confirmatory of this opinion. There may, nevertheless be isolated spots, of more or less extent, possessing a greater depth of soil; but as these will probably exist only in the lowest depressions, their existence to the landscape gardener would be nearly valueless; indeed the probabilty is that the entire area is quite unsuitable, without a very large amount of labour, for the permanent growth of the kinds of trees necessary for the adornment of a public park; for instance, out of the large order conifrre, which contains some of the most beautiful, as well as some of the grandest trees in the world, few would be found, without the special treatment hereafter described, to attain to other than very miserable specimens, totally unlike their natural character.
"Notwithstanding this serious drawback, I consider that much may be done, at a moderate cost, to render this large aren of ground more attractive than it is at present. In the first place I would recommend the entire removal, by grubbing, of all the dead and decaying trees, the holes being"afterwards filled up, and the ground levelled.
"So far the work could, of course, be done without a plan, but it would be indispensable before proceeding to lay out paths, to form vistas, open out views, or to plant trees, that a design be carefully prepared for the laying out of the entire ground. It is obvious that no new work could be performed without such plan; and with one, a great deal of labour, otherwise useless, might be saved.
"After a design is adopted, the thimning out of some of the trees, the selection of others to be left more closely tngether in groups, the opening out of views, the formation of paths, and the erection of seats could all be proceeded with, at a very trifling cost, under proper supervision. The sowing of English grasses on some of the more prominent open glades would also be one of the lesser expensive matters.
"The more costly work of planting new trees might follow these preliminary operatious, but in order that this may be done ceonomically, I would recommend that some of the more prominent positions for groups of trees and shrubs should be planted first, the ground for such groups to be deeply trencherl for the entire area of each group, rather than the formation of isolater holes for cach individual tree-the worst of all modes of planting. This preparation of the ground, in comparatively large areas, is advisalle at all times, but it is especially needful here, where, in consequence of an almost impermeable subsoil, the surface soil becomes so soon arid after the cessation of rains. Some of the avenue trees might also be planted carly, and in a similar manner, i.e. avoiding detached holes for each tree.
"Probably the portion that it may be desirable to plant first would be the comparatively narrow strip lying between the railway and the drive on the northern side of the Domain.
"If these brief notes are of any value, as showing how the work of laying out the Domain may be economically effected, and in a progressive manner, they are quite at your service to use in any way you may think proper; and I shall be only too glad, in my periodical visits to your lovely island, where Nature has done so much, to mark the progress of substantial improvements in that eminently beautiful locality, the Queen's Domain.

> "I am, my dear sir,
> "Yours very sincerely,
> "J. SAYCE."

Mr. Grant considered that the letter contained some valuable sug-
gestions. He thought the Domain was left in its present state for fear of the enst of improving it, but in reality very little outlay was required to effect a great amount of good. The gum and wattle trees in the Domain were generally very poor, they would be well out of the way, and the really beantiful trees of other countries planted in their stead. Trenching on a large scale would of course be expensive, but in many localities the linglish oak, ash and elm, might be planted without the great expense of trenching, and by the richness and depth of their foliage would be highly ornamental. The American rock maple, again, with all the splendour of its autumnal leaves, would be a grand addition to the beanty of the locality, and all these and other trees could be gradually introduced at very little cost.

Mr. Siutir thought that no great outlay was proposed, but rather that everything from the begiming should be done according to some settled plan. The dead and dying wattle trees were quite an eyesore. He would have them all grubbed out forthwith, and the dead wood would pretty nearly pay the expense. By this means alone many fine views, now lost, would be opened up. It might be worthy of consideration if a public subscription to a small amount, say $£ 200$ might not be attempted. A good deal could be done with this, and Government might fairly be appealed to afterwards to carry on and complete the work. He would like to ask how it was that a large portion of the Domain was granted to be fenced off for the new cricket ground? He hoped this alienation would be only temporary, as he had a great oljection to see this public pleasure ground cut into. It was a disgrace that any portion of it should have been sold, and a few wretched cottages, which were anything but an ornament, built upon it. If Government labour was all that was wanted, surely if it could he obtained for a race-course, it might also be available for the Queen's Domain.

Mr. Bansard highly approved of the proposed grubbing out of all diseased and unsightly trees, and thought the sale of the wood would repay the cost. He deprecated any idea, however, of making the Domain too artificial in its features. He would like it kept as a natural forest. He confesssd he liked the gum tree, still he would be glad to see some of our old English trees also, - not in such numbers, however, as to overshadow the native trees, as the characteristic foliage of the Colony ought to be carefully conserved.

Mr. Stepineas remarked that the preliminary operations, such as the clearing out of the old trees and opening out vistas, should be entered upon with great care and judgment. These should indeed be supervised by a Committee of Taste. Government was probably afraid of the expense, but if the Royal Society were simply authorised to carry out the work according to a definite plan, he had no doubt it could be done at a very small expense. He did not agree with a suggestion which had been thrown out as to planting isolated trees here and there, without much preparation of the ground. If the ground were not thoroughly trenched, the trees would grow small, stunted, and the reverse of ornamental. Even if English grass seed were to be sown over the Domain, the ground should be properly prepared for its reception.

Mr. Tule doubted if any more carriage drives were necessary, and did not think the people generally would care to subscribe, as had been suggested, for these. If any were to be made, he thought those who would make use of them should construct them. He quite agreed with Mr. Barnard in thinking that our native and distinctive trees and foliage should be carefully preserved, and that the ground gencrally
should be kept as nearly as possible in a state of nature, and not reduced to the condition of an artificial park or garden.

Mr. Grant suggested if Government was asked for permission to allow the Superintendent of the Society's Gardens to undertake the work, it would be granted at once. Private subscriptions might be got up for the expense of fencing, and the whole might be under the direction of a committee chosen from the Council.

Mr. Rule thought the suggestion might be acted on, and proposed that Mr. P. T. Smith, Mr. M. Allport, Mr. Stephens, and Dr. Agnew be appointed as the committee.

The motion was put from the chair and carried.
A vote of thanks to the donors of presentations closed the proceedings.
FHELRES OF TERTIARY FOSSILS FROM IAFLE CAPE TASMANIA.
No. I.-Torebra simplex (Woods)
L.-Voluta Weldii
III.-Natica Wintlei,.
IV. - polita "
V.-TTyphis McCoyi ;
VI.-Fusus Meredithix 91
VII Roblini
VIII.-Tritton Abbotti
IX.-Cyprea Archeri
X.-Vents Allpurti
XI.-Crassatella oblonga
XII aphrodina
XIII.-Lyonsia Agnewi
XIV.-Solecurtus Legrandi:

XI.

ON SOME TERTIARY FOSSILS FROM TABLE CAPE.

Be the Rev. J. E. Tenison Woods, F.L.S., F.G.S., \&c.

[Read 9th March, 1873.]

My attention has been called to some fossils in the Museum of the Suciety, which are alleged to have been collected close to the sea-side at Table Cape. They were presented to the Suciety by Dr. Milligim, and consist of remains taken, as far as I can judge, from three different deposits. In perusing the irausactions of your Society, I do not find that an attempt has yet been made to determine the relations of these beds to similar deposits in Australia. Neither can I learn that a classification of the imbedded remains has been attempted. 'The following observations on the sulject may, therefore, be of some little value.

Most of the members of the Society are probably aware that extensive tertiary deposits are found in Australia. They are, as far as known, restricted to the southern portions of the continent. From Carpentaria I have seen fossils from quarternary raised beaches, and also similar fossils from Perth in Western Australia. Generally the eastern, northeru, and south-eastern portions of the continent are occupied by Palieozoic rocks, and this seems to be the case in Western Australic. The series of tertiary rocks in Southern Australia is very complete. Commencing in the west side of the Great Australian Bighit, they are but little interrupted until the high land of Cape Otway is reached. The only interruptions are, granite outcrops about Fowler's Bay, Port Lincoln, \&c., and the axis of the Flinder's range, which terminates at Capo Jervis. Upon the flanks of all these, up to a certain height, the tertiary rocks rest.

In some places, such as the Australian Bight, the beds are nearly 400 feet in thickness, which give almost at one glance a conspectus of the whole of our tertiary formations. Between Warunambool and Cape Otway there are equally perfect series, but not superimposed. It will very much elucidate what I have to say in this paper if I give an abstract of Mr. Wilkinson's report on geology of the Cape Otway district. (See Reports of Geological Survey of Victoria.)
"The carbonaceous range which rises near Loutit Bay reaches 2,000 feet, 12 miles north of Apollo Bay, and which againf falls to Moonlight Head, seems to have been an elevated portion of the sea bottom during the deposition of the miocene strata. From position and the horizontal manner in which the upper beds of the series repose on the flanks of the range, I am indined to believe they never wholly covered it. This formation occurs, at intervals, round the dividing range to

Moonlight Head and thence to Cape Otway. Though not again seen to the east of the Cape for more than 40 miles, there can be little doubt that it was once continuous from Moonlight Head, to Point Addis. The cliffis on the coast near Spring Creek, 16 miles south of Geelong, expose a thickness of about 300 feet of miocene strata. The upper portion of the series is nearly 100 feet in thickness, consisting chiefly of yellow sandy limestone, the calcarious portion composed almost entirely of polyzoa and fragments of echini spines. The characteristic fossils are Cellepora Gambierensis, Busk, Hemipatagus Forbesii, Duncan, and the little Terebratula compta. Sow.-The middle series, which is about 150 feet thick, consists of soft, bluc, brown, or yellow sandy clays. Bivalve shells are characteristic of these beds, the most common of which are Pectunculus Taticostatus, Quoy. The fossils from the lower beds Professor M‘Coy regards as belonging to the Upper Eocene.
"We find next Miocene occupying the base of the cliffs, about a mile and a half west of the Aire river. Here occurs a plant bed 17 ft . thick, containing fossil leaves. This bed consists of dark, almost black, argillaceous clay, with crystals of selenite, and the crevices filled with a yellow substance, determined to be basic sulphate of iron. This bed rests on miocene strata, with fossils soon covered over with more recent tertiary fossils, almost exclusively polyzoa, and a large Pecten (Hinnites Coriensis M‘Coy?) Here a fossil seal's tooth was found (Phocollon Willinsoni M‘Coy ?) which Professor M‘Coy regarded as belonging to the same species as that found in the miocene of Malta."

I need not quote the abstract further. I only want to draw attention to the leading tertiary deposits found in Australia.

1. The polyzoan limestone, with Hemipatagus Forbesii and Cellepora Gambierensis. 2. Brown clays and sandstones, with Pecten laticostatus, \&c. 3. Plant beds, with leaves of species not belonging to the existing flora, highly ferruginous, and interstratified with mud, sand, lava, and volcanic ash.

The fossils in the Museum of the Society appear to me to be taken from beds belonging to the lower part of No. 1, and the upper part of No. 2. There are also plants taken from a bed similar to No. 3, and I have but little doubt that the plants recently described by Mr. Johnson in your last year's Transactions will be found to belong to the same age. I now proceed to describe the fossils.

1. Cellepora Gambierensis Busk.-This fossil was named by Dr. Busk sixteen years ago, from specimens furnished by me; but as no diagnosis has ever been given, I proceed to describe the species myself. Polyzoary, large cylindrical branching
irregularly, branches hollow, rarely onerusting, cells inflated, irregular, with large avicularimm at each side of month, probably a socket for a vibraculum above.
2. Ifemipategus Forbesii Duncan.-Am. Nat. Hist., vol. xiv., p. 165.-1 regard the above two fossils as very characteristic of the upper (so-called Miocene or lower Pliocene beds of Australia.) They are never found mingled with the lower fossils, except in intermediate beds, and then only sparingly, as in the present case.
3. Peclen laticostatus Quoy.-This shell is still a common existing species in New Zealand, from whence I have received specimens; I believe from Dunedin or Invereargill, Middle Island.
4. Dentalium Kicksii Nyst.-This shell is described in Nyst's Coquilles, \&c., des terrains tertiaries de la Belgique. As the work is scarcely accessible to Tasmanians, I give his diagnosis, D. testa tereti, subarouatre, longitmdinaliter striata, striis irreyulariter dispositis. He adds that this fossil is quite distinct from D. striutum Sow of the London clay, though somewhat like D. grande and D. Bouei of Deshayes, Paris basin. The ends of all the species seen were constantly broken.
Dentalium long and narrow, finely streaked lengthwise. Striæ rariable in number and position, and sometimes a vacant space or groove instead, sometimes irregularly placed between slightly elevated narrow and sharp ribs, prolonged along whole surace, and variable in number. Numerous transverse striæ indicating lines of growth.
5. Waldheimia.-This species was described by me in the Transactions of the Adelaide Philosophical Society, and figured by that Society in 1866. I find the synonym W. macropora M'Coy attributed to a specimen in the collections of the Victorian Geological Survey. It is very common in the Murray beds, and in the Geelong miocene.
6. Rhynchonella lucida M'Coy.-I think the species found at Table Cape will be found identical with R. lucida of M'Coy. It is common in the Geelong beds, and though probably now an extinct species, one like it occurs in the tertiaries of Spain in the glacial deposits, in the Norwich Crag (pliocene), and is still living in Australia: that is, \boldsymbol{R}. psittacea Sowerby.
7. Cucculloa concamerata Reeve.-Very common in No. 2, Australia, and many specimens here. Living at present in the Mauritius seas, Nicobar, China. Figured by Sowerby, Gen. Char. Shells, Vol. 1, and in Woodward's manual.
8. Cyprea eximia Sow.-This shell was described by Sowerby in Strzelecki's New South Wales, \&c., from a specimen said to have been found in a well at Franklin village, 130 feet below the surface. This, I presume, is near Laun-
ceston, not Franklin, at the Huon, where the surface rock is volcanic tertiary dolerite. It would be very interesting to ascertain if the tertiary formation is found at great depths in the southern part of the contiuent, though a priori we might conclude it would be so. I append a translation of the diagnosis as the work is not generally accessible. Shell, ovately ventricose somewhat thickened, smooth polished, produced anteriorly and posteriorly, anterior prolongation the longest with two dorsal tubercles; posterior slightly reflexed; spire with two conspicuous whorls; aperture long, narrow, sinuous, canaliculate at each end ; the posterior slightly ascending; external lip toothed in its interior margin; the posterior teeth small, anterior somewhat inconspicuous and interrupted; the internal lip with sharp transverse sulci on the inner margin, the interstices thicker and longer anteriorly, basal sides thickened at the extremities sud somewhat margined above. Mr. Sowerby adds:-"A fossil cowry of very remarkable form, bearing but a slight resemblance to any known species. It slightly resembles C. Scottii, but distinguished by its lengthened anterior and posterior canals, and by the two tubercles on the posterior dorsal part of the anterior canal, and by the very remarkable grooves or ribs of the inner edge of the inner lip.

I may add that the fossil is not uncommon in the Victoria Upper Tertiary, though it occurs in the lower beds as well, having a wide range.
10. Trigonia semiundulata M‘Coy.-I take this name from the collections of the Geological Survey, Victoria, though no diagnosis has been published. The species is very common in the middle tertiaries of Victoria, and is easily recognised by half the ribs on the shell radiating, and half being concentric. In this respect it resembles a fossil British Oolite species, Trigonia costata.

Corbula sulcata, Lamarck.-This species is still living on the west coast; of Africa, as Prof. M'Coy (see Annals of Nat. Hist. for 1866) has pointed out. It is very characteristic of the Australian Lower Cainozoic. It is figured in Woodward's Manual, pl. 23, fig. 2 ; there are also excellent figures in Martini (Chemnitz) pl. 172, fig. 1668 to 1671. Habitat of living species, Senegal, about lat. 16 N .

Voluta Hannafordia, M'Coy, Ann. Nat. Hist., vol. XVIII., new series, p. 367.

Voluta antiscalaris, M‘Coy, loc. cit.
Voluta macroptera, M‘Coy, loc. cit.-Several specimens, but few old enough to manifest the peculiar extended outer lip. All these volutes are well known forms in the Australian L. Cainozoic.

Cassidaria reticulospira M'Coy. Exhibition reports, 1866. Victoria.

Ancillaria mucronata. Sowerby Thes. Conch. pt. 63, pl. 211, f. 11.-This species exists in Tasmania, one of the very few forms surviving in the present series. There are trifling variations of character, but not, I believe, of specific value in the fossil form.

Dentatium lacteum? (Ditrupa?) Deshayes. Monograph of Dentalium. Living in the Indian seas. This is a doubtful identification. The fossil is very common, and may be a variety only. Another smooth Dentalium is living, and is found fossil in the Vienna basin. (D. entalis Linn.) but is very distinct from our species.

Turritella 'Tasmanica. n.s. (Diagnosis reserved for better specimens.)

Natica ovata Hutton, Catal. Ter. Mollusea of New Zealand, p. 9, No. 61.-This is a Pliocene fossil of New Zealand.

Natica Wintlei. n.s.
Triton Abbotti. n.s.
Fusus Roblini. n.s.
Terebra simplex. n.s.
Typhis II ${ }^{\text {c Coyi. }}$ n.s.
Solecurtus Legrandi. n.s.
Crasatella oblonga. n.s.
Crasatella aphrodina. n.s.
Lyonsia Agnewi. n.s.
Venus Allporti. n.s.
Besides fragments of a large Trochus, Haliotis, Corbis, Waldheimia, too imperfect for identification.

Polyzoa are few in number, as well as Foraminifera, bri:+ this must not be wondered at, as the deposits are evidently transported from a distance. They are much broken and mingled with coarse fragments of quartz and ferruginous gravel, which seems to have comminuted the softer and smaller particles into fine mud. This mud bas even preserved the colour of the shells at times. Thus in the Solecurtus Legrandi, which is very closely allied to the existing but larger species in Brisbane, the pink colour of the shell is quite perceptible.

The corals of the deposit are not numerous, but of a larger size than any found in Australia. I have found three described species and two unknown hitherto. They are-

Placotrochus deltoideus. Duncan, Journal of Geological Society, vol. xxvi., p. 300, et. seq.

Sphenotrocus excicus. Duncan, loc. cit.
Conotrochus $M f^{\prime}$ Coyi. Duncan, loc. cit.
The above are well known Australian Lower Cainozoic forms. They are pedicellate corals and very characteristic. I
have found none of the eight described Australian L. C. Balanophyllia, which give such a peculiar facies to the Australian Tertiary coral fauna, since eight species of one genus, and that a rare one, is a remarkable palæontological fact. There is, however, a large cylindrical and much branched Balanophyllia, with a dense rugose epitheca and peculiar systems of cycles, which, I have no doubt, will prove most interesting to science when determined, as it will be, by our greatest living authority on corals, Prof. Duncan. There is also a coral of the Heliastrean type, which is also new in Australian palæontology. Both have been sent to Europe.

Amongst the Forminifera identified, we have Textularica pygmea, T. agglutinans, Cassidutina oblonga, Rosalina bertholetiana, and some few others, all evidence of deep water, say from 200 to 300 fathoms.

From the foregoing facts there can be little doubt that we have in Northern Tasmania a portion of the great tertiary formation which occupies so much of the Southern Australian continent. From this we may conclude that Tasmania has shared the general upheaval, of which there is so much evidence as occurring in the continent during tertiary periods. Until the beds have been carefully examined it will not be competent for any one to hazard an opinion as to whether the upheaval in Tasmania has been greater or less than that observed in Australia, and whether now continuing or followed by subsidence. The position of the beds is in lungitude eastward of any deposits in Australia, and proves one more link to the union of these beds with the great tertiary formations of New Zealand. There can be but little doubt also that the tertiary leaf beds, which Mr. Johnson has lately described in so interesting a manner, form a part of this upper tertiary formation, and are connected with similar deposits near Cape Otway. A careful examination by a competent botanical Palæontologist would lead, no doubt, to the most interesting results.

As to the age of the beds, I cannot do better than append the published opinion of Dr. Duncan, one of the secretaries of the London Geological Society, whose kindness and industry in attending to all my communications on the subject of Australian tertiary fossils have led to the great progress which Australian Palæontology has lately made. I may add that to him, Professor MI'Coy, Professor Etheridge, and Mr. Moore, F.G.S., we owe nearly all we know of the fossils of Australia.

In the Quart. Journ. Geo. Soc., Vol. 26 p. 313, he says that the corals of the Australian tertiaries are very characteristic. They were not reef builders, but forms which tenanted the sea bottom from low spring tide, much to the depth where polyzoa
abound. The species of the different beds have so great a general resemblance, that they to not offer evidence of any biological changes during the deposition of the whole. He points out that it is inconsistent with the rules of geological classification to subdivide the series into Oligocene, Lower, Middle, Upper Miocene and Pliocene, which in Europe have very distinct fauna. The percentage system cannot yet be applied to Australian beds, as the Mollusca existing are so little known, and a comparison of the corals would make them older than the evidence of the physical geology warrauts. There was evidently in these periods much disturbance and alteration of currents in the sea bottom, formed of Silurian rocks, basalts, and carbonaccous sandstones ; conglomerates, pebbly sandstones, clays and clayey sandstones alterwated under different conditions during a vast period of subsidence connected with the outpouring of trap rocks, covering littoral deposits and the gradually denuded rocks. The leaf beds show temporary upheavals. The relations of the leaf beds, clays, gypsum and basic sulphate of iron, so frequently seen in Earope, are repeated in Australia. The chemical decomposition of these beds accounts for their contortion. No other disturbance is manifested in Australia in which the beds contrast with the changes to which the tertiaries of the West Indies, Europe and Sindh have been subjected.

Dr. Duncan thinks that during the long duration of time during which Australia was a sea, there was open water to the north, with reefs in the lava district and corresponding formation, opening into what is now the Mediterranean, and the Sahara to the north-west. The Indian peninsula, and the area now occupied by the Himalayas, and stretching far away to the east, were not a part of a great continent. The greater part of the American continent was submerged, and the Carribean Sea was a coral sea. He then suggests that the bulk of land must have been to the extreme north and south of the globe. Australia and New Zealand, he adds, were bounded on the north by a coral sea, and on the south by a deep sea, as now. In this way he accounts for the persistence of earlier types in Australia, and its perfect disconnection from Europe in its present and existing fauna and flora. For though corals are known to have an enormous range, very few are common to Australian and European tertiaries. "The absence of any littoral connexion between Australia and the points to the north in the tertiary period, and the remoteness of the south of its area from any great centres of freçuent terrestrial oscillations, may explain the persistence of type." This persistence was infinitely less in Europe on account of the more frequent changes in its physi-
cal geology. The distinct and comparatively quiet area of Australia was hence tenanted by the same species, whilst vast biological and geological changes took place in the Europear area, formerly considered the type by which all others would be compared. He adds that the extinction of Australian volcanoes, and the change in its coral flora, were grand phenomena, which he also regards as contemporaneous with the upheaval of the Alps, Himalayas, New Zealand, and the closure of the Isthmus of Panama. He points out the enormous denudation of the Australian area from the thickness and extent of unfossiliferous deposits which cover the marine. During the glacial period of Europe, he supposes that subaerial denudation went on. The gold drifts, sandy ferruginous clays, coarse pebble grits, and hard ironstone, cements and conglomerates with the lava plains north of Cape Otway, are of this age, and younger than the polyzoic limestones.

To all these conclusions I would readily subscribe, except to that portion which supposes Northern Australia completely submerged, and no land to have been north of the tertiary sea. The following are facts on the subject:-1. The tertiary marine fossiliterous beds thin out rapidly as they are followed north. In the south-east portion of the continent this occurs in a few miles, and in any case they are not known further than 30 deg. S. lat. 2. The enormous development of upper secondary beds in the north of the continent, and their complete absence from the south. This seems to show that North Australia has escaped the general tertiary denudation, which would not have been so had these bedsbeen submerged. Besides, they are very soft in character, and so horizontal, that they do not appear to have suffered any disturbance in tertiary periods. Thirdly, the only tertiary rocks which are found in North Australia appear to be either subaerial or lacustrine. Last of all, the physical geology of the tertiary deposits serve to show that the sea encroached upon the present area of Australia in a great horse shoe form, and that the contour of the continent gives a good general idea of the shape of the great tertiary sea basin. Add to this that the flora and fauna of the land seem to be a connecting link with the secondary fauna and flora of Europe, which is very easily understood, if we suppose a part of the Australian continent to have been undisturbed. South Western Australia possesses these features in the most marked way, and this is the portion of the land, too, where the physical geology is against the supposition of any submersion.*

[^0]In conclusion, Dr. Duncan suggests that the wort "Tertiary" should only be used relatively in Australian geolory, inut all ahove the carbonaceous sandstones should be called Cainozoic ; but this, I presume, is for Vietoria and South Australia, as there is a full series of intermediate Mesozoic rocks in Queensland, and probably Western Australia. He would refer all below the Mount Gambier limestones to Lower Cainozoic. That deposit he would call Middle Cainozoie, and all above Upper Cainozoic. The Table Cape heds should therefore be called Lower Cainozoic. He says that the tertiaries of New Zealand should be studied in relation to those of Australia, and he regards the polyzoic limestones of the North Island as the equivalents of the Mount Gambier Middle Cainozoic. "At present," he says, "all that can be arrived at, concerning the relative position of the Australian tertiaries, is that they were formed on a sea bottom of the oldest rocks in increasingly deep water, during a period when the denudation of the neighbouring coast line to the east and north-east was rapid. They were very distinct from the reef area of the period, and the physical conditions of such an area were never present during the deposition of these beds, which have a facies characteristic of all the European marine tertiary deposits above the nummulitic. They were subjected to frequent volcanic outbursts, which covered large areas with basalt and ash, and they were covered after the general upheaval of the centre of Australia with lacustrine, dune, river and torrent deposits, whose depth testifies to the enormous denudation of the older rocks. The condition of the high land on the extreme east and west of Australia was probably that of dry land during the whole Cainozoic period, and these districts probably bounded the tertiary sea."

The italics are my own, as I wish to indicate those conclusions which are borne out by all that Australian geology has taught me in many years' investigations.

DIAGNOSIS OF NEW SPECTES.

Fossils from Table Cape.

 (Note all measurements in French millimetres.) Terebra Simplex, n.s. T. testa fusiformi-turrita, acuminata, striis mumerosis, flexuosis, tenuibus, transversalibus : anfractibus planulatis superné, sutura vix impressa; apertura angustata; columella contorta, recurva, basi emarginata, labro angusto.Anf. 13. Long 50 mil . Lat 11 mil. T. shell terete, smooth, without grooves, finely wrinkled, with undulating transverse

[^1]lines, suture overlapping, aperture narrow, columella arched, twisted and recurved at the base, outer lip sharp.

A very simple shell with smooth whorls. The specimen in the museum has mottled brown spots at the suture, which seem very much like the traces of former coloring. There is no described species at all like it.

Trphis M‘Coyr,n.s., T. testa ovato-oblonga, fusiformi-lavigata, quadrifariam varicosta; varicibus spinosis (ult. anf. spin. 5); anfractibus convexiusculis, tuliferis; ultimo anfiacto canali lonyo, angusto, arcuato, clauso,terminato ; aperlura ovatu, inteyra; labro incrassato, varicibus 2 et 3 canali recurvo terminatis. Long 38 mill. Lat. 22. Anfr. 7.
T. shell ovately oblong, fusiform, smcoth, with four spinose varices in each whorl (5 spines on each of the varices of the last whorl) whorls convex, tubiferous, last whorl terminating in a long narrow recurved closed canal, mouth ovate entire, with a thickened lip, second and third varices uniting into a recurved canal.

This fossil is somewhat near the Murex tubifer Brug. of the European eocene at least as far as Nyst's figures and descriptions guide. Brugiere says (Encycl. Method.) that the species is living in Ceylon, but no such shell is figured in Reeve or Sowerby. The nearest congener in Southern deposits is the T. Zealendica, Hutton, of the Wanganui Pliocene, but it is very distinct.

Fusus Roblini, n. s. F. testa contorta, fusiformi, anfr. tenuiter longitudinaliter sulcatis et striatis, superne ad angulum plicato-tuberculatis, tuber., acutis, subdistantilus (in ult. anfr. 13) aperturct elongato-pyriformi,superné angulata, columella contorta, canali recurvo. Long. 75. Lat. 37. Añfr. 7.
F. shell twisted, fusiform ; whorls finely spirally sulcate and striate, whorls seven, with a row of sub-distant somewhat sharp tubercles on the outer sloping margin, which is there angulated; tubercles 13 in body whorl, aperture elongately pyriform, columella twisted, canal recurved. I have named this species which is very distinct, after Mr. Thos. Roblin, the industrious curator of the Society's Museum, whose ready and prompt assistance has been of the greatest service to scientific investigators.

Fusus gracillimus, n.s. F. testa lanceolato-fusiformi, gracillima, solidiuscula, transversim striata et sulcata; striis subtilibus,confertis,nodulosis ; sulcis peculiariter plano-excavatis ; longitudinaliter costatis; costis brevibus interruptis; anfractibus convexis; apertura angusto-ovata, superne angulata cauda pralonga, aperta, gracili terminato. Anf. 8. Lon. 33. Lat. 12.
F. shell, lanceolately-fusiform, most graceful, somewhat solid, transversely striate and sulcate; striæ very fine, close
and motulose ; sulci in peculiar flat grooves: ribhed lengthwise, with short interupted coste, whoris convex, angulate alove, terminated by a long open graceful canal.

This beautiful fossil is very near to Fusus acris (Reeve and Adams) of the China seas, and F. lonyirostris of the Vienna basin. If many of each species were put together I have no doult gradations from one to another would readily be traced. They may be identical. Many miocene forms exist still in China, and some of the European types closely approximate to those living in the Eastern seas.

Natica Wistlei,n.s. N. testa canaliculato-umbilicata, obliqué glohosa, subtus concara, solidiuscula ; spira clongata, apice acuta ; anfractibus rotundutis, temissime striatis ; arertura lunari-orata, callositate parra, columnari umbilicum, vix intrante. Anfr. 5. Long. 25. Lat. 19.
N. shell canaliculately-umbilicate, obliquely globose, concare beneath, rather solid, spire elongate, whorls rounded, apex acute, very delicately striate, aperture lunately-ovate, columnar callosity small and only slightly entering the umbilicus.

This fossil I have dedicated to Mr. Wintle, who has long and industriously worked amid the Tasmanian rocks.

Natica Polita, n.s., N. testa parva, nitida, ventricosa, subglolusa, umbilicatu, fragili, levigata, transversim substriata, long. lincis obsoletis fasciala; anfractibus 5, subglobosis,ad sutur. profunde canaliculatis ; apertura ovato-semilunari, margine sinistro reflexo, dextro temui acuto. Anf. 5. Long. 13. Lat. 11.
N. shell small, shining ventricosely sub-globose, umbilicate, fragile, smooth or transversely substriate, banded with obsolete lines, suture profoundly canaliculate, aperture ovately semilunar, left margin reflexed; right thin acute.

This shell is very different from any existing or extinct species, coming nearer to some European Eocene fossil forms than any other.

Cypres. Aremeri n.s. C. testre ovato oblongu, la vigatre, medio inflata, utrinuue sul,-uttrnuatu, untice shbrostrutu, pustire uttematu, utrinsque cmarginata, spira vix cooperta: apertura basim versus latiore; dentibus paris, numerosis, subaequalibus, long. 23, lat. 14.
C. shell ovately ohlong, smooth, inflated, somewhat attenuate at each end, slightly rostrate above, attenuate below, emarginate jat both ends, spire not quite covered, aperturo broader towards the base and furnished on both lips with numerous sub-equal teeth.

This fossil is not very different from C. sanguinolenta Gmelin (in Lin. Syst. Nat., p. 3406, N. 38) which is found in the miocene faluns of Touraine and in the Vienna basin. Compared with Haidinger's figures, the difference is slight,
but the actual fossils side by side are very different. I have named this after my esteemed friend, Mr. W. H. Archer, the learned Victorian statist, whose labours in every branch of science are well known.

Triton Abbotr, n.s., T. testa elongata, acuta, turrita, varicibus tribus,longitud. striatis, striis plus minusve interruptis vel nodosis, (ad lab. et canal. regulariter alternatis); anfractibus irregulariter convolutis, globosis, angulis tuberculisque biseriatim armatis; ultim. anfiact. canali longo, arcuato, recurvo, aperto, terminato; apertura ovata integra, labro incrassato, intus denticuluto. Long. 50. Lat. 30.

Triton shell elongate acute, turrited, with three varices, spire-twisted, whorls globose, armed with two sharp angles, on which are a series of sharp tubercles, the upper larger, 12 in first whorl, the lower becoming very small and obsolete at the outer lip, shell long. striate, the strix becoming obsolete or dotted, at the mouth on alternate lines; last whorl terminating by a long, open, arched, and recurved canal, aperture entire, outer lip denticulate interiorly.

This shell I have dedicated to Mr. F. Abbott, the curator of the Royal Society's gardens. It is common. As in other shells in these beds, there are distinct traces of color on the shell, which has a bluish ground, with brownish square spots in zigzag lines.

Crassatella aphrodina, n.s. C. testa trigono-ovata, obliqua, tumida, crassa, temuiter striata et sulcata, umbonibus sulcatis angustis; lunula impressa, latere postico subangulato, productiore. Long. 53. Lat. 44.
C. shell ovately trigonal, oblique, solid, faintly striate and sulcate, umbones sharp, with more distinct sulci, lunule impressed, posterior side subangulate and prolonged.

Voluta Weldir, n.s., V. testaovato-conica, ventricosa, solida, long. tenuissime striata, spira conica, mammillata; anfractibus ad angulum tuberculis acutis coronatis (tuber. ultim. anfr. 9) ; apertwra angusta; labro simplici, crassiusculo, superne emarginato; columeilla arcuata, medio 4-plicata; callo magno. Long. 41. Lat. 22. Anf. 8.
V. shell ovately conical, ventricose, solid, long. finely striate ; spire conical, mammillate; whorls with sharp-edged tubercles at the angle (last whorl 9 , and coming towards the middle of the whorl near the aperture), aperture narrow, lip thickened, simple, emarginate above, columnella somewhat curved with four plaits in the middle, enamel, widely spread over the lower part of the shell.

This shell is very near Nyst's Voluta depressa Lam. (See Nyst Recherches sur les coq. foss de Hoesselt et de Kleyn Spauwen. p. 37, no. 29, et pl. iv., fig. 99.) It is a miocene
form common at Bordeaux. Our shell is however thicker, and the four plaits on the columella show its distinctness, though it adds one more to the many instances of mimetism, that is to say, forms, which seem closely approximate to types in contemporary European beds. This is especially seen in the volutes, which Professor Mr'Coy was the first to point out in describing Toluta antiscalaris. The only living form at all near it is V. flavicans Gmelin, which is Australian.

Lronsia A gnewi n.s. L.testa ovato-transversa, incequilateratis, convexa, concentrice striata et sulcata; latere postico attenuatorotunduto, antico oblique producto, latiore, aperte antice et postice hiante. Long. 82. Lat. 1. 44.
L. shell transversely ovate, iuequilateral, somewhat solid, convex concentrically striate and sulcate, posteriorly attenuately rounded, exterior obliquely produced, broader, gaping at both ends.

This fossil I have dedicated to Dr. Agnew, secretary of the Society, to whose indefatigable labours the flourishing state of the Society is owing.

Solecurtus Legrandi n.s. S. testa polita, oblonga, inaquilateralis, latere postico elongato, utrimque subtruncato, hiante, medio et postice oblique sulcata, sulcis prope marginem dorsalem retrosim angulatis. Long. 44. Lat. 19.
S. shell polished oblong inequilateral, prolonged posteriorly, subtruncate at both ends, gaping, obliquely grooved, grooves angularly turned back near the dorsal margiu and radiating from the umbones towards the margin.

This fossil is very near to the Solecurtus Australis of Dunker, which now inhabits N. Australia; it is, howerer, smaller. Traces of the pink color of the shell are plainly visible. I have dedicated the species to Mr. W. Legrand, of Hobart Town, the learned conchologist, whose most painstaking euquiries into our living molluscan fauna have resulted in his monograph of Tasmanian land shells, besides many additions to the marine fauna. I have also thankfully to acknowledge the assistance I have received from him in preparing this list.

Crassatella oblonga, n.s. C. testa ovato-transversa, incquilateralis,crassissima,convexa,transversim sulcata,sulcis posterioribus tenuibus, latere postico angulato, sinuato. Long. 93. Lat. 67.
C. ovato trigonal, inequilateral, very convex, obliquely truncate behind, closely concentrically ribbed, the ribs becoming fine striæ on the posterior flattened portion, linge large thick, lunule impressed, with a distinct ridge from the umbo to the base of the truncated flattened posterior margin.

This shell which is very distinct from any existing species, and very large, is somewhat similar in form to C. attenuade,

Hutton of the Lower Miocene, New Zealand. It is apparently rare.

Vends Allporti n.s., V. testa ovata, obliqua, anterius angulata, subdepressa, tenuissime striata, albida, lamellis transversis, subdistantibus, appendiculatis. Long., 29. Lat., 19.
V. shell ovate, oblique anteriorly, anculate, subdepressed, slenderly striate, white, with transverse subdistant appendiculate lamellæ.

This shell which very closely resembles V. lamellata var. subdepressa of Lamarek (1st edit. Hist. des Moll. Vol. 1, p. 349). It is, howerer, a smaller shell and more irregular in the lamella and not striate on the anterior side of the same. There is but one specimen of this fossil in the Museum, and that very much damaged. It is possible that a larger suite of specimens may show it to be identical with the living form whose habitat is Tasmana.

ON SOME NEW SPECIES OF TASMANIAN MARINE SHELLS.

By Rev. J. E. Tenison Woods, F.G.S., F.L.S., \&c.

[Read 13th April, 1875.]
The following species of marine shells have been placed at my disposal for description by Mr. W. Legrand, the wellknown conchologist of Hobart Town. They were all procured recently in a series of dredging operations, conducted by the Rev. H. D. Atkinson, in Long Bay, D'Entrecasteaux Chamnel. They are eight in number, comprising three species of Marginella, and one species respectively of the genera. Triforis, Odontostona, Eulima (?) Nefera, and Cardita. Apparently they have hitherto escaped the attention of naturalists, owing no doubt to their very small size, and nrohably also because dredging in the interests of conchology has been almost untried in Tasmania. All the shells have an Australian fucies, that is to sar, they are all more or less allied to those species which are characteristic of Australia. The Odontostoma seems to me, however, inseparable from a wellknown miocene fossil. It would be interesting to find wellproved instances of survivors from the extinct cainozoic fauna of Europe. Analogy would lead us to look for the survivors here, and further investigation may show that the search has not proved in vain. The following is the diagnosis:-

1. Cardita Atkinsoni, nov. spec. C. testa parva, fusca, suborbi-
 imbricatis, lumula obsoleta. Long. 13. Lat. 12. millimetres.
C. shell small dusky, suborbiculately cordiform, sub-oblique, 16 -ribbed; ribs radiating, nodosely imbricate, lunule obsolete.

This shell has, at the request of Mr. Legrand, been named after the Rev. H. D. Atkinson, who has given much attention to dredging investigations. The shells are rather common, but found in few other places besides Long Bay.
2. Neera Tasmavica, n.s. N. testu parea, fragilis, sub-fusca, trenserisu, temuis, inequicalcis, clausa, transrersim regulariter sulcata; sulcis puncis, lutere antico rotundato, postico rostrato. Long. 5. Lat. 3. millimetres.
N. shell, small fragile, dusky, thin, incequivalve, closed, regularly transversely sulcate, sulci few, anterior end rounded; posterior prolonged or rostrate. Long Bay, 6 fathoms. The small size and regular sulci of this species easily serve to distinguish it. Rare.
3. Marginella minutissimi, n.s. AT. testa, minutissima, orata, ornliformi, nitente-fusea, spiva immersa; anfractibus superne productis; lutho modice incirassato; apertura currata; columella triplicata, superne obsolete dentata. Long. 3. Lat. 1. millimetres.
M. shell orate, most minute, oruliform, shining farwn color,
spire immersed, whorl produced above, lip moderately thickened, aperturo curved, columella tri-plicate, and above obsoletely unidentate. Dredged at a depth of 6 fathoms. A single specimen, the only one seen during many years' collecting in Tasmania by Mr. Legrand.
4. Marginella Allporti, n. s. M. testa parva, ovato-turbinata, nitidu, anfructibus superne sulcutis, spirceconica, e.s.sutu; lubroo incrussato, superne emarginato ; columella 4-plicata, apertura ad basin latiuscula; albofusca pallide tri-fasciata. Long. 9. Lat. 5 mill. Anfr. 4.
M. shell small, ovately turbinate, shining, whorls sulcate above, spire conical, exsert, outer lip thickened, emarginate above, columella distinctly 4 -plicate, aperture slightly wider at the base, color whitish brown, with three pale bands. Found in the dredge at the same time as the above, with three other specimens.
5. Marginella Tasmanica, n. s. M. testa fusiformi-oblonga, diaphano-alba, vitente, spira acnta, elevata, anfractibus(5) al cnumlum callosis, lebro rotundeto, incrussuto, elnurneo; columella tri-plicatu, exteriusque callosa. Long. 10. Lat. 4 millim.
M. shell fusiformly-oblong, translucently white and shining, spire acute, elevated, whorls five, suture obliterated by a kind of callosity, lip rotundately thickened, waxy-white, columella tri-plicate, exteriorly callous.

This shell is much smaller and much narrower than $M I$. muscaria Lam. with a somewhat sharp spire. It has little or no colour, but the callosity at the suture gives it a white banded appearance round the spire. It has rather a prominent callosity above the columella at the mouth, and resembles $M I$. muscaria in the way the outer lip is thickened. Not uncommon in Storm Bay.
4. Triforis Tasifanica. T. testa, parva, sinistrorsa, elongata, subulata, angusta, acutissima; anfiractibus numerosis, planatis, triplici serie granulorum cinctis, ad suturam rufo maculatis; columella contorta, arcuata. Long. 9 mill. Anfr. 13.
T. Shell small sinistral, elongately subulate, narrow, very sharp, whorls numerous, flat, circled with a triple series of granules at the suture, spotted red between the granules; columella twisted and arched.

Two specimens dredged up at Long Bay.
Odontostoma. This genus was proposed by Fleming in the year 1819 (Edinburgh Encyclop., Art. Conchology) for turriculate subconical shining shells with flattened whorls either smooth or long, or transversely sulcate, aperture suboval, peristome continuous, first two whorls sinistral. Fleming named the shell Odostomia, but Haidinger (Abhandlungen der Kaiserlich-Koniglichen Geologischen Reichsanstalt, 3 band 1856), has pointed out that since the word is derived
from the genitive inflexion osovoos and srous, the name should be Odontostoma which I adopt.
5. Odontostoma Tasminica. n. s. O. testa, minuta, sub-fusca, elongata conoidea, turrita, levissima, polita; apice, sinistrorso; anfractibus, $6-S$, pleniusculis; suturis distinctis; ultimo anfructo subangulato; apertura semi-orata; columella uniplicata; labro, acuto, intus dentato. Long. 2 mill.
O. Shell minute elongately conoidal, turriculate, polished, aper sinistral, whorls 6 to 8 , somewhat flattenel, suture distinet, last whorl subangulate, aperture semi-ovate, colu mella uniplicate, outer lip acuto, and toothed wïthin.

I can find no ditference whatever between this shell and the minute shell of our Upper European tertiary (O. plicatus Wood in the monograph of Crag, Mollusea synon. Turbo pliwentus Montague Testacea Britannica, vol. 1, p. 85. Plate 9. fig. 3.) It is probable, however, that an extensive comparison of specimens micht show them to be distinct. The present species was dredged up from Long Bay by Mr. Legrand.

It should be remarked that Odontostoma is a synonym of of D'Orhime (1841) for Proserpina and the name should be carefully distinguished from Odontostomus, selarated from Bulimus by Beck, in 1837. The present species seems to be very near \dot{O}. nitida. Alder.
6. Edlina Tasmanica, n.s. E. testa minuta, sub-fusca, elongatoanmeridea, imperforatu, lectigntu, politu; apertura integnich, motumbetu; labro incrassato; labio reflexo. Anfractibus (6) convexiusculis. Long. 3 mil.
E. shell minute, dusky, elongately conoid, imperforate, smooth, polished, aperture entire, rounded, outer lip thickened, inner lip reflexed; whorls 6, somewhat convex. Long Bay; 6 fathoms. W. Legrand.

This minute shell is doubtfully referred to Eulima; but there appears to be no other genus now under which it can be appropriately placed. Its somewhat depressed form makes it like the preceding species in shape, but it is a larger shell. Under the microscope, the absence of any folds on the columella, the entire or reflexed lip, readily distinguish it. It is not common.

JUNE, $18 \% 5$.

The monthly evening meeting of the Society was held on Tuesilay, the 8th June. There was an unnsually large number of the Fellows present. The chair was oceupied by ilis Excellency tho Governor, as President of the Society.

Messrs. W. J. J. Legmolds and F. S. Eitgar, who had previously been nominated by the C'ouncil, were ballotted for and declared duly elected as Fellows of the Society.

The Hon. Sechatary (Dr. Agnew) brought under notice the usua? monthly returns, viz.:-

1. Visitors to Museum during May, 1,017 .
2. Visitors to Gardens ditto, 2,349.
3. Plants and seeds sent from (iardens :-To Mons. A. Verscliafet, (thent, Belgium, 12 tree ferms. To Dobroyd Nursery, Ashichd, Sydney, one package of plants. Packages of seeds were forwarded to Mr. C. F. Creswell ; Mr. B. E. Heyne, Adelaide; Baron von Mueller; the Department of Agriculture, Washington, United States; the Royal Gardens, Kew, England ; Mr. W. Bull, London ; the Acclimatisation Society of Queensland ; Mr. C. Hollinsdale, Mr. Latham, and Colonel Crawford.
4. Plants and seeds received at Gardens:-From Baron F. von Mueller, seeds of Vaccinium macrocarpum, and Rhus coriaric, From the Department of Agriculture, Washington, four packets of seeds. From Colonel Crawford, four packets of seeds of conifere from India. From Mr. E. B. Heyne, Adelaide, 200 packets seeds. From Mr. C. Hollinsdale, 21 packets seeds. From Mr. T. Johnston, seeds of five species of Palms. From Botanic Gardens, Christchurch, New Zealand, two cases of plants. Through detention in transit, all the latter had perished.
[His Excellency remarked he had recently received a number of plants, many of them of great value, from New Zealand. After reserving a few for the Gardens at Government House, he would be happy to present the remainder to the Society's Gardens.]
5. Time of leafing, flowering, and fruiting of a few standard plants in the Botanic Gardens.
6. Books and perindicals received.
7. Presentations to Museum and Library.

Meteorological Returns-

1. Hobart Town, from F. Abbott, Esq.-Table for May.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. Mount Nelson, from Marine Board.-Ditto.
4. Sydney, N.S.W., from the Government Observatory, printed tables for December, 1874.- Results of observations made during the year 1873.
The presentations to the Museum and Library were as follows :-
5. From Mr. B. I. I yer, Battery I'oint. - A Houded Duttrell (U'yiuliles monacha), shot at Sandy Bay.
6. From Mr. D. Chisholm.-Casts of Roots of Trees, from the FiveMile Beach, Forcett.
7. From G. Bennett, Esr., M.D., F.Z.S., Syrtney.-A specimen of a Curious Bird (Dirlumulus s'rigionstria), from the Namonn Islands. A specimen of the Frilled Lizard (Chlamydosaurus Kingii). Two specimens of the very beautiful Sponge, known as "Veuus' Flower Basket " (Euqu"\% llu "Fi" ryillem), from the China Seas.
[This remarkalle oljocet, eertainly one of the most beautiful in the whole range of Natural History, was examined with great interest by all present. The secretary mentioned that Dr. Beunctt had informed
him a full description of the presentation would be forwarded in time for next meeting. $]$
8. From Master Stanfield, Clarence Plains. - A Black-cheeked Falcon (Falco melanogenys).
9. From Mr. J. Bailey, Blue Hills, Oatlands. -The cast skin of a Snake, very perfect.
10. From Captain Reynolds.-The tail of a species of Ray.
11. From Mr. Thomas Genge, Sandy Bay.-Nine Pheasants' Eggs.
12. From Dr. W'm. Walker. - A large specimen of Native Copper from New South Wales.
13. From Miss Wilson.-Specimen of "Copper Moss" from Swansea, Wales. A water-color view of Hobart Town, taken in 1820.
14. Water-color drawings by Mrs. C. Meredith of fossil shells from the North Coast, described in a paper lately read by the Rev. J. E. Tenison Woods.
[The Rev. J. E. T. Woods drew the special attention of the meeting to these drawings illustrative of his former paper. They were beautifully executed, and most accurate in drawing, and he was sure would receive, as they well deserved, the warmest thanks of the Society.]

The Rev. J. E. Tentson Woods, F.G.S., etc., read a very able and interesting paper "On the Fossil Genus Fenestella." The paper was introduced by some preliminary remarks by the writer, and various portions of it were illustrated by observations bearing on the general subject of Fossil Polyzoa.

In connection with the discussion held at last evening meeting on the improvement of the Domain, the following letter from Mr. Abbott, the Superintendent of the Gardens, was read :-
"Royal Society's Gardens, " 8 th June, 1875.
"The Council of the Royal Society.
"Gentlemen, -As it is probable the question of improvement of the domain will engage the attention of the Council at its next meeting, I have thought it advisable to forward a few remarks bearing on the subject.
"As to the desirability of the work being undertaken, provided sufficient funds are forthcoming to carry it to a successful issue, there can be but little or no doubt. Having resided in the domain for a period of 24 years, and having during that time repeatedly traversed every part of it, the question of its improvement has frequently been present in my mind, and one time or another I have bestowed a good deal of thought on the matter.
"The removal of dead or dying trees, and surface stones, and the extraction of stumps, from the more prominent parts, are but preliminary operations, that would be necessary in any case, before any real improvement could be undertaken. There seems to be an impression that the sale of the timber would repay the cost of collecting and grubbing, but I consider this to bequite a mistake. The Society has had the privilege for many years of removing the fallen timber, and I have had an opportunity of estimating the actual cost, and labour, of collecting and carting it. This I have always considered to be equal to 12s. per ton, or about one third more than better wood could be bought for in bulk.
"Supposing a large quantity to be cut down at once, the cost of collecting would probably be lessened, and perhaps the sale of the timber might realise sufficient to pay for cutting and collecting, but not more than this; it would certainly not cover the expense of extracting the stumps.
"Mr. Sayce in his letter read at the last meeting of the Society,
speaks of the subsoil as being impervious, but this I cannot admit in the true sense of the word. To a certain extent it may be impenetrable to the roots of plants, hut certainly not impervious to moisture. It is in fact just the reverse of this. Being comporsed of greenstone gravel, one of its great merits would be its efficient drainage, and, although not wishing to advocate planting in holes - for I agree with all Mr. Sayce says on this point-yet I would not hesitate to adopt this plan, to facilitate operations, in most parts of the Domain. This, however, should only be done where plants are ready for planting before the ground has been thoroughly prepared, and the intermediate spaces should bo trenched as soon as possible afterwards.
"Too little attention is often bestowed on the proper planting of trees; the prevailing desire appears to be immediate effect, and this is too frequently purchased at the expense of the after welfare of the plants themselves.
"When entering on a work of this kind it should be remembered that it is not the present generation which will reap the full benefit of it-that will remain as a valuable and enduring legacy to future generations.
"There is ample scope for improvement without doubt, and I hold a higher estimate of the capabilities of the soil itself than has been attributed to it. I believe it will be found that there are but few parts of the Domain where a clepth of 3 feet could not be obtained by trenching, and even a greater depth on many of the lower parts, were it desirable. A free admixture of the greenstone gravel with the top soil would be beneficial to most plants, especially to conifere, which appear to luxuriate in a soil composed of little else than this loosened greenstone.
"If the surface soil was properly attended to this depth would be sufficient to enable most plants to grow to more or less perfection ; but certainly not to that degree of pertection which trees attain to in their most favourable natural habitats, as this is rarely arrived at in artificial plantations.
"Attention has been drawn to the stunted appearance of the trees at present in the Domain, and this has been taken as an indication that the soil was not capable of growing trees to perfection, but I do not think the reasons for this stunted appearance have been properly considered. In the first place there can be no doubt that between 20 and 30 years ago, many of the largest gum trees were cut down, some, I believe, for shipbuilding purposes; and, again, during the whole of this time the surface has been depastured by sheep and cattle, which has had the combined effect of consolidating the surface, and preventing any seedling trees from springing up to supply the place of those removerd. The wattles again present a most unsightly and stunted appearance, and, being naturally short-lived trees, are evidently rapidly hastening to decay. This is partly due to the cause just mentioned, and partly to the fact that the lower branches have generally been browsed off when the trees were young. Again, the depasturing of cattle has not only consolidated the surface, but it has kept the grass close grazed, which may be considered as removing nature's mulching, the effect of which is that the rains, instead of soaking into the ground, rush precipitatcly to the water-courses, and thence to the sea, and what little does enter the soil is quickly dried up by the sun and wind. Here we have another cause for the stunted appearance of the remaining trees.
"One of the greatest difficulties that would be met with, when the operations for planting were taken in hand, would be procuring plants of a suitable size. It would be useless to depend on these gardens for a supply ; there is in reality no skilled labour available for this work. The most the Goviety could do would be to supply young plants from

Eime to time of any kind suitable, which would have to be grown in a nursery set apart for the purpose, or hy some nurseryman who might undertake the work by contract. It would be essential to grow the plants to some size in the nursery before final planting, as they could be much more easily attended to, and thie chance of loss would not be so great; besides which it would be necessary to have a reserve in case of accident.
"But after all the real question just now is not what to do nor how to do it ; but where are the funds to come from to employ the necessary amount of labour ?-for I am inclined to think the day has gone by when much could be accomplished by prison labour. The fact is the numerical prison strength is daily decreasing, and there is the greatest difficulty in keeping up the strength of the present gangs. Our own garden gang has not for some time been in a satisfactory state. Just at the time when additional strength was urgently required it has been numerically less than ever, and I fear much work pressing for attention will now have to be abandoned for the season. Any gang that might be supriied under present circumstances would make slow progress indeed. Nor am I inclined to think that much could be done permanently by public subscription. Although a few hundred pounds might be collected at first, which might be applied to clear away some of the stumps and stones and open up vistas, yet a much greater outlay would be necessary before planting operation could be undertaken. An expenditure of 30 s . and perhaps more, would be required to prepare the ground for every tree planted with a view to ultimate success.
"Although it is desirable that this work should be undertaken with as little delay as possible, especially as the appearance of the Domain will become year by year more uninviting if left to its present fate, yet I think great caution is necessary before entering upon a work of this description until the ways and means have been duly considered. I have always thought the undertaking should be a national one, for unless this is the case it will never be adequately supported. I think it very desirable that sites should be found for numerous test plantations, which would ultimately be of national importance, while they would add to its interest as a place of resort. The garden contains numerous plants that can never attain their full development in their present sites, because there is not sufficient space to do justice to them all ; if these are not propagated and planted under circumstances more favourable to their growth, many of them will stand a chance of being destroyed altogether in a few years.
"I am, gentlemen,
"Your obedient servant, "F. Abbott, Jun.,
The Secretary reported that, with the exception of Mr. Stephens, absent on duty, the Members of the Domain Committee appointed at last meeting had had an interview with the Hon. the Colonial Secretary, and the Hon. the Minister of Lands and Works, and had explained the views of the society as to the proposed improvements, and the material assistance required to carry them out. These views were entertained by the Ministers present with the greatest cordiality, and were very carefully discussed during a prolonged interview. The only difficulty in fact was the want of labour. Mr. Moore mentioned that at present he was most anxious to completethe new cricket ground as soon as possible, having promised to do so. To finish this work, he thought it would be also advisable to make a carriage drive all round the fence, and perhaps open out vistas looking towards Government House, and down the harbour. These worhs would absorb almost, if
not all, the available labour for some time to come ; still, as the oljeet of the deputation was certainly a very importaut one, he would make every effort to meet their views hy getting together as much labour as possible, aud placing it at their disposal.

His Exemoney, after referring in complimentary terms to Mr. Abbutt's letter, observed that he was thoronghly convinced of the necessity of a very carefully considered plan being laid down before any practical action was taken. The Domain was most beautiful in itself and also peossessed great capabilities of improvement, but when developing these capabilities great care should be taken at the same time to preserve generally the matural features of the locality. Were he about to undertake such a work himself he would in the first instance spend weeks in walking over and over every portion of the ground so as to become thoroughly acquainted with its every feature. By this means all its latent capabilities would be discovered. The greatest caution siould be exercised in the after proceedings, especially in removing old, and planting new trees, etc. If one ugly tree were rashly removel it might only uncover another still more ugly, or if a rock were taken away something worse might appear and require removal in turn, and thus we might wo on improving everything off the face of the ground till nothing was left. Without going into very extensive plantations, excellent effects could be oltained by planting the best and most ornamental trees in those localities which were most suitable. The natural formation of the ground would assist them in choosing what and where to plant. For instance, in hollows, where masses of foliage would naturally oceur, there they ought to plant. In this manner other natural indications should guide them in forming their plans. For his own part, as he (His Excellency) had always taken a very great interest in matters of this kind he would at all times be most willing to give his personal assistance to any well-considered action which might be taken to improve the Domain. (Applause.)

Mr. Grast was glad to find that the views he had given expression to at a previous meeting, on the economical improvement of the Domain, were likely to find favour. Without going to the expense of trenching on a large scale, a very great deal could be done by carefully selecting proper spots and planting suitable trees here and there, and as the general formation of the ground was favourable for easy drainage, this could be carricid on in a gradual and progressive manner at little comparative expense.
The Bhnor of Tasmanta observed that any one undertaking a work of this kind should possess the practical knowledge of the horticulturist, with the taste of the landscape grardener. Good results could be obtained only by the combination of both. His Lordship gave an instance of a locality well known to himself in England, which, in its unimproved state, was rude and uninviting, and greatly inferior in its capabilities to the Iomain, yet, under such skilleel management as he had alluded to, was converted, at comparatively small expense, into one of the most attractive public resorts with which he was acquainted. He congratulated the mecting on the fact that the restoration to health of the Tearnel author of the paper they had had the pleasure of listening to had been the means of laying them miler a fresh obligation to him. The paper was one of great interest, and this interest was much enhanced hy the rmuning commentary with which it was accompanied. Its full value, however, condid only bee realised by a careful study of it when printed, which he lopel it would soon be, in their "Transactions." He was alont to propmee that the cordial thanks of the Society were due to the Ree. Fulim Woonds, but lefore doing so he would take the chportunity of alluding to the expuisite drawings by Mrs. Meredith,
which had been brought under their notice. Every one must be struck by their beauty, but their great merit was, that with so much artistic finish, they possessed all that scientific accuracy without which they would have been comparatively valueless in connection with the paper they were designed to illustrate. The vote then proposed by the Bishop to the Rev. Julian Woods was carried by acclamation.

Mr. M. Allport cordially agreed with all that had been said in praise of Mrs. Meredith's admirable and valuable drawings. It gave him great pleasure to move that the best thanks of the Society were due to Mrs. Meredith for her very valuable contribution.

This having been carried, thanks were also voted to the donors of presentations, with special reference to the very valuable and interesting contributions both of specimens and books from Dr. George Bennett, F.Z.S., of Sydney. The proceedings then terminated.

JULY, 1875.

The monthly evening meeting of the society was held on Tuesday, 13th July. A large number of Fellows were present; His Excellency the Governor in the chair.
J. K. Clark, Esi., who had previously been nominated by the Council, was ballotted for and deelared duly elected as a Fellow of the Society.

The Sechatais (I)r. Agnew) brought under notice the following returns, etc., for the past month :-

1. Visitors to Museum, 1010.
2. Ditto to Gardens, 2006.
3. Plants received at Society's Gardens-From His Excellency, F. A. Weld, Esq., 15 packets seeds of Conifere ; 3 ditto (various). From Mr. Geo. Brunning, St. Kilda, Melbourne, 80 plants. From A. Simson, Esq., plants of Todece barbare and Dicksonia dubia, from the vicinity of George's Bay. From Rev. W. W. Spicer, plants of various Sedums.
4. Plants and seeds sent from Gardens-To Mr. G. Brunning, St. Kilda, 1 case plants (various). To Royal Gardens, Kew, 1 packet seed of Waratah (Telopeca truncata). To Mr. Wm. Bull, London, 1 packet ditto.
5. Plants supplied fordecoration of public places-To Brickfields Depot, 60 plants. To Memorial Church, Elizabeth-street, 30 plants. To the Cornelian Bay Cemetery, 198 plants. For Government House grounds, 20 plants.
6. Time of leafing, flowering, etc., of a few standard plants in Society's Gardens during June.
7. Book and periodicals received.
8. Presentations to Museum and library.

Meteorological Tables:-

1. Hobart Town, from F. Abbott, Esq.-Table and summary for June.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. Mount Nelson, from the Hobart Town Marine Board. -Ditto.
4. Swan Island, from Ditto.-Tables for April and May.
5. Port Arthur, from J. Coverdale, Esq.-Table for May.
6. From Government Observatory, Melbourne.-Printed tables for January.
7. Wellington, New Zealand, from Dr. Hector.-Tables for February, March, and April. Abstracts of observations from various stations in New Zealand, for January, February, and March.
8. Sydney, from Government Observer.-Printed Tables for January, February, and March.
The presentations to the Museum were as follows:-
9. From His Excellency the Governor.-Twenty-four named specimens of wood from Western Australia, squared and polished. A Japanese mirror, in case. Tusks and ear-bones of Dugong (Halicore dugong).
10. From Master J. C. Young.-Two mats from Fiji, originally belonging to King Thakobau. A basket made by a Fijian Chief. The first copy of the earliest newspaper struck off in Fiji. An East Indian hunting knife. Shells (Littorinc sp.) from Great Barrier Reef.
11. From Mr. Edwin Luckman, Sorell. - An Albino Opossum (Phrtangesta fuliginosa). Two Brush Wattle Birds (Anthocherera mellivora). Three specimens of the White-fronted Epthianura (Epthianura albifrons).
12. From I. C. Read, Esq.-Two specimens of Autichinus albipes.
13. From Mr. R. Thorne, junr., Forcett. - A Tippet Grebe (Podiceps Australis).
14. From Mr. Weerling, (Vatlands. - A Tiger Cat (Dusyurus maculutus). Two Native Cats (Dasyurus viverrinus).
15. From Dr. Huston, New Norfolk. - An Opossum mouse (Dromicia gliriformis).
16. From Master W. E. Calder.-A beautiful specimen of a fossil shell (Spirifera bisulcata) silicified, showing the spiracles.
17. From Dr. E. S. Hall, pro Mr. Hissey.-Minute Shells taken from the stomach of a mullet.
18. From Mr. J. W. Graves.-A fossil shell (Pacchydtomus sacculus, McCoy), from limestone beds, Bridgewater.
19. From Mr. E. L. Stanfield. -Two Native Cats (Dasyurus riverrinus).

The Secretary requested special attention to the numerous presentafions of books before the meeting from learned bodies with which the Royal Society of Tasmania makes exchanges. These were as follows :-

1. From the British Museum.-Catalogue of Birds, Vol. 1 ; Hand List of Seals, etc. Guide to Exhibition Rooms, 1874.
2. From the Royal Academy of Sciences, Munich.-Publications of the Academy, 1872-3 and 4.
3. From the Asiatic Society.-Journal of the Society, vol. 7, part I, 1874.
4. From the Royal Geographical Society.-Journal of Society, vol. 43 (1873) bound.
5. From the Zoological Society, London.-Proceedings of Society, part. 3, 1873 ; parts 1, 2, 3, 1874.
6. From the Royal Astronomical Society.-Memoirs of the Society, vol. $40,1874-5$.
7. From the Geological Society, London.-Quarterly Journal, Nos. 118 and 120. List for 1874.
8. From the Linnean Society.-Journal of Society, vol. 14, Nos. 75, 76, 77 (Botany) ; vol. 12, No. 58 (Zoology). List for 1874. Proceedings 1873-4. Additions to Library.
9. From the Government of India.-Memoirs of Geological Survey of India, vol. 10, part 2 ; vol. 11, part 1. "Palæontologia Indica," vol. 1, part 1; ("Fawna of the fluviatile deposits") series 10, 1. Records of Geological Survey of India, vol. 7, parts 1, 2, 3, 4.
10. From the Government of Victoria. - "Prodromus of Paleontology of Victoria," by Professor McCoy, Decades 1 and 2. Report of Chief Inspector of Mines for 1874. Do. of Mining Surveyors for first quarter of 1875. Mineral Statistics of Victoria for 1874.
The Secretary reported that soon after the last evening meeting the Garden Committee, with the Honorable the Colonial Secretary and Minister of Lands and Works, had proceelled to inspect a portion of the Domain. They were there met by His Excellency who kindly accompanied them over the various improvements which had recently been effected in the enclosure round Government House. Afterwards the committee carefully inspectel that portion of the Domain which fies beyond the Gardeus. Here great numbers of trees, some very unsightly, others in the last stage of decay were noticed, none of which could be either useful or ornamental. After some discussion it was thought best to request the Governor, in conjunction with Mr. Abbott, to mark such trees as it was desirable to remove. The Committee were ler to adopt this course on considering the practical interest which His Excellency had shown in the matter, and they were also influenced by the evidence of his skill and taste which their recent visit to the Government House grounds had afforded. His

Rycellency when applied to, at once took action at the earliest possible dite, and in conjunction with Mr. Abbott had marked a number of trees which would soon bo removed by means of labour promised by Government.

His Excellency remarked that agreeably to the request of the Domain Committee he had carefully gone over that portion of the Domain lying between the Gardens and Cornelian Bay, and he had also, to some extent, inspected it generally. In making his observations he had been greatly assisted by Mr. Abbott, to whom he was indebted for many valuable hints. He had marked some trees, which as a beginning, he had no doubt, ought to be removed. Some of theso were agly and deformed in themselves, whilst others obscured the view of tiner trees. Many again were so nearly dead already, that if not quickly removed they would soon fall of themselves. He expected that the removal of these trees would open up some pretty vistas looking both up and across the river. Afterwards it could be determined by careful observation if any further clearing was advisable But the removal of trees was not the only matter which should engage their attention. It was of great importance, even at the present early period, that planting operations should be considered and that some definite plan of operations should be adopted. He might, perhaps, be allowed to suggest, that planting might advantageously be commenced somewhat outside of the Domain along the border of the creck near the bridge in Macquarie-street. This, however, was rather a matter for the consideration of the Town Council. In a sanitary point of view the blue gum might be of great benefit to this locality. Then the railway works might be enclosed by ornamental trees. Some appropriate and pretty trees such as Pinus maritima, etc., might be planted behind the Battery and would look well from the harbour. The sides of the railway also at certain points would furnish good sites for planting. Coming round by Government House we find the large and unsightly quarry. This might be made very ornamental at a very trifling expense by judicious planting, etc. Beyoud this, the ravine above the pond might easily be converted as suggested by Mr. Abbott, into a pretty fern tree valley. Round the domain and at its upper entrance he had found a stonecrusher at work, and the engine was fed with firewood from trees in the vicinity. In cutting down trees for this purpose great care should be taken that those only should be removed which could be advantageously spared from the locality.

Mr. Grant had no doubt that the planting on the borders of the creek as suggesterl by His Excellency would be both beneficial and ornamental. The planting of the railway enclosure which had also been alluded to by the President would be undertaken by the Railway Company. (Applause.) At many other points along the railway cuttings in the domain there was plenty of soil for the growth of trees of considerable size.

Mr. Stepifiss directed the attention of the meeting to specimens of the strata traversed by the prospecting shaft at Spring Bay, which had been forwarded by Mr. Robinson of Triabunna. For the first 23 feet the sinking appeared to have been through surface soil and a yellowish saudstone, succeeded by a grey sandstone charged with thin streaks and irregular bands of carbonaceous matter, and occasional nodular patches of an indurated fire-clay; the whole extending to a depth of about 70 feet. Though the evidence up to the present time was of a somewhat negative character, it was quite as favourable as could be expected, where nothing is accurately known of the order or thick-
ness of the various members of the carboniferous series. Had section boxes, or any kind of specimens, been preserved to show the results obtained in the other shafts by which these coal measures bave already been proved to a depth of at least 400 feet, it might now have been possible either to assure the promoters of speedy success, or to point out a more eligible locality. He (Mr. Stephens) hoped that they would persevere in their spirited undertaking, and that all persons engaged in such works would remember the importance of preserving an exact record of the results of sinking or boring in any part of the colony, with specimens of the different rocks which are met with.

The Secretary read a paper, contributed by Dr. G. Bennett, F. L. S., F.Z.S. of Sydney, a corresponding member of the society, "On the Frilled Lizard (Chlamydosaurus Kingii), of Queensland." A paper by the same learned author on the beautiful Sponge from the Philippine Islands, known as "Venus' FlowerBasket" (Euplectella aspergillum), was also read by the Secretary.

This paper was listened to with marked attention, and specimens of the silicious skeletons of the Euplectella-than which there is, perhaps, nothing more exquisite in the whole domain of natural history-were examined with the greatest interest by all present. For these fine specimens the society, as noticed at the last meeting, is indebted to the liberality of Dr. Bennett.
M. Allport, Esq., F.L.S., F.Z.S., etc., etc., read a paper entitled "Some Further Notes on the Salmon Experiment."

Mr. Rule observed, although he could not speak scientifically as to the distinctions between the grilse and salmon tront, he could do so from a practical point of view. He had been told by experienced fishermen -and from his own long experience, he knew it to be a fact--that the grilse and trout could be readily distinguised by simply grasping them a little above the tail, and then lifting them up. The trout could only with difficulty be held in this position, owing to the thickness of the flesh at the point grasped ; whereas, the thinner structure of the salmon affords a firm hold. After applying this test with others) to our fish, he had no doubt whatever it was a true salmon.

Mr. Stepiens proposed that the "thanks of the meeting should he given to Dr. Bennett for his very interesting papers, and, also to Mr. Allport for his able and vigorous championship of the Tasmanian salmon." Carried by acclamation.

Mr. Barnard then moved " that a vote of thanks be accorded to the donors of the varions presentations to the Museum and Library."

Mr. Stephens, in seconding the motion, called attention to the large collection of West Australian wonds, presented by his Excellency, whom he was sure they were all glad to sce presiding at the meetings of the society. (Hear, hear.)

The vote having passed, the President left the chair.

AUGUS'I', 1875.

The monthly owenine merting was held on Mondly, tho 9th Augnst. Lis Excelloncy F. A. Weld, Esq., Presidont, in the chair.

The siveretary hrought under notice the usual monthly returns, viz. :

1. Visitors to Museum during July, total 1375.
2. Ditto to Grardens ditto, total 2772 .
3. Plants and seeds reerivel at Gardens-From 13otanic (iardens. Christehureh, Now Zoaland, 46 plants. From Mr. J. Latham, 9 packots seeds, 45 varieties, Anemone and Ranunculus.
4. l'lants and speds sent from (iardens-To Messrs. Vilmorin, Andrioux and Co., l'rance, one ditto. To Messrs Fardey and Co., Franco, one ditto 'To Jules Cock and Socurs, France, one ditto. 'To Mons. Huber, Hyeres, Franco, one dittn. To Shopherd and Co., Sydney, a small box of seeds. To the North China Branch Royal Asiatic Sncicty, Shanirhai, ono package of seeds. To the Butanic Gardens, Queensland, one small box of plants and seeds.
5. Times of leafing, etc., of a fow staudard plants in Society's Gardens during July.
6. Books and periodicals received.
7. Preseatations to Museum and Library.

Metcorological Returns.

1. Hobart Town-From F. Ahbott, Esq., table for July.
2. New Norfolk-From IV. E. Shoobridge, Eeq., ditto.
3. Port Arthur-From J. Coverdale, Esq., ditto for June.
4. Kient's Group-From the Marine Board, tables for May; Juno, July.
5. Mount Nelson, from ditto.-Tahlo for July.
6. Sydner, from the Government Observer.-Printed tables for April.
'I'he presentations to the Museum and Library were as follows:-
7. From Mr. Quinlan, Montpelier-street.-A Pouched Lamprey (Gcotria Allporti Gthr.)
8. From Mr. Bealey.-A Pelican (Telecanus conspicillatus.)
9. From J. R. Scott, Esq., D.H.A -S'pecimens of the stono implements of the Tasmanian Aborigines. An explanatory letter from Mr. Scott accompanying the presentatation was read. The following is an extract:-
"It has long been desirable to fix upon a spot where the aborigines obtained their flint or stone implemente. I am now able to fix upon two places, viz.-First, abont ten chains immediately in front and to the north-east of the stone hut in Stocker's Bottom, County of Somerset, parish of Peel.
"The second is about one mile more to the south-west, on Lot 443, on a branch of Dismal Creek, running out of Stocker's Bottom.
"These two places are about six miles distant from the Macquario Niver, where I found the stones forwarded some years since, known as the 'Mount Morriston' collection, and now in the Museum."

On the presentation of the Stone Implements, the Rev. Julian Woods called attention to the extraordinary similarity of one of them to a spearhead figured in the Geological Socicty's Journal some years previously. He observed that probably the arguments based on the aniquity of such relies might require medification, seeing that in this island the "stone age" and "flint implements" belong to the present century.
4. From F. Groom, Esq, Harefield, St. Mary's. An unusually fino specimen of the "Sibarp-nosed Eel," measuring 2 feet 5 inches in length. [It is helieved that this fish bas not yet been scientifically named and described. A specimen, however, was last year forwarded by Mr. Mi. Allport to Dr. Guinther, of the British Muscum, from whom information relative to it sill doubtless be roceived in due course.
6. From Mr. Hissey. Four specimens of the young of the Bandicoot (Perameles obesula) from the pouch.
6. From His Excellency the Governor-Rock Specimens from the variegated ferruginous sandstones of Western Australia, and probably belonging to the lowest secondary formations. Egg of "Native Pheasant" (Leipor ocellata), and other egge.
7. From W. Lovett, Esq.-A specimen of the "Sooty Oyster-catcher," or "Black Red Bill" (Heematopus fuliginosus), shot at Kangaroo Bluff.
8. From J. W. Graves, Esq.-A Ring-tailed Opossum, (Phalnngista viverrina.)
9. From the Ven. Archdeacon Davies-A fossil from a hill on Mr. Pitt's property, Hunting Grounds.
[In reference to this presentation, the Rev. J. E. T. Woods remarked that it was a very fine and unusually large specimen of the coral known as Stenopora informis, Lonsdale, with a shell of Myacites curvata, Lonsdale, adhering. The both belong to the Marine Devonian period, of which so many examples occur in Tasmania.]
Presentation to Library.

1. From Sir Robert Officer-Benthams "Flora Australiensis," six" vols. bound.
[The Secretary requested special attention to this valuable presentation. Being the standard work on Australian botany, it was much wanted, but the council had never been able, from want of funds, to procure it. Other works, indeed, were still required, and as several of the Fellows had already shown their practical interest in the welfare of the society by making presentations, he hoped that others, whether resident in town or country, would be induced to follow their example. Good books could not be better placed than in a library, where they could be utilised by all comers. A list of such as are required could at all times be had from the curator.]
2. From Mr. T. Roblin-Tables of Aflinities of the Classes of the Animal Kingdom, by Prof. J. Reay Greene; three sheets mounted on rollers.
3. From Baron F. von Mueller-Proceedings of the Zoological and Acclimatisation Society of Victoria, vol. 4, 1875.
4. From the Royal Society of New South Wales-Transactions, 1874.
5. From the Government of New Zealand-Census for 1874.
6. From the Malacological Society of Belgium-Proceedings for 1874.
7. From the Entomological Society of Belgium.- Proceedings for 1874.

The Rev. J. E. Tenison Woods, F.G.S., F.L.S., read a paper on the Freshwater shells of Tasmania, prefacing it by some remarks on the study of fresh water shells generally. "It must not be supposed," he said, "that such studies meant no more than merely naming certain specimens new to science. To the outside public it might seem no more, but to the man of science it was different. A name when applied to a new species thenceforth became not only a tally by which it might be known and referred to, but it meant all the details of observation in its description, and it was a centre around which a multitude of useful observations would be grouped. Thus Senlaria Australis is a name applied to a marine shell of a peculiar, and at one time, rare genus. Other naturalists had found that its habits were most interesting and various. Thenceforth the name was the repository in which those observations were collected, and they were conveyed to the mind of those familiar with them by the mere association of the name. Finally the same molluse had been found to contain a beautiful purple dye, and this also became, if we may so speak, a property of the name. All natural science is more or less open to the reproach that it is a science of names, but this would also be strictly true of all buman knowledge, since it is only by names or words that it can be
communicated. The frosh water shells did not presont a vory inviting field to the naturalist in the early history of science, but they were not long studied before they were found to possess features worthy of attention. A great impotus had been given to the study by Mons. Uraparnaud, a young French surgoon, whose brilliant career was stoppod all too soon by the insiduous ravages of consumption. His work forms a standard on tho subject, as it is a model of accurato observation, careful delineation, and charming interest. It was owing to the knowledge thus giren that the eminent osteologist Baron Cuvier was so much aided in his determination of the fossils of Montmartre, Paris. There bones were found associated with sholls, and the bones might have been supposed to belong to marine drift, but an attentive consideration of the shells showed them to bo frosh water, and of a kind whose habits of life were now known. This tended materially also to explain the conditions under which the extinct mammals of the bed existed. Much light had beon thrown on the conditions of life in the coal formation from the freshwater and land shells found embedded in it. The reverend gentleman went on to describe genorally the natural history of that order of Mollusca known as Pulmo branchiata, that is Molluses with lungs and gills, breathing both air and water. Water is their natural element, but they can also live out of it. As they live in creeks and waterholes, which are liable to diminish or totally dry up in certain seasons, they must have means for withstanding a drought, or the order would soon perish. They are there= fore provided with an apparatus which is part lung and part gill. The organ is a respiratory sac through which the blood flows, and is aerated in a network of minute vessels, and it is filled with branchial plates or lamellæ for the purpose of extracting the necessary oxygen from water. He called attention to the observation of Draparnaud, who said that if we consider the very small number of points by which the animal is attached to the shell, one is astonished to understand how so fragile a covering could withstand the action of external agents, and at the same time preserveits solidity, its colour, and its transparency, especially as upon the death of the animal it bleaches and exfoliates on slight exposure. Wo must then admit some sort of intercommunioation between the shell and the animal which it encloses. We must admit also that it is animated with vitality, although it appears to our eyes, which are too feeble to unravel its interior structure, as if it were mere inert matter." The reverend gentleman then read tho introduction to his paper.

The Governor observed that the remarks made by the Rev. Julian Woods, as to the stone implements, showed the care that should be taken not to allow preconceived theories to hurry our conclusions in matters of fact. He thought that it was very easy for even very able, honest, and painstaking men to miss facts that lay just to the right or left, or close behind them, whilst they were looking straight at their theory. The lapse of a very few years ofton was sufficient to cover up and bury facts or traditions that might be of great value. An instance of this had occurred in New Zealand. A very eminent scientific man there had argued, in a most interesting paper, that the race who made and used the stone knives and implements found in the kitchen mounds on the Rakaia together with mos bones were probably a race distinct from, and anterior to, the Maori, and of immense antiquity; that the moa (Dinomis) itself had been for ages an estinct bird; that there was no reliable evidence from Maori sources of the recent existence of the moa (Dinornis), still less any trace at all of any tradition of the newly-discovered Harpagon Moorei, the gigantic eagle, or bird of prey, whose bones had very recently been discovered at Glemmark. These general views had been combated by Dr. Hector, and also contradicted by Sir (\%. Grey and others whose testimony was of groator weight unon native ovideuco that ovon Sir Cloorgo's.

For himself, he (the President) might sny that having been one of the early settlers of New Zealand, he had opportunities of knowing the traditions of the New Zealanders, which wore not available to scientific men who came to New Zealand at a later period, and who, generally inhabitants of towns, were less thrown amongst the natives. Now in the first place he could remark that the "stone age" of the New Zealander had not passed when the early settlers arrived; they were still making stone implements, and though in the northern island the tradition regarding the moa had assumed in some cases a wild and legendary form (of which he gave examples) yet when be first visited the Southern island the natives warned him when he explored the Kaikora inland country to be careful in attacking the moa, a huge bird that he would certainly meot, fur if he approached it from behind it would "kick like a horse" and possibly break his leg, thus showing their acquaintanco with the habits of a bird closely allied to the ostrich and emu family. In the Wairau also the natives had a quill said to be of the moa, and in the Weilington museum, a portion of the skin of the neck of one of these birds with feathers adhering is at present preserved, he himself had exhumed the skeleton of a moa lying on the clayey side of a hill, and only partially covered by a slight slip of a few inches of vegetable mould from a hillock above. The gristly rings of the windpipe of this bird were in a perfect state of perservation. It is yet more remarkable that when early in January. 1851 he travelled on foot from Port Cooper, the present site of the Canterbury settlement to Warau, being the first European who had traversed that district, at Kaikora, under the mountains named by Cook, the "Lookers on," an old chief "Kaikora" "of that Ilk," told him that on the tops of those mountains an enormous bird of prey rufous in colour, built its nest, and that in their forefather's time it sometimes descended suddenly and was large enough to carry off a good sized boy or girl. Was not this a tradition of the Harpagon Moorei? This bird had not been seen for some generations, but though it was doubtful whether their fathers had seen the moa their grandfathers I have been assured certainly had, and natives doubted not but that it still existed in wild localities.

Mr. M. Allport had listened with the greatest pleasure not only to the admirable paper just read, but also to the highly interesting introductory remarks by its learned author, to whom he proposed a special vote of thanks should be accorded. (Applause.)

The Bishop of Tasmania, in rising to second the voto of thanks to the reador of the paper, wished to make a few observations upon the argument previously advanced upon the stone or so called flint implement before them. That implement was, as he was assured, the worls of an Australian savage, and if so, a presumption was raised that the inferences drawn by Sir C. Lyell, and others, upon the antiquity of man have been rash. It is quite possible that hasty conclusions have been drawn, and that calculations will have to be corrected by some thousands or perhaps hundreds of thousand of years. But the main argument is not disturbed by that flint implement before them. Put by the side of another such weapon upon which Sir C. Lyall and others have reasoned, it plainly tells us that those savages who lived some untold periods ago, and those who till lately inhabited this island, are of the eame human race, and with common instincts have fallen back in the same stage of civilisation, upon the same rude weapons suggested to them by the same flint material lying before their eyes. The flint was altogether in a scientific point of view different from another found associated with organic remains of animals that existed in an exceedingly remote period of time. Besides, there are other parallel lines of evidence, resting upon ethnological science, and the science of language, which supported the inference drawn by Sir C. Lyell. The flint implement bofore them, and the facts related by His

Fixcellency have an excoedingly intoresting valuo of thoir own, but ho could not accept them in the sense which had beon sought to be put unon them. As to the paper which had beon read subsequently, he had pleasure in seconding the vote of thanks for the gratification Father Woods had aflorded him personally, the obligation he bad agnin placed upon tho Society, and the benefit conferred upon science. The profatory remarks had also a valuable educational character, and he should rejoice if these remarks had the effect of introducing more largely the study of natural science in the curriculum of popular education. It was not the acquisition of shells that mado the naturalist, or a cabinot of fossils the goologist; but the study of natural objects as a branch of Education doveloped first the observing faculties, then the classiffing and then the inductive and reasoning faculties. The paper was an excoedingly interesting one, and he had much pleasure in adding his testimony to its value.

The vote having beon put by the chair, was carried by acclamation.
Mr. Rule observed that the immense age of the fint implements of Europe was shown by the conditions in which they existed in the caves where they were found. They were covered by stalagmitio deposits of many feet in thickness, and other matters, and mixed up with the bones of extinct animals of pre-bistoric times. It was these surroundings which gave a guaranteo as to the enormous antiquity of the implements.

IIs Excellescy said that he had not understood that the Rev. Julian Woods meant to adduce the facts he had alluded to as proofs of a theory, but as instances of how a pre-conceived theory might unconsciously influence conclusions-for himself, in the few unpremeditated remarks he had made, his object had beon simply to illustrate the desirability that collectors of facts should bo very careful, in their statoment of facts, not to allow their judgment to be influenced by pre-conceived opinions, or to jump too readily at conclusions from a partial view. He remembered talking in England to a late well-known naturalist, a gentleman respected not only for his personal efforts in the cause of science, and for his attainments and knowledge, but also for the honest zeal which he threw into whatever interested him-part of his creed was that cannibalism was only the result of want of animal food and hunger-never deliberate and systematic. Being appealed to as a resident of Now Zealand he (the President) was obliged with much humility to express a contrary opinion, and to instance cases in which slave girls had been slain for feasts or the bodies of enemies killed in battle had been eaten, it being, morzover, supposed that the heart of a chief imparted his courage to the child who feasted on it-having eaten a former possessor was, moreover, a valid title to land-and it also appeared to him, for several reasons, that the "Kai Tapu," sacred food, was in some degroe connected with an obsoleto idea of sacrifice. These reasons, however, had no effect whatsoever, upon the gentleman to whom they were addressed. It was, vulgarly speaking, a case of so much the worse for the facts. IIe (the President) could only excuse this digression on the ground that he wished to point out the alvantages of bringirg calm criticism and a dispassionato mind to bear upon the registration and discussion of facts, and of viewing both sides of every question.

Mr Justis Buowne, in proposing a vote of thanks to the donors of prosentations, referred especially to the donation of books from Nir liohert Ollicer. He hoped the remarks made by the Secrotary might induce some of our town or country members, or others, to consider if they could not do something towarls our library. Somo might contribute in money, which would bo the preferable mode, but other might havo recent works which they could spare, or recent editions of old worlse which we already possess.

The vote having been agreed to, tho moeting terminated.

ON THE GENUS FENESTELLA.

By the Rev. J. E. Tenison Woods, F.G.S., \&c.

[Read 8th June, 1875.]

As species of Fenestella are very common as fossils in the Devonian rocks, but especially those of Tasmania, a few observations on the genus and its affinities will be found useful to geologists.

Fenestella is a genus placed now by all palæontologists in the Class Polyzoa, Order I. Infundibulata.

Sub order Cheilostomata, that is to say, with the aperture of the cell filled with a thin membranaceous or calcarious velum, with a crescentic mouth provided with a movable lip. This latter feature in the case of Fenestella is concluded from analogy and certain anatomical details, because the fossils themselves are never so perfectly preserved as to manifest them.

Fenestella is also placed in the subdivision B. inarticulata or continuous, and in the section limultiserialaria, that is, the cells disposed in a double or multiple series. It is also placed by most authors in the family Escharidee, of which the definition is as follows :-Polyzoarium erect, rigid, foliaceous, and expanded, lobate, or reticulated. Cell disposed quincuncially in the same plane on one or both sides of the polyzoarium. But in some cases this hardly applies, as the cells are sometimes, as in the case of F. internata, Lonsd. in a double series only. The genus was also placed with the Retepora, of which the definition is foliaceous, calcareous, reticulated, cells immersed opening on one surface only. But in 1830 Mr. Miller suggested a new genus for certain reticulated polyzoa in the carboniferous limestone which Mr. Lonsdale adopted. All cup-shaped reticulated polyzoa were hitherto called Retepora, but now it was agreed to name Reteporathose only on which the openings of the cells were inside the cup, and those in which the cells opened on the outside only were henceforth erected into a new genus, and called Fenestella. But difficulties in applying his distinction soon arose. The cup-shaped or conical figure is nearly always absent. In Tasmania the distinction would be of no avail. The polyzoary, though very wavy and irregular, is always fragmentary, and often lies perfectly flat. Prof. Phillips suggests (Pal. Foss. of Cornwall, Devon, \&c., p. 22) another mark of distinction. He says that the non-poriferous surface of Fenestella is usually marked by longitudinal, more or less continuous ribs, united by bars of smaller diameter, leaving oval or subquadrangular spaces. In Retepora these spaces look more like holes or perforations
through the coral. The external poriferous interstices of Fenestella are in several species, but perhaps not in all, carinated in the middle.

It seems to me that there is a better mark of distinction than this, at least for the Tasmanian species. In Retepora the holes are at rarer intervals, and the term bars cannot be applied to the tissue above or below them. It is a mass of cells like the rest of the polyzoary. In Fenestellia the bars are sparsely celluliferous. There are calcareous points of attachment to give mutual strength and support to dichotomously dividing and spreading ligulate series of cells. The transverse bars are much narrower than the celluliferous portion, and they are given off almost at right angles, and in some species only very slightly arched. It is this peculiarity which causes the interstices to be more quadrangular than oval.

Prof. Phillips thus defines the genus (loc. cit.):-"General figure spreading from a narrow base to an infundibuliform or foliaceous figure; substance, a thin stony expansion, composed of slender radiating or longitudinal ribs variously connected by transverse bars, so as to constitute a more or less regular open network. He adds (but the italic words marked by me do not apply to all the Tasmanian species) the longitudinal ribs margined on each side by one row of pores on the outer face only."

It must be always borne in mind that we very seldom find anything but casts of these beautiful fossils. The calcareous matters have been so completely dissolved away that nothing remains of the old polyzoary. The casts too seldom show any markings of the front or back of the cells. The most of the specimens preserved by collectors are valucless as showing any details. They are merely impressions of the interstices or net-work markings, and nothing more. Those who are very familiar with the species might determine them from this alone, but it is hardly a safe identification. There are, however, in the Museum of this Society some specimens from Maria Island, where the whole polyzoary has been beautifully preserved. The calcareous matter is untouched, and the detail of the cells is plainly evident. In one species, Fenestella ampla, there is a raised margin round the mouth and circular depressions, probably for avicularia. In one place also there is the embossed dome of what appears to be an ovicell. Thus the functions of nutrition and reproduction were in no way different from the polyzoa of the present day. It is seldom that such an opportunity is offered for studying the details of these interesting organisms. Prof. Phillips (loc. cit.) says "that owing to the decomposition of the whole or part of the coralline substance in argillaceous rocks these beautiful fossils
must be studicd in such cases lyy very careful comparison of the impressions of the surfaces. In limestone beds the substance is often well exposed by atmospheric influences, but in such instances the poriferous face seldom clearly appears, owing apparently to the former adhesion of this face to the rock." This passage is especially applicable to the fossils of Tasmania. In most cases we have only impressions on argillaceous rocks, while the well preserved specimen now referred to is a limestone rock. Here but for the dark compact surrounding matrix and the accompanying mass of Stenopora ovala Lonsd. the white crystalline network of Polyzoan fragments might almost seem to be from the Polyzoan limestone of the middle Cainozoic of Australia. But except in few instance the fossils are most provokingly nearly all face downwards.

There are 28 known species of Fenestella in British rociss according to Morris' Catalogue, in which are none of the Australian species. They range from the L. Silurian to the Permian formation, but their principal horizon seems to be the Devonian. Three species and a variety are known in Tasmania, the species all represented in Australia and the variety also probably. They are thus described:-

Fenestella ampla Lonsdale.* Cupshaped, celluliferous, surface internal, branches dichotomous, broad, flat, thin; meshes oval ; rows of cells numerous, rarely limited to two, alternate; transverse connecting processes sometimes cellular; inner layer of non-cellular surface very fibrous; external layer very granular, non-fibrous, gemmuliferous vessel small.
"Among the specimens of this coral," continues Mr. Lonsdale, "contained in the collection under consideration was one which afforded some interesting changes dependent upon age, the absence of which in the series originally examined was alluded to in the species. In the uppermest portion of this specimen the casts of the cellular surface exhibited similar characters to those displayed in Mr. Darwin's series, with the addition occasionally of a crescent-shaped impression under the mouth, and due, it is believed, to a local modification of the sculpturing on the surface of the other cells. A little lower the ridges, or furrows representing, them began to disappear, and still lower by a further thickening of the exterior all traces of them were obliterated, the interspaces between the mouths displaying irregular protuberauces; and that which was considered as a state bordering upon decrepitude exhibited casts of minute oral apertures, with longer projections immediately beneath marking the original exten-

[^2]sion of the mouths." Query, Were these protuleranees oricells.
Fenestellos intermatu, Lonsdate. Cup-shaped; celluliferous surface internal; branches dichotomous compressed, breadth variable; meshes oblong, narrow ; rows of cells, $2-5$, divided by longitudinal ridges; transverse connecting processes short, without cells ; non-cellular surface, inner layer sharply fibrous, outer layer minutely granular.

Fenestella fossula. Lonsdale. Cup-shaped; celluliferous surface internal ; branches dichotomons, slender ; meshes oval ; rows of cells two ; transverse processes non-cellular; inner layer of non-celluliferous surface minutely fibrous, external layer smooth or granular.

Variety a F. densa. Etheridge.* Of this variety, if it be not a distinct species, Mr. E. says:-"Form of polyzoarium not known, probably cup-shaped, one portion is foliaceous, meshes or fenestrules oval, small, densely arranged upon the expanded cœnœcium or polypidom, transverse processes or bars non-cellular. These unsatisfactory casts of Fenestella I refer to Lonsdales species F. fossula. No good characters are left for determination. The transverse processes or bars and the fenestrules are so obscure that any attempt to give definite characters would mislead. It so closely resembles F. fossula from Mount Wellington, Tasmania, and St. Patrick's Plains, New South Wales, that I feel obliged to refer it to that form. Any additional species would only multiply names. I had, however, proposed the name of F^{\prime}. densa for this Queensland specimen. The original habit was probably infundibuliform or cup-shaped; but whether the bars were rectangularly dichotomous with oval meshes, cannot be distinetly made out. Locality, Gympie, Queensland, Smithfield reef. Form, Devonian.

It will be seen that the above characters differ from what I have said on the cup-shape which many specimens in the Museum will show to be untenable, and in the transverse bars bearing cells. But as the observations were all apparently made from casts mistakes might easily arise.

We may now enquire, what are the affinities of the genus Fenestella, or its relations with other genera. It cannot strictly speaking, be classed with Retepora for the reasons I have given. As a slender ligulate polyzoarium strengthened and held together by transverse bars its disassociation from Retepora is very evident; and this is plainly seen in the British Devonian species, F. laxa, Lons., where the bars are irregular at rare iutervals, and giving rise to interstices of three or four lines square. Among existing polyzoa we have

[^3]such a form in Canda araclenoides (Lamouroux Encyclop. Methodique 5, p. 64, figs. 18 to 22), where the branches are connected with tubular fibres, but these are flexible, horny, and not calcareous. There is, however, a species of Hornera, H. Gambierensis, Busk, in the polyzoan limestone of Mount Gambier, a middle cainozoic tertiary fossil, where the ligulate celluliferous portions are united by transverse calcareous bars. The analogy of this fossil to Fenestella is very great. In Hornera, however, the back of the cells shows concentric ridges of growth, whereas that of Fenestella is fibrous. The casts of the two forms are the same, and widely as they are separated iu point of time, I am much inclined to the opinion that Hornera Gambierensis is one of the recent analogues of the Devonian Fenestellæ.

Were these fossils entirely calcareous? In answer to this it must be remembered that a corneous substance, the nature of which has not received the attention it deserves, forms the root byssus or point of attachment of many polyzoa. It also forms the point of attachment between each cell in Catenicella, and the junction of the internodes, in Calpidium, Salicornaria, \&c. I have reason to believe that it lines the cells in all polyzoa. Something like that is seen in Catenicella under the microscope. In examining many hundred specimens I remarked that similar species showed the same optical peculiarities under the polariscope. In Catenicellæ these were generally slight; in Bugula on the other hand most brilliant. Sometimes when the whole calcareous portions of Fenestella are removed, there remains a series of rounded cells, which are not effected by acids. These may be the corneous lining of the cells. It would seem from the fact that a calcareous root is never seen in Fenestella, that it had a fibrous byssus like Canda, de. How these bars and extra cellular portions are formed is not known, even in existing species. The body contained in the cell must not, however, be considered as an individual. Indeed, in living species when thousands of the cells are open one of them is touched, the whole draw back, and close instantly. We must consider the polyzoarium like a plant with leaves, bark, buds, flowers, seeds, and the different processes belonging to each. These constitute one whole which they subserve by different functions endlessly repeated in one individual.

Finally the fewness of species of one genus, though individuals are as common as in any deposit is a remarkable fact. In recent rocks genera of polyzoa can be counted by tens, and species by hundreds. It must, however, be remembered that the past forms are as highly organised as those of the present day, and belonging to specially developed classes.

EURTHER NOTES ON TIIE SALMON EXPERIMENT.

By Morton Allport, F.L.S., F.Z.S., \&c.

[Raad 13th July, 1875.]
The Fellows of the Society may remember that since the eapture of the female grilse at Bridgewater in December, 1873, and which fish I shall in this paper refer to as "the first grilse," a male specimen of nearly the same size and weight, and which I shall refer to as "the second grilse," was caught in the lower Derwent. The second grilse was, in January last, forwarded to Dr. Günther, of the British Museum, for examination, and in reference to it I received by last mail from Dr. Günther the following remarks:-
"The most important specimen is that described in your letter as a migratory salmon, weighing three pounds, taken in the salt water of the Derwent estuary.
"This fish has a short, broad tail, with a perfectly truncated caudal fin, fourteen scales in a transverse line between the adipose fin and lateral line; mmerous x shaped spots on the body; 54 pyloric appendares, characters which leave no doubt whatever in my mind that it is a sulmo trutte, as which it has been recognised by other men well versed in the distinctions of salmomoids.
"It had in its stomach eight anchovies, a diet which will account for the rapid growth of sahmonoids in your waters, but which will not improve the flavour of their flesh.
"I hare placed this specimen into our public galleries, as evidence of the remarkable success which has attended the efforts of the colony to introduce salmonoids."

Before referring to the above remarks in detail, I desire to express my seuse of the obligation we are under to Dr. Günther for the prompt courtesy with which he has at all times examined and reported upon the salmonoids sent from the colony, and my conviction is that any light thrown upon the obscure life history of migratory salmon by the experiment in this colony will always be hailed by him as a scientific gain, even though such light may change somewhat his own preconceived opinions.

In determining the species of any indivividual belonging to the genus salmo in this colony, as we have not the advantage of umloubted fresh specimeus for comparison, we have to rely on the written descriptions of recognised authorities on the suljeret, aided by what we may gather of the life history of the particular individual, so that when dealing with the first srilsi, its determination rested on a careful detailed com1 frison with the descriptions contained in Dr. Guinther's admirable "Catalogue of Fishes in the British Museum," pullishen in 1856i, coupled with the knowledge that out of nearly 10,000 fish turned into the Derwent, barely 300 were
salmon trout, and the remainder salmon ; and that the 300 salmon trout had been liberated in 1867, while 3,000 of the salmon had been liberated in 1865, and the remainder with the salmon trout in 1867. I now propose to deal seriation with Dr. Günther's reasons for concluding that the second grilse is a salmon trout, and first the "short broad tail, with i perfectly truncated caudal fin." Though Dr. Guinther, in the catalogue, gives, as one test, "the form of the caudal fin in specimens of a griven size, age, and sexual condition," there is no statement which implies that this is an infalliblo test in immature fish, and as an actual matter of fact, the caudal fin of the first grilse is decidedly emarginate or forked, which was one argument used by me for deciding that it was a true salmon, because salmon trout of even less size almost invariably have this fiu truncated, or even rounded. (Sce Proccedings Royal Society, Tasmania, 1874, p 15). Again, it is remarkable that every salmonoid (except the sccond grilse) eaught in the Derwent estuary last year, and of which four had reached the size at which the caudal fins of salmon trout usually become truucated had the caudal fin more or less distinctly forked. Two of those fish are now before you, and speak for themselves, especially when compared with the male smolt sent to the salmon commissioners from England, and in which the caudal fin is but slightly more forked than in its larger companions. In spite of this discrepancy I wish it to be distinctly understood that I regard the second grilse as identical in species with all these salmonoids, and am disposed to place little reliance on this test where the fish are approaching the adult stage.

An enormous diversity will be found in the form of the caudal fin in specimens of salmo fario or common trout, many of which have it truncate when the fish are but 5 or 6 inches in length, while others show emargination when 17 or 18 inches long.

There appears to be, as hinted by Dr. Günther, somo subtle connection between the state of sexual development and the form of the caudal fin, and as we know that a percentage of the male salmon parr at only 6 inches in length do arrive at actual sexual maturity, and are capable of impregnating the ova of the full grown female salmon, is it not quite possible that these rapidly developed male fish may exhibit the truncate fin at an carlier stage than their sexually immature brethren?

The second reason assigned is. " 14 scales in a transverse line between the adipose fin and lateral line." Here again a marvellous discrepancy exists amongst the salmonoids taken in the estuary of the Derwent, for out of some 30 specimens
examined the numbers have ranged from 11 to 14 , but in no instance in fish taken below Bridgewater has the number exceeded 14.

In the detailed descriptions of various specimens of sulmo salar in the British Mrusemm the number of these seales is unfortunately omitted, but in four instances the number in the transverse series deseending obliquely backwards from tho origin of the dorsal fin to the lateral line is given as well as the number of the longitudinal series of seales between the lateral line and the base of the ventral. In one adult the numbers are $\frac{25}{25}$; in another adult $\frac{26}{26}$; in the third in the grilse stage $\frac{35}{10}$; and in the fourth a parr $\frac{23}{20}$.

Next let us turu to Dr. Günther's deseriptions of the salmon trout in the Museum, and we find that the number of scales between the adipose fin and the lateral line varies even in the adult fish from 13 to 15 , the Jatter number never laving yet been found in any of our salmonoids taken in salt water.

The male sholt from England already mentioned contains only one scale less in this series (viz., 13) than the second grilse, while the salmon parr preserved in our Museum, which was hatched from an English ovum, has 14 on one side and 13 on the other.

Now, finding this discrepancy coupled with the great variation in the mumbers exhibited by our own salmonoids, are we not justified in concluding that, however constant within certain limits, this test may be in mature fish, that as applied to immature specimens, it is all but valueless?

Dr. Günther's next reason-" numerous x shaped spots on the body "-requires very few words. When fresh from the water the second grilse was perfectly free from spots br low the lateral line, and had but few above that line; shortly after the immersion in spirit, however, several more spots became apparent, and the same thing took place with the first grilse. On turning to Dr. Günther's descriptions, I find details of only one specimen of true salmon, which approximates in size to the second grilse. This is a male, 22 inches long, in reference to which Dr. Günther writes:-"Upper parts greenish, which colour gradually passes into the silvery hue of the belly. There are some seattered x shaped black spots on the side of the back above the lateral line."

It is curious that the above description occurs only in the solitary instance in which the size and sex agrees with the swoml wrilse, because no test is so variable as the fleeting one of colour, which in the solmonider (ats in most fish) is p"rputhally liable to change rapidly from causes as yet unexplained.

As to the last reason, " 54 pyloric appendages," as I had not dissected the fish I was, of course, unaware of the number, which I now find, is three or four less than in the first grilseand 13 or 14 less than in some others of the Derwent salmonoids. Nevertheless I should have regarded the number 54 (having no other light than Dr. Günther's own descriptions), as a proof of the fish being a true salmon, because the Dr. gives as his own formula for salmo salar, "Cœc. pylor., 53 to 77 ," and also mentions a mature male from the River Tamar in which the Pyloric appendages were only 51. Again Dr. Günther's formula for salmon trout is " 49 to 61 , rarely less," but in the descriptions of salmon trout in the British Museum, out of 20 specimens seven contain the minimum number 49 or less; six more contain less than the number found in the second grilse; while the average number in the remaining seven only slightly exceeds 54 . On the strength of this test, therefore, we should be justified in regarding the second grilse as a true salmon.

Dr. Günther speaks of the rapid growth of salmonoids in our waters, and attributes it to the presence of the auchovies, but it is at least doubtful whether the fish would thrive better here on anchovies than in Britain on whitebait, sprats, herrings, or others of the schoolfish abounding on the coast. If the first and second grilse could be regarded as true salmon, nothing extraordinary could be found in their size, as it is about the average of grilse taken in spring on their first journey from sea. But the case is very different if they are salmon trout,-because the majority of salmon trout on the first return from sea do not weigh more on an average than from one pound to one nound and a half. That the first and second grilse were on their first journey from sea is all but certain from the presence of several of the deciduous teeth still left on the vomer, and the fact that they should both so much exceed the average weight of a large majority of the salmon trout of a similar age from the best British rivers, is difficult to explain if they are salmon trout.

Had Dr. Guinther been able to examine the first smolt sent from this colony in 1869 by the light which the further conduct of the experiment has since thrown on the subject, we should never have been told that that smolt was a stunted salmon trout, because the statement that it was stunted was due to an erroneous conviction that no migratory salmon could return from the sea to a Tasmanian river, and that as we had only received one lot of ova of salmon trout in 1865, the smolt must have been three years and-a-half old. The determination of the species of the second grilse proves that the first smolt was no stunted individual ; but that it was what
it appeared, a healthy well-fed fish which had travelled more than 30 miles seaward in obedience to the migratory instinct, and it also proves to my mind that inasmuch as it could not ve one of the fish originally hatched from an English salmon trout eggr, and there had not been sufficient time for the aalmon trout to have bred and produced a smolt of that age ; aiat, therefore, that first smolt could only have been a true salmon-the whole difficulty in the determination of its pecies having arisen from the fact that, however valuable he tests applied may have been for the elucidation of the precies of adult specimens, those tests are valueless when pplied to immature fish. So with the determination of the scond grilse. If we are to regard it as adult,-that is to say, it has arrived at such a stage that there would be no irther change in the anatomical details of the fish on its xt journey seawards, beyoud mere increase of size, -then ie tests applied by Dr. Günther would doubtless be sufficient , warrant the conclusion that it is a salmon trout (Salmo utia); but if, on the other hand, any further change ight take place in those details, its species cannot with solute certainty le determined till the sum of that change s been recorded; and, therefore, nothing but the capture a full-grown specimen will ever satisfactorily set the sole question at rest.

NOTES ON THE CHLAMYDOSAURUS OR FRILLED LIZARD OF QUEENSLAND (Chlamydosaurus Kingii, Gray), AND THE DISCOVERY OF A FOSSIL SPECIES ON THE DARLING DOWNS, QUEENS. LAND.

By Gmorge Bennett, M.D., F.L.S., Corr. Member of tee Royal Society of Tabmakia.

[Read 13th July, 1875.]

This remarkable lizard was first described by Mr. John E. Gray, in 1827, and published in the appendix to the "Narrative of a Survey of the Intertropical and Western Coasts of Australia, by Captain P. P. King, R.N. He considers it closely allied to the Agamæ, but differing from them in the peculiar frill that is appended to the neck, and named it Chlamydosaurus Kingii. This interesting lizard was found by Mr. Allan Cunningham, who accompanied Captain King's Expedition as His Majesty's Botanical Collector for Kew Gardens, on the branch of a tree in Careening Bay, at the bottom of Port Nelson. Mr. Cunningham's journal contains the following remarks respecting it, he says:-"I secured a lizard of extraordinary appearance, which had perched itself upon the stem of a small decayed tree. It had a curious crenated membrane like a ruff or tippet round its neck, covering its shoulders, and when expanded, which it was enabled to do by means of transverse slender cartilages, spreads five inches in the form of an open umbrella. I regret that my eagerness to secure so interesting an animal, did not admit of sufficient time to allow the lizard to show by its alarm or irritability, how far it depended upon, or what use it made of this extraordinary membrane when its life was threatened. Its head was rather large, and eyes, whilst living, rather prominent, its tongue, although bipfid, was rather short and thick, and appeared to be tubular." The colour of the tongue and inside of the mouth was yellow. The discovery of the fossil species occurred as follows:In a letter dated Toowoomba, Queensland, July 22nd, 1874, received from my son, Mr. G. F. Bennett, he says:-"I have just returned from a visit to Gowrie Station, on the Darling Downs, and was successful in securing a good specimen of the jaw of Notoherium Mitchellii, a portion of the jaw of Diportodon, and other specimens, but the most curious of all is a small portion of a jaw with a good many teeth, either of a fish or snake." On receiving this specimen and examining it very carefully under a powerful lens, I considered it was decidedly reptilian. On afterwards showing it to Mons.

Henri Filhol, one of the naturalists attached to the Museum of Natural History of Paris (this gentleman had just arrived at Sydney viit Batavia and Singapore, forming one of the French Expedition for observing the Transit of Venus at Campbell's Island, South Pacific, and brought a letter of introduction to me), he lindly gave it a very attentive examination, confirming my opinion as to its reptilian character, and on the following day informed me that he considered it it fossil of an extinct species of the Chlamydosunves or Frilled Lizard of Queensland. I immediately transmitted it by post, by the mail steamer, to my friend Professor Owen, and in a letter dated November 5th, 1874, received the following reply :-"I lose no time in acknowledging yours of September 3rd, 1874 , and the small box therein referred to, which has eafely reached me. The portions of jaw with teeth, are those of a Chlamydosaums; but of a species with a shorter, more obtuse, and higher head than Chlamydosaurus Kingii. I have therefore entered it, and shall find a place for it in some plate for figuring fossils, as of a Chlamydosaurus Bennettii. By the way, I should like to have from some competent and trustworthy observer an opinion whether the Frilled Lizard walks erect on its hind legs, or ever walks at all, or in any fashion, on that pair solely, after the manner of birds. I can understand its sitting itself up, and outspreading its frill, and perhaps snapping its teeth when attacked. But some, here, have rested their argument on Iguanodon, etc., walking on their hind feet, on a statement in Krefft's list of specimens in your Museum, that Chlamydosaurus does so."

In reply to the enquiry of my distinguished friend respecting the Frilled Lizard walking on its hind legs, I communicated to him the information I had obtained from several competent and trustworthy observers, and which led to the conclusion that the Chlamydosaurus did move solely on the hind legs occasionally, but when in that position the mode of progression was moro hopping than walling, in some degree resembling the mode of progression as observed in the kangaroos. Mr. Krefft, who had an opportunity of observing these reptiles alive in a very large cage, says:-"It rises occasionally on its hind legs, squatting like a kangaroo. When suddenly disturbed it has this habit more particularly, sometimes it hops not unlike a bird for a short distince, say one or two yards, and then takes to all fours again. The common Lace Lizard (Hydrosaurus varius) has similar habits, and I have noticed some of them rise up and start, body crect, for fifteen or twenty yards. The Lace Lizard only rises up when ou the ground, but the 'Frilled Lizard' does so when in trees, and probably jumps from branch to branch." The movement of the "Frilled

Iizard" on its hind legs was mentioned to me by Mr. Brown, who observed them in the vicinity of Rockhampton, and we have further confirmation of the fact by the following letter from Mr. Charles Coxen, of Brisbane, dated February 27th, 1875, who says:-" Respecting the locomotion of the Chlamydosaurus Kingii or 'Frilled Lizard,' I will state what came under my own observation. While on a wisit in 1871 to my friend Mr. W. Archer, of Gracemere, near Rockhampton, my attention was aroused early one morning by seeing one of these reptiles standing erect on the garden path, with its head and nose in a line with its body. Not wishing to disturb it, I stood still and observed its movements, when seeing there was no desire on my part to disturb it, it quietly walked with its nose in the air amongst the shrubs; on my following it rather quickly, it ran away on its four legs for a short distance, but not being further interfered with, it again took to its bipedal progression, but on being startled a second time, it started off on all fours and ran up a tree. On mentioning this to Mr. Archer, he appeared to be aware of this peculiar habit of the reptile, and informed me that this lizard had been for a long time a denizen of his garden, and that the creature was tame, no one being allowed to frighten or interfere with it. Since making these observations, I have had an opportunity of stuffing one for the Queensland Museum, and have placed it in the bipedal position I have just described, with its frill in repose, that being in accordance with my observation of the one I saw at Grasmere, for I believe it is only when at bay, or showing fight, that the frill is erected."

In part illustration of these notes, I have sent a specimen of the "Frilled Lizard" (Chlamydosaurus Kingii) in spirits for the Museum of the Society.

Sydney, N. S. Wales, May 20th, 1875.

ON TIIE EUPLECTELLA ASPERGILLUM, Owen; OR "VENUS'S FLOWER BASKEI',"

A SPECIES OF SPONGE BELONGING TO THE ALCYONOID FAMILY;

A NOTICE OF THE IITALONEMA OR "GLASS ROPE" SPONGE.

By George Bennett, M.D., F.L.S., ©C., Corr. Mem. of the Royal Society of 'Iasmania.
[Read 13th July, 1875.]
Sponges assume a great variety of forms, some are cylindrical and cup-shaped, others are flattened, spherical, and finger shaped, varying in size from small specks to gigantic dimensious, the latter exemplified in the so-called "Neptune's Cup," (Thultussema Nep(uni) a specimen of which is in the Museum of the Society. Some of the sponges display a great variety of rich colours, from bright scarlet and mauve, to pale yellow and rose, but the beautiful and delicate tints change when exposed to the air to a dull brownish hue. Sponges are formed of a soft glairy substance termed sarcode, which envelopes a skeleton composed of silicious, calcurcous, or horny material. The first exemplified by the Euplectella, Myalonema, Holtenia, Rossella, de., \&c.; the second by the genus Grantia, and the last by the common spouge (Spongir communis) forming an elastic substance extensively employed for domestic purposes.

The most delicate and beautiful of the silicions sponges are those composed of threads or filaments of almost pure silex, beautifully interlaced and terminating at the base in delicate threads of exquisite fineness like spun silk, as seen in the Euplectella aspergillum of Owen, popularly named "Venus's Flower Basket," resembling in its form a bouquet holder of spun glass; others form hollow cups, from which beards of long, flossy filaments are pendent, consisting of silex resembling spun glass, as in Holtenia, Rossella, \&c. Another remarkable silicious sponge, is the Hyalonema, known as the "Glass Coral," or "Rope Glass;" this spouge or rather a portion of it, I had an opportunity of examining in the Museum of the Royal Society at Hobart Town, and also some specimens in the possession of Mr. James Macfarlane, of that city, who brought them from Japan, and presented the examples in the Society's Muscum. The portions of the Hyalonema I examined consisted of a rod of twisted fibres varying in thickness, and about six or seven inches in length, encased in a brownish leathery coating, the surface of which was studded with a species of parasitical Zoophyte; the lower
portion was frayed out, so that the glass threads were separated from one another. It was evidently not perfect, and a question had arisen where specimens were first seen brought from Japan, whether it was a natural production or a misdirected industry of those ingenious people. It appears that Ehrenberg took this view, when he examined the Hyalonema, recognising the silicious strands as the spicules of a sponge quite independent of the Zoophyte with which they were encrusted. After an examination of the specimens, the conclusion I arrived at, and the opinion I gave, was, that the Zoophyte was imperfect. On my return to Sydney, I found on reference to Professor Wyville Thompson's recent work on the "Depths of the Sea," that the conclusion I arrived at was correct, and that perfect specimens of this remarkable sponge had been obtained, not from Japan, lut at first from the coast of Portugal and subsequently from the coast of Scotland. The species obtained from the coast of Portugal was discovered by Professor Barboza de Bocage, and is named Hyalonema lusitanicum (of which an engraving is given from which I send a copy) it is closely related to the glass rope sponges of Japan, which have so long perplexed naturalists to determine their position in the animal series, and their relation to their constant companion the parasitic Palythoa, a genus of Zoophytes. Respecting the capture of Hyalonema on the coast of Scotland, Wyville Thompson says :-Off the Butt of Lewis, north of the Hebrides, or western islands of Scotland, "we met in water of 450 to 500 fathoms, on two occasions, with full grown specimens of a species of the remarkable genus Hyalonema, with the coils in the larger examples upwards of forty centimetres in length. Hyalonema is certainly a very striking object, and although our specimens belong apparently to the same species, II. lusitanicum, of Professor Barboza de Bocage, from the coast of Portugal, it is one of the most interesting additions made to the British Fauna during our cruise." He further describes this curious sponge as follows:-" A bundle of from 200 to 300 threads of transparent silica, glistening with a silky lustre, like the most brilliant spun glass, each thread from 30 to 40 centimetres long, in the middle the thickness of a knitting needle, and gradually tapering towards either end to a fine point; the whole bundle coiled like a strand of rope into a lengthened spiral, the threads of the middle and upper portions remaining compactly coiled by a permanent twist of the individual threads; the lower part of the coil, which, when the sponge is living, is imbedded in the mud, frayed out so that the glossy threads stand separate from one another, like the bristles of a glittering brush; the
upper portion of the coil, close and compact, is imbedded perpendicularly in a conical or cylindrical sponge; and usually part of the sponge-substance, is covered with a brownish leathery coating, whose surface is studded with the polyps of an alcyonarian zoophyte. Such is the general effect of a complete specimen of Hyalonema." In the same work he says" Hyalonema was also common; but we got few perfect specimens with the sponge and glass rope in connection. The conical sponge heads were very numerous; they seemed to have been torn off by the edge of the dredge, the rope remaining in the mud, and the ropes were frequently brought up without the sponge. Almost all the ropes were encrusted with the constant 'commensal' of Hyalonema, Polythoa fatua. Very young examples of Hyalonema, with the whisp from 5 mm . to 20 mm . long, had usually no Palythoa on them; but when they had attained above the latter dimensions in almost every case one could see the first Polyp of the Palythoa making its appearance as a small bud, and its pink-encrusting cænosarc spreading round it." When the Challenger was in the South Atlantic it has been mentioned that the trawl was put down in 1,375 fathoms, and on the following day in 1,600 fathoms, between Prince Edward's Islands and the Crozets, the number of species taken in these two hauls was very large, and many of them belonged to especially interesting genera, while many were new to science. There occurred with others the well-known genera Euplectella and Hyalonema, showing the wide range of those beautiful sponges. It has only been during the last few years that specimens of the beantiful silicious frames or skeletons of the sponge belonging to the Alcyonoid family named Euplectella has been discovered in greater numbers, and have been brought from the Philippine Islands to New South Wales by the ships arriving from those islands with cargoes of sugar. The Euplectella is of a most singular and beautiful texture, exciting admiration by the clear transparency of its exquisite lace like work, and the delicacy with which the threads are apparently interwoven, forming a construction of delicate network not to be equalled by any human fabric. They assume for the most part the form of a cornucopia, and are attached, when partly buried in the mud, to the sand, coral rock, or other objects, even to the mud itself by a bundle of terminal fibres or threads having a silky or silvery lustre, situated at the smaller and narrower end or base of the sponge. In the living state this silicious or flinty skeleton is enveloped by a delicate gelatinous organic tissue of a pale brown colour. This beautiful sponge can now be seen in our public museums, and also in many private collections, and as I have been able to send
two specimens for your Museum, some account of them may be interesting to the members of the Society. This elegant generic form of reticulate alcyonoid sponge was first described by Professor Owen, in 1841, from a specimen brought from the Philippine Islands by Mr. Hugh Cuming, and published in the Transactions of the Zoological Society of London (vol. 3, 1849.) In a letter to Professor Owen, Mr. Cuming relates how it was obtained, as follows:-"The Euplectella brought home by me from the Philippines, was taken by a fisherman, in ten fathoms, rocky ground, off the Island of Bohol, one of the Southern Islands of the Philippine Group. The fisherman was employed in catching a species of cod which abounds in those islands, and finding, after some time, the fish did not take his bait, he drew up his line, when to his surprise he found the specimen of Euplectella attached to his hook, near the orifice, and fearing to injure it by disentangling the hook from such a fragile substance, he cut out that portion to which the hook was attached. On his arrival on shore, at St. Nicholas de Zebu, he made a present of it to the Governor of the town. On my arrival a few days after, I was introduced to the Governor, who, upon knowing the object of my visit to the island, presented me with it, as the greatest curiosity he had to offer me, as he had never seen the like before. On my showing it to the Bishop of that city, and the principal inhabitants, they confirmed the opinion of its rarity expressed by the Governor." This beautiful and singular marine production forms part of a member of the lowest class of organised bodies, being the skeleton of a species of sponge, belonging to the cylindrical or reticulate, or alcyonoid family. "If," says Professor Owen, " the basal anerture of the cone were open, the resemblance to some of the known reticulate alcyonoid sponges would be very close, especially to that called Alcyonellam gelatinosum by Blainville, its closure by the reticulate convex frilled cap, in the present instance establishes the generic distinction; and, in the exquisite beauty and regularity of the texture of the walls of the cone, this species surpasses any of the allied productions that I have yet seen, or found described. I propose, therefore, to name it Euplectella aspergillum," the generic name being derived from Eu, well; and Plecto, to weave. The specific name given by Professor Owen, is simply a translation of the popular name by which it is known among the fishermen at the Philippine Islands, who call it "Regadera," which means " Watering Pot," from the resemblance of the reticulated cap at the upper end to the spout of a watering pot; but Dr. J. E. Gray bas given to it, a very pretty and appropriate popular name of "Venus's Flower Basket." Euplectella is an excellent generic name, being
indicative of the exquisite regularity and complexity of the interweaving of its component threads, resembling the most delicate spun glass, and of a silvery lustre. The specimens brought to Sydney, New South Wales, varied in size from eight to fifteen inches in length, and of a proportionate diameter. An account was published in the amnals of Natural History (vol. 3, 4th series, 1869) of the method adopted to capture the L゙uplectella. It was as follows:-"The only place where the Regateras are to be found is about three miles from the shore, in front of the small village of Palisay, which is about five or six miles south of the town of Zebu, Island of Zebu, Philippine Islands. The mode of catching them is very ingenious, and is as follows :-When the tide is about its full, the natives go out in very small canoes to the bed in which they are found, which is about a mile in circumference, and from 130 to 135 fathoms deep. The native, when he considers he has come to about the extremity of the bed, then lets drop his fishing tackle, composed of a piece of iron of the shape of a T, to the two extremities of which are attached two flexible pieces of bamboo, armed with hooks. This sinks to the bottom, and the native sits perfectly still in his tiny canoe, which is then gradually drifted by the tide or current over the ground on which the Regaderas are found ; so soon as he feels that his trawling apparatus has caught something, he begins to haul his line geutly in, and generally finds two or three impaled on the hooks. When taken out of the water the Regaderas are dirty and yellow, but after being putinto fresh water, or exposed to the rain, and dried in the sun, they become perfectly white. The bottom of the sea where the Regaderas are found, is composed of soft mud and sand. The extended fibres or root of the Regadera is embedded in this, and the top or broad part always looks, as the natives say, to the setting sun. In the Regadera, when fished up, are generally found from one to thrce small animals of the crabs species, of about the size of very small shrimps. The hooks, of course, often catch Resgaderas without bringing them up, and many that have been recovered show signs of having a new piece of netting put over the part torn by the hook. It is said that the first Liegadera discovered in Zebu was sold for fifty dollars, and that a Dr. Caloo, who took it to Manilla, was then offered two hundred dollars for it; for some time after that they contivued to he worth sixteen dollars each. It was only in 1865 they became abundant, through the present bed of them being discovered." The Regaderas' usual form is that of a cornucopia, although some have been occasionally seen nearly straight, but those are comparatively rare. The inclination of the growth is outward. When first caught they are covered
with a yellowish brown gelatinous tissue veiling the beautiful texture of the crystal framework.

The first specimen obtained by Mr. Hugh Cuming was sold in London for thirty pounds, others afterwards realised from ten to fifteen pounds; but fresh discoveries having lately been made, they have become more plentifal, and the prices have been very materially reduced. In nearly the whole of the specimens I examined, there were different species of crabs and other crustacea, imprisoned in the crystal frame without any opening to admit a possibility of escape, as secure as if in a corked or sealed bottle, the mystery of their entrance has puzzled learned naturalists, as the apples in the dumplings did George the Third, or as the liqueurs in the sugar plums have also mystified many wise heads. A question arises, how they got in? This can only be satisfactorily explained, either by their having effected an entrance previous to the completion in growth of the skeleton of the sponge, or what is still more probable, when a rent has occurred accidentally in the delicate net work, an entrance was effected before the injury had been repaired, and which, when completed, render their escape impossible, for that this sponge has the power of secreting silicious matter for the reparation of any injury it may sustain, can be proved by the examination of specimens in which repairs of injuries have been made; for the restoring power of the sponges displays remarkable activity of their vital power as shown by the rapidity and strength with which injuries are repaired, for according to experiments made by Mr. Bowerbank, injuries that had been sustained by some sponges were repaired in less than twenty-four hours. By some naturalists it was supposed that the crabs were the architects of this fairly-like structure, but they might have reflected, that although crabs have the power of secreting calcareous, they cannot produce a silicious or flinty matter, but as this class of sponges is known to be capable of creating this silicious material, we may readily be convinced that this elaborate and exquisitely delicate lace tracery is their work. In 1857 Professor Owen and Dr. Arthur Farre, published in the 22nd vol. of the Linnean Transactions, an account of another beautiful species of Euplectella, under the name of Euplectella cucumer, or Cucumber Euplectella, from the peculiarity of its form, which when first seen in the engraving, might readily, and has been mistaken for the representation of that singular vegetable production the Cactus, and it certainly bears a close resemblance to the form of some of the species. It is stated in the description to have been given to Captain Etheridge, R. N., by the King of the Seychelle Islands, but as no monarch resides at that group, it is most probable a mistake
for the ruler of the Comoro Islands, which are situated between the East Coast of Africa, and the North point of Madagascar, or for the Sultan of the Island of Zanzibar. Professor Owen says that "To the question put by almost every one to whom the Euplectella is shown, as to how the threads could have been so regularly, yet intricately interwoven, I have sometimes replied, that there has been no such thing as interweaving in the case; that no thread, as such, was ever laid across another in the construction of the Euplectella, that the analogy of human textile fabrics does not apply to this beautiful natural object. In artificial lace work, the several stages of a complex result must be taken in the succession indicated by painful and exact calculation; in organic lace work, different stages are done at once. Thus it is that the Divine works surpass those of man's utmost ingenuity. The threads of the Euplectella were not first spun, and then interwoven, but were formed as interwoven, the two processes going on simultaneously or 'pari passu.' Just as in the cancelleous texture of bone, the plates of bone are not first formed, and then fitted to one another, as in building a house of cards; but the forming and the fitting go on together in the course of molecular growth. I presume also that in the beautiful object which we call the Euplectella we have but its skeleton, and that in the living state the exquisite structure of the flinty framework may be veiled by the delicate gelatinous enveloping organic tissue." This beautiful sponge will now be still more plentiful as it has recently been discovered on the coast of Portugal, for in a letter in the Daily News from that journal's special correspondent on board the "Challenger," he says, " on the evening of 4th of March, 1873, Professor Wyville Thompson gave a popular lecture on the objects of the expedition, and after giving an account of the very satisfactory results which they had already obtained, the Professor described some of the most interesting objects brought up by the dredge. One of the most interesting of these objects was a beautiful specimen of the Philippine Island Sponge (Euplectella asperyillum) obtained off the coast of Portugal at a depth of 2,000 fathoms. This is the first specimen of this species of sponge ever found in any waters but those of the Philippine Islands, and it was always believed to be indigenous to them."

> Sydney, New South Wales,
> June 2nd, 1875.

ON THE FRESIIWATER SHELLS OF TASMANIA.

By Rev. J. E. Tennison Woons, F.G.S., F.L.S.

[Read 9th August, 1875.]
Introduction.-No attempt has yet been made to arrange the freshwater shells of Tasmania. The land shells have been - carefully catalogued by Mr. Legrand, so that little remains to be desired in that department of our island fauna. The marine shells have received much attention from most eminent naturalists, though a list carefully criticised, with a well arranged account of the bibliography is much wanted. But the freshwater shells have been almost entirely neglected. There have been one or two descriptions of Plyssa in Reeve, and one or two other notices of species scattered through various scientific mublications, but the majority of the shells here described are new to science. This comparative neglect has one advantage, which is, that the whole can be done without a troublesome synonomy. There are other advantages in describing species in their native country. Mistakes as to the habitat are thus avoided by the examination of large collections, all the variations to which any species is sulject can be observed, and details which in isolated specimens might be regarded as of specific value are rightly estimated, and the unnecessary multiplication of species obviated. For this reason I am sure that it is no real gain to science to send one or two natural history specimens to scientific men at home no matter how eminent they may be. In this way, a hopeless confusion of names and habitats arises, no accurate knowledge is gained, and science is, in fact, really retarded. I say this because in the very subject I am now writing upon, I find in various eminent scientific works descriptions of Australian freshwater shells, which I have very little doubt were derived from Tasmania; and, further, I also find shells described as Tasmanian, which the most careful and painstaking collectors assure me have never been found in this island. Such instances I will note as I proceed.

The first fact that strikes us in the examination of the freshwater fauna of Tasmania is its perfect distinctness from that of Australia. The latter is well marked, and there is the greatest distinctness hetween shells gathered in different parts of the continent. But with this fact there is another still more remarkable, that one of the 'Lasmanian Physe, and that the most common seems scarcely to be distingaished from the common Physa fontinalis of Europe, and it is found in places which preclude the supposition of its having been introduced. Moreover the facies or general character of our freshwater
shells is not Austrialian, which certainly is most singular, considering that the geographical relations of the two places are so close. These facts, however, are quite in keeping with the teachings of both the zoology and geology of Tasmania, mamely, that the island has been seprated from the continent in very remote periods of the earth's history, perhaps since the close of the mesozoic.

Sccondly, we find in the freslwater shells of Tasmania a singularly restricted halitat for some species, and an unaccountably capricious distribution for others. Thus some species are only found in small inland lakes, and others are found in one restricted habitat, and then strangely reappear at other and remote parts of the island, while between the two localitics there scems to be no present communication. Every species, too, which has a wide range has a local variety. It would seem from these facts that the present physical features of Tasmania have undergone little change in recent times, but the outpouring of lavas, etc., in tertiary times, of which there is such evidence, has altered some of the inland characters, and so divided districts which may have been formerly united in their freshwater streams. This, however, is merely a supposition, which is only one of many which may be offered in explanation of the phenomena.

There are in all 32 species of freshwater known shells in Tasmania, that is to say, 28 unitalves and 4 bivalves; the proportion of bivalves to univalves for Britain is 29 to 9 . The 'Tasmanian species are distributed in the following genera:Physa, 12 ; Limnea, 4; Bythinia, 7; Ancylus, 2; Pomiatopsis, 1; Planorlis, 1 ; Assiminea, 1. The latter is a very doubtfully referred to freshwater, being usually found only in brackish streams. Still, as it seems to live in streams where the tidal influence of the salt water is scarcely felt, I must place the one I'asmanian species amongst the list of our freshwater fauna.

Of the genera, Physa is the largest in number, and this is the case also in Australia, where it takes the place occupied by Limnea elsewhere. But the Australian species are generally tery globose with short spires or with a peculiar elongation of the penultimate whorl, with a deeply impressed suture, and these features are not marked in the Tasmanian species. Their furm rather approximates to the European and American types. The only exception is in P. citiata, which has a short. syire, and in the Bruni Island variety a globose habit. Those from Lake Dulverton are not globose. This species is also romarkable for leing clothed with long reddish hairs in its yomis state, a feature not seen in any other of its congeners exwly one from Indiat. It is very strange that this species is only fiund iu Lake Dulvertou and Bruni Island, places more
than eighty miles apart, and separated by an arm of the sea. In Lake Dulverton is found P. mamillata, which is also found in Bruni Island. I may here remark that a variety or the latter exactly corresponding with Sowerby's P. attenuata is found in the same lake, and though described as coming from Australia, Mr. W. Legrand assures me it came from Lake Dulverton, as it was sent to Mr. Sowerby from Tasmania by Mr. Legrand. Under these circumstances, the species and name should be suppressed, but the matter is one for Australian naturalists. The common Physa of Tasmania I have named P. tasmanica. It varies very much according to the place in which it is found, and is closely allied to P.fontinalis of Europe. The number of Physas (12) for such a small island is very large, and it may be that some of the species will yet need reduction, yet it must be remembered that Tasmania is an extremely mountainous country. The ridges acting as complete barriers between different parts of the island.

The genus Bythinia contains species which may possibly need further reduction. Some authors have referred those species, of which the Tasmanian creeks, etc., are so full, to the genas Paludestrina. Under the head of that genus I have given my reasons for classing them as I have done. The partly calcareous operculum appears to me, in the absence of the animal, decisive of the point. Two species of Paludestrina have been described by Mr. Brazier as from Tasmania in the Zoological Society's proceedings, but I have never been able to find any collector who has seen them. I therefore conclude there is some mistake in the habitat. Nevertheless I have included them in the list, hoping that future investiga. tions may throw some light on the point.

The four species of Limnea do not call for any remark except that they are local and very distinct from any European or Australian congeners.

The two species of Ancylus are very remarkable, in fact, Tasmania can boast of the largest and finest species of Ancylus known, being so distinct from every other species, that at one time it was proposed to erect a separate genus for its reception. The other species in no way resembles it, being small and inconspicuous.

The other genera have nothing peculiar about them. They are the representatives of European species in our streams. It is said that our Pomiatopsis is found in Australia, but as there it is claimed as a Blanfordia, the indentification is doubtful.

It is remarkable that there is only one Unio in Tasmania, and that is entirely restricted to rivers emptying themselves on the north side of the island.

Altogether the fresh water shells of Tasmania present a novel and peculiar character which, when carefully studied, may help to explain much of the distinctive zoology and geology of the island. So far as my observations go, itg results seem more adverse than favourable to the Darwinian hypothesis, but the nature of this paper prevents my stating at any length the reasons which incline one to this opinion.

UNIVALVES. ANCYLUS. Geofrroy, 1767.

(Traite des coquilles de Paris par Etienne Louis Geoffroy, Paris, 1767.)

Testa tenuis, oblique conica, apice acuto, posterius inflexo, apertura ovali ; marginibus simplicissimis.

Shell thin, obliquely conical, apex acute, posteriorly inflated, aperture oval with quite simple margins.

These freshwater limpets are air breathers, and not numerous in species. They are found, says Mons. Bourguignat (who has made the genus the subject of a most elaborate paper in the Zool. Soc. Proceed. for 1853 p. 77) in all the great divisions of the world, but the section Velletia has hitherto only been found in Europe. About 50 species are known.

Ancylus cumingianus, Bourguignat (loc. cit.) A. testa antice gibboso-convexa, postice concava, apice recurvo, contorto, ad marginem aperture lateralem dextrorsus dejecto, ac duos anfractos prebente; anfractibus depressionem apicalem convexitate penultimi obtegentibus. Testa parum diaphana, levi vel striata, presertim ad aperturam; anfractibus apicis sepissimi rujoso-radiatis; epidermide supra cornea ${ }^{2}$ el virescente, intus albida; apertura subangulato-rotumdata.

Shell gibbosely convex anteriorly, posteriorly concave, apex recurved, twisted and dextrally turned down to the lateral margin of the aperture, so as to make two whorls; whorls covering the apicial depression by the convexity of the penultimate. Shell slightly diaphanous, smooth or striate about the aperture, the apicial whorls very often rugosely radiate, epidermis greenish or horny above, white within ; aperture subangulately rounded. Length 6-7. Breadth, $5-5 \frac{1}{2}$. Alt., $2 \frac{1}{2}-3$ mill. But specimens have been placed in my hands by Mr. Legrand of nearly double this measurement.

This species is truly the finest Ancylus known, having no congeners in auy way approaching it. Latia neritoides of New Zealand may be compared with it in some respects. Its peculiar features are its size, the excessive deviation of the apex, its peculiar spiral apex, its mode of growth and the form of its aperture. These separate it completely from all species hitherto known. Habitat, in streams between New Norfolk and Hamilton. The large ones referred to from a small

Stream running into the Derwent near Dunrobin.- R. Maddoc\%.

Ancyles tasmanices. n.s. A. teste parra, ol,longo-orata, diaphana, cornea, conrentrico striata, et subtillisime rugoso-raliata, epidermide Migro plus minusce induta et muculata, apice obtuso, postico ; apertura yostice subatenuata.

Shell small, ovate, diaphanous horny, concentrically striate and very faintly rugosely radiate, more or less covered and spotted with a black epidermis, apex obtuse, posterior aperture subatienuate posteriorly. Long., $3-3 \frac{1}{2}$. Lat., $1 \frac{1}{2}-2$. Alt., $1 \frac{1}{2}-2$.

Common near Hobart Town in streams, on stems of watercress (Nasturtium officinale.)

LIMN.EA. Lamarck, 1799.
Testa oblonga, interdum turrita ; spiva exserta, apertura integra, lonyitudinalis. Latruin acutuin, inferné ad simistram recertens et riserudens, in columellom rersus aperturam decurrit, plicamque obliquam mentitur. Operculum nullum. Hist. Nat. des Anim. s. Verteb. 2 edit par Deshayes et Milne Edwards. Paris, 1838.

Shell obloug, sometimes turretted, spire exsert. Aperture entire, longitudinal. Outer lip acute returning to the left, and ascending decurrent with the columella towards the aperture making a false oblique plait. No operculum.

The Limnex are world-wide in their distribution, and inhabit ponds, lakes, and running water. The species have a wide distribution, so that it is difficult to distinguish between those found in America and Europe. Sowerby says that the Australian species have generally an inflated form, while Lovell Reeve (Land and Freshw. Moll of Brit. p. 155) says, "InIndia, neighbourhood of Calcutta, the shell is cylindrically oblong. In Malayan Islands and Punjaub districts of India it is of a peculiarly silvery horny substance, marked with opaque white brown streaks. Western Asia, north of the Himalayas, over the whole of Europe, extending to Greenland, and over all the United States, the Limnex produce a dull horny malleated shell. The inland waters of Central America and Australia have few Limneæ. They are chiefly inhabited by Phyææ.

1. Linneea tasmanica n.s. P.testa temi,pellucida,eleganter pyramidata, corneo-fulca; spira elevata, acuminata, apertura longitudine, paulo superanti; anfractibus (5-S) obliquis; ultimo anfracto inflato: apertura late ocata; labio externo temuissimo, fragilis; labio interno suberpanso, plica inconspicua, columella alba, vis contorta.
P. shell thin, pellucid, elegantly pyramidal, horny fulvous; spire elevated acuminated, aperture little larger than the
apire, whorls 5 to 8, oblique, last whorl inflated, aperture widely orate; outer lip extremely thin, fragile ; inner lip somewhat expanded, columella fold inconspicuous; columella white, scarcely twisted. Long. 25. Lat. 12. Apert. 15 mill. But this is a large size.

Habitat.-Everywhere in South Tasmania about Hobart. This shell is very like Limncea stagnalis, Linn, but the spire is not so attenuated, the aperture not nearly so expanded, the columella fold is inconspicuous, the columella white, and the shell much smaller and thinner. It also comes near some American species.
2. Limnea hoomessis. L. testa temussima, pellucida, nitida, aentricosa, pullide cornen, rectinselu, spira brevi, acuta; anfractibns
 plica contorta, columella arcuato.

Shell very thin, pellucid, shining, ventricose, pale horny, rather straight, spire short, acute, whorls 4, penultimate whorl rounded; last whorl large, concave behind the columella, aperture ovate, produced; outer lip very thin, acute; inner lip expanded, fold twisted, columella arched. Long. 8. Lat. $4 \frac{1}{2}$. Apert. 5 mill.

Habitat, River Huon, upper part, Craycroft River, \&c. This very interesting species comes somewhat near L. pinguis of America.
3. Limnfa hobartonensis, n.s. L. testa rentricosa, subumbioirata, oblique, pallide-cornea, spira brexi, anfinctibus 4, duobus apicalibus purris, rotundis, premultimo majuseulo, ultimo influto; post collumullam concuro, apertura obliqna, pyriformi, antice oblique ervensist ; lubio esterno tenni; lubio interno vi.e expanso, plica qutusi olsoleta.
L. shell ventricose, subumbilicate, oblique, horny, spire short, whorls four, the two apicial ones small, rounded, the penultimate somewhat larger, the last inflated; concare behind, the columellar aperture pyriform, obliquely expanded in front, outer lip thin, inner lip expranded, columellar plait almost obsolete. Long. 11. Lat. 8. Aperture 9 mill.

Habitat, very common about waterworks near Hobarton. Closely allied to preceding, but the spire is more conspicuous and the shell oblique, more solid, and altogether larger.
4. Limsma laterbstonensis a.s. L. teste tomissime, pellucide,

 eitnou copunse, arnto, jragilis ; columelle arcuate, plice inconspicua.

Shell very thin, pellucid, white, very shiny, ventricose, somewhat straight, spire short, acute, whorls four, last large, concare behind the columella; aperture pryiform; outer lip
expanded, acute, fragile; columella arched, plait inconspicuous. Long. 15. Lat. 9. Aperture 11 mill.

Habitat, Creek near Launceston. While in habit this shell much resembles the two preceding it is larger and of shining white or silvery lustre. I also think that there are signs of a band circling the shell formed by two parallel lines.

PHYSA.

Genus Physa Draparnaud. Hist. Nat. des Moll. de., de la France, 1805.
Testa fluviatilis, cornea, tenuis, spiralis, sinistrorsa, plerumque ovato-acuminata ; labio externo acuto, simplici; labio interno expanso, cum columellu continuo; columella contortu, uniplicate, operculum nullum.

Shell fluviatile, horny, thin, spiral, sinistral, generally ovate, acuminated; outer lip expanded, continuous with the columella; columella tortuous, singly-plaited. No operculum.

The Physæ may be considered sinistral or reversed Limneadæ. They are most numerous in warm countries, but are found in Britain. The usual species are found in Europe and South Africa, and they prefer running streams.

1. P. aperta, P. testa parva, brevi, ovata, inflata, epidermide olivaceo-fusca induta; spira brevissima, anfractibus duobus, ultimo inflato, superne sub-gibboso; apertura magna, lata, intus sub corulea, columella contorta, plica prominula.

Shell small, short, ovate, inflated, covered with an olive brown epidermis; spire very short, with two whorls, last whorl inflated, rather gibbous above : aperture large, broad, bluish within, columella tortuous, fold rather prominent. Sowerby, in Reeve's Icon. Plate xi., figs 88, a b.

Habitat, creeks between Hamilton and New Norfolk, Tasmania.
2. P. eburnea. P. testa gracili, oblipua, subfusiformi, polita, alba, fulvescenti, semipellucida; spira acuminata, quam apertura longiori ; anfructibus obliquis, declivibus, attemuatis; apertura brevinscula, subauriformi, intus fusco rubescenti; columella contorta, alba medio interdum incrassata.

Shell slender, oblique, rather fusiform, polished white fawn, semipellucid; spire acuminated, longer than the aperture, whorls oblique, sloped, attenuated; rather short, subauriform, reddish brown within, columella tortuous, white, sometimes thickened in the middle.

Sowerby, in Reeve's Icon. Pl. xi., figs 89 a. b.
Habitat, creebs near Launceston.
3. Physa mamillata. P. testa elongata, fusca, antice subexpansa; spira quam apertura breviuscula ; anfractibus apicalibus
mimutis, antmimutis, anteponultimo inflato gibboso, penultimo inflato,

 temui, contorta, plica elevata.

Shell elongrated, brown, anteriorly somewhat expanded, spire a little shorter than aperture, spiral whorls minute, acuminated, antepenultimate inflated, gibbous, penultimate intlated; last whorl attenuated subcylindrical, anteriorly obliquely rather expanded, aperture oblong, rather violet within, columella thin, tortuous plait elevated. Length 27 ; breadth at aperture 7 mill.

Sowerby, in Reeve's Icon. Pl. xi., fig 90.
Habitat, Lake Dulverton.
4. P. nitida. Sowerby. P. testa parva, subfusiformi, pallide fulea, lecrigata, whigna; spira brerinscula, anfrac. apisalibus acuminutis, puris, penultimo influto; ultimo unfruc. orceto, tumidiuseulo, antice rotumdeto; aperture onato, columella contorta, plice inconspicra.
P. shell small, subfusiform, pale, fulvous, smooth, oblique; spire rather short, spiral whorls acuminated, small, the penultimate inflated; last whorl ovate, rather tumid, anteriorly rounded; aperture ovate, columella tortuous, plait inconspicuous. Length from 6 to 9 , breadth from 3 to 4_{3}^{2} mill.

Reeves' Icon. Pl. xii., figs 98 a. b.
Habitat, in creeks S. E. Tasmania.
5. P. bruniensis. Sowerby. P. testa parva, oblonga, angusta, pellucidu, nitenti ; spire breriuscula, unfrue. S, distinctis, prope suturam gibbosis, ultimo oblongo ; aperture angustiuscula, columella tenuissima, plica, inconspicua.
P. shell, small, oblong, narrow, pellucid, shining; spire rather short, whorls three, distinct, gibbous near the suture, the last oblong; aperture, rather narrow, columella very thin, plait inconspicuous.

Habitat, Bruni Island. Reeve Icon., pl xii., fig. 99.
6. Physi vandifmenensis. Som. P. testa solida, subqualiata, fumbio-comen; spira breci, anfrac. paucis, subengelatis; ultimo anfioctu oblongo, pmope suturam angulato; apertura subiqualrata, intus obsmide jurpurascenti; lebio externo antice expenso, columella contorta, recurva.
P. shell solid, rather square, smoky horn color ; spire short, whorls few, subangular; last whorl oblong, angular near the suture ; aperture squarish, dull purplish within, outer lip anteriorly expanded, columella tortuous, turned backward. Length 17. Breadth 8.

Habitat, northern Tasmania. I have never seen this species.
Reeve's Icon. Pl. viii. fig. 57.
Suwerby remarks of this species that its oblong, square,
angular form is unusual in the genus, but that this only appears strongly in mature specimens.
7. Physa huonensis, n. s. P. testa, parva ovato-fusiformi, pellucidu, vitente cornea; spira subproducta; anfi. (5), upicalibus acuminutis, parvis, penultimo longiusculo; "4pertuice pivaluctu, auriformis; columella tenui, arcuata, plica vix visibilis.
P. shell small, ovately fusiform, pellucid, shining, horny; spire sub-produced; whorls (5) the spiral acuminated, small, penultimate somewhat long, aperture produced, auriform; columella thin, arched, fold scarcely visible. Long. 8, Lat. 3. Aperture, 4 mill.

This shell is very distinct from P. Uruniensis being larger and having the aperture regularly produced, but it has much the same habit.

Habitat, Huon River, near Victoria. Legrand.
8. Physa, legrandi. n.s. P. testa fusiformi, acuminata, temuiter striata, subpellucide, pullide fulva, in pertibus fusca ; spira producta, uttenmutce, apice acuminato; anfrac (6) obliquis, attenuatis; ultimo anficestu oblongo; apertura prohucta, anriformis, colomella arcuata, plica conspicua.
P. shell fusiform, acuminated, finely striated; sub-pellucid, pale brown, dusky in parts; spire produced, attenuated ; apex acuminated, whorls 6 , oblique, attenuated, last oblong; aperture produced, auriform, columella arched, plait conspicuous. Length 15, breadth 7 mill.

This shell, which may be a large variety of the next species, has the acuminate oblique habit, which may be said to be the typical form of so many Australian and Tasmanian species.

Habitat, creeks Cambridge, near Richmond, Tasmauia.
9. Physa tasmanica, n.s., P. testa ovata, temui, nitenti, pellucida, pallide fulva, rufe, fusco-subrividi, olicucea vel fusco-cornea, pallide lutea et subalba: spira brevi, acuminata; anfractibus (5) declivis; apertura obliques ; columello alba, temai, contorta, plica subconspicua; labio interno tenuissimo, recurvo, cum columella continuo.
P. shell ovate, thin, shining, pellucid, pale fulvous, or reddish or brownish green, or olive, or horny brown, occasionally pale yellow and alnost white; spire short, acuminated; whorls, five, sloping; aperture oblique ; columella white, thin, twisted, plaits rather conspicuous; inner lip very thin, recurved, and continuous with the columella. Length from 8 to 13 mill., breadth from $4 \frac{1}{2}$ to $7 \frac{1}{2}$ mill.

This shell which appears to have escaped the notice of previous naturalists is the common Physa of the country, and is found in all the inland streams. It is, however, so closely allied to the Physa fontinutis which is diffused over Great Britaiu and Europe that we may well doult if it be distinet. If not, has it beeu introduced? It is very hard to suppose
this secing the remote places where it is foumd. The shell varies much in color according to the locality. Specimens from streams near the Great Lake are reddish, those from the Clyde olive, and the Coal River specimens very varied. Five varieties, with many examples of each, were furnished me by Mr. Legrand. To jutse from the figure alone in Reeve's Icon. the species would be taken for P. nitida, but the latter is a much smaller shell, with a wider aperture and moro globose habit.
1). PhYsiciliata n.s. P. testie subomete, fusco-cornca, longitulinaliterstrintu, lineis spirulibus, subodistuntibus, cilutis, cimete; spirabreri, weruminuta, unficte. (i) decliris, pemultimo infleto; aperturesubocate, magna; columella alba, plica conspicua.
P. shell suborate, horny brown, striate lengthwise, girdled with spiral subdistant ciliated lines ; spire short, acuminated; whorls five, sloping, penultimate inflated, aperture subovate, large; columella white, plait conspicuous. Length 17 mill., breadth 8 mill.

Habitat, Lake Dulverton, and Bruni Island.
This ciliated form is quite exceptional in the genus, only one other being found in India. That species is, however, cancellate, and of a different color, with an angulated aperture, though in general form not unlike the present species.
11. Physa tasmanicola n.s. P. testa mimutissima, ovata, long: striutu, lutco-comen, pellucidu; spire brecinschlu, enfrec. (4) distinctis, decticis, ultimo oblongo) "preiture engustiuscula, columella tenui, plica inconspicua, labio interno cum columella continuo, recurvo.
P. shell very small, ovate, longitudinally striate, yellowish horny, pellucid; spire short; whorls four, distinct sloping; last whorl oblong, aperture rather narrow, columella thin, plait inconspicuous, inner lip coutinuous with the columella and recurved. Length 4, breadth 2 mill.

Habitat, found by the Rev. H. D. Atkinson in a water-hole, Mount Murray, East Coast.

This species is closely allied to P. Uruniensis but is a stouter shell, more globose, not gibbous at the sutures, and not with the peculiar shining brilliancy of that shell.
12. Physa hlontcola, n.s., P. testut fructilis, anyusta, fusiformi,
 แlliguis, upicalibus purvis, plice columelleri obsoleter ; labio esterno simuato; labio interno albo, reflexo.
P. shell graceful narrow fusiform, fulvous, shining, whitish within, somewhat solid, spire elongated, whorls (6) oblique, apicial ones small, columella fold obsolete ; outer lip sinuous, inner lip white, reflexed. Length 15 , breadth 5 mill. Proportionate length and width of aperture to whole dimensions, length 6-15, width 3-5.

Habitat, Upper Huon River. A very distinct fusiform species much larger and more solid than P. huonensis.

BYTHINIA. Gray. 1821.

Testa turbinito-conica sulnmbilicite, fulvo-viride,pellucide, luvigata enfructibus 5-7, plus minusce rotundietis, epidermidè obscuré comè̀ indùtis ; apertura pyriformé-ovàta, integrà.

Shell turbinately conical, subumbilicate, fulvous green, pellucid, smooth; whorls 5 to 7, more or less rounded; clothed with an obscurely horny epidermis, aperture pyriformly ovate, entire.

It has been generally believed that no Bythinia exists in Australia and Tasmania, and the shells here described have been classed by some naturalists as Paludestrina, D'Orbigny. This genus was, however, erected for semi-globose solid thick shells with a short obtuse spire, and a callous columella, with which description none of the following would agree. But they do agree with Gray's genus of Bythinia, especially in this that the operculum is partly horny and partly, as far as I have been able to ascertain, calcareous. This feature should, it seems, enhance the importance of the other details in assigning a true position to the shells. It is a fact, however, that we have in the freshwater streams of Tasmania many species of a univalve spiral shelled molluse so like the Bythinia of Europe, Ȧsia, North Africa, and North America, that I am forced to include them in that genus, and believe that Australia is not an exception to the world wide diffusion of Bythinia. The Tasmanian species are all very small.

1. Bythinia legrandi, n. s. B. testa minima, solidiuscula, elongato-conica, epidermide incompletre, obscure olicaceu, spira obtusa; anfractibus (5-5! !) rotundutis, avertnia producta integra, pellucida, margine acuto.

Shell small, somewhat solid, elongately conical, with an obscurely olive, incomplete epidermis; spire obtuse, whorls (5 to $5 \frac{1}{2}$) rounded, aperture entire, produced, pellucid, margin acute. Length, 2 ; breadth, 1 mill.

Habitat, Brown's River.
This shell is distinguished by its size, solidity, obtuseness, and few whorls. It retains these characters so constantly under every circumstance that it cannot be regarded as a mere variety.
2. Bythinia pontvillensis, n.s. B. testa turbinato conica, obitusa, pellucida, nitida, fulvo-comera epidermidé pallide lutea, anfiuctihus, (6) rotumatis, ultimo anfructu sub-inflato, apertura ovato, ab ultimo anfractu disjuncta.

Shell turbinately conical, obtuse, pellucid, shining fulvous, horny, with a pale yellow epidermis; whorls (6) rounded,
last whorl subinflated, aperture orate, disjoined from the last whorl. Length, 3 ; breadth, 1 mill.

Habitat, Jordan River, near Brighton. Augustus Simson.
A very distinct but small species, with the whorls sometimes almost entirely separate.
3. Bythinia dulvbrtonensis, n. s. B. teste turbinato-conica, fultet, epidermide allsa, spire whitusis, anfructilus (G) rotendatis; aperturic oratu, supermé angulatu, integra, ab cenfractu distinctu, intus albida.

Shell turbinately conical, fulvous, with a white epidermis; spire obtuse, whorls (6) rounded, aperture ovate, angulated above, entire, distinct from the whorl, whitish within. Length 3 ; breadth 2 mill.

Habitat, Lake Dulverton. More turbinate than any of tho preceding species. Under the microscope the epidermis is found to consist of small, oval, silvery scales.
4. Bythinia huonensis, u. s. B. testa elongata, pyramilutu, attcnuata, jumasio-corneea, nitidu, epidermidé fusce; spinire elevata acuminata, anfractibus (s) ris: obliquis, duohus apicalibus aliquando subinflatis, apertura pyriformi; labio interno reftexo.

Shell elongate pyramidal, attenuate, smoky horn, shining, with a blackish epidermis; spire elevated, acuminated, whorls (8), scarcely oblique ; the two apicial sometimes inflated, aperture pyriform; inner lip reflected. Length 4. Breadth $1 \frac{1}{2}$ mill.
Habitat, Huon River. A very distinct and interesting species, with a pyramidal habit.
5. Bythinia unicarinata, n. s. B. testa elongato-conica, temui, semi-pellucidu, fumuso-rornca, cufructibus (i) rotenulatis, drobus ultimis unicarinatis, carina intermpla; apertura ovata, integra crassiuscula.

Shell elongately conical, thin, semi-peliucid, smoky horn, whorls (6) rounded, two last with one interrupted keel; aperture ovate, centre somewhat thickened. Length 4. Breadth $1 \frac{1}{2}$ mill.

Salmon Ponds-Not common.
6. Bythinia duxrobinesisis, n. s. B. testa clonyuto-pyrimiduta, temini, prllucilu, ulbida, epidromidé pullide rufa rel atra muculatu; anfimithes (i) planatis regulariter decreseentibus; spira obtusa; apertura pyriformi, integra; labio interno superné reflexo.

Shell elongately pyramidal, thin, pellucid, whitish, spotted with pale or black epidermis; whorls (6) regularly decreasing; spire obtuse, aperture pyriform ; inner lip reflected above. Length, 3 ; breadth, 1 mill.

The Ouse near Dumrobin. A pale narrow shell longer and more slender than any of its congeners.
7. Bytursia thishasic., n.s. B. teste turbinato-conica, solities*
rula, olidacea; drasis squetinata, stpemis mimetissimis, niticis, oretis; spira ucuta ; ronfractilus (i) rotundutis, reguluriter ducrescentibis; apertura integra, ovata.

Shell turbinately conical, somewhat solid, olive, thickly covered with very minute shining ovate scales; spire acute; whorls (6) rounded, regularly decreasing, aperture ovate, entire. Length 4, width 2 mill.

Habitat, creeks throughout Tasmania. In old specimens especially near Hobarton the scales are a good deal hidden by green deposits of confervoid spcres.

POMIATOPSIS. Tryon.

(Contributions to Conchology. New York, 1862.)
Testa prova temu, Ioviguta, elongata, sulmmbilicatu; spira turitu, apertura ovata; labio inter no reflexo. Operculum corneum.

Shell small, thin, smooth elongate, sub-umbilicate. Spire turreted. Aperture ovate, inner lip reflecterl. Operculum hormy.

1. Pomiatopsis striatula. Menke (Moll. Nov. Holl. p. 9. Cox. mon. 1862 p. 95. Pl. xv. fig. 13 a.b.c.) P. testa pyramidata (scope truncata), temui, opaca, carneo-alba, intus rufo-fulva; anfractibus rotundutis, regulariter decrescentibus; spira obtusa; apertura ovata, crassiuscula, integra ; labio interno ab enfractu ultimo disjuncto.

Shell pyramidal, often truncate, thin, opaque, fleshy white, inside reddish brown, whorls (6) rounded, regularly decreasing, spire obtuse, aperture ovate, somerhat thickened, cutire, inner lip distinct from the last whorl. Length 7, breadth 3 mill.

Habitat, Muddy and Clarence Plains, Rev. H. D. Atkinson. This shell was described as Blanfordia by Dr. Cox, as it was thought to be a land shell, but the Pomiatopsinæ are amphibious. This specimen is said to be found in South Australia, Victoria, and elsewhere. I believe I have found it in the interior of the continent in freshwater swamps in the Murray deserts, South Eastern district, \&c.

ASSIMLNEA. Leach.

(A synopsis of Moll. of G. Brit. Lond., 1820.)
Testa pyramidè-conicu, soliliussula umbilicata, umlilico purno et, ferè occulto; anfractilnes lavigatis declivis ronveris ad basim obtrosè angulatis apertura intespo, al anfr. ultim. wherenti, columella temuiter callosa. Operculum corneum.

Shell pyramidally conical, somewhat solid, umbilicate, umbilicus minute, small and nearly hidden, whorls smooth, sloping convex, obtusely angular at tho base, aperture entire, ad-
hering to the last whorl. Columella thinly callous. Operculum horny.

Assiminea was first diseovered in the Bay of Naples and afterwards in Britain. Several allied forms oceur in India and China. There is a globose form in Chili, and the genus appears to be represented by Ammicola in N. America. But as the determination of the genus rests more upon the structure of the animal than the shell, and as the now European species have not been examined, the identification must remain doubtful. For the information of observers who may pursue the subject, the following is the description of the animal. Body small; head prohluced into a ringed muzzle notched in front, tentarles short, united with the eye pedicels and bearing the eye at the summit, foot ample, broad in front, short and rather obtuse behind, carrying a slight horny, few whorled operculum.

 acuta; anfractibus (5) planatis, apertura fulvec.

Shell turbinately conical, small, opaque, pale green, fulvous within with an olive epidermis (often corroded), spire acute, whorls (5) flattened, aperture, columella, and callosity fulvous. Length 4, breadth 2 mill.

Habitat, Sorell, a somewhat solid shell with much the habit of a small Littorina.

PLANORBIS. Guettard.

(De la Classification des Coq. Paris 1756.)

Tistu disenideu, spiru depressa ris priminulu; anfrectibus omnibus
 margine numquam reftexo; operculum mullum.

Shell discoid, compressed, spire scarcely prominent, whorls all visible on both sides. Aperture oblong, remote from the axis, margin never reflected, no operculum.

Freshwater shells of world-wide distribution. The species also have a wide range. More than 100 are kuown and they are very abundant in America. The variations from the typical form are not numerous. There are two or three known in Australia but only one in Tasmania, and this appears to have escaped previous observers.

1. Plamoreis tasmanieces n.s. P. disooidou, mimitu, plumuta, temuis, sippines ammat, inforne umbilicatu, confortim simuato-striutu,

 simples simuato. Diam. maj. 5, alt. 1, min. $3 \frac{1}{2}$ mil.

Shell discoidal, minute, flattened, thin, convex above, umbilicate leclow, thickly sinuately striate, shining pellucid, pale
horny ; whorls 4 to $4 \frac{1}{3}$, convex, dilated at the base, suture deep, aperture ovate, oblique, peristome simple, sinuated. Diam. 5., base $3 \frac{1}{2}$, height 1 mill.

Habitat, still waters throughout the island.

PALUDESTRINA.

Under the head of this genus Mr. Joln Brazier, C.M.Z.S., has described the following species (See Proceedings of the Zoological Society of London, for the year 1871, page 696, "Descriptions of seven new species of Helix, and of two fluviatile shells from Tasmania, by John Brazier, C.M.Z.S.) :-

Paludestrina legrandiana.-Shell elongately conical, thin, semi-pellucid, greenish horn color, under a dark epidermis; whorls $6 \frac{1}{2}$, somewhat flattened, the last three keeled between the suture, and furnished with small, solid, stunted hair-like spires, (as seen under the lens) of a bright, transparent horn color, flattened on the top; aperture ovate, margins continuous, thickened, outer lip reflected. Length $2 \frac{1}{2}$ lines. Breadth $1 \frac{1}{4}$ lines. Hab., Salmon Ponds, New Norfolk, Tasmania (Legrand.) This species is allied to Paludestrina Salleana, Fischer from Auckland, New Zealand.

Paludestrina wisemaniana. - Shell elongately conical, thin, semi-diaphanous, epidermis light green; apex acute; whorls 6 to $6 \frac{1}{2}$; convex smooth, grooved at the suture; aperture ovate; margins continuous, moderately thickened, columellar margin reflected, outer lip edged with green and reflected. Length 2 lines. Breadth 1 line. Hab., near Hobart Town, Tasmania, common in all creeks. Legrand and Petterd."

So far Mr. Brazier, but I must add that I have been unable to find either of the above shells nor anything resembling them in Mr. Legrand's extensive collections. I am unable to communicate with Mr. Brazier, as he has sailed for New Guinea in Mr. McLeay's expedition. I am obliged, therefore, to conclude that some mistake has occurred in transmitting the specimens. No such shells exist in Tasmania as far as at present known.

BIVALVES.

UNIO. Philifpson.

Unio moretonices, Sow. U. trsta late oldonyu, lutere antion declicirotumblato, postico oblique angulato, deinde oblique truncuto; fusco nigricante.

Sbell broadly oblong, anterior side slopingly rounded, posterior obtusely angled, then obliquely truncated; fuscous black. Iength 70, breadth 41, height 30 mill.

Tasmania, in the northern rivers, but not in the southern. The name has been applied under the idea that it is found in

Moreton Bay, Quecnsland, which is not the ease. It appears that young specimens of Unio cucumoides, which occurs there rery much resemble our species. This is probably the origin of the erroneous habitat in Reeve. It would be rather singular to find a Tasmanian species in a river on the Australian continent more than 1,400 miles away, and in no intermediate locality.

PISIDIUM. Pfeiffer.

(Systematische Anordnung und Beschreibung Deutscher Land und Wasserschnecken, むc., Cassel et Berlin 1821-28, 3 vols. 40.)
Testu temnis aب̧uimalcis, inuquilateralis, anticé productu, epidermide oliecceo-corneet indutu, concentricé rugose vel striatu, intus albidn, umbenibus prominoutibus, tumidis, ligumentum subexternum, inconspicuum, latere minore insertum; dentibus cordinalibus minimis, in utreique calra duobns divergentibns, in una valva binis, subdistentibus subelongutis; in altera quatuor duobus veré exignis; impressionibus musculerihus duobus, luteratibus ; impressione pallii sime nullo.

Shell thin equivalve inequilateral, produced in front, covered with an olive epidermis, concentrically rugose or striate, whitish within, umbones prominent, tumid, ligament subexternal, inconspicuous, inserted in the shorter side, with two small hinge teeth in each ralve, one of which is double in one valve, lateral teeth distant and somerwhat elongate, muscular impressions two, with no pallial sinus.

This genus was separated from Cyclas on account of the difference of the siphonic tubes, and of the shells which in Pisidium are smaller, with the anterior side the longer, and the ligament on the shorter side.

They are found throughout Europe abundantly, but the foreign species are not well known, though India and New Zealand both possess species.

Pisidiem thsmanicem, u.s. P. testa orlienlato-orata, temuis, rentricosa, pellucida, albila, regulariter concentricé striutu, inquilutcratis, utrinque rotumbata ; latere entico sulproducto, postico obtuse rotundeto, umbonibus obtusis, ligamentum inconspicuum.

Shell ovate, thin, ventricose, pellucid, whitish, regularly concentrically striate, inequilateral, or rounded on both sides; anterior side subproduced, posterior rounded obtusely, umbones obtuse, ligament inconspicuous. Length from 2 to 4 ; breadth $1=$ to $2 \frac{1}{2}$; height 1 to 2 mill.

Habitat, Brown's River, Great Lake, Lake Dulverton, Dunrobin, and creeks near Hobarton. A small fragile shell in which the epidermis is not easily discovered. The specimens vary in size, and those from the Lakes are larger, a little more oblong, with shades of smoky horn, but I hare never seen enough divergence of character to warrant the erection of more than one species.

Pisidiuil dulvertonensis, n.s., P. ovata, temuis, rentricosa, rufofulva, nitida, regulariter concentrice striata; inequilateralis, latere antiro pionlucto, sulumpulato; postice obluse iotumlato et sulumgulato; umbonibus prominentibus.

Shell ovate, thin, ventricose, fulvous-red, shining, recrularly concentrically striate, inerpuilateral, anterior side produced, subangulate, posterior obtusely rounded and subangrulate, umbones prominent. Length 7 ; breadth $5 \frac{1}{2}$; height, $3{ }_{3}^{1}$ mill.

This remarkable species is mach larger and different in color from the preceding. It is more angular in outline and more oblong. Like all the species from Lake Dulverson it is quite restricted in its habitat.

CYCLAS. Klein. (pars). 1753.
Testre ut supree (vide deseript. Pisid. generis) ligamentum teinen latere majore insertum.

Shell as above in Pisidium, but the ligament is inserted in the longer side.

Cyclas tasmanica, n.s. C. testa subquadrata, ventricosa, tenui, nitida, cameo-lutea, intus alba; eleganter striata; sulcis 3 vel 4 transcersis, subcoloratis; umbmibus prominentibus sub-obliquis.

Shell subquadrate, ventricose, thin, shining, fleshy yellow, white inside, elegantly striate, with 3 or 4 silver-like bands of colour which are lines of growth. Umbones prominent, suboblique. Length 9. Breadth $7 \frac{1}{2}$. Height 5 mill.

Habitat, east coast, near Swansea. A very remarkable but somewhat small Cyclas, the only one known in Tasmania.

The following Valvata wes found hy Mr. Augustus Simson in a small trickling stream in Gould's Country, north-eastern Tasmania. It is the first Valvata known in the island, or in Australia.

Valvata tasminica. n.s. V.t. minuta,globosé turbinata, profunde lateque umbilicata, pallide comea, epidermide atrato maculata, solidiuseula, semipellucile; unfiactibus 4, roturlatis, tenuissime undulosé striatis, ad suturas subecmaliculatis; apertura semilunari, refleva, postice angulata; labro medio producto, antice subeverso; labio recto tenui; umbilico marginuto. Opercuhum corneum, otale, spirale.

Long. 1. Lat. 1, millimeter.
V. shell minute, globosely turbinate, deeply and widely umbilicate, pale horny, spotted with a blackish epidermis, rather solid, semipellucid, whorls 4 , rounded, faintly undulately striate, subcanaliculate at the sutures; aperture semilunate, subreflexed, posteriorly angulate, outer lip produced in the middle, subeverted anteriorly, inner lip straight and thin, umbilicus margined. Operculum horny, oval, and subspiral.

SEPTEMBER, 1875.

The usual monthly meoting of the society was hold on Monday, the 13th September. M. Allport, Esq., V.P., in the chair.

The following returns wore brought under notice:-

1. Visitors to Museum during August, $1,253$.
2. Ditto to Botanio Gardens, 3537.
3. Plants recoived at gardens:-From Captain Willet, 74 packets of imported seeds. From the Dolroyd Nursery Company, Sydney, 32 plants. From S. B. Heyne, Adelaide, 8 packets seeds. From Messrs. Shepherd and Co., Sydney, 60 plants.
4. Plants, etc., sent from gardens:-To the Botanic Gardens, Christchurch, New Zealand, 90 plants. To Dobroyd Nursery, Sydney, 32 plants. To Botanic Gardens, Adelaide, 100 packets seeds. For the grounds of St. David's Cathedral, 114 plants.
5. Time of leafiing, etc., of a few standard plants in Botanic Gardens during August.
6. Books and periodicals received.
7. Presentations to Museum and Library.

Metcorological Returns.

1. Hobart Town, from F. Abbott, Esq.--Table for August.
2. Port Arthur, from J. Coverdale, Esq.-Ditto July.
3. From the Marine Board.-Mount Nelson table for August; Swan Island ditto for June and July.
4. From the Government Observer, Melbourne.-Table for March.
5. From ditto, Sydney.-Tables for May and June.

The presentations to the Museum and Library were as follows:-

1. From P. T. Smith, Esq.-A Musk Duck (Biziura lobata), shot at Cleveland.
2. From Mr. E. P. Cotton, Swansea.-A young Tippet Grebe (Podiceps Australis).
3. From MIr. John Crawford.-Specimen of Flax from the Huon, grown and prepared by the donor.
4. From C. E. Hogg, Esq.-Specimen of the paper-like bark of a species of Melaleuca, from Lake Hindmarsh, Victoria.
5. From Mr. W. E. Baynton, Kingston.-A collection of the stone implements of Tasmanian Aborigines from that district.
6. From Mr. S. H. Wintle.-Specimen of Bismuth from Mount Ramsay; tin bearing wash dirt and porphyry, cassiterite on sandstone, etc., from George's Bay. Skin of an echidna.
7. A Japanese bronze coin, value about one penny, and a note value 10 cents.
8. From Mr. W. Parker, Lewisham.-A curious growth, known as "arching" of branch of gum tree.
9. From Mr. E. Gard, Sorell.-A Ferret.
10. From G. Bennett, Esq., M.D., F.L.S., F.Z S., Sydneg.-A large collection of bones of fossil mammals from Gowrie Creek, Darling Downs, Queensland, viz. :-Fossil Kangaroo-16 Vertebræ; 7 fragments of Pelvis; 5 ditto Tibia; 1 ditto Radius; 2 ditto Humerus; 1 ditto Scapula; 2 bones of Foot; 1 fragment of Femur ; 2 ditto of Jaw ; 1 bone of Sternum; 5 Ribs. Fossil Wombat-1 Upper Jaw; 2 Vertebræ; 1 Radius. Diprotodon-Portion of Skull; Lower Jaw; 9 Vertebre; 4 fragments of Pelvis; 10 Ribs; 1 Humerus; 1 fragment of Tusk. Nototherium-1 Jaw.
11. From T. Stephens, Lisq.-Three specimens from the prospeeting shaft, Spring Bay. In reference to this presentation the following remarks by the donor were read:-
["These specimens have been kindly furnished by tho Hon. C . Meredith. The coal, which was struck at a dopth of about 120 foet,
is a slaty anthracite, containing some calcite, liko the Jerusalem coal, and a little sulphur. It is of no value, owing to the thinness of the seam8 or 9 inches. The specimen of shale (No.3) was met with at about 140 feet. It contains numerous vegetable impressions, but they are so much confused and obliterated that I can only identify a fragment of Pecopteris Australis. So far as the evidence goes, there is nothing to discourage the promoters of this enterprise; but if they do not strike what is known as the 5 ft . seam, at a depth of 180 to 200 feet, the inference will be that they are too low down in the series, and they should look out for a locality in which there has been less denudation of its upper members."]

Presentations to the Library-

1. From Dr. Agnew.-Journal of the Archeological Society of Ireland, Nos. 13 to 19, and part 4 (plates).
2. From the author, Baron F. von Mueller, on the part of the Government of Victoria-" Fragmenta phytographiæ Australiæ, vol. 8.
3. From the Government of New Zealand.- "Transactions of the New Zealand Institute," vol. 7.
4. From the author, J. Wood Beilby, Melbourne.-A pamphlet on mining for gold and coal.
5. From the Royal University of Normay.-Sundry publications on Geology, Entomology, Egyptian inscriptions, etc.
J. R. Scott, Esq., MI L.C. read an account of a visit made by him to Port Davey in March last. This exceedingly interesting paper was listened to with marked attention. It was illustrated by sketches of the local scenery, the "piners" huts or "Badger Boxes," etc., and also by a large and very well executed chart of Port Davey and the surrounding country, drawn by Mr. Scott himself, partly from personal survey, and in part from the Government map of the country.

The Rev. Julian Woods drew attention to some remarks made by him at the previous meeting with reference to certain flint implements, and the antiquity of cave remains. What be intended to convey was not so much his own opinion as that of eminent geologists, whose conclusions on these subjects had undergone considerable modification of late years. He was only citing the observations of Prof. Prestwich in his inaugural address on assuming the professorship of geology at Oxford on the 29th of January of this year; in which, referring to the theories of other geologists, and to the philosophy of Hutton, Playfair, and their successors, Mr. Prestwich said it is a question whether the license which was formerly taken with energy is not now taken with time. The points at issue are, first, whether our experience on these questions is sufficient to enable us to reason from analogy; and secondly, whether all changes on the earth's surface are to be explained by the ageney of forces alike in kind and degree with those now in action. Mr. Prestwich then states his reasons for answering these questions in the negative. He (Mr. Woods) merely drew attention to the fact of a race using flint implements having become extinct within the last 60 years as a case in point.

Mr. Rule took occasion to remark with regard to the cave at Brixham, mentioned last month, as one of the evidences of the great antiquity of man, that the stalagmite forming the floor was only one foot thick, not many feet, as the published report represented him to have said. He added that the thickness of the floor was not the only indication of the remote period when the cave-dwellers lired, for underneath was a bed of loam fifteen feet deep, beneath that a bed of gravel deeper still, and some of the flint implements were found at the bottom of all. Moreover, the cave was on a hill side, a hundred feet higher than the present beds of the neighbouring streams, which, since the water deposits in question, appear to bave worn down their beds to that extent. This process (the
formation of ravines by running water) must, under ordinary circumstances, occupy an enormous period of time.

After some further conversation on the subject, in which the Chairman and Messrs. (Grant and Woods took part, Mr. Barnard moved that the cordial thanks of the meeting be given to Mr. Scott for his highly interesting paper. Ho would also include a special vote of thanks to Dr. Bennett for the large and valuable selection of Queensland fossils, with which he had enriched tho museum.

The motion was carried by acclamation, and the meeting closed with the usual acknowledgement to the other donors of presentations.

OCTOBER, 1875.

The monthly evening meeting was held on the 12 th Octuber, the Lord Bishop of Tasmania in the chair.
A. B. Crowther, Esq., who had previously been nominated by the council, was, after a ballot, declared duly elected as a Fellow of the Society.

The Secretary brought under notice the usual retums for the past month, viz. :--

1. Number of visitors to Museum, 1,194.
2. Ditto to Gardens, 3,532 .
3. Time of leafing, flowering, etc., of a few standard plants in Botanic Gardens during September.
4. Plants received at Botanic Gardens.
5. Books and periodicals received.
6. Presentations to Museum and Library.

Meteorological Returns.

1. Hobart Town, from F. Abbott, Esq., table for September.
2. New Norfolk, from W. E. Shoobridge, Esq., ditto.
3. Mount Nelson, from Marine Board, ditto.
4. Swan Island, from ditto, table for August.
5. Port Arthur, from J. Coverdale, Esq., ditto.

The presentations were as follow :-

1. From Mr. King-A large Tiger Cat (Dasyurus maculatus.)
2. From Mr. J. G. Lindsay-Specinen of Lewin's Water Rail (Rallus brachipus), caught in a garden at Launceston.
3. From Mr. R. B. Dyer-A Fish washed on shore at Battery Point.

With reference to this presentation Mr. Allport said it was known as the "Frost Fish" (Lepilotus caudatus) in New Zealand, and derived its trivial name from the fact that numbers were frequently found on some of the beaches after a frosty night. It is said to be the liest edible fish of New Zealand, being seldm sold at less than 2s. Gil. per lb. The specimen is the first recorded as found in this colony. [For description of the "Frost Fish" see "Catalogue of Fishes of New Zealand," by F. W. Hutton, F.G.S., pages 13 and 109, plate 3, fig. 19.]
4. From Mr. G. Peacock, Sorell-An albino variety of the common Pipit Lark (Anthus Australis).
5. From Justin Browne, Esq.-A sample of virgin Olive Oil from a plantation at Adelaide.
[The great purity of this oil, and its freedom from any disagreeable taste or odour, were noticed by several of the members.]
Donations to Library:-

1. From the Royal University of Norway-"Contributions to Fanna of Norway," "On Giants' Caldrons," "On Egyptian Inscriptions," " List of Norwegian Insects."
2. From the Meteorological Department, India-Bengal Meteorological Reports, 1867 to 1874 ; ditto Administration ditto, 1870 to 1875 ; Report of Midnapore and Burdwan cyclone.
3. From His Highness the Maharajah of Travancore-"Magnetic Ohservations taken at Trevandrum and Augustia Malley Observatory," Vol. I., 4to.
4. From the Hon. J. Whyte, Esq., M.L.C.-A copy of Governor Collins's "History of the Colony of New South Wales, from its first settlement in January, 1788, to August, 1801," published in 1804, one vol. 4to.
The Secretary ohserved that presentations of this nature were most acceptable. Books of every kind bearing on the earlier history of this or of the neighbouring colonies were much wanted, and as the Socicty was
quite malle to prome them hey purchase the likerality of such members as combld present them wouk always be very gratefully acknowledred.

Attention having leen called to the Hermariun recently arranged by the Rev. W. W. Spicer, of New Town, the following letter to the Secretary, from Mr. Spicer, was read :-

$$
\text { "Jutland, New Town, }{ }_{\text {" Oct. 9th, } 1875 .}
$$

"Dran Srr,--Some months ago I undertook to arrange and classify the collection of dried plants presented to the Royal Society by Dr. J. Milligan. My task heine completed I now return the collection to the Musem. I found the specimens to he well preserved as regards freedom from mould and the manges of insects; but they were in a state of thorough disorter, the species being in many cases mingled together, and no care having been taken to keep them under their respective natural orders.
"The collection consists of 468 species and varieties, comprised in 244 genera and 69 orders (i small proportion this of the whole of our native Flora, which, as at present known, contains nearly 1000 species, ranged under about 420 genera and 93 orders), but the plants included in it have a special value, hasing had the advantage of passing under the inspection of Baron ron Mueller, and many of them, I believe, having served as types to Hooker and Bentham, in working out the Flora of Tasmania and the Flora Australieusis. I should on this account propose that this collection of our indigenous plants, though small, be kept separate from all others; any future additions heing made supplementary to it. I hope myself to add a good many before the end of the summer But why should not an appeal be made to all who are interested in biological investigations to contribute to the Society what they can spare from their private collections? Many, no doubt, would be glad to do so, for the sake of the scientific purposes involved, were their attention drawn to the sulbject. There are two or three botanists of note in the north of the island. A gentleman in Hobart Town has offered me a number of dried plants which have been for a long period in his house, and are of no service to hin. I mention this circumstance as leading one to hope that other collections now hidden away in dusty closets might be brought to light, if it was known that the presentation of them to the Society would be accepitable. And if it was thought expedient to extend the appeal heyond the limits of Tasmania, I should imagine that Melbourne, Sydney, and New Zealand would be willing to aid us in forming a Herbarium more worthy of a Royal Society than the one we at present possess. Such an appeal, moreover, might be made to embrace other objects generally included in the desiderata of a Museum.
"In arranging Dr. Milligan's plants I have followed the scheme employed i, y Baron ron Mueller in his "Ceusus of the Plants of Tasmania, 1875 ;" and to a great extent, though not entirely, I have adopted his nomencla. ture. I have also placed within the upper cover of each fascicle that portion of the Census which relates to the orders contained in it, marking with a cross the species to be found therein, so that the student may ascertain at a glance the presence or absence of the plant he is in search of. I have been careful also to preserve the labels and other notes which I found in the original sheets. It has happened occasionally that the name I have hestowed diffiers from that given at first; in such cases I have thought it hetter to leave the original title intact, aud then future botanists can determine which is the more correct.
"With regard to the remaining botanical specimens in the museum, Mr. Roblin has brought them together, and 1 have given them a cursory examination. Speaking roughly the different collections (of which there are nearly thirty) amount to about 2000 species, of which some 1200 to

1500 are worth preserving. Many of these are valuable, while of cothers it may be said, the wonder is they ever found a lodging here at all! Not a few again, though well preserved have lost much of their value from the fact of their localities and other 'indicia' not having been preserved. • . . . Taken as a whole I think that the following may probably be made available, viz.: 200 Tasmanian, 300 Australian, aud 900 European.
"If the Society cares to have them arranged I shall be very happy to take the collections in hand, and to put them in what order I can.
"I remain, etc. etc.,
"W. W. Spicer."
The Secretary remarked that the letter had already been read before the Council, and the Council, fully recognising the great importance of the work done, had requested him to convey to Mr. Spicer their warmest thanks for his valuable services, and further to say that they most gladly accepted his very kind offer to classify and arrange the remaining plants in the museum. (General applause.)

The Rev. Julian Woods observed that Mr. Spicer, whose reputation as a botanist required no comment, had laid the Society under a great obligation. The Society was now fortunate in having such a Herharium, as it could be truly called a type collection-such a collection indeed as no other colonial society with which he was aequainted, possessed. He thought the suggestion thrown out as to an appeal for contributions of various kinds might be acted upon with great hopes of success. On former occasions he had spoken of the richness of the library in scientific works. There were some works however which might be advantageously exchanged. He had noticed in the Public Library a work which might thus perhaps be acquired, and which, though comparatively valueless where it is, would be an acquisition to our library. He referred to De Candolle's Prodromus.

The Secretary mentioned that his attention had been called to a paragraph in a recent Edinburgh paper which he thought was of sufficient interest to be brought before the Society as it referred to the apparently successful growth of the Blue Gum and other Australian trees as far North as the Isle of Arran, in the Frith of Clyde. Mr. Grant had suggested that the circumstances of the gum flourishing in such a latitude might be owing the local influence of the Gulf Stream. The writer says:"This winter has been sufficiently severe, and having visited Arran this week I give you the result. The Blue Gum (Eucalyptus globulus) unhurt, but the leaves a good deal browned; two varieties of the Weeping gum unhurt, but the points of the twigs slightly nipped; the Beef Wood (Casuarina equisetifolia) a good deal nipped; Acacia dealbata, untouched; Acacia melanoxylon, slightly browned ; Accacia stricta, slightly nipped; the great Australian bush fern (Dickisonia antarctica) untouched ; the silvered Tree Fern of New Zealand untouched; the fine Australian Palm (Corypha Australis), which grows in its native country to the height of fifty feet, untouched; a fine Myrtle (Myrtus communis) ten feet in height, untouched. Almost all these plants are standards. None of them had any protection save a few fern leaves around their roots."
E. C. Nowell, Esq., the Government Statistician, read an elaborate and carefully prepared paper "On the Vital Statistics of Tasmania, with especial reference to the Mortality of Children."

The Bishop expressed the great gratification with which he had listened to Mr. Nowell's paper. As a member of the Statistical Society of London, and a former secretary to the statistical section at one of the meetings of the British Association, he took great interest in statistics
in general: hat the suliject of the present paper was one whinh must he of importance to the community at large. His Lordship proceeded to comment upon several portions of the paper, especially in reference to the comparative number of children to adults in Tasmania, and in tho other colonies, ete. The writings of Dr. Hall, and papers snch as that hefore the meating, might have very important results, ats the question of making Hohart Town the naval station of the colonies may rest upon the proofs which we can give as to the salubrity of our climate.

Mr. Stephens doubted if, in the matter of the public health, 1875 was a desirable year for statistical purposes. He had never known so unhealthe a year thromghont the island. Epidemies of various kinds were continually oecurring in ditherent localities. Possibly they might, to some extent, have heen influenced by local circumstances, but the state of the weather, whether wet or dry, did not appear to have any influence, cither in promoting their occurrence or otherwise.

Mr. Nowell had no doubt that local circumstances exercised great influence, and mentioned instances within his knowledge in which two cases of diphtheria had oecurred in a family from imperfect drainage, and the health of the father had also suffered from the same cause.

Dr. Agnew knew the cases referred to by Mr. Nowell, and these were certainly not due to imperfect drainage. The father too harl suffered from a mere local affection which could not have been induced by imperfect drainage. He had, however, been informed by Dr. Butler that the outhreak of diphtheria at Brighton was undoubterly due to local causes. There, a great number of the inhblitants took their drinking water from a pool of the River Jordan (which was then not ruming) into which the drainage of many of the houses found its way from the high hanks in the inmediate vicinity; with this.s drimage of course human excreta and various other impurities were mixed.

Mr. Barnard had listened with great pleasure to the paper, but expressed the ditticulty which he in common with every one must feel in commenting upon papers which dealt so largely with figures. He suggested that papers of this kind shouk he printed and circulated among the members hefore being read. By this means only could a proper discussion be obtained, as it was impossible when masses of figures were in question to deal with them without previous study. As to the death rate of the culnuy, it was worth noting that the very salubrity of our climate might affect it unfavourably, because many invalids, attracted by this very salubrity, come here in the last stace of illness, and thus the deaths were increased, although it was evident that the climate was not in fault. He thought that good use might be made of the paper by the Immigration Board if they would dismeminate in proper quarters the valuable information it contained. It might assist in determining the selection of this port as a uaval station, which was a matter of considerable importance, as the presence of ships of war would probably lead to the local expenditure of about a hundred thousand pounds annually.

Mr. Rtese would only make one remark in reference to a point which had been casually alluded to during the discussion, viz., the establishment at Hobart Town of the naval station. No doult in a pecuniary point of riew this would be very beneficial, lut he feared that morally speaking it would be anything but an advantage.

The Rev. Julian E. T. Woods read a paper by F. M. Bailey, Esq., rif Brishane, a correrponding member of the society, "On the Queensland Grasses."

The Brinup ohserved it was interesting to note that so many of our Tasmuian srasses were found in Queeusland. The opinion of so competent an authority as the writer as to the great nutritive value of many of the

Queensland grasses might, perhaps, be acted on, and lead to the introduction of some of them to our own pastures. The fact of these grasses growing side by side in Queensland, would argue that they would do equally well in Tasmania. Some of those with very deep roots might be valuable as feed in summer time, when the shallow-rooted species were burned up and destroyed by the heat.

Mr. M. Allport, in moving the usual vote of thanks for the papers and presentations, said that after the remarks of his Lordship, he (the mover) need not impress upon the meeting the value of the papers read, or the desirability of publishing them. But with regard to the presentations to the Museum, one called for special mention ; namely, the presentation of time and skill by the Rev. W. W. Spicer, expended in the arranging our heretofore neglected botanical specimens. The society has been most fortunate in securing the services of Mr. Spicer in this direction; while the Rev. J. E. Tenison Woods has been devoting himself to our fossils and shells; thus rendering these collections of real service to those who wish to learn anything of our indigenous productions. The meeting should also remember, while thanking Mr. Bailey for his paper on Queensland Grasses, that the Society is in this case also indirectly indebted to Mr. Woods, as but for him the writer would not have been numbered amongst the corresponding members.

The vote having been passed, Mr. Nowell and the Rev. J. E. T. Woods returned thanks, the latter suggesting that in the future published lists of the Fellows, asterisks should be placed before the names of those who had furnished papers to the Society.

The suggestion was adopted by the meeting, and the proceedings then terminated.

NOVEMBER, 1875.

The monthly evening meeting of the Society was held on Monday, the Sth November, His Excellency the Governor in the chair.

Captain Langdon, R.N.., and Mr. Richard Croshy, who had heen previonsly nominated hy the Comncil, were balluted for, and declared duly elected as Fellows of the Society.

The following returns were brought under notice:-

1. Visitors to Museum during October, $1,471$.
2. Visitors to Botanic Gardens during October, 3,620 .
3. Time of leafing, etc., of a fow standard plants in Botanic Gardens during October.
4. Books and periodicals received.
5. Presentations to Museum and Library.

Meteorological Returns:

1. Hobart Town, from F. Abbott, Esq.-Table for October.
2. Port Arthur, from J. Coverdale, Esq.-Table for September.
3. New Norfolk, from W. E. Shoobridge, Esq.-Table for October.
4. Mount Nelson, from the Marine Board-Table for October.
5. Goose Island, from the Marine Board-Tables for August and September.
6. King's Islanrl, from the Marine Board.-Tables for July, August, and September.
7. Kent's Group, from the Marine Board-Table for September.
8. Sydney, from the Government Observer-Printed abstracts of observations made in New South Wales, July, 1875.
9. Melbourne, from the Government Observer-Printed abstracts of observation for May.
The presentations to the Museum and Library were as follows :-
10. From the Rev. J. E. Tenison Woods-A collection of Queensland ferns, named.
11. From A. Simpson, Esq.- 5 samples of Tin Ore from Georges' Bay.
12. From the Japanese Commissioners to Melboume Exhibition-Transverse and longitudinal selections of Japanese Woods, with native and scientific names, mounted in book form-12 packets of seeds from Japan.
13. From Justin Brorme, Esq.-A collection of Tasmanian copper tokens.
14. From Mr. C. Anderson-A young snake, probably Hoplocephatus superbus.
15. From the Rer. Thos. Reibey, M.H.A.-A Bronze Medal of Captain Cook, date 1772 , left on one of the Society Islands and brought home many jears ago by Captain Thomas Reibey, sen., of the brig "Mercury."
16. From Mr. Furgusson, Tinder Box Bay-Two Egg cases of a Ray.
17. From Mr. Banuing, East Bay Neck-A very large Egg of domeatic fowl. This egg measures $8 \frac{1}{2}$ inches at its greatest, and $7 \frac{1}{4}$ inches at its least circumference, and has another egg within it. The donor also sent a duck's egg remarkable for its unusually small size.
18. Frorn M. Allport, Esq-A young Diamond Snake (Hoplocephalus superbus).
19. From Mr. J. Brock, Campania-Two specimens of fossil wood.
20. From the Hon. J. R. Scott, Esq., M.L.C.-Sample of coal pickerl up on Pebbly Beach, Port Davey. (See Mr. Scott's paper on Port Davey, read at September meeting.)
21. From Mr. Stump-A silver coin, $\frac{1}{8}$ dollar, Mauritius 1820.
22. From J. Swan, Esq.-Two specimens of Native Bread (Mylitta Australis).
Presentations to Lilorary.-From the Magnetic and Meteorological Obscr-
vatories, Toronto, Canada, "Reports for 1874," "Abstracts and results of observations 1841 to 1874." From the Meteorological Office, London, "Quarterly Weather Report, part 3, 1873," "Instructions in use of Meteorological Instruments, 1875." From Academy of Natural Sciences, Philadelphia, "Proceedings 1874, parts 1, 2, and 3." From the Rev. W. B. Clarke, M.A., F.G.S., etc., " Remarks on the Sedimentary Formations of New South Wales," and the "Address to the Royal Society of New South Wales, 1875," by the donor. From the Exhibition Commissioners, Melbourne, the "Official Catalogue of the Intercolonial Exhibition, 1875, 3rd edition."

Mr. M. Allport, in the absence of the hon. secretary, called attention to the beautiful series of lithographs of the tertiary fossils from the north coast of Tasmania, executed hy Mrs. Meredith from her own original drawings, and pointed out that the value of the Rev. Julian Woods' paper on these fossils was materially enhanced by the skilful work of the talented artist.

The Rev. J. E. Tenison Woods in introducing his paper "On some new and hitherto undescribed Shells of Tasmania," remarked that his list though a large one for novelties, where so much had been done, might require considerable augmentation. He had only dealt with the univalves so far, and could hardly say even that he had thoroughly examined all these. Some short time ago Mr. Legrand of Elizaheth-street, had invited him to make a critical list of all the Australian Mollusca, offering for the purpose to place at his disposal, his collection, which certainly was one of the largest, if not the largest in the colonies. Such a list for all Australia, though a great desideratum, was far beyond the limits of the time which he (Mr. Tenison Woods) could give to it. He had offered, however, to make such a list for Tasmania only, that is :-1st. To establish the nomenclature of such species as were described, and give leading references to the works containing them. 2nd. To give briefly the characters of all the shells. 3 rd . To describe for scientific purposes such as were new. The first result of this enquiry had been a monograph on the Freshwater Mollusea which would appear in that year's Trausactions of the Society. After about three months' labour he had gone through the collections of Mr. Legrand, besides small collections of Mr. Justin Browne, Mr. Stephens and others, and the present list of over 70 univalves new to science was the first result of the examination. He did not doubt that the number would yet be increased, and therefore he would request the Council of the Society not to print the present paper in the Transactions of the current year, not only that he might have an opportunity of making it more complete, but in order that it might appear side by side with the complete catalogue which he hoped to have ready for the March meeting. He asked permission of His Excellency and the members to express at the same time his many obligations to Mr. Legrand in preparing the list, not only because that indefatigable collector had placed his specimens at his disposal, but also because he had spared no pains in the examination of references, besides bringing his own valuable experience and local knowledge to bear on the matter. He thought that Mr. Legrand should justly share with him whatever credit there was due for their scientific inquiries. Mr. Woods then went on to point out what had been done for Australian conchology, and passed in review the labours of Linneus, Lamarck, Quoy, Gaimard, Deshayes, Crosse, G. Angas, Dr. Cox, and A. Adams. He showed that though no separate list of Tasmanian Mollusca had been published, yet Mr. G. F. Angas's list for South Australia, and the far more elaborate list for S.E. Australia in the Zoological Proceedings for 1865 and 1867 respectively, had materially lightened the labours of any naturalist for Tasmania. He then described the boundaries and peculiarities of the so-called Australian molluscous province, and showed how it might be divided into sub-provinces which

Fould be nearly conterminous with the colonies of South Australia, Vieteria, New sumbl Wales, and Tasmania. He partienlarised the chameters of the Tasmanian sub-province, and showed how it might be sub-divided into the morthern part of the jsland and the islands in Bass' straits, which was of a Vietorian character, and the south Tasmanian which was peouliar with a very large admisture of East Australian, and a small influence of New Zealand shells. Mr. Woods further described the features of the new shells brought thus under notice, which were for the most part small, but nevertheless yielding many new Mitree and novelties as Patclla, Diala, Alaba, I'urbonilla, P'urpura, Cominella, Drillia, Mangelia, Siphonalia, etc. He expressly called attention to a new species of Crossca, the fourth known, two others being from Japan and one from Port Jackson. Mr. Woots explained that he had written his paper both in Latin and English. He regretted the space thus taken up, but it had been generally established that new investigations of a purely scientific character, should, in order to their universal reception, be published in Latin, to be thus accessible to scientific men of every nation. As however a Latin description might not be so accessible to investigation in Tasmania he had given the paper in both langazes, thus hoping to make the publications of the Royal Society as useful to their fellow colonists as to the world. He trusted that the paper would be one of many which would tend to make the Royal Society as valuable an institution as that of any colony; and if any credit redounded to him for his labours he was glad to think it would be largely shared by the members who had so willingly co-operated with him in them.

Mr. M. Allport moved the usual vote of thanks to the donors of the mrious presentations, and especially to the Rev. J. E. Tenison Woods for his valuable praper on the Marine shells, and for the highly interesting remarks with which the same was accompanied. Also to Mr. Legrand, without whose services the work would scarcely have been possible, Mr. Woods having already explained how greatly he was indebted to Mr. Legrand for the loan of specimens, and for copious information as to localities, etc.-information which no other man in Tasmania could have afforded.

The vote having been carried nem. con., the Rev. Julian Woods moved that the special thanks of the siociety be conveyed to Dr. J. Cox, of Sydney, for the loan of a valuable type collection of Australian Marine shells, and alluded to the dificulty of obtaiuing such a favour from most scientific collectors.

The motion was umanimously agreed to, and the meeting terminated.

PORT DAVEY IN 1875.

By the Hon. James Reid Scott, M.L.C.

[Read 13th September, 1875.]
At the present time Port Davey supplies Hobart Town with the great bulk of the timber known as "Huon Pine" [Dacrydium Franklinii], and has done so for several years back. That port may indeed be said to be the chief seat of the pine-getting industry in Tasmania, Macquarie Harbour being deserted, and the Pieman, Picton, and Craycroft, worked to a very limited extent, if at all. The pines obtained on the Forth and Dove Rivers are, I believe, of a different species [Athrotaxis selaginoides] called "pencil pine," or "King William Pine." From the nature of the Port Davey district, the beds of timber are necessarily of limited extent; and although occasional supplies have been obtained for more than 50 years, and a steady industry has been continuously prosecuted there for the last 25 years, still circumstances (such as a rise in prices, and consequent influx of piners) might extinguish the trade for a time, until young trees grow up to a size fit for market. I do not apprehend any such result, but I hope that a few personal observations on the locality, its pine industry and forests, etc., during a recent visit, will be interesting, even to those who fully know and appreciate the details and hardships of the occupation of a piner.

In March last I paid a visit to Port Davey for a second time, having been there about four years previously with Mr. Piguenit, who took some very characteristic sketches of the scenery. Though my main object this time was to have some hunting and fishing, I took the opportunity of going to the actual workings in the pine-forests, the present scenes of labour; and I saw much new to my personal experience, although not altogether unknown to me by report. I therefore make no apology for presenting to your notice the following account of my trip.

On my former visit my party went and returned by land, along the naturally defined series of valleys and "saddles" or passes, mainly clear of forest, up the course of the Huon, down that of Spring River, and across the Berry Head Range-an unmistakable route to anyone with knowledge of the localities, though not without its difficulties in travelling. The road from Victoria to the Craycroft is so overgrown and blocked up, that the journey from Hobart Town to Port Davey by that route could not well be made now under four days, and I would not advise a stranger to attempt it at all. On the second occasion I went and returned by water, going
down with Captain Lloyd in the "Swansea Packet," and coming back with Captain Dominey in the "Ripple," both regular traders.

The inhabitants were little changed during the four years which had elapsed. I found the well-remembered faces, and received the same cordial welcome and hospitality as before. Similar packs of half-starved dogs lifted up their voices, and would have stolen anything eatable left within their reach. The children had, of course, grown up beyond recognition; and an old resident, Mr. Bennett, lad returned, and was busy building a good-sized barge. Doherty, the oldest inhabitant, who has been there ever since 1849 , placed a hut at Observatory Point at my disposal, and Captain Lloyd Ient me a good whaleboat.

Besides those at Port Davey settlement, numbering about 50 , there is an isolated establishment at Spring River, where Mr. Page was at work, but he was unfortunately hampered in his proceedings by a sad accident which befell his mate George Baker. When upon a scaffold to fell a tree, Baker lost his balance, and his foot caught in one of the props, which caused him to swing and fall heavily against the butt of the tree, dislocating his left shoulder. There was no opportunity for nearly a month after this to get him to town for medical assistance, the shoulder remaining "out" all the time. Dr. Crowther was applied to, but Baker had to go to the Hospital for the operation of setting. Since then (owing possibly to the prior delay) the whole arm has been powerless, and is gradually withering and decaying, extending upwards from the fingers. The poor fellow's days of active labour seemed at an end-the more to be deplored because he was a very steady industrious man, with a wife dependent upon his exertions.

The houses at Bramble Cove were all unoccupied.
My anticipations of good sport were not fully realised in consequence of the weather. Continual storms, with a low barometer, entirely precluded trumpeter fishing (for which one has to go outside the Heads), and made boating generally attended with more risk than pleasure. I visited Kelly's Basin and the West Coast beyond it; went up Bathurst Harbour and New Harbour Creek nearly to Cox's Bight; and up the Davey River to the plains known as Longley's Ground and The Rookery. Kangaroo, wallaby, wombat, ducks, and swans were abundant; some of the latter were then "moulters," and we could pull them down with the boat. The greatest treat, now as formerly, was the plentiful supply of oysters, Kelly's Basin containing the largest and most casily obtained rock-oysters I have seen, and they
were in prime condition. Mounds of empty shells at various parts of the beach gave proof that the aborigines had also appreciated them in days gone by. While speaking of game, I must mention a fact respecting the wombat which coincides with my own experience and the opinion of many bush travellers. In the year 1866 the Port Davey settlers were, owing to heavy gales, for some months without supplies of flour and provisions, so that they were compelled to live on "wild" meat alone, and most, of them took to hunting during that time. Their unanimous verdict is that they very soon got tired of kangaroo or swan's flesh, but could suhsist on wombat without dislike; also that a meal of the latter had far more nutritive power than kangaroo.

It is almost impossible to describe the country round Port Davey to one accustomed only to the settled portions of 'Tasmania, while the grand scenery such as Hell's Gates, must be seen to be realised. Written landscapes leave no picture in the mind of a stranger. The greater portion of the country is open, consisting of broken ground or large flat plains between steep and lofty ranges, covered with button grass and intersected by belts of timber of various shapes and sizes; the timber is generally along the banks of streams, or in gullies on the mountain sides, though some of the ranges are entirely wooded. The hills are steep and rugged, and show their white quartzite rocks bare at the top, which gives many the appearance of being snow-clad, and throughout the day they are ever assuming new forms and colours as the sunlight strikes them at a different angle. Thus the country is most picturesquely diversified by white rocky ranges, warmcoloured plains and sombre forests; and in fine weather looks both wild and beautiful. The plains are made gay by many flowering plants, conspicuous among which is the Blandfordia with its crimson and yellow spikes of flowers, growing in every situation from the margins of creeks to the crevices of rocks on mountain summits. Like all Western Tasmania, as the open ground gives one the impression of desolation and barrenness, so on entering a forest the opposite extreme of rank vegetation is immediately encountered. Underneath there is generally a tall and tangled growth of wireweed (Bauera) and cutting-grass, with horizontal scrub (Anodopetalum), Laurel (Anopterus) Native plum (Cenarrhenes) and all those shrubs most conspicuous in our western forests ; pinkwood, hickory, and teatree attain a large size, gums and myrtles (Fagus) being the lofty trees. These forests are enlivened by the climbers Billardiera and Prionotes, which often form festoons from tree to tree. Richea pandanifolia is frequently met with.

The pines have a culiar limitation in their distribution worthy of remark; growing on the margins of small streams or in the alluvial flats along the rivers, they seem to bo derived only from the west or south-west sides of the ranges. The leading mountain chains run nearly parallel with the coast, about N.N.W., and no pines are found along the streams rumning from their eastern slopes. In like manner, when the Davey is divided into two branches, about sixteen miles up, the western branch is called the Hardwood River, because no pines have been found along its course. The other branch which is fed from the south-west slopes of the Frankland Range, is well supplied, and from it the great bulk of the timber is now being procured. Again, the range from which the Hardwood River derives most of its tributaries, is pineclad on its south-western slopes, the streams from which run into the sea near Rocky Point. In Spring River the samo feature is observed, and also in the originally named "Spring River" at the extreme eastern end of Bathurst Harbour; and I have no doubt from the formation of the country and my knowledge of the Arthur and Huon Plains, that the Craycroft presents the same peculiarity. Of the Picton, Gordon, Franklin, and Pieman I do not know enough to hazard an opinion.

At the highest point I visited up the Davey River, where Doherty is at work, are somo King William Pines (Athrotaxis selaginoiles) whose wood is much more opengrained than Huon pine, and of a red colour. I have no doubt that towards the Frankland Range they will be found in great numbers.

The pine is not met with near the margin of the salt water, though one spot was pointed out to me on the bank of the tidal portion of the Davey, about half way between the Settlement and Hell's Gates, which had been a thicket of small pine trees of several acres in extent, not observed until a large fire swept through and killed them. Some distance up the Crossing River there is an untouched bed of pines, but below it the steep banks of the river have fallen in and blocked up all passage for floating the logs down, affording complete protection to that bed of timber, unless a short tramway is made to surmount the obstacle.

The river has been followed up and the timber along its course gradually cleared out until the beds which produce the present surply are reached, from fourteen to eighteen miles up. To visit them I took the course usually followed by the piners, except on special occasions; going from the settlement by boat up the river as far as the Pen at Brooke's Bay, we then shouldered knapsacks and walked about four
and a half miles to the head of Long Fall, thereby cutting off a large elbow of the river, and avoiding Hell's Gates, Long-Tom Fall, and the Broken Road, all difficult for boats. From Long Fall we again took boat and pulled about a mile up a beautiful still reach, the banks studded with ferns and pinkwood in full flower, and landed on the right bank. From this landing place is a pathway, considerably less distiact than a wombat track, for about eight miles chiefly among button grass, to their general rendezvous opposite the Bark Hut Creek. Here the timbered flat is wide, and this has been one of the most prolific beds, as the stumps testify; and although some pioneers, Doherty, Woolley, and others have pushed on further up the stream, there are still many trees got from this locality, formerly overlooked or considered too difficult of access. There are numerous young trees growing up, which should be preserved till they have attained a certain size. Here are generally several boats on each side of the river for persons going or returning. Navigation extends very little further, except for log-clearing. There is a track to the settlement down the left or east side also, but it is about three miles longer than the other, and the Crossing River has to be forded.

The Crossing River, which comes from the Arthur Range, is sometimes called locally the Davey River, being rather the wider of the two at their confluence; and the Davey River proper is, in that case, called the DeWitt River, the DeWitt going by the name of Badger Creek. This is owing, in a great measure, to the meagre information on the official map. The Davey rises between the junction and Wilmot Ranges, and flows down the wide valley to the west and southwest of the Frankland Range, in two branches, which unite about a mile above Bark Hut Creek. The Crossing River joins the Davey about two miles above the Long Fall, coming in abruptly from the south-east, having burst through a high range by a narrow ravine in the same unexpected manner as the united streams pass through the gorge of Hell's Gates, instead of traversing the low valley which seems to be the natural course. Many of the small creeks have the same peculiarity, so that it is difficult to make a correct topographical sketch of the district on a short visit. My opportunities of taking observations were too few to enable me to submit with any confidence a plan to illustrate the district.

The pine trees grow in the densely timbered alluvial flat in the valley of the river, subject to frequent inundations, and varying in width from about 100 to 1,200 yards, intersected by a network of creeks and channels formed by the flood waters, and filled in the winter months. These channels

hare to be cleared of obstructions, fallen timber, etc., so that the pine logs may be floated down to the main river. Tracks have also to be cut through the scrub, about 18 feet in width, and sets of "skids" laid down so that the logs may be rolled into these chaunels or into the river. Hence the forests are traversed by numerous skid roads winding in all directions, to suit the trees successively cut down. In some places the floods occasionally rise high enough to enable boats to be used and the logs floated out over the ferns and undergrowth.

After the logs are cut to their proper length and stripped of their bark, they are branded at the ends with the initials or mark of the owner,-letters generally an inch in height,punched into the wood with a smart blow of a hammer. Doherty told me he had known cases where as much as two inches had been sawn off the end of a log so branded, with a view to its appropriation, and the brands made in the above manner were detected by putting boiling water on the new faces or ends, whereby the old marks became visible ;-the punching process affecting the fibres to an extent that a brand by hot irons would not.

After the logs are in the river commences the work of "clearing down" whenever there is a flood. The logs on their passage down get jammed at eddies, stranded on low banks, or otherwise detained. Two men go in a dingy, one to pull, the other with an iron-pointed prodder to release the \log s and push them into the current. The dingies are of the shape commonly used about the Huon,-square stem and stern, and without keel, so that they are quickly turned round and easily guided by experienced hands. From the narrowness of the river in many places, this is the best sort of boat for coming down the rapids. This work is attended with considerable danger, and requires skill and presence of mind. Henry Longley and his mate Buxton were drowned in the Huon when so employed about three years ago. To the honour of the Port Davey piners, they are always willing to derote part of their time to show the special dangers of the river to any new comer. I came down from the Bark Hut Creek in one of these dingies, to see the nature of the river; and although there was only a small body of water I enjoyed the trip. The scenery is beautiful, especially about the Bay of Islands and the Davey Rapids. There are many rapids in the river, all with characteristic and well known names : in fact every eddy or remarkable spot has a local name, as well as the creeks, plains, and hunting-grounds about the Port, which do not always coincide with those on the official plans.

The dweilings occupied by the piners when up the river are
of the style known as "Badger-boxes," in distinction from huts, which have perpendicular walls, while the Badger-box is like an inverted V in section. They are covered with bark, with a thatch of grass along the ridge, and are on an average about 14×10 feet at the ground, and 9 or 10 feet high. The sleeping bunk, raised about three feet, occupies the whole of one end, and can accommodate six people easily. The other end is enclosed by the fire-place, if on high ground ; but those in the flats among the pine are left open in front, with the floor slabbed, and provision made for mooring the boat to the bedpost. Longley, before mentioned, kept a careful and minute diary for several years, and makes frequent entries illustrative of this life, such as the following:-
1863, April 3 :-Went in the dingie to a stump to make a fire to boil the kettle for breakfast.
1863, April 7:-Log getting ; Longley and Doherty cut off a log, up to our waistbands in water.
1863, July 4 :-Water 2 feet up the posts of the bunk this morning. Had to boil the kettle on a stump.
1864, Oct. 12 :-Took rations to the Badger box. Water up to our waists.
1867, Aug. 22 :-Did not go to bed last night, as the water was rising until daylight this morning.
1868, Oct. 6 :-Flood over the second step this morning.
And many others to a similar effect.
The men are generally employed in pine-getting and rolling into the river, during February, March, April, and May, with occasional visits home for rations, etc. After that they are on the constant watch for floods, and go up the river to clear down whenever there is a chance. When the logs reach the tidal water they are caught and put into "pens," which are enclosures in some eddy or still water, formed of stakes interlaced with brushwood, and a log chained across the entrance as a gate. When a vessel comes for a load, from 10 to 18 logs are fastened together into a raft, and towed down below the bar alongside the vessel at the usual anchorage. The settlement has extended in this direction since my last visit, and there are now several dwellings close to the anchorage.

As regards distribution of ground, there is an understood code of honour among them not to interfere with each other within a certain distance, so well observed that I heard no complaint of any oue having taken an undue advantage. A creek or flood-chanuel is usually the centre line of a property, and is followed up on both banks. Any new comer wishing to go higher up the same creek must go ahead at least a quarter of a mile.
Longley's diary for the years $1863,1864,1865$, and 1866
will give a fair sample of a piner"s employment. The had three others as partners ; and I find that his time was occupicd on an average of these four years as follows:-100 days each year up the river felling timber and clearing down; 135 days at work at home, catching logs, squaring or sawing them, rafting and loading ressels, repairing boats, vessels, huts, pens, ete., grardening, and building ressels ; 55 days hunting, fishing, and getting mutton-birds; 55 days visiting Hobart Town, including rorage and detentions; and 20 days unemployed, being Sundiys, holidays, or bad weather. They built two ressels during these years, one of which was lost in Recherche Bay on its way to town to be sold. In the season ending June, 1861, they got pine logs to the extent of 58,336 feet, the quantities varsing each week owing to track or creek clearing and other canses. During the week ending 5th March ther got 4,509 feet; that ending 7th May 7,203 feet; that ending 21 st June 2,234 feet. In another week they got as much as 9,440 feet. The size of the trees recorded also varies much. Logs 10 or 11 feet in girth were counted large; this would represent trees over 4 feet in diameter at the butt. The arerage seem to be 6 or 7 feet in girth. It is matter for consideration whether the supply of timber should be Iresersed, and the destruction of the beds prevented, by prohibiting the cutting of any trees under a certain size.

Many of the smaller trees in these forests would make good cabinet wools if there was any demand. The pinkwood (Eueryphia Billurdiorii) is hard, and has a fine colour. Like hickory and horizontal, the green logs make better camp fires than most of the dead timber that can be got in the dank forests where they grow. The hickory (Phebatium Billardierii, alias Eriostemon squamea) should also be a valuable wood. It is the only timber except the pine which is perfectly sound and dry inside after being submerged for years in muddy deposits, nearly all others being more or less rotten and discoloured. It is pale yellow in colour, and very tough. The ordinary size of both these is about 15 inches in diameter, with straight barrels 40 or 50 feet in height. They are common in all the western forests, and are abundant about Mounts Bischoff and Ramsay, and round Lake St. Clair.

Close to Olsservatory Point is Pebbly Beach, and on this, ever since Doherty remembers, lumps of coal are washed up after strong southerly weather, though no indications of coalseams have been discovered on shore. Sandstone was reported to me as found up the Crossing River. Samples of both, with full information as to the dip and direction of the latter, have leen promised me, and I will lay them before the Royal Society when I get them. Limestone occurs in the Davey Valley,
protruding in various places, bearing from each other a little to the west of north. I found the fern Todea Africana, but differing in habit from those in Northern Tasmania. Here it grew on the steep rocky banks of the Davey River with hardly any stem; there it is usually by the side of a creek, with large stems a yard or so in diameter. An Alsophila is met with up Pine Creek, but which variety I had not the opportunity of ascertaining.

The great drawback to the settlement at Port Davey is the absence of all educational advantages for the children. When Mr. Collis was stationed at Recherche Bay, some of the settlers managed to send children round there, but since his removal they are entirely dependent upon what the parents can impart, and as a rule there is too much hard work to be done to leave any time for that purpose. It is one of those exceptional spots which should not be tied down to the strict rules of our educational system. The people have also been utterly neglected by the clergy of all denominations, the latest visit being that of Archdeacon Davies, on the occasion of a pleasure trip in the City of Hobart 15 years ago, when he held a service at Bramble Cove, 8 miles from the settlement, so that hardly any could attend except the excursionists. I am certain that the visit of a regular clergyman would be well received there, without any fear of such a reception as described (on 15th April last) by a Mr. Cameron, with reference to some parts of the Huon district, of which he is reported to have said: "In many of these places a minister of the gospel would be hooted."

For a florid, yet not inaccurate, description of the scenery, I would recommend any one to look up the account by David Burn of Sir John Franklin's visit in 1842, published in the United Service Mragazine for 1843. In an older work, Views in Australia, published in 1824, by J. Lycett, artist to MajorGeneral Macquarie, the author's fancy carries him to the future when its shores will be dotted with villas and gentlemen's residences. James Backhouse also describes the place in chapter 3rd of his book on the Australian Colonies, having been obliged to spend 17 days there in 1832, during which the sheep were put ashore to feed. He mentions also the heaps of oyster shells.

But as I have endeavoured to make these remarks as short as possible, and to limit them chiefly to my own experiences at Port Davey, I shall not go into its previous history or industries, or discuss its capabilities of improvement and settlement, or the probability of its being a mineral district. I hope to pay it another visit to further test the latter point. I shall therefore conclude by placing on record the
mutilated remains of the inscriptions in the cemetery. It is reported that a few years ago the crew of some whaling ressel cut down most of the wooden monuments for firewood; and whereas there were about twenty as far back as 1849 , there are now but four, only one of which is perfect. I was reluctant to credit such a tale, but it was confirmed by the axe-marks on one of those still standing! Two others are lying on the ground among the heath and flowers, the spot where they were erected being untraceable. The inscriptions are as follows:-

$$
\begin{gathered}
\text { I. } \\
\text { SACRED } \\
\text { TOTHE } \\
\text { +MEMORY OF + } \\
\text { PATRICK BOURKE } \\
\text { HE WAS KILLED BY } \\
\text { A FALL FROM THE BARK } \\
\text { PLANTER'S MAST- } \\
\text { HEAD OFF MAQUARRIE } \\
\text { HARBOUR FEBRUARYV 1872 } \\
\text { AGED 21 YEARS } \\
\text { REMMEMBER-MAN-AS-YOU-PASS-BY } \\
\text { AS-YOU-ARE-NOW-SO-ONCE-WAS-I } \\
\text { AS-I-AMI-NOW-SO-YOU-WILL-BE } \\
\text { PREPARE-FOR-DEATH-AND-FOLLOW } \\
\text { + } \\
\text { + ME }
\end{gathered}
$$

The above painted in white letters on a black ground. Erected lately by Capt. Reynolds, and fenced in.
II.
in memory
OF
GEORGE, native of mangea died on
board the barque terror April 41853 aged 20 years.
III.

SACRED
TO THE
MEMORY
or
MATTHEW HENDRY
Killed on board the
MAID OF ERIN
fell from the masthead
on the 29 day of January 1863
aged 32 years
The above two inscriptions cut into the wood. The boards are lying on the ground.

> IV.
> SACRHD
> TO
> THF MEMORY
> JOHN CHA........
> WHO DIED..........
> BOARD BRIG ${ }^{66}$ RO......
> 13 January 1.......
> AGED 39 YEA......

This was erected to John Chard of the brig "Roscoe," date not ascertained. It is much mutilated, and has been chopped with an axe.

The following is an extract from the account referred to in Mr. Scott's paper :-
" Narrative of the Oreiland Journey of Sir John and Lady Franlilin and Party from Hobart Town to Macquarie Harbour. By David Burn, Author of "Van Diemen's Land, Moral, Physical, and Political."
Tueslay, 1rth May, 184.-* * * At 2 p.m. a seven-knot easterly breeze enabled the Eliza to make a bold look up for the pyramidal rock, marking the entrance to Port Davey, and which now bore north. The Maatsuykers Islands were rapidly shut in as we drew along the bare, leafless, rugred coast, whose fantastic points looked dull and cheerless in the harl blue sky. They reminded me of the iron-bound ramparts that girdle the neighbourhood of Arbroath, and fancy could alnost lead me to picture the celebrated, luckless, Tyrone Power, as he once stuod upon one of the craggy points of the latter, delivering with much gesticulation (for he was a trageclian then) the oration of Antony over the body of Cresar. At 4 the heads of Port Davey were gained, but the wind had fallen light, and, although the anchorage was but half-a-dozen miles distant, still the flood rushing out was so powerful that four bells of the first watch had been struck ere the anchor rattled over the bows. The moon became overcast, and heavy rain fell fast.

Wednesday, 18th.-A considerable quantity of rain fell during the night, but the weather continued moderate, although the barometer had sunk gradually from thirty to three-tenths thereunder. Morning dawned upon a clear sky, but less hard and less dazzling than those which had gladdened the three preceding days. We were reposing within the charming circular basin that forms the romantic haven of Port Davey, our schooner the centre of a wild but strikingly beautiful panorama, the quartzy mountains rearing their magnificent cones in pearly grandeur to the sky, or sawing the air with pinnacled ridges, broken into every conceivable figure and form, their naked sides being furrowed with countless gorges, ravines, or gulleys. Right ahead, or N.W., the river Davey wound its silent course. On the larboard or western hand, the low woody land called Garden Point presented its sequestered shores to be laved by another Kelly's Basin. On the starboard hand, or about E.S.E.; the entrance to Bathurst Harbour, and Spring River, was just discernible. Numerous craggy

Port Davey Cemetery: 22 March 1875.
N.B. Erected to John Chard of the "Roscoe"; date not ascertained.

Or
 GEORGE

 NATIVE OF MANGEA DIED ON BOARD THE BARQUE TERROR April4 1853 AGED 20 YEARS

Port Dave Cemetery. 22 March 1875.
N.B. There tiro are lying on the ground among the shrubs
i slets ghard the shore, one steep cliff showing a seemingly extensive cavern in its perpendicular face.

At 7 the anchor was aweigh, and we wero working down towards Bathurst Iarbour, the entrance to which lies on the south-east shore of Port Davey, about three miles above the pyramidal rock. It is gruarded on either hand by islands of the most picturesque beauty, their summits shaded with peeuliarly ornamental and umbragenus dwarf foliage, giving to their crown the same unspeakable grace that a fine head of hair imparts to the human face divine. The starboard island was named after Mr. Ronald Gunn ; the smaller one on the larboard or north side, was styled "Kathleen Isle," a title given by Lady Franklin, in compliment to the wife of the writer. Some pretty, sharp, pinnacled rocks jutting from this isle, received the appropriate appellation, "Mavourneen." The faces of these islands and the circumjacent shores are composed of slabs of quartz, packed, if I may so express it, in slate-like layers. They are perforated with numberless caves, every bight and cove developing an infinite varicty of such deep indentations. The conical hills of quartz, with the tiny patches of verdure minutely interspersed, give a mosaic-like character to the scene. Nevertheless, the elegant though rugged contour of those hills-the multiform, tortuous undulations of their sterile stecps-the dangerous acclivities of their scathed and frowning chasms, all combine in the production of a landscape singularly romantic; one that in a rude clime and wintry welkin, would ineritably be classed amongst the savage, a designation from which the genial atmosphere and Italian blue of the sky that o'er canopies, alone preserves it. Despite its barren character, even in the boisterous north, it might sometimes bo termed a soft scene, every outline being so gracefully roundedevery asperity so much subdued. Light airs and floods proved amoyingly adverse to our outward progress, many hours being frittered away in the labour of a few minutes. We could do no good, and were, eventually, compelled to anchor.

At 11 h .30 m. , the gig pushed off on a trip up Spring River. The party it contained consisted of Sir John and Lady Franklin, Mr. Milligan, Mr. Giffin, second officer of the Eliza, and myself. About a mile above Kathleen, opposite to a conical peak of quartz, and "lose to the anchorage the schooner had been striving to gain, lies "Turnbull Island," named after the interim Colonial Treasurer. It is a low, rocky, brushy lump, bare at the summit and fringed at the edge, liko a friar's pate. Above Turnbull some beautiful miniature bays are formed by a large projecting tongue of land, bare, verdant, and divided into conical swells towards the centre, but skirted with a leafy screen towards the water. Close to this point, a low, woody, circular island occupies the centre of the channel. In honour of Miss Franklin's groverness, it received the appellation, "Williamson Island." Spring River here becomes perfectly land-locked; its waters expanding, and assuming the form of an extensive hill-embosomed lake. The day, hitherto, though dry, had been chilly; Apollo hid his glories in a vapoury shroud, peering occasionally through, not penetrating, the scene he seemed desirous to illume. Rounding a bare promontory on the north shore, we entered a second extensive lake. A rugged, lofty, quartz
mountain, now called "Bracondale," lay right ahead, or E. by N. At its foot a pretty little fairy islet, covered with shrubs, received the name of "Louisa." The main channel, which we ascended, bore N.E., whilst a very lovely minor branch stretched away to the S.E. At this point the landscape became one of great and varied magnificence, being broken into numberless diversified bays and dells, winding valleys, and craggy ranges. We disturbed sundry black swans in our progress. Mr. Milligan having been put on shore, brought some shrubs and stones from Louisa-a memorial for the fair lady after whom the island had been named. During the stoppage consequent upon this debarkation, the sun broke forth, gilding with liquid glory a most conspicuous ridgy ravine that intersected the towering grassy mountains of the north shore. Immediately above Louisa Isle the hills separated into a broken spreading valley, Bracondale forming the upper, and a grassy, elevated, flat-topped mount, its advanced guards. This valley is watered by another branch of Spring River, or, very possibly, upon accurate investigation, these branches may be found to be but limbs of an extensive sea-arm. A channel of some two miles brings the tourist to a third and much larger lake, most enchantingly studded with various low, brushy islands. This lake flings its ramified, glittering limbs deep into the bosom of the mountain region wherein it is embedded. The picture it presents is one of indescribable magnificence, varying in character every thirty or forty yards. Here a smooth, grassy hill thrusts its velvet limbs into the wave. There an endless succession of wild, irregular cliffs, split into figures of the most extraordinary magnitude and extravagant form, pierce the sky with their uncouth points. Some are hollowed like gigantic punch-bowls, fit for the revels of the Cyclops; others assume the aspect of Nature's primitive fortifications, being ranged in long and imposing lines, tier over tier of deeply-scarped battlement and fosse-the naked crags presenting a variety of tints, white, pink, and slate being the prevailing hues that glanced and flickered in the varying sunlight. Hill soars over hill-crag surmounts crag-whilst peak and mountain-cone tower to heaven their proud pinnacles, shown in bold relief or veiled by the fleecy canopy that, ever and anon, strives to envelop their aspiring fronts. Nature is untarnished, primeval majesty reigns here supreme, whilst man looks on to wonder and adore. Would that the painter's art were mine! Would that I could give were it but a feeble copy of this transcendant picture ; the subject could not fail to have inspired my pencil, it would have taught me to pourtray the glorious landscape in all its racy characters of heaven-born grandeur. This panoramic enchantment lies about eight or nine miles above Bathurst Harbour, the expanse of its waters terminating two or three miles further north, whilst the river, or what is said to be the river, flows from the E.N.E. for what distance has yet to be determined; ten or twelve long summer days might be most deliciously spent in the investigation of this little known locality. It is much to be regretted that the land, seemingly, is of such small avail, either agrestially or pastorally, because, with a moderate share of fair soil, the favourable position and immense navigable facilities of Port Davey must otherwise render it a
settlement of paramount value. A century may (is sure to) achieve what the present age cannot well accomplish.

We detarked upen a smooth, pebbly beach, partaking of a comfortable refection of ham, and bread and cheese, the task of deglutition being rendered easily practicable with the aid of some choice brown stout and superlative sherry. At 4 we plied the homeward oar, regaining the Eliza at 6, after having encountered a slight shower during our homeward progress. Mr. Bagot and Captain Harburg had preceded us with five swans. Strange ! when the shooting a few of these birds would have afforded a most acceptable food to the famished pilgrims, we could, by no possibility, steal within reach; now that they were valueless, we had them to kick about. Having inspected everything that the advanced season of the year and the threatening aspectof the weather rendered conveniently practicable, the Eliza, at 7h. 42min. p.m., weighed anchor and dropped out of Bathurst Harbour with a light air from the N.W. At 8 we passed between Gunn and Kathleen Islands, opened the Great Caroline (a name given by whalers) pyramidal rock, and, with a flowing sheet, stood to sea.

ON THE VITAL STATISTICS OF TASMANTA, WITH ESPECIAL REFERENCE TO THE MORTALITY OF CHILDREN.

By E. C. Nowell, Government Statistician.

[Read 12th October, 1875.]

In most things Tasmania is at a great disadrantage as compared with the neighbour colonies. The larger extent of their territory, the more open nature of the country, their greater, or reputedly greater mineral wealth, the more profitable fields for the employment of capital which they have hitherto offered, have rendered our colony incapable of competing on equal terms with them in all matters relating to production, trade, and commerce. The one advantage which Tasmania does enjoy is her climate ; and it seemed to me that in showing in the fullest and most convincing manner her superiority in this respect, especially as regards the health of children, I might be doing some practical service. The mortality in the towns as compared with the country parts, was also one of the questions which I proposed to myself to investigate, and I therefore set about constructing, with the aid of my assistant, Mr. J. J. Barnard, a series of tables, intending to embody the results in my statistical report for last year. But as the subject could be treated only very briefly in such a report, and as the tables, which contained details that seemed to be worth preserving, could not be embodied in it, I resolved to lay them before this Society in the hope that, by drawing public attention to the facts thus brought out, their full significance might be made more widely known. Another inducement to take up the subject was, that my work would fit in with, and supplement, the comparative statistics published last year by the Government of Victoria. Two objects would thus be served-first, attention would be drawn to Tasmania as a desirable place of residence for persons seeking for themselves or their children a healthy climate; secondly, another contribution, however humble, would have been made to that stock of knowledge of man's physical and moral nature, which we have as yet only begun to acquire from the analysis and comparison of statistical facts.

The first set of tables (A to D) shows the mortality of children up to the age of 10 years as between Tasmania and the Continental Colonies. The second (E to N) shows not only that of children at this age, but also that of persons at "all other ages" in Tasmania alone, under the following divisions:-1. The whole Colony. 2. Hobart Registration District. 3. Launceston Registration District. 4. The two
enllectively, forming the "Urhan Districts." 5 . The remainder of the Colony, forming the " Rural Districts."

Appented to the abstract tables are other tables, giving the data upon which the furmer are based, so that overy one who consults them may be in a position to check the calculations for himself, and detect the errors, if any should have crept in.

The period embraced in the returns is the five years from 1869 to 187%. Where the figures were not to be obtained from the pubished statisties of the other Colonies, they were procured by direct appliation to tho Registrars-General, whose courtesy in furnishing them I desire to acknowledge.

I shall consider the general tables first ; and those relating specially to Tasmania afterwards.
"Real infunt mortality," says the Registrar-General of England (lo $\cdot 2$), " may be satisfactorily measured by its proportion to births registered." This is shown for the Australian Colonies and Tasmania in table A. The average number of deaths of iufants under 1 year to 100 births for each colony, ranged in descending order, was :-

$$
\begin{aligned}
& \text { South Australia 14.24 } \\
& \text { Victoria 11•86 } \\
& \text { Quecnsland............................ } 11 \cdot 07 \\
& \text { New South Wales..................... } 9.57 \\
& \text { Tasmania............................... } 9 \cdot 45
\end{aligned}
$$

Here the superiority of our Colony is at once seen. In England, the proportion was, in 1869, $15 \cdot 6$; in 1870, 16. In Scotland, in 1870 (an average year), it was 12.28. Even Seuth Australia, the Colony least farourable to infint life, was more so than England. The average rate for 10 years (186473) in Victoria is said, by the Government Statist in his copious and careful report for the latter year, to be 12.4 .

The uext test which I shall employ, is a comparison (table B) of the proportions which the deaths of children bore to 100 deatis at all ages. To go through all the ages in a resumé like this, would hardly leave any clear idea of the differences, but would rather tend to confuse the mind, and I shall therefore confine myself to a few particulars, referring those who wish for more information to the tables themselves. The deaths under 1 year were :-

	Per Cent.
South Australia	$39 \cdot 86$
Victoria	$30 \cdot 29$
Queensland.	$30 \cdot 25$
New South Wales	27.79
Tasmania. .	$20 \cdot 29$

Here the order is exactly the same as before. Between one
and two years of age there is a change, and the Colonies stand thus:-1. Queensland; 2. Victoria; 3. N. S. Wales ; 4. S. Australia; 5. Tasmania : the last still having the lowest rate, which it keeps through all the ages up to 10, except in one, $5-10$, in which the rate is the same as in Queensland. Between 0 and 5 years, the proportions and order were:-

Per Cent.

South Australia	$54 \cdot 17$
Queensland	$46 \cdot 33$
Victoria	$45 \cdot 50$
New South Wales.	$42 \cdot 14$
Tasmania	$28 \cdot 08$

In England (1870) the proportions were-Under 1, 24:57; 1 to $2,8.01 ; 2$ to $3,3.89 ; 3$ to $4,2 \cdot 65 ; 4$ to $5,1.95 ; 0$ to 5 , $41.07 ; 5$ to $10,4 \cdot 47$; and between 0 and $10,45 \cdot 54$. The deaths under 1 year were therefore less in proportion than in any of the mainland Colonies, but considerably more than in Tasmania. In Scotland, taking the mean of males and females (the result of which, though not strictly accurate, is sufficiently near the truth for general comparison) the percentages were- $0-1,19 \cdot 12$; 1-2, 7.83 ; $2-3,4.05 ; 3-4,2.84$; $4-5,2-11 ; 0-5,35 \cdot 96 ; 5-10,5 \cdot 50 ; 0-10,41 \cdot 49$. At the age $0-10$, in this Colony the percentage was only 30.84 .

Table C shows the proportions which the deaths of children under 10 bore to 1,000 of the total living population. And here it should be remarked that it has hitherto been our practice in making such calculations, to take the population at the end of each year, while the other Colonies take it at the middle of the year. This, by making the divisor larger, gives us a slight advantage, but the difference is not sufficient materially to interfere with the result. At the age 0-1, the Colonies stand thus :-

Per 1,000.

$$
\begin{array}{ll}
\text { South Australia......................... } & 5 \cdot 55 \\
\text { Queensland .. } & 38 \\
\text { Victoria....................... } \\
\text { New South Wales................ } & 277
\end{array}
$$

The same order is observed at the ages $0-5$ and $0-10$.
I now come to the series of tables constructed for this Colony alone. But before considering them, it may be well to explain some matters connected with the population as therein stated. The object for which the last census was taken being chiefly political, namely, an alteration in the franchise, the population was enumerated according to Electoral Districts only, and not according to Registration Districts. Since, however, the Registration District of Hobart consists of the Electoral

Districts into which the City of Hobart Town is divided, together with those of Queenborough and Glenorchy, the number of whose inhabitants is known, the population at the date of the census can be computed exactly, and the present population can be easily found by calculation, on the assumption that the increase is proportionate to that of the whole population of the Island. But the population of the Registration District of Launceston cannot be so readily found, the Registration District not being conterminous with any Electoral District. It consists of the Electoral Districts within the boundaries of the town of Launceston, together with a portion of the Electoral District of Selby, the number of whose residents is not known. The town of Launceston, according to the census, contained 10,668 persons, and I have estimated the number residing in the portion of Selby which forms the remainder of the Registration District, at 1,500, making the population of the whole of that district at the date of the census, 12,168; and the increase since 1870 has been calculated on the same assumption as before. For 1869 a slight deduction had to be made for the numbers shown by the census of February 7, 1870 : for Hobart, the population has therefore been estimated at 24,921; for Launceston, at 12,100; and for the whole Colony, 99,000.

The first table (designated E) shows that while the average percentage of deaths during the first year of life to births in the year was 9.45 for the whole Colony, in the Hobart Registration District it was 12.93 ; in the Launceston District, 13.02 ; in the two together, forming the Urban Districts, 12.89 ; in the remainder of the Colony, or the Rural Districts, 728 . The difference in the mortality of the least healthy of the Urban Districts, as compared with the Rural, the most healthy-that is, between the maximum and minimum mor-tality-was therefore 5.74 ; while the difference between the rural rate-the minimum-and the general rate, was $2 \cdot 17$.

Table F shows the percentage of deaths at each age to deaths at all ages in the Urban and Rural Districts. Here we see the curious fact that while for infants under 1 year the proportion in the whole colony was $20 \cdot 25$, in Hobart, $18 \cdot 14$, in Launceston, $19 \cdot 07$, and in the two last collectively ("Urban" rate), $18 \cdot 47$, in the Rural Districts it was $22 \cdot 70$. The general rule was in this case reversed, the proportion of deaths being greater in the country. So it was for the ages $2-3,3-4,4-5$, and $5-10$; while for " all other ages" there was a considerable difference in favour of the country districts, the general average being $69 \cdot 87$, the Urban rate $72 \cdot 36$, and the Rural only $64: 76$ per cent.

A comparison of the number of deaths at each age to 1,000
persons at all ages (table G) shows in every casc a considerable advantage on the side of the rumal districts, to the estent of 24.73 per cent. for infants under 1 year; 3654 per cent. for children up to 10 , and 3725 for all ages above. For all ages, the mortality throughout the colony was 13.78 ; in Hobart district, 20.49 ; in Launceston 23.26 ; in the Urban Districts, 21.39 ; in the Rural, 9.24 . These figures show a considerable excess at Launceston; but it would be wrong to conclude upon this ground alone that the mortality is greater in the town itself than in Hobart Town. For the district of Hobart included (Feby., 1870) a sulurban population of 5912 , in which the rate of mortality was less than in the city; while, if my estimate be correct, the sulurban population in the Launceston district amounted to no more than 1500 ; so that the proportion of the suburban to the urban population was, in Hobart district, about 24 per cent. ; in Launceston about 12. The suburban, or more healthy population being thus smaller in the district of Launceston, the mortality for the whole registration district might naturally be expected to be somewhat greater. In Victoria in 1873 the urban rate was $19 \cdot 41$ per 1,000 ; the rural $9 \cdot 14$; in N. S. Wales in 1872 ,-Syduev, $22 \cdot(9$; suburls, 1448 ; rural, 12.32. In England (1871) the gencral rate being 22.6 per 1000, the minimum of the country rates was 173 . In Scotland, according to the Registrar-General's reports, the rates in 1870 were:-Principal towns, 27.03 ; large towns, 25.24 ; small towns, $22 \cdot 49$; and rural districts, $17 \cdot 95$. The excess in the urban rate as compared with the rural would, therefore, be-in Tasmania, 61.37 per cent. ; in Victoria, 52.91; and as between Sydney and the rural districts of New South Wales the excess was 56.23 per cent. Assuming the rate for the larger towns in Scotland to be about 26 per 1000 , the excess in the mortality over the rural districts would be 30.96 per cent. The difference in the rate of mortality between the most and least healthy counties in England in 1871 was 11.2 per 1000, or 30.30 per cent. ; the highest rate being 28.5 in Durham; the lowest 17.3 in the extra-metropolitan parts of Surrey and Kent. Between the highest death rate of the large towns in Great Britain in that year (being 36.5 in Sunderland), and the lowest county rate (17.3), the difference was 19.2 per 1000 , or $52 \cdot 60$ per cent. An epidemic of small-pox prevailed in Sunderland and several other large towns, increasing the rate of mortality, which in cities so much more populous than our own chief towns, ought always, according to the well-ascertained relation between density of population and disease, to be far greater. Yet, not-

* Taking the rate for the whole Colony as the standard of comparison.
withstanding these disadrantages, the city mortality was not so greatly in excess of the rumal as in Tasmania. Nor is this to be wondered at. A filthy open sewer runs through Hobart Town, and after receiving its contributions of excrementitious and other refuse matter from all the smaller sewers, and numberless latrines that skirt its sides, diseharges its black and fetid gatherings into the Derwent. When the tide is in, the accumulations at the lower end mix with the waters of tho river, and are at once carried off. But when the tide is out, they are not immediately taken away, hut form a broad, sluggish stream, poisoning the air with their fever-laden exhalations. If the excreta and other noxious matters which are now thrown into the creek were applied to their proper purpose, namely, the fertilisation of the soil, the health of the city would be improved, the supply of food would be increased, and a number of persons might find a living in collecting the offensive substances, and converting then into manure. The cases of typhoid fever and diphtheria which have from time to time occurred in Hobart Town, especially during the present year [see table O], ought to be a warning of the danger of further delay in setting about improving the sanitary condition of the principal towns. Dr. Hall, in the remarks which he has at various times published, has strongly urged this point; and the figures which I have now produced give additional weight to his warnings.

But while the deaths in the towns are so much more numerous than they ought to be, if all available means were used to preserve the health of the inhabitants, it will be seen that the rural rate is very low, only 9.24 per 1,000 . And this is much above the ordinary Tasmanian rate, the general death rate having been unusually high in 1870 and 1873. For each of the five jears the rural rate was-1869, $9 \cdot 16 ; 1870,9 \cdot 98$; $1871,8 \cdot 63 ; 1872,9 \cdot 17 ; 1873,9 \cdot 25$. The mean of the three normal years, 1869, 1871, and 1872, was 8.99. In Victoria, in 1873, the rural rate is stated to have been $9 \cdot 14$. In reference to the higher town rate in Tasmania, it has been alleged that it has been caused by the influx of sick people into the towns for the sake of better medical treatment, and by the pauperism congregating there. What proportion of the excess is due to the first cause, I have no means of ascertaining ; but I am willing to admit that the greater age of many of the paupers in Hobart Town and Launceston must operate unfarourably in the comparison. Of the deaths 18 per cent. in Victoria took place in hospitals; in Tasmania, only 10.84 per cent. In the insular districts of Scotland, where the mortality is lowest, the death-rate ranges from about 13 to 18 per 1,000 .
A better criterion of the relative healthiness of town and
country is furnished by table H, showing the deaths at each age to 1,000 persons at the corresponding ages, the numbers living being calculated on the supposition that the proportions continued the same as they were at the date of the last, census. The result may be most clearly exhibited as follows :-

Ages.	Hobart.	Launceston.	Urban Districts.	Rural Districts.
0.1	133.52	155.37	140.77	$70 \cdot 32$
1-2	31.63	39.75	$34 \cdot 42$	12.00
2-5	$8 \cdot 14$	7.83	$8 \cdot 04$	$5 \cdot 34$
0-5	38.33	$44^{1} 12$	40.26	19.50
5-10	$2 \cdot 95$	$3 \cdot 47$	$3 \cdot 12$	$2 \cdot 25$
0-10	19.76	$23 \cdot 39$	20.95	10.94
All others...	20.78	$23 \cdot 20$	21.57	8.51

The difference as regards infants under 1 year, between the mortality in Launceston and Hobart Registration Districts was 21.85 per 1,000 ; between Launceston and the Rural Districts, 85.05 ; between Hobart and the Rural Districts, $63 \cdot 20$; and between the Urban Districts taken together, and the Rural, 70.45 per 1,000 . The rate in the Launceston District was more than double that of the country districts. The mortality at all ages, except $2-5$, was greater in the Launceston than in the Hobart District. Between 1 and 2 the Launceston rate was more than treble the country rate. Between 0 and 5 it was more than double. Between 0 and 10 it was also more than double. For all other ages it was nearly treble.

Taking the whole country, at the age $0-1,95 \cdot 66$ died in every 1,000 at the same age living; at 1-2, 19.70 ; at $0-5$, $26 \cdot 78$; at $5-10,2 \cdot 57$; at $0-10,14 \cdot 56$; at all other ages, $13 \cdot 46$. In Victoria, in 1873, the deaths (taking the mean between males and females, with the former reservation) at 0-5 were $39 \cdot 36$, being $12 \cdot 58$ more than in Tasmania. At $5-10$ the Victorian rate was about $5 \cdot 31$, against our $2 \cdot 57$. The mean of males and females for 34 years (1838-71) in England was- $0-5,67 \cdot 6 ; 5-10,8.6$. The mean of males and females in Scotland for 1870 was- $0-1,140.93 ; 1-2,66.96$; $0-5,58 \cdot 88 ; 5-10,10 \cdot 13$. That means that about 45 in every thousand infants are saved in Tasmania, as compared with Scotland, in the first year of life; 47 in the second; 32 children under 5 years; and between 7 and 8 children from 5 to 10 ; or, to put it in another way, taking Tasmania as the standard, the excess of mortality in Scotland was nearly as follows :-0-1, 47 per cent.; 1-2, 240 per cent.; $0-5,120$ per cent.; 5-10, 294 per cent.

To make the returns as complete as possible, I have constructed a table (L) showing the percentage of the population at certain ages in Tasmania, Victoria, New South Wales, South Australia, Queensland, England and Wales, and Seotland. This table should be read in connection with some of the other comparative tables. From it we find that at the age $0-1$, the proportion was smallest in 'Tasmania (2.91), 一 largest in Queensland (3.86). It was larger in Scotland than in England, and in the four mainland colonies than in Scotland. At 1-2, Scotland had the smallest proportion ($2 \cdot 60$), Tasmania nest ($-6 \cdot 4$), then England ($2 \cdot 71$), then the continental colonies. At 2-3, 3-4, and 4-5, Scotland had more than England, the Colonies more than the former. In the Tasmanian census those ages were not given separately. At 0-5 England had the fewest children ; Scotland came next ; then Tasmania; then the other members of the group. At 5 -10, England had the fewest; then came Scotland, Queensland, New South Wales, Victoria, Tasmania, South Australia. Children of all ages up to 10 were least numerous in England, then in ascending order came Scotland, Tasmania, Queensland, New South Wales, Victoria, South Australia. At all other ages, the order was-South Australia, Victoria, New South Wales, Queensland, Tasmania, Scotland, England. In these persons of 60 and upwards are shown separately ; the proportionsbeing as follows:-Queensland, $1 \cdot 63$; Victoria, $2 \cdot 75$; South Australia, $3 \cdot 48$; New South Wales, 3.97 ; Tasmania, $6 \cdot 64$; England and Wales, $7 \cdot 44$; Scotland, 8.11. In the Colonies the preponderance of old people is therefore in Tasmania; but still the proportion is less than in England or Scotland. The figures relating to England and Wales in this table are taken from the census of 1861 , that for 1871 in its complete state not having reached me. There may have been some variations in the proportions during the ten years, but probably not to any considerable extent.

A large number of visitors resort to this colony every summer to recruit their health, allured partly by the coolness of its temperature, partly by the beauty of the scenery, and partly, also, by the reputation for salubrity which Tasmania las justly acquired. To preserve the latter is, therefore, a matter not merely of sentiment, in order to gratify our national pride, but of material importance, affecting our pockets; and I shall be glad if the faets which are here presented shall contribute in any degree to the adoption of efficient means of removing all those causes of disease which are under our control.

I am sorry that I have not been able to include New Zealand in these tables. Having the smallest gencral deaîis
rate of all the colonies, it would have been interesting to compare the mortality at different ages with that of the other colonies; but the practice which provailed there until very lately of adding the still-births to the births and deaths, would have vitiated any comparison. The ratio of deaths of infants under 1 year to births in 1873 is stated to have been 10.81 per cent. The per centage of deaths for that year was:

Under 1 year................... $33 \cdot 31$
1-2........................ $8 \cdot 07$
0-5........................ . $48 \cdot 42$
5-10..................... $4 \cdot 69$
0-10...................... $53 \cdot 11$
All other ages....................... $46 \cdot 89$
It will be observed that the proportions for children are very much higher than in Tasmania. The Registrar-General says: "Of the total deaths in 1873, 48.42 per cent. were of children under 5 years of age. This rate at first appears exceedingly high when compared with the English rate, which was, in 1871, 41.1 per cent. of the deaths; but in making the comparison it must not be overlooked that there is in England a very much larger proportion of the population over 55 years of age than there is in Now Zealand, and that the deaths of persons above that age were, in England, in 1870, $27 \cdot 3$ per cent. of the total deaths; whereas in New Zealand such deaths only comprised 11.41 per cent. of the whole number ;" and he goes on to show that if the deaths of persons over 55 years had been in the same proportion as in England, namely, 27.3 per cent., the deaths of children under 5 would have been at the rate of 39.74 per cent, only. This quotation suggests the question, whether the smaller proportion of children's deaths in Tasmania may not be caused by a deficiency in the number of children living in proportion to persons of other ages, as compared with other countries; and this supposition seems to gain probability from the fact that in Tasmania the birth-rate is lower than in any of the Colonies, in England, or Scotland, the average rate (1869-73) beingQueensland (1869-72), 42.5 per 1,000; New Zealand, $40 \cdot 67$;* New South Wales, $39 \cdot 45$; South Australia, $37 \cdot 65$; Victoria, $36 \cdot 93$; Tasmania, $29 \cdot 52$; England, $35 \cdot 2$; Scotland, $35 \cdot 10$-the last two rates being for the 10 years, 1860-9. But the figures already given, showing the death-rate in relation to the numbers living at each age, prove that such a supposition will not account for the lower mortality among children which prevails in this island; and table Lalso shows that the proportion of children living in Tasmania does not differ materially from that which is found to exist in the other countries with which

[^4]I have compared it. After a careful consideration of objections such as we might expect one who was arguing on the opposite side to urge, I can come to no other conclusion than that the advantage which our Colony possesses in regard to the rate of mortality, especially that of infants and children, is chiefly due to the remarkable salubrity of its climate; and if the large amount of labour which has been expended on the construction of these tables has the effect of bringing this fact into greater prominence, I shall feel that it has not been bestowed in vain.

[A.]

TABLE SHOWING THE PERCENTAGE IN THE DIFFERENT AUSTRALIAN COLONIES WHICH THE DEATHS OF INFANTS UNDER ONE YEAR OF AGE BORE TO THE TOTAL NUMBER OF BIRTHS DURING THE YEARS 186973 ; ALSO, THE BIRTH-RATE PER 1,000 OF POPULATION.

Name of Colony.	1869.	1870.	1871.	1872.	1873.	$\begin{gathered} \text { Average } \\ \text { For the } \\ \text { Five Yrs. } \end{gathered}$
Victoria	$12 \cdot 61$	11.80	$11 \cdot 37$	$12 \cdot 18$	11.32	11.86
New South Wales	9.65	9.50	$8 \cdot 99$	10.45	$9 \cdot 26$	9.57
South Australia	13.06	14.52	13.57	16.11	13.93	14.24
Queensland	$11 \cdot 34$	10.72	9.91	10.98	$12 \cdot 25$	11.07
Tasmania	$10 \cdot 11$	9.76	8.51	$10 \cdot 14$	8.73	$9 \cdot 45$

Birth-Rate per 1,000 of Population.								
Year.	Tasmania.	Victoria	N. S. Wales.	South Austral.	$\begin{aligned} & \text { Queens- } \\ & \text { land. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { New } \\ \text { Zealiand } \end{gathered}\right.$	England.	Scotlaud.
1869.	28.78	$37 \cdot 36$	$40 \cdot 46$	38.60	$42 \cdot 8$	$41 \cdot 90$	-	-
1870.	30:31	$38 \cdot 25$	39.80	38.64	43.5	42:32	-	-
1871.	29.99	37.07	39.57	$38 \cdot 15$	43.2	40.64	-	-
1872...	$29 \cdot 27$	35.95	38.37	36.96	40.7	$39 \cdot 50$	-	-
1873..	$29 \cdot 24$	36.01	39.04	35.88	-	$38.99 *$	-	-
1860-9	-	-	-	-	-	-	$35 \cdot 2$	$35 \cdot 10$
Sum...	$147 \cdot 59$	18t.64	197.24	188.23	170.2	203•35	-	-
Mean..\|	29.52	36.93	$39 \cdot 45$	$37 \cdot 65$	$42 \cdot 5$	40.67	35.2	$\overline{35 \cdot 10}$

[^5]118

[D.]
NUMBER OF DEATHS IN AUSTRALIAN COLONIES.
VICTORIA.

Years.	Age at Death,									Population
	0-1	1-2	2-3	3-4	4-5	0-5	5-10	0-10	$\begin{aligned} & \text { All } \\ & \text { Ages. } \end{aligned}$	
1869	3284	1032	340	239		5061	558	5619	10,630	696,942
1870	3203	829	28.5	192	149	4658	488	5146	10,420	709,839
1871	3114	876	271	173	145	4579	405	4984	9,918	738,725
1872	3334	959	310	226	196	5025	499	5524	10,831	760,991
1873	3181	883	346	278	216	4904	604	5508	11,501	780,362

NEW SOUTH WALES.

1869	1858	629	264	119	103	2973	241	3214	6691	485,356
1870	1867	561	187	118	70	2803	232	3035	6558	502,861
1871	1812	513	202	106	72	2705	202	2907	6407	519,182
1872	2116	636	243	124	84	3203	248	3451	7468	539,190
1873	1985	544	191	121	83	2924	280	3204	7611	560,275

SOUTH AUSTRALIA.

1869	911	127	61	38	58	1195	80	1275	2211	181,146
1870	1031	223	74	39	58	1425	93	1518	2544	183,797
1871	961	165	62	31	59	1278	81	1358	2378	185,626
1872	1145	258	100	43	75	1621	121	1742	2896	192,223
1873	990	185	70	45	53	1343	89	1432	2631	198,075

QUEENSLAND.

1869	528	199	53	33	14	827	39	866	1761	109,897
1870	526	129	63	30	18	766	41	807	1645	115,567
1871	516	137	67	46	26	792	47	839	1785	125,146
1872	578	178	67	47	22	892	54	946	1936	133, ²53
1873	701	209	94	55	37	1096	84	1180	2250	146,690

121

[E.]
TASMANLA.
FERCENTIGE OF DEATIS OF INFANTS under one year to Births in the Registration Districts of Hobart and Launceston, as distinguished from tho luaral Districts, in the tive years 1869-73.

Locality.	1869.	1870.	1871.	1872.	1873.	
The whole Colony	$10 \cdot 11$	$9 \cdot 76$	8.51	$10 \cdot 14$	8.73	$9 \cdot 45$
Hobart Iiegistration District	$13 \cdot 00$	12.71	$11 \cdot 46$	$15 \cdot 60$	11.86	12.93
Luunceston ditto	14.81	10.99	11.62	12.75	14.94	$13^{\prime} 02$
Urban Districts	13.63	12.02	11:30	14.56	$12 \cdot 95$	12.89
Extra-urban or Rural ditto	$7 \cdot 65$	8.28	6.69	$7 \cdot 52$	6.28	7'28

[F.]
PERCENTICE OF DEATHS at each age to 100 Deaths at all ages : average of five years, 1869-73.

Locality.	Age at Deati.									$\begin{aligned} & \text { Ḣ } \\ & \text { H゙ } \\ & \text { H } \end{aligned}$
	1	¢ ${ }_{1}^{01}$	¢	I		1	T	1	免	
The whole Colony	20.25	3.78	1.81	$1 \cdot 2$	100	28.08	2.75	$30 \cdot 13$	69-87	100.00
Hobart Registration District	1S.14	3.66	1.33	1.031	0.92	25.08	$2 \cdot 13$	$29 \cdot 21$	72.79	100.00
Launceston ditto	19.07	437	118	$0 \cdot 69$	0.97	26.28	$2 \cdot 15$	28.43	71.57	100.00
Urban Districts	18.47	3.91	1.28	0.91	0.93	$25 \cdot 50$	$2 \cdot 14$	27.64	72:36	$100 \cdot 00$
Extra-urban or Rural ditto	22.70	3.60	$2 \cdot 55$	1.70				35:24	64'76	100.00

[G.]
PROPORTION OF DEATHS at each age to 1000 persons living at all age : average of five years, 1869-73.

Locality.	Age at Deatif.									$\begin{gathered} \text { Hict } \\ \text { Hi } \\ \hline \end{gathered}$
	1	$\xrightarrow{\text { en }}$	$\begin{gathered} 0 \\ i \\ 0 \end{gathered}$	T	10	10	$\stackrel{1}{1}$	1		
The whole Colony	$2 \cdot 79$	0.52	0.25	$0 \cdot 17$	0.14	3.87	0.38	4.25	9.53	13.78
Hobart Registration District	3.72	0.75	$0 \cdot 27$	$0 \cdot 21$	0.19	$5 \cdot 14$	0.43	5.58	14.92	$20 \cdot 49$
Launceston ditto............	$4 \cdot 43$	1.02	0.27	0-16	0.23	6.11	0.50	6.61	16.64	23-26
Urban Districts	3.95	$0 \cdot 84$	$0 \cdot 27$	$0 \cdot 19$	$0 \cdot 20$	$5 \cdot 45$	$0 \cdot 46$	5.91	15.48	$21 \cdot 39$
Extra-urban or Rural đitto ..	210	0.33	0.23	$0 \cdot 16$	$0 \cdot 10$	3.92	$0 \cdot 33$	3.25	5.98	9.24

[H.]

PROPORTION OF DEATHS at each Age to 1,000 persons at each age living at the end of the year : average of 5 years, 1869-73.

Locality.	Age at Death.									
					\pm	1	16	!		
The whole Colony	95.66	1970	6.28	-	-	26.78	$2 \cdot 57$	14.56	$13 \cdot 46$	13.78
Hobart Regis. District....	$133 \cdot 52$	31.63	8.14	-	-	38.33	2.95	19.76	20.78	20.40
Launceston ditto.	155.37	$30 \cdot 75$	783	-	-	44.12	$3 \cdot 47$	23:39	23.20	23.26
Urban Districts.	14077	34.42	8.04	-	-	$40 \cdot 26$	3•12	20.95	21.57	21.39
Extra-urban or rural ditto	70.32	12.00	5.34		-	19.50	$2 \cdot 25$	10.04	8.51	9.24

[I.]
POPULATION AT EACH AGE, according to the proportions obtaining at the last Census : average of 5 years, 1869-73.

Locality.	Age at Death.									
	1	$\stackrel{\text { ¢ }}{1}$	-	${ }_{6}^{4}$	1	1	$\stackrel{0}{1}$	$\xrightarrow{1}$		4 4 \% \%
The whole Colony...........	2957	2681	9010	-	-	14,649	14,946	29,595	72,143	101,738
Hobart Regis. District.....	713	607	2113	-	-	3,433	3,792	7,225	18,385	25,610
Launceston ditto............	354	317	1047	-	-	1,\%18	1,788	3,506	8,895	12,401
Urban Districts..............	1067	924	3160	-	-	5,151	5,580	10,731	27,280	38,011
Extra-urban or rural ditto	1800	1757	5850	-	-	9,498	9,366	18,864	44,863	63,727

[K.)
PROPORTION OF PERSONS AT EACH AGE to 100 persons at all ages, as above.

Locality.	Age at Death.									
	1	${ }_{1}^{1}$	cis	+1	1	1	I	1	䔍宫	\% \% \% \#
The whole Colony...........	2.91	2.63	8.86		-	14.40	14.69	29.09	70.01	100.00
Hobart Pegis. District......	278	$2 \cdot 37$	$8 \cdot 25$	-	-	13.40	14.81	$28 \cdot 21$	71.79	100.00
Launceston ditto...........	2.85	2.56	$8 \cdot 44$		-	13.85	14.42	28:27	71.73	100.00
Urban Districts..............	2.81	1.46	$8 \cdot 34$	-	-	13.62	14.61	28.24	71.76	$100^{\circ} \mathrm{CO}$
Fxtra-urban or rural ditto	2.96	276	9.18	-	-	14.90	14.70	29.60	70.40	$100 \cdot 00$

PROPORTION OF POPULATION AT EACII AGE, PER CENT, TO TOTAL POPULATION, ACCORDING TO OENSUS OF 1871.

Countries.	Age.										
	T	$\stackrel{1}{1}$	${ }_{0}^{0}$	\int_{0}^{20}	$\begin{aligned} & { }_{02}^{4} \end{aligned}$	1	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$\xrightarrow{1}$	0 1	$=\frac{n}{0}$	60 and upwards.
Tasmania (February, 1870)	$2 \cdot 91$	$2 \cdot 63$	-	$8 \cdot 86$	-	-	$14 \cdot 40$	$14 \cdot 69$	29.09	70.91	$6 \cdot 64$
Victoria	$3 \cdot 34$	$3 \cdot 02$	$3 \cdot 28$	-	$3 \cdot 25$	$3 \cdot 05$	15.94	14. 55	$30 \cdot 39$	69.61	$2 \cdot 75$
New South Wales..........................	$3 \cdot 59$	$3 \cdot 16$	$3 \cdot 25$	-	$3 \cdot 27$	2.99	16.26	13.99	30.25	69.75	$3 \cdot 97$
South Australia	$3 \cdot 38$	$3 \cdot 31$	$3 \cdot 52$	-	$3 \cdot 52$	$3 \cdot 21$	16.94	$15 \cdot 37$	32.31	$67 \cdot 69$	$3 \cdot 48$
Queensland..................................	$3 \cdot 86$	$3 \cdot 45$	$3 \cdot 60$	-	$3 \cdot 40$	$3 \cdot 32$	$17 \cdot 63$	$12 \cdot 16$	29.79	$70 \cdot 21$	$1 \cdot 63$
England and Wales (1861)...............	$2 \cdot 96$	2.71	$2 \cdot 67$	-	$2 \cdot 57$	$2 \cdot 55$	$13 \cdot 46$	$11 \cdot 68$	$25 \cdot 14$	$74 \cdot 86$	$7 \cdot 44$
Scotland.	$3 \cdot 00$	$2 \cdot 60$	$2 \cdot 70$	-	$2 \cdot 66$	2.58	$13 \cdot 54$	12.05	25.59	$74 \cdot 41$	$8 \cdot 11$

Note.-The calculations have been made on the whole population, including those persons whose ages were " unspecified."
［M．］
NLIIBER OF RIRTHS AND DEATHS OF MNFANTTS UNDDER ONE YEAR IN TASMANIA．

［N．］
NUMBER OF DEATHS．－The Whole Colony．

Year．	AGE at Death．										Population at all Aocs．
	1	$\xrightarrow{\text { a }}$		J 1 $=2$	1	0	$\frac{8}{1}$	－		ごu	
1869．．．	289	46	26	13	14	388	44	432	903	1335	99，000＊
1870．．．	298	46	26	20	19	409	45	454	950	1404	100，765
1871．．．	260	45	21	18	8	352	28	380	975	1355	101，785
1872．．．	306	61	31	14	10	422	33	455	956	1411	102，925
1873．．．	266	67	23	22	19	397	43	440	1064	1504	104，217
Sum．	1419	265	127	87	70	1968	193	2161	4818	7009	508，692
Mean．	$283 \cdot 8$	53.0	$25 \cdot 4$	$17 \cdot 4$	14.0	$393 \cdot 6$	$38 \cdot 6$	$432 \cdot 2$	909.6	$1401 \cdot 8$	101，738

Year．	Urban Districts（Hobart and Launceston）．									
	Age at Death．									
	T	$\xrightarrow{1}$	of	1	20 7	12	$\xrightarrow{1}$	1 0		E等
1869.	160	27	14	5	4	210	20	230	537	767
1870.	145	24	8	9	10	196	11	207	567	774
1871.	137	28	10	6	7	188	13	201	604	805
1872.	164	44	9	9	5	231	13	244	576	820
1873.	145	36	11	8	12	212	30	242	658	900
Sum	751	153	52	37	38	1037	87	1124	2942	4066
Mean．．	1502	31．8	10.4	$7 \cdot 4$	$7 \cdot 6$	207：4	17．4	224.8	588.4	813.2

[^6]Hobart Registration District.

Fears.	Ace at Death.										Population.
	0-1	$1-2$	2-3	3-4	4-5	0-5	5-10	0-10	$\begin{aligned} & \text { Ail } \\ & \text { other } \\ & \text { Ages. } \end{aligned}$	${ }_{\text {All }}^{\text {All }}$	
1 1,	1010	1.1	8	3	2	128	1.4	142	335	477	24,921
15:0...	92	14	5	7	6	124	8	132	372	50.4	25,365
1871...	86	19	6	4	4	119	7	126	388	514	25,622
$15:$	112	251		8	4	157	8	165	380	545	25,909
1573.	St	2	s	5	8	1:00	19	14:)	$4: \%$	581	$26,2 \ddot{4}$
Sum..	476	96	35	27	24	658	56	714	1910	2624	128,051
Mean.	95.2	19\%	7.0	$5 \cdot 4$	4.8	131.6		142.8	382.0	$524 \cdot 8$	25.610

Launceston Registration District.

Years.	Age at Death.										Population.
	0-1	1-2	2-3	3-4	4-5	$0-5$	5-10	0-10	All other Ages.	$\left\|\begin{array}{c} \text { All } \\ \text { Ages } \end{array}\right\|$	
1869.	60	12	6	2	2	82	6	88	202	290	12,100
1870...	53	10	3	2	4	72	3	75	195	270	12,275
1871.	51	9	4	2	3	69	6	75	216	291	12,399
1872...	52	19	1	1	1	74	5	79	196	275	12,538
1873...	59	13	3	3	4	82	11	93	223	316	12,695
Sum..	25	63	17	10	14	379	31	410	1032	1442	62,007
Mean.	55.0	12.6	3.4	$3 \cdot 4$	$2 \cdot 8$	$75 \cdot 8$	6.2	82.0	206.4	$288 \cdot 4$	12,401

Extra-Urban or Rural Districts.

Years.	Age at Age.										Population.
	0-1	1-2	2-3	3-4	4-5	0-5	5-10	0-10	$\begin{aligned} & \text { All } \\ & \text { other } \\ & \text { Ages. } \end{aligned}$	$\begin{array}{\|c\|} \text { All } \\ \text { Ages } \end{array}$	
1869...	129	19	12	8	10	178	24	202	366	568	61,979
1870...	153	22	18	11	9	213	34	247	383	630	63,125
1871.	123	17	11	12	1	164	15	179	371	550	63,764
1872.	142	17	22	5	5	191	20	211	380	591	64,478
1873...	121	31	12	14		185	13	198	406	604	65,288
Sum..	668	106	75	50	32	931	108	1037	1906	2943	318,634
Mean.	133\%	$21 \because$	150	10%	64	186:	21%	207.4	381.2	588.6	63,727

[0.]
DEATHS IN TASMANIA FROM TYPHOID AND TYPHUS FEVER AND DIPHTHERIA.

Typhoid and Txphus Fever.			Diphtheria.	
	1874.	1875.*	1874.	1875.*
Bothwell...	\ldots		\cdots	
Brighton...	\ldots	2	\ldots	6
Campbell Town..	\ldots	3	\ldots	1
Clarence		
Deloraine..		-	1	2
Emu Bay..	1	3	\ldots	...
Esperance...			...	\ldots
Fingal.......	1	1	\ldots	
Franklin..	1	1	...	4
George Town..		...	\ldots	1
Glamorgan...	\ldots	
Gordon ..	\ldots	1
Green Ponds.	\ldots	...		
Hamilton...			9	1
Hobart...	4	13	8	17
Horton.....
Kingston ...			1	
Launceston.	3	1	12	5
Longford..	3	1
Morven..		
New Norfolk.	1	...	1	1
Oatlands...	...	\ldots	2	3
Port Cygnet.	...		\ldots	...
Port Sorell...	...	1	...	\ldots
Ralph's Bay...		
Richmond.....	4	1
Ringarooma...	
Sorell	4	3	\ldots	6
Spring Bay...	\ldots	\ldots
Tasman's Peninsula..........................	\ldots	...	\ldots	
Ulverstone (forming part of Port Sorell)..	\ldots	1
Victoria.....................................	
Westbury .	1	...	\ldots	...
	20	28	37	51

* Hobarttodate: Launceston to 30th Jume: other Districts to 30thSeptember.

OUR GRASSES (Queensland).

By F. Mr. Bailer, Brisbane, Corr. Member Ruyal Society T'asmania.

[Read 12th October, 1875.]

Howerer loth some may be to allow it, the foundation of this comntry's wealth lies in these plants. In old writings, as well as those of the present day, many plants are called grasses which do not belong to the Order called Graminece by botanists, but this order in its restricted sense is of the whole vegetable kingdom that most useful to man, and we also find it the most widely spread of Plcenogamous plants, covering the face of the globe, producing food for man and beast from the poles to the equator. The numbers of species also are very great, and with regard to size, while many attain but the height of a few inches, there are some which rival that of forest trees. Much might be said of the various uses to which this valuable family is applied, but all attempted in this paper is to draw some little attention to our pasture grasses. As only those known to the writer are noticed, doubtless a large number of species are left for further observation, while from those mentioned an idea of the richness of Queensland pasture can be formed. I have endeavoured to arrange the species more with regard to their general habitat than to natural affinity, which I think will be an advantage to persons who may wish to collect seeds of the species under notice for the purpose of proving under cultivation their real value.

Let us notice in the first place a fen of our grasses which may be termed Aquatic species, for they are generally found in swamps or along water-courses. Leersia Australis of Robt. Brown, which the learned botanist of Victoria, Baron von Mueller, who of late has given much attention to this order of plants, finds to be identical with Swartz's L. hexandra. It is the species most generally met with;a quick growing productive grass. It seems to be well relished by cattle. It is also botanically interesting on account of having six stamens, being double the number of male organs usually found in the grasses. Poa aquatica, L. the water-meadow grass, may be often met with on our marsh lands; this is a fine succulent grass and crops well, but cattle are apt to pull it up, and thus prevent it from producing seed that otherwise it would do in abundance. Panicum atrovirens, Tri., may be met with in sereral of the creeks near Doughboy. It is one of the prettiest of our indigenous grasses, and promises a very fair amount of fodder and seed.

In most of our swamps will be seen a wiry growing grass
with upright spikes of seed, to which many small birds seem partial; this is Robt. Brown's Panicum phleoides, but according to Fraymenta Phytographie Australice, Vol. viii., page 197, Baron von Mueller finds it identical with Panicum indicum of Linnceus. When introduced on to good land the wiry character is lost, and it forms a good sward.

Of all the species found on our low lands none equal for fodder a variety of Panicum Crus Galli Linn. Echinochloa stagnina of Palisot de Beaurois ; in its natural state it will be found in or around stagnant water of from 2 to 3 feet in height, but when cultivated it attains the height of 5 or 6 feet, the fodder being equal to any of the introduced Sorghums. Panicum virgatum Lim. is another species found along watercourses and in swamps; it produces a fine succulent fodder, but not equal to the last mentioned. This species is also common on the Darling Downs, where it is known as umbrella-grass.

Pennisetun compressum of R. Brown's Prod. This species forms large tufts of grass of a rather coarse nature. When in flower it will be easily recognised by its purple bottle-brushlike spikes. With this may be classed Robt. Brown's Cenchrus australis, a swamp and scrub grass, readily eaten by cattle until its burr-like seeds appear. The broad-leaved variety of this grass, found on the banks of the Pioneer River and other parts of Northern Queensland, is much more succulent, and produces a large quantity of coarse fodder.

* Phragmites communis Tri. The common reed is abundant along most of our rivers, and although not a fodder, still is useful for thatching, etc. Andropogon muticus Steudel. When fully grown this species becomes very harsh, but in the early stage of its growth it produces a fair quantity of feed; entirely a swamp species. Andropogon triticeus P. Br., the tallest of all our grasses is only found within the tropics, where the flower stalks often stand 10 or more feet high, bearing several spikes of flowers resembling ears of wheat. This is the spear grass of the tropic, and is well named, for its awns are often 4 or more inches long; it produces a large quantity of bottom feed, and is only found on rich land. The common blady grass* Imperata arundinacea of Cyril, one of the most frequently met with grasses on rich land, and indeed the commonest grass of the north, produces in a young state a large quantity of feed. On salt marshes or brackish land will often be seen a large quantity of the stiff harsh grass, *Hemarthria compressa of Robt. Brown, although coarse, this kind produces a great deal of feed. In company with this another very superior species, Sporobolus pallidus, will often be seen keeping up a good sward until well on into the summer month, when it is generally overrun by Dr. Robt. Brown's Paspalum littorale; of
this there are two distinct rarieties, the one being found near salt, the other near fresh water. This latter variety is perhaps the most suceulent and beautipul of all our summer grasses, but neither are seen much of during the winter. According to Baron Mueller these two varieties are identical with an Indian grass Paspalum distichum of Linnceus.

I will next notice a few species generally to be met with on broken ground such as the borders of scrubs, banks of rivers, or similar situations, and here we shall doubtless find many that it would be well to introduce into the pasture lands. For instance, the beautifulPon chinensis of Fonig, which may be seen plentifully on the bauks of Doughboy Creek and the Brisbane River, is a species well worth cultivating. It is easily known by its feather-like drooping panicle.

* Stipa Dichelachne of Steudel is also a valuable species, on account of its producing feed all the year round. It is a free seeder, and may be easily known by its upright, light colored panicle. The broad-leaved Panicum foliosum, R. Br., must not be looked over, for it is one of the best grasses on the river bank. * Festuca Billardieri of Steudel, a grass often found on the borders of scrubs is rather too harsh to recommend for fodder, although it seems to be liked by some persons on the Darling Downs. Forster's Agrostis ovata, Cinnct ovatu of Tiunth is another harsh species common to our river banks, but which cannot be spoken of as a fodder grass. I shall speak of the bulk of our grasses under the name of pasture species, because if we notice a paddock cleared of its timber and rubbish, so that the natural grasses have a chance, they show themselves even on the very worst land-the ironbark forests for instance. In a marvellously short time the whole is covered with a luxuriant sward, thus proving all useful for pastoral purposes. But as there are some few kinds of grasses oftener met with in one situation than another, it will be well to note these. Thus there are a few species which we generally fall in with on the dry ridges, as the beautiful close-growing Andropogon falcatus of Steudel, which, from its compact dwarf growth and rich color,should recommend itself as a valuable lawn grass. Here we also find the prolific seed bearer, Panicum brizoides of Linneus. The stalks of this grass are mostly prostrated by the weight of seed; in company with these will be found,especially on forest land, the sparsely-leaved upright growing Panicum marginatum, R. Br., and its nearly allied species, Panicum strictum, R. Br. This latter species is of a darker green, and not so hairy. Panicum bicolor, R. Brown, is another grass often met with on the dry ridges ; and also all over the hills will be seen the fine pasture grass Panicum pariflorum, R. Br. Of this there are also two fino
varieties, the one with large spreading panicles, and the other having only one or two very long erect spikelets in its panicle. All three are well worth cultivating, and they will be easily recognised from the dark color of the small seeds. Panicum tenuiflorum, R. Br., has a running stem and broad leaf, and forms a good bottom. This species is easily known by its weak stalks, and two spikelets ; the seed also is of a light color. Two grasses, also common in ironbark forests, are Aristida vagans and A. calycina. According to Dr. Robt. Brown's Prodromus, these two grasses make a good bottom, although their stalks are dry and harsh. The terminal three awns to the seed distinguish the genus. And these two species may be known from each other, by the latter having a drooping panicle, and being of a lighter color than the former. In company with these will always be found the fine pasture grass, Sporobolus elongatus, Robt. Brown. This species is not confined to the hills, but is met with in all directions. This species has a very long narrow panicle. On the damp side of the hills will be met with during the greater part of the year, a very pretty grass ; the four stamens of the flowers will readily point the species out. This is Robt. Brown's *Microlonnc stipoides, also known by Labillardier's name, * Ehrharta stipoides. Here also will be found the handsome Andropogon gryllus of Linnaus. Trinius named it Chryspogon gryllus, from its golden beard. It is a useful fodder species. On the open hillsides our old friend, the kangaroo grass, Anthistivia australis, R. Brewn, is met with in abundance, and in similar situations at the north will be found the *Anthistiria ciliata of Linneus. This species makes a much greater quantity of leaf. Brown's Panicum decompositum, which Baron Mueller finds identical with an American species, Panicum capillare, Gronv., is a most productive grass, and is found pretty generally throughout the colony. Panicum coloratum, Linn; this is very similar to the last, but its large panicle is of a dark color. The well-known annual summer grass, Panicum ciliare, Retz, all will agree in pronouncing a most prolific species. The most common grass of our flat open country is Andropogon refractus, R . Br., a species that may be known by the spikelets being suddenly bent backwards as if broken. This is a fine productive summer grass, but little is seen of it during the cold months. The same may be said of the species commonly called blue grass, Andropogon sericeus, of Brown's Prodromus, and Andropogon affinis, R. Br.; but Andropogon pertusus, Willd., stands the cold much better, though somewhat similar to the two last named species; this may be recognised at once by the little pit on the glume. Panicum semialatum, R. Brown, a very widely spread species, is an excellent pasture
grass. The species is easily distinguished by its tall stalks, and two or three stout often colored spikelets; this species stands the winter pretty well. Another grass that will stand through the winter well is IIclopus annulatus, Necs. There are two varieties of this fine grass, both equally good. This species is of a much lighter green than most others. *Ayrostis solundri, F'. v. Mueller, is an early annual grass, and produces a large quantity of sweet herlage. This species is not very common about Brisbane, but is plentiful on strong wet land, as Darling Downs. Brourn's Por puteviflora is an annual grass found springing up in all directions, producing a sweet tender herbage at most seasons of the year. It is the light panicles of these 1 wo, and the next species, that are often seen sticking to fences in summer. Chloris dienticata, R. Br., the common star grass, is an early quick growing species, which, although its flower stalks may look dry, nevertheless produces a large quautity of leafy feed at bottom. The couch Cynollon Dactylon, Pers, which is found following the footsteps of both squatter and firmer must not be overlooked, but being so well known it is needless to do more than just mention it. Eleusine indica Gavtn is a strong growing stucculent summer fodder in the Brisbane district, but further north it is stated to form a gool permanent pasture. The species may be recognised by its deep green color, strong stallss, with star-like panicle the spikelets of which are flat and broad. Equal to the last with regard to summer produce, is Brown's Paspalum orbiculare, and it must be reckoned a superior species, fur it possesses the adrantarge of growing through our winter months. This species is mostly met with on rich alluvial flats in company with another fine grass, Sporobolus indica, R. Br. The growth of this is rather tufty, somewhat similar to *Poa cespitosa, a grass often found with it, but from which it may be readily known by its close spike-like panicle. In similar situations we may often meet with large patches of Andropogon montanus Roxb., a very coarse grass, which does not seem to be much relished by cattle. Andropogon acicularis, and A. contortus, Linn., are two good fudder species, but the spear-like seeds of the latter speecies makes it troublesome to sheepfarmers. Two other grasses are also an annoyance in the same way, Lappago racemosa Schreber, by its burr-like seeds; and also the common speargrass, Streptachene stipoiles, R. Br., although this latter species is oue of the best fitteuing sorts before its seeds are ripe.

As there are a fer of our native grasses which stand a deep shade, it may he well to notice them, for although they cannot be recommended as fodder species, yet they have their value for ornamental purposes. 'Thus under the close shade of our

Casuarina trees, and in the dense scrubs the small grass, Panicum pygmaum, R. Br., will be found, forming a soft thick carpet in its natural state. It is not much relished by stock, but if grown on open country it would doubtless prove a valuable species for some lands. In company with the above a much more delicate species will often be seen, perhaps a variety of P.pygmoxum. Robt. Brown's two species of Orthopogon, O. compositum and O. imbecillis, are great shade lovers, and may be often met with on the sides of hills; the genus will be at once recognised by its straight beard.

The wheat-like Danthonia, D. triticoides Lindley, and Sclerachne cyathopoda of F. von Mueller, two grasses from the north of Queensland, are highly spoken of as fodder species. On the Darling Downs, generally spoken of as the richest pasture lands of the colony, there are a few species of grasses that seem peculiar to the locality. Therefore it will be as well to notice them as Down grasses. The Downs Oat-grass, Anthistiria avenacea, of Baron Mueller, is one of the most productive grasses of Australia. Like all other kinds of kangaroo grasses, this produces a large amount of bottom fodder, but it also has the advautage of being a prolific seeder.

The Black or Brown-topped grass is next in importance to the Oat. This, Dr. Brown's Saccharum fulloun (Erianthus fulvus, Kunth), is a sweet grass, of which stock are so fond, that they actually eat it down so close as to cause it to die out.

The Bamboo grass Stipa ramosissima, Sieber, although a very coarse hard species, is by some highly spoken of as a horse fodder. The larger masses of fine grass, produced at the nodes of the stems, makes this species easy of recognition.

Pennisotum glaucum, R. Br., is a fine fodder grass, and well worthy of cultivation. The same may be said of Baron Mueller's Panicum conicolum; this species is in appearance very like Panicum divaricatissimum, a grass found along the Brisbane River. The White-topped grass, *Danthonia penicillata, F. v. M., the Umbrella grass, Aristida ramosa, R. Br., and Pappophorum commune, F. v. M., are three kinds peculiar to the districts, and by some spoken well of, but they seem, from the specimen before me, to be of a rather dry nature. The following grasses have become naturalised in our pastures:-

The well-known Prairie Grass, Bromus unioloides H.B. and Kunth, is an excellent grass, producing a fine winter fodder, and plenty of seed. The Guinea grass, Panicum maximum, Jacq., a most valuable fodder, stands cutting well. The Buffalo grass, Stenotaphrum Americanum, Schrad. This is a very fine and desirable species, and cannot be too highly spoken of;
besides being a fine pasture grass, it is also valuable for holding together loose banks of rivers and creeks. 'Io these may be added Pon anmu and Poa pratensis, with also the pretty little Briza minor. As it is in the winter months, say June and July, that the pasture is at its worst in Qucensland, I shall next notice a few of the best species at that season.

The introduced Prairie Grass, Bromus unioloides, keeps up a good growth until about the end of September. This grass is only found on the rich land along rivers, \&e. Poa annua will be found pretty generally ssattered over our ridges.

The Blady grass, *imp rata arundinacea, where the old has been burnt off during the summer, produces a large amount of sweet feed. Paspalum orbiculare, when close fed, is a most valuable winter grass, but if let to get old cattle refuse it.

The Old Krugaro) grass, Anthistivia australis, a fine grass in all seasons, is one of our best winter species.

Helopus amnulutus. This grass, like the above, produces all the year round.

Though delicate looking, * Microlina stipoides produces a large quantity of feed on our damp hill-sides during winter. And the swamps are also covered at this season with Lecrsia hexandra.

On the rich alluvial soils bordering our rivers, Sporobolus indicus and S. diander, produce abundant feed.

Andropojon refiactus, although a species which does not like cold, yet where there is good shelter, is a good species for forest land, even in winter. The same may be said of Panicum bicolor, P. parviflorum, P. marginatum, and its variety strictum, all good forest grasses. Andropogon falcatus, a valuable lawn grass, is also a good winter species. Doubtless this list might be extended much further, but enough are noticed to show that even in our worst time the pasture of Queensland is good.

Before closing this paper, it may be well to notice those grasses which seem more susceptible than others to the parasitical fungus (Ergot). The following are the species I have usually noticed infested:-Sporobolus elongatus, T. indicus, S. diander, Paspalum orbiculare, and Leersia hexandra. I may here notice that one of our common sedges, a small Fimbristylis, is at times very bad with an ergoty fungus. May it not be this, which at times poisons sheep, and not the too often condemned flowering shrubs?

F. M. BAILEY.

Brisbane, Queensland, September, 1875.
Note.-The forerroing paper was read ly the Rev. J. E. Tenison Woods, who marked thus * the species indigenous to Tasmania.

DESCRIPTION OF NEW TASMANIAN SHELLS.

By the Rev. J. E. Tenison Woods, F.L.S., F.G.S.
[Read 8th November, 1875.]
The following marine shells have been placed at my disposal for description by Mr. W. Legrand, of Hobart Town, and the Rev. H. D. Atkinson. Mr. Legrand, who has one of the finest collections of shells in the southern hemisphere, has been a collector for years, and has become thoroughly familiar with the marine fauna of our coast. Mr. Atkinson has occupied himself with dredging for some years, and has been the only conchologist who has sought for novelties in that way in Tasmania. He has also been indefatigable in his efforts to advance the success of conchology in the Island, and it is owing to his efforts alone that some of the very interesting species here described have been brought to light. I also observed two new species from a swall collection placed in my hands by Mr. Justin Browne and the Curator of the Museum, Mr. Roblin. To all these gentlemen I take this opportunity to return my thanks.

In this list the measurements are always the greatest length, width, or height, as the case may be. In bivalves length means in every case from the umbones to the margin; width the greatest measurement in the opposite direction ; and height the thickness of both valves united. All dimensions in French millimetres.

Pisania tasmanica m. s. P. t. fusiformi-elongata, alba, nitente, livis transtersalibus subtillissimis, plicisque mimutis, rotundutis, subdistantibus, creberrime cancellata; anfractibus 7, convexis, dectivis, ad suturam constrictis, curicibus ehurneis, sub)-ubsoletis, ormut is; aperture ovali, labro eburneo, incrassato; labio vix calloso. Long. 20. Lat. 7. Aper long. 7.
P. shell fusiformly elongate, white, shining, very thickly cancellate, with very fine transverse liræ and small rounded, subdistant plaits; whorls 7, convex, sloping, constricted at the suture, ornamented with ivory white sub-obsolete varices; aperture ovate, outer lip ivory white, thickened; inner lip scarcely callous.

Rare, D'Entrecasteaux Channel. It was not without difficulty that I separated this species from P. veticulata, which it resembles in every respect, except that it is very much smaller, shining white, with two or three regular varices on each whorl. There are no varices in P. reticulata, and none are noticed by A. Adams (Zool. Proc. 1854, p. 138, sp. 39), whose description is hardly sufficiently detailed. In old specimens of that shell the cancellated structure causes the plaits to be very granular, and it is a dull shell of a purple
brown color, but young specimens are more livid, and faintly banded with chestnut.

 partim atro-violaca encausto; labro vix crenato. Long. 15. Lat. 8.
P. sholl acuminately ovato, greenish white, spire produced acuminatr, mamillate; whorls 6 , angulate and biearinate above, with tranverse rommed lirie (equalling the interstices in width), and cancellated with sealy imbricate lamelle ; aperture acutely ovate, stained deep blackish purple within; inner lip somewhat flattened and partly enamelled, blackish purple ; outer lip slightly cremulate. Long Bay, Southport, common.

This shell approaches in habit the P. Flindersi of Adams, and Angas, hut it is much smaller and more like a Littorina, while the other resembles a Trophon. Its deep violet black mouth is very characteristic. P. Flindersi has a violet mouth, but very much paler and clouded.
Trophon vmbilicites, n.s. T. t. orata, lutea rel pullide castanca, solida; spira elata, anfrac 5-6, superne angulatis et concavis, conspicue lompitulimuliter plicutis (ult. unfi. S) et tronseopsim conferte liratis, livis mumis et purcis altermentihes, momnis plametis, et supra pilicas sulumuta-imbricutis; strumis post colnmellam calidis, cleratis, comlicmlutistue; al suturas costis livisque obsele tis; labro extus crenato intus dentern) luhion colum.lluri repenso ; umbilico squamis imbricutis, rotundatis marginato. Long. 27. Lat. 15.
T. shell ovate, yellow or pale chestnut, solid, spire raised; whorls 5-6, angulate above and concave, conspicuously plicate lengthwise (8 in the last), and transversely thickly lirate, liræ alternating large and small, the larger flattened, squamately imbricated over the plaits ; sfuame bohind the columella valid, maised and canaliculate ; at the sutures, the plaits and lire obsolete; outer lip crenulate outside and toothed within; columella lip expanded, umbilicus margined with rounded imbricated scales.

Rather uncommon, East Coast. At one time I considered this a 'Lasmamian variety of T?. Hanleyi, Ang. but a comparison of many specimens shows me that the present is an entirely different shell, very much more scabrous. Thie umbilicus and its margin are also peculiar and distinct.

[^7]minate ; whorls 8 , convex, sloping, validly ribbed lengthwise, with rounded sub-distant ribs, and latticed with e'evated distant liræ; apertare wide, of deep reddish brown (doubtfully banded) ; outer lip thin, canal subelongate and recurved.

Rare, Bass Straits? A small very conspicuously latticed and turretted shell, in every way distinct from those previously described, which have no valid transverse liræ. It might be mistaken for a Clathurella, but that it has a true Trophon mouth and canal.

Trophon brazierr, n.s. T.t. parva, ovata, fusiformi, utrinque attenuatu, sordide alba, spira subturita, quasi acuta, mamilluta, anfractibus' γ, costulato-varicosis, levigatis rel tenuissime striatis, ultimo anfractu varicibus sex, rotumatis, distantilns, merlio convexis; aperture ovata, encausta, funce castanea, labio tenui, intus indistincte spiraliter fulvo-fasciata; columella antice subtuberculuto; canali subelongato recurvo. Long. 10. Lat. 5 mil.
T. shell small, ovately fusiform, attenuate at both ends, sordidly white, spire sub-turretted, almost acute, mamillate; whorls 7, with rib-like varices, smooth or finely striate, last whorl with six, rounded, distant varices, which are convex in the middle, aperture ovate, enamelled; mouth chestnut; outer lip thin, indistinctly brown banded within; columella subtuberculate anteriorly ; canal sub-elongate, recurved.

Long Bay, rather common, small, the enamelled chestnut mouth and narrow form easily distinguish it.

Trophon goldsteini. T.t. abbreviato-fusiformi, lamelloso-varicosa, sordide alba, spira subturita; anfractibus 8, contexis, superné anyulatis'et coronatis, liris substuntibus, subelecatis (ult. anfrac. 4, duobus basim versus inter varices obsoletis), transeersim cinctis; liris supra varices non transeuntibus; varicibus antice squamosis, flexuosis; apertura ovata, intus encausta, castenea et fulvo-fasciata; labro vericoso ; columella contortto ; canali contorto et flexthuso. Long. 16. Lat. 8 mil.
T. shell abbreviately fusiform, lamellosely varicose, sordidly white, spire sub-turretted; whorls 8 , convex, angulate and coronate above, girdled transversely with distant sub-raised liræ (in last whorl 4, the two towards the base between the varices obsolete), lire not passing over the varices, awhich are anteriorly squamose and flexuous; aperture ovate, enamelled and chestnut brown banded within; outer lip varicose ; columella twisted; canal twisted and flexuous.

Long Bay, a very pretty lamellose Trophon which I have dedicated to an old and most painstaking fellow labourer in Australian Conchology, Mr. J. R. Y. Goldstein, of Warnambool, Victoria.

Trophon australis, n.s., T.t. ovata, utrinque acuminata, sordida, vividescenti: anfractibus 6 , convexis superne angulatis, obsolete loug. costatis; et transecrsim temuiter liretis; ultimo anfractucostis 10 ,
 phemater ; comati lumpinseulo prunlutim recurro. Long. 16. Lat. 9.

I'. shell ovate, acuminate at each end, sordidly greenish ; whorls 6, convex, angular above, obsoletely ribbed lengthways, and finely tranversely lirate ; ribs on last whorl 10 , vanishing anteriorly; spire acute; aporture ovate, outer lip thin; columella flattened; canal somewhat long and slightly recurved.

Long Bay, rare, Rev. H. D. Atkinson, a more globose form than any except T. Itanleyi, Angas, of which it is about onehalf the size, and in no way scabrous, the ribs being very indistinct.
Ftsus spiceri, n.s., F.t. elongata, turrita, solide, rufo-castance wel luted, striis levibus trensversilibus (altemantibus parcis et maj.) et costulis undulatis lonyitudinaliter obsolete plicate ; spira (scepé contorta) superné sensim attemuta; apice mamilata rel decollata; anfr. in medio rotundutis; aperture oratu, canali longiusculo, recto, terminato; lulro simplici tenni; lulno inconspicuo cul suturam temiter canaliculato, columella encausta. Long. 25. Lat. 9. Anf. 8.
F. shell elongate, turretted, solid, reddish chestnut or yellow, cancellate, with smooth transverse strix (large and small alternating), and undulating longitudinal lines; obsoletely plicate, lengthwise ; spire (which is often contorted), gradually attenuated above ; apex mamillate or decollate, whorls rounded in the middle ; aperture ovate, terminated by a somewhat long straight canal ; outer lip, simple, thin ; inner lip inconspicuous, slightly channelled at the suture; columella enamelled.

King's Island, somewhat common. W. Legrand.
Fuses legrandi, n.s. F.t. subelongata, fusiformi, fulto-fusea, solidiuscula ; imfractibus 7, subrleclicis,lonaitudinaliter plicato-costatis, in ultimen anfr. olsoletis; spiraliter liratis; liris albis, rotundatis, maj. et min. aliquatulo (speciutim ult. anfiac.) alternantibus, superné olsolete muricatis ; interstitiis epidermidé, sulsquamosis, tenuissimeque clathratis; sutura constricta ; apertura pyriformi-oblonga; columella plenn-concara ; labro temui, intus lirato. Long. 38. Lat. 15. Apert. et can. 23.
F. shell subelongately fusiform, brownish yellow, somewhat solid; whorls 7, a little sloping, with longitudinal plicate ribs, which are obsolete in the last whorl ; spirally lirate with white elevated rounded liræ, which sometimes, especially in the last whorl, are large and small alternately and obsoletely muricate above; latticed in the interstices with a somewhat scaly, very thin epidermis ; suture constricted, aperture pyriformly oblong; columella flatly concave; outer lip thin and lirate within.

Rare, East Coast. Mr. Legrand tells me that this species seldom exceeds the dimensions given. It is very different
from F. Tasmaniensis, Ad. and Ang. which is pyriform. Its nearest representative is F. muricalus Montague (in Testacea Britannica as Alurex m.), lut in that species the costro are much more distinct.

Siphonalia clapkei. S. testa parva, turvita, subfusiformi, lisida; maculis mfo-fuseris sul, peripheriom ormata; anfiretilus (6), declicis, superné angulatis, regione suturali cmucucr ; costis radientibus, (in ult. anfi. 12) oldusis, rotundratis, infin ollsoletis, intristitios con-
 obsoletis; canali brevi, vix curvato; apertura ovata; labro intus dentato; labio inconspicuo. Long. 27. Lat. 9.
S. shell small, turretted, sub fusiform, livid (or brown-it varies in color much as Columbella semiconvexa) with reddish brown spots under the periphery; whorls sloping, angulate above, and concave at the suture; radiately ribbed (ribs 12 in last whorl) ribs obtuse, rounded, obsolete below, and narrower than the interstices, spirally lirate ; liræ obsolcte above and on the ribs; canal short sloping, but scarcely curved ; aperture ovate; labrum toothed within; lip inconspicuous.

From the very full and concise descriptions of Siphonalia fuscozonata, by Mr. Angas "Zool, Proc. 1865," p. 56, our only Australian species, I am able to pronounce this species distinct and new. It is much larger, the ribs more numerous, the color livid instead of white, and the liræ obsolete or absent, and lip toothed within. The brown spots are often deeply shaded at the summit of the ribs, and form a kind of fascia on the upper whorls. The labrum is often thickened into a kind of varix. At Long Bay, D'Entrecasteaux Channel, Legrand and Atkinson.

I have dedicated this interesting species to my dear friend and fellow labourer, the Rev. W. B. Clarke, F.G.S., \&ec, so long and eminently connected with the history of Australian geology.
Sipionalia turrits, n.s. S.t. fusiformi-elonyata, castenca rel livida; superne maculis rufu-fulcis sonutu, pusticé lineis subtillissimis punctatis rufu-castancis cincta ; spira clutu, costata ; cenfructibus 7, conrexis; ultimo obsoleté nonloso-costato); apertura ocata, intus maculata et fasciata, fusciis interuptis; latro acuto; labio concaro; canali oltiqué elongato. Long. 16. Lat. 7.
S. shell fusiformly elongate, chestnut or livid, zoned above with reddish brown spots, and posteriorly girdled with very fine lines of reddish chestnut points; spire elevated, ribbed; whorls 7, convex, last obsoletely nodosely ribbed; aperture ovate, spotted and banded with interrupted color within; outer lip acute ; inner lip concare; canal obliquely elongated.

Long Bay, rare, Coll. Legrand. A shell very closely resembling S. clarlei, but more fusiform with a longer canal, and
the last whorl nearly smooth, as the ribs are almost obsolete. The spire is also much turretted, and the outer lip thin and not dentate. The lines of minute dots are also peculiar. Inside the upper zone of spots appears as a series of lungitudinal lines of a mut brown color.
Cominella tisminica, n.s. C.t. ovato-acuta, solidiuscula, in apicé acuta, alba, interdum virescenti et obscuré fusciata, spira costata et
 eloatis cimetis, striis lomeritulimalibus sultilionilns comecllatis; aperturu areté mate: luhto simplici temnis, erpenser, olsouleté livato; lubhio encausto, canali poullulum curvato. Long. 30. Lat. 17. Long apert. 15. Lat. 8.
C. shell orately acute, somewhat solid, with acute aper, white, sometimes greenish and obscurely fasciate; spire costate and mamillate; whorls 8, convex, subsanaliculate above, encircled with lire and cancellated with very fine longitudinal striæ; aperture acutely ovate; outer lip simple, thin obsolete, lirate, inner lip enamelled; canal slightly curved, Long Bay. Not uncommon. Rev. H. D. Atkinson, W. Legrand. This characteristic Cominella is distinguished from C. costatum by being double the size ; its distinct raised lire, the absence of any costre on the last whorl and the color.

Cerithiopsis atminsoni, var. A very distinct variety of Mr. Augas's C. crocert (P.Z.S. 1871 p. 16). It is larger and narrow, of sordid yellow color, instead of orange, and the ribs are not equal, the lower being small. It has however, the fine longitudinal strix between the rils. Dredged by the Rev. H. D. Atkinson in Long Bay, 10 fathoms sand.

Conus tasmanicus. n.s. C.t. paria, subpyriformi-turbinata, comomutu, tomil, suld-influtu, luri, nitente, mentice striios distuntibus ablilis cinctu; castanue, trilms lineris fulloo allorque maculatis oblique annutu; al sutures comspirue allon-fuleo maceluter; enfructibus 6 , transversim rugosé striatis, labro temui.
C. shell small, sulpyriformly turbinate, coronate, thin, subinflated, smooth, shining, with anterior valid distant striæ; chestnut, zoned with three white and fulvous spotted lines; conspicuously spotted with white and fulvous at the sutures, whorls 6 , transrersely rugosely striate, outer lip thin.

Tery rare. Coll. W. Legrand. Quite distinct from any other Australian form by its color and small coronate habit.
Mitra tasmisica. n.s. MI.t. aratu, utrimque uttemuata, badia, lim is lutu-ullis li,-tri-fisseictu: spime suldelocatu, aruminuta ; anfructilus $\tilde{2}$, planulutios; lomyitmlinuliter crolrée costuta, costis parris, sultuhsolitis; liris troustorsalimus sultillissime cinctis; apertura unyustu ; colemelle quedriplicutu. Long. 13. Lat. 5. Long aperture $6 \frac{1}{2}$.
M. shell ovate, attenuate at both ends, brown, with two or
three yellowish white transverse bands; spire subelevate, acuminate; whorls 7, flattened, thickly ribbed lengthwise with small obsolete ribs, and very finely girdled with transverse liræ; aperture narrowed ; columella quadriplicate.

Rare, Coll. Legrand. The fine ribs are most prominent on the upper whorls. There is a shell very closely allied to this which I have marked as variety a, where the ribs are larger and continuous, and another variety where they are smooth, and the whorls coronate.

Mitra scalariformis. n.s. M.t. parra fusiformi-turrita, pallide, lutea, linea allida indistincte zonata; spira acuta; anfractilus '7, rotundatis, eleganter crebré costatis, costis validis, cqqualibus, rotumalatis lavibus, nitentibus, antice in ult. anfr. exanescentibus; apertura latiuscula ; labro tenui acuto; columella triplicata. Long. 10. Lat. 4. Long aper. $4 \frac{1}{2}$.
M. shell small, fusiformly turretted, pale yellow, zoned .with an indistinct white line ; spire acute; whorls 7, rounded, elegantly thickly ribbed with valid equal smooth shining ribs, which disappear on the last whorl. Aperture rather wide, outer lip thin, acute, columella triplicate.

Long Bay, rather rare, Rev. H. D. Atkinson. A very pretty shell, the ribsand somewhat turretted spire give it a scalariform aspect. It is somewhat dull in color.
Mitra legrandi. n.s. M. t. mimuta, spira sub-turrita, tumida, translucente, nitente, rufo-fulva, alla et linca fulca temui zonata; anfractibus 5, costatis, costis ralidis, rotundatis, nitentibus, apertura ovali, columella triplicata. Long. 5. Lat. $2 \frac{1}{2}$. Long apert. $2 \frac{1}{2}$.
M. shell minute, spire sub-turretted, tumid, translucent, shining, reddish fulvous white, zoned with a slender ${ }^{*}$ fulvous line; whorls 7 , ribbed with valid shining rounded ribs; aperture oval, columella triplicate.

King's Island, rare. A very small shell, varying somewhat in the shades of its coloring, and not unlike II. tasmanica, above described, except that its ribs are more permanent and larger in proportion to its size.
Mitra teresle. n.s. M.t. parva oblongo-ovata, tenuiscula, nitente, sulwentricosa, badia, albida bifasciata; spira breviuscula, vix acutu; anfructibus 5, leevibus tumidis, conspicué nitentibus, ad suturam temuissimé canaliculatis; apertura orata, intus bifasciata, columella triplicata. Long. 7. Lat. $3 \frac{1}{2}$. Long apert. $3 \frac{1}{2}$.
M. shell small, oblong ovate, somerwhat thin, shiny, subventricose, brown, with two whitish bands; spire somervhat short, scarcely acute, whorls 5 , smooth, tumid, shining conspicuously, finely canaliculate at the suture, aperture ovate, bifasciate within, columella triplicate.

Rare, King's Island. A shining banded shell of the series of our II. pica, but much smaller. The coloring seems very
persistent, and, therefore, the species not easily mistaken. I confess, however, that if this species could lose the white bands, and were to have the mouth lirate within, I should regard it as a rariety of M. scila. I think the lire are not persistent in the latter, and, therefore, the shell may be the same.
Mitra scita. n.s. M. t. parva, ovata, nitente, undique intense barlit, spiren obtusé rotundata, "pice mamillato; anficectibus 6 , lineihns tumidis, sutura tınиiter impressen ; aperture lutiuscula, intus buthe, liratu; columellu triplicutu. Long. 8. Lat. 32 . Long apert. $4 \frac{1}{2}$.
M. shell small, orate, shining, entirely pure deep brown; spire obtusely rounded, apex mamillated, whorls 6 , smooth, tumid, suture finely impressed; aperture rather wide, brown within, lirate, columella triplicate.

King's Island, somewhat common. Coll. Legrand. Specimens which had been mixed with MI. teresio. Very distinct from its size, and intense uniform coloring, though belonging to the series of which $I I$. badia is a large representative.
Masgelia atenssoni. n.s. M. t. parva, ovatu-fusiformi, tumidiussula, allue, nitidu, cpidermidé ferruginea induta, lineis obtusé angulutis zomutu; spire mamillutu; unfructions 6, costutis, costis ralilis (ult. anfi. 6) rotemututis; "pperture oratu, supermé acuta; labro acuto, labio simplici, replicato. Long. 3. Lat. $\frac{2}{3}$ mill.
M. shell small, orately fusiform, somewhat tumid, white, shining, clothed with a ferruginous epidermis; zoned with obtusely angular lines, spire mamillate, 6 whorls, ribbed, ribs valid, rounded (in the last whorl 6), aperture ovate, acute above; outer lip acute; lip simple replicate.

Rare, East Coast. Coll. Legrand. The minute angular zone on this shell is not easily seen even under the microseope, because of the ferruginous epidermis. This shell has been dedicated to the Rev. H. D. Atkinson, whose dredging operations have done so much to develop the knowledge of Tasmanian conchology.

Clathurella philomesi. n.s. C'. t. elongeto-fusiformi, turvita, gurcu, nitonte, ulbet, , inl sinturam pullilissime fulce fusciata; upice
 lumitulimuliter plimatis; plicis costiformihus, rotumlutis, requluribus 10l sutnons ucuatis, ticustersim lirutis ; liris snpra plic. transentilus, distantilns; apertura oculi; labro incrassuto, postice profunde sinueto; latio ieflozo phus minusce fulco tincto. Long. 11. Lat. 32
C. shell elongrately fusiform, turretted, small, shining, white, very palely white banded at the suture; apex acute, fulvous; whorls 7, sloping, angular above, somewhat convex, plicate, lengthwise, with rib like plaits, which are rounded regularly and bent at the suture; transversely lirate, liræ passing over the plaits; aperture oval; outer lip thickened and deeply
sinuate posteriorly; inner lip thickened, more or less tinged fulvous brown.

A small, almost cylindrically turretted form, with the apex and base tinged brown, and banded. The well defined ribs give it a pretty sculptured appearance. Rather common. Easî Coast.

Mangelia imnaculata. a.s. M. t. fusiformi-turrita, alba, nitente, spira acntu; anfraetions 9, declicis, allsuturas canalieulutis ad angulum obsoleté tuberculatis, transecrsim olsoleté liratis; apertura ovali; ledro tenui, simu conspicuo ; lubio simplici, superné tuberculato. Long. 17. Lat. 6.
M. shell fusiformly turretted, white, shining ; spire acute, whorls 9 , sloping ; canaliculate at the sutures, angulate and obsoletely tuberculate above, transversely obsoletely lirate, aperture oval; outer lip thin; sinus conspicuous, lip simple, tuberculate above.

King's Island, rare. A white, somerwhat elegant species $_{r}$ with a true Pleurotoma spire.

Mavgelia meredithle. n.s. M. t. turrita, fusiformi, gracili, spira quam apertura longiore ; nitente, diaphana, alba, fasciis pallide castanea creberimé cincta; anfractilnıs 6, declivis, superné anyulatis et concavis,longitudinalter plicatis plicis opacis, nitentibus, distantibus, curvatis, al suturam angulatis ; interstitiis sulbtillissime striutis; striis retate evenescentibus; aperturc angusto orali; lulio simplici; labro extus sub-varicoso, intus loevi ; margine acuto. Long. 13. Lat. 5.
M. shell turrettedly fusiform, graceful, spire longer than the aperture, shining diaphanous white, very thickly girdled with pale chestnut bands; whorls 6 , sloping, angulate and concave above, plicate lengthwise with opaque, shining, distant curved plaits, which are angulate at the suture ; interstices very finely striate, strix disappearing with age; aperture narrowly oval ; lip simple, outer lip subvaricose outside, smooth within, margin acute.

Bass's Straits, moderately common. A very pretty porcellaneous shining shell, with the ribs distinct, and opaque white. It varies much in coloring, sometimes the chestnut bands are numerous, and of various shades and thickness, at others confined to a simple fascia at the sutures, or the shell is quite white and shining.
Drillia atkinsoni. n.s. D.t. accuminato-turita, fusca, spira acuta, apice mumillato; anfrac. 9, superné angulatis convexis, declivibus, long. costatis, costis parris, distantibus, subucutis, ult. anfrac. 16, supra angulum et ad suturam ralidis et tiansectsin tenuiter ralide liratis, livis magnis et parris alterantibus, eleratis, supra cost. transeuntibus et ibi submodnsis; apertura alba, late orata; labro tenai, expanso, incurvo incrassato, intus levei, postice profundésinuato; labio planato, levi. Long. 13. Lat. 5.
D. shell acuminately turretted, dusky, spire acute, apex
mamillate, whorls 9, angled above, convex, sloping, ribbed lengthwise with small distant subacute ribs (in the last whorl 16), which persist over the angle to the suture, transversely finely validly lirate, with small raised lire, altermately largo and small, which pass over the ribs, and there become subnodose; aperture white, broadly ovate; outer lip thin, expanded, incurved, thickened, smooth within, deeply sinuate behind, lip flattened, smooth.

Rare, Long Bay, dredged from a sandy bottom at 10 fithoms, Rev. II. D. Atkinson. A very pretty shell, finely sculptured, usually very well preserved.

Turritella gravulifera. n.s. 7.t. acuminato-turrita, crassiuscula, lutea superné et infra fillo fasciata; anfractibus 12, confirtim lengitulimelitur strintis, striis mmenlosis; ticenstersim unicer-
 subquadrata; labro in medio sinuato. Long. 25. Lat. 8.

T' shell acuminately turretted, somewhat thick; yellowish, mith brown bands above and below, whorls 12, thickly longitudinally striate, with undulating strix; transversely ono keeled; lieel granulose and obsoletely ribbed above and below, aperture subpuadrate ; onter lip sinuate in the middle.

A rery distinct species, with a granular keel, which is of rare occurrence in the genus. Port Arthur, somewhat common.

Territella actta. T. t. aeutissime lenceoluto-turrita, allo, ad
 et limgit. undihtuse strintis; striis, sub-lumellosis; uperture oblique ovata. Long. 30. Lat. 6.
T. shell very acutely lanceolately turretted, white, acutely angulate and concave at the base, whorls 15 , flattened, 7 lirate and longitudinally undulately striate, with lamellar and very minutely dentate strix ; aperture oblique, ovate.

Long Bay, rare. Rev. H. D. Atkinson.

[^8]T. scalarina, T. Yorkensis, and T. Brazieri, the last three of Dr. James Cox. These are all Australian, and, as I believe, varieties of one species. I, however, mark the Tasmanian variety as above for future investigators.
Tenagodus weldii. n.s. T. t. volubilis laxa, tenuis, alba, diaphana, nitidula, luvigata infime flevescente; anfractihus circ. 6 , obliquésubtillissine striatis; rima in anfractilus tribus primis clausis, deinde apertis, marginibus subnendulatis, acutis ; apertura basi emarginata, marginibus irregularibus, autis, apice septo hemispharico clauso. Long. 12. Diam. aperturce 2 mil.
T. shell loosely twisted, thin, white diaphanous, somewhat shining, smooth, yellow below; whorls about 6, obliquely finely striate; cleft, closed in the three first whorls, then open with subundulating acute margins, aperture emarginate at the base, margius acute, irregular, apex closed with a hemispherical septum.

East Coast, somewhat common. A thin very small shell, closely rolled together at the apex, and then rapidly unfolding. It differs from the T. Australis, not only in its very much smaller size, but also in the slit being entirely open without any small rounded foramina in the upper part. I have dedicated this interesting species to His Excellency the Governor, F. A. Weld, Esq., C.M.G. It may be a variety of Thylacodes decussatus, Gmel., but that is much larger, and of delicate rose color.

Eulima micans. n.s. E.t. minuta, oltusé-turrita, panlo curvata, translucida, polita, albidta, apice mamillato, an fract. 7, superné planatis levissimis, penultimo roturaduto, ultimo subinflato; apertura pyriformi ; labro tenui producto, labio reflexo. Long. 3. Lat. $1 \frac{1}{2}$ mil.
E. shell minute, obtusely turretted, slightly curved, translucid, polished, whitish, apex mamillated, whorls 7, flattened above, extremely smooth, penultimate rounded, last subinflated; aperture pyriform, outer lip thin, produced ; inner lip reflected.

Long Bay. A unique specimen of a very minute, very highly polished translucid Eulima.
Turbonilla marle. T. t. elongata, turrita, tereti, solidiuscula, opaca, lactea; anfractilus 13, vix convexis vel planulatis; costis mumerosis, declivibus, crassis, rotundatis, levvibus ; interstitiis inconspicuis, parvis,latitud. costis cequentibus; anfructu ultimo costis ad peripheriam vix obsoletis; basi lcevi, nitenti, convexo ; apertura ovali, postice anguluta antice producto et ceerso. Long. 10. Lat. 2.
T. shell elongate, turretted, terete, somewhat solid, opaque, milky white, whorls 12, scarcely convex, or flattened; with numerous thick, sloping, rounded, smooth ribs; interstices small, inconspicuous, equalling the ribs in width; last whorl with the ribs scarcely obsolete at the periphery ; base smooth,
shining, convex ; aperture oval, angulate posteriorly, and anteriorly produced and everted.

King's Island, Bass Straits, common, closely resembling some species from Japan. Large for a Turbonilla.

Turbonilla tasmanica, u.s. T.t., subulato-turvite, nivea, solidiusculu; unfructiones nomaliones s, rotundetis, suturis impressis; costis elevatis, rotumutis, nitentibus, sulneonfertis, interstitios levibus; costis in ult. anfi. desimentibus; upertura ovetu ; anticé incrassuta, 2 anfr. apicalibus inflatis, lavibus. Long. 7. Lat. 2.
T. shell subulately turretted, snowy white; somewhat solid, normal number of whorls 8 , which are rounded, with the suture impressed; ribs elevated, rounded, shining, somewhat numerous, with the interstices smooth; ribs ceasing in the last whorl, aperture ovate, thickened in front, two apicial whorls inflated and smooth.

King's Island, not numerous. The peculiar inflation of the tro apicial whorls makes it doubtful whether the species does not belong to the genus Truncatella, but no truncate specimens were seen by me. The mouth is not entire nor rimate.

Cithara tasmantea. n.s. C.t., fusiformi, utrinqué attemuata, churnea, inter liras pallidissime rufo tinctu; spira clata quam apertura longiore; unfractibus 7, conrecis, postice angulatis et superné escaratis ; eleganter lomyitudinaliter costatis (in ult. anfra. 18-14), et transversim, regulariter liratis; costis angulatis levibus nitentibus; liris latis planatis; "pertura anguste orata, labro temui. Long. 12. Lat. 5.
C. shell fusiform, attenuate at both ends, ivory white, between the lire tinged with very pale red; spire raised and longer than the aperture, whorls 7, convex, angular behind and excavate above, elegantly ribbed lengthwise (12-14 in last whorl), transversely regularly lirate; ribs angular, smooth, shining; liræ broad, flattened, aperture narrowly ovate, outer lip thin.

East Coast, rare. Mr. Justin Browne. A delicate, ivory white shell.
Syrnola bifasclata. n.s. S.t. parva, acuté elongata, temui, nitenti, cornea, pallidé fulua bifasciata, polita, subtranslucida; anfractibus 10, convexiusculis, longitudinaliter temiter striatis, sutura impressa ; apice mamillata ; apertura pyriformi; labro temui; labio reflexo, plica inconspicua, postica. Long. 7. Lat. 2.
S. shell, small, acutely elongate, thin, shining, horny, with two pale fulvous bands, polished, sub-translucid; whorls 10 , somewhat convex, fincly striate lengthwise ; suture impressed; apex mammillate ; aperture pyriform, outer lip thin ; inner lip reflexed, plait inconspicuous, posterior.

Long Bay, 10 fathoms. Rev. H. D. Atkinson. Legrand Only one specimen seen. Syrnola is a genus erected for banded translucent Odostomia.

Rissoina gertrudis．n．s．R．t．minuta，turrita，subulata，sub－ pyramintalis，luctea，trienslucenti，tenni；anfine．S，comersinsculis，cre－ berrime plicatis，plicis parvis，rotundatis subobsoletis；ult．anfrac． busim versus spuraliter subtillissime strinto；sutura late mrarinata； apertura semilunari；labro medio dilatato et inerassato；labio con－ spicuo，flexuoso，antice rimato．Long． $4 \frac{1}{2}$ ．Lat． $1 \frac{1}{2}$ ．
P ．shell minute，turrettedly subulate，sub－pyramidal，milliy－ white，translucent，thin；whorls 8，somewhat convex，very thickly plicate with small rounded subobsolete plaits；last whorl most delicately spirally striate towards the base；suture broadly margined；aperture semilunar ；outer lip dilate in the middle aud thickened；inner lip conspicuous，flexuous，rimate anteriorly．

King＇s Island，rare．I have only seen two specimens of this very minute shell，which is near to R ．nivea，A．Adams， but smaller，and the sutures marginate．

Rissoina（setia）brazieri．n．s．R．t．minuta，turbinato－con－ oidea，subumbilicata，alba，laté fulvo mifasciata ；anfiactibus 5，
 data，superné anyulata；peristoma integra．Operculum corneum 3－ spir．Long．3，Lat．2．T＇esta aliquando epidermide intense olivaceo induta．

R．shell，minute，turbinately conoid，subumbilicate，white， with one broad fulvous band；whorls 5，rounded，smooth， last angulate at the periphery，aperture rounded，angular above；peristome entire．Operculum horny， 3 spiral．This shell is sometimes clothed with a deep olive epidermis．

Isthmus Bay，Bruni Island，where it is very plentiful，en－ tangled in confervoid growths on the rocks．

Cingulina australis．n．s．C．t．minuta，subulata，turrita，temui， nitente，diuphemen－allor，anfractilnes 7 ，carinis elemetis，rotumdutis， spiralilns instructis，interstitiis lucibus；carinis in ultim．anfiuc．5， deinde 4，3，etc．；sutura profunde impressa；apertura oblonga，in－ tegra ；letro crussinsculo；basi conveno，liris spirclibus（2）elevatis， rotundatis，ornatu．Long．2．Lat．$\frac{2}{3}$ ．

C．shell minute，subulate，turretted，thin，shining，trans－ parently white，whorls 7，furnished with elevated rounded spiral lieels，with smooth interstices；keel in the last whorl 5， then $4,3 \& c$ ．；suture deeply impressed；aperture oblong，entire； outer lip somewhat thickened；base convex，ornamented with two spiral rounded elevated liræ．

Badger Island，rare．An extremely minute turretted white shell，with elevated spiral keels，\＆c．

DUnkeria fasciata．n．s．D．t．mimuta，turvita，utrinque clathrata， transhucente，pallidé lutea fasciata ；anfractibus 6 ，conve．sis，bicarinatis， liris paucis，eleratis，nitentibus spirulibus，transtersalibus pulcherrime cancellatis；labio simplici colımellu arcuuta．Long．3⿺𠃊⿳亠口䒑口灬年4．Lat． 2.

D．shell minute，turretted，latticed all over，translucent and
touched with pate rellow; whorls 6 , convex, hicarimate and heautifully cancellate, with a few elevated, shining, spiral and transverse liræ ; outer lip simple, columella arcuate.

Bass Strats, rather common, hat so minute that the shell easily escapes notice. I may he wrong in assigning the species to the (remus I) mokeria. The lattice pattern is so large, and the transverse and suital ribs, which form it, are so far equal, that it makes a unique form.
 translucente, fimoso-comea, luter obscure fasciata, anfractibus 4; mutrimsis, dialicitus, lucimplis, nitentilns: apertura integra, semilunari, postice angulata. Long. $2 \frac{1}{2}$. Lat. $\frac{1}{2}$.
R. shell minute, ovately conical, sub-turretted, translucent, smoky horn, and obscurely banded with yellow; whorls 4, ventricose, sloping, smooth, shining; aperture entire, semilunar, angulate posteriorly.

King's Island, common ; a very minute shiny species.
Dhla tomida. n.s. D.t. minuta, pyramidato-tumida; albida,

 Long. $2 \frac{1}{2}$. Lat. 1.
D. Shell minute, pyramidally tumid, whitish, banded with yellow abore and below the sutures, whorls 6 , tumid, but somerrhat flattened, obliquely plicate, plaits almost obsolete, aperture circular ; lip reflexed.

Swansea, rare. Coll. Legrand.
Dlala tessellata. n.s. D.t. elongata, conica, sub-nitente, alba, a. sutur. fuscia julin mumben cinctu; rufiertitus 6 , busi marginatis, 2hlmbatis; ultimo antion. entminto; upertura orali, integra, antice
 Lat. 4.
D. shell clongately conical, somewhat shining, white and girdled at the sutures with a fulvous spotted band; whorls 6 , margined at the base and flattened; last whorl angulate; aperture oral, entire, sub-reflexed anteriorly; outer lip thin; inner lip anteriorly sub-expanded and reflesed.

Common in shallow places. A pretty white shell, with a graceful narrow band of brown spots at the suture. The mouth is faintly emarginate. There is a white variety of this shell, as well as one marked with three or four lines of long purplish spots.

Dhali Priemata. n s. D t., elongutu, conica, sorvidealla, lineis
 tris sulantis; ultimo unfoetu ad peripieviam oldusé angulato; sutura improsel ; "pritura oceta; lubion terni ; lubio refleso. Long. $i \frac{1}{2}$. Lat. 3.
D. shell elongately conieal, sordidly white, thickly girdled
with reddish spotted lines; whorls 6 , tumidly flattened, spirally sulcate; last whorl outusely angulate at the periphery, suture impressed, aperture ovate, outer lip thin, inner lip reflexed.

D'Entrecasteaux's Channel, very common, but in all the specimens, except a very few, the spiral grooves and punctuate markings were worn away, and the shell smooth and snowy white.

Littorina hisseyiana. n.s. L. testa minutissima, globoso-turbinata, tenui, ventricosa; spira brevi, obtusa, spiraliter densé striuta, albida, strigis olivaceis anyulato-undulutis, scepe confucentilons pictu; anfractibus (5.) rotundatis; aperturca orbiculani, integra; labro interno subreflexo, acuto ; columella subperforata.
L. shell extremely minute, globosely turbinate, thin, ventricose, spire short, obtuse, densely spirally striate, whitish, with angulately undulate olive streaks, which are often confluent; whorls 5, rounded; aperture orbiculate, entire; internal lip sub-reflexed, acute, columella sub-perforate. Dimensions.-These shells are microscopic. They vary somewhat in size, but the largest do not exceed $1 \frac{1}{2}$ millimetres in length. About 50 specimens were found in the stomach of a Mullet, Agenostoma diemenensis, Rich. probably caught in the Derwent. The olive markings vary into lines and deeply shaded spots; sometimes the shell is uniformly olive, or even blue black.

Natica tasmanica. n.s. N. testa obtecté umbilicata, depressoorbiculari, crassa, spira brevi, parum exserta; anfrac. convexis rotundatis, lavibus vel oblique, densé, minutissimé striatis, apertura semilunari, horizontalis, columella tenuicula, cullositate prominente spirali, sulcata, umbilico angulato-excavato ; ad suturam intus callosam; pallide, fulva vel albida lineis pallide fuscis rel anrantaceis fusciatis; basi alba, intus castanea vel fulva. Long. 13. Lat. 16. Anfr. 4. Aper. Long. 10. Lat. 6.
N. shell, with a somewhat covered umbilicus, depressedly orbicular, thick, with a short but slightly exsert spire; whorls convex, rounded, smooth, or obliquely thickly and most minutely striate, aperture semilunar, horizontal, columella somewhat thin, with a prominent callositr, which is spirally sulcate ; umbilicus angularly excavate; with a kind of callosity within the suture at the mouth; pale fulvous or whitish, banded with brownisk or orange lines; base white, chestnut or fulvous within.

This shell resembles N. plumbea more than any other, but is seldom more than half its size, and very much paler in color. Color is so persistent in the genus that it may well be considered a mark of specific value. If this not very common species has escaped previous naturalists, which, as far as I can learn, it has certainly done, it can only be from its having been
regarded as a small and pale variety of N. plumber, under which name, and that of \mathcal{N}. strangei and N. breconi, I have seen it in cabinets. It is, however, entirely distinct in form and color and seldom varies from tho dimensions given. Hab. E., S.E. and S. coasts.

Nitica xisis. n.s. A. t. pervere, solidiuscula, obliqué ovata, profundé qumblicutu, sortité ulbe, sutmitente, tenuitri lon!fituel. stritete; spira sub-
 labro tenui; labio recto crassiuscula. Diam. mag. 7. Min. 5.
N. shell small, somewhat solid, obkiquely ovate, deeply umbilicate, sordilly white, somewhat shining, slenderly striate lengthwise, spire subelevate ; whorls 4 , roundly conver, smoothish, aperture semilunar; outer lip thin; inner lip straight, somewhat thickened.

Long Bar, about 6 fathoms, in sand, Rev. H. D. Atkinson and Legrand. A small shell, white, slightly shining shell, very different in size and coloring from any other Australian form.
 alla, equitrmide lutea: spire plluriete, contrate; anjoractimes 4, declivirentricusis, striis undulatis, sultillissimis, transeereì cinctis; apertura clonguto-pyrijormi ; luliro simplici ; lubio postice refleco nitente. Diam. maj. 27, diam. min. 19.
R. shell deeply umbilicate, obliquely globosely ovate, white, with a yellow epidermis; spire pellucid, convex; whorls 4, slopingly ventricose, transversely girdled with very fine undulating strix ; aperture elongately pyriform, outer lip simple ; inner lip posteriorly reflexed, shining.

East Coast, common. This large and very elegant Ruma is of a globose habit, of dull white color, but sometimes completely covered with a shining, fibrous, thin yellow epidermis, with much the appearance of having been deposited by the mantle. In spite of its being common, it does not appear to have been described.

Fossarina siusoni, n.s. Fi. t. obliqué depresso-globosa, obtecté umVilicatu, tomers, allat sulmitonti, fulwo unduloxé muculata, spion plano-
 naliter striatis; ultimo anfracto valdé expanso: apertura rotundata; lethio simpllici; lulio arcucto, pontice-dilutulo, sulco ticunsererso. Diam. maj.' $6 \frac{1}{2}$. min., 5 .
F. sliell obliquely depresserly globose, umbilicus somewhat covered, thin, white, somewhat shining, undulately fulvous spotted; spire plano-convex, searcely elevated; whorls 4, very finely and closely striate lengthwise; last whorl very much expanded, aperture rounded; outer lip simple ; inner lip arcuate dilated posteriorly, with a transverse groove.

Hare, Long liay, Bruni Island, Riev. H. D. Atkinson and Legrand. A pretty undulately variegated shell, with the
inner lip produced posteriorly ints a kind of chamelled triangular eleration. I have denicenter this species to Mr. Augustus Simson, of Tasmania, late of Port Denisor, Queeusland, an indefaticalle collector and investigator into every department of Natural History.

Nassa tasmanica. n.s. N. t. acuminato-ovata, solidiuscula, nitida castanca, luteo-castanea, vel fulva; spira sub-acuta; granoso-plicata (in ult. anfr. plic. 17), plicis superné divisis, anfractibus 5, convexis, striatis, striis sub-distantibus, in ult. anfr. 11; apertura ovata, nitida, alba; labro solido, superne sub-calloso, intus dentato (dente conspricua in medio); columella valde callosa, callositate alba subrecurva. Long. 12. Lat. 7.
IV. shell acuminately ovate, somewhat solid, shining chestnut, yellowish chestnut or brown, spive sub acute; gramosely plicate (plaits 17 in last whorl), plaits divided above by a chammel; whorls 5, convex, striate ; striæ sub-distant ; 11 in last whorl ; aperture ovate, shining, white; outer lip solid, subcallous abore; toothed within, a conspicuous tooth in the middle, columella rery callous, with a white subrecurved callosity.

This species is smaller than N. fasciata and N. pouperata, which it closely resembles in every respect excent size, color, and the white callosities at the mouth. It is a pretty conspicuous shell, found only on the North and East Coast, where it is rather common. In \dot{N}. fasciata the plicoare very distinctly granulate throughout. In N. panperota they are sub-obsolete except abore, and in the present species they are scarcely distinct, except the one which is separated by a groove at the suture. On the whole it is nearer to N. pauperata than to N. fusc. A shell very like it, oocurs in Port Jackson- N. jacksoniana, as far as size is concerned, but it is white or banded, and has no callosity. The normal color of our species is uniform chestnut, lut all Nassæ vary very much in color. As all the specimens of N. jacksoniana seen by me were poor, and thin somewhat stunted shells, it has occurred to me that they were dwarfed specimens of our species, growing in unfavourable circumstances, and that Tasmania is its true home. In that case the species would be identical, but future observations must decide this.

Cancelleria tasmanica. n.s. C. t. oblonga, alba, spiraliter temuiter lirata, liris purvis, calielis, equalitns; anfractions fo, rotuntatis, declicihus; spira acuta; sutura valida; labro tenui, conspicué lirato; columella abbreviato, triplicato. Long. $18 \frac{1}{2}$. Lat. 10.
C. shell oblong, white, slenderly spirally lirate, with small ralid equal liræ; suture valid; outer lip thin, conspicuously lirate, columella abbreviate, triplicate.

King's Island, a white finely groored shell, more elongate than C. lcevigala, and nearer in form and babit to Gould's
C. vimitule (Sowerly's Thesaurus, nol 11, p. 449, pl. Of, firs. 102) than any other form.

Crossea lamiata. n.s. C.t. parva, glotoso-turbinata, anguste umbilicatn, solidiuscula, alba, subopaca, spira clevata, sutura distincta; anfract. 5, rotundatis, undique temissime elongaliter transversim liratis, subtillisime long. strintis; umbilico callo rotundato marginato; apertura ovata, antice et postice angulata et canaliculata; labro sub-reflexo, extus fimbriato vericoso. Long. 4. Lat. 2.
C. shell small, globosely turbinate, narrowly umbilicate, sonnewhat solid, white, subopaque, spire elevated, suture distinct; whorls $\dot{3}$, rounded, everywhere most slenderly, elegantly, liate transversely, and very minutely striate lengthwise ; umhilicus margined with a rounded callus; aperture ovate, anteriorly and posteriorly angulate and chanmelled; outer lip sub-reflexed, and with a fringe-like varix outside.

Long Bay, 10 fathoms, sand. The fourth species of a very mare gemus. The only other are two dredged from Gote's Islant in Japan, hy Mr. Arthur Adams, and the third from Port Jaclison, near the Sow and Pigs, at from 2 to 4 fathoms. This species is distinguished from the others by its reflected and fimbriate lip. The great peculiarity of this genus, says Mr. Adams (who erected it), consists in the canaliculate angular projection at the fore part of the aperture. In this species it is postrriorly channelled as well. C. miranda Ad. is varicose. C. belluluis Ad has the outer lip thin. C. concinna Angas is pellucid and has the upper whorls punctate.

Columbella madia. v.s. C. t. parva, acuminata, ollonga, intus ex-

 cotunella obscuré corrugata. Long. 9. Lat. $3 \frac{1}{2}$.
C. shell small, acmminately oblong, saturated brown without and within, inconspicuously white spotted, spire acute; whorls 7, flattened, smooth, shiming ; aperture somewhat short, outer lip toothed within, columellia obscurely corrugate.

Swansea, East Coast, common. A uniformly purple brown shell, faintly variegated when worn. There is an orange red variety from Brown's River and Blackman's Bay, which may be a different species.

Columbella roblini. n.s. C. t. parva, aciculari-ovata, sub-nitente, pallide castanra, undique crebré albo-fulvo maculata; anfractibus 7,
 lete dentato; columella corrugcta. Long. 9. Lat. 4.

Var, a. Sanguinco-fulvo maculata.
C. shell small, acicularly ovate, somewhat shining, palo chestnut, everywhere thickly spotted white and fulvous; whorls 7 , flattencel, apex mamiliate, of a deep smoky brown; aperture somewhat lroad, obsolutely toothed. Var. a. sanguineously brown spotted.

Common on the East Coast, Storm Bay, etc. It may be only a variety of C. budiu, which it resembles in shape and size, but the markings seem only to vary within certain limits ; becoming sometimes an interrupted band of blood red spots.
Columbella legrandr. n.s. C. $t_{\text {. }}$ parva, subulata, tenui, nitente, castanca, maculis nieris fulvo umbratis ad suturus cinguluta; ajuice mamillato; anfractions, 6 , clonefalie, convesis, tichnversim subtilissime lineatis; apertura elongata ovata; labro tenui, simplici. Long. $7 \frac{1}{2}$. Lat. 2.
C. shell small, subulate, thin, shiny chestnut, sirdled at the suture with a band of snowy spots, shaded with fulvous brown; apex manillate; whorls 6 , elongate, convex, very finely transversely lined; aperture clongately ovate; outer lip, thin, simple.
King's Island, very rare. T'wo specimens only submitted to me, but both well preserved. A small mamillated subulate form, which cannot be mistaken for any other.

Columbella minuta. n.s. C. t. ovata minuta, levi, nitente, pallide castanea longitudinaliter crebré lineis castancis ornatu, et muculis allis transversim bifasciata ; anfractibus 5, planulato tumidis; apertura ovata, postice acuta, labro incrassato, intus dentato. Long. 3. Lat. $\frac{1}{2}$.
C. shell ovate, minute, smooth, shiny, pale chestnut, very thickly ornamented with chestnut longitudiual lines, bifasciate transversely with white spots; whorls 5, somewhat flatly tumid, aperture ovate, acute posteriorly, outer lip thickened, dentate within.

Swansea, East Coast, common. One of the smallest Columbellas known, and like all its congeners variable in color, but in the unworn specimens, the above characters seem pretty constant.

Euchelus tasmanicus. n.s. E, t. parva depresso-turbinata, carneo alba, punctis rufis aliquando in lineis obliquis maculata; anfractibus 4, declivi-rotundutis, liris granulosis creberrimé gemmatis, interstitios longitudinaliter plicatis, ad suturas canaliculato impressis; apertura obliqué ovata, subcirculari; lubro intus lirato; lubio post columellam bisulcato, et obliqué striato. Diam. maj. 6, min. 5.
E. shell small, depressedly turbinate, fleshy white, spotted with red points, which are sometimes disposed in oblique lines; whorls 4, slopingly rounded, thickly gemmed with granulous liræ, the interstices plaited lengthwise, with a channelled impression at the sutures; aperture obliquely ovate, subcircular, outer lip lirate within, inner lip bisulcato and obliquely sulcate behind the columella.

Long Bay, Bruni Island, and S. Coast. This somewhat gibbous Euchelus appears to have traces of nacreous iridescence, internally. It is very distinct in size (being the smallest of our species) from E. baccatus, MF/ke, though somewhat near shape and color. Rather scarce.

Gimbula aurea. n.s. G. t. parva, turbinato-conoidea, vix umbilicata, luteo alba, maculis rufo-aureis, pulcherrime picta; anfractibus 4,
 biris ims ru'uribus, whlique suldillissime striutis cinctis; marginé eleganter alba el rufo-aurea tessclato; basi convexiusculo, lineis concentricis improssis timelutis sed phet, ugeituru roturdutu. Long. alt. 5, diam, 4.
G. shell small, turbinately conical, searcely umbilicate, yellowish white, painted rery prettily with reddish gold spots; whorls i, marginet at the base and flattened, rounded above and constricted at the suture; girdled with irregular oblipuely striate, very fine strix; margin elegantly tesselated, with white and reduish gold; base sculptured with impressed tessellated lines. Aperture rounded.

King's Island, rare. A very pretty shell, which is very nacreous underneath.
Castuanma onsata. n.s. C. t. virumbilicata, conoideo-turbinata fuson et riribli raritgulat : aniruclỉus declivi plamulutis, supernè conspicué tulmontutic (in ulimo aniracte decem), olsolete oblique corrugatis et sult,illissime doussatis ; allimo unfructu al peripheriam acute angulato et obluse tuhwreuhato: busi phanuto, decussatim granato liris tribus fusco muconlatis urnato: apertura sulpquatrata, columella arcuata et canaliculata; labio acuto. Long. 19. Lat. 20.
C. shell scarcely umbilicate, turbinately conoid, variegated brown and greeu; whorls sloping and flattened, conspicuously tubercled abore (tubercles in the last whorl 10 in number), faintly obliquely corrugated and very finely decussate; last whorl sharply angulate, and obtusely tuberculate at the periphery ; base flattened ; decussately granular, ornamented with three brown spotted liræ ; aperture subquadrate, columella arcuate and canaliculate; lip acute. Seen from above the tubercles seem radiate, like the spokes of a wheel.

This shell, with some others, were given to me by Mr. Ronald Gunn, the eminent botanist and naturalist, to whom Tasmania owes so much. He found it seldom, and on the north cost only. It is a very beautiful species with bright emerald green markings, and shelly operculum. It is closely called to C. aureus, Jonas, but distinguished by its color, larger size, and the very conspicuous tubercles crowning the whorls.

> Liotia tasmante. n.s. L. t. parva, discoidea; sordide alba, spira phano-lrpmesea, costis spiralibus subobsoletis, et liris longitudinalibus crebervime ornatu; peripheria carinis duobus nollosis, nodis in 2 anfr. elematis , imbtricatis ; apertura margine reflexo incrassata; umbilico peramplo, spiraliter dentato. Diam. maj. 8, min. 6. Alt. 3.
L. shell small, discoid, sordidly white, spire plano-depressed. ormamented thickly with spiral sub-obsolete ribs and longiturlinal lire, with two nodose keels at the periphery, node in the second whorl raised and imbricated, aperture with the
margin reflesed and thickened, un bilicus very wide and spirally dentate.

Long Bay, rare. Rev. H. D. Atkinson. This shell is nacreous within, and very near in form to L. discoille: Reeve. The nodæ on the upper carina become little raisca hollow rounded squamæ on the second whorl.

Monilea rosea. n.s. Mr. t. minuta, turbinata, late umbilicata, rosea, maculis albis variegata; anfractibus 4, rotundatis, striis albis magnis et parvis alternantibus cinctis; apertura integra, rotundata; labro proclucto; labio simplici; maryine amZilici callo inconspicuo, albo, corrujato instructo. Diam. 3.
M. shell minute, turbinate, widely umbilicate, rose color, variegated with white spots, whorls 4 , rounded, encircled with white alternating large and small strix; aperture entire, rounded; outer lip produced; inner lip simple; umbilical margin furnished with a somewhat inconspicuous white corrugated umbilicus.

This small shell is of intense carmine color in some specimens. The outer lip is produced very much from the suture so as to give the aperture a sunken appearance. The callosity at the umbilicus is only perceptable uuder the lens iu very good specimens.

Gibbula depressa. n.s. G. t. depresso-orbiculata, fulvo-purpurea lugubre tincta; umbilicata, late sulcata, sulcis transversim striatis; anfractibus 5, depressis ; ultimo anfracta permagno, cingulis sex subeleratis, transerrsis, aliquando tessellatis insigno; apertura abliques subqualratu, intus lirata, rosed viridique splendidé irridescente, labro tenui ; labio subreftexo. Diam. 10 mill.
G. shell depressedly orbiculate, lugubriously-painted fulvous brown and purple, umbilicate, widely sulcate, sulci transversely striate; whorls 5, depressed, last whorl, which is much larger, distinguished by 6 transverse sub-elevated, and sometimes tessellated belts ; aperture obliguely sub-quadrate, lirate within, and splendidly iridescent with rose and dark green; outer lip thin ; inner lip sub-reflexed.

Adventure Bay, common. This shell is always more or less encrusted with Polyzoa (Membranipora and Cellepora). It might easily be mistaken for young shells of Trochocochlea striolata. Its depressed, almost angular, form and interior iridescense, render it easily recognised.

Zizyphinus legrandi. n.s. Z.t. abbreviato-conica, carneo-flavescenti; anfractibus 6, planulatis,spiraliter densè canaliculato-liratis; ultimo anfractu angulato; busi phenulato, lineis impressis, ulternuntibus sculpte; apertura subquadrata; lubro uculo; labio simplici. Alt et diam. 12.
Z. shell abbreviately conical, fleshy yellow ; whorls 6 , somewhat flattened; densely spirally canaliculately lirate; last whorl angulate, base flattened, sculptured with fine alternating
impressed lines; aperture sub-ruadrate ; outer lip acute, inner lip simple.

Rare, Chappell Island, Bass' Straits. A small conical form, whose nearest concener is our reversed $Z \quad$ incortus lieeve. Its peculiarity for an Australian form of the genus is the absence of granulations on the lire.

Zizypirnus allporti. n.s. Z.t. tumido-conica, solidiuseuld, alba; anfractibus 6, convexo-declivibus; livis transversis, granulosis cinctis;
 canaliculata; ultimo anfractu ad peripheriam rotundato; basi convexiusculo, lineis suhpranosis impresso; apertura obliqué quadrata; labro intus lirato, infra bidentato, labio simplici. Alt. 11. Diam. 9.
Z. shell tumidly conical, somewhat solid, white; whorls 7, convexly slopins, girdled with transverse gramular lire; granules rounded, seramated by oblique longitudinal strie; suture canaliculate, last whorl ronnded at the periphery, base somewhat convex, impressed with sub-gramular lines; aperture oblicquely quadrate : outer lip lirate within; bidentate below ; inner lip simple.

Isliuds in Bass' Straits, very rare. A white, small, tumid shell, in habit much resembling a Thalotia.

Clanculus aloysir. n.s. C. t. turbinato-conoidea, umbilicata, allinhu, limis. et muculis intonspi fuscis, vel atratis curiegutu ; antructitus. 5.7 planulatis, transrersim sulcatis, et cingulis granosis ornatis (cingul. 5 in ult. anfr.), cingulis superioribus et inferioribus granulis majoribus
 carinato, basi planiusculo cingulis granosis ornato; columella contorta,
 umbilici spiraliter striato. Diam. 11.
C. shell turbinately conoid, umbilicate, whitish, variegated with lines and spots of deep dusky brown or blackish; whorls s to 7 , flattened, transrersely sulcate and ornamented with sramular belts (belts 5 in the last whorl), upper and lower leelts conspicuous by their larger gramulations; suture subcanaliculate ; last whorl subcarimate at the periphery, base somewhat flattened and ornamented with griaular belts; columella twisted, dentate with small tecth above and below, outer lip lirate and dentate, umbilical margin spirally striate.

Though the Clanculæ vary somewhat in coloring, it is always withiu certain limits. There is no other black and white Clanculus among our Tasmanian species, which are numerous.

Clanculus pillomente. n.s. C. t. depresso-conica, alba; anfrac. i5, uil suturns conuliculntis, conctris, marsimitus utrinque monilijeris, infia marg. 3-4 liratis; liris granis circular.nitentib. ornatis, interstitiis sub-

 raliter dentato. Diam. mag. 11. Alt. 10.
C. shell depressedly conical, white, whorls 5 , at the suture
canaliculate, concave, with both margins beaded, within the margius 3-4 lirate; lire ornamented with round shining granules, interstices very finely obliquely striate, last whorl acutely angulate and margined; base flat, spirally granulosely lirate; aperture obliquely squared; outer lip lirate within; columella unidentate and corrugated; umbilical margin spirally dentate.

One specimen. A very distinct white shell with moniliferous whorls rising in stages.

Cylichna atkinsoni. n.s. C. t. parva, cylindracea, angusta, tenui, ferruginea, spira umbilicata, occulta, tenuissime long. et transversim striata, sordide alba; labro tenui, acuto, medio coarctato, antice subdilatato; labio angusto, reflexo. Long. $4 \frac{1}{2}$. Lat. 2.
C. shell small, cylindrical, narrow, thin, ferruginous, spire umbilicate, hidden, very slenderly lengthwise and transversely striate, sordid white, outer lip thin, acute, drawn in at the middle, and sub-dilate anteriorly; inner lip narrow, reflexed.

Long Bay, not common. A very small shell, brought up occasionally by the dredge from 10 fathoms; sandy bottom. Rev. H. D. Atkinson. The other Tasmanian species is C. arachis, which is Australian also. In its young state it can always be distinguished from the foregoing by the dense undulating transverse striæ with which it is covered.

Aplysia tasmanica. n.s. A.t. tenui fragili, translucente, nitente, oblique subquadrata, tenuiter concentrice striala, et transversim minute sulcata; intus subtestacea, leviter concava, encausta, cornea; apice vix incurvo; margine supriori sulreflexo, arcuato ; margine inferiori obliquo recto, antice producto, rotundato. Diam. mag. 38, transversim diam. max. 28 mil.
A. shell thin, fragile, translucent, shiny, obliquely subquadrate, slenderly concentrically striate and transversely minutely sulcate, subtestaceous within, slightly concave, enamelled, horny, apex scarcely incurved, with the upper margin arcuate aud subreflexed; lower margin oblique and straight, anteriorly produced and rounded.

A large form of talcous appearance, the margin becoming insensibly membranaceous. It is somewhat similar in form to A. gigantea, of Sydney, but more oval, membranaceous, and smaller.
Acmea marmorata. n.s. A. t. quadrato-oblonga, postice dilatata depressa, sordide olivacea, apice eroso vel acuto, submediaro ; costis s-10, rudis, erosis, radiuntibus, distantibus; intus nitente conspicue variegata, radiis luteis concavis, interstitiis atrof usciss; spathula nigerrima, margine albo, atro-punctato conspicuo. Long. 21. Lat. 15. Alt. 6.
P. shell quadrately oblong, dilate behind, depressed, sordidly olive; apez corroded or acute, submedian; ribs 8-11, wide, corroded, radiating and distant; within shiny and conspicuously variegated, with white rays and very black broad
interstices, spathula, black, with a white conspicuous margin.
Common. The intensely black marlled appearance of the interior of this shell will distinguish it at once. It is found, I am told, in New South Wales, but rarely.

Patella tasmanica. n.s. P. t. ovata, solida, sordide luteo-alba, sape corrosa; apice submediano; costis radiantibus, 21 circiter, validis,
 eburnea, nitente plus minusce luteo tincta, margine angusta, elegantissime P. ginato; spathata vix definita. Long. 49. Lat. 38. Alt 20.
P. shell ovate, solid, sordilly yellowish white, often corroded, apex sub-median with about 21 valid, angular radiating ribs, and the interstices rayed profusely with rery fine subimbricated lire ; within ivory white and shiny, more or less tinged with yellow; margin narrow elegantly pectinated; margined with a rery fine blue line within, and an interrupted dusky brown line outside. Spathula searcely defined.

Recherche Bay and south gencrally. Nearer to P.alticostata Angas than any other.

Patella cilapmani. n.s. P. t. ovata, postice latiuscula, depressa, rufa vel ustulata, el nebuloso brunea; apice acuto, submediano; costis renliantilus s., plus: minusiec culidis, demenso rotumlatis; liris subtillibus pmotuse rulintu, et sulcis imerguluribus cinett ; margine angulato, noduloso; intus ulber et prellide rose nebuldase; spathula vix visibilis. Long. 20. Lat. 15. Alt. 5.
P. shell ovate, somewhat broad behind, reddish or scorched and nebulously brown, apex acute, submedian, with 8 radiating ribs more or less valid, and depressedly rounded, profusely radiate with very flne liræ, and girdled with irregular sulci; margin angulate, nodulose; white within and clouded pale rose color, spathula scarcely visible.

Very rare. Four of the ribs are posterior, and the four anterior are smaller. Ihave dedicated this shell to Commodore Chapman, of H.MI.S. Dido, an industrious conchologist, and from whom I received valuable assistance in preparing my list of Tasmanian Mollusca.

Macroschisma tasmanica, n.s. M. t. ovato-oblonga, dorso clevata, conrexa, pallidé luteo-castanca, radiatim atrata, lineis elecatis, nodulosis, radiata; sulcis concentricis irregularibus, rugosa, lineis concentricis conjurissimis senftu; citromitutibus rofundutis; postice alcrata. Foramon maynum, donyatum, subtriangulare, postice dilatatum, excacatum. Long. 32. Lat. 18. Alt. 9.
M. shell ovately oblong, dorsal region raised and convex, pale yellowish chestnut, with blackish rays; radiate with nodulous elevated lines; rough, with irregular concentric sulci, sculptured with very close concentric lines, ends rounded; posterior end raised; foramen large, elongate, sub-triangular, dilate and excavate behind.

The common Macroschisma, of Tasmanian coasts. Until
noir it has been eonfounded with MI. producla (A. Adams, Pro. Zool. Soc. 1850 p. 202, sp. 7) which is a narrower shell, less distinctly ribbed, and witlo a narrow and somewhat constricted foramen.

Auricula (IRHODOSTOMA) DYERIANA. n.s. A, t. ovata, inflata, subumbilicata crassa, viride albicante, fulvo bifasciata, striata, striis regularibus, distantibus ; anfract. 6, suturis obsoletis; spira conica, planata; apertura integra, nitente, pallide fulta; labro incrassato, bilabiato, intus conspicué triangulari inciso ct dentato ; labio bidentato; umbilico clauso, maryinato. Long. 14. Lat. 9.
A. shell ovate, inflated, sulumbilicate, thick, greenish white, with two fulvous bands, striate, strie regular, distant; whorls 6 suture obsolete ; spire conical flattened, aperture entire, shining lale fulrous, outer lip, thickened, bilabiate, with a triangular notell within, inuer lip bidentate; umbilicus closed and margined.

North Coast, brackish waters. There is a shell somewhat like this described by Mr. Swainson (Proc. Roy. Soc. Tas. Tol. 3, p. 45), from Dr. Milligan's collection, and probably from Australia, but it is large, of different color, and with a semicircular notch on the outer lip. I have named the species after Mr. Dyer, of Hobart Town, the industrious collector, who discovered it at Kelso.

Pectex mearle. n,s. P. t. trigonali-orbiculari, subcequiralra, depressa, valeca dextra paulo conrexiore, auribus incequalibus, rosca rel roseo-violascente, netulis purpureis et lineis maculisque albis peculiariter marmorata; costis 8 irregulariter long. sulcatis, et olsolete squamatis, lirisque parvioribus, intermediis incequalibus radiatis, superficie tota tenuiter squamose imbricata; auribus radiatim costatis, costis nodosé imbricatis ralris intus violaceis, sericeis. Long. et. Lat. 44. Alt. 16.
P. shell triangularly orbicular, subequivalve, depressed, right valve a little more conver, ears unequal; rose color or rosy rinlet, and peculiarly marbled with purple clouds, and Thite lines and spots; ribs S, irregularly sulcate lengthwise and obsoletely scaly ; radiate with smaller liræ ; surface wholly finely imbricately squamose; ears radiately ribbed, ribs nodosely imbricated, valves colored a kind of silky violet within.

East Coast and Maria Island. Rather uncommon. Nearest to Sowerloy's Pecten serratus. The fine shagreen marking is different from P. bifrons, inasmuch as the scales are finely pointed. The riolet hue of the inside and silky appearance are rery constant. The obsoletely squamose ribs vary, but it is a character not seen in any other Tasmanian species.

[^9]D. shell suhorlicular sulninfled, sulmthenuate towaris the umhones, snowy white, somewhat shinine, and moler the lens elecrantly irridesent, umbmes lightly spottol with jink, slenderly striate, and inemsate rely finely and cherantly with fine strie, limmental area narrowly lanceolate, lumule small, hroadly cordate, impressed and carinate in the middle ; maiial sinus deep and obtusely triangular,

East Coast, uncommou. A rery beautifu' snowy white, and neatly romided shell. The transverse strib are very regular and corbis like.

Callista mictories. n.s. C. t.trigono-subcordata, crassc, tumida, antice rotundata, postice obtusé angulata, incequelaterali, confertissime concentricé striata (striis antici lemellosis, lemellis 3, rel. 4, parris, crassis): subnitida, pallide carner, lineis latis incequlilus, rufo-castancis, longitudinaliter puuciradiata; lumula clongata, tenuistriata, linea impressa circumscripta; latere postico obtusé angulato, planato, ruyosé striata; ralris intus, nitentibus, rufolutea nobulosis, marginé denticulato. Long. 55. Lat. 60. Alt. 35.
C. shell triangular'y subeordate, thick, tumid, rounded in front and posteriorly olituse'y anguate, ine qui'atera!, very thickly concentrically striate (strie anteriory lamellose with 3 or 4 thick small hamellie) somewhat shining, pa'e flesh color, rayed lengthrise, with few broud unerqual reddish chestnut lines; lumule elongated, slenderly striate, circumscribed with an impressed ine; posterior line olitusely angulate, flattened, and rugose's striate ; valres shining very much within, and clouded reddish yellow, margin denticulate.

A somerhat common she!! on all the South Australian and Tictorian costs, and is said to occur in S. E. Austra ia, but the identification is doubtfu', as it has beeu confounded with C. rulita, Sow., with mone of the description or figures of which it corresponds. The specimens from which the description is taken came from Cloudy Bay on the South of Bruny Island. It also is found in Frederick Hemry Bay. I have never found it except on sandy exposed coasts where there is a heavy surf.

[^10]bifid, pallial sinus narrow, rounded, and obtuse. White reticulated posteriorly with black angulate lines, sometimes radiately rose tinted towards the umbones.

Not uncommon on South coast. A small shell, very distinct by its finely crenalately striate obsolete ribs, and reticulate markings.

Myodora tasmanica. n.s. M. testa albida, curvato-oblonga, antice leviter flexuosa, abrupte truncata, valva sinistra ventricoso-convexa, dextera distincte concara; concentrice striata; striis paucis, rotunclatis latiusculis, subdistantibus, regulariter, crescentilus; sublent clegantissime, tenuissime decussata.
M. shell whitish, curvately oblong, anterior slightly flexuous, abruptly truncate, left valve ventricosely convex; right valve distinctly concave, concentrically striate with a few round, somewhat broad, sulj-clistant ridges, which increase regularly towards the marsin, and very finely and beautifully decussate with unduliting striæ. Long. 17, Lat. 13. Alt. 4.

This very distinct species of Myadora has more affinities with the Australian M. pandoreformis than any other, but it has no movable testaceous appendage, and the valves are both distinctly striately ridged. Hab. Long Bay.

Myodora albida, n.s. M. testa albida, translucida, subquadrata oblonga, subconvexa, anticé latissimé truncata; concentrice striata; striis elevatis, rotundatis, regularibus, paucis, prope maryinem anticam angulatis.
M. shell whitish, translucent, subquadrately oblong, subconvex, very broadly truncate auteriorly, concentrically striate, striæ rounded, raised, regular, few, angulated near the antcrior margin. Long. 10. Lat. 6. Alt. 2.

A very pretty species, differing from the last in its subquadrate form, and its convex valves, which are both regularly and distinctly striate. Hab. Long Bay.

Anapa tasmanica. n.s. A.t. crassa, trigona, gibbosa, cequiralvi, antice
 versus marginem epidermidé olivacea induta; umbonibus parvis, incurvis obliquis distantibus; area ligementali parta, inconspicum, aperta; pagina, interna nivea nitente, sinu palli nullo. Long. 19. Lat. 19. Alt. 16.
A. shell thick, trigonal, gibbous, equivalve, rounded anteriorly, angulated posteriorly and flattened, sordidly white concentrically finely sulcate, clothed with an olive epidermis towards the margin; with small incurved distant umbones, ligamental area small, inconspicuous, open, interior surface snowy white and shining, no pallial sinus.

This shell appears to me to have been confounded with A. smithii and A. triquetra, which is a synomym of Gray. That shell is not found in Tasmania. It is, however, a much smaller and thinner shell, less tumid and more trigonal, with very much the appearance of a Cyclas. I cannot find that it has been described.

I'mna tasmantca, n.s. p_{0}, t orato-cunciformi, tenui, subrentricosa, marginibus rotundatis, sordide olivaca, purpurco ndulosa, vouliatim costata, costis interdum obsoletis, subnodosis, tersus maryinem sparsim, irregulariter
 190. Lat. S5. Alt. 28.
P. shell orately cunciform, thin, sulventricose, margins rounded, sordidly olive, clouded with puple, radiately ribbed, ribs sometimes obsolete subnodose, and towards the margin sparsely irregularly scaly, scales elevated subtubuliform, apex subtruncate, livid.

Rare. On the north coast only. W. Legrand. This fine Pimma is one of the very few of the genus, with the margins rounded and not angulate. In this respect, and in the few irregularly much raised tubular seales, it is quite distinct from P. zeluniu, which is not uncommon in Anstralia.

Mytilicardia tasmanica. C. t. elongato orata, in. medio constricta rel sinu profundo distorta, luteola vel sordide alba, epidermide fusca, maxime
 et hiante, ractiatim costata, umbonibus minimis compressis approximatis ohliquis; lemula inconspicm, profunder; costis incequelibus, imereulerithus, thenusis, pmastice lemellosis at ubseletis, primis in lutore antico anyustioribus, alteris sensim latioribus. Long. 10. Lat. 21. Alt. 14.
M. shell elongately ovate, narrowed in the middle or distorted, with a profound sinus, yellowish or sordidly white; with a dusky epidermis, very inecuilateral, extremely short anteriorly, subtruncate, dilated posteriorly, sinuous and gaping below, radiately ribbed, with small compressed approximate oblique umbones; lunule inconspicuous, very deep, ribs unequal, irregular, flexuous, lamellose and obsolete posteriorly, the first on the anterior side somewhat narrower, the others becoming gradually wider.

Blackman's Bay, uncommon. Distinguished from M. excavata by the epidermis, and the ribs being smooth instead of having the lamellar projecting scales.

Mytilus tasmanicus. n.s. M. t. oblongo-orali, tumida, crassa, concentrice tenue imanlariter striata, epiodumide atro-purparia, basion ecorsus
 cutis; maryinilus. intus cotuesqus vivide rivile permliariter encaustis; um-
 graratur is; firssuhend hiyamentum recipicondum vatis profiunda; puyina interna niven, impressione jullii et mestenlari tentum iridescoute, liyamento longo conspicuo. Long. 175. Lat. 75. Alt. 45.
M. shell oblong, owal, tumid, thick, concentrically finely irregularly striate, epinermis llack purple, towards the base sparsely and irregularly bearded with long horny hairs, which are rooted in calcareous discs; the margins peculianly enamelled a vivid green both outside and inside; umbones small acute, curvel, shining, smoothed, slightly pearly, fossula for the ligament somewhat decp; internal surface snowy white,
the pallial and muscu'ar impressions alone being iridescent, ligament long, conspicuous.

A truly magnificent sierjes, which is so large that it must almays be a conspicuous olject, yet tho peculiar and brilliant green enamel of the edres makes it still more sn. It is only found in deep water in storm Bay. The only shell approaching to it in character is MI. latus, of New Zealand.

Pythina tasmanica. n.s. P. t. parva suborbiculari, convexa, alba, sulcis concentricis et costis bifariam radiantibus eleganter clatherata; costis
 parcie. Long. 7. Lat. 8. Alt. 3.
P. shell suborbicular, couver, white, elegantly latticed with concentric sulci and ribs radiating in cprosite ways; ribs angulate and currel, and slightly raised behind, umbones submedian, oblique and small.

This e'egant Pythiua is very distinct from the common P. reshuyesi, which is larger, has the divaricating ribs somerhat lamellose behind, and is not latticed with transverse sulcations. King's Island, rare.
Telerva marie. T. t. transversa ellipitica, subinflata, nitente, lactea, tenui «quilaterali, incequivalvi, postice liante, antice late rotumdata, postice vix attenuato, tlexura minima, undique crebré tenuiter sulcata, ligamento pallide castaneo prominulo. Long. 22. Lat. 28.
T. she 1 transverse, ellintical, sulhinflaterl; shining, milk white, thin, equilateral, inequivalve, gaping posterior y, widely rounded in front, scarcely attenuated behind, flexure very slight, thick:y and finely sulcate, ligament pale chestnut, somewhat prominent.

Rather uncommon. South Coast. W. Legrand. A white shell, with no determinate characters except its oval form, absence of color, and almost perfect absence of flexure. There are are three smail hinge teeth in one valve, and two in the other, and the pallial sinus is very large.

Lucina mindia. n.s. L. t. parva subventricosa, oblonga transversa, tenui, albu, temui-actutu, cactis mum rosis comentrier, temiter: regulariter cleymentissimeque striata, ralde incequilaterali, latere antico longiore rotundato, postico latiore, margine integro, umbonibus productis obliquis, parvis incurvis, conspicue concentrice striatis; ralvis intus albis, impress. mus. conspicuis; ralv. dext. in med. unidentato dente bifido, val. sinis. bidentato, dente antico bifido. Long. 8. Lat. 9. Alt. 5.
L. she 1 small, subventricose, oblong, transverse, thin, white, slenderly ribbed, rils numerous, finely regu arly and most e egant y striate; very inequilateral, anterior side the longer, rounder, the posterior side wide; margin entire, umbones produced, oblique, small, incurved, conspicuously concentrically striate, va'res white within, muscular impression conspicuous, right valve unidentate with a bifid tooth; left valve bidentate, the anterior one bifid.

Badger Island, rare.

DESCRIPTIVE NOTES ON A NEW VACCINIUM FROM SAMOA.

By Baron Ferd. von Mueller, C.M.G., M.D., F.R.S.

Among a number of Samoan plants placed for elucidation at my disposal by the Rev. S. T. Whitmee, M.A., F.L.S., F.G.S., l.R.G.S., occurs a whortleberry-bush, the first member of the order of Vacciniex, as yet known from that Group. The Royal Society of Tasmania has favoured me on former occasions by promulgating notes on plants not always Tasmanian, and, perhaps, this privilege will be continued at this and future opportunities to render known remarkable undescribed plants through the pages of its publications, while this advantage will be all the more appreciated, inasmuch as the praiseworthy regularity and punctuality with which the Tasmanian Society issues its papers, affords the most favourable velicle in Australia for the early record of new observations. Passingly, it may here be observed, that some of the plants of Mr. Whitmee's collections, which latter were formed at great risk, toil, and expense of the reverend gentleman, amidst the arduous duties of his ecelesiastical position, have been alluded to in an appendix to Mr. F. Campbell's work on the New Hebrides, and in a recent publication on Papuan plants from Sir William MacArthur's sendings.

Melbourne, December, 1875.

VACCINIUM WHITMEEI.

(Sect. Epigynium.)

Erect, evergreen; branchlets slightly downy, all other parts glabrous; leaves oval, contracted into a very short petiole, blunt at the summit, entirely vithout teeth ; peduncles axillary, solitary, one flowered, recurved ; bracts very early deciduous ; tube of the calyx depressed-hemispheric, several times broader than long; teeth of the calyx five, rarely six, deltoid; tube of the corolla ovatecylindrical, lobes slightly spreading, rhomboid semi-ovate, several times shorter than the tube; anthers somewhat shorter than the filaments, oblong, at the apex very slightly bilobed, neither conspicuously attenuated, nor spurred, nor at the base incurved ; stylo stout, shorter than the corolla; berry much broader than long; cmbryo more than half as long as the albumen, black.

On the higher mountains of the Samoa Islands: Leaves coriaceous, ${ }_{3}^{2} \mathrm{in}$. lin. long, penniveined and slightly reticulated, almost flat, nut dotted ; peduncles $\frac{1}{3} \mathrm{in}$. $\frac{1}{2} \mathrm{in}$. long ; teeth of the calyx in ago

164

measuring about one line ; corolla exceeding hardly ${ }_{2} \mathrm{in}$. in length, unbearded; its lobes imbricate in bud ; liliments 10 , rarely 12 , fixed to the very base of the corolla, of erpual length, not fringerd; anthers lin. long, opening with two terminal pores; styles about 2 in . long ; berry $\frac{3}{3} \mathrm{in}$. in diameter ; seeds pale brown, half a line long, cuneate-ovate, angnlar, finely streaked.

The anthers distinguish this species from nearly all its numerous congeners, and bring it near the section Nutopora (J. Hook. Icon. plant. 1159), but they are fixed below not above the middle.

There seem to be but few other species of Vaccinium known from any part of Polynesia. Of these V. Vitiense (Puphic Vitiensis, Seem. journ. of Bot. 1864, p. 77 ; Flor. Vit. p. 146, t. xxviii) differs in its large flowers, reminding of certain Thibandias, of which genus at least the species with free stamens should be included in Vaccinium, as indicated by the writer in the volume of the Acclimatisation Society of Victoria for 1872.
V. cereum (G. Forst. florul. insul. Austr. prodr. p. 28 ; Andromeda cerea, Murr. syst. veg. 406) from Tahiti as well as V. macgillivrayi (Seem. journ. of Bot. 1864, p. 67) from the New Hebrides, differ both by their acute and especially scrrated leaves, their cleft calcarate anthers and spherical fruits. In a similar manner, V. reticulatum (Sm. in Rees's Cyclop. 1824), of the Sandwich Islands, is removed from our plant; besides it has lanceolate lobes of the calyx, while the tube of the latter is as long as it is broad.
V. plentudiflorum (Gandich. in Freycen. Voy. Bot. 454, t. 68) also from Hawaia differs, irrespective of the serratures of the leaves, in longer peduncles, much elongated lobes of the calyx, anthers with dorsal appendages, slender style, almost globular fruit and a shorter embryo.

Dr. Asa Gray has offered on the Polynesian Vaccinia notes referring to characteristics and synonymy in the Proceedings of the American Academy for Arts and Science, 1862, p. 323-324.

Among Indian species, V. Rolliusoni (Hook. bot. Magaz. 4612) from Java, is nearest, except perhaps the very imperfectly known V. microphyllum (Reinw, in Blume's Bijdr. 851) from Celebes. The former has alnost precisely the same foliage, and also slightly downy branchlets, while the flowers are not always terminal and racemose, but also axillary and solitary; the berries, however, are globular.*

I am not acquainted as yet with any true Vaccinium from Australia and New Caledonia, but the genus will likely be found well represented in the higher regions of New Guinea.

The Samoan collection received from the Rev. S. T. Whitmee, contains the following cotyledonar plants :-

Stephania hernandifolia, Walp.
Cardamine sarmentosa, G. Forst.
Hibiscus abelmoschus, Lin.
Trichospermum richei, Seem.

[^11]
165

Triumfetta angulata, Lam.
Kleinhovia hospita, Lin.
Waltheria indica, Lin.
Coriaria ruscifolia, Lin.
Eurya vitiensis, A. Gray.
Cardiospermum halicacabum, Lin.
Allophylus ternatus, Lour.
Euodia hortensis, R. and G. Forst.
Desmodium polycarpum, Cand.
Vigna lutea, A. Gray.
Erythrina indica, Lam.
Erythrina ovalifolin, Roxb.
Albizzia grandiflora, F. v. Muell.
Myrtus vitiensis, F. r. Muell. (Nelitris vitiensis, A. Gray.)
Colubrina asiatica, Brogn.
Phyllanthus ramiflorus, J. Muell.
Codiaeum variegatum, Blume.
Spireanthemum samoense, A. Gray.
Schefllera vitiensis, Seem. (a variety with 7 -merous fruit).
Loranthus insularum, A. Gray.
Plectronia barbata, J. Hook.
Mussaenda frondosa, Lin.
Blumea Milnei, Seem.
Bidens pilosa, Lin.
Scaevola koenigi, Vahl.
Tournefortia argentea, Lin. fil.
Premna integrifolia, Lin.
Clerodendron inerme, R. Br.
Cassytha filiformis, Lin.
Piper macgillivrayi, A. de Cand.
Trema camabina, Lour.
Pipturus argenteus, Wedd.
Casuarina equisetifolia, Forst.
Sarcochilus graeffei, G. Reich.
Joinvillea elegans, Gaudich.
Carex graeffeana, Baeck.
Fimbristylis communis, Kunth.
Rhychospora aurea, Vahl.
Panicum compositum, Lin.
Panicum sanguinale, Lin.
Panicum crus galli. Lin.
Imperata arundinacea, Cyril.
Cenchrus anomoplexis, Lab.
Eleusine indica, Gaert.
Centothera lappacea, Desv.
Paspalum scrobiculatum, Lin.
Coix Lacryma, Lin.

METEOROLOGY.

JANUARY, 1875.
Private Observatory, Hobart Town.

Barometer mean, 29.682 in., being 062in. below the average.
Tremperature mean, 62.92°, being $4^{\circ} 23^{\circ}$ above the average.
Solar intensity mean, $110^{\circ} 84^{\circ}$, being 2.78° above the average.
Dew point mean, $49^{\circ}{c^{\circ}}^{\circ}$, being $10^{\circ} 41^{\circ}$ below the average.
Humidity of air mean, ${ }^{*} 56$, being 11 per cent. below the average.
Elastic force of vapour mean, 367 , being 006 per cent. below the average.
Total amount of rain, 1.79 in , being 0.78 in . below the average.
Increase of spontaneous evaporation on rainfall, 4.8 sin .
Mean amount of ozone, $5 * 75$, being 1.18 of chromatic scale below the average.
Electricity active thronzh the month, with only six nil, 42 positive and 14 negative. fresh fall of snow on Mount Wellington on the 15 th. The Lottest day on the $22 n d$, j° in the shade, 130° in the sun. \qquad FRANCIS ABBOTT
Leafing, Flowering, and Fruiting of a few Standard Plants in the Royal Society's Gardens during the month.
th.-First Royal Apricot ripe.
th.-Jargonelle Pear ripe.
th.-Veronica Angustifolia in full flower.
bth.-Grevillea robusta, ditto.
25th, - Black Mulberry sipe.

Barometer mean, of three daily readings, corrected and reduced, 20738 in .
Temperature, mean, of three daily readings, 633°.

- Dew point, mean position of ditto, 48.92 .

Humidity mean of ditto, '64.
Elastic force of vapour ditto, "362in.
*Solar, intensity mean of maximum temperature, 131.5°.
T'errestrial Radiation mean of minimum temperature, $44^{\circ} 4^{\circ}$.
Rainfall, 1:57in.
Evaporation, 6.90in. ; in excess of rainfall, 5.33.
Clouds, mean amount of there daily observations, 4.3.
Ozone mean of two ditto, $7 \cdot 7$.
Wind, force in lbs. of three ditto, $111 \cdot 421 \mathrm{lbs}$.
*Taken with Cassella's improved vacuum self-registering thermometer with bulb and part of stem blackened.
W. E. SHOOBRIDGE, Valleyfield.

FEBRUARY, 1875.

Private Observatory, Hobart Town.

Bar. 37 feet abv.sea level corrected \& reduced.	Self-Registering Thermometers.			Wind.		
			Lowest on grass.	Direction from three daily registers.		
$\mathbf{I n}_{99.960} \operatorname{In}_{29.937}$	-07:					
$29 \cdot 96029 \cdot 937$	97143 84	108.0	36.0 37.5	NW SE	$\begin{aligned} & 130 \\ & 1 \cdot 30 \end{aligned}$	
${ }_{3} 29.62429 .317$	8664	110.5	52.0	NW W	5.78	
429.93029 .729	8050	102.0	40.5	S SW	625	067
530.06330 .042	$75 \mid 42$	$110^{\circ} 0$	36.5	NW SW	78	$0 \cdot 1$
$630 \cdot 22430 \cdot 186$	80.52	$111^{\circ} 0$	420		-52	
$730 \cdot 17530 \cdot 124$	$72 \mid 52$	$109 \cdot 0$	42.0	N NE SE	. 52	
$829.965 \cdot 29.772$	86.54	$120 \cdot 0$	47.0	NW N	1.04	
9:29.676 29.523	$110 \cdot 66$	$120 \cdot 5$	62.0	NW NE	-26	0.18
$1029 \cdot 891$ 29-815	10255	115.0	50.0	NW S	. 52	0.07
1130.04529 .922	82\|57	118.5	52.0	NE NW	1.04	
$12.29 \cdot 660 \cdot 29 \cdot 546$	756	$84^{\circ} 0$	54.0	NW	78	0.21
13129.83629 .827 \|	7249	107.0	420	NW SW	1.56	$0 \cdot 10$
$14.29 \cdot 873.29 \cdot 852$	7954	$116^{\circ} 0$	$45 \cdot 5$	NW	$1 \cdot 30$	
$1529 \cdot 924$ 29'824	7819	$110 \cdot 0$	42.5	NW SE	$1 \cdot 56$	
1629.945 29.879	69152	107.0	46.0	NW SW	$1 \cdot 14$	0.01
17 29.960 29-886	78150	$110^{\circ} 0$	42.0	NW SW	1.56	0.02
$1830 \cdot 12130 \cdot 039$	7155	$94^{*} 5$	48.5	NW SE	-26	
19 29.913 29.833	8653	112.5	47.0	NW W	$1 \cdot 56$	
$2030.03730 \cdot 013$	78:58	75.0	44.5	NE SW	-52	
$2129.935 \cdot 29.687$	9058	122.0	50.0	NW SE	130	
2229.70529 .643	8866	1150	58.0	NW SW	3.64	0.01
$23 \mid 29.937$ 29.924	7548	110.5	42.0	NW SW	78	
2430.08630 .005	8052	1100	46.0	N SE	78	
$2530 \cdot 18830 \cdot 115$	8250	1150	$45 \cdot 0$	NW SE	. 52	
$26 \cdot 30 \cdot 160 \cdot 30 \cdot 113$	7753	91.0	48.0	SE SW	$5 \cdot 73$	
27 30-279 30-204	79.51	1030	42.0	N NW	-26	0.08
28 30-229 30.169	7746	1100	415	NW SE	-52	
Monthly mean 29.934	67.80	10840	460	Total Force	43.03	147

The mean in all cases is taken from the sums of the three daily registers, and not from the maximum and minimum.
The direction of the wind is registered from currents moving at a height of 192 feet and the force is a very arbitrary one, and the results can be considered only approximately correct.
The relations of the quantities of rain which fell under the different winds are registered each evening at sundown.
The 30 years' standard tables are used for obtaining the difference from the average.

13 arometer mean, 20034 in , being 0002 in . above the nverage.
'Temperature mean, 67.50 ', being $5{ }^{\prime} 69$ above the average.
Sular intensity mean, $180^{\circ} 40^{\circ}$, being $0^{\circ} 80^{\circ}$ above the ditto.
Dew point mean, 519 , being 139 above the ditto.
Humidity of air mean, '60, being 10 per cent. below the ditto.
Elastic force of vapour mean, " 409 , being 034 per cent. above the ditto.
Total amount of rain, 147 iu ., being 0 ט6in. below the ditto.
Increase of spontaneous evaporation on rainfall, 349 in .
Mean amount of ozone, 568 , being 149 per cent. of chromatic scale below ditto.
Flectricity atetive all through the month with 27 pobitive, 25 negative, and 4 nil, on the 12th.
Thunder and lightning on tho 9th. The hottest day in the sun on the 21st, 122°. On the 9th, in the shade, 110°.

FRANCIS ABBOTT.

Leafing, Flowering, and Fruiting of a fow Standard Plants in the Royal Society's
Gardens during the month.
4th.-Kerry Pippin Apple commencing to ripen.
6th.-Windsor Pear ditto.
9th.-Bon Chretien Pear ditto.
12th.-Green Gage ditto.
20th.-Ash commencing to shed seed.
24th.-Sycamore ditto.

Tiesults of observations taken at New Norfolk for February, 1875:-

Barometer mean of 3 daily readings, corrocted and reduced, 20.069 in .
Thermometer mean of 3 daily readings, $64^{.33^{\circ}}$
Solar intensity mean of maximum temperature, 131.42°
Terrestrial radiation mean of minimum temperature, 44 ${ }^{7}$.
Dew Point, mean position, $52 \cdot 8^{\circ}$.
Elastic force of vapour mean of 3 daily readings, " 415 in .
Humidity mean of ditto, 69 .
Clouds amount of ditto, $-4 \cdot 51$.
Wind force in lbs. ditto, total $52 \times 40 \mathrm{lbs}$.
Rainfall, 1.97 inches.
Evaporation, 5.72 in , in excess of rainfall, $3 \cdot 75 \mathrm{in}$.
Ozone mean, $7 * 35$.
W, E. SHOOBRIDGE, Valleyfield.

MARCH, 1875.

Private Observatory, Hobart Town.

Bar. 37 feet abv. sea level corrected \& reduced.		Self-Registering Thermometers.			Wind.			
	In.							
	30.04129 .925	350	113.0	43%	NW SE	1.04		
	29.87129 .763	7263	1120	$43 \cdot 5$	W SE	1.04	0.07	
	29.668 29-397	7957	105.5	49.0	NW N SW	$1 \cdot 21$		
	$2991029 \cdot 642$	6952	1880	50.5	NW SW	599		
	$30 \cdot 67930-053$	'75, 55	1100	$39^{\circ} 0$	N NW	7.80		
	$30 \cdot 17930 \cdot 124$	$7+52$	107.0	46.0	SW NW S	52		
	$30.065 \mid 30.039$	7158	1085	49.5	NE SE	- 26		
	30.00729 .878	9659	112.0	52.0	SE	-52		
	$29.885 .29 \cdot 807$	9057	121.5	52.0	NW	1.04		
	29.76429 .674	8464	97.0	56.0	NW	-26	0.08	
	$30.074 .30 \cdot 024$	$73: 53$	76.0	50.0	S SW	78	0.05	
	29.924 29-376	6853	87.0	$49^{\circ} 0$	NW SE SW	1.04	$0 \cdot 07$	
	.30.034 $29 \cdot 894$	7647	108.0	43.0	NW SE	130		
	$29 \cdot 615 \cdot 29 \cdot 404$	92, 56	$110 \cdot 5$	$55^{\circ} 0$	NW SW SE	10.42	$0 \cdot 03$	
	29.70629 .665	'664	9 s 0	40.0	NW SW	7.80		
	29.880\|29 796		70.55	97.0	50.0	NE NW	$3 \cdot 12$	
	29.917 29.859	7746	108.0	$41^{\circ} 5$	NW SE	$3 \cdot 12$		
	29.88629 .847	7649	108.0	43.5	SW W	78	022	
	$29 \cdot 73529.568$	7156	96.0	50.0	NW W	$3 \cdot 12$		
	30.06529 .948	7246	89.5	40.0	SW	13.02		
	30.07730 .030	7046	102.0	42.5	NW	$3 \cdot 38$		
	30.07929 .967	6950	1010	45.0	NW SE	78		
	30.09430 .054	7454	1020	$44^{\circ} 0$	SW NW	52		
	30-196 $30 \cdot 151$	7651	107.0	44.0	NW SE	-52		
	$30 \cdot 19630 \cdot 121$	7450	$102 \cdot 0$	44.0	NW SE	52		
	30.07630 .001	7652	108.5	47.0	NW NE SW	- 26		
	29-856 $29 \cdot 642$	8954	113.0	$49^{\circ} 0$	NW SW	10.42		
	$29 \cdot 83629 \cdot 757$	86 61	113.0	550	NW SW	1.04		
	$30 \cdot 15230 \cdot 125$	7349	$98^{\circ} 0$	425	NW SE	52		
	$30 \cdot 21430 \cdot 165$	7148	98.0	42.5	NW SE	1.04		
	${ }^{\prime} 30 \cdot 176 / 30 \cdot 129$	\|74	55	1040	50.0	NW SW SE	1.04	
	Lean monthly		$103 \cdot 60$	$48 \cdot 66$	Total Force	90.82	052	

The mean in all cases is taken from the slims of the three daily registers, and not from the maxi-
mum and minimum.
The direction of the wind is registered from currents moving at a height of 192 feet and the force
according to Iind's Wind Guage. The supposition, howerer, of a uniform velocity during the
month is a very ar'ditrary one, and the results can be considered only approximately correct.
The relations of the quantities of rain which fell undex the different winds are registered cach
evening at sundown.
The 30 years' standard tables are used for obtaining the difference from the average.
Barometer mean, 29.929 in., being 053 in. above the average.
Temperature mean, $65^{\circ} 09^{\circ}$, being $5 \cdot 17^{\circ}$ above the ditto.
Solar intensity mean, 10360°, being $0^{\prime} 10^{\circ}$ above the ditto.
Dew point mean, $50^{\circ} 4^{\circ}$, being $1^{-1} 8^{\circ}$ above the ditto.
Humidity of air mean, "63, being " 08 per cent. below the ditto.
Elastic force of vapour mean, $\cdot 388$, being 031 per cent. above the ditto.
Total amount of rain, ${ }^{5} 52$ in., being $1.08 i n$. below the ditto.
Increase of spontaneous evaporation on rain-fall, 4 "83in.
Mean amount of ozone, 518 , being 1.93 of chromatic scale below ditto.
Mount Wellington covered with fresh snow on the 20th.
By analysing the table for March of the present year and that for April as far as it has gone, and comparing the results with those of the corresponding periods in former years, the increasing dryness of the seasons in Tasmania will be brought prominently under notice. To counteract this deficiency of moisture, irrigation would of course be the remedy, and fortunately our lakes and rivers afford every facility for carrying this out to any extent that might be required. If this, however, were found from any cause to be impracticable, it might be well to consider if planting trees on a large scale, as practised elsewhere, should not be now urged upon the attention of the public.

Leafing, Flowering, and Fruting of af fers Standard Plants in the Royal Socicty:s Gardens during the Month of March, 1875.

10th.-Tips of Hombean turning brown.
14th.-Cue's Golden Drop Plum ripe. Seckle Pear ditto.
17th.-Tlips of Elm turning yellow.
20th.-Horse Chestnut leaves turning brown.
24th.-Ash leaves commenced to fall.
25 th.-Oak ditto ditto.

The following are the results of the observations made at New Norfolk during the month :-

Barometer mean of three daily readings, corrected and reduced, 30.088 in .
Thermometer mean of three daily readings, 61.57°.
Elastic force of vapour mean of ditto, "388.
Humidity mean of ditto, 7 .
Dew point mean position, $51^{\circ} 3^{\circ}$.
Solar intensity mean of maximum temperature, 129°.
Clouds mean amount of three daily observations, $5^{\prime} 27$.
Ozone mean of two ditto, $7 \cdot 4$.
Terrestrial radiation mean of minimum temperature, $43^{\circ} 41^{\circ}$.
Rainfall, "58in.
Spontaneous evaporation, 5.32 in . ; in excess of rainfall, 4.74
Wind force total of three ditto, $121 \cdot 87 \mathrm{lbs}$.
Falleyfleld.
W. E. SHOOBRIDGE

APRIL, 1874.
 Private Observatory, Hobart Town.

	Bar. 37 feet abv.sea level corrected \& reduced.	Self-Registering Thermometers.			Wind.			
			Highest in sun.					
	In. In.							
	$30 \cdot 12930 \cdot 690$	6546	$102 \cdot 0$	40.0	NW SE	26	0.12	
	29.83429 .663	8249	108.0	44.0	NW SE	130		
	29.81529 .704	75.54	99.0	49.5	W SE	1.04	0.02	
	29.97029 .930	6450	$75 \cdot 5$	45.0	S	1.04		
	$30.037 / 30.001$	6450	70.0	47.0	SW SE SW	1.04		
	$30 \cdot 18430 \cdot 160$	6914	100.0	35.5	NW SE	78		
	$30.345130 \cdot 328$	$71 / 42$	99.5	37.0	NW SE	52		
	$30 \cdot 273 \mid 30 \cdot 314$	80.50	1040	$43 \cdot 0$	SE N	104		
	$30 \cdot 192$ 29.943	84.49	109.5	$45^{\circ} 0$	NW	$5 \cdot 9$		
102	$29 \cdot 865$ 29'783	82.57	109.0	50.5	SE	0.	0.26	
112	$29 \cdot 635 \quad 29.585$	7156	85.0	52.0	N W	52	0.23	
12.2	$29 \cdot 895 \quad 29 \cdot 591$	72148	92.0	41.5	SW NW	10.63		
1313	$30 \cdot 17430 \cdot 133$	\|68	42	98.5	$36^{\circ} 0$	NW SE W	. 78	
14	30.265 30.164	6438	88.0	31.5	NW	78		
15	$29 \cdot 892 \cdot 29 \cdot 195$	7543	62.0	33.0	NW	20.81	$0 \cdot 16$	
	$29 \cdot 97629 \cdot 895$	7242	71.0	34.5	S NW SW	312		
	30-325 30-310	7343	96.5	$33^{\circ} 0$	NW N	78		
18	30-380 30-336	7144	97.5	$39^{\circ} 0$	W SE	53		
	30-321 30-155	7046	91.0	41.0	NW	-52	$0 \cdot 14$	
20	$29 \cdot 97629 \cdot 815$	6555	66.5	52.0	NW N	0.	042	
21	$29 \cdot 775 \mid 29 \cdot 726$	6155	$69^{\circ} 0$	50.0	S SW	$3 \cdot 12$	$0 \cdot 03$	
22	30.072 29.942	5846	78.0	38.5	NW SE S	52		
23.3	$30 \cdot 116{ }^{29 \cdot 945}$	7041	93.5	35.5	NW N	1.04		
24	29-834 $29 \cdot 807$	7240	95.0	34.0	W NW	0.		
25	29-882 $29 \cdot 772$	7246	96.0	42.0	NW SE	52		
26	$29 \cdot 71229 \cdot 551$	78.53	95.0	$47^{\circ} 0$	NW SE	0.		
27.2	29.553 $29 \cdot 455$	6851	76.0	46.0	S NW SW	$1 \cdot 30$	$0 \cdot 06$	
2812	$29^{7} 76129 \cdot 750$	6141	75.0	34.5	SW	$3 \cdot 38$	0.06	
29	29.932 $29 \cdot 851$	6239	$84^{\circ} 0$	32.0	NW SW	1.56	0.04	
	$30 \cdot 237 \mid 30 \cdot 162$	56143	$88^{\circ} 0$	$38^{\circ} 0$	S SE	0.		
	onthly mean $29 \cdot 847$	$60 \cdot 20$	89.0	41.10	Total Force	65.63	$1 \cdot 59$	

The mean in all cases is taken from the sums of the three daily registers, and not from the maxi-
mum and minimum.
The direction of the wind is registered from currents moving at a height of 192 feet and the forc

The relations of the quantities of rain which fell under the different winds are registered each evening at sundown.
The 30 years' standard tables are used for obtaining the difference from the average,

Barometer mean, 29.847 in ., being 0.065 in . below the average.
Temperature, mean, $60^{\circ} 20^{\circ}$, being $4^{\circ} 87^{\circ}$ above the ditto.
Solar intensity, mean, $89^{\circ} 0^{\circ}$, being 12.74° below the ditto.
Dew point mean, $48^{\circ} 7^{\circ}$, being $1^{\circ} 53^{\circ}$ above the ditto.
Humidity of air mean, ' 68 , being 08 per cent. below the ditto.
Elastic force of vapour mean, "356, being 027 per cent. above the ditto.
Total amount of rain, $1^{\circ} 59 \mathrm{in}$., being $0 \cdot 18 \mathrm{in}$. below the ditto.
Increase of evaporation on rainfall $1 \cdot 20 \mathrm{in}$.
Mean amount of ozone $5 \cdot 80$, being 1.26 of chromatic scale below ditto.
Stroug southern lights on the 7 th.
A fresh fall of Snow on Mount Wellington on the 15th.
FRANCIS ABBOTT.

Leafing, Flowering, and Fruiting of a few standard plants in the Royal Society's Gardens during the month.
10th.-Elm leaves commence falling.
18th.-Coe's late red Plum ripe.
20th.-Chinese Chrysanthemums commenced to flower.
25th.-Mountain Ash leaves commenced to fall.
Seeds of Hornbeam ripe.
30th.-Leaves of Black Mulberry falling.

vii.

Results of Observations taken at New Norfolk for April, 1875.
Barometer mean of threo daily readings, corrected and reduced, 29.079 in .
Thermometer mean of ditto, 55%.
Dew point mean position at ditto, 49%.
Elastic force of vapor, mean of ditto "357in.
Ilumidity mean of ditto, " 88 .
Solar intensity, mean of maximum temperature, $116 * 3$.
Terrestrial radiation, mean of minimum temperature, $37 \cdot 3$.
Mainfall, 1.88 inches.
Evaporation, 2.09 in , in excess of rainfall, " 21.
Clouds, mean amount of three daily registers, $5 \cdot 41$.
Uzone, ditto of two ditto, 6.61 .
Windforce in lbs. per square foot, at three observations, total $46^{\circ} 931 \mathrm{lbs}$.
W. E. SHOOBRIDGE, Valleyfield.

New Norfolk, April, 1875.

MAY, 1875.

Private Observatory, Hobart Town.

viii.

Barometer mean, 29.867 in , being 0.014 in . below the average.
Temperature mean, $53^{\circ} 27^{\circ}$, being $2^{\circ} 65^{\circ}$ above the average.
Solar intensity mean, $77^{\circ} 63^{\circ}$, being $4^{\circ} 53^{\circ}$ below the ditto.
Dew point mean, $45^{\circ} 0^{\circ}$, being $1^{\prime} 14^{\circ}$ above the ditto.
Humidity of air mean, 76 , being 04 per cent below ditto.
Elastic force of vapour mean, 310 , being ' 006 per cent. below the ditto.
Total amount of rain, 3.61 in ., being 1.84 in . above the ditto.
Increase of spontaneous evaporation on rainfall, $2 \cdot 64 \mathrm{in}$.
Mean amount of ozone, $5 \cdot 10$, being 1.85 of chromatic scale below ditto.
Mount Wellington covered with snow on the 14th. A fresh fall of snow on the mountain and low hills on the 15 th with much squall from S.W. An additional fall of snow on Mount Wellington on the 23rd, with heavy squalls from S.W.

Leafing, Flowering, and Fruiting of a few Standard Plants in the Royal Society's Gardens, during the month.
26th.-Coronilla glauca commencing to flower.
27th.-Ailanthus glandulosus leaves all fallen.
28th.-Photinia serrulata commencing to flower.
30th.-Diosma alba ditto.
31st.-Spiræa prunifolia ditto.
FRANCIS ABBOTT.

Results of observations taken at New Norfolk, for May, 1875 :-
Barometer mean of three daily readings, corrected and reduced, 29.890 in .
Thermometer mean of ditto, $49 \cdot 95$.
Dew point mean position at ditto, 46.90 .
Elastic force of vapour mean of ditto, "335in.
Humidity mean of ditto, " 91 .
Solar intensity mean of maximum temperature, 106.6.
Terrestrial radiation mean of minimum temperature, $36 \cdot 19$.
Rainfall, 2*48in. in excess of Evaporation, "51.
Spontaneous Evaporation, 1.97 in.
Clouds mean amount of three daily registers, 7'11.
Ozone, ditto of two ditto, 7%.
Windforce in lbs. per sq, ft., of three daily registers total 99.631 bs .
Valleyfield.

Puivate Observatory, Hobart Tows.

The mean in all cases is tikun from the sums of the three daily registers, and not from the maximum
and ninimum.

The direction of the wind is registered from currents moving at a height of 192 fcet and the force is a very arbitrary one, and the results can bo consideral only approximately correct.

The relations of the quantities of rain which fell undor the difforent winds are registered eaoh evening at sundown.

The 30 years' standard tables are used for obtaining the difference from the average.
Farometer mean, $29.838 i n$., being 0.053 in . below the average.
Temperature mean, $52 \cdot 50^{\circ}$, being $5 \cdot 71$ above the average.
Solar intensity mean, 77.55°, being 2.06° above the ditto.
Dew point mean, $45^{\circ} 0^{\circ}$, being $3 \cdot 31^{\circ}$ above the ditto.
Humidity of air mean, 76 , being 07 per cent. below ditto.
Elastic force of vapour mean, *301, being 032 per cent. above the ditto.
Total amount of rain, $1 \cdot 52 \mathrm{in}$., weing $0 \cdot 2 \mathrm{sin}$. below the ditto,
Increase of rainfall on spontaneous evaporation, 0.30 in .
Mean amount of ozone, $4 \cdot 6 \%$, of chromatic scale, $1 \cdot 99$ below ditto.
Electric action for the month, 14 positive, 48 negative, and 17 nil.
Snow lying on Mount Wellington a great part of the month, with a few frosty mornings, and a thick, hazy atmosphere on several days.

Lafing, Flowcring, and Friting of a few Standerd Plants in the Royal Socicty's Gardens during the month.
16th.-Maclaura aurantiaca leaves falling.
20th.-Privet leaves shedding.
25th.-l'yrus japonica commencing to flower.
2tith.-Calycanthus pracot in full flower.
Suth. - Black Mulderry leaves shed.

Results of observations made at New Norfolk during the month:
Barometer mean of three daily readings, corrected and reduced, $29^{\circ} 855 \mathrm{in}$.
Thermometer mean of three daily readings, $47^{\circ} 07^{\circ}$.
Dew point mean, position of, 42%.
Humidity mean, 86.
Elastic force of vapour, - 275 .
Solar intensity mean of maximum temperature, 1017 .
Terrestrial radiation mean of minimum temperature, 32%.
Rainfall, 1.47 in , in excess of evaporation 44.
Evaporation, 1.13in.
Ozone mean of two daily observations, 74 .
Clouds, mean of three ditto, $5 \cdot 8$.
Windforce in lbs. per square foot, total of three daily registers, 38.87 lbs .
W. E. SHOOBRIDGE, Valleyferat

$x i ̂$.
 JULY， 1875.
 Privatr Observatory，Hobart Town．

	Bar． 37 fit abv sealevel，cor－ rected and reduced．	Self－registering Thermometers．			Wind．						
Day of Month.	Highest. 			Lowest on Grass．							
	In．							$\begin{aligned} & \mathscr{4} \\ & \triangle \end{aligned}$	∞	聯	遌
	$130^{-254} 30^{\prime} 194$	5635	78.0	31.0	NW	1.30		品		－	发
	$230 \cdot 21930 \cdot 184$	5537	77.5	33.0	NW	1.04		\％	Tixios	$\stackrel{\square}{\bullet}$	$\stackrel{ \pm}{5}$
	3.30 .21429 .998	5837	81.0	28.0	NW	． 52	－01	－	Noi	$\stackrel{7}{7}$	「
	$4^{\prime} \cdot 29 \cdot 24929.944$	5335	59.0	29.5	NW NS	78		L		H	\pm
	$530.06 \square^{\prime} 30.050$	5240	64.0	$35 \cdot 0$	S	52	83	$\stackrel{\square}{4}$	an		\＃
	$630 \cdot 26830 \cdot 224$	5836	790	$30^{\circ} 0$	NW	－52	． 02	0		\＃	，
	$7130 \cdot 39930 \cdot 367$ ！	5532	76.5	28.0	NIV	－52		4	留.	7	
	8 30－372 $30 \cdot 341$	5935	$81^{\circ} 0$	28.5	W NW	1.30		－	5.	\pm	．
	$9.30 \cdot 37730 \cdot 296,6$	6137	75.0	28.0	NW	26		\bigcirc			$\stackrel{5}{5}$
	030.34230 .318	6445	85.5	41.0	NW SW	78 1.56	－01	\％	¢ 응	\％	\bigcirc
	$130 \cdot 35930-345$	6151	$74^{\circ} 0$	145.0	NW	1.56		E		鳬	
	－30 349 30 187	57.44	64°	40.5	N W	1.04		$\stackrel{\rightharpoonup}{\omega}$		E	\bigcirc
	3 $30 \cdot 15030 \cdot 134$	60.45 58.41	69.5	$139^{\circ} 0$	V	78	1	$\stackrel{\square}{3}$			己
	$5 \cdot 29 \cdot 605,29 \cdot 542$	5746	75.0	43.0	NW	$1 \cdot 30$	$\cdot 02$	日			2
	$62975629 \cdot 692$	6242	84.0	$40^{\circ} 0$	NW	$3 \cdot 38$	． 08	은		－	$\stackrel{\square}{4}$
	7． $29 \cdot 56429.433$	6339	89.0	1365	W NW	－26	＇09			\％	¢
	829.56629 .512	5941	65.5	35.0	NW W SE				me		$\stackrel{3}{0}$
	9，29 795 29.726	5938	79.0	31.0	NW SW	1.04		$\frac{\mathbb{4}}{5}$	．		－
	0 130.187 130.255 30.097	5942 6241	78.0 85.0	37.5 36.0	NW	1.56			可完	$\underset{\sim}{\underline{\sim}}$	¢ూ
	$230.27230 \cdot 228$	6238	81.5	33.0	SW NW	$\cdot 52$					崖
	3 30－271 30．184	6036	79.0	32.0	NW	1．56					3
	$\pm 30 \cdot 21130 \cdot 124$	5936	85.5	32.0	W NW	$\cdot 78$		§゙ ష్ల	F\％		
	530.217 30－068	5633	80.5	$30 \cdot 5$	NW	$\cdot 78$	36	\％ี	¢0．${ }^{\text {¢ }}$		
	$629.816,29742$	，60 40	$81^{\circ} 0$	33.0	SW NW	$\cdot 78$	． 04	ㄷ．．			
	7 $80 \cdot 10030 \cdot 064$ 8 $30 \cdot 26430 \cdot 215$	5541 5340	75.0	$35^{\circ} 0$	SE	$\cdot 26$	－18		"乌		
	29） 29.858 29．702	仿	75.	315 36	S SE	3.38	01	¢＇ठ			
	20 20－849，29•816	6541	87.5	37.0	SE S W			－			
	1 $29 \cdot 873 \cdot 29.824$	6245	86.5	$39^{\circ} 0$	NW	$5 \cdot 46$					
	$\begin{aligned} & \text { ATonthly mean } \\ & 30.053 \\ & \hline \end{aligned}$	50．25	76.36	34.65	Total Force	$31 \cdot 90$	1.94		∞		

Barometer mean， 30.053 in ．，being above the average， 0.206 in ．
Temperature mean， $50^{\circ} 25^{\circ}$ ，being $4^{\circ} 18^{\circ}$ above the average．
Solar intensity mean， $76^{\circ} 36^{\circ}$ ，being 0.28° above the ditto．
Dew point mean， $41^{\circ} 8^{\circ}$ ，being $1^{\circ} 0^{\circ}$ above the ditto．
Humidity of air mean， 73 ，being 09 per cent．below the ditto．
Elastic force of vapour mean，-266 ，being 008 per cent．above the ditto．
Total amount of rain， $1 \cdot 94 \mathrm{in}$ ．，being 0.26 in ．below the ditto．
Increase of rainfall，on spontaneous evaporation 0.2 in ．
Mean amount of ozone， 4.35 being 2.75 of chromatic scalc，below ditto．
Alectricity more or less all through the month，-16 positive， 31 neyetive， 5 nil，on tho 4th， 10 th，and 14 th．
Fresh snow on Mount Wellington on the 3rd，20th，and 26th．

Lcafing，Flowcring，and Fruiting of a fco Standard Plants in the Royal Society＇s Gardens，during the month．

[^12]
K11。

Results of Observations made at New Norfolk during the miontif :
13arometer, mean of three daily readings, corrected and reduced, $30 \cdot 0.18 \mathrm{in}$.
Thermometer, mean of 3 daily readings, $45 \cdot 27^{\circ}$
Dew Point, mean of ditto, 41.01°.
Humidity mean of ditto, 87 .
Elastic force of vapour, mean of ditto, - 261.
Solar intensity, mean of maximum temperature, 10148°.
Terrestrial Radiation, mean of minimum temperature, $20^{\circ} 29^{\circ}$.
Kainfall, 1'48in.
Evaporation, 1.41in
Clouds, mean amount of three daily registers, $5^{\prime} 7$.
Ozone, mean amount of two daily ditto, $7 \cdot 1$.
W. E. SHOOBRIDGE, Valley $\mathfrak{i c k}$.

AUGUST, 1874.

Private Observatory, Hobart Town.

[^13]Baroneter mean, $29.78 \% \mathrm{in}$., being 0.03 sin . below the average.
Temperature, mean. $52^{\prime 3} 37^{\circ}$ being 3.90° above the ditto.
Solarintensity, mean, 81.69°, being 1.13° below the ditto
bew point mean, 3999°, being 00.90 below the ditto.
Humidity of air mean, '69, being 10 per cent. below the ditto.
Elastic force of vapour mean, ${ }^{27} 0$, being ${ }^{\circ} 001$ per cent. above the ditto.
'Total amount of rain, $1^{\circ} 69 \mathrm{in}^{\prime}$, being 0.03 in . below the ditto.
Increase of spontaneous evaporation on rainfall 1.07 in .
Mean amount of ozone 3.75 , being 3.81 of chromatic scale below ditto.
Flectricity active through the month, positive 30 , negative 27 , and nil 5 , on the 5 th, 15th, and 2tth A fall of snow on Monnt Wellington on the 1st - a fresh deposit on the 21st-an aurora on the eve of the asth.

FRANCIS ABBOTT.

Results of Observations made at New Norfolk during the month :

larometer mean of three daily readings, corrected and reduced, 29771 in .
Thermometer mean of ditto, $47{ }^{\circ} 75$.

1) ew point mean position of 3 ditto, $3 S: 50$.

Elastic force of vapor, mean of 3 ditto 233 in .
Humidity mean of 3 ditto, 73 .
solar intensity, mean of maximum temperature, 105°.
'Terrestrial radiation, mean of minimum temperature, 32'12.
Kainfall, 1.93 inches.
Evaporation, $2 \cdot 73 \mathrm{in}$, in excess of rainfall, 80 in .
Ozone, mean of two daily observations, $7 \cdot 46$.
Clouds, mean of 3 daily observations, 5 ' 37 .
Wind, total force, $70^{\circ} \mathrm{S} 0 l \mathrm{bs}$. per square foot.
wind, horizontal movement, 2454 miles.
Electricity active on Sth, 10th, 12th, 1\&th, 23rd, 25 th, and 26th.
W. E. SHOOBRIDGE, Valleyfield.

SEPTEMBER, 1875.

Private Observatory, Hobart Town.

Barometer mean, 20.810 in., being 0.046 in . above the average.
Temperature mean, 56.02°, being $4^{\circ} 50^{\circ}$ above the ditto.
Solar intensity mean, $92^{\circ} 22^{\circ}$, being 2.77° above the ditto.
Dew point mean, 424°, being 0.16° above the ditto.
Humidity of air mean, '62, being 14 per cent. below the ditto.
Elastic force of vapour mean, $\cdot 278$, being 002 per cent. below the ditto.
Total amount of rain, $2^{\prime} 01 \mathrm{in}$.
Increase of spontaneous evaporation on rain-fall, 1-25in.
Mean amount of ozone, $4 \cdot 10 \mathrm{in}$., being $0 \cdot 10 \mathrm{in}$. below the ditto.
Electricity, 45 positive, 15 negative, nil 0.
A covering of fresh snow on Mount Wellington on the 1st. Wind, snow, hail, and rain continuous on the 3rd. A fresh fall of snow on Mount Wellington on the 30th.

FRANCIS ABBOTT.

Leafing, Flowering, and Fruiting of a few Standard Plants in the Royal Society's Gardens, during the month.

20th.-Ash commencing to break into leaf.
24th.-Grape vines commencing to start.
25th.-Oak commencing to break into leaf.
26th. -Moutan Yeony commencing to flower.
30th.-Horse Chestnut ditto.
,, -lRobinia Pseudo Acacia commencing to start.

Results of Observations made at New Nurfulk during the month ：

Barometer mean of three daily readings，corrected and reduced，20．947in．
Thermometer mean of ditto， $49^{\circ} 25^{\circ}$ ．
Dew point mean temperature of ditto， $39{ }^{\circ} 10^{\circ}$ ．
Humidity mean of ditto，＇69．
Elastic force of vapour mean of ditto，＇240．
Solar intensity mean of maximum temperature， 115.30° ．
Terrestrial radiation mean of minimum temperature， $32 \cdot 30^{\circ}$ ．
Rainfall，2＂37in．
Evaporation， $4^{\cdot 64 i n}$ ．，in excess of rainfall， $2 \cdot 27 \mathrm{in}$ ．
Ozone mean of two daily registers，7＊58．
Clouds mean of three daily registers， $5 \cdot 06$ ．
Wind total force of three ditto， $75 \cdot 96 \mathrm{lbs}$ ．per square foot．
Wind horizontal movement， 2854 miles．
Electricity， 25 negative， 5 positive．

W．E．SHOOBRIDGE，Valleyfield．

OCTOBER， 1875.
Private Observatory，Hobart Town．

｜Bar． 37 feet abv．sea level corrected \＆ reduced．		Self－Registering Thernometers．			Wind．		
ci 品 品 世 A A				｜		$\begin{gathered} \text { '子oy expnbs } \\ \text { xad } \mathrm{sql} \text { ut eoxod } \end{gathered}$	
	In． In． $29 \cdot 600$ $29 \cdot 538$	－			NW SE TV	26	$0 \cdot 30$
$\left.\frac{1}{2}\right\|_{2} ^{2}$	29．643 $29 \cdot 417$	${ }^{58} 45$	65.0 93.0	40\％	NW W	1.56	0.06
3	$29 \cdot 430,29 \cdot 345$	6347	96.0	40.0	NW W	6.25	0.04
	$29 \cdot 667 \cdot 29 \cdot 60 \mathrm{~s}$	624	90.5	29.5	SW NW	16.15	0.54
	$30 \cdot 015$ 29．945	6143	93.0	34.0	SW NW	5.46	$0 \cdot 17$
	30.11230 .002	68 40	99.5	360	NW SE	1.56	0.02
	29.71829 .563	78149	107.0	37.5	SW S	10.94	$0 \cdot 30$
	30.04829 .984	6243	$90^{\circ} 5$	36.0	S SE	$1 \cdot 04$	
	3060629.900	6339	92.0	34.5	NW SE	78	0.06
	30.04629 .990	5945	88.5	38.0	E SE	78	0.03
11	$30^{\prime 245} 30 \cdot 193$	6146	101.0	40.0	SE	130	
12	$30 \cdot 145{ }^{29.932}$	7045	101.5	39.5	NW	［－04	
13	$29^{767} 29.606$	7746	109.0	430	NW S	$5 \cdot 20$	0.09
14	$29 \cdot 475{ }^{29 \cdot 235}$	7747	108.0	44.0	NW N	$5 \cdot 47$	0.04
15	$29 \cdot 38329 \cdot 352$	73.46	99.0	40.0	W NW	13.02	0.01
16	$29 \cdot 43329 \cdot 250$	6614	$99^{\circ} 0$	$40 \cdot 5$	NW SE	1.04	0.01
17	$29 \cdot 300 \quad 29 \cdot 205$	6444	$90 \cdot 0$	42.0	NW W	10.41	0.48
18	$29 \cdot 79429 \cdot 725$	6240	100.0	$37 \cdot 0$	NW W	1.04	0.01
19	29.648 .29 .430	58｜43	71.0	$39 \cdot 0$	NW	5.21	0.35
20	29.82629 .758	5940	60.5	36.0	SE SW	$\cdot 78$	0.01
21	30.01529 .942	6143	100.0	405	SE	78	0.01
22	$30 \cdot 14030.078$	6339	102.0	35.0	NW SE	1.04	
23	30.01230 .015	6145	90.0	40.0	NWS	－52	0.02
24	30.085 .29 .960	6645	100.5	41－5	SE	$1 \cdot 30$	0.02
25	29．871｜29•815	6450	90.0	45.0	NW SE	1.30	0.02
26	29.942 29．852	$59+48$	60.0	43.0	NW SE	0.	
27	29•854 $29 \cdot 848$	6545	99.0	43.0	NW SE	1.04	0.15
23	29．895 29•871	6044	102.5	41.5	NTV S	78	0.04
29	$29.993,29.937$	6038	99.0	32.5	S SE W	$3 \cdot 12$	$0 \cdot 05$
30	29．978，29＇837	68,39	104.0	33.0	W N	$1 \cdot 30$	
31	$29 \cdot 580,29 \cdot 420$	59） 48	74.0	$42 \cdot 5$	W N	52	
	${ }_{29}$	56.88	92.74	390	Total Force．	S．02	$2 \cdot 83$

The mean in all cases is taken from the sums of the three daily registers，and not from the maxi－ mum and minimum．
The direction of the wind is registered from currents moving at a height of 192 feet and the force month is a very ar＇sitrary obe，and the results can be considered only approximately correct．
The relations of the quantities of rain which fell under the different winds are registered each evening at sundown．
The 30 years＇standard tables are used for obtaining the difference from the average．

xvii.

Barometer mean, 29.759 in , being 0.001 in above the averago.
Temperature mean, 56.85°, being 249° above the average.
Solar intensity mean, 92.74°, being 4.38° below the ditto.
Dew point mean, 45.5°, being $0.9 t^{\circ}$ above the ditto.
Humidity of air mean, 'GS, being " 05 per cent. below the ditto.
Elastic force of vapour mean, 318 , being 005 per cent. above the ditto.
Total amount of rain, 2.83 in ., being 0.77 in . above the ditto.
Increase of spontaneous evaporation on rainfall, 243 in .
Mean amount of ozone, 420 , being $3 \cdot 67$ of chromatic scale below tho ditto.
Flectricity active all throngh the month, -36 positice, 22 negutive, and 4 nil, on tho 1st and 19 th.

Thunder and lightning on the 13th and 14th.
A fresh covering of snow on Mount Wellington on the 16th and $19 t h$.
FRANCIS ABBOTT.

Leafing, Flowering, and Fruiting of a fer Standarl Plants in the Royal Socicty's Gardens during the Month.
12th. - Carpinus Betulus commencing to break
2.nd.-Ailanthtes Glandulosa ditto.

26th.-Lime Trees ditto.
30th.-Black Mulberry ditto.
31st.-Elm seeds falling.

Results of ohservations made at New Norfolk during the month :
Barometer mean of three daily readings, corrected and reduced, $20 \cdot 763 \mathrm{in}$.
Thermometer mean of three daily readings, $54: 35$.
Dew point mean, position of three ditto, $44^{\circ} 41$.
Elastic force of vapour mean of three ditto, "286.
Humidity mean of three ditto, " 68 .
Terrestrial radiation. mean of minimum temperature, $37 \cdot 61$.
Solar intensity, mean of maximum temperature, $118 \cdot 61$.
Rainfall, $3 \cdot 20 \mathrm{in}$.
Evaporation, 5.25 in ., in excess of rainfall 2.05 in .
Clouds, mean of three daily observations, 5.70.
Ozone, mean of two daily observations, 733.
Electricity,-52 negative, 3 positive, 7 nil.
Windforce in lbs. per square foot, total of three daily observations, 68.4Slbs. Horizontal movement, 3065 miles,
W. E. SHOODRIDGE, Valleyfield.

Rainfall at Hill station 1550 feet aboro sea level, 3.01 in.

NOVEMBER， 1875.
 Private Observatory，Hobart Town．

	Bar． 37 feet abv．sea level corrected \＆ reduced．	Self－Registering Thermometers．			Wind．		
					Direction from three daily re－ gisters．		
1	$\overline{\operatorname{In}_{9} 428} \overline{\operatorname{In}}$	70 \％	110	41.5	S NW	2	
2	$29 \cdot 11129 \cdot 023$	6846	91.5	41.0	NW	3：38	0.01
32	29.14428 .967	6545	97.0	37.0	NSW	13.02	$0 \cdot 10$
42	29＇332 29＇202	6242	103.0	33.5	NW W	8.33	$0 \cdot 30$
5	29．380 29－303	7548	110.0	$44^{\circ} 0$	W NW	13.02	0.03
6	$29 \cdot 16629 \cdot 050$	7255	$100 \cdot 0$	51.0	NW S	11.46	$0 \cdot 10$
7	$29.627-29.585$	6545	98.5	$40 \cdot 5$	W SW	5.72	0.01
8	$29.615 \quad 29.538$	6549	98.0	43.0	NW SW	18.23	0.03
9	29．743 29＇375	¢1 45	78.5	$40 \cdot$	W N	－26	0.07
10	$29 \cdot 512$ 29＇435	6347	105.0	40.5	NW SW	$6 \cdot 25$	$0 \cdot 25$
11	29－846 29－829	6642	$100 \cdot$	39.0	NW	－26	0.01
12	29－721 29．537	8453	110.5	$42^{\circ} 0$	NW	$5 \cdot 99$	0.01
13	29.76829 .532	8059	$102 \cdot 0$	47.0	NW W	10.01	
14	$29^{776} 29 \cdot 730$	7248	107.0	43.0	NW SW	3.64	0.01
15	29．697 29．625	7252	117.0	46.5	NW SW	$3 \cdot 32$	
16	29.593 .29 .517	6644	$100 \cdot 5$	40.0	WN W	$7 \cdot 94$	0.06
17	$29 \cdot 677$ 29．641	5945	78.0	$40^{\circ} 0$	W S	2.60	0.03
18	29.54129 .470	6646	106.0	43.0	NW SW	1.30	0.03
19	2972229600	6543	101.0	38.5	NW S	1.56	
20	29．693 29．665	59.42	74.0	38.0	NW SE	－26	0.40
21	29．657 $29 \cdot 561$	5748	65.5	40.0	S	$8 \cdot 17$	0.04
22	29.891 29．818	6647	109.0	$44^{\circ} 0$	SE	78	0.02
23	$29.667 \quad 29.600$	6647	105.0	$43 \cdot 5$	W NW	1.04	0.07
24	29．688 29－364	6147	87.5	$43^{\circ} 0$	NW SE	0	$0 \cdot 10$
25	29．625 29．605	6947	106.0	$40^{\circ} 0$	SW NW	3.64	
26	29－849 29 794	7151	110.0	$40^{\circ} 0$	SW NE	1.04	
27	29－909 29－694	7945	$113 \cdot 5$	$42^{\circ} 5$	NW SE	1.04	
28	$29 \cdot 551-29 \cdot 434^{\prime}$	78157	$97^{\circ} 0$	47.0	NW NES	－ 52	
29	$29.630 \cdot 29 * 488$	79.45	116.5	$42 \cdot 5$	NE SW	$5 \cdot 21$	
30	29＊613）29＊509	7446	110.0	42.0	NW	$3 \cdot 12$	$0 \cdot 16$
	Ionthly mean	60.50	100.45	178	Total Force	144.99	$2 \cdot 28$

The mean in all cases is taken from the sums of the three daily registers，and not from the maxi－
mum and minimum．
The direction of the wind is registered from currents moving at a height of 192 feet and the force
according to Lind＇s Wind Guage．The supposition，however，of a uniform velocity during the month is a very arbitrary one，and the results can be considered only approximately correct．

The relations of the quantities of rain which fell under the different winds are registered each evening at sundown．

Barometer mean， $29^{\circ} 548 \mathrm{in}$ ．，being 0.417 亿in．below the average．
Temperature mean， $60^{\circ} 50^{\circ}$ ，being $2 \cdot 83^{\circ}$ above the average．
Solar intensity mean， $100^{\circ} 45^{\circ}$ ，being $1^{\circ} 46^{\circ}$ below the ditto．
Dew point mean， $46^{\circ} 80^{\circ}$ ，being $0^{\prime} 31^{\circ}$ above the ditto．
Humidity of air mean， 63 ，being 07 per cent．below ditto．
Elastic force of vapour mean， 333 ，being 007 per cent．above the ditto．
Total amount of rain， 2.23 in．，being 0.50 in ．below the ditto．
Increase of spontaneous evaporation on rainfall， $3.95 i n$ ．
Mean amount of ozone， $4 \cdot 17$ ，being 3.33 of chromatic scale，below ditto．
Electricity active all through the month，mostly positive，with strong and fluctuating winds．
A fresh covering of snow on Mount Wellington on the 4th and 19th．
FRANCIS ABBOTT．

[^14]Results of ()herwations made at Now Norfolk during the month :
Tarometer, mean of three daily olservations, corrected and reduced. $29 \div 58$ inches.

Thermometer, mean of three ditto, 56.00°.
Elastic force of vapour, mean of three ditto, ${ }^{-299}$.
Humidity, mean of three ditto, "66.
Dew point, mean position of three ditto, $45^{\circ} 21^{\circ}$.
Solar intensity, mean of max, temperature, $121^{\circ} 60^{\circ}$.
'Terrestrial radiation, mean of min. temp., $38^{\circ} 36^{\circ}$.
Rainfall, $3=23$ inches.
Evaporation, 5.90 inches, in excess of rainfall, $2 \cdot 67 \mathrm{in}$.
Clouds, mean amount of three daily registers, 5.84.
Ozone, mean amount of two ditto, $7 \cdot 01$.
Winl, foree in lhs. per square font, ammunt of three ditto, 102 lbs. total.
Wind, herizontal movement, 3410 miles.
Electricity, 52 observations : 39 negative, 3 positive, 10 nil.
W. E. SHOOBRIDGE,

Valleyfield.
rainfall at Hill Station, 1550 feet above sea level, $4 \cdot 04$ inches.

DECEMBER, 1875.
Private Observatory, Hobart Towns.

Barometer mean, 29.737 in ., being 0.011 in . below the average.
Temperature mean, $63^{\circ} 85^{\circ}$, being $2 \cdot 66^{\circ}$ above the average.
Solar intensity mean, 101°, being 3.83° below the average.
Dew Point mean, $53^{\circ} 8^{\circ}$, being $4^{\circ} 89^{\circ}$ above the average.
Humidity of air mean, ${ }^{71}$, being 04 per cent. above the average:
Elastic force of vapour mean, 426 , being 073 above ditto.
Total amount of rain, 9 in ., being 7 '19in. above ditto.
Increase of rainfall on spontaneous evaporation, 4.09.
Mean amount of Ozone, 4.0 S , being 2.03 of chromatic scale below ditto.
The above abstract is taken from a series of records which have extended over the last 35 years without intermission. Results of these observations for 30 years, embodying all the elements usually recorded hitherto, have been previously published by the Royal Society of Tasmania in three separate parts. It has now, however, been determined to commence a new series of observations more in accordance with forms which have recently been adopted for Meteorological purposes.

FRANCIS ABBOTT

xxi.

 Gardens during the month.

20th, - Common Privet commencing to flower.
osth. -First bunch lied Currants ripe.
अuth.-Ditto Black elitto clitto.
31st.-Mtelia Azederach commencing to flower.
," - Doyenne d'Ete l'ear ripe.
", -Juncating Applo commencing to ripen.

Results of observations taken at New Norfolk during the month :-

Barometer, mean of three daily readings, corrected and reduced, $29{ }^{\prime} 713 \mathrm{in}$.
Thermometer, mean of 3 daily readings, 61.30°.
Solar intensity mean of maximum temperature, 123.54 ,
Terrestrial ladiation, mean of minimum temperature, $44^{\circ} 06$.
Dew point mean position of, 3 daily readings, $51 \cdot 50$.
Elastic force of vapour of ditto, 379.
Humidity of ditto, ${ }^{-\%} 0$.
Rainfall, 5.91 inches, in excess of evaporation, 61 in .
Evaporation, 5*30in.
Cloud, mean amount of throe daily registers, 6.0 S .
ezone, two ditto, $6=38$.
Wind, total force in lbs. per square foot, $84^{\prime} 47 \mathrm{Ibs}$.
Ditto, horizontal movement, $2, \mathrm{~S} 83$ miles.
Electricity, 47 observations, 26 negative, 11 positive, 10 nil.
W. E. SHOOBRIDGE,

Valleyfield.
Painfall at Hill Station, 1,550ft, above sea level, 10'12in.
MONTHLY MEANS OF OBSERVATIONS TAKEN AT NEV NORFOLK FOR 18\%5. Longitude, $147^{\circ} 4^{\prime} 45^{\prime \prime}$ E.

¢				$?$
ชٌ				
δ			$\stackrel{c}{6}$	管
운은	: ะиวи osumunds	 	¢	\%
	uo stiup fo $\circ \mathrm{V}$			$\left\lvert\, \begin{aligned} & \text { \# } \\ & \text { 岂1 }\end{aligned}\right.$
-				

REPORT

OF THE

ROYAL SOCIETY

TASMANIA,

FOR THE YEAR
I875.

TASMANIA:

RRISTED AT THE " MERCURY" STEAM PRESS OFFICE, HOBART TOWN.
1876.

Əコatroir.
her majesty the queen.

ZJresident.
HIS EXCELLENCY FREDERICK ALOYSIUS WELD, ESQ., C.M.G.

Fire= \mathfrak{W} Mrsiuchts.
Ven. ARCHDEACON DAVIES, B.A. J. W. AGNEW, Esq., M.D.
SIm. R. Officer, Knt., M.h.a.
fetors of Council.

Gưitors of Ginnual $\mathfrak{M c c o u n t s . ~}$
H. COOK, Esq.

John macfarlane, Esq.

Suitors of fetomitg Accounts.
M. ALLPORT, Esq.
F. ABBOTT, Esq.

Curator of the ffluseunt.
Mr. T. ROBLIN.

Superintendent of Examens.
Mr. F. ABBOTT, Jun.
Members who retire next in rotation.

＊It mbers who have enntributed papers which have been published in tho Society＇s＇Transactions．

W．H．ARCHER，Esq．，Melbourne，Victoria．
JOHN JOSEPH BENNETT，Esq．，F．R．S．，British Muscum， London．
REV．W．B．CLARKE，M．A．，F．G．S．，\＆c．，Sydney．
JOHN GOULD，Esq．，F．R．S．，London．
JOHA D．ALON MOOKER，Esq．，M．D．，R．N．，F．R．S．，dic．， London．
REV．R．L．KING，B．A．，Sydney．
＊B．MRON F．VON JÜELLER，C．M．G．，M．D．，F．R．S．，F．L．S．， \＆c．，Government Botanist，Melbourne，Victoria．
JOIIN PEET，Esq．，Professor Girant＇s College，Rombay．
W．WIISON GALEDERS，Esq．，F．R．S．，\＆c．，London．
ALFRED R．C．SELIVYN，Esq．，F．G．S．
IEEV．CHARLES PLEYDELL N．WILTON，M．A．，Newcastle， New South Wrales．
ID．J WHITE，Esif．，F．L．S．，\＆c．，British Museum，London．
C．T（MLINSON，Esq．，F．R．S．，F．C．S．，dc．，Highgate，near London．
＊i．BENスETT，Esq．，ML．D．，F．7．S．，Sydney，New South Wales． ＊G．KREFFT，Esq．，F．L．S．，C．M．Z．S．，\＆c．，\＆c．，Sydney．
PROEESSOR G．NEUMAYER，Munich．
＊LEV．JULLAN E．T．WOODN，F．L．S．，F．G．S．F．R．G．S．，dic．
DIR．W．O．SONDER，Foreign Hon．Sec．Socicty of Naturalists， Hamburg．
REV，J．J．BLEASDALE，D．D．，T．G．S．，Melbourne．
＊LIELT．W．V．LEGGE，R．A．，F．Z．S．，M．R．A．S．，CeyIon．
CAPTAIN O＇REILLY，Brisbane，Queensland．
R．BROT GiIf ぶMTH，Esq．，Secretary for Mines，Melbourne．
PROFESi（）R JOHA AGARDH，M．D．，University of Lund， Sweden．
DR．JCLICS HAAST，R．R．S．，Director of Musenm，Christ－ church，New Zealand．
ARCHIB． A D LITELSIDGE，Esq．，F．G．S．，Professor of Geology and Mineralogy in the Sydney University．
PLOFEかか（）R W．HARKNESS，U．S．N．，United States Naval Observatory，Washington．
HENRY HAYLIN HAYTER，Government Statist，Melbourne．
＊FREDEIICK M．BAILEV，Esi．，Brisbane，Queensland．
A．THOZET，Esq．，Botanist，Rockhanıton，Queensland．
COMTE INF CASTELALE，Consul－General for France， Melbourne．

* Fellows who have contributed papers which have been published in the Society's Transactions. \uparrow Denotes Life Membership.
*Abbott, Francis, F.R.A.S., F.R.M.S. ... *Abbott, E., jun.
Adams, G. P.
*Agnew, J. W., M̈.D., V. $\ddot{\mathbf{P}}$.
Allpor, Joph
Allport, Joseph
*十Allport, Morton, V.P., F.L.S., F.Z.S., Corresponding Member of the Anthropological Institute of Great Britain, Life Member of the Entomological and Malacological Societies, and Foreign Member of the Royal Linnean and Royal Botanic Societies of Belgium
Aikenhead, Hon. J., M.L.C. Launceston Adams, R. P., Solicitor-General Hobart Town Aubin, Mrs. F.

Bilton, H .
†Barry, Sir R.
*Barnard, James
Butler, Francis
Butler, J.
*Bromby, Right Rev. C. H., D.D., Lord Bishop of Tasmania
Bright, R.: S., M.R.C.S., Eng.... ,
Butler, Henry, F.R.C.S., Eng. ",
Buckland, H. J. ",
Browne, Justin McC.
Baynton, W. E. Kingston
Briant, G. W. Hobart Town
Barclay, C. J.
Bedford, W....
Belstead, C.
Browne, N. J.
Bidencope, J.
Anstey" Barton
Hobart Town
\{ Meadow Banks, Glenora
Hobart Town
Butler, E. H.
Broughton, Jas. New Town
Chapman, Hon. T. D., M.L.C.... New Town
Cook, Henry...
Clarke, J. M.
Creswell, C. F.
Cotton, Francis
Crawford, Lieut.-Colonel
Crosby, W.

Hobart Town
"
Swanport
Hamilton-on-Forth
Hobart Town

Minutes of the Annual General Meeting of the Royal Society of Tasmania, held at the Museum, Macquarie-strect, at half-past 7 o'clock p.m., on the 28th January, 1876, Morton Allport, Esq., V.P., in the chair.

The Cifairian laving read the advertisement by which the meeting had been convened, called upon the Secretary to read the Report.

The Report for 1875 was then read.
It was moved by Mr. Rule, scconded by Dr. Lewis, and carried :-" That the Report be adopted, and printed for circulation amongst the Fellows."

The Secretary having reported that the retiring Members of Council were the Right Rev. Bishop Bromby, the Ven. Archdeacon Davies, Dr. Agnew, and Mr. M. Allport, it was resolved on the motion of Dr. Perkins, scconded by Mr. Napier, that they should be re-elected.

It was proposed by Dr. Agnew and seconded by Mr. Barinard, that Mr. Barclay be elected Treasurer of the Society, in the room of Mr. Dunn, who had left the colony. Carried.

Messis. II. Cook and John Macfarlane were unanimously re-elected as Auditors of Annual Accounts, and a vote of thanks was accorded to them for their services during the past year.

Comte de Castlenau, Consul-General for France at Melbourne, was elected a Corresponding Member of the Society.

The following gentlemen were ballotted for and elected Fellows of the Society:-Messrs. Charles Elliston, W. S. Hammond, Hopton Scott, and Captain Audley Coote.

TIIANKS.

Mr. Wenster proposed that the thanks of the Society be aecordel to Dr. Agnew, Hon. Secretary, and Mr. Roblin, Curator, for the valuable services they had rendered to the Society.

Mr. Burnard seconded the motion, and had great pleasure in testifying to the efficient and untiring manner in which those gentlemen had discharged their duties.

The Cimaman put the motion, which was carried unanimously.

Dr. Agnew returned thanks on behalf of himself and Mr. Roblin. He briefly reviewed the work of the Society during the past year, and, in alluding to the value of the contributions, remarked that the year on which they were entering would perhaps be equally successful. Since last General Meeting fourteen Fellows and two Corresponding Members had been admitted, a very large number for our small community. (Applause.)

The Meeting then terminated.

REPORT.

The session of 1875 opened on the 9th March with a paper by the Rev. J. E. Tenison Woods, F.L.S., F.G.S., F.R.G.S., etc., "On some Tertiary Fossils from Table Cape.

The following papers were brought forward at the various subsequent meetings :- "On some new species of Tasmanian Marine Shells," by the Rev. J. E. Tenison Woods, F.G.S., etc.; "On the Fossil Genus Fenestella," by the same ; "On the Frilled lizard (Chlumydosuurus Fingii) of Queensland," by Dr. G. Bennett, F.Z.S., F.L.S.; "On the beautiful Sponge from the Philippine Islands known as Venus' Hlowerbasket (Euplectella aspergillum)," by the same. "Further notes on the Salmon Experiment," by M. Allport, F.L.S., F.Z.S. ; "On the Freshwater Shells of Tasmania," by the Rev. J. E. Tenison Woods, F.Z.S., etc. ; "Account of a Visit to Port Davey," by the Hon. J. R. Scott, M.L.C. "On the Vital Statistics of Tasmania," by E. C. Nowell, Esq., Government Statistician. "On the Queensland Grasses," by F. M. Bailey, Esq., Corresponding Member of the Society. "On some new and hitherto underscribed shells of Tasmania," by the Rev. J. E. Tenison Woods, F.G.S., etc. "A census of the plants of Tasmania," by Baron F. von Muellor, C.M.G., M.D., F.R.S., etc.

The names of the authors of the above papers are sufficient guarantee for their value. Most of the papers have already been published, others will appear immediately, and it may safely be said that at no former period of the Society have papers of higher value and interest ever appeared in our proceedings. The special thanks of the Society are due to the Rev. J. E. Tenison Woods
for the rast trouble he has taken in describing and classifying various collections of our shells; and as this description could not have been well accomplished without the invaluable assistance of Mr. Legrand, (see Mr. Woods' remarks at the November mecting) our cordial thanks are justly due to that gentleman also.

Our old and highly esteemed correspondent, the Baron Ferd. von Mueller has laid the Socicty under the deepest obligation by his learned and claborate " Census of the Plants of Tasmania," a work which will be invaluable for all time as a standard of reference. The best thanks of the Society are also due to Dr. G. Bennett, of Sydney, for his valuable contributions, both to our publications and Museum, and we are greatly indebted to Mr. F. M. Bailey, of Qucensland, for his paper on the grasses of that colony, and for his presentation (noticed elsewhere) to the Museum.

In addition to the papers above referred to communications on the following subjects have been read and brought under discussion during the session, viz. "On the occurrence of the 'Reed Warbler,' (Calamoherpe Australis) in Tasmania," from E. D. Swan, Esq. "On the desirability of steps being taken to prevent the destruction of the Blue Gum (Eucalyptus globulus) in the Colony," from A. K. Chapman, Esq. "Un the improvement of the Domain," from J. Sayce, Esq.; and on the same subject, from the Superintendent of the Botanic Gardens. "On the locality whence the Tasmanian Λ borigines obtained the stone from which their cutting implements were formed," from J. Scott, Esq., M.H.A. ; etc., etc.

The monthly meetings have been very well attended, and the chair has on several occasions been occupied by His Excellency, the President.

As will be noticed in the printed list, donations of books to the library have been numerous. Among other donors may be mentioned Sir Robert Officer, the Rev. J. E. Tenison Woods, the Secretary of State for India, the Malacological and Entrmological Societies of Belgium, the Department of Agriculture, United States; Dr. G. Bennett, of Sydney; the Superintendent of the Geological Survey of India, the Trustees of the British Muscum, the Royal Academy of Sciences, Munich ; Baron F. von Mueller, the Royal University of Norway; His Highness the Maharajah of Travancore, the Director lieteorological Office,Calcutta ; the Director Meteorological Office, Canada ; Hon. J. Whyte, Esq., M.L.C. ; Dr. J. Hector, of New Zealand ; Captain F. W. Hutton, etc., etc.

Mr. F. Abbott and Mr. W. E. Shoobridge have carried on the meteorological observations with their usual zeal and accuracy, and the superintendents of the various lighthouses have forwarded their returns as heretofore. The Hobart Town table for December completes a series of observations extending over five years, and when this is added to the published abstract for 30 years we shall have an uninterrupted record extending over 35 years. Certain changes in the meteorological observations are now being made in order to assimilate them more closely to those of Europe, America, etc. Forms for these have been executed at the Government Printing Office.

As usual our thanks for the conveyance of parcels, etc., free of cost, are due to the Tasmanian Steam Navigation Company, and to several of our merchants. Of the latter Messrs. W. Crosby and Co., Macfarlane Bros., and Belbin and Dowdell have particularly favoured us during the past year.

Thanks are also due to Messrs. Walch and Sons, for the gratuitous distribution of the Society's publications to members residing in the country.

COUNCIL.

No racancy has occurred during the year. The list of retiring members has been posted in the library for the last three days, in accordance with No. 32 of the amended rules of the Society.

FINANCE.

The income from all sources was as follows :Government Grant-in-aid of Museum, £200; ditto, of Gardens, £ 100 ; subscriptions, £ 153 ; from Marine Board, £20; sale of plants, etc., at Gardens, £1116s. ; this with £30 12s. in the hands of the Superintendent of the Gardens for payment of wages and $£ 20$ arrears of subscriptions will give a total of £93t 18s.

The expenditure as per balance shect was $£ 932$ 2 s .10 d ., leaving a balance to credit of $£ 215 \mathrm{~s} .2 \mathrm{~d}$.

We greatly regret to say that although the usual notices have been forwarded, some members have not yet paid their subscriptions for the past year, and several are even in arrear for former years.

GARDENS.

In last year's report it was stated that in all probability the new entrance would be ready for opening in a few months. This expectation has not yet been realised, as up to the present time our efforts to procure suitable gates have been unsuccessful. This is much to be regretted as it is gencrally felt that the present entrance is exceedingly inconvenient, and at the same time out of character with the place. It is to be hoped that the completion of this public entrance will not be much longer delayed.

As usual many new plants and seeds have been introduced. From Mons. J. Linden, of Ghent, Belgium, was received a fine collection of coolhouse orchids and palms, which arrived in good condition. Valuable donations of plants have also been received from the Botanic Gardens, Adelaide, Melbourne, and New Zealand, and from nurserymen in the neighbouring colonies. From the Chamber of Agriculture, Washington, a fine collection of Conifers and other forest trees was received. Advices have also been had from Mons. J. Verschaffelt, of Ghent, Belgium, of the dispatch of a very valuable case of plants, consisting of a selection of what are known as pictorial trees, and 50 varieties of the best Rhododendrons extant.

The number of visitors to the Gardens during 1875 is estimated at 38,837 .

MUSEUM.

Many objects of interest have been acquired during the year. Deserving special mention is the collection of gigantic Fossil Marsupials from Darling Downs, Queensland, the gift of Dr. G. Bennett, of Sydney. To the same donor we are indebted for the two specimens of the Euplectella, which have attracted so much attention. Mr. W. Legrand, with great liberality, presented type specimens of the new Marine and Freshwater Shells described by the Rev. J. E. Tenison Woods.

Hitherto we have been unable to make any satisfactory display of our shells, but a number of well-arranged show cases are now being constructed, which will enable the entire collection to be properly arranged and exhibited.

The Rev. W. W. Spicer has rendered most valuable service by naming, arranging, and mounting the various collections of dried plants
in the Museum. The European and Tasmanian portions of the Herbarium have already been completed, and Mr. Spicer purposes to proceed with the arrangement of the remainder as opportunities offer.

It gives us great pleasure again to acknowledge our obligations to Mrs. C. Meredith, who has not only executed for us, in her usual artistic manner, several original drawings, but afterwards very kindly undertook the trouble of transferring them to stone.

The number of visitors to the Museum during the year was 15,015 .
STATEMENT OF FUNDS OF THE ROYAL SOCIETY OF TASMANTA for the Year 18\%\%.

	S.	1.
	16	0
	6	1
0	16	s

Jan. 19th. EXPENDITURE.
Balance overdrawn at Commercial Bank, as per state-
mend for 1874 Interest on overdrawn account, June $30{ }^{\circ}$ th $£ 1{ }^{\circ} 3$ s. 7 ai. $^{\circ}$, $\begin{array}{rlllll}\text { 1) ec. Slit £1 Us. Gil. } & \cdots & \cdots & \cdots & \cdots & . \\ \text { Stamped ('heque Books } & \cdots & & \end{array}$ Stamped (cheque Books
Loyal Socretr. - Meter Printing and Advertising
Postal Instruments Printing and Advertising
Postage, Parcels, dee.
Collector's Commission
 logical Tables Library Books, Stationery, \&c.
Total Royal Society
Museum. - Salary of Curator
Me. Wages of Attendant. . Insurance $\quad . \quad$.. $\quad .$.
Purchase and Preparation of Specimens
Water Rate
$\begin{array}{ll}\text { Fuel and Light } \\ \text { Paper for Herbarium } & \text {. } \\ \text { Sundries and Petty Cash }\end{array}$
Sundries and Petty Cash
Camphor, Spirits of Wine, sc.
Freight and Carriage of Specimens
Fittings, Repairs, dc. Botanic Gardens-Salary of Superintendent

$::$
: : :
: : :
$:: ~:$
: :
:
 -

	\ldots		$£ 47$	10	10
30	12	0			
20	0	0			

Examined and found correct \{IMENRY COOK $\{$ JOHN MACEARLANE $\}$ Auditors.
Annual Subscriptions from 97 Members .. .
Arrears of ditto..
Amount received from Marine Board for clerical assist-
ance in completing Meteorological Tables from
Lighthouses..
Total Royal Society
Museum-Grant-in-aid from Treasury
Botanic Gardens-Crant-in-aid from Treasury .
," Proceeds of sale of Plants, Fruit, \&c.
Jan. 19tl, 1876
Balance overdrawn at Commercial Bank..
Note. - Dr.-To overdrawn Balance at Bank
 Subscriptions due
$\begin{array}{rrr}511 & 6 & 0 \\ 47 & 16 & 10\end{array}$

Camphor, Spirits of Wine, \&ic. \quad.
pair of Buildings, Timber, de.
\square
-

30	12
20	0

:

\longrightarrow

31st January, 1876.

BOOKS PURCIIASED \& PIEESENTED DURING 187̃.

[Prescntations marlied thus *]
Arts, Journal of Society of, current numbers.
Agricultural Gazette, The, ditto.
Athenrum, The, ditto.
*-Acclimatisation society of France, Extract from Bulletin of, 1872-3.

* Aborigines, Tasmanian, On the osteology and peculiarities of. By Dr. J. Barnard Davis, F.R.S. From the author.
*Animal Kingtom, Thblus of the Aflinities of the. By Prof. Reay Greene.
*Botanic Garten, Imperial of St. Petersburg, Publications of, Tome II. From the Director.

British Association, Report of, 1873.
Conchologia Iconica, Nos. 318 to 321.
*Colonial Institute, Boyal, Proceedings of, 1873-4. List of Fullows, and copy of Regulations. From the Institute.
*Catalogues, Book, sundry. From Quaritch, London.
*Colonies, The, current numbers. From the Editor.
*Cobden Club, Procedings of the, 1874 (Bastiat on Political Economy). From the Club.
*Catalocues, British Museum ; Birds, Vol. 1, and Hand List of Seals. From the Trustees.
*Census of New Zealand, 1874. From N.Z. Government.
*Dianond Field, The Bingera, pamphlet on, by Prof. Liversidge, Sydney. From the Author.
*Engineers and Shipbuilders in Scotland, Institution of, Proceedings, Vol. 18, 1874-5. From the Institution.
*Euplectella Sponge, On the. By Dr. G. Bennett, F.L.S., C.M.Z.S., \&c., Sydney. From the Author.
*Flora Australiensis, Bentham, 6 Vols. From Sir Robert Officer. Florist and Pomologist, The, current numbers.
*Flurule des environs de Ham-sui-less. By F. Crepin. From the Author.
Feathers, Stray (Indian Ornithology) Tol. 2, part 6 ; Vol. 3 parts 1 to 4.
*Ferns, Queensland, Handhook of. By F. M. Bailey. From Rev. J. E. Tenison Woods.
*Flora of British India, The, parts 1, 2, and 3. By J. D. Hooker, C.B. From the Right Hon. the Secretary of State for India.

* _- of Queensland, Parliamentary Paper on Herbarium of.

Fruit Manual, Hogg's.
*Fossil Mammals of Australia, On the. By Prof. Owen, F.R.S. From Dr. G. Bennett, F.Z.S., Sydney.
*Fenestella, On the Fussil Genus. By liev. J. E. T. Woods, from the Author.
*Givide to Exhibition Rooms, British MIuseum. From the Trustees.
G'ardeners' Chronicle, current numbers.
*Geolury of Queensland, Notes on. By R. Daintree, F.G.S. From Rev. J. E. 'I'. Woods.
*- of Otagr, New Zealand. By F. W. Hutton, F.G.S., C.M.Z.S., and G. H. F. Ulrich, F.G.S. From Captain F. W. Hutton, Provincial Geologist.

Geology, Principles of. By Sir Chas. Lyell. New Edition.
*Geological Survey of Victoria, Progress Report of, No. 2. From R. Brough Smyth, Esq.

* _ , Prodromus of Palæontology of Victoria, Decades 1, 2. By Prof. McCoy. From Government of Victoria.
of India, publications of. From the Government of India.
- Magarine, Nos. 131 to 136.
*Geomys and Thomomys, the Genera of. By Dr. Elliott Coues, United States Army. From the Anthor.
*Grasses, On the Queensland. By F. M Bailey. From the Author.
*Hortus Kewensis, 2nd Edition, 1814 (Aiton). From the Rev. J. E. Tenison Woods.
*Historical and Archooological Association of Ireland, Royal, Annual Vols, of, for 1872-3. Journal of, Vol. 2, Nos. 13 to 16 ; Vols. 3, Nos. 17 to 19. From Dr. Agnew.
*History of Colony of New Sonth Wales. By Governor Collins. 2nd Edition, 1804. From the Hon. Jas. Whyte, Esq., M.L.C.
*Iron and Coal Deposits, Wallarawang, New South Wales, on the. By Prof. Liversidge, Sydney University. From the Author.
Journal, Quarterly of Science. Current numbers.
——, American of Science, Sillimans, Vol. 18, Nos. 46 to 48.
*Journey, Overland from Lake George to Port Phillip, Humes. From the Rev. J. E. T. Woods.
*Journals of Legislative Council, Tasmania. From H. M. Government.
*Lizard, On the Frilled, of Queensland. By Dr. G. Bennett, F.Z.S. From the Author.

Magazine, Country Gentleman's. Current numbers.
*Minerals, On New, from New Caledonia. Nickel Minerals from ditto. Dendritic Spots on ditto. Meteorite, the Deniliquin or Baratta. Four Papers by Prof. Liversidge, Sydney University. From the Author.
*Mining for Gold and Coal, On. By J. Wood Beilby. From the Author.
*Magnetic Declination, Observations on, made at Trevandrum and Agustia Malley Observatories. From His Highness the Maharajah of Travancore.
*Meteorology. Quarterly Weather Report, part 4, 1871. Instructions for Meteorological Telegraphy, 1875. Report of Conference on Maritime Meteorology, 1874. Data for square 3 (Lat 0.10 N ., Long. $20 \cdot 30 \mathrm{~W}$.) Meteorological Congress at Vienna, 1874, Report of. Quarterly Weather Report, 1873, part 4, 1874, part 1. Instructions for use of Meteorological Instruments, 1875. Meteorological Committee, Royal Society, Report of part 1, 1874. From the Meteorological Office, Board of Trade, London.
*Meteorological Office, Calcutta, publications of ; viz., Meteorological Reports, Bengal, 1867-1874. Administration Reports, 1870-1875. Report of Midnapore and Burdwan Cyclone of October, 1874. From the Government of India.

* Meteroborical Ohservations, Canada, Report of, Supplement No. 4, 18.4. Results of Observations at Toronto, 1841-1874. From the Director.
* Observations, Melbourne, Results of. From R. J. L. Ellery, Esq. 'I'ables for 1875, Vol. 2, 1873. Monthly.
* ———Hobart Town, Monthly Tables, 1875. From F. Abbott, F.R.A.S., F.R.M.S.
* E. Shoobridge.
*__ for Mount Nelson, S. Bruni, Goose Island, Swan Island, Kent's Group and King's Island. From the Hobart Town Marine Board.
*-. Sydney. Tables for 1875, and Results of Observations for 1873. From H. C. Russell, B.A., F.R.A.S.
* Hector, F.R.S. Monthly tables from various stations, Jamuary to July, 1875. Ditto from Wellington, February to October, 1875.

Brisbane, Queensland. Monthly Tables, January to November, 1875. From E. McDonnell, Esq., Government Observer.
Natural History, Annals and Magazine of. Current numbers.
Nature. Current numbers.
*Norway, Royal University of. Publications for 1872, 1873, 1874.
*Orange, The, Introduction of, into New South Wales. By Dr. G. Bennett, F.L.S., F.Z.S. From the Author.
*Plartarum, Genera. Hooker and Bentham. Vol. 1, parts 1, 2, 3.

* - vascularium genera, 1836-1843. C. F. Miesner.
* Helvetiæ (Icones) 1813. J. C. Wyttenbach.
*Phytographia Australie Fragmenta, Vol. 8. By Baron F. von Mueller, C.M.G., M.D., F.R.S., \&c. From the Author.
*Plants, Papuan, Descriptive Notes on. By the same. From the Author.
* of Tasmania, Census of. By the same. From the Author. *Port Davey, Account of a visit to, in 1875. By the Hon. J. R. Scott, Esq., M.L.C. From the Author.
*Paleontologique, Fragments, pour servir a la flore du terrain houiller de Belgique. By François Crepin. From the Royal Museum of Natural History, Brussels.
*Plants, dic., used as food by the Aboriginals of Northern Queenslend. By A. Thozet. From the Rev. J. E. Tenison Woods.
*Reports of Mining Surveyors, Victoria, 1874-5. Ditto of Chief Inspector of Mines, 1874. From the Secretary for Mines, Victoria.
*Reports, Annual, Department of Agriculture, United States, 1871-2-3. From the Commissioner of Agriculture.
*Report, 9th Annual of Colonial Museum and Laboratory, Wellington, New Zealand. From Dr. J. Hector, F.R.S.
* - Meteorological, New Zealand, 1873. From the same.
* _ , of Conference of Government Statistics, held in Tasmania, 1875. From H. H. Hayter, Esq.
*Society, Royal, London. Proceedings Vol. 22, No. 155; Vol. 23, Nos. 156 to 163. From the Society.
* the Society.
* , Victoriæ, Transactions, Vol. 2. From Society.
* _ , Asiatic, Journal of, Vol. 7, part 1. From Society.
*___ Japan Branch, Vol. 3, part 1. From the Society.
* ceedings, Vol. 18, Nos. 2 to 5. From the Society.
*__. New South Wales, Address to, 1875, by Rev. W. B. Clarke. From the Author.
*—_- Malacological of Belgium. Proceedings of, 1873-4. From the Society.
* _-_ Entomological of Belgium. Transactions of, 1874. From the Society.
* __, Royal Astronomical, Memoirs of, Vol. 40, 1874-5. From the Society.
*__ Geological, Quarterly Journal of, Vol. 30, Nos. 118120. From the Society.
*-_, Zoological and Acclimatisation of Victoria, Proceedings of 1875. From the Suciety. Ditto from Baron F. von Mueller.
* parts 1, 2, 3, 1874.
* —_ Linnean, Journal of, Vol. 14, Nos. 75 to 77 (Botany). Vol. 12, No. 58, Zoology. List of, 1874. Additions to Library, 1874. Proceedings, 1874. From the Society.
* ___ Meteorological, Quarterly Journal of, Nos. 13, 14, 15. From the Society.
*Statistics of Victoria, 1874-5. Statistical Register, parts 1, 2, 3, 1875. From H. H. Hayter, Esq.
*—__ Tasmania, 1874. From E. C. Nowell, Esq.
* From the Author.
*Silk, On the Cultivation of, in New South Wales. By Dr. G. Bennett, F.Z.S. From the Author.
* ———On. By C. Brady, F.L.S. From the same.
*Sciences, Royal Academy of, Munich. Publications of, 1872. From the Academy.
* ___ Academy of Natural, Philadelphia. Proceedings of parts 1, 2, 3, 1874.
*Sedimentary Formations in New South Wales, Remarks on. By the Rev. W. B. Clarke, M.A., F.G.S. From the Author.
*Salmon experiment, Further Notes on. By M. Allport, F.L.S., F.Z.S., \&c., \&c. From the Author.
*Shells, Freshwater of Tasmania, on. By the Rev.J. E. Tenison Woods, F.G.S., F.L.S., F.R.G.S., \&c., \&c. From Author.
*-_, of Tasmania, On some undescribed Marine. By the same. From the Author.
*Technological Museum, Melbourne-Lectures delivered at, 1872. From the Rev. J. E. T. Woods.
*Victorian Year Book, 1874. By H. H. Hayter, Government Statist, Victoria. From the Author.

PRESENTATIONS TO MIUSEUM DURING 1874, WITH NAMES OF DONORS.

Allport, M., Espl.-A small Black Snake. A Diamond ditto. Allen, Mr., Port Cygnet. - An Opossmm (Phalamista fuliginosa). Anderson, Mr. C. - I young Sinake, probably Hoplocephehus supertus. Blackman, F. A., Esip. -2 Snakes, 1 Lizard, 1 Bat, 1 large Bectle, and a collection of Land and Freshwater Shells from Warro, Port Curtis, Queensland.
Brown, N. J., Esrı., M.I.A.-Specimens of Opalised Wood from Meadow Banks.
Buckland, Mrs.-A framed Portrait of the late Sir Henry Young.
Bidencope, Mr. J.-Samples of Felt in various stages of preparation for Hat-making.
Butler, R., Esq.-Young Snake (Hoplocephalus curtus).
Bennett, Dr. (x., F.L.S., Sydney. Specimen of the Didunculus strigirostris. Ditto of Frilled Lizard of Queensland (Chlamy(dusieru. limyii.) Two ditto of silicious skeletons of the Sponge from the Philippine Islands, known as Venus' Flower Basket (Euplectella aspergillum). A collection of bones of fossil Nammals from Gomie Creck, Darling Downs, Queensland, viz. Fussil Kunguroo, 16 Vertebre, 7 fragments of Pelvis, 8 of Tibia, 1 of Radius, 2 of Humerus, 1 of Scapula, 2 of Femur, 2 of Jaw, 2 Bones of Foot, 1 of Sternum, and 5 Ribs. Fossil Womlut; 1 Upper Jaw, 2 Vertebre, and 1 Radius. Diprotodon ; Portion of Skull, lower jaw, 9 Vertebrex, 10 Ribs, 1 Humerus, 4 Fragments of Pelvis, 1 do of Tusk. Nototherium; 1 Jaw.
Bailey, Mr. J., Oatlands-Cast Skin of Snake.
Bealey, Mr.-A Pelican (Pelccunts conspicillatus), from George's Bay.
Baynton, W. E., Esq., Kingston.-Stone Implements of Tasmanian Aborigines.
Browne, Justin McC., Esq.-A Sample of Virgin Olive Oil, made at Adclaide, S.A. A collection of Tasmanian Copper Tokens.
Banning, Mr., East Bay Neck.-A very large Egg of Domestic Fowl.
Brock, Mr., Campania-2 Specimens Fossil Wood.
Bailey, Mr. F. M., Brisbane.-A named Collection of Queensland Grasses.
Crawford, Col.-Sample of Tin smelted from Mt. Bischoff Ore.
Clarke, J. K., Esr.-Specimens of Quartz, with penetrating crystals of Rutile, from N.S. Wales.
Chapman, A. K., Esrl-Specimens of a species of Fluke taken from a large Diamond Snake.
Cialder, J. E., Esq.-A Collection of Bones of Native Animals, taken from a Cave, Glenorchy.
Chisholm, Mr. D., Forcett. - Casts of Roots, from Five Mile Beach.
Cotton, Mr. E. P., Swansea. - A Young Tippet Grebe (Podiceps anstralis).
Crawford, Mr. J.- A Simple of Flax grown at the Huon, and prepared by the donor.
Davies, Mr. F. J.-Simples of 'Tin, Antimony, Silver and Copper Ores, from Stanthorpe, Queensland.

Dry, Lady.-A young Cuckoo.
Dyer, Mr. B. R.-A Hooded Dottrell (Wyialites monacha). Specimen of the Frost Fish (Lepidotus caudutus), washed on shore at Battery Point.
Fergusson, Mr. J., Tinder Box Bay.-A Crab. 2 Fgg Cases of Ray.
Graves, J. W., Esq.-A Bivalve Shell (Crassatella castanea) from North Coast. Fossil Wood from Risdon. A Fossil (Pacchydomus sacculus) from limestone beds, Bridgewater. A Ring-tailed Opossum (Phalangista viverrina).
Groom, F., Esq., Harefield, St. Mary's.-An unusually large specimen of the sharp-nosed Eel.
Genge, Mr. Thos.-Nine Eggs of Common Pheasant, from an abandoned Nest at Sandy Bay.
Gard, Mr. E., Sorell.-A Ferret, killed in a bed-room of a Farmhouse, at Cherry Tree Opening, after attacking and severely biting a sleeping boy.
Harris, Mr. R. J., Sorell.-A large Black Snake (Ifoplocephalus curtus), killed on the Cambridge Road.
Hancock, Mr. D., O'Brien's Bridge.-A fine specimen of S'pirifer bisulcata, from slope of Mt. Wellington.
Hall, Mr. C. H., Mt. Bischoff.-Specimens of Tin Ore, Lode Tin, Galena, Antimony, \&c.
Hissey, Mr., Skin of "White Bird" (Chionis uccrophaga) from Kergulen's Land. Minute Shells from Stomach of a Mullet. 4. Specimens of young of Bandicoot (Perameles obesula) from the pouch.
Hull, Master H.-Egg of "Native Companion," or Australian Crane (Grus australasiamus).
Hooper, Mr.-A young Cuttle Fish, taken from the Stomach of a Fish.
Huston, Dr.-An Opossum Mouse (Dromicia gliviformis).
Hogg, Mr. C. E.-Specimen of the paper-like Bark of a species of Tea Tree, from Lake Hindmarsh, Victoria.
Jonah (Native Teacher), Samoa.-A Model of a Samoa Canoe. A large Sheet of Tapa Cloth.
Judd, Mr. H. - A peculiar Spider, found among Tree Ferns.
Japanese Commissioners, Melbourne Exhibition. Sections of Japanese Woods, named, and mounted in book form.
Kermode, W. A., Esq.-Two samples of Salt from Salt-pan Plains, Mona Vale.
King, Mr.-A Tiger Cat (Dasyarus maculatus).
Lloyd, Mr. H. G., New Norfolk.-Three pieces of Wood, and 3 of Fossil Wood from Queensland.
Luckman, Mr. E., Sorell.-An albino Opossum (Phalangista fuligimosa); 2 Brush Wattle Birds (Anthochera mellivora). 3 Species of Epthianura albifrons.
Lovett, W., Esq.-A Sooty Oyster-catcher (Hcematopus fuliginosus).
Lindsay, Mr. J. G., Launceston. - Specimen of Lewin's Water Rail (Rallus brachipus) prepared and mounted.
Morton, C. E., Esq.-A Species of a large species of "WalkingLeaf Insect" from Grafton, N.S. Wales.
May, Mr. W. L.-Curious Marine Incrustation on Shell of Pecten, from Frederick Henry Bay.

Macfarlane, J., Esq.- Two Specimens of the Stems of the "Glassrope Sponge," from Japan.
Maclanachan, Hon. J., Esq.- A Mountain Duck (Cusarcu tudomoides).
Miller, Mr. J.-A young Kangaroo, from the pouch.
Mezarer, Mr. J.- A Port Jackson Shark (Cestracion philippi).
Meredith, Mrs. C. - Water-colur Drawings of Fossil shells from Table Cape.
Prescott, Mr.- Two specimens of the "Gladius" or "Pen" of a species of squid (Loligo $s p$.
Peacock, Mr. G., Surell. A Nimkeen Kestrel (Timmunculus cenchroides). An albino variety of the common Pipit Lark (Authus austicalis).
Parsons, Mrs. - Albino variety of the Opossum. A White Hawk, A Beaver Rat. A Bandicoot. An Antechinus. A Petrel.
Parker, Mr., Lewisham. - A specimen of "Arching" of branch of Gum Tree.
Quinlan, Mr. - A Pouched Lamprey (Geotria allporti).
Radcliffe, Mr.-Specimen of Ifucus peronii from East Coast, Tasmania.
Reynolds, Capt.-Tail of Species of Ray.
Read, R. C., Esq.-Two species of Antechinus albipes.
Reibey, Rev. Thos.-Bronze Medal of Captain Cook, 1792, found on one of the Society Islands.
Simpson, J., Esq. - Simple of Stream Tin from Mt. Horror.
Spong, Mr. E. N.-A Collection of Sponges, Rock Specimens, Telegraph Cable, relics from Wrecks, etc., ete., from King's Island.
Swan, E. D., Estl.-Nest and Eggr of Reed Warbler. (C'alcomulicipe australis.)
Salier, F.-A large Crab from Howe's Island.
Stanfield, Master. A Black-cheeked Falcon (Falco melanogeny/s).
Scutt, J. R., Esq., Hon.-Sample of Coal from Pebbly Beach, Port Davey.
Stump, Mr.-A $\frac{x}{8}$ Dollar, Mauritius, 1820.
Swan, J., Esq. - Two specimens of Native Bread (Mylitta curstralis).
Thorne, Mr., Forcett. - A Tippet Grebe (Podireps australis).
Weld, F. A., Esq., C.M.G., His Excellency. 24 Named Specimens of West Australian Wuods. A Japanese Mirror. Two Ear-bones of Dugong. Two Lizard from W. Australia. A Collection of Nets and other Implements made by the Aborigines of W. Australia.
Woods, Rev. J. E. Tenison, F.G.S., F.R.G.S., etc. -3 Specimens of Gold from Devonian Rocks, Gympie, Queensland. A named collection of Queensland Ferns.
Wintle, Mr. S. H.-Iron Ores, Limestone and Coal, from River Don. Bismuth from Mt. Ramsay. Tin bearing wash dirt, porphyry, cassiterite on sandstone, etc., from Gicorge's Bay. Skin of an Echidna.
Weeding, Mr. C., Easterm Marshes.-2 Native Cats. 1 Tiger Cat. 6 Stone Implements of Tasmanian Aborigines. Specimen of Native Bread.
Walker, Dr. W.-A large and very rich Specimen of Copper Ore from N. S. Wales.

Wilson, Miss, Hampden Road.-Specimen of "Copper Moss" from Swansea, Wales. Water-color Drawing of Hobart Town in 1820.

Young, Master J. C.--Two Mats from Fiji. A Basket made by Fijian Chief. The First Copy of the earliest Newspaper struck off in Fiji. An Indian Hunting Knife. Shells from Great Barrier Reef.

PLANTS RECEIVED AT THE ROYAL SOCIETY'S GARDENS DURING 1875.

January 9 th. -From A. G. Webster, Esq.- 8 packets seeds.
January 14th.-From Lady Rolle, Bicton, England.-19 packets seeds.
January 14th.-From Ch. Huher, France.-23 packets seeds.
January 22 nd.-From the Botanic Gardens, Melbourne.-18 packets Indian seeds.
February 12th.-From the Department Agriculture, Washington, United States.--41 packets seeds.
March 2nd.-Front Wm. Bull, London.-12 Tuberous Begonias.
March 2nd.-Jules Cock and Sons, France.-25 packets seeds.
March 5th. -From North China Branch Royal Asiatic Society. Box bulbs.
March 9th.—Mr. A. Simpson.-4 Queensland Dendrobiums.
April 29th.-From Messrs. Macfarlane Bros. - 10 packets seeds, from China.
May 1st.-Rev. W. W. Spicer, Hobart Town.-40 packets seeds.
May 1st.-From Baron Ferd. von Mueller.- 2 packets seeds.
May 15th.-From Department of Agriculture, Washington.-40 packets seeds.
May 15th. -From Colonel Crawford. - 4 packets seeds.
May 21 st. -From Mr. E. B. Heyne, Adelaide. - 200 packets seeds.
May 20th. - From Mr. C. Hollinsdale. - 21 packets seeds.
May 31st.-From Mr. F. Johnston.-Seeds of 5 species Palms.
June 16th.-From His Excellency, F. A. Weld, Esq., C.M.G.15 packets Conifer seeds.
June 28th.-From Mr. G. Brunning, Melbourne.-Case containing 80 plants.
June 30th.-From Mr. A. Simpson.-Plants of Todea and Dicksonia.
June 30th.-From the Rev. W. W. Spicer.-Plants of Sedums.
July 30th.--From the Botanic Gardens, Christchurch, N.Z.-46 plants.
July 31st.-From Mr. J. Latham, Hobart Town.-Seeds of Anemones and Ranunculus.
Angust 4th. - From Capt. W. Willet.-74 packets seeds, imported.
Angust 6th. -From the Dobroyd Nursery, Sydney.- 32 plants.
August 20th. - From Mr. E. B. Heyne, Adelaide. - 8 packets seeds.
August 23rd.-From Messrs. Shepherd and Co., Sydney.-60 plants.
September 4th.-From Mr. Wm. Davis, Sandy Bay-80 packets seeds, from Fiji.

September Both.--From the Botanic Gardens, Christchureh, New Zealand. - 30 plants.
Octoher ! Ith.-From Muns. J. Linden, Ghent, Bolgium. 110 Orchids and Palms.
Oetoher 16ith. -From the Botanie Cardens, Adelaide. - 30 plants.
Oetober 1sth.-From Ch. Huber, France.-9 packets Primula, 4 Morus Allba.
Nowember 5th.-FFrom Mr. C. F. Creswell, Melbourne.-49 packets seeds.
November 10th. -From the Japranese Commissioners. - 12 packets seeds.
November 17 th.-From Mr. C. Hollinsdale.- 32 plants.
November 18th. - From Capt. A. Cuote.-A prolitic sprecies of liye, from Oregon.
Nowember 19th. - From the Butanic Gardens, Melloourne, 84 plants.
Nowember 30th. - From Mr. J. Latham, Hobart 'lown.-. 19 plimes.
December .-From the Royal Gardens, Kew.-Seeds of Cedrus Deodar.
December .-From -- Lidbetter, Esiq., India.-Seeds of Pinus Gerardiana.

LIS' OF PLANTS SENT FRONI the ROYAL SOCIETY'S GARDENS DURING THE YEAR 1875.

Jamary 2nd.-To Messrs. Hugh Low and Co., Nurserymen, Clapton, London-One Case containing 8 Tree Ferns.
February 13th.-To Mons. J. Linden, Ghent, Belgiun-19 Tree Ferns.
February 13th.-To the Royal Gardens, Kew, near London--One Case containing sods of Abrotanella Forsteri.
March 2nd. - To the Department Agriculture, Washington, United States- 12 packets seeds, 3 Tree Ferns.
May 1ith.-To Mons. J. Verschaffett, Ghent, Belgiman- 12 Tree Ferns.
May 31.-'To Mr. C. F. Creswell, Scedsman, Melbourne-One packet seeds.
May 31st.-To Mr. E. B. Heyne, Seedsman, Adelaide-One packet seeds.
May 31st.-To the Department Agriculture, Washington, United States America-One package seeds.
May 31st.-To the Royal Gardens, Kew, near London-One package seeds.
May 31st.-To Mr. Wm. Bull, New Plant Merchant, Loudon-One package seeds.
May 31st.-Tu the Acclimatisation Society, Queensland-Package seeds.
May 31st.-To the Dobroyd Nursery, Ashfield, near SydneyPackage seeds.
May 31st.-To Mr. C. Hollinsdale, Seedsman, Hobart TownPackage seeds.
May 31st.-To Mr. J. Latham, Seedsman, Hubart Town-Packaise seeds.

May 31st.-To Colonel Crawford-5 packets seeds.
June 28th.-To Mr. G. Brunning, Nurseryman, Melbourne-One case plants.
June 28th. - To the Royal Gardens, Kew-Telopea seeds.
June 28th. -To Mr. Wm. Bull, London-Telopea seeds.
July 6th.-To Jules Cock et Sueur, France - Package seeds.
July 6th.-To Messrs. Vilmorin and Andrieux, Paris-One package seeds.
July 6th.-To Mardy et Cie, France-Package seeds.
July 13th. -To the Botanic Gardens, Queensland-Box of plants.
July 27th.-To Messrs. Shepherd and Co., Nurserymen, SydneyBox seeds.
July 27th.-To the North China Branch Royal Asiatic SocietyPackage seeds.
August 9th. -Tu, the Botmnic Gardens, Christchurch, New Zealand -Case of plants.
August 9th.-To the Dobroyd Nursery, Sydney-Case of plants.
August 27th.-To the Botanic Gardens, Adelaide, South Australia -Case of plants.
October 7th. -To Dr. Webster, for the New Zealand GovernmentPackage seeds
October 31st.-Messrs. Vilmorin and Andrieux, Paris-Package seeds.
October 31st.-To F. Sandes and Co., London-Package seeds.
November 10th. -To the Japanese Commissioners-Package seeds.
November 16th.--To John Culyes, New York-Package Eucalyptus seeds
November 27th.-The Botanic Gardens, Adelaide-Case of plants. November 29th.--To Messrs. Vilmorin and Andrieux-Package seeds.

PLANTS SUPPLIED FOR PUBLIC PLACES DURING 1875.

June 1st.-Brickfields Establishment-60 plants.
June 3rd.-Memorial Church-30 Plants.
June 30th.-Hobart Town Cemetery-198 plants.
June 30th.-Government House-20 plants.
July 27th. - Hobart Cemetery-72 plants.
August 30th.-High School-39 plants.
F. ABBOTT, Jun., Superintendent.

LIST OF PLANTS INTRODUCED INTO THE ROYAL SOCIETY'S GARDENS DURING THE YEAR 1875.

Abutilon Santana
,, vexillarium varicgatum
Acer pseudo-platanus Canterburyana
Athionema cordifolia
Allamanda Hendersoni
Albizzia odoratissima
Aloe ciliaris
Alonsoa linifolia
Amaryllis robusta
Andromeda axillaris
Androsace Coronopifolia
Anguloa Clewesii macrantha
Anthurium leuconeurum magnificum
Aralia Guilfoylei
Artocarpus integrifolius
Asplenium Colensoi
," Hlabelliforme
, obtusatum minor
Aucuba longifolia mascula picta salicifolia viridis vera

Bambusa argentea stricta
Banera sessilifolia
Berberis Leschenaulti
Boltonia asteroides latigramia
Boronia crenulata
Borya nitida
Bougainvillea laterita
Brahea egregia
Bracteolaria racemosa
Brassia actinophylla
Butomus umbellatus
Buxus sempervirens argentea
Cacalia articulata scandens
Caladium Newmanni
Canthium lucidam
Cattleya amethystiglossa
,, bicolor
Crispa
intermedia
maxima
Mossiac

Cattleya Skinneri
Cerasus Mollis
Cephalanthus occidentalis
Cerexylon ferrugineum
Certodeira chontolensis
Chamoedorea amazonica elegantissima glaucifolia graminifolia Lindeniana
Cheiranthus scoparius
Cinnamomum verum
Cissus Lindeniana
Citrus decumana
Clematis afoliata
Clesyocalon australis
Clethra alnifolia
Cocos Bonnetti
Comosa
coronata
procopeana
Cordyline albicans
Hendersoni
Hookeri
limbata
metallica
Coronostylis grandiflora
Croton ovalifolium
,, Wrightii
, volutum
Cryptomeria araucaroides
Cupressus funebris aureus
Cypripedium caudatum
, Hookeri
,, insignis Maulei
" superbum
,, venustum
Daubentonia grandiflora
Datisca superbissima
Dendrobium aggregatum formossum gigants macrophyllum
Parishi
Deutzia crenata variegata
Dianthus alpinus
Dieffenbachia gigantea
Doodia connexa
Doryanthes Palmeri
Dyxia rariflora

Eranthemum sanguinolentum
Erica vilmoreana brevifolia
grandiflora
minor
Es'culushippocastanum Stevensii
Eugenia jambosa
Euphorbia Jaquini
Euphoria Longana
Ficus aspera
,, Cooperi
Fittonia argyroneura
Francoa decora
Funkia Sieboldtii variegata
Garcanum Lindenianum
Gardenia Fortunii
Genetylis tulipifera
Geonoma Spixiana
Gesneria exoniensis ,, refulgens
Gongora alba purpurea
Grevillea alpina aurea
Griffinia hyacinthina
Gymnogramma Muelleri
Gymnostachya gigantea
Hakea eriantha
", gramatophylla
Hemiptera myrtifolia
Hespericordium lacteum
Hibiscus Cooperi
," Coxi
", grandiflorus
," liliflorus
Hippeastrum Hendersoni majestica " $"$ pearl ", startling ", vulcan
Hydrangea japonica Eugenie , Otaksa
Hypericum florabundum
Ilex aquifolium Armstrongii
Ilex nobilis
Iris acuta
,, setosa
Ixora coccinea
Juniperus rigida aurea
", Virginiana aurea
Knightia excelsa

Leelia anceps
," cinnabarina
", furfuracea
, superbiens
,, Perrini
Lagerstremia parviflora
Lambertia formosa
Leidenbergia rosea
Libonia Penrhosiensis
Ligustrum ovalifolium variegatum
Lobelia subnuda
Lychnis dioica
Mackaya bella
Magnolia fuscata , obovata
Malortica gracilis
Mangifera indica
Maranta Lindeni
" Porteana
,, regalis
Melaleuca nosophylla
Melia japonica
Metrosideros robusta
Miltonia Morelliana
,, spectabilis
Musa ensete
Muscari moschatum flavum
Myristica moschata
Myrsine chatamica
,, variabilis
Myrtus macroyhylla fl. pl.
Nauclea cordifolia
parviflora
Nephelium tomentosum
Litchi
Nephrodium hispidum
Nothospartium Carmichœeloides
Odontoglossum Bictonensis alba Cerventesii Citrosum Cristatum Ehrenbergii læve nebulosum
Oncidium aurosum altissimum
barbatum grandiflora
Crispum grandiflorum cuculatum flavidum.

Onicidium kramerianum
,, nubigenum ,, ornithorynchum
Ophiopogon jaburum
Pandanus veitchii
Paspalum elegans
Peperomia verschaffeltii
Phœenix farinifera
Phredronassa gloriosa
Phajus granditlorus
,, maculatus
,, Wallichi
Psycotria lomoceroides
P'icea amabilis
,, aurea variegata
, firma
Pinus Fremontiana
,, flexilis
, Hamiltoni
,, orientalis
" Pindrow
Piper Cubeba
," javanicum
", nigrum
Platanus occidentalis
Pleroma sarmentosa
Plumbago splendens
Polygonum silenioides
Polypodium pennigerum minor
Populus macrophylla
Prostanthera violacea
Psidium aromaticum
,, littorale
,, pomiferum
Pteris comans
,, hastata
,, pedata
,, serrulata cristata
Ptychosperma Alexandria
Punica alba plæno
Pyrethrum corymbosum
Pyrus aria
Quercus Lucumbiana
,, Lonomensis
Ranunculus fumarioe folius
Rhamnus alaternus variegatus
Rhus radicans
tomentosa
Rubus fruticosa flora pleeno
Sabal dealbata

Sabal Moccini
Salvia gigantea
Sanchezia nobilis variegata
Schomburgkia tibicinus
Scolopendrium vulgare
Setaria nubica
Sisyrinchium grandiflorum
Sobralia macrantha
Solanum capsi-castrum gigantem
Spirea syringefolia
Stanhopea Bucephalus
Stipa splendens
Syncarpia alvens
Syringa persica purpurea
Terrictia argyrodendron
Taxus baccata aurea variegata
Teucrium asiaticum
Botrys
Tricopilia coccinea
,, suavis
,, sanguinolenta
Thrinax elegans
,, maurite formis
Triconema grandiflora
Tilia platyphylla ,, pendula
Tylaphora barbata
Ulmus Montana variegata
Vanilla aromatica
Veronica Schmidti
,, speciosa vera
Vessicaria splendens
Wigandia chilensis
,, Vigieri
Zamia cylindrica
Zygopetalum Mackayi
RHODODENDRON.
Countess Haddington
Jesminæflorum
Veitchi

CAMELLIA.

Compt de Paris
Countesse Celini
Lapace
Jenny Lind
Moli Me Tanque

BEGONIA (Tuberous).

Anacreon
Corsair
Ensign
Gem
Lothair
Mazeppa
Seraph
Sir Hercules Robinson
Sedeni magnifica
Surprise
Tarquin

COLEUS.

Beauty of Adelaide
Empress
Golden Gem
Prince Bismarck
Sedan

> ROSE.

Abbe Bramerel
Alba rosea
Bessie Johnson
Baronne Louise Uxkull
Moirmont
Duke of Edinburgh
Edward Morren
General Drouet
Gloire des Mosseus
Lamarque
Mrs. Veitch
Madame Eugene Appert
,, Berarde
Mademoiselle M. Rady
,, Annie Wood
," Berthe Leveque
Madeline Nonin

Marquiss de Ligneris
Nardy Freres
Peach Blossom
Prince Leopold
Senateur Vaisse
,, Favre
Semiramis
Thorin

PELARGONIUM.

Aline Sisley
Countessa of Craven
Fair Emily
Humming Bird
Lavinia
Louisa Smith
Mrs. Rutler
Mrs. Turner
Perilla
Queen Victoria
White Clipper
ORANGES AND LEMOI
Citron, Bengal
Lemon, Heong Leong
Shaddock, Blood
Orange, Blood
Siletta
FIGS.
Bulls, No. 1
Castle Kennedy
Fique d'Or
Large Black Genoa
White Genoa
White Marseilles
Smyrna
F. ABBOTT, Jun.

PAPERS AND PROCEEDINGS

AND
REPORT

OF THE
ROYAL SOCIETY

UF
TASMANIA,
FOR
1876.

TASMANIA :
primted at the "aerclery" ste.m press office, hobart towis,
1877

PAPERS AND PROCEEDINGS

$$
\text { REPORT } \underset{\substack{\text { Ror mir } \\ \text { or }}}{\substack{\text { SOCIETY }}}
$$

TASMANIA,

$$
\text { I } 876
$$

TASMANIA :
1877.

Cuxata.

```
Page \(90 a\), line \(11,12,13,30\), omit second do., genera only are meant, not species.
Page 906 , line 12,25 , to \(28,35,52\)
Page \(90 c\), line 8, 12, 13, 35 to \(39,42,3 \ldots\),
Page \(90 d, 39,50,55\), to 57,60
Page 90e, 19, 37, 38, 42. " " "
Page \(90 d\), line 15 from bottom, after " ditto " insert "Tenisoni."
Page 90e, between 25 and 24 insert " Venus aphrodinoides."
Page \(90 f\), line 4 from top insert " \(c\) in col. 18."
    Between 6 and 7 insert "Micraster Etheridgei," and \(b\) in col. 1,
        line 12 insert " \(c\) " in cols. 1 and 22, line 14, insert " \(c\) " in col. 22.
Page 90b, line 33 from top for "octopticata" read " octoplicata."
```

The responsibility of the statements and opinions given in the following papers and discussions rests with the individual authors, the Society as a body merely places them on record.

©.ontents.

page.
Proceedings of the Society for March, 1
Pacific Heron (Ardea pacifica) shot in Tasmania 2
Ocean Soundings between Australia and New Zealand 2
Western Mountains, "Roaring" Sounds heard in neighbourhood of 3
High Temperature in some silver mines at Nevada, U.S. 4
Tasmanite, or Mersey Shale 4
Proceedings of the Society for April 6
Language of the Aborigines, On the 7
Botanic Gardens, Works suggested at 7
Fern-trees, etc., on Mount Wellington, Destruction of. 8
Proceedings of the Society for May 9
Athrotaxis from Middlesex Plains 10
Herbarium, Mr. Ronald Gunn's Presentation of 10
Seeds of Eucalypti, The Governor's Remarks on 10
Notes on Seed of Eucalyptus globulus. By F. Abbott 11
Inaugural Address, His Excellency the President's 15
Codlin Moth, The. By His Honor Mr. Justice Dobson 26
Nudibranchiata, A New Genus of. By the Rev. J. E. Tenison-Woods, F.G.S., \&c. 28
Phytograply of Tasmania, Contributions to. By Baron F. von Mueller, C.M.G., \&c. 29
Patellitae, On some Tasmanian. By the Rev. J. E. Tenison-Woods, E.G.S., \&c.... 43
Proceedings of the Society for June 59
Geological features of North Coast of Tasmania 60
Ferns, Destruction of, on Mount Wellington 61
Franklin Statue, Proposed inscription on pedestal of 61
Couch Grass, Stem of, penetrating bulbs 62
Proceedings of Society for July 63
Cyathea medullaris from Circular Head 63
Fossiliferous beds, Table Cape, reference to 64
Proceedings of the Society for August 65
Gault formation not found in Australia 66
Proceedings for September 68
Proceedings for October 70
Stone Inplement, Aboriginal 70
White-bellied Sea Eagle, living specimen of, presented 71
Books, Presentations of, from America 71
Aborigines of Tasmania, Language of. By J. E. Calder 72
Grilse, Capture of 72
Proceedings of the Society for November 73
Gales on Australian Coast in September 73
Coal Shaft at Spring Bay, Notes on. By T. Stephens, M.A., F.G.S. 74
75
Grilse, capture of, near Wharf, Hobart Town 75
Australian Geology, History of. By the Rev. J. E. Tenison-Woods, F.G.S., F.L.S., etc., etc. 76
Tertiary Marine Beds of Table Cape, Further Notes on. By R. M. Johnston. 79
Notes on the Fossils referred to in the foregoing paper. By the Rev. J. E. Tenison-Woods, F.G.S., F.L.S., etc, 91
Ampullaria, On a new species of. By the Rev. J. E. Tenison-Woods, F.G.S., F.L.S., etc. 117
Volcanoes of Hawaii, Reminiscences of a visit to. By His Excellency, F. A. Weld, Esq., C.m.g. 118
Tasmanian Marine Shells, On Some New. By the Rev. J. E. Tenison- Woods, F.G.S., etc., etc. 131
Helix, On a new reversed Tasmanian. By the Rev. J. E. Tenison- Woods, F.G.S., etc., etc. 160
Platypus, On the effects of Wounds inflicted by the spurs of. By the Rev. W. W. Spicer, M.A., F.R.M.S. 162
Shells,Synonomy of, and remarks on Tasmanian and other. By John Brazier, C.M.'Z.S., etc. 168
AppendixAnnual Reprort
Meteorological Tables
Page.

ROYAL SOCIETY, 1876.

MARCH, 1876.

The first erening meeting of the session was held on Tuesday, the 14th March, T. Stephens, Eisq., M.A., F.G.S., in the chair.

The Hon. Secretary (Dr. Agnew) brought under notice the following returns, viz. :-

1. Visitors to Museum during February, 1471.
2. Visitors to Gardens during February, 4591.
3. Plants and seels received at Butanic Gardens during February.
4. Time of leafing, flowering, and fruiting of a few standard plants in Botanic Gardens during February.
5. Books and periodicals received.
6. Presentations to Museum.

Metcorological Returns.-

1. Hobart Town, from F. Abbott, Esq.-Table for February.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. Port Arthur, from J. Coverdale, Esq., M.D.-Ditto for January and February.
4. Mount Nelson, from Marine Board-Ditto, ditto.
5. Sydner, from the Government Observer-Printed Tables for October and November, 1875.
The presentations to the Museum were as follows :-
6. From Dr. G. Bennett, F.L.L., F.Z.S., Sydney-Specimen of Ammonite from Western Australia. 2. Portions of Humerus, and two of lower jaw of Diprotodon from Darling Downs, Queensland.
7. From Dr. Coverdale, Port Arthur-A large hair ball, from the stomach of a calf six weeks old.
8. From Mr. Piguenit-Sample of the paper-like bark of a species of tea-tree.
9. From Mr. Lukin Boyes-A bivalvȩ shell (Spondylus), locality unknown.
10. From Mr. J. Baker-Two samples of tin ore from New South Wales.
11. From Mr. J. B. Mather-Popular repriuts of ten early Euglish Newspapers, viz., The English Mercurie, 23rd July, 1588 ; The Weekely Neues, 31st January, 1606 ; The Guzette, 5th September, 1658 ; The Newes, 6th July, 1665 ; The London Gazette, 10th September, 1666 ; The Times, 3rd October, 1798, 16th April, 1801, 7th November, 1805, 10th January, 1806, and 22ud June, 1815.
The Rev. W. W. Sheme remarked that the earliest of these, the English Marurie, had heen proved to be a forgery; the others, however, were genuine and of great interest.
12. From Mr. Ludbey, Brighton-Two specimens of Fossil Wood.
13. From Mr. Tasman Morrisby-A White Hawk (Leucospiza notce hollandia).
14. From J. C. Barclay, Esq.-Specimens of the Copper Coinage in circulation in Tasmania in 1875, at the period of the cessation of the copper currency (50 pieces). Specimens of the Bronze Coinage in circulation in Tasmania in 1875 at the time of the withdrawal of the copper coinage (28 pieces).
15. From the Hon. J. Maclanachan, Esq.-An Egyptian Goose (Chenalopex esyptiaca).
16. From the Rev. J. Ross-A large prepared specimen of the Monitor Lizard of Australia.
17. From Mr. Blyth, Honeywood - Two Black Snakes. (Hoplocephutus curtus.) A peculiar Insect from the bark of a stringy-bark tree.
18. From Mr. S. Baynton-Specimen of Silicified Wood, from Brown's River Beach.
19. From Mr. Brunt - Fossils from Travertine beds, Geilston Bay. Fossiliferous limestone from Bridgewater.
20. From Mr. Jeffrey-Fossiliferous limestone, from near New Norfolk.
21. From Mr. T. Williams-Specimen of the Pacific Heron (Ardea pacifica), shot at Lake Tiberias.
The Secretary observed that this speeimen was of interest, as it afforded the first known indication of the presence of the Ardea pacifica in Tasmania. As to its habitat, Gould in his description of the bird only states it is "a summer visitor to the whole of the Southern Coast of Australia."
22. From Mr. J. E. Risby-A large Crab found on beach at Pirate's Bay, Tasman's Peninsula.
23. From Captain Audley Coote - Specimens of the New Zealand Telegraph Cable, shewing shore-end, intermediate, and deep-sea portions, neatly mounted in plate glass case.
24. From Major Dumbleton-Two casts of Fossils from the Mersey.
25. From F. A. Blackman, Esq.-Samples of two qualities of sugar, from the plantation (Antigua) of A. H. Brown, Esq., Mary River, Queensland.
In reference to presentation No. 18, the following extract from a letter from Captain Nares of H.M.S. Challenger to the donor was read :-" On the Australian coast the incline from the 100 fathoms line, which was 17 miles from Sydney, into a depth of 2,100 fathoms at 57 miles distance, was about 1 in 20 , which is less abrupt than we had previously found to be the case further to the southward of Twofold Bay, where it was about 1 in 6 . The bottom, which consists of soft ooze, then slopes down to a depth of 2,600 fathoms at a distance of 240 miles from the coast of Australia, the temperature being 33°, which conditions continue for 140 miles. From this extreme depth the bottom slopes with a gentle incline, with soft ooze, for 400 miles, until, at a position 780 miles from Syduey, and 335 miles from the entrance to Cook's Straits, we obtained soundings in 1,100 fathoms. Between this and New Zealand only shallow soundings below 400 fathoms, with hard bottom, were obtained. The bottom on this part was extremely hard, so much so that we obtained little or no samples in the sounding rods, but as both the trawl and dredge dragged freely along, without catching in any irregularities, it must have been of a smooth nature."
In reply to a remark as to the very low temperature at the deep soundings, mentioned by Captain Nares, the Secretary observed it certainly at first sight seemed extraordinary that about the latitude of Sydney, the deep water of the Pacific should have a temperature only one degree above the freezing point. This, however, was quite in accordance with Dr. Carpenter's theory of vertical oceanic circulation. Stated briefly this theory was to the effect that the polar cold primarily, and the equatorial heat secondarily establish a vertical circulation by which the icy polar water flows along the bottom towards the equator, whilst the warm and lighter surface water of the tropical seas flows in the opposite direction. This theory therefore pointed to an almost polar cold at the greatest ocean depths irrespective of latitude.

Mr. Stephens drew attention to a specimen of fossil wood (presenta-
tion No. 13), received from Mr. Baynton, cxhibiting in section a good example of the eoncentrically rihboned crystal locally known as carnelian, and throwing some light upon its origin. Other evidence, which was mentioned, alsi) tendeel to connect these erystallised forms with silicified wod so ahmodant in many parts of Tasmania, but the subject reguired inventifation. Mr. Stephens also exhilited a specimen of fossil wond from the interior of a mass of the Penguin Creek conglomerate breecia, which he had picked up on the road-side while travelling on the North C'aast. This was interesting as being the first and only evidence of organic remains in any of the conglomerates of the North Const, none of which probably were more recent than Lower Cainozoic, and some of which were certainly as old as Lower Silurian.

The following e mmmaniention-" An attempted solution of the roaring of the Western Mountains," by the Rev. E. P. Adams-was read :-"At certain times there is to be heard in the nighbourhood of the Western Mountains a roaring, loud, awful, and continuous. It is not restricted to any particular time of year. I believe I have heard it all seasons. The area where it is audible lies from Bishopsboume to Deloraine and Chudleigh, and I daresay further on in either direction-so that I estimate the area for the sound, as below forty miles at a morlerate computation. Various opinions are expressed as to the cause of this noise. 1. The agitated waters of the Great Lake, distant about 20 miles. 2. The roaring of the sea thirty or forty miles off. 3. The Meander Falls, ahout sixteen miles away and ahout five hundred feet in height. But without trying to demolish these theories, I shall submit that which I believe to be the true canse of the sound. And first I shall describe the noise as last heard on Thurslay, the 10th ultimo (January). Thursday night was calm and culd, after a gale of wind all day, which had succeeded a week of very hot weather, ending with thunder and lightning. These would demonstrate a disturbed state of the atmosphere. About 10 p.m. the rumbling in the mountains was very grand and distinct. My companion when I called her attention to it, as we walked in the moonlight, said 'Is it not terrible.' It sounded as if a Lake had burst its banks, and the waters were roaring and raging towards us, i.e. Deloraine. Taking into consideration that this sound is always to be heard after a disturbance in the atmosphere, and when the air on the plains is still, and I suppose cooling, the sound appears to me to be accounted for on this principle :When the air of a hall or passage seeks an entrance through the key-hole in the door of a warm room, the humming noise of the cold air passing through the key-hole is ofteu startling. The air being disturhed, and the mountain air suddenly cooled, it rushes through the mountain gorges to the warmer plains-these gorges form a passage for the cold air like the key-hole of the warm room, and the cataract of cold air keeps up the sound until the air beneath has become cooled to the level of the mountain air."

Mr. P. T. Smith stated he had frequently heard this peculiar roaring sound at Syndal (lioss district), but had never heard of any attempt at explanation.

The Rev. W. W. Spicer asked if any one had ever been on the mountains when the noise was present?

Mr. Sthphess thought not. He was, however, quite familiar with the summ, which was heard oceasionally both on the eastern and western side of the tiers, and therefore extended over a considerable tract of country. He disl not think we had sufficient data at present on which to found any quite satisfactory explanation.

The Sisurisu:y remarked it was frequently a most difficult matter tu) chitain satisfactory datar for the explanation of such phenomena. Apropos to the prencut casc he instanced the vecurrence at the Delta of the Ganges,
of those peculiar sounds locally known as "The Guns of Burrisaul," the cause of which has not yet been determined. A short account of these sounds, from "All thie Year Round," for July, 1875, was then read.

An instance of the extremely high temperature experieuced in some silver mines in the Nevada territory having leen commmicated to the Society loy Captain A. Corote as its last meeting, the following explanation ly Professor Rogers was read from an American paper. "Among the chemists an interesting account was given by Professor Rogers of the chemical processes going on in the depths of the silver mines, in the Nevada Comstock lode. In the deeper drifts of the mines the heat is almost intolerable, the temperature being frequently as high as 150 degrees. Life is supported only by pouring ice-water on the head. The water that trickles from the rocky roof of these drifts is so hot as to be almost scalding, and the workmen are protected from it by sheet-iron screens. The temperature is far beyond what would be due from the dep, th of the mine, and is largely owing to the presence and decomposition of sulphides. There is a trace of saline matter, and the contact of the sulphide of silver with chloride of sorlium produces, by chemical action, the high temperature. Professor Rogers' explanation of the cause of the great Californian Steam Geysers will be a great blow to all wonder-loving tourists. 'The geysers,' he says, 'exhibit no great geological phenomenon, but result solely from the action of superficial chemistry. The heat is caused by the action of air and water upon iron pyrites, generating oxide of iron and sulphuric acid, which rearlily form sulphate of iron.' This will be a disappointment to those who imagined fiery furnaces and boiling cauldrons seuding up the startling steam jets, and scalding waters."

Some extracts were read by the Chairman from a paper by Mr. E. T. Newton, F.G.S., on the result of a microscopical examination of "Tasmanite," the so-called "Dysodile" of the Mersey. Mr. Newton says, "The two substances known as 'Tasmanite' and 'Australian White Coal,' which are the subject of the present communication, have a special interest for the geologist on account of the light which they throw upon the microscopic structure and composition of many coals. My attention was first directed to them when collecting materials for Professor Huxley's examination into the microscopic structure of coal. My esteemed colleague, Mr. Etheridge, at that time gave me a specimen of brown laminated substance, labelled 'Lignite, the so-called White Coal, Australia,' and drew my attertion to the fact that it was very largely composed of small seed-like bodies, very similar to, although smaller than, the macrospores of Flemingites, which are seen in many kinds of British Coal. A specimen of this same kind of White Coal is in the Museum of Practical (Geology, and is labelled ' Bituminous Shale (locally called White Coal), New South Wales, Australia.' I have likewise been able to examine the specimen of Tasmanite also in this Museum, which is labelled 'Tasmanite ; combustible ma'ter from the River Mersey, on the north side of Tasmania ; stratum of unknown thickness, but known to extend for some miles. Presented by Sir William Denison.'" The author's conclusion is, that "There can be no question as to the Tasmanite sacs being vegetable organs, although at present we do not know the plant to which they belong. Their size and form seem to indicate that they are more nearly allied to Lycopodiaceous macrospores than to anything else. The inconvenience of having an object without a distinctive name induces me to propose one for the spores (!) found in Tasmanite and Australian White Coal (the two being, as I believe, identical in structure) ; and in order to retain existing titles as fir as 1 mssible I womkl surgest that Professor Church's name Tasmanitc, which is so generally used in reference to the schist as a whole, be retained for this substance, and that the spores (or rather the phant to which they belong) should be called Tasmanites, with the specific title of punctalus in allusion to the surface markings."

None of the Fellows present were aquaintol with the substance refered to as "Australian White Conl," but the Rev. W. W. Spicen thought the term was used by Strzelecki.

Mr. Stremens remorked that Mr. R. M. Johnston of Launceston had given much time and attention th the examimation of thesie dises, or rather saces, in the Mersey schist, though his elescription differed slightly from that of Mr. Newton. He was clearly the first person in Tasmania who had identitied them as the spores of a Lyeopodium or some allied plant. Tasmmite belongs to the Mersey Coal formation, and is associated with Marine fossils of Devouiau type.

The shanatary informed the meeting that His Excellency lad intended opening the session hy an inamgural address. Alsence from town had prevented this, but His Excellency proposed making the address at the next monthly meeting. It was also mentioned that a paper by Mr. R. M. Johnston on the Tertiary Marine Depresits of Tasmania had leeen received in time for the present meeting. This, however, could only be read by the Rev. J. E. Tenison Woonts, as he was prepared to illustrate and explain it by reference to a collection of fossils which accompanied the paper, and with which he was familiar. As Mr. Woods was absent on duty, the rending of this paper had to be postponed mutil his return to town, which was expected to take place before the April meeting.

A vote of thauks to the donors of presentations closed the proceedings.

APRIL, 1876.

The monthly evening meeting of the Society was held on Tuesday, 11th April, His Excellency F. A. Weld, Esq., C.M.G. in the chair.

The following were among the Fellows present ; viz. :- Sir Francis Smith, Chief Justice; His Honor Mr. Justice Dobson, Sir J. M. Wilson, Rev. W. W. Spicer, Messrs. H. Weld-Blundell, E. S. Hall, J. K. Lewis, H. Bilton, Justin McC. Browne, J. Barnard, M. Seal, H. J. Buckland, A. G. Webster, W. V. Morris, F. Abbott, jun., H. Scott, J. M. Clarke, C. H. Grant, C. Dowdell, F. T. Salier, H. J. Lucas, J. Swan, M. Allport, and Dr. Agnew, hon. sec.

The Secretary brought under notice the following returns for past month :

1. Number of Visitors to Museum, 1,300 .
2. Ditto to Gardens, 4,053 .
3. Seeds received at Gardens.
4. Time of leafing, flowering, and fruiting of a few standard plants in Botanic Gardens during the month.
5. Books and Periodicals received.
6. Presentations to Museum.

Meteorological Tables :-

1. Hobart Town, from F. Abbott, Esq.-Table and Summary for March.
2. Port Arthur, from Dr. Coverdale-Ditto.

3, Mount Nelson, from the Marine Board-Ditto.
4. Goose Island, from ditto-Ditto Feb.
5. New Norfolk, from W. E. Shoobridge, Esq.-Ditto March.

The Presentations to the Museum were asfollows :-

1. From Mr. J. S. Scholes.-A collection of coins (34 copper and 2 silver). Specimen of "Chrome," from New Zealand. Egg-shaped boulder of "Blue Stone" from the Werribbee Creek, Sunbury, Victoria.
2. From J. K. Lewis, Esq.-A fine specimen of the Caspian Tern (Sylochelidon caspia), shot at Frederick Henry Bay, Feb., 1876.
3. From Mr. J. Bonney.-Part of skeleton of a Turtle, from Queensland.
4. From Mr. Gillon.-A specimen of opal from Cornelian Bay Cemetery.
5. From Mr. Harrison Cades, Brown's River.-A specimen of the Owlet Nightjar (Egotheles nove hollandice). Sp. 38, Gould's Handbook of Australian Birds.
6. From Mr. G. Rice.-A Freshwater Crayfish (Astacus sp.) from McRobie's Gully.
7. From A. Simson, Esq.-Specimen of Antechinus swainsonii. Two Native Rats (Mus fuscipes? and Mus sp.)
8. From Mr. Young.-A living specimen of the so-called "Sea Hare" (Aplysia tasmanica. Tennison Woods).
9. From H. M. Hull, Esq.-Skull of Native Tiger (Thylacinus cynocephalus).
10. From Mr. W. E. Hall.-Specimen of the long-eared Bat of the Colony (Nyctophilus unicolor).
Presentations to Library :-
11. From Rev. W. W. Spicer, M.A.-Copy of "A Handy Book to the Collection of Algæ, Diatoms, Fungi, Mosses," etc. Translated from the German, and edited by the donor.
12. From Miss Fergusson, Tinderbox Bay.-A copy of the Bible, printed in the Irish language.
13. From the Trustees of the British Museum. Catalogue of Marine Polyzon, part 3 (Cyclostomata.)
14. From Zoological Society, London.-Proceedings of the Society, 1874, part 4 ; 1875, parts, 1,2 , and 3. List of Vertebrate Animals in the Society's Gardens, suppt. 1872 to 1874.
15. From Geologieal Society, Lomlon.-Quarterly Journal of Society, Vol. 31, Nos. 119 and 120 ; Vol. 31, Nos. 121 to 124. List of Society, Nov. 1875.
16. From Royal Gengraphieal Society.-Journal of Society, Vol. 14 (1874). Bd. I'roceedings of ditto, Vol, 19, Nos. 1 to 7 (1875).
17. From Royal Asiatic Society.-Jourual of Society, Vol. 7, part 2 ; and report for 1875.
18. From Linnean Soclety.-Journal of Society, Vol. 14, Nos. 78 to 80 , Botany ; Vol. 12, No. 59, Zoology.
19. From the Hon. the Colonial Secretary-A copy of the Geological Map of Australia and Tasmania, published by the Government of Victoria, mounted and varnished.
In the absence of the author a paper entitled "Notes on a new Genus of Nudibranchiata," by the Rev. J. E. Tenison Woods, was brought before the meeting by the Secretary. (In reference to its name "Allportia" the author remarks: "This new genus I propose to dedicate to Mr. Morton Allport, as a slight mark of appreciation of his great services to science and acclimatisation in Tasmania.")

Some introductory remarks on "Contributions to the Phytography of Tasmania, Part 4," by Baron von Mueller ; also, an introduction to "Notes on a new species of Vaccinium from Samoa," by the same author, were read.

The Secretary then read a communication from Mr. Calder on the language of the Aborigines of Tasmania, having previously remarked that, although Mr. Calder unfortunately was not a member, the paper was one which he was sure would be of interest to the meeting. The paper gave a list of ninety-six native words published in the Courier of the 3rd November, 1828, and referred to another published by Dr. Milligan in the Society's proceedings (Vol. 3, p. 239) containing 882 words. In addition to these, however, a third list of 2000 native words compiled by Mr. George Augustus Robinson (the principal captor of the native tribes) was mentioned. This important list had disappeared, and it was suggested that inquiry should be made concerning it. The author also thought that many other native words might still be rescued from oblivion, and instanced several persons from whom information on the subject might be obtained.

After reading the paper the Secretary remarked he then held in hand a third list of 332 words, and 72 names of men and women, of the existence of which Mr. Calder was evidently not aware. It was compiled by the late Rev. J. Norman of Sorell, and was very carefully made out, every word leing properly accentuated, and was also interspersed with remarks on the manners and customs of the Aborigines. It was intended to print a compilation of all our known aboriginal words, and a copy would certainly be forwarded to the great philologist of the day-Max Müller.

His Excellevcy thought this was a matter well worthy of the attention of the Society. The Government of New Zealand considered the preservation of the native language so important that a grant of public money had been giveu for the purpose when he was Promier; and again when Governur of Western Australia, money had been granted by that Government for a similar purpose.

His Excellency delivered an inaugural address.

- Conversational discussion ensued on several points referred to in the President's very valuable and suggestive address. In reference to the suggestion as to certain works which might be advantageously carried out in the P'ullic Garlens, the Smenmany remarked that nothing but want of funds preventen them from heing undertaken. For the work of the gardens, only three men were availahle, together with a ging supplied hy Gowernment, which, however, wats stemily becoming so small and ineflicient as to lee almust worthless. The wages paid to the men were only
at the rate of four shillings per day, and in consequence a petition nom them for an increase had recently been received by the Council and forwarded to the proper quarter for the consideration of the Governor-inCouncil. To afford a fair increase of pay, and procure a small increase of labour, in view of the probable collapse of that supplied by Government, an annual grant of $£ 700$ was the very lowest at which the Gardens could be worked. Formerly the gardens had far more than the present grant when they were only one-half the size they now are, and when only a tithe of the present number of plants were in cultivation. A grant of $£ 700$ per annum would only give one man to every four acres, whereas a man to an acre was the proper proportion in Botanical Gardens. The Gardens in Melbourne, certainly twice the size of ours, were worked at a cost of six thousand five hundred pounds annually, whilst ours had only a grant of $£ 400$ annually, with the small extra supply of inefficient labour already mentioned.

General conversation took place as to the destruction of the Fern Trees on Mount Wellington, referred to in the Presidential Address. It was admitted that the destruction of these beautiful ornaments of the mountain gorges was carried on in the most wanton and barbarous manner. To afford a display for a single evening, instead of only taking the fronds, entire trunks, the growth of many years, were ruthlessly cut down, and thus by degrees whole valleys had been robbed of their beauty, and turned into unsightly wastes. A great public injury was in fact being done, as the mountain was fast losing one of its greatest attractions. At the same time so much of the ground has passed into private hands, it was difficult, if not impossible for any legislation to check the evil, though it was perhaps possible to abate it to some extent hy having public taste and feeling aroused in opposition to it. It was finally resolved that a communication should be addressed to the Corporation pointing out the mischief which was being done, and suggesting that measures might he taken for preventing further destruction in localities over which the City Comucil exercised any right.

His Excellency remarked that the Minister of Lands and Works was most anxious for the preservation of all the natural beauties of the mountain, and, he was certain, would be glad to do everything in his power to assist in the matter.

Mr. Abbott informed the meeting that the Cork Oaks, mentioned in the address, had arrived safely at the Gardens. A considerable number of Himalayan Rhododemdrons, from the Royal Gardeus, Kew, had also been received at the same time in excellent order.

Mr. Justice Dobson read an interesting paper on the "Codlin Moth"Carpocapsa pomonella.

The usual vote of thanks having been accorded to the donors of presentations, and authors of contributions, Sir J. M. Wilson proposed a special vote to the President, for his interesting and very suggestive inaugural address.

Mr. M. Allport seconded the vote, and referred particularly to that portion of His Excellency's address which related to the value of accurate ohservations on the habits of our various indigenous animals, now rapidly becoming extinct. Mr. Allport remarked that an additional reason for such observations was to be found in the fact that our fauna in a great measure consisted of forms which have passed away in Europe, and, therefore, the minute history of such fauna would, when compared with geological discoveries, throw great light on the condition of European countries during the tertiary period.

The vote having been carried by acclamation, was duly acknowledged by His Excellency, when the proceedings terminated.

MAY, 1876,

The monthly erening meeting was held on Tuesday, the 9th May, His Excellency the Governor, President, in the chair.

The following gentlenen, who had previonsly been nominated by the Conncil, were balloted for and declared duly elected as Fellows of the Society, vi\%. :-light Revd. Bishop, Murphy, the Rev. J. H. Brooke Bailey; Messrs. George Gilmore, T. M. Evans, hichard W. Lord, and Dr. E. L. Crowther.

The Secretary laid on tahle the following returns for the month of A_{p} ril :

1. Visitors to Museum, 1350.
2. Ditto to Gardens, 3907.
3. Plants and seeds received at and sent from Gardens.
4. Time of leafing, flowering, and fruiting of a few standard plants in Botanic Gardens during April.
5. Books and Periodicals received.
6. Presentations to Museum and Library.

Mcteorological Returns.-

1. Hobart Town, from F. Abbott, Esq., Table for April.
2. Port Arthur, from J. Coverdale, Esq., M.D., Ditto.
3. New Norfolk, from W. E. Shoobridge, Esq., Ditto.
4. From the Marine Board, Table from Mount Nelson, April; Bruni Island, ditto, February and March ; Goose Island, ditto, for March.
5. Sydney, from Government Observatury, printed tables fur December, 1875.
6. New Zealand, from Dr. J. Hector, Printed tables, 1874.

The Presentations to the Museum were as follows :-

1. From E. L. Crowther, Esq., M.D.-A large collection of specimens of Tin Ore from lode, stream tin, \&c., from various claims, Gould's Country.
2. From Mr. J. J. Martin-Spherical boulder of limestone (Scptarium) 13 inches in diameter, from Moeraki Beach, New Zealand.-A portion of the stem of a Tree Fern, prepared for picture frame making.
3. From Mr. W. F. Hardy, St. Mary's-Specimens of eggs of Leech.
4. From Mr. A. Jackson, Hamilton-An albino variety of the Wattle Bird (Authochera inauris).
5. From Mr. R. Lord-Siugular growth, resembling an oat, on au ear of wheat.
6. From Dr. Valentine, Camplell Town-A specimen of the Pouched Lamprey (Geotria allporti), from the South Esk.
7. From Mrs. Meredith-A valuable, named and classified, collection of Algæ from Orford, Prosser's Bay, 'Tasmania. Collected and mounted by the donor.
8. From Mamrice Weston, Escq.-Skeleton of Australian Crane (Girus australasianus).
9. From Mr. W. F. Petterd-18 specimens of Land Shells from Yule Island, New Guinea.
[The sicirftaby mentimed that the donor of these specimens was the writer of those interesting letters on New Guinea which have recently appeared in the local press.]
10. From Mr. W. L. Buyes-Two immense Earth Worms from Gould's Country. (These worms, although much shrunken by immersion in spirits, measure about fourteen inches in length with a diameter of fully three-quarters of an inch). Two freshwater Crayfish from same locility:
11. From Mr. J. W. Graves-A Water Crake (Porana tabuensis).
12. From Mr. T. Stephens-Specimens of Woud and Foliage of Athrotusis sclayinoides and A. cupressiformis.
[In reference to this presentation, Mr. Stepiens observed that there had hitherto been some doubt as to the species of Athrotaxis which furnished the timber known on the North Coast under the name of "pencil cedar," as distinguished from uther "red pine," but it now appeared tolerably certain that it was obtained from A. cupressiformis, the smaller of the two trees. The logs from which these specimens were cut were from the neighbourhood of Middlesex Plains, and both trees are sparingly distributed in other parts of the North at an elevation of from 1,000 to 3,000 feet. Mr. Ronald Gunn had kindly furnished specimens of the foliage of both species. The red pine of Port Davey had been shown by Mr. J. R. Scott to be Athrotaxis selaginoides.]
13. From the Rev.J. E. Tenison Woods, F.L.S.--Specimens of Crabs from Bruni Island.
14. From R. C. Gunn, Esq., F.R.S., F.L.S.-An extensive Herbarium, principally Tasmanian.
[The meeting was informed by the Secretary that this great Herbanium, the result of forty years collecting by Mr. R. C. Gunn, was presented to the Museum by the owner with the sole proviso that duplicates should be returned to him. The labour of arranging, re-papering, and classifying such a vast collection would be enormous; but the Rev. W. W. Spicer and Mr. J. R. Scott had kindly undertaken it, and were engaged daily on the task. When this was finished, the presentation, in its perfect state, would again be brought under the notice of the Fellows. Mr. Grant, in the most liberal manner, had brought the several large cases containing the collection, free of cost, from Launceston by the railway. (Applause.)]

His Excellency remarked that the collection of Algæ (presentation No. 7) by Mrs. Meredith was an exact illustration of a subject he had referred to in his inaugural address, to wit the aid which may be rendered to science by careful collectors. Mrs. Meredith had lately informed him that she had no special knowledge of Algr, and yet the first scientist in this branch in Europe acknowledges the great obligations he is under to her for new specimens.

The presentations to the Library were as follows :-

1. From the Surgeon General, United States Army, "Report of Cholera Epidemic of 1873, in United States."--1 Vol. 4to, pp. 1025.
2. From C. M. Maxwell, Esq.-First part of a work on the Australian Orchids, published for the Government of New South Wales.
3. From the Linnean Society of New South Wales-Proceedings of the Society, vol. I., part 1.
4. From Dr. Agnew-Publications of the Historical and Archæological Association of Ireland, 1874-5.
5. From Government of Victoria-"Index of Victorian Patents and Patentees" vol. 8.
6. From His Excellency the Governor-A copy of a work entitled "Natural History of Insects, Serpents, and Dragons." By John Johnston, M.D., Frankfort, 1652.
Also a "Brief account of Bushman Folk-lore, and other texts," By W. H. J. Bleek, Ph.D. Presented to the House of Parliament, Cape of Good Hope.
His Excfllency, the President, in reference to observations made by him in the inaugural address ho had delivered at last meeting, desired to state that Mr. Abbott had been so good as to point out to him that he had been mistaken in supposing that the seeds of inferior varieties of Eucalypti were likely to be passed off on seedsmen or buyers as the seeds of the Blue Gum, Eucalyptus globulus. Mr. Abbott had thoroughly investigated the matter, and had convinced him he had spoken under a misapprehension. At the same time he had not spoken either without authority or without seemingly good grounds. It was only on that morning Sir James Wilsou
had authorised him to say that, without imputing hlame to anyhody, he had been so unfortunate as not to have obtaned true blue grum seed when he was semding seed to Italy. Therefore it was not, perhaps, to be regretted that the attention of dealers and the public had been called to the matter. It had, however, been made plain, as Mr. Abbott would show, that mistakes could not easily arise in the seed of Tasmanian species ; and he hoped that the press would give the same publicity that they had given to his first statement, to the avowal he made that he was now convinced that seed obtained from respectable seedsmen might be relied upon as true to sort, and that he was mistaken in two instances he had adduced. It would appear that the young plants raised at Government House as an experiment must really be blue gum, though strangely altered by culture, soil, heat, or some other caruse, not only in the colour but also in the shape of the leaf. He was bappy to be able to make this statement, and Mr. Abbott deserved great credit for the trouble he has taken in the matter. It had been further represented to him that he had been mistaken in believing that the destruction of timber and ferns on the sides of Mount Wellington was unauthorised; but that was not the point at all that he had raised; he did not stop to enquire whether the waste aud destruction were authorised or not, or even whether some of it might not be on private property or not. Of course all rights should be respected, but any difficulty that might at present be incurred in dealing with private rights would bo increased tenfold as years went by, whilst the injury already done was incalculable, and was going on from day to day. It was already the eleventh hour so far as saving the ferns and vegetation of the undergrowth; a great proportion of the larger trees was already gone. What he desired to do was to impress upon them the necessity of taking steps to secure for the people of this city, and for its visitors, a noble space for amusement, for the study of nature, and for health. He begged of those who had the power whilst there was yet time, to consider the interest not only of themselves but of their children and their children's children. He would ask them to look at tho efforts which are being now made in Eugland in this direction, and at the enormous sums that such efforts absorb; at the American uation, that, with a wise foresight whilst yet there is time, sets aside and reserves a tract of land the size of a county as a recreation ground and field for the study of nature for the American people. That some similar step should be taken here was the point to which he had endeavoured to attract attention, and if the public would interest themselves in the matter it rested with them to benefit not only themselves, but to confer an incalculable benefit on future generations of Tasmanians. He would now ask Mr. Abbott to read his paper.

Before Mr. Abbott proceeded to comply with the request of the President,

The Secrft.ary begged to refer to a resolution passed at the previous meeting, to the effect that a communication should be addressed to the Corporation, pointing out the mischief that was being done by the destruction of the fern trees, ctc., on Mount Wellington, and suggesting that steps should the taken for preveuting such destruction in future in localities over which the City Council exercised any right. In accordance with this resolutiou, a letter had been addressed by him to the Mayor (letter read).

Mr. F. Abbutt, jun., then read the following remarks :-
"Notes on Eucalyptus globulus (Blue Cum of Tasmania), compiled for the purpmse of showing the improbability of spurious seed being supplied from Tasmania.
"Though I was present at the last meeting of this Society, and heard His Excellency's remarks in reference to the adulteration of blue gum aied, I was nut then prepared to bifer any explanation in the matter, as I did not at the moment know the circumstances that had led to the state-
ment ; but, helieving that a mistake had arisen, I regarded it as a matter of duty to institute such enquiries as would remove any doubt existing on the subject.
"It is well known that the blue gum has of late been very extensively planted in various parts of the world. In Algeria and California it is planted by hundreds of thousands, and in the latter place companies have been formed for its extended cultivation. It therefore becomes a matter of some importance to cultivators to ascertain whether it is possible they have been supplied with spurious seed, and are cultivating the wrong plant or not.
"So far as seed obtained from Tasmania is concerned, I cannot believe that any but the true Lucalyptus globulus has been supplied. In the first place, the capsule and seed of this species is so distinct from any other known Tasmanian kind, that seedsmen or merchants once having seen them could not be imposed upon by the substitution of any other species; and, again, it is the only indigenous kind producing fertile seed sufficiently large to enable collectors to separate it from the abortive. As a rule, all the other Tasmaniau species are sold as they shed from the capsule-that is, the fertile and abortive seed mixed together.
"His Excellency's remarks appear to have originated from the circumstance of his attention having been callerd to some fallen trees of Eucalyptus a short distance above the springs on Mount Wellington, which were said to have been felled for the sake of their seed, together with the fact that the produce of some seed which he had purchaser in Hobart Town as that of the Eucalyptus ylobulus did not appear to him to be the true blue gum.
"With reference to the particular patch of trees referred to, I have not the slightest doubt that they were felled for their seed, which was collected and exported under its proper name (Eucalyptus urnigera). There is, in fact, a limited demand for these alpine speciess of Eucalypti, which are required for cultivation in places that have proved too cold for the blue gum. I hold in my hand an order from a French house, Mons. Vilmorin, Andrieux et Cie, which enumerates no less than 64 species of Eucalypti of which they require seeds. Included in these 64 species are a few indigenous to Tasmania, three of which are alpine, viz., Eucalyptus gunnii, Eucalyptus urnigera and Eucalyptus coccifera. These forms are found on the mountains, and all are met with on Mount Wellington, from the Springs upwards. Eucalyptus gunnii is also common to the Lake district, where it has received the name of 'Cider tree.'
"Though previously aware that these three species had been collected on Mount Wellingtou by the Brothers Gulliver, I thought it advisable to write to Mr. B. Gulliver for full particulars. His answer I will give in his own words:-
"' In reply to your request it affords me much pleasure to furnish you with what particulars I can respecting the collection of Eucalyptus seeds. I have collected the following seeds on Mount Wellington, and have purchased the same three species from Mr. Woods, who lives there, namely, Eucalyptus gumnii, Eucalyptus urnigera, and Eucalyptus coccifera. These species I have found ouly on the mountains of Tasmania. I introduced them into Europe about four years ago, and highly recommended them for cultivation in colder parts of the continent. Since then the demand for the alpine species has increased, owing to their success in resisting heavy frosts, which have destroyed many other Eucalypti.
"' The following is a list of the quantities exported by me since 1874 :"' 10 lbs. Eucalyptus gunnii, at 30s. per lb.
"' 10 lbs. Eucalyptus coccifera, at 30 s. per lb.
"' 2 lbs. Eucalyptus urniyera, at 30 s . per lb.
"'The trees of gunnii and urnigera are felled for their seeds. Coccifera can be collected without cutting down the trees.'
"From the foregoing it would appear that there has not beon more than believe the Messis. Gulliver to have heen the largest if not the only exporters of these kinds. Mr. F. Lipseombe, of this town, is the only stedsmon whon has these alpine species in stuck, and he has not sold more than a few ounces of them.
"It will also be seen that the market value of the alpine species is 30 s. per 1h., while pure seed of hlue gum is ol,tainable at from 7 s , to 10 s . per 11. Even supmosing therefure that a similarity existed in the reed, it is highly improlahle that the mome expensive kinds would be used to adulterate that of less commercial value.
"As remards the plants prohluced from the seed supplied to His Excellency, whatever apmanace they may have put on in their infantile state, I have not the slightest doult that they will in time take the glancous hue so peculiar to the young state of the hhe glum. The alsence of this glaucous appearanee in these partieular seedlings is only to be accounted for by the flet that they have heen maisel muler artificial circmonstances, or, in other words, ton much emdded. I have hat an opportunity of seeing a portion of the seed in question, and do not hesitate to pronounce it to be the gemnine bhue grum, or Eucolyptus globulus, and I am informed that a purtion of the same seel hat been previously supplied for sowing at the Comelian Bay Cemetery, and that in cansequence of its having germinated there so freely, it was selected for the Govermment House Grounds. I now produce seedlings from both places, and it must be admitted that, by an mblinary ohserver, not taking into consideration the different treathewt the phats have received, they might he taken for distinct species, but there is wothine in their apmearance which may not be accounted for by difference of culture.
"At the Cornelian Bay Cemetery the seed was sown in patches at intervals about the boundary fences, and left to chance. The result is, many thousands of seedlings, in various stages of growth, but all sturdy, and having the grameons hue highly developed. At the Government House Grounds, on the other hand, the seed appears to have been sown in boxes and raised in frames, or otherwise shaded and protected. This treatment wombl mecessitute frequent waterings over the leaves, which, in addlition to the exchusion of the full influence of the sun would produce the difference in the appearance of the plants.
"I have heen informed hy His Excellency that when in New Zealand he hul fremputy heard it stated that spurions or inferior seed had been smondiel ald genine line grm. The difference of treatment to which the wealinus my have heen sul, jectenl mipht perhaps he sufficient to account for this impression, but if, in reality, such was the case, I cannot think that the seed had been obtained from Tasmania. I have before stated that
 Th-m minn acias, as top prevent the prisilitity of fraud, even supposing any inducement existed for it.
"I am not sufficiently aeçuainted with the numerous Australian forms of Eucalypti (about 140) to say whether there are any the seeds of which could be substituted for that of Eucalyptus globulus. Certain it is that several species have locally obtained the name of 'blue gum,' which are not iclentical with that of Tasmania, but I camot say that they have ever heen sulustituted for it.
"Th men nals hwe hern male with the view of showing the improbability of the seed of any of the eleven known species of Tasmanian Eucalypti
 in doing so their object will have been attained."

The Rev. J. E. 'lesison Woods, after a few prefatory remarks as to the importauce of the collections of tertiary fossils made by Mr. K. M.

Johnston, read a paper on the anatomy and physiology of some Tasmanian Patellidx. The paper was illustrated by many microscopical specimens and preparations.

The Bishof of Tasmania proposed a vote of thanks to the donors of preseutations with special reference to the great gift of Mr. R. C. Gunn. His Lordship also moved a special vote to the Rev. Julian Woods for the very valuable paper they had just listened to, and in alluding to the greatly increased attendance of Fellows, attributed it in a great degree to the attraction which the ahle and original papers by the same learned author always exerted, and also to the warm and personal interest which His Excellency, both by his presence at the meetings and by his contributions, manifested in their proceedings. The vote having been cordially passed, the President left the chair.

INAUGURAL ADDRESS

BY

HIS EXCELLENCY F. A. WELD, ESQ., C.M.G.,

President of the Socicty, at opening of Session of 1876.

Gentlemen, - I have willingly acceded to the request that I should open this session of the Royal Society with an address, because I wish to take an opportunity of testifying the interest I feel in the Society, not only as its President and as Governor of the colony, but also in my individual capacity ; and although I do not pretend to any special scientific acquirements beyond those common to most educated men, and must confess to having forgotten much which I formerly knew, there are, perhaps, some topics upon which I may touch without rashness or unduly presuming upon your patience. It is, gentlemen, a matter of congratulation that the Australian colonies, though hardly yet more than emerging from their infancy, have shown a great and increasing interest in scientific research. It might have been expected that the struggles of early colonial life and the hurry of business would have so fully occupied men's minds, that a generation or two would have passed by before scientific matters could have claimed attention, either from the people or Governments (Governments being, as a rule, such as the people make them, and a reflex of the people's mind). Yet, in nothing, I think, would an intelligent visitor from Europe be more agreeably surprised than by secing the scientific departments and their work, the societies or institutes, and the museums and libraries of most of the principal cities of these colonies-for my own part, I feel pleasure in thinking that the establishment of the Colonial Government Museum at Wellington, New Zealand, and the establishment of a scientific department, with Dr. Hector at its head, took place under my auspices as Premier, much being due to the exertions and active assistance of Mr. Mantell, son of the geologist, and himself well-known to the world of science; that the first geological survey of Western Australia and Mr. Forrest's geographical discoveries were made under my rule as Governor there; whilst as a private individual I was instrumental in forming
the Canterbury (New Zealand) Acclimatisation Society, and was its President when it obtained pecuniary assistance for your effort to acclimatise salmon and trout in these waters. I allude to these matters to show that I do not come to your meetings as a mere formal duty, but because I have in some degree been a fellow worker before I came amongst you. And, as after a long career as a colonist and politician, I look around at the growth and prosperity of this group of colonies, and feel a pardonable pride, as a labourer might on looking at an edifice in which he has placed a stone, that I too have contributed my mite to the work; so when I assist at your meetings or visit your museum, when I go to neighbouring colonies and see what they have done and are doing for the promotion of science; or when I receive such a work as the proccedings of the New Zealand Institute, containing varied and valuable information and papers from such men as Dr. Hector, Dr. Julius Von Haast, Captain Hutton, and others, it also seems a legitimate gratification to think that I have taken and am taking some little part, so far as in me lies, in extending the interest which is felt in scientific enquiries. And it is your Society, gentlemen, that here enables me to do so. And surely the advantage is very great to man that he should devote some part of his time and intelligence to studies which may be either profound and serious, if his time and capacity admit, or, if not, then of a lighter and more recreative nature ; but which, as I propose to point out before I sit down, may even then be productive of results not only to himself but to the cause of scientific knowledge. The advantage is great, because a search for truth even in the material order, and a spirit of enquiry in those things which are given us by God to enquire into and exercise our intellectual faculties upon, is in itself elevating, and tends to develope our mental powers. Some good men seem at times to entertain a latent fear that scientific studies have in themselves a tendency to weaken faith in absolute and divine truth, rather than to " Lead from Nature up to Nature's God;" but truth in the abstract can be but one in essence ; and scientific truth when fully known must, therefore, be at one with it, however speculative theories exhumed or evolved in the search for scientific truth may for a time seem to point to a different conclusion. Natural science has advanced with gigantic strides within a century, the
progress of some of its branches, geology for instance, strong and rapid, has yet been not unlike, in one respect, to those chaotic revolutions which it contemplates and describes, where a peak rises and again sinks into seething lava, and is succeeded by another landmark, in its turn, too, to fall; still a guiding hand and a design unseen pervade all and tend to an end, and for the aftertime I look forward confidently to triumphs of yet a higher order for true science than even those great material ones which have distinguished our age over all previously recorded in history ; but to attain this end, scientific studies, like others, must be followed in a right spirit, they must be given their proper place, and approached as Newton is said to have approached them, with that humble simplicity of mind which the poet Tennyson justly attributes to our greatest British warrior of modern times in the noble words, -

> "And as the greatest only are In his simplicity subline."

True, indeed, this is a mark of the greatest minds, but it is a quality not inherent to outward greatness or ability, and the humblest student may, and should, possess it, and possessing it will possess a philosopher's stone of untold valuc. It is, of course, given only to the few to climb the heights of science, but the many who, perhaps, chiefly as a relasation from the toils of their every day life, recreate themselves and bask on the sunny slopes that lie at their feet ; even they, may not only gain knowledge and amuse their minds, but further, by careful examination of the natural objects around them, may collect facts which may furnish data for others of higher scientific attainments to collate, arrange, and draw conclusions from. In doing this, as I pointed out at one of our monthly meetings, care should be taken to preserve strict accuracy of detail, and to take heed not to be unconsciously led to square facts to preconceised theories, but to let them speak for themselves. There is great scope for this kind of work left in many branches of science, and in a comparatively newly settled country like this. I would especially refer to the provinces of geology, natural history, aud botany. The Rev. Julian Tenison-Woods, at one of our mectings, when reading an interesting paper to us, made some observations on this point which impressed themselves on my mind, as no doubt on those of others. At my request he has lately
furnished me with information and facts which illustrate the view I have just laid down, and I shall now avail myself of them somewhat largely. To begin with geology. Though much has been done-and Australia can boast of many scientific geologists whose contributions to science deserve and have obtained the most honourable recognition -still very little is accurately known of the stratigraphical relation of our paleozoic, fossiliferous, carbonaceous, and metalliferous rocks; very few of their fossils have been described; no good catalogue, I am informed, has been made of those already described. European forms are present ; it would be interesting to know how many, and which? The relation in point of time of our volcanic rocks to the strata in which they exist would be an important object of inquiry. Have we any certainly tertiary basalts? How many different periods do they represent? What are their chemical characters? And do those afford a permanent test for their identification in different localities? In the mineral kingdom, no catalogue of minerals has been attempted since that of Count Strezlecki, which does not pretend to be complete. Valuable catalogues have been made in neighbouring colonies, but Tasmania is altogether behind hand in this particular, and yet, as it is known that gems exist in Tasmania, and her mineral riches are unquestionably very great, this should be a peculiarly intercsting object of study to Tasmanians, as it is well known that the occurrence of basalts, greenstones, syenites, and granites-rocks which are common here -must give rise to sapphires, opals, rubies, and possibly even diamonds. In natural history, good observations on the comparative osteology of all our described marsupials are much wanted. Year by year observations on their habits will become more difficult to make, and many of the most rare of our fauna will become very scarce, if not extinct, within the space of another generation. Some Tasmanian birds, such as the emu, have become already extinct in this island; the apterix and the great owl-like night parrot, are following, in New Zealand, the fate of the Dinornis. What an interesting relic of the past would be a memoir of the habits of the Dodo, had some early visitor to the Mauritius spent a few hours in noting and describing them. Observations on the nests, eggs, and migrations of our birds might be made by any clever boy with a taste for ornithology; any observations would
be worthy of record, and a well-arranged series would be of uncommon interest. In regard to fish-many Tasmanian fishes must be new to science-I myself, as one unlearned, was struck by the beautiful paintings of strange Tasmanian fish, which Mrs. Meredith with a kindness equal to her talent, painted for the Philadelphia Exhibition. Looking on their quaint and sometimes grotesque forms, one could not but hope that the mine of inquiry they indicated might be worked by some of our young Tasmanians, and that they, and other yet perhaps unnoted species, as well as our commoner sorts, might be compared with other Australian fish, and those of more distant regions. Indeed some of the quaint ones to which I have alluded, reminded me forcibly of the strange forms of life that I have wondered at amongst the sea weed of the Sargasso sea floating out into the Gulf Stream in the Atlantic. The auatomy of fishes is also a field in which very much remains to be done. In the Mollusca proper I am told that everything has to be done amongst the Pteropods. The Gasteropods olfer a wide field for investigation in accurate determination of species, in details of anatomy, in dependence of form and colour of shells on sex, from absence of any facts regarding which I learn that many male and female of the same species have been regarded as different; observations are required on the lingual ribbon, to which the Rev. Julian Woods has already, at a mecting last year, directed our attention, and which is a matter of great value for the determination of species. I might here give a long list of families of which little or nothing is known ; for instance, our Polyzoa, several new forms of which have been olserved by the distinguished correspondent of your Society to whom I have just made reference. We have also many new and interesting forms of Crustacea on which the light of science has scarcely been thrown. Of the Echinodermata several orders remain untouched. Thento come to the science of Botany ; a science which leads to the contemplation of such exceedingly beautiful objects, and oryanisations of such wonderful interest and delicacy, that the devotion of its votaries to their favourite pursuit can be no matter of wonder. Much has been done in Anstralia by many eminent men in regard to Botany. I need only allude to the labours of Baron von Müeller, of Victoria, as one instance, and Tasmania in this branch has been distinguished by the researches of Mr. Ronald Gunn
and the late Mr. William Archer-but it would be a mistake to suppose that their efforts, not to go back to those of Robert Brown, Sir Joseph Banks, Solander, Cunningham, Labillardiere, Hooker, Bidwell, and others-have exhausted the field; on the contrary no country affords a more favourable opening for further researches, and it would be well if students would satisfy themselves that such is the case, and even should the gleaners' toil fail in discovering many new species in Tasmania, yet our knowledge of the habits of actually discovered plants is but limited. Little is known about the fertilisation of Tasmanian plants. I need not remind you of the curious contrivances by which the fertilisation of the ovary of some plants is contrived, and especial interest attaches to orders such as Orchideæ, Protaceæ, and Filices, which exist abundantly in this colony. Dr. Bentham, the distinguished President of the Linnæan society, especially commends to the attention of Australian botanists the fertilisation of the ovary of Goodenoviex. Again, how little is known of the medicinal and economic uses of our plants. Baron von Müeller and Dr. Schomburgk, of Adelaide, have devoted much attention to that point in Australia. Observations on the structure of plants in their various parts, and the action of their juices, must also be a fascinating pursuit. I remember, years ago, being much pleased with a collection of wax models, showing the leaf and stem anatomy of plants and their cellular structure, in the muscum of Fiorence in Italy. It has ever since seemed to me to be a most interesting object of study. The preceding remarks will, I trust, have illustrated the view I have proposed to you, and have shown that it is in the power of many of us to add our mite towards the solution of many very important scientific problems. It would, moreover, be easy to show how the habit of close observation of nature adds to our pleasure and refines our minds. Not a living creature, not a leaf, not a shell, but may be studied with profit and pleasure"the lilies of the field, how they grow!" There is a charm about the mere love of simple nature that seems like an electric fluid to pervade and purify the spirit of its devotees, and to open itself in their writings-such is the charm that runs through the essays of Waterton and his Wanderings and Autobiography, that breathes in the works of White, of Selborne, and of old Izaak Walton, a
name, like the motto on the fishing house he immortalised, "Piscatoribus Sacrum." These are books which I should like to see often in the hands of boys in the colonies. I am sure that they exercised a beneficial influence on my boyhood at home and my early life in the colonies. How often I remember, wandering as a boy, fly-rod in hand, along some Dorsetshire or Devonshire stream, and whilst tempting the trout from rippling fall or shady pool ; with what pleasure one watched the quaint waterhen, and caught the rapid flash of the glancing kingfisher. How oue followed, gun in hand, the jay and magpie from orchard to covert ; and waited by hedge-row or fern brake for the rabbits at sundown. How interested the boy's mind became in every natural object around, till the heavy winged white owl came out and the night closed in. And, later in life, exploring up among the snow sprinkled ranges of the Kaikoras in New Zealand, how often have I lain awake to watch the bold, not to say insolent familiarities of the Weka or Wood-hen, pecking round the embers of the fire, and not unfrequently abstracting precious articles placed by what served as your pillow for greater security, such as soap, or comb, or pipe, dear to the bushman, "ea sola voluptas," I will not add "solamenque mali." Incorrigible birds! I have known them (undismayed by stick or stone) to return at once and follow up such petty larcenies by a combined and determined attempt to drag a waterproof from the prostrate form of a sleeping fellow traveller. We have most, of us some such memories to amuse us, and the habit clings through life. I still delight in the parrots and flycatchers and magpies about the Government House grounds; and take pleasure in seeing the fat, lazy tench basking under the willows, and the stout, pursy perch come bristling up amongst them full of a fussy self-importance that is quite a caricature on poor humanity; perhaps we might draw morals even from fish had we an Esop amongst us, but at all events I believe that we should generally be happier-possibly even better-did we learn to enjoy and take lessons from the simple contemplation of nature as we see it in our every day life, or in those country excursions from which, happily, few in these colonies are deljarrred. Your socicty, and the efforts of those interested in acclimatisation, havedonemuch to promote this, and you have laid the foundation for more by the Library, the Botanical Gardens, and the Museum. I cannot but refer
here to the success which has now admittedly crowned the efforts of the commissioners of your Society in theintroduction of salmon, of trout, and of other fish into this hemisphere. The experiment reflects the highest credit on this colony, on the public-spirited gentlemen who were the promoters, and on those who assisted and supported their efforts. To all connected with this undertaking, the gratitude of future generations of Tasmanians, and indeed of all Australasians, is due. If the name of the man who introduced the cherry into ancient Rome and Italy has been preserved, how much more worthily may those be remembered who have introduced into the southern hemisphere fish, not only destined to become hereafter a product of great commercial value, but I trust, moreover, to encourage that love of field sports and country pursuits which has so deeply coloured English life, and, in my opinion, produce such happy results on the national character. To turn to another point, there is your botanical garden, which may favourably compare, whether for beauty of site or the trees and shrubs it contains, with those of much larger and more wealthy communities. What you want in connection with it is an extensive nursery ground, not to compete with professional gardeners, but to grow things they cannot or do not supply, and to raise a large quantity of young trees for the Domain. I must for a moment digress to say, that beautiful as it is from situation, it is positively painful to go through the Domain. Almost a year ago, at your request, I marked some trees as a beginning to get rid of rubbish, and open out views. From want of means these trees I think are not all cut down yet; if so, very recently; and there are fifty times as many dead, dying, unsightly, and obstructive trees that ought to be removed, and, moreover, simultaneously a beginning of planting should be made. I must express a hope that some effort will be made, whether in the way of private subscription or public grant it is not for me to suggest, but I will only repeat my promise of affording such aid as may be desired and be in my power to give, in whatever may be undertaken to preserve and improve the naturally beautiful recreation ground of the people of this city-a people who by their orderly and cheerful demeanour, the healthy, neat, and pretty appearance of the women and children last regatta day, when many thousands pieniced in the Domain-fully proved themselves worthy of anything that can be done for them in improving the

Queen's Domain"and their's. But to return to the Gardens. Whilst I am on the subject pray permit me to record a remonstrance against the proposal to lower or pull down the stone wall against which so many beautiful creepers grow, and which is such a shelter to the beds that lie below it; and border what is now a charming winter walk. I own that from the entrance side it is at present unsightly but my principle is reform where practicable, not destruction; and I say with Mr. D'Isracli "Level up !" make a broad terrace-walk along the wall level or nearly level with its top, on the entrance side; and put a stone balustrade or even a few stone vases or similar ornaments along its top. From this terrace you would command a magnificent view over the gardens, the Government house grounds, and the expanse of river with the surrounding mountains. It would be a great feature if not the great feature of your Gardens, unique in these colonies, and unsurpassed anywhere. The terrace should be broad, the side towards the entrance should be either faced with stone or grassed with turf-make the terrace, if you like, in a concave form to leave an oral space for the carriages below, gravel your terrace, but run a ribbon bed along it, and place beds, filled with masses of colour such as geraniums afford, in the expanding angles-your sweep should be continued round the opposite side of the second or inner entrance, which should be just above and near the cottage. Such is my idea, perhaps it may be found worthy of consideration before a final decision is arrived at. I have only one further remark to make regarding the Garden. Its weak point is a lack of grassy plots and lawns, owing, I understand, to the difficulty of getting a grass that will stand both our drier summers and our colder winters, as the Indian couch used in warmer colonies will not stand frost. I have written to Dr. Hooker, of the Kew Royal Gardens, about a plant which was introduced into England some years ago as a substitute for lawn grass, and which, I think, would answer admirably and need no mowing. Dr. Hooker informs me that he is sending out a case of Cork oaks, which will be of much value to this colony. I would also suggest that duplicates of such pines, taxads, cypresses, and other trees, as, not having room, must soon either be cut down or spoil one another, should be planted not less than eighty feet apart, in the new portion of the groumds. I may be forgiven if I further observe that in Iranklin

Square one or two beautiful and valuable trees which might become an ornament to the city, and last for generations, if allowed to develop themselves, will shortly be ruined for want of room, unless others less valuable are removed. Let me also, before I conclude, put in a plea for the preservation of the ferns and forests which are fast disappearing from the sides of Mount Wellington. With them will disappear one of the attractions which make your city such a favourite with visitors; the sides of Mount Wellington ought to be preserved to future generations as a noble public forest and park, not allowed to become a dreary hideous wilderness. Acres of bastard gums are cut down, and, as I am informed, for the sake of their seed, which is sold as blue gum seed, and a shameful injury is thus inflicted upon those purchasing and using the seed, and upon honest seedsmen, and the credit of the colony. It now only remains for me to say that the retrospect of the year must, on the whole, be satisfactory to our associates. The attendance at meetings of the Society has, I understand, been above the average of former years, and certainly papers of much interest have been read, whilst several new associates have been enrolled, and donations of value have been made to the Museum and Library. One scientific botanist, Mr. William Archer, has passed from amongst us. Owing to the shortness of my residence in this colony, I had not the pleasure of his personal acquaintance, but his acquirements and industry are well known, and he was highly respected as a colonist of old and high standing. It is to be hoped that his collection will be secured for your Society and the colony, in accordance with the recommendation of Dr. Hooker. Last year Tasmania was honoured by a visit from the American scientific expedition sent out to observe the transit of Venus; since then no event of special scientific moment has come immediately before us. But we, in a colony once ruled by Sir John Franklin, who lost his life in the service of science and of his country in the Arctic regions, sitting, as we do, almost under the shadow of his statue, cannot but turn in spirit to those polar seas, where, at the further extremity of the globe, British seamen, keeping up the traditional spirit of our race, are braving waves and icy wildernesses in the cause of science, and for the honour of our flay. All our good wishes go with them, and we may believe that even they are cheered
amidst perils and hardships and (more difficult for them, and such as they, to bear) perhaps long periods of forced inaction, by the thought that wherever the sea rolls, from west to east, from their frozen north even unto our, from them, remotest south-there are English-speaking menaye, and others too, for science binds men of different natious together-to look upon their devotion with pride, and to whom the news of their safety and success would be a triumph and a subject of heartfelt thanksgiving. May such be the result. With these remarks, gentlemen, I will now take the chair, which, as your President, I hope to fill on many future occasions.

ON THE CODLIN MOTH, (CARPOCAPSA POMONELLA.,

By His Honor Mr. Justice Dobson.

[Read 11th April, 1876.]
For some years past the apple orchards in the northern parts of this colony have almost ceased to be productive. Every grower of apples there knows how liable his fruit is to be worm-eaten ; he finds basketsful of windfalls even in the calmest weather, and he is aware that the cause of the loss is a small grub which has fed upon the pulp of the fruit. The ravages of this insect are not wholly confined to the apple, but have in some cases extended to crops of pears. This grub has made its appearance in some of the gardens in the vicinity of Hobart Town ; it is said to have been observed here three years ago, and up to the present time it has not been the cause of loss to any serious extent in the Southern orchards. The history of these grubs, and how and when they get into the apple may not be generally known. The grub precisely answers in description, and in the mischief it does amongst the apple orchards, to the Codlin grub of England and America, and although it is impossible at this season of the year to obtain the moth there can be little doubt that it is, if not identical with, at least most closely allied to the Codlin Moth, and I have for the purposes of this paper assumed it to be so. The grub is the larva of the Codlin Moth, "Carpocapsa pomonella" of some entomologists, but "Tinea pomonella," "Pyralis pomona," and "Tortrix pomoniana" of others. The Moth is about three-quarters of an inch in expanse ; its forewings are ashy brown, the hind wings are a reddish brown, tinged with yellow. The moth lays its eggs in the eyes of the young apples-one egg in each apple-by inserting its long ovipositor between the divisions of the calyx. As soon as the egg is hatched, the little grub gnaws a hole in the crown of the apple, and soon buries itself in the substance. The grub itself is of a dirty-white colour, with a brown head varied with darkish-brown marks. The body is slightly hairy : the first segment after the head is whitish, with minute brown spots; the other segments are of a pale colour, with about eight small tubercles on each. Each of the anterior segments is furnished with a pair of legs; and there are a pair of feet at the extremity of the body. In its early state it is of a dirty-reddish colour. The grub chiefly feeds upon the pulpy parts of the apple. When it
has nearly attained its full size it feeds on the pips of the apple, which, thus attacked in its most vital part, soon falls to the ground. On the fall of the apple the grub quits the fruit by the passage which it has previously gnawed. A hundred fallen apples may be opened and not more than two or three grubs found within them: the orifice by which they have escaped being open and no longer concealed by the little mass of brown grains, which is the case with those apples from which the grub has not made its escape. These little grains are the excrement of the grub. On leaving the apple after its fall the grub or caterpillar wanders about the ground till it finds the stem of a tree, up which it climbs, and hides itself in some small crack in the bark. It guaws away the bark a little, and having made a smooth chamber, spins a little milk-white silken case, in which, after a few weeks, it becomes a chrysalis In this state it remains through the winter, and, in the northern hemisphere, till the following June;-In Tasmania, probably till the end of November, and is to be seen early in December hovering round the apples on a midsummer evening The exit of the grub and its wandering to a place of safety are said usually to take place in the night. It is evident from the habits of the insects that their destruction is attended with great difficulties. The presence of the grub in the fruit is unknown till the little brown excrementitious grains appear on the exterior of the apple, at the orifice of the tunnel which the grub bores from the core through the pulp to the surface, and the mischicf is then accomplished. The small size of the moth, its nocturnal habits, and its practice of secreting itself in crevices of the bark render its destruction most difficult. The only known means of preventing the spread of this pest appear to be-1. To gather up the worm-eaten fruit as soon as it falls, and before the grub has escaped, care being taken to destroy the grub, as by putting the apples into water, boiling them for pigs' food, or burying them. 2. To destroy the cocoons in autumn and winter. 3. To light fires in the orchard on midsummer evenings, by which the moths are attracted and destroyed. In some parts of America the cuttings are saved when pruning the trees, in order to make fires in the June evenings to destroy these moths. 4. To preserve all insect-destroying birds, especially night-feeding birds, which are peculiarly harmless, and also peculiarly serviceable to man.

ON A NEW GENUS OF NUDIBRANCHIATA.

Fam. Elysiade.

By tee Rev. J. E. Tenison Woods, F.G.S., F.L.S., Corr. Mem. Roy. Soc. Tas., \&c.

The Elysiadæ are shelless mollusca with no distinct mantle or respiratory organ, all being performed by the ciliated surface of the body. The stomach is central ; the hepatic organ branched, extending almost the whole length of the animal ; eyes sessile, and tentacles simple or obsolete.

There are five known genera of the family, viz.:-Elysia, with tentacles; Actaonia, leech-like and with tentacles; Genia leech-like, linear dorsal tentacles; Limapontia, head truncated and with arched lateral ridges; RHodope, wormlike.

To this family I have found an addition of marked and peculiar generic character. This new genus I propose to dedicate to Mr. Morton Allport, as a slight mark of appreciation of his great services to science and acclimatization in Tasmania.

allportia, Nov. Gen.

Corpus expansum, tenue, antice et postice omnino complanatum, occulis submarginatis.
Allportia expansa. n.s. Corpus supra olivaceum, pede pallidiore; occulis appoximatis punctis parvis atratis numerosis, compositis; infra lineis ramulosis albis (hepaticis?) conspicuis.

Animal expanded thin, leaf-life, with no distinct foot, eyes anterior ; body without tentacles or ridges.

Allportia expansa. n.s. Animal of a deep olive above, smooth; eyes close together and slightly raised about one fourth of the whole length within the anterior edge. Under the lens the eyes appear to be composed of many minute dots. No other organ visible above. Foot much paler, the hepatic organs appearing as a creamy white branching plume down the median line. Length, 30 ; breadth, 20 millimetres. Common under stones among the rocks at Southport.

This singular molluse moves with some rapidity like a pale gelatinous expansion of extreme tenuity. Though without shell or apparent muscles, it has such contractile power that it can move itself in any direction and raise itself nearly erect. While the highly organised testaceous mollusea can move only with difficulty, this delicate creature can recover its position at once easily, even when placed on its back. It is of such extreme tenuity, however, that on being placed in spirits it becomes opaque, and the details of its structure are lost. Type specimens are preserved for the Museum.

CONTRIBUTIONS TO THE PHYTOGRAPHY OF TASMANIA.

By Baron Ferd. von Mueller, C.M.G., M.D., F.R.S.

(IV.)

The majority of the notes, offered now to the Royal Society of Tasmania, were written more than a year ago, being the result of various rescarches on Tasmanian plants since I had the honour of submitting the third contribution; but this offering was delayed, because it was my wish to follow up some field-work, which I instituted in Midsummer of last year, while travelling, accompanied by Mr. S. B. Emmett and his son, from Circular Head to the Arthur River, chiefly, with a view of making some special comparisons between the vegetation of North-west Tasmania and that of the opposite coast of the colony of Victoria. This wish of revisiting the island could not yet be realised ; and as there seems to be much uncertainty when effect could be given by myself to such a desire for further Tasmanian phytographic explorations, I deemed it best to submit my ready notes, especially as they became disinterestedly augmented by communications of plants and memoranda from Mr. Robt. M. Johnston who, as a companion of the Hon. J. R. Scott, traversed for scientific purposes last autumn a large tract of alpine country, also not previously examined for plants. Furthermore the present contribution has been greatly enriched by notes furnished by the Rev. W. W. Spicer, who, chiefly by the aid of friends, obtained plants from several localities of Tasmania previously but little searched, and who is likely thus to advance greatly our insight into the exact geographic distribution of the species over the main island and the adjoining islets.

Some Algæ have also been added from more recent collections perseveringly formed by Mrs. Meredith, and through my meliation rendered available to Dr. Agardh of Lund, the great worker for a very long time on the occanic plants.

[^15]** Ranunculus muricatus, Linn. New Town, in a wet ditch on the road to Risdon Ferry. It is very similar to the native R. parviflorus Linn., but larger and coarser. W. W. Spicer.

Papaver aculeatum, var.: pusillum, King's Island, Neate. The whole plant barely three inches high. Stem capillary; leaves only 2 to 5 lines long; length of calyx hardly above two lines.

* Cakile maritima, Scopol. Flor. Carniol. ii., 35. On the coast near Circular Head, not uncommon, particularly near high water mark. It is remarkable that this conspicuous and singular plant should have been overlooked so long in Tasmania, where, from my personal enquiry among the local coast residents, it seems to be indigenous ; but it was also not before 186 l that the Cakile became by my own investigations discovered on the coast of the Australian mainland. George's Bay. A. Simson.
** Senebiera coronopus, Poir. An European weed now firmly established in the neighbourhood of Hobart Town. though evidently of much later introduction than S. didyma Pers.

Drosera binata, La Bill. Southport, J. E. T. Woods ; Port Davey, J. R. Scott.

Drosera Menziesii, R. Br. Gould's Country, George's Bay, A. Simson.

Pittosporum licolor, Hook. Gould's Country. A. Simson.

* Pittosporum undulatum, Venten., hort., Cels. t. 76. Very rare in the mountainous forests near the Arthur River. The credit of the discovery of this beautiful tree is due to Messrs. Emmett, who directed my attention to this plant as new for Tasmania by sending me a coloured drawing, prepared by Mrs. Emmett, and who subsequently conducted me to the spot, where long since the only tree originally observed by them was felled. Such is the equable moisture of those ranges, that the stem, after having been severed from the root for several years, had pushed forth some new foliage; this with the drawing of the flowers has left hardly any doubt of the identity of this Pittosporum with the true P. undulatum, which is known to extend to Western Port on the Victorian coast; fruits from Tasmania have, however, not yet been seen by mo. I learn that a few more trees of this noble species were noticed since in the same region.

Comesperma ericinum, Caud. Gould's Country, A. Simson; Honeywood, J. E. T. Woods.

Comesperma calycomega, La Bill. George's Bay, A. Simson ; Southport, J. E. T. Woods.

Comesperma defoliatum. At Gibson's Plains, and on other heath tracts towards the River Arthur.

Australina pusilla, Gaud. In a dnmp gully, creeping among moss, ete., near the Fern Tree Bower, Mount Wellington, W. W. Spicer.

Eriostemon virgatus (the Button Rush). In thickets of Baucra, and among Chectospora sphærocephala towards and near the Arthur River in vast abundance.

Eriostemon squameus. King's Island, Lieutenant Stanley, R.N.

Eriostemon montanus, F.M. Plants indigenous to the colony of Victoria, I. 129. Summit of Mount Lomond at a height of nearly 5,000 feet, among masses of greenstone; Dr. Milligan. It occurs first named in my plants indigenous to Victoria, I. 129.

Boronia rhomboidea, Hook. Sparingly at North West Bay, near the inn, W. W. Spicer.

Frankenia pauciflora. Circular Head.
** Cerastium glomeratum, Thuill. New Town, W. W. Spicer; Mount Wellingten, P. E. Spicer.
** Sagina apetala, Linn. Mantiss, 559 ; King's Island, Neate.
** Spergula arvensis, Linn. Cultivated ground near Hobart Town, W. W. Spicer.

Polycarpon tetraphyllum. Circular Head.
Claytonia custralusica. J. Hook, Pontville, W. W. Spicer.
Hemichroa pentandra, R. Br. On saline meadows near Circular Head.

Ptilotus spatulatus, Poir. Pontville, W. W. Spicer.
Rhagodia mutans, R. Br. On a wall, Hobart Town, some distance from the Derwent, and in a neighbouring cemetery, W. W. Spicer.

Atriplex paludosum, R. Br. Wet saline flats about Circular Head.

Salicornia arbuscula, R. Br. Circular Head. Flinders Island, R. M. Johnston.

Rumex bidens, R. Br. In the River Jordan, Pontville, W. W. Spicer.

Platylobium furmosum. Swanport, Dr. Story; Harefield, Mrs. Groome; George's Bay, Bissill; St. Patrick's River, Hannaford; Gould's Country, A. Simson.

Platylotium triangulare. York Town and Port Sorell, C. Stuart.

Glycine clandestina, Wendl. George's Bay, A. Simson; Pontville, P.E. Spicer.

Suainsona lesserlifolia. King's Island, where it is dreadeas a weed, poisonous to pastoral animals.
${ }^{*}$ Trifolium tomentosum, L. sp. pl. 1086. Near Circular Her rather frequent, and permanently established.

Tetracarpaea Tasmanica. River Picton and Lake Pedder, Johnston; Gould's Country, A. Simson.

Anodopetalum biglandulosum. Adamson's Peak, Hon. J. R. Scott; mountains towards and along Arthur's River, F. v. M.; River Picton and Lake Pedder, Johnston. Leaves sometimes trifid or trifoliate. Well known as the "horizontal scrub " to form in many valleys of Tasmania dense jungles, almost impenetrable.

Eucryphia billardieri. Adamson's Peak, Hon. J. R. Scott ; towards Arthur's River, F. v. M.

Bauera rubioides, flore pleno. Deloraine, J. E. T. Woods.
** Alchemilla arvensis, Scopol. fl. Carniol I, 115, King's Island, Neate. This plant was not admitted by me into the census, published in the Society's volume for 1874, inasmuch as the plant cannot be regarded with certainty as indigenous. I traced it into New South Wales as far as the Edwards River. Its claim to nativity in Australia may remain for ever a disputable point. A. vulgaris is, however, truly indigenous in the glacier-region of the Australian Alps, and may possible yet be discovered in the snowy mountains of Tasmania also.

Geum urbanum, Linn. Deloraine, J. E. T. Woods.
Tilloa macrantha, J. Hook. Pontville, also near Hobart Town; W. W. Spicer.

Haloragis ceratophylla, Endl. Pontville, a variety with strictly opposite leaves, W. W. Spicer.

Ceratophyllum demersum, Linn. The river Jordan at Pontville, W. W. Spicer.

Lythrum Salicaria, Linn.
Deloraine, J. E. T. Woods.
Iythrum hyssopifolium, Linn.
Deloraine, J. E. T. Woods.
Kunzea corifolia. King's Island, R. Johnston.
Spyridium eriocephalum. Hummock Island, Dr. Milligan; Schouten Island, Dr. Story. On both islands the variety vexillifera.

Spyridium serpillaceum. Spring Bay, Dr. Milligan.
Spyridium obovatum. St. Paul's River, where it is 4 to 10 feet high. Spyridium Gunnii, Eldon's Bluff, Th. Gulliver, is probably a variety of S. obovatum.

Cryptandra amara. Swanport, Dr. Story. In all probability the C. alpina must be regarded as a highland variety of C. amara.

Pomaderris phylicifolia. St. Paul's River, C. St.
Pomaderris racemosa. King's Island, McGowan.
Conospermum taxifolium. George's Bay, A. Simson.

Cenarrhenes nitida. Adamson's Peak, Hon. J. R. Scott ; River Picton, River Huon, and Lake Pedder, Juhnston; between Circular Head and Arthur's River, F. v. M. ; Upper Arve, J. E. T. Woods.

Agastachys odorata. On heathy hills between Circular Head and Arthur's River, very rare, Emmett ; Lake Pedder, River Picton, and River Huon, Johnston; Adamson's Peak, Hou. J. R. Scott; Upper Arve, J. E. T. Woods.

Orites diversifolia. River Picton, Johnston.
Bellendena montana. Mount Ramsay, Emmett; Adamson's Peak, Hon. J. R. Scott.

Pimelea ligustrina. Gould's Country, A. Simson ; Deloraine, Southport, J. E. T. Woods.

Panax Gunnii. Lake Pedder, Johnston.
** Torilis nodosa, Gaertn. de fructib. I., 82. Copiously naturalised at Circular Head.

Hydrocotyle callicarpa, Bunge, near New Town, sparingly, W. W. Spicer.

* Freniculum vulgare, Gaertn. Abundant at Sandy Bay, W. W. Spicer.

Didiscus pilosus. Swanport, Dr. Milligan; Goshen Road, A. Simson.

Asperula oligantha, F. M. in Neerland. Kruitk. Archiv. IV., 111 et 112. In the 9 th volume of my Fragmenta, p. 187, it was proposed to substitute the above name for that of A. conferta, as incautiously adopted in the census; because very many years ago the appellation of A. oligantha became established in the Dutch journal above mentioned for that variable species, which already in 1848 I recognised as the only Australian one, and then named it A. oligantha (unaware at the time of Dr. Hooker's views), in contrast to the common A. odorata of Europe. The adoption of the specific name conferta as a collective name for the several supposed species formerly described would be apt to lead to confusion.

Galium umbrosum, Solander in G. Forster's Floral. insul. Austral. prodr., p. 89, includes as varieties both G. gaudichaudi and G. ciliare. Furthermore G. Australe includes as one of its forms G. albescens, and seems to stand in the samo relation to G. umbrosum as G. aparine to G. spurium.

Nertera depressa has been reduced to Coprosma, as \mathbf{C}. nertera in the Fragm. phyt. Austr. IX., 186.

Aster myrsinoides, La Bill. The variety erubescens occurs at Goshen Road, A. Simson.

Aster lepidophyllus. Circular Head.
Cotula reptans, Beuth. Pontville, W. W. Spicer.
** Bellis perennis, Linn. New Town, W. W. Spicer.

Gnaphalium candidissimum, Lam. On the eastern shore of Kungaroo Point, growing in the sand in considerable quantities. In contributions, \&c., No.III. (Proc. R.S.T. 1873, p. 61) this plant was noted as found "in the vicinity of Hobart Town, on roadsides and in cultivated fields;" and it is added: "This is the first knowledge which we possess of this pretty species having strayed out of its native home, South Africa." W. W. Spicer.

Gnaphalium Japonicum, var. sciadophora. Near Lake St. Clair, Th. Gulliver. In this curiously aberrant form the capitula are singly pedunculate and dispersed.

Helichrysum dealbatum. Circular Head.
Helichrysum pumilum. Lake Pedder, Arthur and Huon Plains, Johnston.

* Helichrysum Gravesii. This fragrant shrub, to which attention was first directed by Mr. Graves, came probably from the South of Tasmania. It is allied to H. cuneifolium and H. Backhousii, differing from both already in the form of its leaves.

Senecio velleyoides. Honeywond, W. C. Blyth; Gould's Country, A. Simson.

Senecis lautus, var. ; capillifolius. Sandy Bay, W.W.Spicer. Near Circular Head, T. Stephens.
** Onopordon acanthium, Linn. This very handsome thistle appears in a few places about New Town. W. W. Spicer.
** Carduus marianus, Gaertn. Common about New Town. W. W. Spicer.
*** Centaurea melitensis. New Town, W. W. Spicer.
** Calendula arvensis and its more showy ally C. officinalis are both thoroughly established at New Town. W.W. Spicer.

Crepis virens, Linn. Deloraine, J. E. T. Woods.
** Xanthium spinosum, Linn. (Bathurst Burr). Near the Railway Station, Hobart Town. This very troublesome weed also exists near Launceston; but it does not appear to spread with such rapidity in Tasmania as it does on the Australian continent. W. W. Spicer.

Microseris Forsteri. This plant is mentioned here for several reasons; first, because its extraordinary variability of the pappus is not yet fully recorded; I counted from 10 to 60 setæ or paleæ, more frequently scabrous than plumous, which when numerous are generally most slender, but when fewer often all broad; secondly, in alluding to this plant, which by careful culture might yield a new esculent root for cold countries (it prospering most on our snowy mountains), an opportunity is afforded for pointing out that it was Solander, who in Forster's prodromus called this plant Scorzonera scapigera; it being not generally known that in that pro-
dromus as far back as 1786 the first use was made of attaching to the specific names of any plants the initials of their author, from whom the aprellation first arose, a custom which hecame universal since the earlier part of this century. In Forster's prodromus occurred also for the first time the names of Ramunculus rivularis and Mesembryanthemum australe., both given by Dr. Solander.

Lobelia survepens. Swanport, Dr. Story.
*Lobelia platycaly,x, F.M. fragm.phyt.Aust. IV., 183. Settlement Island, Dr. Milligan (896). The staminigerous plant only obtained.

Lobelia pratioides. Hobart Town, Hannaford; Spring Bay, Parson's Pass, and Brushy Plains, Dr. Milligan (1297); a short leaved variety, which seems identical with Pratia puberula; but the fruit has not been available for comparison.

* Lobelia Browmiana, R. and S. syst. veg. V, 71. Mersey, C. St. ; also under 259 in Dr. Milligan's collection.
* Lohelia microsperma, F. M. fragm. X., 41. In various parts of Tasmania. As explained in the work above quoted, this plant is the L. gibbosa of R. Brown, but at least as far as the fruit is concerned not Labillardière's L. gibhosa, which latter belongs so far to the following species. The extreme minuteness of the seeds distinguish at once L. microsperma and L. Browniana. The ambiguity of Labillardiere's plant renders it almost unavoidable to abandon the specific appellation given by the French naturalist.

Lobelia simplicicaulis, R. Br. prodr., 564. Intermixed with the foregoing species. The large seeds, well described by Labillardiere as triquetrous under his L. gibbosa, bring this plant nearer to the East Australian L. dentata than to L. Browniana and L. microsperma. Most likely Labillardière did not recognise the differences between L. implexicaulis and L. microsperma, and gathered both promiscuously; whereas R. Brown, although he well distinguished the two species, seems not to have perceived the remarkable difference of the seeds.

Lobelia pedunculata, R. Br. Goshen, A. Simson.
Leenuenhwkia dubia, Lond. Pontville, W. W. Spicer.
Phyllachene bellidifolia, F. v. M. River Picton, Johnston.
Dampiera stricta, R. Br. Boobyalla, J. R. Scott. Scevola hookeri, F. v. M. Goshen, A. Simson.
Sellicra radicans, Cav. Port Esperance, J. E. T. Woods.
Lyonsia straminea, R. Br. Honeywood, J. E. T. Woods, the most southern locality, I believe, in which this plant has been observed. W.W.S.

Convolvulus sepium, Linn, var. soldanella George's Bay, A. Simson.

Styphelia pinifolia, Spr. Gould's Country and George's Bay, A. Simson.

Etyphelia scoparia, R. Br. The first authority for this plant is Smith's specimen of the Botany of New Holland, p. 48. 1793.

Prionotes cerinthoides, R. Br. Adamson's Peak, J. R. Scott; Lake Pedder, Johnston; a variety with flesh coloured flowers occurs.

Richea pandxnifolia, J. Hook. Lake Pedder, Johnston; also beyond the River Arthur, Emmett.

Epacris microphylla, R. Br. Gould's Country, A. Simson.
Trochocarpa disticha, var. Cunninghami. Picton River, Lake Pedder, and Huon River, Johnston.

Limnanthemum exaltatum, F. M. fragm. IX., 165. In the elaboration of the census it was overlooked that the genus Limnanthemum has 21 years' priority over that of Villarsia. The names of Villarsia exigua and V. Gunnii have therefore also been changed accordingly.

Gentiana saxosa, R. and G. Forster in Svensk Wetensc. Akad. Handing., 1777, p. 183, t. 5. This is the oldest record of the Australian Gentiana.

Sebcoa ovata, R. Br. Pontville, P. E. Spicer, very dwarf; New Town, W. W. Spicer.

Utricularin lateriflora. Near Arthur's River.

* Westringia rosmariniformis, Sm. tracts 277, t. 3. South Esk near Launceston, and Tamar near George Town; Hannaford. Undoubtedly the typical plant in every respect, although as a Tasmanian one it has been referred by Bentham to W . brevifolia as a variety. No transits are as yet known to occur, but if such should be found, then Sir James Smith's plant, on which the genus was actually founded, must take precedence.

Westringia brevifolia. Mersey River, C. St.
Westringia angustifolia. River Picton, Johnston.
Teucrium corymbosum, R. Br. Pontville, W. W. Spicer.
Solanum vescum. King's Island, Lieutenant Stanley.
Glossostigma elatinoides. King's Island. The recent disccvery of a remarkable Limosella in South East Australia has led to a modification of the characteristic of the latter genus, and by analogy this alteration affects also the allied Glossostigma so far as to render its reduction to the older genus Microcarpaea desirable.

Limosella aquatica. C. St. ; Circular Head.
** Linaria cymbalaria. Mill. Hobart Town and New Town, W. W. Spicer.

Veronica plebeja. Macquarie Harbour ; Dr. Milligan. ** Veronica hederefolia, Linn. New Town, W. W. Spicer.

* Plantago Lagopus, Linné, sp. pl. 114. Recently of spontaneous occurrence on waste places near Hobart Town, W. W. Spicer.
** Plantago major Linn. Sparingly, Hobart Town, W. W. Spicer.

Fagus Gunnii. Lake Pedder, Johnston.
Tallisneria spiralis, Linn. The River Jordan, at Pontville, W. W. Spicer.
** Anacharis canadensis, Planch. Was first introduced into the colony about the year 1862, when specimens were discovered in the reservoir, supplying the basin in the Franklin Gardens, Hobart Town, where they are still thriving. It has now found its way to the River Jordan, at Pontville, and will no doubt soon be heard of in other localities. W. W. Spicer.

Dipodium punctatum, R. Br. Gould's Country, A. Simson.
Pterostylis pracox, Lindl. Goshen, A. Simson.
Caleana major, R. Br. George's Bay, A. Simson.
Acianthus exsertus, R. Br. Gould's Country, A. Simson.
Lyperanthus nigricans, R. Br. Gould's Country, A. Simson.
Spiranthes Australis. South Esk, Johnston.
Thelymitra aristata. On the Derwent, W. W. Spicer; Port Arthur, J. Coverdale.

Chiloglottis Gunnii. Biver Picton, Johnston.
Corysanthes pruinosa, Rich. Cunningham, in the New South Wales magazine, No. 1 ; Lindl. gen. and sp. of archid., pl. 393. This is the Tasmanian species, so well figured by the late hon. W. Archer. To Mr. Rob. Fitzgerald, the Deputy Survesor-General of New South Wales, belongs the credit of having first clearly distinguished C. pruinosa from C. fimbriata in his fine work on Australian crehids. The former species is now also known from Flinders' Island. Whether more than one Corysanthes occurs in Tasmanian territory remains to be ascertained, four occurring in New South Wales. These minute and tender plants, while early flowering in the season, are easily overlooked in the secluded haunt, in which they delight to conceal themselves.

Gastrodia sesamoides, between Circular Head and Arthur's River, F. v. M.; River Picton, Johnston.

Caladenia congesta. Omitted as a species of doubtful value from the census; but the writer had recently an opportunity to examine this plant from the mountains of the Murrumbidgee, where it was collected by Miss Chamberlin; and as the characteristics of the labellum seem not subject to any great alteration, it will probably be best to admit the species.

Patersonia glauca, R. Br., Gould's Country, A. Simson.
Hrrmodorum distichophyllum, Huon Plains and Lake Pedder, Johnston.

Blandfordia marginata. Near Arthur's River, Emmett.
Xyris gracilis. Widely dispersed over heathy ground from Circular Head to Arthur River. The three styles are separated to their base, and the anther-cells disjointed by a dilated connective. In this respect the flowers contrast remarkably with those of X . operculata; both species grow much intermixed. In wet places the leaves of X . gracilis are sometines not developed, and otherwise they are variable in width.

Hewardia Tasmanica. Lake Pedder, Johnston.
Astelia stylosa. Huon Plains, Johnston. A very dwarf variety, unless a distinct species, which question the want of fruits as yet prevents to settle. Scent, that of hyacinths. A. stylosa must be transferred perhaps to Milligania, which only differs in capsular, not baccate fruit, from the genus astelia.

* Potumoyeton praelongus. South Esk. I have assumed that it is this species of which the late Mr. Sam. Haunaford sent me kindly a specimen but not with ripe fruit.

Xerotes glauca, R. Br. Pontville, W. W. Spicer.
Juncus Brownii. Saline meadows at Circular Head.
Juncus maritimus. Circular Head.
Restio complanatus. Southport, J. E. T. Woods ; Honeywood, Blyth: dispersed from Arthur's River to Circular Head, F. v. M.

Lepyrodia puniculata. Frequent on the heaths between Circular head and the Arthur River. In dry localities, dwarf with few flowers in the panicle.

Culostrophus elongatus. In swamps replete with Bauera between Circular Head and the Arthur River.

Centrolepis tenuior, R. and S. Pontville, Mt. Tor., W. W. Spicer.

* Heleocharis acicularis, R. Br. prodr. 224. South Esk. This plant was already recorded by R. Brown, in his prodromus, as an inhabitant of Tasmania, but under the name of H. pusilla.

Isolepis Gaudichaudiana, Kunth enum. II., 201. In fern tree guilies between Circular Head and the Arthur River.

Scirpus pungens. Macquarie Harbour, Dr. Milligan.
Lepidosperma filiforme. Swanport, Dr. Story ; South Esk, C. St.

Lepidosperma Sieberi. Southport and South Esk, C. St.; Swanport, Dr. Story.

Cladium junceum. New Norfolk, Abbott; Southport, C. St.; Swanport, Dr. Story.
*Cladium Radula, R. Br. prodr., 237. Swanport, Dr. Story; towards Mount Field, East, F. v. M.

Cladium schoenoides. Southport, Dr. Story.
Cladium Cunnii. Evandale and Merser, C. St.

Chetospnra temuissima. Port Sorrell, C. St. ; Swanport, Dr. Story ; from Arthur's River to Circular Head, F. v, M.

Chetospora axillaris. Southport, C. St.
('hutospora nitens. Swamport, Dr. Story ; Southport, C. St. ; Circular Head, F. v. M. ; King's Island, Neate.

Chutospora capillaris. Bay of Fires, Bissill; Southport, C. St.

Schemus fluitans. In brackish stagnant pools near Southport; C. St.

Uncinia riparia. Southport, C. St.
Uncinia tenella. Mersey and Southport, C. St.; between Circular Head and the Arthur River in fern tree valleys, not rare, F. v. M.

Carex breviculmis. Scuth Esk, C. St.; Swanport, Dr. Story ; Pontville, W. W. Spicer.

* Carex tereticaulis, F.M., fragm. phyt. Aust. VIII., 256, at the South Esk and near Perth.

Carex chlorantha. Huon River, Th. Gulliver; on Mount Wellington up to an elevation of 4,000 feet.

Carex Gunniana. Mersey, C. St.
Carex longifolia. Swanport, Dr. Story.
Carex cataracte. Swanport, Dr. Story.
Spinifex hirsutus. George's Bay, A. Simson ; Sandy Bay, W. W. Spicer.
** Zoysia pungens, Willd. in Berlin, Verhandlung III., 44 s., King's Island. A small form creeping among Chætospora nitens. Probably overlooked in cuast tracts elsewhere.
** Anthoxanthum odoratum. Summit of Mount Tor, New Town, W. W. Spicer.
** Cynodon dactylon. Hobart Town, W. W. Spicer.
** Aira caryophyllea. Mount Tor, W. W. Spicer.
** Holcus lanatus. Gould's Country, A. Simson ; New Town and Kangaroo Bottom, W. W. Spicer.
** Briza maxima. The Domain, Hobart Town, W. W. Spicer. B. minor has become one of the commonest grasses round Hobart Town.
** Bromus mollis and B. unioloides. Neighbourhood of Hobart Town, firmly established, W. W. Spicer.
${ }^{* *}$ Lolium temulentum. Corn fields, New Town, W. W. Spicer.
**Lepturus filiformis. Deloraine, J. E. T. Woods; Pontville, on river Derwent, W. W. Spicer.
${ }^{* *}$ Lepturus filiformis, var. incurvatus. Sandy Bay, roadside, abundant, W. W. Spicer.
** Hordeum murinum. New Town, abundant, W.W. Spicer.
Festuca distichophylla. Circular Head.
** Festuca ovina. Mt. Tor, W. W. Spicer.

Festuca syrtica. Saline flats at Circular Head.
Hierochloa rariflora. Bay of Fires, Bissill; St. Paul's River, C. St. ; Swanport, Dr. Story ; Gould's Country, A. Simson.

Stipa teretifolia, Steud. glum. I., 128. Swanport, Dr. Story; Tamar and Southport, C. St.

Stipa crinita, Gaudich., Bot. Voy. Freycin., 407 , or an allied species occurs on King's Island.

Grammitis leptophylla. Cataract at Launceston, Johnston.
Lomaria vulcanica. Waterfalls on Mount Wellington, Oldfield; Mount Laperouse, C. St. ; North West Bay, W. W. Spicer.

Lomaria fluviatilis. Gould's Country, A. Simson.
Pteris comans. Along Arthur's River and in its vicinity.
Todea Africana. Port Davey, Hon. J. R. Scott; Gould's Country, A. Simson.
Asplenium umbrosum. Gould's Country, A. Simson.
Cyathea medullaris. Between Circular Head and Arthur's River, about eight miles inland. Mr. S. B. Emmett, the discoverer of this noble tree fern in this particular locality, measured stems fully 40 feet long, but always found them remarkably slender. Mr. Stephens recorded this fern in the Royal Society's Publication, 1872, p. 25.

Alsophila Australis. Gould's Country, A. Simson.
*Alsophila eacelsa. R. Br., prodr. 158. Var. Cooperi. Base of Adamson's Peak, near Port Esperance, Hon. J. R. Scott. To this reference has been made in the volume of the Royal Society of 1872, p. 50.

Schizoer bifida. The authority given usually for this fern, and also in my census, is not the oldest. Swartz defined the species already in Schrader's Journal for 1800, vol. II., page 7. as shown by Pritzel, Icon. bot. index, 999, and Pfeiffer Nom. bot. II., 1077. Perhaps, however, Sir James Smith already had this species, with others in view when he established the genus in 1791. Mem. Acad. Turin, V. 419, t. 19, f. 9 .

Schizeca fistulosa. Between Circular Head and the River Arthur.

Dawsonia superba. Between Circular Head and Arthur River.

Cyttaria Gunnii. On the beech trees between Circular Head and Arthur River. From this locality specimens were obtained for Baron von Thümen's Mycotheca.

ALGE

(All from Mrs. Meredith's collection formed at Orford).
*Sargassum Sonderi, J. Ag.
Nereia australis, Harv. in J. Hook. fl. Tasm. II., 289.
Halyseris Muelleri, Sond.
Dictyota paniculata, J. Ag. symb., p. 5.
*Dictyota nigricans, J. Ag.
Liebmannia australis, Harv. in J. Hook. fl. Tasm., 291.
*Liebmannia ramulosa, J. Ag.
*Thamnoclonium echinatum.
Lenormandia marginata, Harv. Ner. Austr., 19.
Pollexfenia pedicellata, Harv. in Hook. Lond. Journ. III., 431.

Dictymenia Harreyana, Sond. in Linnaea XXV., 697.
**Chondropsis Harveyana, J. Ag.
Chondria dasyphylla, Ag. sp. alg. I., 350.
Chondria opuntioides, Harv. iu J. Hook, fl., Tasm. II., 297.
*Chondria clavata.
Rhytiphlæa australis, Endl. gen. suppl. III., 48.
Polysiphonia Hookeri, JJarv. Ner. Austr., 40.
Polysiphonia Hystrix, J. H. and Harv. Ner. Austr., 41.
Dasya Gunniana, Harv. Ner. Austr., 59.
Dasya hapalathrix, Harv. phycol. Austr., 88.
*Dasya elongata.
*Dasya ceramoides.
Delissa pulchra, Mont.
Delissa elegans, Mont.
Laurencia Tasmanica, J. H. and Harv. Ner. Austr., 84.
*Laurencia thyrsoidea.
Wrangelia nobilis, J. H. and Harv. in Lond. Journ. III., 411.
*Wrangelia ballioides, J. Ag.
Wrangelia setigera, Harv. in Hook. fl. Tasm. II., 309.
${ }^{* *}$ Rhodoglossum latissimum, J. Ag.
Rhodophyllis Gunnii, Harv. in J. Hook, fl. Nov. Zel. II., 247.

Rhodophyllis membranacea, Harv., l.c., 247.
Rhodymenia foliifera, Harv.

Areschongia Laurencia, Harv. in trans. Roy. Ir. Acad. XXII., p, 554.
*Areschongia australis, Harv.
Rhabdouia nigrescens, J. H. and Harv. in Lond. Journ., VI., 409.

Gloiosaccion Brownii, Harv. phyc. austr. t. 83.
Mychodea membranacea, J. H. and Harv. in Lond. Journ., VI., 408.
**Corynocladia umbellata, J. Ag.
Polycælia fastigiata, Harv. in J. Hook. fl. Tasm. II., 324.
Callophyllis coccinea, Harv. in Lond. Journ., VI., 405.
*Callophyllis Harveyana, J. Ag.
Kallymenia Tasmanica, Harv. in J. Hook. fl. Tasm. II., 325.
*Kallymenia polycælioides, J. Ag.
Gigartina brachiata, Harv. in J. Hook. fl. Tasm. II., 325.
*Epymenia halymenoides, J. Ag.
*Chrysymenia Meredithiana, J. Ag.
Centroceras clavulatum, Mont., fl. Alg., 140.
Ceramium diaphanum, Roth.
*Thamnocarpus Harveyanus, J. Ag.
Griffithia Sonderiana, J. Ag.
**Bornetia Meredithae, J. Ag.
Caulerpa Harveyi, F. v. M. in Harv. phyc. Austr. ,95.
Caulerpa scalrelliformis, Ag. sp. Alg., I., 437.

ON SOME TASMANIAN PATELLIDE.

By the Rev. J. E. Tenison Woons, F.L.S., F.G.S.

[Read 9th May, 1876.]

Our knowledge of Australian mollusea is almost confined to descriptions from the shells alone. Nearly all that we do know of the animals inhabiting the shells has been given to us by Messrs. Quoy and Gaimard in the voyage of the Astrolabe, where the plates as far as they go, leave but little to be desired. In the Nudibranchiate section Mr. G. F. Angas, F.L.S., etc., has done good service. But the greater part of the field remains untrodden. I propose in this paper to give a more detailed account than has yet appeared of the shells and animals of some Tasmanian Patellide. I choose this family because it is the one in which a knowledge of the animal is most required to arrive at correct principles of classification. Limpets cannot be determined from the shell alone. The genera aro classed according to the respiratory organs of the animal. These can only be told by a study of the halits of the animal, and by dissection. To both of these methods I have given lately soue attention, and a part of my conclusions are embodied in the present paper.
Before giving a glance at the character of the genera, let me state the principles which have guided me in the nomenclature. Conchology has receutly increased its synonyms with a rapidity which is perfectly appalling. No naturalist can deprecate too strongly the practice of lightly changing a receired name. It is embarrassing, nay, disheartening to students, and destructive of progress in science. This is not the place to enter into the causes of the evil, but it is in part due to a misunderstanding of the labours of Dr. Hermannsen, Chenu, and others, as embodied in the Manual of Conchyliologie. I shall adhere strictly to the British Association rules, and notably not to admit "priority" for pre-Linnean names, nor for those where no definition or figure has been given; and, even in the cases not thus exempted, not to change the name if it be generally received and known among naturalists.

For those reasons I shall adhere to Eschscholtz's genus of Acmera instead of Tectura. First, because Messrs. Auduoin and Milne Edwards gave no definition of their genus, and secondly, because Acmara is the name by which it is described in the works of Professors Forbes, Hanley, Woodward, Chenu, Carpenter, and the earlier writings of Mr. Angas.

Limpets, or bonnet shells (Patellida from Patella, Latin for a little dish) are classified according to the respiratory organs of the animals which inhabit them. This is true at least for the only genera known in Australia.

The true limpets-Patella-have the gills disposed in a circle round the mantle, in the space between it and the foot. On detaching a limpet from the rock and placing it upon its back in the water the mantle will be seen to spread out, disclosing the feathery filaments of the gills like a fringe round the upper part and below the silvery muscular attachments. Within this circle is the broad foot attached all round in its upper part by the silvery muscles aforesaid, except an open clear space for the free movement of the head, having a rather large chamber behind in which is the excretory orifice. The mantle is, however, continued round the shell in front of the head, and in one of the Tasmanian true limpets so are the gills.

But in some limpets there are no gills round the mantle. In this case, in one genus, they are placed at the back of the head, and can be seen as a long feathery plume, coming forth from the head chamber. This is the second genus Acmaa, I do not know of any difference by which the shells of the genus may be distinguished. True limpets are sometimes nacreous, Acmara, are never so. We have only two species of true limpets in Tasmania certainly ascertained, while we have many of Acmсa. There are, of course, other limpets described, but the animals have not been examined, and until they are the shells must be considered as only provisionally classed.

Besides the above arrangement of the gills we have limpets which have no gills at all, but breath by a true lung. These are the Siphonariæ. Their anatomy is not well understood, but what little is known removes them in their whole organisation very far in the animal rank from true limpets. As I have had facilities for the examination of two of the species, I have preferred to place my observations in this paper ; they are not Patellidæ, however. Their shells are only in some slight details to be distinguished from limpets, which shows us how little a shell of such simple character can be a guide to the knowledge of the animal it shelters.

In addition to the breathing apparatus we have in all mollusca a very valuable organ as a means of identification, if not of true classification. That is the lingual ribbon. It is a long horny membrane, studded with minute points or teeth of a very hard siliceous nature, sometimes vitreous and transparent, but in all the limpets of a rich golden or dark brown color. By some writers this organ is called a tongue, by others teeth, radula, \&c. For convenience I shall adopt a name proposed by many naturalists, viz., odontophore. Its nature and office are not thoroughly understood. Ihere record my observations in the case of the Tasmanian limpets. All of these animals have strong cartilagenous jaws curved and swollen on
the upper side. Between these the odontophore is placed, and has, in this part alone, a wide transparent membranaceous expansion. From the under side and back of both jaws two museles proceed and meet on the under side of the ribbon, and continue to its point, which is tongue-shaped, and with a gradually diminishing number of teeth. These muscles I call the retractors. There are also two extensor museles proceeding from the point of the jaws and mecting under the odontophore, about half way down the membranaceous expansion, and continuing to its inner end. The membrauaceous expansion itself appeared to have free movement and not to be attached in any way. Now,on turning a limpet on its back in the water and watching its mouth with a lens, the ribbon is seen to be in constant movement. First there is the outer lip of the mouth with cirrhi and notched below. Secondly, a mouth opening vertically. Within this the odontophore is seen to be constantly moving, being drawn back over the curved cartilaginous jaws like a strap, and when drawn back the mouth would close. It seemed also as if it was pushed in between and not over the jaws in returning to its place. The whole operation was much like the action of a strap drawn over a drum wheel.

The action of the odontophore, however, does not rest here. It is not only a rasp for tearing away from sea weeds, etc., the necessary portions, but it lines the whole of the cesophagous, and is continued along a considerable portion of the intestinal tube. Its length is consequently very much more than the length of the shell. In Patella limbata the length is enormous, being ten to eleven inches; while the longest diameter of the shell is seldom over two. Some naturalists have imagined that the length depends upon the age. I have not found it so. The proportionate length is generally the same in young as in old animals. The distal end of the ribbon is soft, and with rudimentary transparent teeth. This may have led to the idea that the odontophore was constantly being added to. It seems to me,however, that the rudimentary teeth were of a different characterand structure from those of the rest of the ribbon, and serve some other purpose. All the teeth are hooked backwards, so that by the movement of the odontophore the fragments of sea-weed are torn off, and continually by the same action forced down the csophagous, and literally shredded as they pass over the innumerable fine points. Properly speaking this process combines the office of mastication and digestion, teeth, gizzard, and stomach all in one, and as far as my examinations have gone there is really no stomach, that is to say, a cavity where food is specially reserved for assimilation. There is a dilatation of the intestinal tube
scarcely perceptible in some, as in Patella limbata, Phil., a kind of plexus where the odontophore is very much twisted and convoluted, so as scarcely to be drawn out without breaking, but this I imagine serves some purposes of digestion, very different from the action of what we usually call a stomach. These, however, are matters of my own opinion ouly, which I have not been able to bring to the test of any physiological experiment.

The odontophore is easily drarin out of all gasteropods examined by me, except the species just mentioned. In Patellæ and Littorinidæ (winkles) it is always long. In our Risellas and Littorinas it is of enormous length, but lies, in this case, in a simple coil immediately behind the mouth as asilky siliceous thrad. In Chitons it is a closed tube with teeth all round it as in Haliotis navosa.

Professor Forbes (Brit. DIoll.) has remarked that the character of the teeth and their arrangement is very constant in the various genera. I have found that it varies also for the species in Tasmania, at least in the order I am now dealing with, and I hold it to be a very valuable test as to specific difference. Indeed it is a test where all others failed, because shells are often so corroded as to obliterate marks on which specific differences are chiefly erected. This is exclusively the field of the microscopist, but I am convinced, not only that it is a wide and valuable field for investigation, but that until it is• carefully explored we shall have no solid system of conchology resting upon a secure scientific basis. The teeth in all the Patellee and Acmece have raised double edges or points which curve, succeeded again by a smaller double edge or point. Thus each set is curved back from its attachmont to the odontophore at its lower side. As far as my investigations have gone there is a general correspondence between the pattern of the odontophore and the organs of respiration. In Patellæ it is of one type, and Acmeæ of another, though the resemblance is very close. In Siphonaria, however, which is pulmoniferous, we shall see in the course of this paper that it has a dentition quite uniform with the land and freshwater mollusca. This can hardly be called an anomaly, though it points out a singular fact rather auverse in my mind to the theory of natural selection. Here we have a marine animal with a shell differing but slightly from the commonest of our marine types and apparently living under the same conditions, yet organised to breathe air and salt water, and with a dentition exactly similar to pulmoniferous mollusea living under totally different conditions. Of course a double inference may be drawn from this as from similar facts, but they point in my mind much in the stronger way to an
origin in an infinitely varied creative power, showing by its strange and complex variety that evidently no conditions organisations, nor combinations were an impossibility. Scientific observations as they are extended seem to show rather the absence of law than the existence of it, or rather, as I should phase it, an infinitely creative power and ineshaustible mind.*

If I were to pursue the argument further I should reason thus: In the theory of natural selection we ought to perceive a certain congruity between organisations and the circumstances of their existence. This is no more than what was formerly used as an argument of design. Thus in the case of limpets with conical shells of simple structure, breathing by gills, and living sometimes in and sometimes out of salt water, digesting sea weed by means of a certain pattern of odontonhore, we see conditions of life well ba anced, as we interpret them, to meet their requirements. In the land and freshwater mollusca we meet with more complex shells, breathing by lungs, and odontophore adapted to the food and the other conditions, and in this case also we may find very close relations between the conditions of life and the organisation. But all our inferences are set at naught, upon meeting a limpet with every habit and condition of life that is shared by its marine relations, but with lungs and an organisation exactly like land and fresh water mollusca. It will be urged that such instances are destructive equally of the argument of design. But this I readily admit, and I must say that one service which the theory of natural selection has $r \in n d e r e d$ is in destroying this argument by showing that it can be read backwards. It is a contradiction of infinite power to suppose it to be tied to certain means to attain an end. The truth lies the other way, as such instances as the anomalous Siphonaria (the pulmoniferous marine mollusea referred to) show us. What makes the anomaly still more striking is that the genus is confined to the eastern hemisphere. Three species supposed to be of that genus are found in the Miocene of Europe,

[^16]through an identification from the shell alone must at best be doubtful.

I will now proceed to a description of the species examined by me.

Patella limbata. Philippi Abbild. und Besch Conch. pl. 3 fig. 1 (as from North Australia).

Shell large, ovate or suborbicular, somewhat depressed, ribbed, dusky brown, with the intercostal spaces darker, apex anterior, rounded, nearly always much corroded, and slightly nacreous ; ribs broad, rounded, thickly, often coarsely grooved with lines of growth; intercostal spaces concave, often containing smaller round ribs which do not reach the apex, the number apparently increasing with age; interior broadly margined with large pattern of alternate rich claret and brown, the claret marks intercostal, and may be traced some distance up the shell ; within the margin interior of shell of a peculiar silky nacre, silvery, bluish yellow or golden; spatula well defined, bluish grey, slightly darker at the margin, with broad concretionary line outside for the muscular attachment, which is often coloured yellow. Held up against the light the shell shows beautiful double claret-coloured rays, which become smaller and interrupted by age, marking the intercostal spaces. As the dimensions vary I give the measurements of a few specimens, all taken from the rocks at Southport. Long. 62, * Lat 53, alt. 24, ribs 37, (old but not corroded) ; Long. 59, Lat. 47, alt. 27, ribs 37 ; Long. 71, Lat. 64, alt. 32, ribs 36 ; Lon. 54, Lat. 47, alt. 23, ribs 29, Long. 71, Lat. 61, alt. 28, ribs 37 ; Long. 67, Lat. 37, alt. 35, ribs 33. Thus the relative dimensions and number of ribs vary. The species is always found high above low water mark. It attains its largest dimensions in Tasmania, but is. the commonest limpet of all the south coast of Australia.

Animal olive green, above base of foot bluish brown, mantle very pale yellowish green, fringed with numerous short olive or speckled tentacles, every fourth one of which is longer, head and muzzle olive green above, flesh-coloured elsewhere; tentacles of head somewhat long and tapering, and dark olive above; eyes scarcely perceptible at their outer base; gills pale, translucent, and narrow, fringing the mantle all round except at the excretory orifice above the head, no attachment to head or neck, and not apparently passing into the head chamber; muscles of attachment silvery and conspicuous within the gills. Odontophore very long from (8 to 10 inches), and curled in the upper cavity of the foot in large irregular folds, consisting of a series of pairs of long curved sharply pointed teeth, closely set, and of dark colour, with a small trian-

[^17]gular golden translucent cusp on the outer base. The whole oilontophore enveloped in a fine golden yellow transparent membrane, which is either the intestinal tube or its lining. The olontophore never can be drawn from the animal without this membrane, owing to the long set pointed teeth which hold it in its place.

Patella Ustulata. Reere Icon. p7. 31, fig. 88. If I am right in my identification of this shell it must be the same as uty P. tasmanica, described in last year's proceedings of this Society. Reeve gives no habitat for his shell, which from appearance was worn and corroded. The unworn specimens found living on the rocks are as different as possible, the ribs and riblets being then conspicuous, and the whole shell a dull yellowish white with no trace of the scorched colouring. When deac, however, and thrown on the beach this feature is conspicuous. It has many fine riblets between the coarse somewhat nodular ribs, and the margin is very finely pectinated. A peculiarity of the animal is that it seldom comes above low water mark, and prefers situations where it is much exposed to the wares. It is very stationary, often being sunk into a regular pit in the rock, and appears to live upon the fine green ulra on the rocks. It is nearly alwars covered, not only with confervoid growths, but also nulliporæ so as to quite alter its shape and appearance. This often alters the height of the shell, which is usually depressed, and changes the position of the apex, which is usually submarginal. The interior is white and the spatula not defined.

The animal is of uniform pale yellow at the base; white above the foot, gills semi-pellucid and continued as a delicate fringe all round the mantle. I, however, noticed one exception where, like the former species, the gills were discontinued in front of the head, mantle without tentacles; head livid, with semi-pellucid tentacles; eyes very small and at exterior base ; buccal mass red and fleshy; cartilaginous jaws long and less tumid than most limpets; odontophore scarcely as long as shell; not coiled, but bending with intestine in two folds. Teeth closely set and not high, composed of five central small curved cusps, and two tri-lobed laterals, all narrowly tongue-shaped, laterals more acute. The fire centrals have the middle tooth often small. Teeth brown, lighter on the summit.

There are many other Patella known to us from the shells alone, the animals of which I have not examined, viz., P. decora, P. aculcata, P. chapmani, P. radians. Some of these will doubtless prove to be Acmæa.

> GENUS 2.-ACMEA.

Animal with a limpet shell, but breathing by a plume-like gill inserted at the back of the head.

Acmea costata. Sowerby Zool. Voy. Beag., as Patella, Probably also P. alticostata, Angas. Proc. Zool. Noc. 1865, p. 56, pl. 2 fig. 11. This shell has always been set down as a Patella, but the animal shows it to belong to the above genus. The shell is oval or elliptic, depressed and somewhat tumid, apex submedian with from 12 to 30 coarse-rounded rough uneven ribs, irregularly marked with lines of growth which makes them almost nodular. Interstices concave, transversely barred at intervals with black or brown lines, which are the remains of successive marginal marks; they are seldom regular, appearing at intervals and frequently corroded away; interior porcellanous, white or faintly bluish white, irregularly stained pale brown, shining; margin undulating, with a well-defined narrow brown edge, which is spotted deeper brown or black at the intervals between the ribs; spatula generally well defined, reddish brown, paler in the centre. Size varying, but generally 30 to 40 mill., and the proportions of length, breadth, and height being as 10,8 , and 4 .

Animal a dull yellow below, blending into brown at the base of the foot, tentacles fine and short, with eyes at the external base; gill plume long, flat and lanceolate, flexuously extended over the head; muzzle yellow, and notched below; inner lip cartilaginous and transparent, with a shelly appendage coming down from above horizontally across the tongue and apparently holding the food against the rasp ; jaws cartilaginous, crescentic, but pointed and attached; very massive red muscles; odontophore one and a half the length of shell, with broad membranaceous expansion at mouth; teeth in pairs, alternating large and small, the small ones close together and somewhat narrow ; the larger with a broadly semi-circular edge and a small lateral cusp on the outer side.

This Acmæa is equally common in South Australia and Tasmania. It exists between the tidal marks, and is of such a large size that it was never suspected to be other than a Patella. Yet in Australia the Acmæa genus has species quite as large as Patella, though this I think is a new fact in zoology. They feed on ulva, and are considered better eating than true limpets, though these shellish are seldom eaten in Australia.

Acmea septiformis. Quoy and Gaimard, Foy. de l' Astrolabe, pl. 71, f. 43, 44. A. scabvilirata, Angas, Zool. Proc. 1865, p. 154, Tectura septiformis, Cox Exchange list: Sydney, 1867. Patella cantharus, Reeve (probably) pl. 4, f. 131.

This shell varies so much in colouring and the fine markings that I am afraid it has received a longer list of synonyms than I can enumerate. The shape of the shell is, however, constant. It is small, broadly ovate, depressed, apex acute, submarginal; in young well preserved specimens,

51

ornamented with fine distinct lire faintly decussated with lines of growth ; edge entire, sometimes transparent; colour olive with greenish gray spots; deep olive approaching black; greenish gray with network of brown ; yellowish, marked with zigzag lines of brown, pale transparent tortoise-shell, or, rarely, beatifully and regularly rayed with broad lines of brown on a pale green ground. Interior with a transparent or dark olive margin, rather evenly circumseribed by a bluish white porcellanous enamel, which is opaque, opalescent or translucent, showing external pattern, spatula imperfectly defined in various shades of brown and often absent. Average dimensions, Long. 14, Lat. $11 \frac{1}{2}$, alt. $4 \frac{1}{2}$.

Animal very pale yellow, base of foot sometimes a little darker ; mantle translucent, muscular attachment silvery ; gill plume long, coarse, and conspicuous; head somewhat large and livid; tentacles pale purple brown, rather long and fine pointed; eyes conspicuous at external base, and somewhat on upper side; buccal mass red and fleshy; jaws stout, translucent cartilaginous ; odontophore about a fourth longer than the shell, composed of pairs of broadly lanceolate recurved teeth, concave on the inner side and convex on the recurved siud. The pairs of teeth are alternately large and small, the larger pairs haring a broad short cusp on the outer side.

This species often so closely resembles A. testudinalis, M Müll. that I was inclined to believe it is the same, but the teeth are slightly different. That shell is found in N.-East America, in all the circumpolar seas, and in Japan, from 4 to 48 fathoms. Professor Forbes (Brit. Moll.) says that the eyes are always at the internal base of the tentacles; this peculiarity I havo met in some specimens but rarely. Common everywhere in pools, under stones.

Acmisa Flammea. Guoy and Gaim. Voy. de l' Astrol. Vol. 3, p. 354, pl. 71, fig. 15-24, as Patelloida. Shell oblong, elliptic, convex and turgidly conicul, apex anterior acute and moderately inclined, shell somewhat colid, with obsolete radiating strix, which, however, are seldom visible; lines of growth numerous and conspicuous; of varied colour, but generally marbled olive, fuscous brown and dingy yellow, reticulated or in straight or forked lives; interior margin acute and rayed or reticulated a deeper brown than exteriorly; spatula brownish, badly defined and interrupted, circumscribed by a ring of faint translucent enamel marking the muscular attachment.

Animal creamy white, base of foot dingy yellow; head small, tentacles short and swollen, eyes at base above, branchial plume very inconspicuous, odontophore scarcely length of shell. Unfortunately I have mislaid the specimens I reserved
of this animal before submitting them to microscopical ex. amination.
MM. Quoy and Gaimard say the animal is also found at Guam Island.

I have much doubt on my own mind if this species is not identical with A. subundulata, Angas. Zool. Proc. 1865, p. 155. I have marked in italics the difference between this species and the preceding. Its habits are different, as it is found generally out of water on rocks. Not common at Southport, where alone I found it. Mr. Angas found it at Port Lincoln, South Australia ; and Mr. Archer found it in Hobson's Bay, Victoria. Mr. Angas says (Zool. Proc. 1867) that the worn specimens of this shell are prettily marked with a cross. I have not found it so, but I have found it the case with the worn specimens of the young of a new and large species of Acmæa, which I shall now describe for the first time.

Acmea crucis. n.s. A.t. ovata, postice latiuscula, alta, conica apice acuto, ante mediano, sordida, scepe corrosa, absque liris radiantibus; striis tamen incrementi irregularibus (sub lente confertissimis); margine acuto, integro, intus linea fusca constricta exacté fimbriato; aliquando rufo fusca tesselato; intus alba nitida, encausta, irregulariter rugosa; spatula eleganter lineis undulosis rufo-fuscis margine, concentrice definita et lineis radiantibus decussata, intus caruleo-albo nebuloso. Long. 31, Lat. 31, alt. 19 mil.

Shell ovate, broader behind, very high, conical ; apex acute antemedian, sordid white, often corroded without any radiating ribs, but irregularly and finely concentrically sulcate with lines of growth; margin acute, entire, ovate, fringed with a well defined brown line which is often tesselated with red brown, above this line, the interior is white and highly enamelled; spatula well defined by undulating concentric rich red brown lines, and crossed with radiating lines; in the centre the spatula is clouded with pale or opalescent blue.

When this shell is cast upon the beech it is quite of a different appearance. The apex has radiating brown lines generally in the form of a Maltese cross. The rest of the shell is white and the margin worn away. There is a limpet with a cross upon the apex figured in Wood's Index Testa, p. 189, sp. 78, and named Patella cruciata, with the following references, which I have not been able to verify. Acmea Lir. Sys. MI. U. Schr. Em. ii. 432, pl. 5, f. 6.-A. c. Han. Ips. Lin. 429. Locality unknown. This limpet, however, has a white cross on a brown ground. In the Proceedings of the Linnean Society, 1859, Mr. S. Hanley, on the Linnean MS. in the Museum Ulricæ, has this extract "P. cruciata, P. ovalis convexa, integerrima, cruce picta." The name cruciatus (tormented) is evidently a grammatical mistake.

Animal, blucish black round the base of the foot and head; muzzle and mantle, pale creamy white ; muscles of jaw, red; jaws, cartilaginous, semi-lunar, pellucid, swollen; head, purple above, livid below; tentacles, short, swollen; eyes, sluall, and at outer base; mouth, with cirrhi, and opening lengthwise; gill plume, fine pointed and long, white; odontophore transparent, divided into small squares, each sustaining two pairs of broadly round edged minute curved teeth, opayne, pale, and with a fine dark edge; one pair close together in the centre of the odontophore, the other pair wide apart and with a fine lateral cusp on the outer side.

Acmea marmorata (mihi. Vide Proceed. R.S. Tasm., 1875., Diagnosis auct.) Shell small, ribbed irregularly elliptic, depressed, generaliy much corroded, dirty yellowish brown, often stained, and mis-shapen; apex when not corroded somewhat clevated and anterior, but more often quite obliterated ; ribs, from eight to ten, rugged and often much distorted with lines of growth, projecting conspicuously beyond the periphery; interior edge undulating, deep fuscous brown, lines of ribs concave and white, giving the interior a rayed appearance; spatula black, irregularly margined, with opaque white, more or less black spotted. Dimensions of five rather large specimens, Long. 19, Lat. 17, alt. 5 ; Long. 20, Lat. 16, alt. 7 ; Lon. 19, Lat. 12, alt. 5 ; Long. 18, Lat. 16, alt. 9 ; Long. 17, Lat. 17, alt. 8. The variation in the relative dimensions will show the extreme variation in shape to which the species is subject.
The mantle of the animal is of pale transparent neutral tint, showing veins very clearly and sufficiently translucent to show the pattern of the shell underneath. The edge of the foot is yellow with the upper part and base darker neutral tint; upper part of head lemon yellow, with fine, somewhat long, and translucent tentacles, with eres on external base on a swollen tubercle; outer lips with coarse cirrhi ; inner lips opening perpendicularly and displaying a lanceolate unarmed tongue, with a rachis (odontophore) at its base; gill plume small, translucent, and seldom exserted beyond the head. The animal is found ahove low water mark in crevices, etc., at Southport, and generally throughout Tasmania; odontophore about one and a half length of shell ; teeth in pairs, and recurved, broad, and rounded intoa semicircular edge, first pair largest and somewhat oblique, and with a small cusp at each side on the outer edge; central pair, small, narrow and close together; roots curved. The larger pairs have a curve in both directions, and not unlike the upper part of a lady's tortoiseshell comb.

The species that I am about to notice are included under quite another fanily from Patellide. At present Molluscan
science has not arrived at sufficient accuracy to make any system of families of much value, especially as naturalists are so divided on the subject, and none are generally received. I include the genus Siphonaria in my observations, only because they have limpet shells, and their babits of life being entirely similar they are generally mistaken for true Patellidæ. They are widely distinct in their anatomy, organs of respiration, digestion, dentition, vision, touch, etc. But they are found on our rocks just as limpets are, and in the midst of them and externally cannot be distinguished from them. They are very common. Two species have been examined br me, and a third is said to occur, but I have not been able to find it. Four or five are known in Australia, but the number is not very clearly ascertained, nor will it be until the animals have received more attention than they have met with from Australian naturalists.

Siphonaria denticulata. Q. and G., Voy.Astrol., Vol. 2, p. 340, pl. 25, f. 19 and 20, var. Tasmanica, mihi.

Shell, irregularly oval, with protuberance on the siphonal side, tumidly conical, high, apex median, subacute; with 40 to 50 fine, flattened and diminishing ribs; ribs interrupted by a sinus at the siphonal side; color, bluish white, apical area brown or olive, lines of growth olive, giving the shell a zoned appearance, but varying in every individual shell; often stained an uniform bluish black or much corroded; interior rich purple brown, highly enamelled; edge crenulate, spatula brownish white, extending partly down siphonal sinus.

Animal, dull brown, with numerous small light spots of varying size; foot yellowish, shading to orange near the head; mantle, brown, fringed at the edge with whitish and black spots. When the mantle is irritated the black spots seem to be the points where it is drawn in. Head, a large and many lobed mass, forming a cup-like expansion round the very small moath; no eyes visible, and though they are represented in Messrs. Quoy and Gaimard's figures of S. diemenensis, I have never been able to detect anything, but a single black dot of varying position on one of the lobes of the head. Above the foot on the left side of the animal is a lobe which forms a kind of semicircular tube, closely pressed to the shell, and here the mantle is not visible. This tube is the siphon, and is lobed so as to be capable of a kind of bipartition which probably divides the orifice into an excretory as well as respiratory duet. This lobe of the foot acts as a kind of operculum, closing the orifice when necessary. My belief is that the animal breathes both air and water. If placed in the open air the siphon tube opens at once, and the tube is always open when the animal is taken from the rocks which it inhabits, and which are not long covered by the tide. On
placing weak carbonate of ammonia about an inch from the orifice the animal emitted bubbles of air and showed signs of distress by movement and by pouring forth water from the mantle. On immersing in water animals long exposed to tho air many bubbles of air rapidly escape, and then the siphon became tranquil and full of water. In this state the animal continued many days. Magenta dropped into the water gradually spread out and was drawn imperceptibly into long threads of currents towards the siphon. Magenta dropped into the siphon was not emitted for a long time, and then thoroughly diluted and in fine streaks. All these facts tend to show that respiration is accomplished by no muscular morements, but by the ciliated surface, of the simple sac of which the lung is composed.

In the circumstance of breathing air and water the animal has this peculiarity in common with all our fresh water mollusea. I am not aware that this has been ascertained of our Siphonarix, and certainly it was not known that its anatomy corresponds in every respect with the fresh water pulmonifera. The lingual ribbon of this and the following species I find to be in leeping with its pulmoriferous character. Mr. Woodward in his Manual (p. 286, 2 ediu.) says, "The inoperculated air-breathers, without known exception, have rows of similar teeth with broad bases resembling tesselated pavement, whose crowns are recurved, and either aculeate or dentated." I may quote also on this subject the observations of W. Thomson (Annals Nat. Hist., 1851, p. 86). He says, "The tongue of the Pulmonobranchiata generally is a thin expansible membrane, two-thirds or threefourths of which is rolled into a tube; the posterior end of this tube is closed, while at its anterior extremity the remaining portion of the membrane is expanded into a flattened or spoon shaped form which plays against the edge of the horny upper jarr, thus acting more as an under jaw than a tongue. It is enclosed in the muscular head and connected with the œsophagus at the anterior end of the tube, the extended upper portion of the cesophagus forming the roof of the mouth, while the expanded surface of the tongue covers the lower part of the mouth. From the junction of the œesophagus and tongue the former passes backward and leaves the head at the upper part, while the latter takes at once a downward and backward direction, and protrudes its closed end at the lower part of the head. The tongue when laid open is of the same width throughout. It is covered with a vast number of plates with tubercles which are curved backwards. " The plates are in rows which are straight in the antero-postero diameter, but variously curved or angular transversely. The number of teeth is not constant in indi-
viduals, but is so within certain limits for the same species. The central tooth or plate issymmetrical and the lateral diverge from it in form as they are distant from it." They do this according to a certain rule, which is, "By the suppression of the promineaces on the inner side of each lateral tubercle, and by the increase of the corresponding parts on the outer side." Again, "a gradual curve in the transverse line causes a gradual change in the form of the teeth; great angularity causes a sudden change : and the degree of duration from a straight line is the measure of the difference between the central and lateral teeth."

These valuable observations give the key to the form of the teeth in Siphonaria, though sulject to considerable modifications. In a figure after Wilton in Woodward (loc. cit. p. 305) the teeth of a Cape Siphonaria is given (S. venosa?) where the teeth are not in plates but linear, hooked, the plate or tubercle being both oblique, but the plate sloping from the centre, and the hooked tubercle towards it, with about 40 on each side, the transverse line curved upwards.

In S. denticulata, the buccal mass is red and fleshy, in which two long, thin, rather broad cartilaginous jaws are imbedded. Amid these the broad ribbon is spread, working almost perpendicularly, with a very slight movement backwards, as far as I could ascertain in the few opportunities which the shy and sluggish animal gave me of observing. The œsophagus is a bright orange yellow, and terminates at the distance of about 20 mil . in a sac of the same colour. The odontophore soon becomes a tube enclosed in membrane. It does not follow the œesophagus, but curls round and projects as a closed hyaline tube outside the buccal mass. When the animal is wounded it admits a viscid milky blood (?) of quite a different character from other gasteropods.

The odontophore with careful manipulation may be easily extracted and spread out. It is very difficult to clean it from the attached membranes, but when spread is about 8 mil. long by 3 broad. It is a series of curved lines of teeth diminishing in size from the centre to the margin. The teeth have a broad crescentic edge, whichincreases in width downwards and is fixed upon the membrane. The teeth gradually diminish outwardly to a mere faint line of curved tubercles. The appearance of the whole is more like a scries of combs with long curved teeth. There appears to be, properly speaking, no plate from which each tooth projects, and the central tooth from which each row diverges in a curved line, is rudimentary.

Siphonaria diemenensis. Quoy and Gaim. Loc. cit., vol. 2, p. 327, pl. 25., fig. 1 to 12 . Shell oval, convex somewhat high, apex acute, median, with numerous small, con-
spicuous ash grey, rounded, radiating, slightly rugose ribs, about 4c in number, interstices dark brown, concave, with sualler ribs oceasionally, which reach half up the shell. Margin acute and finely molulating Interior regularly marked with dark brown and white lines, the latter concave and corresponding with the ribs, the brown marks becoming broader towards the edge and often bifureating, spatula badly defined and clouded reddish brown, siphon not always defined

The animal is a citron yellow beneath; above dusky, speckled with yellow. The head is separated from the foot by a deep transverse fissure. The base of the head is pale neutral tint. When the mouth is closed it appears as a reddish brown spot. The lower lip is yellowish, and when closed is like a longitudinal fissure. As it opens it becomes crescentic. The upper lip is then seen. It is arched; fine reddish brown above, with yellow cirrhi below. The odontophore is protruded from this, and moves up and down with an ordinary licking movement. The appearance it preseuts is that of the finger of a glove with the end pushed in upon itself, and the crowded edges of the tube thus formed brought together by the drawing in of the top until they unite in a rounded point, which is then drawn up. The pushing out and drawing in of the top of the "finger" from within is the manner in which it feeds. Thus the free end of the tube is apparently brought backwards and forwards, and the food triturated and carried into the œesophagus.

No eyes are visible, though Messrs. Quoy and Gaim. say they detected them above. They would be of no use above, as they would touch the shell. The aperture of the siphon is the same as in the last species. The process of the mantle which forms a kind of operculum, is often protruded a considerable distance from the shell. Messrs. Q. and G. say, "A little in front of the siphon is the female organ, and on the right side of the head the male, where the tentacle would be if there were one. These holes are very difficult to see. When the animal is taken from the shell it is found attached by a horse shoe muscle running round the posterior half of the shell above the mantle and foot. The siphon is seen as a tube running in a sinuous form through the pulmonary sac. By its side runs the intestine, which continues round the posterior part of the foot, and then disappears under the liver, and the ovary, which is often the largest organ, and of a bright salmon colour. The intestine makes many convolutions in the liver. The buccal mass is like the preceding species with the samo lind of cesophagus, and, according to the Messrs. Q. and G., two large salivary glands below. The same authors say that the oviduct is carried under the uterus, which has the shape
of a 'cornemuse' (the wind-bag of a bagpipe?) with a neck opening in front of the siphonal fold of the mantle. Upon this organ, and a little folded upon itself, is applied the canal of the vesicle, which is common to all the pulmoniferous mollusca, and whose use is unknown." The authors believe it has an opening in common with the uterus. Full details of the nervous and reproductive organs are given by the same authors, which, however, I have been unable fully to verify, but without further examination, I could not pronounce any opinion as to the correctness of their careful observations.

The odontophore of this species differs from the preceding in being much broader and not so long or so much curved, but, the place and arrangement is the same. The central tooth is rudimentary, and the series diminishes in length and width in a curved line outwardly until it becomes a series of tubercles.

Mr. Reeve (Icon. Siph.) mentions another species peculiar to Australia and Tasmania, S. finiculata, but I believe it to be no more than a variety of the preceding.

Dr. Otto, A.L., Mörch, has in the Annals of Nat. History (1865, Vol. 16, p. 73 et seq.) given some very interesting and important details on the Buccal organs of Mollusca. He uses the name Radula for lingual ribbon, which probably is on the whole more expressive and convenient than Odontophore.

JUNE, 1876.

The usual monthly evening meeting of the Society was hold on Tuesday, 13th June, M. Allport, Esq., V.P., in the chair.

Ralph Tate, Esq., F.G.S., Professor of Natural History, University of Adelaide, was elected a Corresponding Member of the Society.

The Hos. Secmanalix brought forwad the following returns for the past month :-

1. Number of visitors to Museum during May, 1348.
2. Ditto to Gardens ditto, 3506 .
3. Seeds, etc., received at Gardens-From His Excellency F. A. Weld, Esq., 20 packets seeds (various). From Dr. G. Webster, New Zealand, 3 Tree Ferns. From Dr. Carl, New Zealand, 2 packets seeds.
4. Plants and seeds sent from Gardens-To Jules Cock et Cie, France, 1 packet seeds. To C. H. Huber et Cie, Hyeres, France, 1 ditto. To Villmorin, Andrieux, et Cie, Paris, 1 ditto. To Mr. S. Purchase, Parramatta, Sydney, 1 case seedling plants. To Messrs. Shepherd aud Co., Sydney, 1 box plauts. For the Hospital grounds, Launceston 30 Conifere. For the Church of England grounds, Bothwell, 130 plants.
5. Time of leafing, flowering, etc., of a few standard plants during the month.
6. Books and periodicals received.
7. Presentations to Museum.

Meteorological Tables.

1. Hobart Town-From F. Abbott, Esq., table for May.
2. New Norfolk-From W. E. Shoobridge, Esq., ditto.
3. Port Arthur-From Dr. Coverdale, ditto.
4. From Marine Board-King's Island tables for February, March, and April ; Mount Nelson ditto for May.
5. From Government Observer, Melbourne-Printed tables for January and February.
The presentations to the Museum were as follows :-
6. From F. Groom, Esq., St. Mary's-A Brown Quail (Synoicus australis), partially albino.
7. From A. Simson, Esq.-Skin and Skeleton of small Brown Rat (Mus fuscipes?): Skin and Skeleton of a White-footed Rat (Mus tasmaniensis Krefft?); Skin and Skeleton of Antechinus swainsonii, from Gould's Country.
8. From Mr. Stephenson-A Rail (Rallus brachipus), shot at Jericho.
9. From Mr. J. Yuung, Wellington, New Zealand-A portion of the Submarine Telegraph across Cook's Straits, broken nine and a half years after submersion. In a note accompanying this presentation, the donor states that he "was informed by Dr. Pollon (Inspector-General of Telegraphs, N.Z.) that the breakage was not the result of friction, but was probally caused by some corrosive agency in the immediate locality of the fracture."
10. From Mr. A. Wilkins-Specimens of Copper Ore, Antimony, Ruby Tin, etc., etc., from Cudgegong, near Mudgee, N.S. Wales.
11. From Mr. L. Petersen-Tin specimens from Ringarooma.
12. From Mr. W. C. Blyth, Honeywood-Specimens of Cicada, etc., from the crown of a stringy bark tree.
13. From Mr. Lukin Boyes-A peculiar Caterpillar, from Gould's Country.
14. From Mr. Weerling, Oatlands-Two masses of a peculiar punk-like substance from a cavity in the heart of a tree.
15. From S. P. If. Wright, Esi., Glenorchy-A sheet of fungoid substance from a decayed tree.

11. From Mr. Guesdon-A slab of mudstone from Bruni Island, with numerous casts of fossils.

The Sheretary mentioned that, owing to the extreme inclemency of the weather, the Rev. Julian Woorls had kindly consented to postpone the reading of his paper till the next meeting, in order to afford to a probably much larger number of Fellows the opportunity of discussing it.

Mr. M. Allport exhibited a plau, carefully prepared by Mr. T. Stephens, for the purpose of showing the genemal geological features of a portion of the North Coast of Tasmania, and defined the position of the two different forms of trap rock occurring there; and in the absence of any other business, Mr. Allwort said, "I desire to record the alteration in my views as to the geological age of the more recent basalts on the south side of the island. The Fellows of the Suciety will remember that some years ago a large number of fossil bones, in a comminuted condition, were discovered in the Travertin, worked for lime at Geilston Bay, on the other side of the Derwent, below Risdon. Upon examiuation, these bones all proved to belong to existing species, viz., P halangistu fuliyinosu, Hypsiprimni, etc., and the conclusion was then come to that the Travertin must be of recent tertiary or post-tertiary age. For many years previous to the discovery of the bones abundant vegetable remains had been observed in this Travertin; these consisted of leaf impressions and fossil wood. A considerable number of land shells of at least four species, Helix (two species), Vitrina, and Bulimus, were also frequently found. Many of the leaf impressions bore a superficial resemblance to the leaves of plants now existing ; but well knowing the difficulty of determining species by the examination of such slight remains, I always preferred waiting the discovery of a larger series of specimens before coming to hasty, and probably erroneous, conclusions. Upon the discovery of the bones, however, Mr. Gould and myself both assumed that the Travertin was very recent; and this was the more important, geologically, from the fact recorded in our transactions that the bed of Travertin had been displaced by a dyke of basalt, clearly proving that, however recent the Travertin, the basalt was still more recent. Shortly after the discovery of the bones, however, I came upon some fossils in solid portions of the Travertin, that went far to shake my preconceived notions of its recent age. These fossils consisted of three seeds, all differing from any now existing, the most remarkable being about the size of a walnut, but divided by fine lines in to five equal segments. These seeds I forwarded to Baron Von Müeller, with many of the leaf impressions. As to the smaller seeds, he desired to have more specimens before coming to any conclusion; but as to the specimen above described, he at once founded a genus upon it, and pointed out its affinities to extinct types in the Tertiaries of Victoria. I still felt some hesitation in concluding from this one specimen that the age of the Travertin must be put lack to an earlier geological epoch, because some of the excrescences caused by insects on our existing trees bear considerable resemblance to the fussil referred to. Now, however, I am happy to say, two other specimens, showing not only the external markings of the first, but also the divisions of the septa in which the seeds had lain, have been discovered, proving the learned Baron to have been quite correct in his conclusion as to the nature of the first fossil. At the same time as the last mentioned specimens, two other well-marked seeds were also found, one about the size of a hazel nut, but divided longitudinally into equal valves; and the other a very interesting form when taken in connection with some of the impressions abounding in the vicinity. It consists of a well-marked cast of a cone, from which the seeds have dropped out, albout an iuch in diameter, of a somewhat circular form, and quite dissimilar to any now existing in Tasmania. The discovery of these fresh and unmistakable proofs of the earlier age of the Travertin caused me to inquire a little more fully into the history of the bones

Tefore mentioned, as it is very difficult to reeoncile the presence in the same geologieal matrix of an existing fama and an extinct flora; the bones were quite unaltered chemically, and no bone was whole except the teeth and minnte phalanges, ceery long bone being gromud up in to small pieces. They were all found in one limited area beneath, and amongst blocks of Travertin, not in solid Travertin, as tho impressions and seens are, lint in an arenaceous and slichtly calcareous matrix. Much of the fossil wood found in the Travertin is more or less silicified, the rest being converted to carbonate of lime, and if the bones had been subjected throughout the same period to the same chemical conditions as this fussil wood, I camot doult that they would have been silicilied, or at any rate bedded in solid carbonate of lime. Taking all the circumstances into acemont, it seems probable that when the hasalt dyke displaced the bed of Travertin, it caused the mass to be loroken and rent in various ways, especially near the points of contact between the molten basalt and the Travertin, and that long after the cooling of the mass some of the fissures thus made were occupied by some of the carnivorous marsupials, and in the course of time these fissures, with the lavers of comminuted bones--the remains of the prey devoured by the early inhahitants-have been choked up with the constantly accumulating diluvium, cousisting of washed sand and particles of the Travertin weathered off the adjacent rocks. If this conclusion is correct, we must of course regard the basalt referred to as an earlier formation than the diluvium from which the bones referred to were oltained, lut still as of later date than the Travertin. Mr. R. MI. Johnston, who is so indefatigably working out the tertiary deposits on the North side, will douptless throw much light on the sinbject of these recent basalts, and I therefore look forward with consilerable interest to the reading of his paper, postponed from to-night, under the impression that we should get no meeting.

The sichemare reported that, in reply to the letter addressed by the Roral Society to the Municipal Council in reference to the destruction of the trees and ferns on Mount Wellington, he had received, from the Tomn Clerk, a coly of the correspondence which had taken place on the suliject. Several extracts from this. correspondence were then read from which it was evilent that the powers of the Town Council in the matter were very limiterl. Discussion (in which Mr. P. T. Smith, Mr. Grant, Mr. Shonhridge, Dr. E. Crowther, the Chairman and Secretary took part) eusued, when the feeling of the meeting appeared to be that as the various Fem-tree Valleys were of little value to their possessors, enquiries might be made if they conld he purehased back at a reasomable rate for the purpose of being secured to the public for ever.

The shanemar, in comnection with a matter which he desired to introduce, olserved it might, perhaps, be necessary to inform sume of the junior Fellows that Sir John Franklin was the founder of this Society. To assist it in its infancy, he very kindly placed at its disposal a room at (invernment Honse for the monthly meetings, and in addition to this, at the clave of the proceethuss, the members generally found a liberal banquet provided for them. Perhays, indeed, for the latter they were indebted to the kindness of Lady Franklin, whose zeal and enthusiasm in all matters connecterl with the scientific interests of the colony were known to all. Not long aco a marble tablet bearing an inseription from the pen of the poet Lamreate, lad heen placed in Westminster Albey to the memory of Sir John, and recently he (the speaker) had ohserved in The Mercury a note signed "Jack Tar," in which it was surcesested that this inscription might very apporpiately he engravel on the manite ferlental of the bronze statue to Sir Juhn in Framkin Sipare. The surferestion appeared to him to be a very good one, and considering low much we owed to Sir John he thought the Suciety would ghally entertain the motion he now beerged to propose, which was to the cliect that a communication should be addressed to

Government with a request that the inscription should be placed as suggested on the pedestal. He might perhaps be excused if he added, although it was but a private matter, that he had some personal feeling in making this proposition as in times long past he had received much kindness from Sir John Franklin, and indeed it was the offer of appointment as his Private Secretary which first induced him (Dr. Agnew) to leave Victoria in order to settle in Tasmauia. The inscription, as perhaps all present would recollect, was
" Not here; the white North has thy bones, and thou, Heroic sailor-soul, Art passing on thy happier voyage now, Toward no earthly pole."
Mr. C. H. Grant had much pleasure in seconding the motion, which was cordially adopted.

Mr. P. T. Smith, referring to the severe storm with which we were visited on the previous evening observed it was a dead calm in the city in the early part of the day. During this calm his attention had been directed to the loud roaring noises proceeding, without any visible cause, from the mountain. They were very remarkable, although not so loud as those he had formerly heard on the Western Tiers. He would be glad to know if they had been heard by others. No one present had noticed them, but

Mr. W. E. Shoobridge stated he had no doubt they were due entirely to the action of high winds on the trees. He would not be surprised to learn that astorm raged on Mount Wellington when it was calm in Hobart Town, as he had observed that these storms were frequently very local in their action. At New Norfolk there were two ranges of hills with but a moderate sized valley between, yet he had himself noticed a loud storm raging on one of the ranges whilst it was quite calm on the other. He fancied the direction of the wind had a very considerable influence (at least at New Norfolk) on the noises, as they appeared to be much louder when it blew from the N.W. than from any other quarter.

The proceedings then terminated.
[The following Daragraph was accidentally omitted from the report of the May meeting.]

Mr. Justice Dobson exhibited a curious case in which the underground stem of couchgrass had pierced through the bulb of a hyacinth. The growing point of the stem, on meeting the bulb, instead of heing deflected and passing around it, had pursued its direct horizontal course and forced its way through the obstacle. Mr. Dobson had nuticed many instances of this, and occasionally the same stem was found to have even gone through several bulbs.

JULY, 1876.

The menthly erening meeting of the Society was held on Tuesday, the 11th July, His Exelleney, F. A. Weld, Eisc., C.MI. G., President, in the ehair.
E. J. Manley, Esq., who had previously been nominated by tho Comeil, was, ather a lallot, declared duly elected as a Fellow of the Suciety.

The Hox. shemerati (1)r. Agnew) brought forwad the usual returns for the past month, viz. :-

1. Number of Visitors to Museum, 1377.
2. Ditto ditto to Botanic Gardens, 2871.
3. Plants and Seeds received at Botanic Gardens-From Mr. G. Farnsworth, Matlock, England, 300 seedling Rhododendrons, all living. From Chamber of Agriculture, Washington, America, 63 packets of seeds, principally Conifere. From Mr. S. Purchase, Parramatta, Sydney, 60 plants. From Dr. Carl, Wellington, N.Z., 6 packets seeds. From Messrs. Nardy and Co., Hyeres, France, 16 packets of seeds.
4. Plants and Seeds sent from Gardens-To the Acclimatisation Society, Paris, 12 packets of seeds. To Botanic Gardens, Melbourne, one case of plants. To Mr. S. Purchase, Sydney, a box of seeds.
5. Plants supplied for decoration of public places-To the Queen's Asylum, a collection of flowering plants. To the Cornelian Bay Cemetery, 180 plants.
Metcorological Returns :-
6. Hobart Town, from F. Abbott, Esq.-Table for June.
7. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
8. Port Arthur, from Dr. Coverdale.-Ditto.
9. Mount Nelson, table for June; Goose Island, ditto for May-From the Marine Board.
The presentations to the Museum were as follows :-
10. From Mr. J. J. Martin-Specimen of Limestone from Dunedin, New Zealand, used extensively for building purposes.
[The Rev. J. E. Tenison Woods observed that the same kind of stone occurred in South Australia. It was composed of carbonate of lime with a little silex, and was full of Foraminiferous shells. The chalk of Dover Cliffls was a similar formation, as was also the Globerigina ooze deposit now going on at great ocean depths, as shown by the Challenger dredgings. The specimen, however, though similar to, was probably of an older formation than the Australian-most likely of the Lower Cainozoic.] Samples of Lignite and Coal from Green Island, Greymouth, Shag Point, and Kaitangata, New Zealand.
11. From Dr. E. Crowther.-A specimen of the Nankeen Night Heron (Nycticorax caledonicus) from George's Bay.
12. From D. M. Barnard, Esci--Specimen of the Yellow-bellied Beaver Rat (IIydromys chrysogaster).
13. From the Behnont Company.-A collection of Tin specimens from the lode, Cascade River, Ringarooma.
14. From Mr. J. Keen, Kingston.-A sample of a deposit consisting of a brilliant sealy substance, resembling mien, the nature of which has not yet been determined. A specimen of the clay from which the deposit was obtained by washing.
15. From Mr. F. Edwards. - Tusk of a large Boar, shot in New Zealand.
16. From Mr. R. M. Willians, Sydney, per Mr. Justin Browne, crystals of oxide of tin, and two sapphires, from Queensland.
17. From R. M. Johmstom, Esif.- 1 collection of Tertiary Fossils from the Table Cape beds, named and classified by the Rev. J. E. T. Woods, F.G.S.

In reference to a specimen of Cyathece malullaris, presented by S. B. Emmett, Eeq., Circular Head, for the Ruyal Society's Gardens, Mr. Stwinens
remarker that the Society was under great obligation to the donor for having forwarded another specimen of this Tree Fern, the first having dien. It was especially interesting from the fact that its proper habitat is New Zealand, and only one small group is known to exist in Tasmania, deep in one of the dense forests near Circular Head.

Mr. Barnard exhibited a section of the stem of a cherry tree showing the burrow, several inches in length, of a destructive caterpillar, with the animal still in situ. Mr. Baruard had noticed a blight on the cherry tree for the first time last year, but this was the first occasion on which he had seen the caterpillar. It would be of great interest, he thought, to determine the character of the moth which would eventually be produced.

Mr. J. Swan had seen the same caterpillar on more than one occasion on the pear tree also.

The Rev. J. E. Tenison Woods, after giving a very clear and exhaustive adtlress on the history of Australian Geology, read a paper by Mr. R. M. Johnston entitled, "Notes on the Tertiary Marine Deposits of Tasmania." The paper, which was of a most elaborate character and illustrated by a large series of specimens, was most favourably commented upon by the reader, and was listened to with marked attention by the meeting.

Mr. Stuphess said that the Table Cape fossiliferous beds had been mentioned by Strzelecki as a "raised beach bedded on basalt;" but that he had shown in a paper read before the Society in 1869, after a cursory inspection of the locality, that they were clearly older than the basalt, and that the fossils proved them to be connected with the tertiary deposits of Victoria. He regretted that the anthor of the very interesting and valuable paper which had just been read was unable to be present, for there were still some points requiring consideration before the exact relationship of the marine beds to the igneous and other rocks of the neighbourhood could he positively determined ; and these they could not discuss satisfactorily in his absence.

After a short discussion the cordial thanks of the meeting were (on the motion of Mr. Stephens, seconded by Mr. Allport) accorded to Mr. Johnston for his valuable paper, aud to Mr. Woods for his admirable address.

A vote of thanks to the donors of presentations closed the proceedings.

AUGUST, 1876.

The usual mouthly eveuing meeting of the sinciety was held on Tuesday, Sth August; His Excellency the Governor: Iresident, in the chair.

The Hos. Shenetany (Dr. Agnew) hrought under notice the following returns for the past month, viz. :-

1. Number of visitors to Museum, 2,368.
2. Ditto ditto Gardens, 3,704.
3. Plants and seeds sent from Botanic Gardens :-To the Botanic Gardens, Christehurch, New Zealand, $4 s$ plants ; to Mr. G. Bruming, Melbourne, one case of plants and seeds.
4. Plants supplied to puhlie places :-To chureh grounds, Aroca, 50 plants; to Horton College, Ross, 100 phants; to Congregational Church, Richmond, 36 plants.
5. Time of leafing, flowering, ete., of a few standard plants in Botanic Gardens during the month.
6. Books and périodicals received.
7. Presentations to Museum.

Meteorological Returns-

1. Hobart Town, from F. Abhott, Esq.-Table and abstract for July.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. From the Marine Board-Tables from Bruni Island for April, May, and Jume ; Mount Nelson, ditto for July.
4. Port Arthur, from Dr. Coverdale-Ditto.
5. Sydney, from H. C. Russell, Esq., B.A.-Printed tables for April.

The presentations to the Museum were as follows:-
1 From Miss Gulliver-Two prepared skins of the Pied Egret (Iferodias picatu) ; two ditto of the Green Pygmy Goose (Nettapus pulchellus) ; one of Pink-eyed Duck (Malacorthynchus membranaceus); one of Little Turtle Dove (Stictopelia cuneata).
2. From Mr. R. Sarage - A Grey Flying Squirrel (Belideus sciurus) from River Shannon, Tasmania.
3. Curious horny growth from the ear of a sheep.
4. A specimen of the Cinereous Crow-Shrike (Cracticus cincrous), shot in the act of killing a small bird.
5. From Master E. Hood-A specimen of the (fulf-Weed (Sargassum), procured on the voyage to England.
The Rev. J. E. Tenison-Woons then read a paper on a new species of Ampullariafwith some observations on Swainson's genus Thelidomus, of which a species uccurs in Tasmania, the animal leeing unknowz. He also laid on the table descriptions of several new species of Tasmanian Marine Sleells, mostly from the collection of Mr. Ronald Gunn, who had kindly presenterd them to the Society, and most liberally placed all his collection at his (Mr. Wood's) disusal for description. Some species had been furnisherd hy Mr. Augustus Simsun from (ieorge's Bay. Mr. W. F. Petterd had also shown a considerable number of decidedly new species, the result of his own careful collection during many years. Mr. Woods could mot, however, undertake to describe these unless type specimens were [haced in the Musem for future reference, as it was not fair to science to describe species without giving future naturalists an opportunity of verifying, correcting, or extending the observations.

The reverend gentleman then made some remarks with reference to the riva rore introluction which he gave to Mr. P. M. Johnston's paper at the previns meeting, and subsequently, at the request of the Society, on the motion of His Lorldhip, the Bishop of Tasmania, promised to commit them to writing for the purpose of publication in the Transactions.

Discussion followed.
The Bishor arked whether the Gault formation was found in Australia,
and if the Sauroid fishes were such as Ichthyosaurus and Plesiosaurus. He regretted that he could not be present during the former lecture as well as on this oceasion, but should like to add another question. He remembered that geologists of a few years' back had called attention to the persistence in Australia of secondary forms such as Trigonice and Terebratulce, and would wish to know whether these resemblances had been increased or lessened by subsequent investigations?

The Rev. J. E. Tenison-Woods said that he was not aware of the Gault having been found in Australia; but both Ichthyosaurus and Plesiosaurus had, but of new species, showing how widely the genera had formerly extended. He did not think that the resemblance between Australia and the Mesozoic had increased with a more extended study of its natural history, and, taking them altogether, they were not very strong, it must be admitted, and confined to isolated instances subject to no apparent rule.

Mr. Stephens bore testimony to the cretaceous character of the formations around the Gulf of Carpentaria. He himself had seen fossils, such as Belemnites, Inoceramus, etc., which, he was informed, might be gathered in great quantities from the surface. He was quite sure that the only reason why they were not better known was the difficulty of transport, as every fossil had to be brought down many hundred miles on horseback.

His Excellency said that in New Zealand extensive Mesozoic formations had been discovered, which were very similar in every respect to contemporary formations of Europe. Many years ago, when out exploring, he had come upon fossiliferous cliffs, which had at once attracted his attention as being so like the blue Lias clays which he had known almost from his childhood in Lyme Regis, and other places in Dorsetshire. Since then the beds had been examined, and determined to be true equivalents of the Lias, and the usual Ichthyosauroids of such formations had been found. The resemblance between the two deposits must have been very close when it had struck his upractised eye, for at that time he had given scarcely any attention to the subject.

The Sfcretary proposed that on this occasion a special vote of thanks should be accorded to the Rev. Julian Tenison-Woods, not only for the interesting matter he had just brought under their notice, but also for the invaluable work he had done in the cause of the Natural History of Tasmania since they had the honour of having him as a working member. The results of this work would appear in the Transactions, but he (the Secretary) had had such opportunities of observing the vast amount of time and labour it had cost, that he felt the Society was under the deepest obligations for it. It was, therefore, with feelings of the greatest pain he had just learned that Mr. Woods was soon about to leave Tasmania. He was sure they would all feel that the Society could sustain no severer loss. They would greatly miss in the future those learned, lucid, and eloquent addresses with which Mr. Woods had illustrated so many subjects, and as to which it might truly be said,-"Nullum quod tetigit non ornarit." He did not know if the reverend father was ever likely again to visit Tasmania, but if such should be the case he (the Secretary) could certainly say that from no portion of the community would he receive a warmer welcome than from the members of the Royal Society. (Applause.)

The Bishor cordially seconded the motion, and observed as to the remark by Mr. Woods, that he had refused to describe some new Tasmanian shells which had recently been shown him because the owner could not afford to deposit them in the Museum where his descriptions could if required be tested by future naturalists, that he felt this remark was entirely due to that modesty which was characteristic of the true student of science. Descriptions from the pen of Mr. Woods, however, had nothing to fear from criticism. At the same time he hoped the specimens referred
to might, if possible, be purchased in orrer that the Society might have the advantage of having them properly described and named, and the list of Tasmanan shells thus rendered as complete as possible to date.

The Rev. J. E. Texison-Woons, in returning thanks, remarked it had given him great pleasure to do what little he hat done for the Natural History of Tasmania. It was pleasant, however, for every one to find his work appreciated, and he must say he had always fonud that the Royal Suciety had recognised in the kindest spirit whatever he had been able to accomplish. The library of the Society had been of the greatest assistance to him, and he was most happy in being able to congratulate the Fellows on the possession of the best and most extensive collection of scientific works in the Australian colonies. He was also glad to have the opportunity of thanking the officers of the Society for their unvarying courtesy, and his thanks were especially due to their Curator, Mr. Roblin, to whom he had been frequently indebted for assistance of the most valuable character always most willingly rendered. (Applause.)

A vote of thanks to the donors of presentations closed the proceedings.

SEPTEMBER, 1876.

The monthly evening meeting of the Society was held on Tuesday, 12th September, upwards of forty Fellows being present. His Excellency the Governor occupied the chair.

The following gentlemen, who had been previously nominated by the Council were balloted for and declared duly elected as Corresponding Members of the Society, viz., Dr. R. Schomburgk, Director of the Botanic Gardens, Adelaide ; and Mr. John Brazier, C.M.Z.S., of Sydney. Mr. R. W. G. Shoobridge was also elected a fellow.

The Secretary brought under notice the usual returns for the past month, as follows :-

1. Number of visitors to Museum, total 1,897 .
2. Ditto ditto Gardens, ditto 3,683 .
3. Plants and seeds received at Gardens :-From A.Thozet, Esq., Queens-land-A parcel of seeds of Macrozamia perowskiana, M. migueli, Cycas, angulata, and Bowenia spectabilis. From Mr. G. Brunning, Melbourne.-78 plants. From Messrs. Shepherd and Co., Sydney. - 63 plants, 37 varieties of fruit scions, and 83 packets Australian seeds.
4. Plants supplied.-To Cornelian Bay Cemetery, 150 plants.
5. Time of leafing, flowering, and fruiting of a few standard plants in the Botanic Gardens during August.
6. Books and Periodicals received.
7. Presentations to Museum.

Meteorological Returns.

1. Hobart Town, from F. Abbott, Esq.-Table for August.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. Port Arthur, from Dr. Coverdale-ditto.
4. From the Marine Board, the following tables-Mount Nelson for August ; King's Island for May and June; Goose Island for June and July ; Kent's Group for May, June, July and August.
5. Melbourne, from the Government Observatory, printed tables for April and May.

The presentations to the Museum and Library were as follows :-

1. From Mr. G. W. Brient-32 specimens of Tasmanian Lepidoptera, collected and mounted by donor.
2. From Mr. O. Hickman, per Mr. G. Richardson-a living specimen of the "Porcupine Ant-Eater" (Echidna setosa.)
3. From Mr. Bealey.-A curiously-shaped Fungus (probably Polyporus igniarius) from a tree.
4. From Mr. W. Legrand.-Type specimens of new Tasmanian Shells (Cominella tenuicosta, etc.), in all about fifty specimens.
5. From Mr. C. E. Davies.-A Chestnut-faced Owl (Strix castanops).
6. From Mrs. Meredith. -Skin of a variety of Opossum, known locally as the "Rock Opossum."
7. From Mr. Blyth, Honeywood.-Nests of Mason Wasp, taken from between a map and the wall on which it was suspended.
8. From the Rev. Brooke Bailey.-Three silver and three copper coins, viz., 2 Ceylon 1 cent and 5 cents; 1 quarter rupee, 110 cents; 1 ditto Hong Kong, 1 chellie, Dutch East India Company.
9. From Mr. Miles-A tiger shark, caught off the Passage Mouth. This fish measured 8 ft . 5 in . in length, and its liver yielded three and a half gallons of oil.
10. From Mr. Roberts, Victorin, Huon-A large mass of Fibrous Tissue, found close to a tree which had recently been struck by lightning. The mass presented, in some degree, the appearance of very coarse oakum, and was composed entirely of the woody fibre of the barkall the cellular tissue having been removed by the shock of the lightning or otherwise.
11. From His Excelleney the Governor:- "On the movements and habits of Climbing Plants," by C. Darwin M.A., F.R.S., 2nd edition.
12. From the Hon. the Colonial Secretary. - "Australian Orchids," by R. D. Fitzgerald F.L.S. part 2.
13. From the Government of New South Wales.--A Mineral Map of New South Wales, and a pamphlet on the progress and resources of that colony.
14. From Barou lerd von. Mueller.-Two pamphlets containing "An Educational lecture of the food of Plants," by R. W. MeIvor, Esq., "On select Textile Plauts," and a "Lecture on Tea," by Baron F. von. Mueller.
15. From the Taylerian Museum, Haerlem.-" Records of the Museum, vols. 1, 2, 3, and 4" (twelve parts beautifully illustrated.)
A fine collection of iusects from Gould's Country was exhibited by A. Simson Esq., and attracted much attention.

His Excellency read a long and interesting paper entitled "Reminiscences of a visit to the Volcanoes of Hawaii."

Sir Robert Officer proposed a vote of thanks to the donors of presentations, and especially to the President for his very interesting and graphic narrative. He (Sir liobert Officer) had read several accounts of the great volcanoes of Hawaii, but from none had he derived so clear and satisfactory a conception of the subject as from that he had just had the pleasure of listening to. As he was necessarily an infrequent visitor he begged to that opportunity of expressing the extreme gratification he felt at seeing such a very large attendance of Fellows-an attendance which contrasted most favourably with many he had witnessed in former years. He had no doubt, howerer this was in a great measure due to the fresh impulse given to the Society by the warm interest which His Excellency had always taken in its affairs, and of which hehad furnished abundant proofs by reading papers, presiding at the meetings and otherwise. Under such favourable auspices he felt that the Society must still continue to make progress and achieve still greater successes than any it had already accomplished.

The rote having been carried by acclamation, His Excellency briefly returned thanks, and the proceeding terminated.

OCTOBER, 1876.

The usual monthly evening meeting of the Society was held on Monday, the 9th October, James Barnard, Esq., in the chair.

George Corney Westbrook, Esq., who had been previously nominated by the Council, was balloted for and declared duly elected a Fellow of the Society.

The following returns for the past month were laid before the meeting :-

1. Number of risitors to Museum, 2,006.
2. Ditto to Gardens, 4,181 .
3. Plants and seeds received at and sent from Gardens.
4. Time of leafing, flowering, and fruiting of a few standard plants in the Botanic Gardens during September.
5. Books and Periodicals received.
6. Presentations to Museum and Library.

Metcorological Tables :-

1. Hobart Town, from F. Abbott, Esq.-Table for September.
2. New Norfolk, from W. E. Shoobridge, Esq.-Ditto.
3. Port Arthur, from Dr. Coverdale-Ditto.
4. From the Marine Board-Tables from Mt. Nelson for September; South Bruni, ditto ; Swan Island for June, July, and August; Goose Island for August.
5. From Government Observer, Sydney-Results of observations made in 1874 , and tables for 1875 .
6. From Goverument of New Zealand-Printed tables from January to May, 1876. Comparative table of climate for 1875, New Zealand; Meteorological tables, January to March, 1876, Wellington, N.Z.
The presentations to the Museum were as follows :-
7. From Mrs. J.Bidencope - Two cases of Butterflies and Moths, from Indlia.
8. From Master L. Forrest-A case containing 33 specimens of British Butterflies and Moths.
9. From Mr. Robert M. Browne, Wellington, New Zealand-15 New Zealand and 3 Australian copper tokens.
10. From Mr. Nairn-Two black snakes (Hoplocephalus curtus) from Kangaroo Valley.
11. From Mr. Spencer-Sample of coal from Jerusalem.
12. From Mr. P. Feeney-Ditto from Sandfly Rivulet.
13. From Mr. T. Nichols-Ditto from Port Cygnet.
14. From Mr. P. Pearsall-A Tiger Cat (Dasyurus maculatus).
15. From Mr. Turner-A Musk Duck (Biziura lobata).
16. From James Scott, Esq., M.H.A.-An aboriginal stone implement from Mount Morriston.
[Mr. Scott considers this to be one of the best specimens of these implements which he has presented. He states that the natives held the stones with the thumb on the flat surface, the rounded side resting in the palm of the hand. In use the stone was kept turning round so as to bring different parts of its edge to bear on the work. As to the mound supposed to cover an aboriginal grave, referred to at a former meeting (August 1875), Mr. Scott reports that on digging up the spot the traces of a fire, some pieces of charcoal, and a quantity of a "greasy" kind of red clay or ochre were found, but no bones of any description.]
17. From Mr. J. Ferghssou, Tinderbox Bay A collection of shells, from Cloudy Bay, South Bruni.
18. From Miss Florence Abbott, per Rev. W. W. Spicer-A samplè of "Pulu."
[Pulu, or hairs taken from the base of the fronds of tree ferns, and cmployed for stuffing mattresses, etc., in the Sydney Infirmary and the Hobart Town Hospital. Alout 2 Ibs. of the hairs are required for a large
pillow, at a cost of 61 . per 11). The material lasts for many years, during which it contimues sweet and clean, but at last the hairs break up and crumble into dust.]
19. From Captain IV. V. heurge, R.A.-A living specimen of the whitebellied Sea Eagle, from Ceylou.
[Captain Legre states "this is a very tine immature Sen Eagle (Halicetus leucogaster), which I beg to present to the Royal Society. It is, I consider, a bird of somo interest as regards Tasmania, as it is the same species as our Fish Hawk; and will illustrate the young plumage very well. I do not thiuk this plumage is well known in Tasmania. It will attain to its mature, white dress, next year, and it will then be interesting to maturalists to observe whether it exactly corresponds with Tasmanian adult examples in the Museum." He adds, "I presume a place for its reception could be put up in the Gardens, and that done, no difficulty will be experienced in feeding it, as it will eat offal and meat of all sorts. Might not this form a foundation for a collection of Raptores, which the Society could surely keep without much expeuse. Young Eagle Hawhs might be got by making the wish known. Harriers (Swamp Hawk, Circus assimilis) I know may be procured, for I saw a beautiful specimen in the possession of a gentleman at the Hospital at Campbell Town."]

Presentations to Library-

1. From the United States Naval Observatory, Washington-"Astronomical aud Meteorological observations, 1870 and 1872," 2 Vols, 4to. "Catalogue of Stars, 1845 to 1871," 18Vol., 4to. "Zones of Stars observed with mural circle, 1846-1849," 1 Vol., 4to. "Ditto observed with transit instrument," 1 Vol., 4to. "Results of observations, 1853-1860," 1 Vol., 4to. "On the Right Ascensions of the Equatorial Fundamental Stars," 1870, 1 Vol., 4to. "Report on Difference of Longitude between Washington and St. Louis," by Professor Harkness, 1 Vol., 4to.
2. From the Chief Signal Office, Washington-" Report of Chief Signal Officer, War Department, U.S. America, for 1872," 1 Vol., 8 vo. "Daily Bulletin," December, 1872, January and February, 1873, 3 Vols., 4 to.
3. From the Smithsonian Institution, Washington-" Smithsonian Miscellancous Collections," Vol. 10. "Smithsonian Reports," 1871 and 1873, 2 Vols., 8vo.
4. From F. V. Hayden, Esq., United States Government Geologist"Report of Geological Survey of the Territories," Vol. 6. "Cretaceous Flora," 1 Vol., 4to, "Geological and Geographical Survey of Colerado,", 1873, by F. V. Hayden, I Vol., 8vo. "Birds of the North West," by Elliott Cones, Svo (two copies). "Synopsis of Flora of Colerado," pamphlet, pp. 180. "Bulletin of United States, Geological and Geographical Survey of the Territories," No. 2, and 2 and 3, 2nd Series, 3 pamphlets. "Lists of Elevations of portion of U. States, West of Mississippi River," 1 pamphlet. "Catalogue of Publications of U.S. Geological Survey."
5. From the Boston suciety of Natural History-Memoirs of the Society, Vol. 2., part 2, No. 4 ; part 3, Nos. 1 to 5 ; part 4, No. 1 (7 parts). Proceedings of the Suciety, Vol. 15, parts 3 and 4 ; Vol. 16, parts 1 to 4 ; Vol. 17, part.s 1 and 2, 8 parts. The "JeffriesW'yman Memorial Meeting of the Society," 1 pamphlet.
6. From the Buffalo Society of Natural Sciences--Bulletin of the Society, Vol. 1, No. 4 ; Vol. 2, Nos. 1 to 4 (5 parts).
7. From the Essex Institute, Salem, Massachusetts-Bulletin of Institute, Vols. 5, 6.
8. From the American Philu:ophical Society-Proccedinge, Vol. 14, Nos. 02, 93, 91.
9. From American Acardemy of Arts and Sciences-Proceedings, New Series, Vol. 9. "Commemorative Notice of Louis Agassiz," by Theodore Lyman.
10. From the Anderson School of Natural History, Penikese IslandReport of Trustees, 1873.
11. From Museum of Comparative Zoology, Harvard College-Report, '73.
12. From Board of Public Education, Pemssylvania-Report for 1874.
13. From the Howard University, Washington-Report 1875-76.
14. From the Royal Society of New South Wales-Proceedings of the Society, Vol. 9, 1875.
15. From the Adelaide Philosophical Society-Reports and Transactions 1867, 1868, 1871 and 1872. "Law in Nature" by R. D. Hanson, Esq., Chief Justice of South Australia. Papers "On the Tertiary Rocks of South Australia," by the Rev. J. E. Tenison-Woods; "On the Geology of the South East;" by Mr. Chief Justice Hanson ; on the same by the Rev. J.E. Tenison Woods; "On the Urarie (arrow poison) of the Indians of British Guiana, by Dr. Schomburgk ; "Explorations on West and North West Coasts of Australia," by Mr. C. A. Wilson ; On City Drainage" by Mr. J. Macgeorge, etc.
Special attention was called to the valuable presentation of books, on various scientific subjects, from the United States Government, and from the Smithsonian Institution and other learned Societies inAmerica.

In the absence of the author, the Rev. J. E. Tenison-Woods, F.L.S., F.G.S., Corresponding Member of the Royal Societies of New South Wales and Tasmania, and of the Linnean Society of New South Wales, the Secretary read a paper "On a new-reversed Helix (Helix weldii)," discovered by Mr. W. F. Petterd on the North-West Coast, near Circular Head.

The Secretary also read a communication from J. E. Calder, Esq., on the language of the Aborigines of Tasmania. Accompanying this was a large and very carefully prepared compilation by Mr. Calder of all the known aboriginal words preserved by various collectors; and so arranged that each collector has the credit of all words arded by him to the general stock. This great vocabulary was inspected with much interest by all present.

Mr. M. Allport observed, in order to continue the history of our salmon to the latest date, that he had to report the capture of a fine grilse, weighing about three pounds, in the harbour about a fortnight ago. As it was taken in a "graball" net, the probability, or rather certainty, was that great numbers of fish were in the river. He had carefully examined this specimen, and had no doubt whatever as to its being a salmo salar. It had been presented to His Excellency. Previous to this capture, another fish of a similar size had been caught near the same locality, but it had not been brought under his observation.

A few days ago, however, a third salmon was taken, and on this occasion under very satisfactory circumstances. It was caught by Mr. M. Seal with the fly, about two miles above New Norfolk. Great numbers of fish were rising in all directions at the same time. In some rivers it is known that the salmon will not rise to the fly, and clonbts had been expressed as to whether the Tasmanian fish would do so or not. This capture therefore is an important one for anglers, as it sets the question at rest. The fish was a fine grilse of about three pounds in weight, on its way from the salt to the fresh water.

Mr. Seal stated that the fish was very lively and gave excellent sport, in this respect contrasting most favorably with the trout.

On the motion of Mr. Swan, seconded by Mr. W. E. Shoobridge, the thanks of the meeting were given to the Rev. J. E. Tenison-Woods, to the donors of presentations, and specially to Mr. Calder for his valuable and carefully compiled vocabulary.

The proceedings then terminated.

NOVEMBER, 1876.

The monthly evening meeting of the Society was held at the Museum on Monday, the 18 th Nov. His Excellency the Governor, in the chair.
Messrs. Edward II. Freeman and John Sharp, who had previously been nominated by the Cimucil, were balloted for and declared duly elected as Fellows of the Society.

The Secretary brought under notice the usual monthly returns, viz.,

1. Number of visitors to Museum during October, total, 1709.
2. Ditto, to Gardens, 3598.
3. Seeds introduced into Gardens.
4. Time of leafing ete., oi a few standard plants in Botanic Gardens during October.
5. Books and Periodicals received.
6. Presentations to Museuma.

Mctcorological Returns-

1. Hobart Tuwn, from F. Abbott, Esq., Table and Summary for October, Results of 30 years observations (1811 to 1875 inclusive), with table showing excess of spontaneous evaporation over rainfall for ten years (1866 to 1875.)
2. New Norfolk, from W. E. Shoobridge, Esq., Abstract table for October.
3. Port Arthur, from Dr. Coverdale. Table for October.
4. From the Hobart Town Marine Board, the following tahles:-Mount Nelson, for October ; Swan Island, for September; Goose Island, for September ; King's Island, for July, August, and September.
In reference to the gales which prevailed on the Australian coasts during September, the following remark:, by Mr. F. N. Spong, Superintendent of the King's I. Lighthouse, appear in the table furnished by him for that month:-"These gales had all the characteristics of a cyclone, blowing with great fury, backing 16 points, then calm, and deluge of rain; sulden fall of harometer from $29 \cdot 16 \mathrm{in}$. to 29.94 in . in one hour. Then a violent gate at N.E., 10.42 lb . per square foot, shifting in a few seconds to S.W., with a preselure estimated at 15.60 lb , per square foot; barometer rising to $29 \cdot 12$ hy 9 hrs. 30 min . Frequent violent gusts with hail, wind backing six to eight points. Midnight, stearly violent gale ; no thunder or lightning at any time. The greatest force is marked at $15^{\circ} 601 \mathrm{~b}$. per square foot by estimation. Having no auemometer, possibly it may have beeu much greater. Barometer not so low since October 26th, 1863.
5. From Mr. Roblin. Alotracts and Results of Meterological Observatioms, taken at the lichthouses and other coast stations in Tasmania, during five years (1870 to 1875), compiled from the monthly tables furnished by the Hobart 'Town Marine Board, and the Commandant, Port Arthur.
The presentations to the Museum were as follows :-
6. From Mr. Arthur IV. Johnston, Telegraph Department, Townsville, Queensland. A net bag made by the Aboriginies of Northern Queensland.
7. From Mr. W. Free, Muddy Plains. A species of Petrel (Broad-billed Prion,-Prion rittatus) shot inland.
8. From I. R. Castray, Esq. A very large egg laid by a half-bred Brahma Puntra fowl. This egg weighed $5 \frac{1}{4}$ ounces, and had a smaller egg' within it.
9. From the Rev. G. Brown, Wesleyan Nissionary, Syducy. Eight spears and three clubs from New Britain and New Ireland.
10. From Mr. J. S. Roherta, Victoria, Huon. Specimen of the White. fronted Falcon (F'ulco lımulatus).
11. From Mr. A. Wilkins. Specimens of Dolomite, and Silver Ore from Mitchell's Creek, Bathurst, N. S. Wales. The donor states that this ore yields by assay gold 8 per cent., silver 30 per cent., and copper 9 per cent ; the lode being 13 ft . 6 in . in thickness.
12. From Mr. O'Keefe. Barnacles from bottom of steamship Mangana.
13. From Mr. John Brazier, C.M.Z.S., Sydney. 755 specimens, comprising 227 species and varieties of shells, with list. [The Secretary requested special attention to this very liberal donation, and read some extracts from a letter by the donor which accompanied it.]
14. From Mr. H. Gill. Sample of Tin Ore from the Star Claim, Cascade River, the first tin section found in the Upper Ringarooma District.
15. From Mr. Castles. Sample of Tin Ore from Schouten Island.
16. From Mr. H. Johnston. An Irish tenpenny piece, 1813.
17. From Capt. McDiarmid, brig Moa. Vertebra of a Whale. A Club from Island of Tanna.
18. From the Rev. H. D. Atkinson. A collection of type specimens of new shells, collected by the donor at Long Bay, and described by the Rev. J. E. Tenison-Woods. [In commenting on the value of this presentation, as type specimens, the Secretary read some remarks by the donor.]
19. From Mr. J. Bagley, Oatlands. A Tippet Grebe (Podiceps australis) shot on Lake Dulverton.
20. From J. Swan, Esq. Skin of Grey Flying Squirrel (Belideus sciurus).
[Mr. Swan remarked he had noticed this animal in localities so far apart from each other as Muddy Plains (near Launceston), the Lake Country and Avoca. Although by some observers it was thought to have been imported, he thought it was indigenous. Had it been lorought to the country it would not, in so short a period, have spread so extensively from localities where it had not become too numerous for existence, and whence it had not been driven either by other animals, or by any deficiency of food or shelter.]

The Rev. W. W. Spicer read a paper on the effects of wounds on the human subject inflicted by the spur of the Platypus (Ornithorhynchus anatinus).

Mr. Justice Dobson related the particulars of another case of a very similar character, the subject of which had come under his notice about twelve days after the wound was received. Even then the man was in a very prostrate condition, presenting the appearance of having passed through a very serious illness.

Dr. E. L. Crowther mentioned he had seen a case some months ago in which the patient was almost killed by a wound (he thought on the hand) from the spur of a game cock. The pain from the injury was most acute. The injured limb became swollen, and for the space of twenty-four hours the amount of collapse was alarming.

The Secretary read the following note from Mr. T. Stephens on some specimens from the shaft lately sunk for coal at Spring Bay:-"Messrs. Robinson and Carter of Spring Bay have forwarded to me a case, now in the Museum, containing a complete series of specimens from the trial shaft at Triabunna, which, when arranged in a properly constructed 'section box,' will furnish a good illustration of that portion of the coal measures which was passed through in the recent exploration. I hoped to have submitted to the Royal Society a paper on this subject and on the general geological formation of the district, but have not been able to find sufficient leisure this year for such work. If, in past times, an accurate record had been kept of each section of the coal measures that has been tested in Tasmania, it would have saved the useless expenditure of thousands of pounds." In reference to some specimens from George's Bay, Mr. Stephens adds:" Professor Liversidge, of Sydncy, one of our Corresponding Members, has
named for us some of the rarer minerals from theneighbourhood of George's Bay, which were exhibited at a former meeting of the Society, and has kindly expressed his willinguess to render a like service on any future occasion. To have such assistance from one of the most competent authorities in the colonies is an advantage which will be duly appreciated by the Royal Society:"

The shembini brought under notice a paper entitled " Synonymy of, and lemarks upon, Tasmanian and other Shells, with their Geographical Distribution." By John Brazier, C.M.Z.S., Corr. Mewher, Roy. Soc. 'Tas.

Mr. M. Alliont reported that a fine grilse, no doubt a true salmon, weighing upwards of four pounds, had been captured that morning close to the wharves, a striking proof of the vast numbers which must exist in the river and harbour.
The Govprais stated he had examined the fish, which was a very fine one, aud, he had no doult, was a true Sulmo salar. Passing to a subject somewhat allied to fish, His Excellency brought under observation the net which had been presented, and on comparing it with others in the Museum, commented on the general superiority of the workmanship of those in the northern over those in the southern regions of the Continent, including also Tasmania. Towards the north also the natives appear to have a much better idea of making canoes and catamarans. Before closing his remarks, the Governor begged to take that opportunity of saying he thought the best thauks of the society were due to one of its Fellows-Mr. Russell Young, to the Ministers, and to Parliament for the action which had recently been taken in reserving a great portion, 3,700 acress, of Mount Wellington as a people's park. In his inaugural address he had dwelt strongly on the pressing necessity which existed for some such legislation as that which had just taken place. It was quite impossible to over-rate the benefit of the Act to the city, to the colony at large, and to visitors from the other colonies, to whom the beauties of this park will alway form an increasing attraction. It was pleasant also to think that such a magnificant estate was now secure for all time, not for the rich alone, but for the poor, for whom especially it must prove an incalculable boon and a highly civilising agent.

The SF:cretiry brought furward the results of five additioual years of sucteorulogical ubservations carried on gratuitously at Hobart Town with the greatest zeal and industry ly Mr. F. Abbott, compiled by Mr. Roblin, Curator of the Museum, thus completing a record extending over thirtyfive consecutive years-a period probably unequalled by any other British coluny. Abstract Tables and Results of Meteorological Observations taken at the Lighthouses and other Const Stations in Tasmania during the years 1871, 2, 3, 4 aud 5, compiled with much labour and care by Mr. Roblin were also submitted. The above will, as heretofore, be printed for distrilution.

Mr. Sway in proposing a wote of thanks to the donors of presentations (especially to Mr. Brazier), and to the Rev. W. W. Spicer for his interesting paper, observed, with some reference to the remarks of the Chairman, that a Comnittee has been appointed by Government for carrying out improvements in the Domain and that the work, as far as disposable labour would admit, would be commenced forthwith.

The Secretary mentioned that the Committee would have the great benefit of the advice of the Governor who had taken the greatest interest in the work and bad promised to afford every practical assistance in his power.

The proceedings then terminated.

HISTORY OF AUSTRALIAN TERTIARY GEOLOGY.

By the Rev. J. E. Tenison-Woods, F.G.S., F.L.S., Corr. Mem. Roy. Soc. Tas., and N. S. Wales.

[Read 11th July, 1876.]

Abstract

The first person to call attention to the tertiary formations of Aus-

 tralia was Capt. Flinders, who, in his survey of the south coast in 1802, noticed the fossiliferous cliffs of the Australian Bight. He imagined them to have been derived from some vast coral reef. Tertiary geology as such was not then known. In 1829 Capt. Sturt traced down the Murray River, and in doing so came to a portion bounded on each side by high limestone cliffs, which were one mass of fossils, many of which converted into selenite. He identified some of those collected with European forms, and though in this he was mistaken, yet he was correct in designating the formation as tertiary. The subject then remained in abeyance, except from some cave remains sent home by Sir Thomas Mitchell, until 1859, when, encouraged by Sir Charles Lyell, who was in a great measure my instructor in geology, I prepared an account of the tertiary formation in South Australia, for the Geological Society, which was published by them. This was accompanied by a valuable notice of the Polyzoa and Foraminifera, by Professors Busk and Rupert Jones respectively. These investigations were followed by my work on the Geology of South Australia, in 1862, subsequent to which the regular reports of the Victorian Ceological Survey have thrown a flood of light upon the whole subject. Professor McCoy has from time to time issued notices of some of the most interesting fossils and their affinities, while two parts of the "Decades" of the Museum have been dedicated to Palæontology, principally tertiary. Within the last ten years Professor Duncan, the illustrious President of the Geological Society, has steadily devoted himself to the elucidation of the Australian Tertiary Corals; while Professor Laube, in Vienna, has given equal attention to our fossil Echinodermata. The eminent palseontologist, Thomas.Davidson, has taken our Brachiopoda in hand,-a work begun already by Robert Etheridge, jun., who has also, with Professor Duncan, added something to our knowledge of the Echinodermata.It will be seen from this brief sketch that though the tertiary formations of Australia have occupied many minds, yet our progress, so far, has been somewhat slow. This is the more remarkable, as it has long been believed among scientific men that the development of Australian geology must reveal facts of the utmost importance to science generally. It has been remarked by some geologists that the present state of Australia is very similar to what Europe was immediately after the secondary or Mesozoic period. The position of Australia renders it less liable to an admixture of its species with those of other continents, and therefore its natural history is to a certain extent peculiar to itself. In the Flora the correspondence to the Mesozoic period is well marked. There
the Araucarike, so common in the secondary rocks, are represented ; and these are only found in the Pacific Islands and Australia. There are the Lemice and Arthrosamice found only at the Cape of Good Hope and Australia, being closely allied to species found in secondary deposits.

With regard to the Mammalia, no indigenous amimals have been found distinct from the Marsupialia except rodents, and one or two species about whose introduction doubts have been entertained. The rodents belong to an order which has many affinities with marsupials, and in one genus, Phuscolomys, the characters are interchanged.

The following passage from Mantell's "Wonders of Geology " will show that the views of geologists on this subject were. Speaking of the Wealden strata, he says :-" Nor can we resist the conviction that not only did the same terrestrial area, however modified it must have been during the long succession of ages, supply the débris of an almost unchanged system of animal and vegetable life to the Jurassic seas at first, and subsequently to the Cretaceous ocean; but that, also, the fama and Hora of this ancient land of the secondary epoch had muny importunt features which now characterise Australic. The Stonesfield marsupials and the Purbeck Plagiaulux, are allied to genera now restricted to Australia and Tasmania, and it is a most interesting fact, as Professor Phillips was first to remark, that the orgenic remains with which these relics are associated clso correspoml with existing forms of the Australian Continent and neighbouring seas; for it is in those distant latitudes that the waters are inhabited by Cestrucions, Trigonip and Terihnctule, and that the dry land is clothed with Arcucurior, tree ferns, and cycadeous plants."
These facts, coupled with the circumstance that no true secondary rocks had been found in Australin, lent great force to the opinion that we had in Australia a continent which, having been dry land during the Mesozoic epoch and only a small portion of it since submerged, had preserved the fauna and flora of that time. But later investigations have shown that we possess on the continent nearly every leading representative of the secondary strata of Europe. In Western Australia, and in Southern Queensland, the lower and middle Mesozoic formations are largely represented; while in N.E. Australia and all around Carpentaria we have immense areas exclusively occupied with deposits which very closely represent the upper and lower Cretaceous with the Greensand of Europe.

The more advanced state of our knowledge places us now in a position to give a solution to many important questions which naturally arise. The first is whether the secondary forms show any remarkable divergence from the typical forms of that period. To this we may answer in the negative. In accordance with the general rule in geology that the lower we descend in time the wider the range of species and the closer the resemblances, we find a strong resemblance, and, perhaps, in some cases, an identity which enables us to say not only that the fossils are secondary, but, also, to what particular subdivision of the secondary rocks they belong. As a further illustration of the same rule, we find in our Palæozoic
(Devonian) rocks absolute specific identity with European forms, with rare exception.

This being the case, it becomes most interesting to ask, in the interests of the evolution theory, whether there are in our tertiary formations any signs of a persistence of the secondary types, so that their preservation, in the existing state of things, can be accounted for. To this, we must again answer "no." The secondary types in the tertiary rocks of Australia are ferw and rare. We have two Trigonice, both very different from the existing forms; but one very similar to our Oolitic species, and a Pleurotomaria, which is a Palæozoic type! Some of the Brachiopoda have faint secondary affinities, but the Echinodermata are certainly not Mesozoic in character. In all other respects our tertiary formations have very close affinities with the tertiary rocks of Europe, and, indeed, with the rest of the world; while there is the same singular and remarkable break between the secondary and tertiary periods that is found to prevail everywhere. Imperfect and incomplete as the geological record must necessarily be when it is interrogated as to evidence in favour of evolution from what it gives in Australia, it must say decisively " in Australia I have none to give."

In this I am not putting any interpretation on the evidence. I am merely stating the fact. Whether another interpretation against evolution could be given is a matter of individual opinion, and I withhold my own. My researches in Australian tertiary geology have now extended over twenty years, and during that time, as I have helped somewhat to create its literature, I may say, probably without arrogance, that I have as good an opportunity of becoming acquainted with its palreontology as any one. It may be, therefore, of some value to state that in all my examinations of our fossil and living fauna I have carefully sought for any reasonable evidence in favour of evolution or clue to its mode of operation, and have found none-none whatever. I must add that Australian geology, whether reluctantly or not, must admit that she can urge nothing in favour of that theory being true, the true explanation of nature as we find it.

But in the supposition that in our land fauna and flora we have a relic of secondary epoch, there is something not easy to reconcile with the evolution hypothesis. Types remaining stationary during such long periods of time appear, to my imperfect knowledge of evolution, inconsistent with the necessary postulates. Possibly I may misunderstand the question, but it must be of use to point out that the evidence of the submergence of Australia since the Mesozoic period is somewhat cogent. Not only are relics of the Cainozoic strata found at considerable distances from the sea, but the northern as well as the southern portions of the continent are covered at intervals with a deposit which some regard as marine and some as lacustrine, but all agree in referring to the most recent of our tertiary strata. It would be, therefore, a hasty conclusion to assert that any part of the continent has been preserved as dry land since the Mesozoic period, and the weight of evidence is against it.

FURTHER NOTES ON THE TERTIARY MARINE BEDS OF TABLE CAPE.

By R. M. Johnston.

[Read 11th July, 1876.]

In a former paper upon the above subject, I confined my observations principally to the organisms themselves. Since that time I have visited Table Cape, and, assisted by Mr. T. R. Atkinson of this town, I have not only added to my collection a large number of new species, but have by careful investigation become possessed of important particulars which may be of some value in determining the relative position of this interesting deposit.

On approaching Wynyard from the sea, the eye is at first arrested by a bold basaltic headland, rising from the water at an angle of 45 degrees, to a height of about 500 feet. The bold outline and the characteristic level summit at once suggests the idea that the striking object before you must be the well-known Table Cape. On a nearer approach, two smaller rounded bluffs come into view, and are rendered conspicuous by the contrast which their white precipitous cliffs present, as compared with the wooded and sombre slopes of Table Cape proper. The two smaller bluffs are isolated from each other and from Table Cape by narrow valleys formed by erosion, while the larger valley or basin by which the river finds its course to the sea separates them from the little township of Wynyard. Notwithstanding the gaps between the bluffs, an ordinary observer can perceive at a glance that the stratified beds of the smaller ones were at one time continuous, and that the protecting cap of basalt at the same time spread in one continuous sheet over all the adjacent ridges. On closer examination it becomes evident that we have in these two solitary bluffs a small fragment of that raised sea bottom which, most probably, at a recent period connected Tasmania with the continent of Australia. At any rate it is most conclusive that we have in these stratified beds myriads of organisms which were during the tertiary period inhabitants of that vast shallow sea which then covered the greater part of Australia and Tasmania and separated the remaining portions into island groups.*

The bluff nearest to the township of Wynyard is about 160 feet high. The general strike is north and south, and the dip inclines about 5 degrees in a north-westerly direction; and at this angle the beds disappear at sea level under the great basaltic promontory of Table Cape. As the series of beds

[^18]forming the deposit attains its greatest thickness in the bluff nearest to the township, and as the same relative characters are maintained at other places where the beds are exposed I have chosen this point as the most suitable for illustrative purposes. [The accompanying diagram will show the relative extent and position of the various beds.]

Conceive, therefore, a white, beetling sea-cliff, whose base is obscured by enormous blocks of sandstone which, by the ceaseless undermining action of the sea, have recently been dislodged from the various ledges high overhead.

Those restless sea waves by which they were originally formed are now at once engaged in their destruction, and in re-arranging out of the same materials a very similar set of sandstone beds in the quiet coves of the neighbourhood. Thus we have the work of destruction and construction carried on by the same agency, and although we may find in the new arrangement a certain parallelism with the older formation; yet there are differences at once striking and instructive. For example-while the particles of sand forming the original rock have only been subjected to a little more tear and wear, the included organisms are in every case wholly dissolved. It is true that the existing types of life which find a home and a grave in the new formation may have secreted in their tests the same elements which formerly entered into the composition of the tests of the organisms of the older formation, but the forms themselves are very different in appearance. Were the present sands consolidated and elevated into a series of cliffs corresponding to those which now exist along the shore, the most careful observation might fail to find any organism having its exact counterpart in the older formation. The characteristic shells-

Trigonia semi-undulata; Pectunculus laticostatus; Cucullea corioensis; C. cainozoira; Voluta anticingulata ; V. weldi, etc., and the Polyzoa Cellepora gambierensis; C. nummularia; C. hemispherica; C. spongiosa; Sälicornaria sinuosa.-CoralsPlachotrochus deltoileus; P. elongatus, etc., etc., of the older formation, are not found in the new formation, whilst the characteristic shells of the latter-Trigonia margaratacea; Waldheimia australis; Vemus roborata; Phasianella australis; Nassa pauperata, Risella nana, etc., etc., are nowhere to be found in the beds of the former.

I shall now give a brief description of the various rock divisions of the section given in the diagram, and in following a downward order I shall offer such observations as may be necessary to impart to the members of this Society; some knowledge of the composit and relative extent of the various beds and their included organisms. My work in this particular
is rendered comparatively easy by what is now being carried on by the Rev. J. E. Tenison-Woods, in classifying and describing the organisms themselves.

BASALTIC CAP (a.)

It is a singular feature connected with the older stratified rocks that, where exposed as cliffs, they are invariably capped with sheets of igneous rock. It would seem that where the soft stratified beds were unprotected by a capping of this sort they have been washed away entirely or croded into valleys of which Fingal Valley may be taken as a type. This supposition would fully account for the vast districts of elevated table lands in Tasmania, everywhere terminating in precipitous bluffs. A corresponding feature on a smaller scale may be seen in connection with the stratified beds of tertiary age, of which the Table Cape beds form a striking example. It is probable that the deposit which forms the main subject of the paper would have been entirely wasted away long ere this time had it not been that during a late volcanic period it was covered with sheets of basalt and basaltic tuff. The bluff already mentioned is covered by a cap of basalt and basaltic tuff about 80 feet in thickness. This cap, though shown in diagram to be separate from corresponding caps in the neighbourhood must have, prior to the crosion of the valleys, formed with them one continuous sheet.

The basalt at the only place where a face is exposed is greatly decomposed, and at first sight it might be inferred that the basaltic capping might be the re-arranged detritus of a basalt older than the rock which it now reposes upon. This inference is however extremely improbable, inasmuch as there is not the siightest evidence to show that the cap has been the result of the re-distribution of older material. It may be remembered that in a former paper I described a similar cap of basalt, overlying the beds of lignite at Breadalbane.

As they presented a superficial resemblance I determined to subject them to analytical comparison, and for this purpose I sent specimens of the rocks in question to Professor Ulrich, of Melbourne, whose labours in connection with the rocks of Australia have obtained for him a wide-world reputation. After making sections of the rocks, and subjecting them to microscopic examination he thus writes with reference to the Table Cape basalt:-" The rock is somewhat similar to some of our recent basalts here, viz., it is essentially a feldspar basalt with very little augite; lots of glass and magnetic titaniferous iron, and rendered porphyritic by abundant grains and crystals of olivine. It differs from the basalt of Breadalbane by that the latter contains abundance
of augite in well developed crystals." "These mineral differences are however no criterion of age; for we have here genuine miocene basalts which can, mineralogically, not be distinguished from recent pliocene ones. If the feldspar were replaced by Nephelene or Leucite throughout a basalt sheet, we might perhaps be justified to declare the geological age, within certain limits, different from that of an adjoining feldspar basalt flow, but even in this instance great care is required, especially if conclusions are to be drawn as to the age of underlying rocks." Happily we have now a more reliable index to the age of the underlying rocks than may be obtained from the comparative analysis of the constituents of igneous rocks; it is, however, satisfactory that the learned professor's analysis tends to confirm the opinion which I formeriy entertained, viz., that the protecting cap overlying the marine beds at Table Cape is urecent busalt, and very slightly differs from a similar flow which overspreads the lignites at Breadalbane.

In order to ascertain whether the intrusive rock, mentioned by Mr. Allport in comnection with the Travertin at Geilston Bay, is of a similar character to the rocks at Breadalbane and Table Cape, Professor Ulrich has, in a letter to me, kindly volunteered to analyse any specimens from that quarter sent to him. For this purpose, Mr. Allport, on being applied to, at once procured and formarded an interesting suite of specimens. It will be of great value to have an established relationship with the various basaltic rocks in Tasmania and Victoria. The rock known as the "older volcanic" in Victoria is very similar to the rock at Table Cape, and, like it, the " older volcanic" frequently caps the marine beds considered to belong to the miocene age.*

I regret that I could not find an accessible spot to ascertain whether the sandstone, upper bed, was altered at point of junction with the basalt or not. Perhaps some future observer may be more fortunate in this respect.

TURRITELLA GROUP (b.)

Following the descending order we come upon the group of beds which immediately underlie the basalt as already described. The group has been named by me in the diagram as the "Turritella Groun," because the small shell, T. warburtonii (Tenison-Woods), so abounds through this particular formation as to give it a character which would be sufficiently distinctive when compared with the only other

[^19]division of which the tertiary marine doposit at Table Cape is composed. The group is about 80 feet thick where fully exposed, and consists of a series of beds of white or gray calcareous sandstone, more or less firmly consolidated.

Although there are some of the beds in which searcely any other organism can be seen but the Turritellia already referred to ; yet there are othere in which organisms are extremely varied and abundant.

There are also bands frequently occarring throughout the group, some of them can be traced horizontally for about a mile perhaps, in which Cellepora gambiciensis (Busk) seems to be particularly abundant.

So much does the latter organism appear to be abound in these bands, that I am of opinion that it is owing to the segregation of the carbonate of lime around this coral, that the great relative hardness cf these bands is due.

The other forms which give a character to these curious bands appear to be Echinodermata and Brachiopoda. Of six distinct species sent to the Rev. J. E. Tenison-Woods for diagnosis, the form resembling Hemipatagus woodsii (Etheridge) (so called after the learned gentleman just referred to) seems to be the most abundant. Among the seven species of Brachiopoda found, the most conspicuous is the fine shell, Waldheimia gambierensis (Tenison-Woods), also described from specimens supplied by the Rev. J. E. T. Woods, from Mount Gambier, South Australia. The most abundant, however, is a species of Terebratula, resembling a large T. compta (Teribratella tenisoni, Tenison-Woods).

In the less indurated sandstone beds, or between the bands already described, I have discovered 15 or 16 species of Polyzoa and Corals among which I have been able to recognise many of the Mount Gambier forms, described in "Observations on the Geology of South Australia" by the Rev. J. E. Tenison-Woods, viz., Cellepora nummulina, C. spongiosa, Salicornaria sinuosa, Plachotrochus deltoides, P. elongatus? Flabellum victoriae? F. gambierense? etc., etc.

As we approach the point of junction with the underlying division we come upon forms common to both divisions, and only distinguished by relative abundance, among which I may mention-Typhis $M^{\text {c Coyi }}$ (Tenison-Woods) ; Voluta anticingulata (${ }^{\prime}$ 'Coy) ; Ancillaria mucronata (Sow); Natice Winilei (Tenison-Woods) ; Cucullea cainozoica (TenisonWoods) ; C. Corioensis (11'Coy); Pectunculus laticostatus ($1 I^{〔} \mathrm{Coy}$) (Tenison-Woods) ; Nucula tumida, a small species of Cardita; a small species of Myadora; and two species of Pecten, one of then being an extremely minute species.

Altogether this group presents a facies so similar to that
described by the Rev. J. E. Tenison-Woods, as belonging to the limestone beds of Mount Gambier, that the description of the latter would almost suffice for the Turritella Group of Table Cape, e.g., in page 75, Geo. So. Austral., the following description of the Mount Gambier beds is given-"It is here seen that in addition to a distinct line of stratification, dividing the rock into layers about fourteen feet thick, there are regular zones where particular fossils are associated. Thus, at the first bed (fourteen feet) little is seen but Bryozoa and Terebratulae ; in ten feet next, less of the moss corals, and mere Pectens; the next is almost exclusively composed of a Pecten common to this formation with imbricated strix called Pecten coarctatus, and a cellopore coral subsequently to be described (C. gambierensis). This state of things is nearly continued to the bottom, where Echini and Reteporæ combine with the general mass." Had the learned author added that the small shell Turritella warburtonii was found in great abundance throughout the mass I should have supposed that he was giving an exact description of the Turritella Group at Table Cape.

THE CRASSATELLA BED.

We come next to the lowest division of the marine deposit. For itself as a rock it hardly deserves to be considered as separate from the Turritella Group, which rests immediately upon it, were it not for the fact that it appears to have been accumulated under different circumstances. The nature and relative abundance of the organisms contained in it also give a character which though most probably brought about by local circumstances is yet most peculiar and sufficiently distinctive. In making a distinction, therefore, between the Turritella Group (b.) and the Crassatella Bed (c.), it is not to be understood that the forms of the lower are nowhere to be found in the higher, and vicc versa. All that is meant by the distinction is that the characteristic shells of the lower bed or division suddenly diminish in quantity as we enter the higher group and as we ascend even these gradually disappear.

We also observe that certain forms, especially Corallines and Terebratulæ, abundantly appear in the upper beds in bands, which were rarely seen or altogether absent from the lower.

The Crassatella bed is extremely variable in thickness, for in some places it attains a thickness of three and four feet, while at other places it is reduced to a mere band of 3 and 4 inches thick. Everywhere throughout, however, it preserves a uniform character.

I have named it in this paper the Crassatella Bed, because
this organism belongs almost exclusively to it, and in some places it is so abundant that it forms distinct layers. Ilre bed itself may be satil to be composed of an irregular ageglomeration of shells bound up in a matri: of fermgino ons looking mud.

This substance is very fine ant soft, and semms to lave a wonderful preservative property, for many of the shells invested by it have not only the fine emamel preserved but in many cases the gelatinous epidemal membrane of a species of Pecten (possibly I? courchethes \%), as perfect as though it still contained the living animal.

In this mud I have also found grit and rounded pebbles of a yellowish quartz very abundant. The fine yellow muddy substance is itself principally composel of the comminuted remains of varions species of foraminifera. Perfect forms of the latter are, howerer, abundant, among which I have noticed varions species of Rotalia, Iforginulimu, and Textularia. I intend, at some future time, to stuly these microscopic forms more carefully.

Although the exposed face of this sheily rock is extremely hard, yet when masses of the rock are detached they are found to be extremely friable, and with ordinary care the most delicate shelis may be easily extracted. Unfortunately many of the latter are already so fractured in the rock that when selmated from the matrix they fall to pieces. There are numerous small caves hollowed out of this rock by the wares of the sea at high tide-along the Sandstone Cave, and it is from the roo! "f some of these caves that some of the most interesting species of shells have been obtained. The sreater number of species hare also been obtained from this bed. As their number is so large I have prepared a complete list in a tabular furm in another phace.". It is only necessary to state here the names of thos: species, which from their extraorduary size and abundane, wive a distinctive character to this small but interesting division, viz.-
*Typhis m'coyi (Woods).
Cyprea platypyga (M'Coy) Murex eyrei, Fusus roblini. *Spondylus.
Cypreaplatyrlynca (If Coy) *'assidinia reticulospira, Pectumculus laticostatus (Lamarck).

Cyprea archeri (Nonds), Ciassiss sufflatus (T'enisom-Woods), Cucullea corioensis ($\mathrm{MI}^{\text {'Coy }}$).

Toluta anticingulata (M'Coy', Lyonsia agnewi (Tenison-Woods).
-Trivia europea, Violuta hammanolia (Mr'oy), Crassatella oblunga (Tenison-Woorls).
*Se T'abular List.

Voluta weldii (Tenison-Woods).
Ancillaria mucronata, Venus allporti (Tenison-Woods).
Venus cainozoica (Tenison-Woods).
*Trochita calyptræformis, Desh.
*Crepidula.
*Fissurella.
*Emarginula transenna (Tenison-Woods).
Turritella sturtii (Tenison-Woods), n.s.
Turritella warburtoni, ditto, n.s.
Columbella oxleyi, ditto, n.s.
Marginella wentworthii, ditto, n.s.
Delphinula tetragonostoma, ditto, n.s.
Zizyphinus blaxlandi, ditto, n.s.
Margarita kekwickii, ditto, n.s.
Tenagodus occlusus, ditto, n.s.
Pleurotoma johnstonii, ditto, n.s.
Astralium (Calcar) flindersii, ditto, n.s.
Astralium (Calcar) ornatissimum, ditto, n.s.
Lima squamosa, ditto, n.s.
Cardita gracilicostata, ditto, n.s.
Chione propinqua, ditto, n.s.
Nucula tumida, ditto, n.s.
Leda cerebrecostata, ditto, n.s.
Cucullea cainozoica, ditto, n.s.
Terebra additoides, ditto, n.s.
It is also important to notice the occurrence of fossil wood greatly decomposed in this deposit, and occasionally the teeth of two species of shark which had a world-wide distribution during the tertiary period, viz., Lamna elegans, Charcharodon angustidens (Ag.) \dagger

Of the latter Professor McCoy writes :-" The present species, even as originally restricted by Agassiz, is one of the most abundant and characteristic miocene tertiary fossils of every part of Europe and America in which strata of this age exist, and I recognised it amongst the Australian beds to which I assigned miocene and oligocene with great astonishment, from this evidence of its world-wide distribution in the tertiary period."

CONGLOMERATE (d.), AND SLATE (e.)

The rock forming the floor upon which the marine deposit at Table Cape has been thrown down is a highly indurated conglomerate. It presents a very irregular outline, and forms

[^20]all the numerous dangerous reefs between Table Cape and Emu Bay.

I am of opinion that this is the same conglomerate which crops out on the Dial Ranye, and which is assigned by Mr. Gould to Silurian age. It is composed of highly altered water-worn pebbles derived from various ancient rocks. Some of them are derived from a dark crystalline limestone, which appears to be non-fossiliferous.

One remarkable block, however, was, so far as I could learn, picked out of this conglomerate by Mr. James Smith, of Westwood, Forth. It is highly fossiliferous, the prevailing form, as shown in various sections, is undoubtedly a species of Brachiopod. I have not sufficiently studied this rock. I hare observed, however, that it has been greatly subjected to denudation, and that it rests, so fir as I could see, unconformably upon a more or less inclined slate rock.

GENERAL.

I have thus referred as briefly as possible to the vertical distribution of the organisms contained in the tertiary marine beds at Table Cape. It is of the utmost importance, prior to establishing any relations with similar isolated deposits elsewhere in Tasmania, Flinders Island, or the continent of Australia* that each isolated bed or series of beds should be fully investigated, especially as regards the extent and distribution of its organic contents.

While I do not deny that reasonable inference or conjecture, so long as it is recognised as provisional, is most useful in stimulating enquiry and helps to make interesting what would otherwise be a chaos of isolated observations, yet as the tendency to create minor subdivisions with reference to distant European beds, is in many instances too apparent, it may be the means of introducing much error into our classification.

Among recent geological authorities of eminence, perhaps, no one has drawn more particular attention to this source of error than the late respected Mr. Jukes.

In connection with chronological observation he thus writes (1. 409, manual). "In order to avoid error each great distriet of the earth, such as Europe or North America should be surveyed soparately, without reference to anything out of the district, and that the order of superposition of its strata and their classification into groups or formations, should be settled independently on evidence to be found in the district only. When this has been done the two series may be compared,and the synchronism of different parts of each may be decided ou."

If such care be necessary in the determination of the great

[^21]classes themselves, it is surely more necessary to be careful in our classification of the isolated beds of a system into subdivisions, when we take into consideration the horizontal distribution of organisms as affected by migration of colonies, physicial barriers and local influences.

As an example of classification which might ignore the effect of migration of species, it is interesting to notice that although the shell Pectunculus laticostatus (Lamarck)* so abundant in the lower shell bed at Table Cape, is not now found living near the shores of Australia or Tasmania, it still exists in abundance on the coast of the distant colony of New Zealand. It is possible that this shell had a wider distribution during the tertiary period; but if there be evidence to the contrary, it is probable that change of circumstances have caused the species to migrate from its original centre, and that the great distance of our coast from the shores of New Zealand, represent horizontally or in space, the long duration of time necessary for the slow migratory progress of such an organism.

Take again the following instance:-
In the Turritella \dagger limestone of Flinders Island, there occurs three species of shells also common to Table Cape deposit; one of them being the shell so abundant at the latter place. Cucullea cainozoica (Tenison-Woods.) Had an observer only reported the discovery of these three forms, without reference to their abundance or associated organisms, it would be a reasonable enough inference, so far as evidence went, that they belonged to the same sub-division. But as I have fuller evidence which informs me that, with the exception of the organisms already referred to, the characteristic shells of Flinders Island, though there very numerous, had never been detected in the beds of Table Cape. This knowledge, taken in conjunction with the consideration that the latter beds have now been very fully investigated, is sufficient to postpone the final co-relation of these deposits until the other isolated formations, of a similar character, afford some additional clue to their exact position.

As an example of local distribution in the same bed at Table Cape, I noticed, especially that Cylichna arachis (Quoy) though very common at one particular point, could be found nowhere else in the same horizon or indeed anywhere else. This is another important consideration when comparisons

[^22]are sought to be made with various isolated deposits widely separated.

Generally, horizontal extension of a particular species from its orignal centre may represent a period of time during which vast deposits may have accumnlated, vertically, on the original habitat, where each succeeding layer, perhaps, shewed a gradual extinction of the older forms, and the introduction of a new class of organisms. Thus, for example, could we depress the present group of tertiary beds at Table Cape so that the marine beds now in process of formation rested conformably upon them; a vertical section would show such a complete change in the character of the various beds as to justify the local geologist in sub-dividing his section into separate groups with, locally speaking, well marked characters. At the same time could we follow the horizontal movement of organisms as they gradually disappeared from the original centre, we would yet find in a very far distant part of the earth's surface, that amid all the vicissitudes of migratory change, a few persistent forms of the lowest stratum of the original centre would still be found to be the true contemporaries of those new forms which gave a complete change of character to the upper beds.

It follows from considerations of this nature that the existence of a few specific forms common to two or more widely separated deposits, is, in itself, no guarantee that they belong to the same subdivision of a great class ; or even to the great class division itself.

Such being the case we should accept with the greatest caution the subdivisions of the various widely separated tertiary marine deposits of Victoria into Oligocene, ILiocene, and Pliocene, until we know more fully the extent and quality of the evidence which forms the basis of their classification.

It also follows that until we have worked up independently and fully each deposit of the tertiary period, and also compared them with a fully worked up list of existing forms in the same neighbourhood, any attempt at classification will be premature and misleading.

Being deeply impressed with the importance of such considerations I have most carefully gone into the investigation of our Table Cape marine deposit, and I have been rewarded in the discovery of the remains of at least 150 distinct specific organisms. When the great number of new species are described and classified by the Rev. J. E. Tenison-Woods, to whom science in Tasmania is already so deeply indebted, we shall then be in a better position to compare with similar deposits elsewhere and with the existing forms in our own neighbourhool. But it is not enougi to have our owu
deposits worked up with care. It will be useless to make comparisons with the deposits of Victoria or New South Wales without the co-operation of the naturalists and geologists of Australia generally.

This might be most effectually brought about by appeals to the various learned societies in Australia and New Zealand to make exchanges with us and to send catalogues of their classified fossils, with descriptions of habitat and distribution.

For this object I have arranged the marine fossils at Table Cape into a tabular form, which not only shows at a glance the distribution, so far as known, throughout the Australian deposits, but also, by signs, is made to show the relative abundance of each particular organism. Were the various learned societies to aid in classifying their fossils in a similar way, we would then be able to dispel all doubts with regard to the present classification. Co-operation, therefore, is at the present time of the utmost mecessity, and I trust that the members of the Royal Society of Tasmania will take the initiative in a work so desirable and of such importance.

Note.-In the table the folluwing signs are used :-t Not yet described, or being examined for description by the Rev. J. E. Tenison-Woods. u, common ; b, abundant ; c, very abundant ; x, not uncommon; y, rare ; z, very rare ; l, still living.

> The following a'so occur in abundance at Table Cape:CORALS.

> Helisstrea cainozoica (Tenison-Woods), Table Cape.
> Balanophyllin australiensis (Dunean), Table Cape, and S.A.
> Ditto nov sp., Table Cape.
> Trochoseris Woodsi (Duncan), South Australia.
> Conotrochus McCoyi (Duncan) Table Cape and South Australia.
> Ditto nov. sp, Table Cape.
> Sphenotrochus excisus (Duncan) Table Cape.
> Antillia lens (Duncan), Table Cape.
> Plachotrochus elongatus (Duucan), Table Cape and Mount Gambier.
> Ditto deltoideus (Duncan) ditto.
> Caryophyllia viola (Duncan), Table Cape.
> Dendrophyllia Duncani (Tenison-Woods). Table Cape.
> Flabellum Duncani (Tenison-Woods), Table Cape.
> Ditto victorix, Table Cape and South Australia.
> Ditto gambierensis, ditto.
> POLYZOA.
> (ellejwra gambierensis (Busk) Table Cape and Mount Gambier.
> Ditto spongiosa
> 23 \#
> Ditto nummularia " "
> Ditto hemispherica
> " "
> Pustutipora ramosa (Tenison-Woods) ", "
> Buskia typica ", "
> Retepora sp.
> ", \quad,

STEROPONAcontinued.

ica Wintlei, znison-Woods

netus conole-
5, ditto
o, ditto
0, ditto
I igodus occln-
3, ditto

(ea

-

na Bassi, Teni in-Woods = squamosi, amark

ta, Montf.

atula (?)
ndylus 3.0
(ullea corioensis 'Coy
o cainozoica, znison-Woods 4
: ito, ditto

- atunculus lati-

inps

:o aurita, ditto
I sula tumida.
enison-Woods
a crebricostata
$t 10$
ma lamellifera, (ti)
us Allporti,
:o (Chione) pro qqua, ditto :o cainozoica, tto
1), ditto (?) . o, ditto (?) (lita gracilicosta, Tenison$1: 0$ (\%), ditto b) lium (\%)
- curtus Leandi, ditto n-is Agnewi, tto
dora (?
nia acutícos.
$\therefore, \mathrm{I}^{4} \mathrm{Coy}$) osemiunduta, ditto .o Howittii, tto
sella ?
$90 f$

NOTES ON THE FOSSILS REFERRED TO IN THE FOREGOING PAPER.

By the Rev. J. E. Tenison-Woods, F.G.S., ©c.

[Read 11th July, 1876.
Since I last described some of the Table Cape fossils existing in the Muscum of the Royal Society the collection has been very much enlarged, owing to the indefatigable excrtions of the author of the preceding paper, Mr. R. M. Johnston. From this collection I have been enabled to determine upwards of eighty new species, the greater part of which are new to science. About ten per cent. of these are still existing, some few in the same seas, some in the Northern Hemisphere, in subtropical regions or in European seas. Knowing as we do now, from deep sea dredging the wide diffusion of species until recently regarded as local, we must not be surprised at the result, nor should we be surprised if a still larger number of our living shells are found common to European seas and our own. Ten per cent. can hardly be fimally regarded as the proportion of surviving forms, because our knowledge of the existing fauna is so imperfect. Some of the fossil shells I never saw living until very lately, and should have described them as extinct had not living specimens been recently discovered. Such instances are, however, like the species themselves-extremely rare. Natica polita and Fissurella concatenata are cases in point. They had been described there as extinct and only very recently discovered living specimens. Trivia europea and Eulimella subulata are European forms, which I believe occur at Table Cape as fossils.

I have already described the nature of the formation. I may add that it is evidently a deposit belonging to the Laminarian zone. This I gather from the entire absence of truly littoral shells, and the presence in abundance of Rissoidæ, etc., which feed on sea weed at depths, of from eighty to one hundred fathoms. Foraminifera are numerous and indicative of the same depths as well as corals among which are true recf builders, Heliastraa tasmaniensis, Duncan ; Thamnastrea tasmaniensis, Dunc.; and T. sera. Dusc., which are rather abundant. They are the only ones hitherto found in the Australian tertiaries. I have been able to determine a new Placo-
trochus, and a very peculiarly branched Dendrophylla. The Brachiopoda are abundant, and tend to confirm the evidence of the depth at which these beds were deposited. Several now species are under the consideration of Mr. Thomas Davidson-our greatest living authority-and, doubtless, will soon be described.

The Echinodermata are numerous and present some new forms. They are all considerably distorted by pressure. Nothing, however, of very great novelty has hitherto been found, and all the species bear the strongest resemblance to those of the Malta Miocene.

Polyzoa are scarce, and in this respect the Table Cape beds present a remarkable contrast to those of a similar horizon in Australia. This is accounted for by the nature of the beds which are composed of a levigated mud, mingled with coarse pebbles of quartz and feldspar, and all highly fernginons. They were either derived from the detritus of submarine craters, or the wearing down of volcanic rocks in a sea, not tranquil, but containing strong occanic currents These conditions are very unfarourable to the growth of polyzoa.

Though some of the shells, as far as yet known, are peculiar to the Table Cape beds, and many of the corals; yet the majority of the fossils are identical with those of the Australian so-called Miocene and undoubtedly belonging to the same sea. To show what difierences have arisen since the period, I may mention that there is a much closer resemblance between the fossils of Table Cape and those of Southern Australia, than there is between the shells found upos, the same coasts now, that is to say, that the two places had more species in commoin formerly than than they have now: and, though of course the differences even now are not rery great, ret they are more evident than they were. It should be remarked, however, that now the existing shells for comparison are littoral, but then they were a continuous deep sea, and whereas we know the littoral species, we do not know the deeper sea ones.

It is certain that is we go back in geological periods we find a greater similarity extending over wide spread areas, until iis the cally formations, where absolute identity is the rule in the most remote parts of the carth's surface. Thus the Devonian fossils of Tasmania are, with few exceptions, specifically identical with those of Europe. Professor

McCoy has pointed out another curious fact iu our Australian palæontology, which is, that though in our early tertiary formations we have little specific identity with European fossils, yet we have shells in some instances so closely resembling them as to be mimetic, and no more than just specifically distinct. As far as my examinations go this I find to be rather the exception than the rule, and in most eases I looked in vain for even a general resemblance between our fossils and those which may be presumed to be of the same horizon in Europe.

The following are the new species brought to light by Mr. Johnston. Note.-All dimensions in French millimetres.

Mures efrei. n. s. Shell fusiformly ovate with a rather depressed spire, lamellose and spiny, last whorl three-fourths the whole length of shell, sharply angulate rather above the middle and furnished with eight thick lamellose frilled varices which at the angle become projected into blunt hollow short somewhat recurved spines. About the fourth from the aperture the varices lose their lamellose character, and become lirate ribs, still preserving the spines at the angle, above which the shell slopes upwards to the suture at a slight inclination on which the varices are represented by smooth lamellar raised lines; the spiral whorls, four in number, have the angle spinous, and but little raised above the suture; apex obtuse; aperture ovate; outer lip produced at the angle and terminating anteriorly in a long straight canal; inner lip reflected with a conspicuously raised foliaceous rib, spirally sloping to the siphonal aperture. Long. 48, lat. 32. Last whorl from posterior margin of mouth, 34 ; length of canal, 17.

Cassis sufflatus. n.s. Shell thin, shining, globosely in flated with simple or subplicate whorls, spire short almost acute; whorls $6,2 \frac{1}{2}$ apical, naticiform, three next distinctly cancellate with a fine subnodose carina above; last angulate below the suture, between which and the angle there is a shallow broad finely bimargined groove; below this the shell is somewhat finely and indistinctly tuberculate and ribbed, the ribs showing a faiut lower band of tubercles near the middle of the whorl, below this the shell is smooth or very finely striate; aperture auriform, outer lip reflexed, rounded, thickened and much produced anteriorly; inner, a mere enamelling above and passing as a thin septum over the round abruptly twisted, short siphonal canal, causing a broad spiral groove like an umbilicus to pass behind the labio. Long. 37, lat. 23. Long. apert., 26 , lat 12 , mil.

Though very distinct there is an approach to the Australian

types C. paucirugis and C. semigranosa, which are now found

 on our coasts.Fusus tateana. n.s. Shell ovately fusiform with the apex curved, and a rather long, narrow, straight canal; whorls 8, roundly convex, smooth, the upper and obliquely curved ones obscurely tubercled, and all more or less marked with flexuous, slightly raised lines of growth; suture well defined but not deep, rather sloping; aperture regularly elliptic, smooth,outer lip thin and roundly curved into the anterior canal, which is narrow and straight; base slightly concave. Length, 81 ; lat., 35 ; aperture, 30 , anterior canal, 20, but often broken and evidently continued ali least 5 mil. further where its width would be scarcely 5 mil . Common.

The constantly curred apex, the slightly tubercled spire while the rest of the shell is so conspicuously smooth renders this form peculiar and distinct. Among living Australian forms there is nothing at all likeit, while with the fossi! tertiary species of Europe its analogies are remote. I have great pleasure in dedicating the species to Professor Tate, of the Adelaide University, who has done such service to molluscan science by his numerous conchological works, but especially in the revised edition of "Woodward's Manual."

Fusus transenna. 11. s. I name this shell provisionally as the only specimen sent to me has the apex and lip broken. It is ovately fusiform with sharp spire, and scarcely rounded whorls, which are completely, equally, rather distinctly latticed, with transverse and spiral liræ, which are subnodose at the intersection, there are about 24 longitudinal ones in the body whorls, but this number is uncertain, as they become confused to some extent with the striæ of growth, and there are 10 spiral ones on the body whorl reckoned at the back of the columella. The body whorl is also subangulate above, and there concave to the suture, which is rendered almost marginate by small granulations at the end of the liræ. The outer lip appears to be thin, the columella slightly twisted, the aperture oval, with a long sub-oblique posterior subrecurved canal. Long. 22, lat. 11, aperture with canal, 12, lat. 4.

Fusus johnstonit. n. s. Shell very small, narrowly fusiform, apex smooth, elongate, of two whorls, the upper being the most swollen; whorls 7, very conver in the middle with $8-9$ very prominent broad rounded ribs ; conspicuously marked, with very numerous spiral lire which alternate, large and small, and pass over the ribs; longitudinally finely striated but not so conspicuously as lirate, so that the whorls could scarcely be called cancellate, suture deeply impressed, aperture narrowly ovate, canal prolunged, outer lip thin, columella
simple, with the lip slightly emamelled, and the lire descending obliquely from behind it. Long. 8, lat. scarcely 3 mill.

A form slightly aproaching F. Suartzii, Hörnes, of the Vienna basin, but in that species the canal is recurved, and the liræ sub-squamate.

Voluta micoym. n. s. Shell narrowly ovate, thin, smooth, shining, with a small obtuse naticiform apex; whorls slightly convex and oblique with no other marks than the lines of growth, aperture 1.3rd larger than the spire, acute posteriorly and gradually widening to the anterior nutch, which is broad and scarcely recurved, columella with four high oblique plaits. Long. 30, lat. 11, aperture long. 18, lat. 5.

Terebra additoides. n. s. Shell very acute-lanceolately turretted, somewhat solid, closely longitudinally ribbed and finely transversely striate, ribs rounded, ivory like and smooth, interrupted above by a rather broad shallow groove in which they are slightly deflected, but not entirely obliterated, above becoming almost nodular; interstices broad, slightly concave, shining, equally and closely striate, which disappears on the ribs, suture sharply and deeply impressed; whorls 13, ribs nodular in 7th to 11th, two spiral whorls, rugose only ; apex decollate; mouth ovate, almost channelled near suture; inner lip reflected over columella, which is twisted into four to six rugose folds, sloping down to the siphonal notch. Long. 24, lat. 5.

In this fossil the groove on the ribs and general form brings it near to the Tasmanian T. addita and T. Fieneri, but the whorls are closer and more numerous. It has a general resemblance to the Australian members of the genus. It is very close to certain European miocene forms, notably T. pertusa Bast., and T. busteroti Nyst (formerly called T? duplicata by Brocchi, by mistake identitied with Linnés shell of that name), but from these it differs in being a smaller narrower shell, and in the ribs being more numerous and finer.

Astralium (Calcar) flindersit. n. s. Shell solid, trochiform, not umbilicated, spire somerhat elevated, granular and spiny; whorls six, furnished at the base with lamellar imbricated folds in the form of short spines, above which are five spiral unerqual lines of round granulations, the uppermost of which are the largest ; last whorl angular; suture a broad and deep groove with a line of granulations within; aperture subcircular; columella flattened and cuncave; outer lip angled and charnelled at the base ; base flat with many spiral granular or imbricated lire. Alt. 17, diameter 13 mil. The short spines and the coursely granular lire easly distiuguish this species.

Astralium (calcar) ornatissimum. Shell very solid, rounded obliquely, and globosely conical, whorls five, rounded and ornamented below with a marginal rib of close granulations; above this a very fine line of granules, above this a projecting conspicuous spiral line of lamellar imbricating spinous folds, and crowned above by a spiral line of coarse round nodules; aperture circular, outer lip with an exterior angle and canal ; columella curved, scarcely flattened; base concave above with four spiral granular ribs. Alt. 17, diam. 13.

Delphinula tetragonostoma. n.s. Shell small, obliquely turbinate, latticed, whorls four, swollen, with three keels and 8-9 spiral liræ, which are united to each other by small close diagonal riblets, making complete lattice-work all over the test; apex obtuse, depressed; aperture round, outer lip quadrangulate, with a distinct channel at each angle; inner lip reflected over the umbilicus, on the outside of which is a salient conspicuous marginal rib which joins the aperture at the anterior angle ; base convex and latticed. Long. 2 ; lat. $3 \frac{1}{2}$ mil.

This very small Delphinula has some relation with our latticed Tasmanian Liotias, but is very distinct in every other way.

Zizyphinus blaxlandif. n.s. Shell small, conical, stained purplish in colour, spirally ribbed and transversely diagonally finely striate; whorls 7 , flattened above and surmounted by a broad canaliculate spiral groove, which is diagonally finely striate; spiral ribs, four on each whorl, and separated from each other by equal grooves, which have $3-4$ spiral lire and diagonal strix; penultimate whorls very finely coronate above with almost imperceptible elevation of the margin, these become more distinct on the next whorl above, and then are regular granulations on the two next; the two apical whorls are smooth; on the penultimate whorl and base the transverse striæ are raised, but faint, with a tendency to be in pairs; on the antipenultimate they are wrinkled and distinct; mouth sub-quadrate; outer lip thin; columella with a faint umbilicus behind, margined by a thick spiral rib. Long. 5, lat. 4, mil. Named after one of the first explorers who crossed the olue mountains. This fossil is not allied to any existing species in these seas, though slightly resembling a Philippine form.

Liotia lamellosa. in. s. Shell small, orbicular, subdiscoid, apex flattened, and depressed, four to five longitudinal keels, which are not very prominent, and equally, distinctly lamellosely costate with overlapping undulating ribs, between which the whole shell is closely and finely striate,
umbilicus broad, deep, and finely crenulated by the endings of the lamellic, aperture round, with a thin varix. Diam., 3 mill.

This form which, though decidedly similar to many Australian forms, is distinet from any yet described. Quite recently I have seen in the collection of Mİ. W. F. Petterd, a specimen dredged from the Tasmanian coast, so that the species is still living.

Margarita kekwickit. n.s. Shell small, thin, broadly globosely conical, deeply umbilicate ; spirally lirate and shining; whorls seven, rapidly decreasing in size, rounded and equally spirally lirate with alternating large and small fine liree, the larger ones sharp, and the lowest projecting a little, forming a groove over the suture, the smaller microscopic, and not visible above the basal and penultimate whorl ; aperture round, peristome almost meeting on base, outer lip thin; columella curved and thin, umbilicus acutely margined and with curved ribs at right angles to spiral lire. Long. and lat. 5. Named after my late friend the orerseer of Stuart, the great explorer, who accompanied him on all his expeditions, and was one of the most courageous and indefatigable of his followers. The fossil has no known living congener in Tasmania.

Trochus josephi. n. s. Shell very small, broadly pyramidal with a small, smooth, white, rounded apex of $1 \frac{1}{2}$ whorls ; spire conspicuously latticed; whorls 6-7, with three conspicuously keels, the lowest projecting much over the suture; keels elosely latticed regularly by somewhat broader sub-distant sloping ribs which seem to pass under the keels, and to cause them to become nodular as the point of intersection, in addition the whole shell is very finely striate; base flat, with numerous spiral alternating lire; aperture subquadrate, simple, entire. Long. 3, width of base, 2 .

Thalotia alternata. n.s. Shell turbinately conical, spire elevated, acute; whorls six, very slightly convex, granulosely ribbed; on the last whorl the spiral ribs are twelve in number, three conspicuous and largely grauulose, and the rest with small sometimes sharp edged grains or reduced to fine lines; they are disposed thus-each granulose rib has fine liræ at each side of it, and the large and small ribs alternate; suture inconspicuous, baso convex, rounded at the periphery, with spiral granulose ribs and fine lire regularly alternating; aperture obliquely quadrate, nacreons, outer lip thin, smooth inside; columella sightly twisted with an obsolete tubercle at the base. Lon. 12, lat. 10.

Not like any of our existing Thalotias.
Solaried (Torinia) gibbčloides. n. s. Shell thick, sub-
turbinate, rugose, spire somewhat elevated; whorls $4-5$ angulated tuberculately coronate above and conspicuously keeled, keel thin, finely granular with irregular lines of rather larger granules abore it ; apex smooth, aud turbinate for $1 \frac{1}{2}$ whorls, base very much produced by the spiral, sharp, smooth, edge of the umbilicus, and handsomely ornamented with spiral granular lines, and undulating subsquamose striæ, which are also found above the carina and between the granules on the body whorl; aperture orbicular, outer lip produced and everted posteriorly, and narrowed into a fine short canal anteriorly, inner lip acute, curved, umbilicus, keeled. in the centre, very concave, and distinctly undulately striate. Diam. 8, alt. 7.

This form which departs in many respects from the typical Solarium has some affinity to S. turfinoides, Nyst, and S. trochiforme, Desh. of the French and English Eocene deposits.

Gibbula crassigranosa. n. s. Shell solid, thick, rugose, turbinately conical, apex obtuse, depressed, smooth, whorls $5-6$, coronate with slightly oblique rounded ribs, extending to a sharp granulose carina, in the middle, below they have a conspicuous spiral groove to the suture on which is a line of Fery fine granules; base sharply angular, slightly convex with spiral lines of fine and coarse granules; aperture, orbicular, nacreous, columella produced into an anterior angle. Long. 14, Lat 11. Young specimens have numerous oblique longitudinal lines of gromth, and are umbilicated. At the dimensions given there are about 16 costæ on the last whorl.

Gibbula equisulcata. n. s. Shell orbiculately turbinate, sub-depressed, thick, apex acute ; whorls 5-6, rapidly but regularly increasing, rounded, spirally finely regularly grooved, and very closely lirate and regularly cancellate with extremely fine diagonal strix; aperture orbicular, smooth, outer lip finely crenulate, inner lip arcuate with slight anterior angle; deeply narrowly perspectively umbilicate; periphery rounded, base conver, marked like the whorls. Diam. 12, alt. 9, Lat. of apert. 6. Rare. The carinæ between the grooves are sharp and very distinct from the much finer liree with which the whole shell is marked, on the last whorl where they are crossed by the diagonal strix they become granular.

Except that this is a more depressed and smaller shell, it has considerable affinity with Trochus patulus, Bron. of the Vienna Miocene. The description, however, as given by Nyst. Coq. Foss. p. 383, makes this a more angular shell in Belgian formations.
Turbo etheridger. n.s. Shell turbinately conical, solid, granular, grooved, spire rather elevated and acute, whorls 0.7 , conrex, conspicuously carinated with 5.7 elevated sub-
distant, largely granular spiral ridges, interstices closely, finely, but very distinctly, obliquely striated with strie which pass orer the ridges and sometimes even over the raised rounded often polished granulations; aperture orbicular, nacreous and smooth; columella simple, not tuberculate, base convex and spirally granular. Sometimes the interstices between the ribs have a fine sharp raised keel in the midst. Long. 17, Lat. 121. Common, but nearly always broken.

I have dedicated this shell to Mr. Robert Etheridge, jun., F.G.S., a distinguished palæontologist and geologist, formerly connected with the Victorian Geological Survey.

Syrnola bifasciata. Tenison Woods. This species which is described by me in last year's Transactions of the Society has been forwarded by Mr. Johuston as found fossil at Table Cape.

TUrritella warburtonif. m. s. Shell small, shining, narrowly pyramidal, spirally ribbed and (microscopically) transversely closely undulately striate, turo smooth conspicuous ribs at the lower part of each whorl, with others very fine and of varying size above; whorls 8-10, flattened, slightly swollen above; suture narrow and deeply depressed, apex always decollated, base flattened, almost concave, with 8-10 fine spiral ribs which alternate large and small, outer lip thin, inner lip not reflected, mouth quadrate, columella simple. Long. 6, Lat. 2.

I have marked the difference between this and the preceding species in italics. In addition it is a much smaller shell. Table Cape. Common.

Turritella sturtir. n.s. Shell small, acutely pyramidal, spirally granulosely ribbed; ribs 7-8 in each whorl, three conspicuous and prominent, the others intermediate, small nongranulose, and of varying size. Whorls ten, constricted at the suture which is deeply impressed. Base flattened with 7-8 spiral equal sized ribs, covered with numerous very fine transvorse striæ; mouth subquadrate, outer lip thin, inner lip much reflected over the base, columella simple, and slightly reflected at the base. The three prominent ribs on the whorls are all granular, the larger two at the base of the whorl, and the third above and separated by a wide interval in which the smaller ribs occur. Granules on lowest prominent rib separated from each other by oblique grooving, and below this rib a deep channel above the suture; apex alwayn decollated. Long. 12, lat. 4 mil.

This fossil is of a type common enough in the genus, which may be said to rary in individuals by the disposition of the three prominent ribs. It has remote resemblance to some living Australian species. Its small size and remarlable granula-
tions distinguishit. Very common at Table Cape, and in the Australian Lower Cainozoic, Muuldy Creek, Corio Bay, etc. In the Museum there is a large block of jellow calcareous sandstone from Table Cape, principally composed of this fossil, with an almost complete skeleton of a small marsupial herbivore imbedded. (Macropus or Helmaturus?)

Tenagodus occluses. n.s. Shell loosely twisted, the three apical whorls inp contact, the fourth sligitly detached, and sloping, the last largely unfolding, making a loose turn two and a half times the length of the remainiter; whorls solid, wrinkled or detaching upper shelly coat in flakes, underneath which it is still thick, cracked, smooth, and somewhat polished, rounded below but narrowing and almost angular at the cleft, which is a smooth slit without punctures closed for its whole length, and evidently almost filled up by lamellar calcareous matter down to the aperture where it is little more than a shallow notch, pyriform and projecting below, apex disciform, apical whorl vermiform and fine pointed. Length, 56 lat., aperture 8 mil .

The absence of foramina and the almost closed slit distinguish this from all knomn Australian forms. The cleft is much more narrow and inconspicuous than the size of the shell would lead one to suspect, and its being reduced to a notch in the aperture. It is supposed that the slit is left open for the purpose of bathing the gill which lines the left side of the mantle, which, in this animal, is divided. It cannot, however, be so necessary where the aperture slopes forward from the notch. The slit is not, in this case, entirely closed, for the tube, when broken below it, separates at once at the fissure, and shows a fine delicate edge at the point of junction.

Vermetus conohelid. n. s. Tube adhering, corrugated, coiled, lower whorls, laterally depressed into a ridge and coiled upon each other with a truncater flattened hollow cone of two whorls, at the apes the tube becomes free, obliquely erect, flexuous and cylindrical, aperture somewhat thick and orbicular. Height of coue, 3; brealth, 6 ; length of free end, 5 ; aperture, 1, mill. wide.

I am unacquainted with any formi like this either in Australian seas or elsewhere, as far as I can gather from 0 . Mörch's extensive lists.

Rissoa stevensiana. m.s. Shell minute, narrowly pyramidal, nucleus somewhat suddenly contracted of two smooth turbinate whorls, spire slightly tumid in the middle; whorls ten, angular or sub-carinate in the middle, coarsely costate, from 12-16 ribs on each whorl, and finely but indistinctly lirate, ribs rounded, not much elevated and continuous from suture
to suture, the latter very deeply impressed so as to give the whorls a rounded swollen aspect; base almost flat, aperture priform entire, 1 th length of shell; columella simple. Long. 3, Lat. 1 mil.

Rissoina rarictrera. 11.s. Shell minute, smooth shining, tumid, apex somewhat contractec, of two whorls, smooth, and was previonsly whiter than the spire ; whorls 6-7, flattened, but romnded above, suture deeply impressed, aperture rounded, much smaller than penultimate whorl, outer lip slightly produced, imner lip reflected over the base, generally a continuous line of swollen conspicuous varices on the columella side of the whole shell. Long. 3, Lat. scarcely one mill., but this is the largest size.

A form approaching somewhat the R. costuluta, Grat. of the European tertiaries, but smaller and with a rounded contracted aperture. The rarices are not always visible. I believe this form still exists in 'Iasmanian seas.

Rissonsa jomsaroni. n.s. Shell minute, rather broadly prramidal turretted, apee smooth, white, shining, of two smonth turbinated whorls; spire 21 length of aperture ; whorls ! -16, sloping, rather convex, obtusely carinated in the middle, more or less longitudiually plicate, with $6-12$ ribs (which are in some specimens very faint, and others almost varicose) and spirally lirate with $\dot{6}-8$ valid liro, which often alternate in size; suture well impressed ; aperture suborbicular outer lip somewhat produced, thin; column slightly twisted, and everted below; base concare and spirally lirate. Long. $31 \frac{1}{2}$, Lat. $1_{\frac{1}{3}}$.

Very common. In this species the rils do not follow each other in a regular series, but seem rather to alternate, those of each succeeding whorl rising from the interstices between the ribs of the ones below. It hats no living representative in Australia. Its Bittium-like form distinguishes it from any other species known to me.

Tembonilla pacioda. n.s Shell minute, narrowly pyramidal, apex a swollen clongated kind of pullus of two smooth whorls, spire flattened turriculate, whorls 9, rising in stages or slightly overlapping; ribs 12-16 rommed, raised, in a contimuous sloping series, broarler than the interstices; no visible transwerse markings, hase smonth, slightly convex, aperture oblonge, squared ahove, rounded lelow, columella twisted. Long. 4. Lat. 1 mil.

In this semus detorminate characters are not easily specified. The above fossil mar, prhapes lo best distinguished by its size, slopins rilh, smoch hase, twisted columella, and the whorls rising in stages.

Turbonilla liaincostata. a.s. Shell clongate, narrowly.
pyramidal, nucleus of two smooth turns, apex blunt, whorls (without nucleus) 8, flattened, with 20-24 straight round ribs which continue unaltered (though sometimes slightly flexucus) from suture to suture ; interstices not so wide as the ribs, and very closely spirally grooved, which sometimes pass over the ribs; base roundly convex and spirally lirate, suture submarginate, aperture broadly ovate, outer lip thin, columella slightly arched, canal short, very slightly recurved. Long. $5 \frac{1}{2}$, Lat. $1 \frac{1}{2}$.

Eulimella subulata. Donovan. (Nat. Hist. Brit. Shells, vol. 5, t. 173-1799 as Turbo.) This shell, which is very fully described and figured by Hörnes, Nyst, Wood, and others, as Eulima, would come under Prof. Forbes genus of Eulimella. It has received a host of names during the last 77 years of its scientific life. I can see no difference whatever between the specimens found at Table Cape and those found existing in the British seas. It is extensively known as European Miocene and Pliocene fossil. Not common. Two specimens forwarded by R. M. Johnston, one by - Stephens, many found by myself at Muddy Creek, Victoria, Mordialloc, etc. It has not yet been found living in Australia, unless some only closely allied forms of Eulima should be identified with it.

Ácteon scrobiculatus. n.s. Shell oblong, ovate, solid, apex acute, smooth only at the extreme summit, whorls 7, cancellate with very distinct spiral liræ, much finer longitudinal strise; interstices rounded or punctate, lire on the last whorl broad and subdivided by a fine groove, longitudinal striæ subdistant (so that the interstices are transversely oblong) and passing occasionally over the liræ, so as to make them subgranular, especially at the anterior margin ; aperture subauriform, posteriorly acutely attenuate, peristome anteriorly everted and recurved, plait conspicuous, solid, obtuse. Long. 12, Lat. 6, apert. 6.

A form very closely allied to the A. pinguis, D'Orb., of the European Miocene, from which it differs in the narrower form, the character of the plait, the anteriorly produced mouth and everted lips. It has no Tasmanian nor Southern Australian congener.

Cylichina arachis. Quoy. Still living in Tasmania and Australia, and not uncommon in the Table Cape beds.

Liotia discoidea. Reeve Zool. Prov., 1844. Living in Tasmania and extending to Plilimpines; somewhat small in the fossil state and rare.

Fissurella concatenata. Crosse. Shell thin, oval, laterally and anteriorly depressed, tumid posteriorly, irregularly concentrically ridged with lines of growth, and covered all over with fine hexagonal depressions which grow broader
from apex to margin; foramen oval, with a conspicuous tubercle on each side, and widely margined beneath, interior margin enamellect, and above which the shell is undulately striate or subeorrugated to the formminal margin. Long. 14, Lat. 10, alt. 2 ! mil. Easily distinguished by its hexagonal markings, in which it differs from any described. This shell was described by H. Crosse, in the Jour. de Conchy, in 1864 but the fossil forms are generally thiner and fragile, and more like the varicty found near Sydney.

Emarginula transenna. n.s. Shell thick, small, oblong, subuuadrate posteriorly, end slightly produced, conical, high, apex submarginal, smooth, acute, recurved, parallel with the margin, anterior surface rentricose, posterior concare, latticed; radiatiug ribs 23 , high, between them smaller ones which often in descending give rise to still smaller ; transverse ribs raised, but always more sunk than the radiate, and at all the points of intersection, very projecting gramules, interstices very deep and square, fissure slightly longer than width, margin denticulate, straight. Long. 11, Lat. 6, alt. 6. Fissure, Long. $1 \frac{1}{4}$ mill., Lat. $\frac{1}{2}$ mill.

There are many fossil Emarginulas, some descending as low as the Inf. Oolite, though most of them are tertiary. The above description, detailed though it may seem, would apply to many species unless particular attention is paid to the relative dimensions. It is very near the existing Arctic (?) E. fissura, Lamk., but narrower, and less high in proportion to length. It is not unlike the E. clathrataformis, Eichw. (Vienna Miocene) but that has a simuous margin, and the apex is incurved and marginal. I doubt very much if our fossil is distinct from what Mr. Angas names E. dilecta of South Australia and N. S. Wales, but which is very distinct from E. dilecter of A. Allams (Proc. Zool. Soc. 1851, p. 85), which comes from King George's Sound. The latter is very depressed with deep fissure.

Pledrotosa. This genus, which is very largely represented in the tertiary deposits of Europe, and in the existing fanna is not numerically a large genus in Australian or Now Zealand tertiaries, and in this it accords with the existing state of things. Out of over 400 living species (divided into many genera and subgenera) Australia has scarcely 30, and out of nearly 400 fossil species the tertiary beds of Australia and New Kealand have not so far yielded a dozen well defined. The gemus is manly characterised hy the deep cut or sinus in the outer lip. In this and in the form of the shell there is every varioty. I draw attention to two important characters which distinguish the simes, which seems of value in the inlentification of species. Sometimes it is close to the
suture, either as a mere notch or narrow slit, or it is at some distance from it. 1st. On a keel which becomes nodose, granular or imbricately squamose. Or, 2nd. By the side of the keel, next the suture, or outside. On this particular the striation and ornamentation I have found depend very much. For convenience also we may divide the genus into:-1. Plicate, or ribbed. 2. Spirally keeled. 3. Plicate and keeled. Each division may also be subdivided thus :-A. Spire longer than the body whorl. B. Body whorl longer than the spire. In New Zealand the plicate division is represented best. Eleven fossil species are known, two of which are living, and there are four living forms in the same seas, and one which Captain Hutton refers to Daphenella, the Drillia (ATanyelia) letournenxiana of Crosse. It does not correspond with the Daphella genus referred to here. We find in the Australian tertiaries none of those mitre like forms of Europe such as P. ramosa, Bast., neither is the style of ornamentation that of P. granulocincta, Münst, P. Schereibersii, Hörn. The shells are simply granular, and not often ribbed as far as they have been examined.

Pleurotoma pullulascens. n.s. Shell small, slender, rather solid, fusiformly turretted, spire nearly twice exceeding body whorl, apex naticiform shining, smooth of $1 \frac{1}{2}$ turns; whorls (exclusive of apex) 5, angular, equally, distantly, spirally lirate; upper ones subplicate with rounded undulating ribs; all finely long, undulately striate; suture with a distinct margin much broader than the live; sinus a rather deep broad crescentic bend, occupying all the space between the angle of the whorls and the suture, which is slightly sloping, lirate and very distinctly striate with ihe lines of growth ; aperture sub ovate, outer lip simple ; inner lip thickened distinct, enamelled; canal short, not recurved. Long.8, Lat. $2 \frac{1}{2}$.

This is a form which closely allied to P. crispata, San. (cited by Hörnes as agreeing with Murex turvicula, Brocchi, and P. turrella, Reineri, Basteroti, Tarentini, of other authors) the differences being that is smaller, the canal is not contorted, and the granular apex. There is no known form like it existing on our coasts.

Plerurotona sandleroides. n.s. Shell small, somewhat solid acutely fusiform, turretted, spire twice longer than body whorl, apex naticiform, smooth shining ; whorls 7, rounded, accurately, closely, diagonally plicate; lire solid, smooth, shining, E_{-12} in a whorl; sinus deep and conspicous, aperture narrow rouch contracted anteriorly, canal short, outer lip thin, and curved so as to appear thickened and conspicuous, columella slightly twisted, base spirally striate. Long. 71 2 , Lat. 2.

105

A form approaching P. Smalleri, Partsch. (Vienna basin Niocene and in habit also resembling P. costellaria, Nyst (Rech. col. foss. Hosselt et lil., p. 81) liut smaller and more slender than either. Much approaching in character many of an existing Australian Mangelias, with which it would probably be associated by many naturalists. I prefer to keep it with the Pleurotomas becanse of the very conspicuons simus which is also margined, the margin extending remarkably on the body whorl. The number and size of the half ribs varies in different specimens.

Pleueotoma paracantha. m.s. Shell fusiformly turretted, spire pyramidal acute, and nearly twice as long as the aperture; spirally equidistantly lirate, with an angle and a spiral row of tubercles ahout the upper third of the body whorls, and the lower part of those of the spire; finely longitudinally undulately striate with the lines of growth in which the profound broad rounded sinus of the outer lip is very conspicuous upon the keel; interstices between the lire with 3-4 fine lirulx, tubercles on the carina sometimes broad and sharp-edsed, sometimes white, round, enamelled and projecting almost like spines, mouth pyriform, outer lip acute, thin, inner lip defined, slightly enamelled ; canal short, almost truncate, base strongly and tinely in the interstices, spirally lirate, and almost cancellate behind the columella. Long. 33, Lat. 13. Not common at Tahle Cape. A very distinct form having some relations with P. catopheracta (Murex e. Brocehi Conch. foss. subap. Tom. 11, p. 4: 7) and P. turbitu, Lamarck, Hist. an. s. vert. Vol. 7, p. 97, which is the P. colon of Hörn, and P. crussate of Nyst, Coq. foss. de Belg. p. 511 . That shell has the spire short in proportion to the whole length of the shell.

Daphnella columbeeloides. 1.s. Shell small, fusiform sub-turretted, rather solid, and much the aspect of a columbella, whorls seven apical ones margined at the suture, and ribbed with rounded smooth olllique ribs, 8-12 in each whorl; penultimate, and last whorl smooth, margined at the suture ; aperture long and narrowly fusiform, rounded posteriorly; outer lip and columella simple and truncate. The lines of the simus only visible with a lens, rather recurved than deep. Long. 12, Lat. 5. Not common.

Pleurotoma johnstoxii. m.s. Shell fusiformly turretted, solid, apex acute, transversely striate, and finely, undulately, longitudinally, striate (whorls 11, with os spiral ribs bulow (the midale one most prominent), forming a tumidity above the suture, which is distinet but not impressed, above which the former fissume marks form almost nodular crescentic marlings alove these the ines of growth curve forward to the summit, and are crossed by regular equidistant
fine liree; apex very acute ; aperture elongately fusiform, and prolonged below into a rather long straight canal ; outer lip thin, with a broad, deep incision ($2 \frac{1}{2}$ mil. broad, and 2 deep); columella broadly enamelled. Long. 38, Lat. 12.

Daphnella gracilima. n.s. Shell fusiform, thin, fragile, shining, whorls 6 , gracefully sloping, last longer than the spire, finely striate lengthwise with irrecular ridges of growth which become fine, close, and rounded at the lip; regularly and somewhat distantly grooved with rather broad, flat, shallow, conspicuously striate grooves, one of which is much broader just below the suture, which is distinctly canaliculate; apex obtuse, and natica like; mouth narrow, finely rounded at the suture; outer lip thin; canal short; base of the pillar finely and obliquely decussate luehind. Long. 21, Lat. $7 \frac{1}{2}$. Aperture, Long. 13, Lat. 3 mil.

This shell is very closely allied to D. ormata, Hinds, of the Philippines. It is very common in Table Cape. Fourteen specimens were collected by Mr. Johnston.

Daphnella tenuisculpta. n.s. Shell fusiformly ovate, rather solid, aperture a little longer than the spire, apex naticiform, depressed, smooth, shining, whorls 6 , rounded, slightly concave and narrow, grooved near the suture, everywhere very finely and closely cancellated, acutely undulately ribbed; ribs broader than the lire (which pass over them), regular oblique, close ou the whorls of the spire, only slightly interrupted by the groove, and becoming an obliquely subgramular on a margin round the suture. On the body whorl irregular, fine and undulating, 24 in number; aperture pyriform, attenuate at each end ; outer lip, thin, columella smooth, canal sumewhat short and truncate. On the basal whorl the spiral live alternate, large and small; while the longitudinal ones are much finer throughout. Long. 17, Lat. 8. Common.

Mangelia gracililirata. n.s. Elegantly fusiform turretted; aperture about $\frac{1}{3}$ length of spire, apex obtuse, smooth, almost turbinate for $3 \frac{1}{2}$ whorls ; the latter (apex included) 9 , convex, everywhere very finely lirate, lire alternating regularly large and small and obliquely plicate; plaits 18 , in penultimate whorl, 23 in last lecoming obsolete anteriorly Mouth elliptical, outer lip raricose, produced in the middle, sinus inconspicuous; columella grooved slightly ; canal short, truncate. In larger and older specimens the former mouth leaves a distinct varix on the body whorl, half a turn form the lip. Long. 13, Lat. 5. Specimens much smaller than this are found, but without the varix.

This most remarkable fossil with its peculiar aper and varix is distinct from any living or fossil known to me, though if I mistake not there are Mesozoic forms not unlike it. I call
attention to the fact of the smooth almost turbinate aper which most of the Pleurotoma family had in the Australian cainozoic period. In this respect they seem to be distinguished at once from living forms and European tertiary fossils.

Buccinum fragile. n.s. Shell ovately fusiform, turretted, extremely thin and fragile, spire acute, apex naticiform of two whorls; the whole shell lirate with raised lire which are alternately large and small, and about three on oach whorl become nodose keels. These are cancellated by much finer longitudinal lines; whorls 6-7, rather globosely convex, and angulate above, the upper ones with solid ribs, which disappear on the body whorl which is multicarinate, suture deeply impressed, but not canaliculate ; aperture broadly ovate, outer lip very thin, with a smooth inner margin, within which there rises a number of small, raised, polished lire which have a tendency to run in pairs; columella short, and spirally much twisted, but not enamelled; canal short, and scarcely reflected. Long. 17, Lat. 10. Long. of aperture, 8, Lat. 5.

This is a very common fossil and widely distributed as I have seen it taken from most of the Lower Tertiary beds of Australia. It has many representatives of its peculiar type among European tertiary fussils, but none living or fossil of such a fragile character which gives it a marked specific distinction. B.tenerum, Sow., is a very fragile form of B. undatum found in the Eocene beds of England and Belgium, but in that well-knomn and much larger species the shape is different, and the whor's obliquely ribbed.

Triton minimum. n.s. Shell small, somewhat solid, orate, with a naticiform obtuse, smooth, white shining apex of nearly four whorls; whorls 7-8, with numerous raised rather broad lire, sometimes alternating large and small ; interstices about twice as wide, and closely, elegantly, striate at right angles with rery fine lines, which do not appear to pass over the spiral lire ; spire regularly costate near the apex, the plait disappearing for the two last whorls, though some of the liræ are slightly nodular ; varices much raised and lirate ; mouth brondly oval, outer lip projecting beyond the varix and undulate, prominently dentate ; inner lip only slightly inflexed, and oblique, about half the length of the aperture; second varix on a line with the columella. Long 11, Lat. 5.

There is a small fossil of this genus in the Viemma Mionene, T: purvertem. AFichl., bat it is larger than the foregoing, and is di-tinctly ribled throughout. Our existing T ? quoyi is also small, but the size of the present fossil at once distinguishes it from all known species, fossil or recent.

Cominella cancellata. n.s. Shell solid, imperforate orally 1 yramidal, costate and lirate: apex subacute, smooth;
whorls 7-8, convex, subangular and somewhat concave at the suture very distinctly and slenderly cancellate throughout (the spiral lire being a little smaller than the longitudinal with a tendency especially at the base to become alternately large or small) at the angle coronate with rounded ribs which are obsolete below (about 14 on last whorl) aperture oval; outer lip acute, simple, columella excavated anteriorly and slightly tivisted; canal short. Long. 24, lat. 13. Long apert. 13.

In form a good deal like one existing C. costata, Quoy, but the ribs are smaller and neater while the cancellation entirely removes it. from any Australian species. In the European Miocene Buccinim phitippi, Micht,, appears the nearest form, but that is very difterent-more turriculate, not ribbed on the lower whorl, lip thickened, etc. Some of the Belgian Eocene forms come perhaps a little nearer.

Cominella lypf.costata. n.s. Shell rather small, fusiform turretted, lirate and costate; apex smooth white, turbinate of $2 \frac{1}{2}$ whorls, whorls 8 , rounded, closely, ribbed with round prominent ribs (16 on last whorl), and very conspicuously spirally lirate, with lire which pass over the ribs; in addition to which the whole shell exeept the apex is finely cancellate, suture deep and margined; aperture oval, outer lip acute, finely crenulate, colmmella twisted, canal much recurved with a distinct enamelled plait passing from the centre of the notch to the buck of the columella. Long. 19, lat. 7. Long. of apert. 7.

In older larger specimens the ribs become obsolete in the body whorl, but as the dimensions grow they are very conspicuous, and extend from suture to suture without alteration. Approaching in character the Miocene Buccimum prismaticum, Broc., of Vienna, but all the fossils of Europe differ much in the aperture, and have the inner lip reflected over the columella. This species differs from the last in the whorls not being angular nor coronate; in the larger lire, the more prominent ribs, the contorted canal, and the general form.

Thala marginata. o.s. Shell small slenderly fusiform; apex obtuse smooth, shining, of three whorls; whorls 7 , rounded oblique, plicate, sub-mgular, coronate and conspicuously grooved above, finely spirally lirate, and undulately striate with lines of growth which show the semilunar sinus very plainly upon the groove ; plaits anteriorly absolete on the body whorl ; suture conspicuonsly marginate; canal straight, marrowly ovate, canal prolonged, equalling the aperture in height, outer lip thin, inner lip reflectel on the columella, and with $3-4$ very distinct plaits. Long. 8, Lat. $8 \frac{1}{2}$, length of aperture to the end of canal 5 .

The genus Thala was erected by Messrs. II. and A. Adams in 1850, for shells which comhine the characters of Mitra, Pleurotoma, and Fasciolaria. 'Ihe type specimen. S? nucifera was formed in the Plilippines, and perhaps this makes only the second or third specimen of a very rare genus.

Mareinella octoplicata. n.s. Shell solid, smooth, shining, prriform, spire scarcely visible, of three very small depressed whorls, body whorl distinctly striate with lines of growth, mouth narrow, sub-sigmoid, columeila with eight plaits, the anterior valid, scarcely oblique, the posterior four faintly traceable, outer lip much thickened, and very regularly dentate with 12' raised linear teeth, at the base of the columella there is a distinct varix, which proceeding round the posterior end of the shell unites with reflected lip making that broadly marginal.

This shell has considerable resemblauces to certain forms from the Indian Archipelago, but is uvique in its multiplicate columella, and peculiarly dentate outer lip. In this respect it bridges orer the gap, between Marginella, and Erato, and Csprea. MI. 5-plicata, Lam., MI. elegens, Gmel., and M. turbinata, Scw., show an approach to this form, but they are larger shells. If the lower part of the columella were not so distinetly plicate, and the miper teeth so rudimentary I should have no hesitation in placing this as a species of Erato.

Marginella strombiforamis, n.s. Shell small, solid smooth shining, ovate, narrowed anteriorly, spire short obtuse, whorls four, rounded, bodly whorl obscurely longitudinally plicate below the suture, columella anteriorly obliquely somewhat coarsely (quatri-plicate, aperture narrow, curved posteriorly cmarginate, outer lip conspicuously thickened and produced posteriorly, finely, tuberculately dentate within. Long. 3, lat. 7.

Very different from Australian forms, all of which, as far as I linow, have the lip smooth. It is nearest in form to the Indian MI. Mrer:querilu, Fiener, but that is a somewhat larger and more augular shell. Not unlike a minute strombus viewed from above owing to the mroduced lip. The genus is very poorly represented in European tertiaries, few being known and none living in the northern seas.

Mirginelda wentworthii. n.s. Shell small, ovately oblong, tumid, smooth, shining ; spire exsert, obtuse, whorls five, roundly anculate, aperture narrow, oblong, outer lip much thickened, deeply chamelled above, enamelled on the edge, with munerous small tubereular teeth within the margin; columella with four plaits; the three anterior oblique, fourth at right angles to the axis, anterior aperture widely channelled. Long. 6, lat. $3 \frac{1}{7}$ mil.
Trivia mu hopea. Monti. Testal. Brit. (as Cyprea) C.
coccinella. Lamarck (1810, Ann. IIus., vol. 16, p. 104. T. coccinelloides, Sow. Min. Conch, vol. 4, p.107, pl. 378, fig 1. Nyst. Coq. Foss. (le Bely., p. 609.) The shell which I thus identify I distinguish by its size, the absence of dorsal division between the strixe and the arcuate aperture. It is found throughout the Miocene of Italy, France, Austria, Sicily, and exists in the Mediterranean. I can find no ground whatever for separating our fossil from the one described as above. An unusual number of works (31) are cited by Hörnes and Partsch, whose Foss. Moll. and the above-named authors I have been able to consult, besides Wood on the Crag Mollusca, Deshayes, Lamarck, while specimens of the Italian fossil are in my possession, and except that they are a little longer I can see no difference. Long. 7, lat. 6. The knowledge obtained recently of this wide-spread diffusion of some species will prevent that difficulty hitherto experienced in the identification to European species, and will prevent their needless multiplication on geographical grounds alone. The shell is, however, very distinct from our Trivia australis, Lamk.

Columbella cainozoica. Shell minute smooth, somewhat solid, narrowly pyramidal, spire longer than the aperture, apex elongately naticiform of two smooth shining whorls; whorls in all six, very slightly rounded, almost flat, smooth, but not shining with faint striæ of growth, suture distinct; aperture broadly sigmoid; outer lip thickened and finely dentate ; columella smooth with five corrugated plaits behind, passing obliquely to round the notch which is broad and scarcely recurved. The outer lip is thickened into almost a varix, and the last whorl has the striæ of growth raised so as to become almost like costr. Long. 4, Lat. scarcely 2.

In shells which differ so little in form as to cause the majority of specific distinctions in existing forms to depend upon colour alone, it is difficult to give such a description as will not apply to many other species. This species therefore must be distinguished first by its small size. 2. By its thickened almost varicose lip. 3. By its.very prominent striæ of growth. 4. By its naticiform apex (which it shares with many living Australian species, especially C. minuta, mihi, which is much the same in size) ; and, lastly, the peculiar corrugations from the back of the columella and round the notch. No living or fossil form known to me unites all these details, though in general form our fossil is not unlike C. scripta, Bell., a much larger form of the Vienna Miocene. The genus is almost unknown as fossil, but very numerous as living species, probably over 200. All subtropical, two heing in New Zealand, but none fossil, in any of the extensive tertiary deposits of those islands.

Columbela oxleyi. n.s. Shell small, fusiformly turretted, smooth, shining; whorls \& , somewhat rounded, overlapping slightly at the suture, apex with a distinct natica like pullus extending for $2!$ whorls, smoth, priform, much narrower posteriorly, and produced, with a narrow sloping channel anteriorle, outer lip thin; inner lip slightly inflected over the columella, behind which are mumerons sloping fine regular lirae. Body whorl slightly angulated at the suture. Long. 9 , Lat. 3 nil. Named after the early explorer of N. S. Wales.

This singular fossil raries from Columbella in particulars of almost generic importance, not only in the apex but in the turriculated habit. It has no known living form in Australia.

Natica vinumbilicata, n.s. Shell globose, smooth, shining, very funely cancellate, which is visible only with a lens; spire acute, slightly exsert as a more finely rounded coil; whorls 6. The apical 4, small, round, and distinct, only slightly increasing in size, the last two becoming suddenly globose, aperture semilunar ; outer lip thin, inner lip everted anteriorily into an acute projecting angle, umbilicus small narrow, deep, slightly callous above, with a conspicuous groove leading to it from the anterior angle of the lip. Long. 20, lat. $13 \frac{2}{2}$, long apert. 12, lat. 7 , diam. of umbilicus $1 \frac{1}{2}$.

Cucullas canoizoica. n.s. Shell roundly trigonal, oblique, globose, smooth, faintly and closely marked with radiating ribs and concentric strix, the latter well defined and somewhat rugose at the margin and sides, umbones very acute and recurved; ligamental area, arched, broad, with six straight grooves on each, which are well defined and overlap each other alternately under the umbo, hinge teeth, 6-7, bent under the hinge and then bicuspidate, muscular impressions lanceolate, well defined, the anterior adductor with a slightly lamellar edge, margin finely pectinated with very distinct crenulations which continue in young shells all round as far as the hinge. Young shells are also more quadrate and have the angular ears slightly developed. Altogether the shell is intermediate between Cucullœa and Pectunculus and partalies somewhat of the cbaracter of both genera.

Necula tumida. n.s. Shell small, solid, obliquely trigonal, tumid truncated anteriorly, slightly produced and rounded posteriorly, finely wrinkled with consecutive irregular rounded ribs, increasing in thickness from umbones to margin, and irregularly grooved with deep consecutive lines of growth, margin thickened and bilabiate, linge teeth small diverging progressively in an increasing series, interrupted by a narrow deep ligamental pit, largest teeth slightly bent, anterior row short, eight in number, the distal ones smaller, but all high and lamellar, umbones fine and sharply incurved;
lunule shallow but well defined, wrinkled and broadly lanceolate. Transverse long. 13, lat. 11; thickness of both valves united, 8 mill. Not unlike the Tasmanian N. grayi, Sow., but more tumid and conspicuously sulcate.

Leda crebrecostata, m.s. Shell minute, depressed, transverse, trigonal narrowly oblong, roundly obtuse in front, much punctured, almost angular, and slightly gaping behind, sinus conspicuous-2-salb-depressed and conspicuously cut by an angle from which the shell slopes to the margin, whole surface of the valve regularly concentrically marked with equal rounded ribs ; hinge line inconspicuous, and short anterior sub-ligamental area distinct. Transverse long. 5, lat. 8, thickness of both valves joined 3.

The sinus and angle project from the margin of this fossil like a tubercle. Smaller and less rostrate than L. caudata, Don but like it, distinguished by the abrupt angulation of the sinus. There is no European fossil like it in this respect.

Cardita gracilicostata. n.s. Shell ruundly oblong, transverse, inequilateral, oblique, globose, solid, furnished with 30 to 34 fine, curved, radiating, finely nodular ribs, which are narrower than the interstices, nodules obsolete to near the centre, whence they become less rounded and more lamellose to the margin, where they are almost spinous, and united to one another by transverse raised lire, umbones, fincly ribbed, acute, oblique, and much incurved, lunule, short cordate, well defined and deep, hinge area much overlapping the hollow of the umbones, hinge with one central tubercular, rounded tooth, round which the laterals make a complete arch, much thickened posteriorly. Margins coarsely crenulate. Long. from umbo 27. Transverse lat. 31. Alt. of both valves 14 mil.

Lima bassir. n.s. Shell oblong, subquadrate, rather solid, somewhat tumid, radiately and squamosely ribbed, margin full, and equally rounded with a prolonged curve; anterior side short, and very slightly concave, almost margined through its whole extent by a small, narrow, obtusely angled auricle, which has three small rough ribs, and is deeply striate near the umbo, posterior side without auricle, truncated with a straight, sloping line deeply impressed with fossa towards the interior; ribs 22 in number, radiating regularly, divided at equal intervals by long arched, raised squamæ, etc., umbo acute and only slightly curved. Length from umbo to margin 27. Lat. 22 mil.

Very distinct from any Australian congener by the absence of the auricle and the straight posterior side, though the form closely approximates to the sp. L. squamsa, now living in the Red Sea and Mediterramean.

Lima (Limatula) subauriculata. Montf. This shell which is also found in the British seas still existing, and has been collected by Cumming in the Philippines, is a common fossil at 'Table Cape, at least I can discover no difference in size, shape, makings, ete. We thms have a frorld-wide distribution as well as an extensive range in time.

T'elina cainuzoica. n.s. I give this name to a shell which has characters slightly different from any existing Australian form, but the number of species is already so great and the differences so slight that I venture to add to them only with considerable reluctance. The form of this fossil approaches to our T.' ulbinellu, of which there is a white and pink variety. It is, however, smaller, smother, and less arcuate with scarcely a perceptible sinus. The dimensions of this specimen is transrersely 24 . Long. 15. Thickness 5.

Chione propinqua. n.s. Shell small, oval, transverse, equivalve, sub-equilateral, posterior and slightly longer and sub-attenuate, anterior end broadly, rounded, transversely ribbed with many solid, raisel, rounded ribs grooved behind and lamellar at each end, ribs striate tramsversely and between which the strix become larger towards the umbones and finally indistinguishable from the ribs of which there are 18-20 in all;" interior finely crenulate right round to the hinge posteriorly, to the umbone anteriorly; central tooth bifid, lateral,-interior lamellar and moved outwards; posterior bifid, muscula: impressions scarcely perceptible. Transverse length 26. Lat. 4.21. A shell certainly very nearly approaching our existing Chione conuluris, but less oblique in its shape, size, and almost entirely crenulated margin.

Vexus (chione) cainozolia, n.s. suborbicular, inequilateral, globosely convex, very finely and closely striate with concentric lines, which here and there become lamellose, lamelle close and more numerous at the anterior and posterior marsin, scalreely raised, extremely thin and nearly always broken and incomplete, where there are no lamello, strise rectular ant equi-distant, marking lines of growth which seem to overlap each other in regular succession ; anterior side rounded, contracted ; posterior side broadly rounded and very slightly produced; umbones convex, much incurved and smooth, lumule clearly defined, but not deep, broadly cordate lamellosely striate and radiating from the umboncs, and fincly cremulater on the edge within; hinge teeth, right valve with one long lateral ridse extending to the ventral margin with a groove hetween it and the edge, three smaller teeth, the two posterior bifid, the anterior one small, lamellar and obligue; left valve with a lateral ridge, one thin short curved hinge below the curselet, one broad central tooth; and

114

two anterior, one oblique and lamellar and one more tubercle, the whole anterior, ventral margin finely crenulated. Transverse. Long. 22, Lat. 18. Thickness of both valves 17.

This fossil is very completely removed from any known existing Australian form, being more globose, more finely striate ; and the peculiar crenulation of the margin which extends under the lunule. I am not accuainted with any fossil form near it as far as my acquaintance with the European Miocene and Eocene extends. It must be admitted, however, that the points of distinction in shells where there is so much general resemblance, as in this genus, can scarcely be made out without the closest attention to details and comparison of specimens. The descriptions by most ordinary writers on palæontology are quite insufficient.

Chama lamellifera. n s. Shell somewhat small, thickish, globose, angularly orbicular, very inequivalve, and adherent. The whole surface of both valves covered with close thin irregular lamelle, which, though sometimes projecting slightly, never become much produced or spiny, in the grooves between fine and smaller ridgres cin be seen; left valve very convex, attached anteriorally where it is sharply angled and flattened; umbones small and very much incurved, making almost a spiral whorl ; hinge linear and curved with a broad flat concave linear fossette under the dorsal curve, right valve solid, very convex (but less so than the left valve) with au incurved sloping prominent umbo. Largest specimens about lat. 24 by 22 and 18 mill. thick.

In the absence of radiating strise the non-spinous or produced lamellæ, and the size, all this species differs from the known fossil Chamr. It is very abundant in the beds.

Besides the foregoing fossils I have provisionally named the following not being able to publish a more extended diagnosis because of the imperfect state of the specimens.

A small smooth Pyramidella, Pyramidella roberti, mihi, with perfectly flattened smooth whorls, 12 in number; the apex of 3 round smooth turns; the aperture subquadrate; base of columella everted. Long. $6 \frac{1}{2}$, Lat. 2 mill.
Rissoina tateana. Almost turbinate, numerous oblique solid ribs on upper whorls ; lower whorl almost smooth ; outer lip varicose. 1 mil. Lat.; Long. (?), (decollated.)

Gibula clarkei. n.s. A turbinated multicarinate shell, obliquely, regularly, and finely lirate, where they cross the carinæ, making the latter almost granular ; whorls 6 ; flattened and broadly canaliculate at the suture; base flat or convex, grooved, deeply umbilicate, obliquely striate within,
shell a brilliant green nacre underneath the outer shelly coat. Diam. and Lat. about 3 mil., dedicated to the eminent geologist, the Rev. W. B. Clarke. A fossil which maried so much in the few specimens I examined that I hardly liked to include it in my list.

Demprophiytla duencane. 11.s. This is a compound corallite, with a very imperfect epitheca. It gives off four branches from a kind of internode, but in the specimens examined by me (among the corals collected by R. M. Johnston, Esq., Dr. Milligan, and Mr. Stephens), the branches and stem were broken ofl short. It differs from the hitherto only Australian tertiary species in the internodal character of the branches and the imperfect epitheca. A complete diagnosis will no doubt be published by Professor Duncan, to whom the specimens will be forwarded, hut I have taken very gladly the opportunity of dedicating it to the learned Professor, to whom the science of geology owes so much.

Flabellum duxcani." n.s. The coral is cuneiform and very much compressed at the base, which is pedicillate. The calice is elliptical and shallor. The septa are in six systems of three cycles, delicate and well apart, the principal exsert and rounded, having few large rounded lateral granules. The fossa is deep and rather broad. There is no columella. There is a stout epithera, and the costre are strongly marked, linear tapering with faint transverse curved folds, 22-24 in number. Height, 6, triansverse diam. of calice, $4 \frac{1}{2}$. Lat. 3, millim. This is the fifth flabellum described from the Australian tertiaries. It is smaller than any of them, and mainly distinguished by the distinct external costæ.

Buskia. nov. gen. This genus is proposed for Escharas, which are disposed on a cylindrical hollow axis, which is branched and irregular. It differs from Eschara in not having the cells back to back, but on one side only of the cylindrical branches, and from Hemeschara, in being erect and branched, and not encrusting.

Bushia typica. n.s. Cells disposed sometimes quincuncially and sometimes irrecrular, surface of the branches crunipled aud flexuous, elliptical branches irregular and widely separated; if bifurcating a very wide cellular interval between the opposite divisions; cells convex and projecting from a very clearly defined margin, within which there is a row of pores continuing all round from 18-26 in number. From each pore there is a deep grove to the mesial line, which is also sometimes grooved, and then the surface has a rugose corrugated appearance; mouth orbicular, with a somewhat larger often pyriform pore on each side. Width of some of the branches, 10 diam. 7 mill.

ECHINODERMATA.

The following notes on the Echinodermata have been made by Mr. Johnston, some of which I have examined and compared the species, and added the specific names, with a few verbal alterations.

Micraster brevistella. Laube. Rather more rounded than Laube's figure. It is slightly compressed dorsally ; central surface concave. The anal orifice is triangular in appearance, with the apex towards the "plastron," and is situated on the posterior of the ventral surface.

The plastron is round, and is sitnated near the niddle of the concave ventral surface. The five ambulacra radiate from the apical disc in a graceful though slightly irregular manner. The pores 27 to 37 double pairs on each ambulacrum, extend about half way over the dorsal surface ; and from the extremities of each double pair, the two grooves are continued round to the ventral surface, and thence to the plastrou. The groves may be described as irregularly parallel to each other. The whole surface is densely covered with rather small tubercles, uniform in size, and surrounded by scrobicula:

Micraster etheridgei. n.s. Test small, oval, depressed, and surface very much flattened; ventral slightly concave; ambulacral groves 5, well marked and continued from apical dise on the dorsal surface to the plastron on the ventral surface; anal orifice, small, round, situated at the posterior ventral margin; plastron, central, round. The whole test covered densely with tubercles, small, but irregular in size and distribution. The dorsal surface is too imperfectly preserved to make out the apical dise or ambulacral pores clearly.

Hemipatagus woodsil (var. a) Cordiform. Differs from H. woodsii in the following particulars:-Apical dise contains 5 ocular plates, and is situated nearer to anterior end of test madreporiform body angular : odd ambulacral groove, much shallower than in H. Woodsii.

Primary tubercles greater in number ; occasionly one primary tubercle is found situated on the posterior interambulacra. Great breadth nearer to anterior and than upon H. woodsii. Dorsal surface much more flattened and depressed.

Note.-Prof. Duncan has lately shown that Hemipategus is a genus identical with the living Lovenia, Gray.

ON A NEW SPECIES OF AMPULLARIA.

By the Rev. J. E. 'Texison- Woods, F.G.S., F.L.S., Corr. Mem. Roy. Soc. Tas., Sydney, dc.

I becr to bring under the notice of the Society a new species of Ampullaria, a genus hitherto mknown in the Iustralias. Some time sinee I described all the known freshwater shells of the island which duly appeared in last year's tramsactions. Since then I have described a new Talcutu, I. tusmanicu which was discovered by that most industrious entomologist, Aug. Simson, who obtained it from a creck in Gould's Country. Since then in looking over some shells kindly placed at my disposal by Ronald (imm, Esq., F.L.S., I have found the Ampullaris which I now describe. It is small in size, hat very interesting from the fact that it is the only species of that very large genus which has yet been fomid in any part of Anstratia. Fortumately, though the collection of individuals was small, yet the most of them had the operculum in situ, which cnabled me to pronomee that it is shelly. The genus has only been studied of late years, and is found best represented in South Ameriea, where it attains a large size, and presents beautiful varieties of colouring. I was unable to ascertain the precise habitat from Mr. Gumn, who was, howerer, certain that it was obtained from some of the rivers emptying themselves on the north coast.

Ampullaria tasminica. u.s. A.t. perca, subglobosa, comea, spira breci, obtusa, epidermide atro-oliracea, induta; anfractibus 4, subito decrescentibus; apertura lata, simplici, postice angulata; labio alba, conspicua, concara, reflexa, fance atate albicante. Operculum subconexит, levigatum epidermide (?) olivacea indutum.

Shell small, subglobose, horny, with a short obtuse spire; epidermis hlackish olive; whorls t, rapidly decreasing, aperture wide, simple, angulate posteriorly, immer lip white conspicuous, reflexed, concave ; throat becoming whitish with age. Operculum, sub convex, smooth, with an olive epidermis (?)

Diam. maj. $3 \frac{1}{2}$, min. 3 mil.
This little ampullaria has no determinate characters except its small size, dark color, and white concave inner lip. The penultimate whorl is rather gibbous.

REMINISCENCES OF A VISIT TO THE VOLCANOES OF HAWAII.

By His Excellency, F. A. Weld, Esq., C.M.G., President of the Society.

[Read 12th September, 1876.]
——"et incedis per ignes
Suppositos cineri doloso."
Hor., Carm. 1., lib. ii.
Some time ago your Honorary Secretary expressed a wish that I should read you a paper upon my visit to the volcanoes of the Sandwich Islands, and my ascent of Mauna Loa, " the great mountain," during the eruption of $18.5 \overline{5}$; and, desirous of doing anything I can to meet the wishes of the Fellows of this Society, I promised to do so. It is now my ohject to fulfil that promise to the best of my ability, but you will forgive me if I present you with a simple personal descriptive marrative, instead of a scientific disquisition worthy of a place in the proceedings of this Society.

It is a matter of regret to me that my journal written at the time has been left in England, but I have used as a groundwork for the more important part of this paper a letter to Sir Charles Lyell, written by me at his request, and published in the proceedings of the Royal Geological Society; and though so many years have elapsed since 1855, a recollection yet remains to me of my journey up Mama Loa, as vivid as if it were only yesterday that I toiled over its wastes of lava and gazed into its seething craters with eyes that could scarcely meet the glare.
The Sandwich Islands, as you know, are a group in the North Pacific Ocean, lying a little south of the tropic of Cancer, and between longitude 155^{\prime} and 160° west, and that one of them, to which I am now about more particularly to direct your attention, is Hawaii, called by Cook Owyhee, and is the island where that great navigator and discoverer lost his life. It is stated that one of these islands was first seen in 1542, by a navigator named Gaetano, of whom I have been unable to learn any particulars, nor do I know upon what authority the statement rests ; however that may be, Captain Cook may fairly be said to have been their first discoverer in 1778, in the sense of having first visited them. It is a curious circumstance that, as I was informed on the spot, at the "time of his arrival a native tradition existed to the effect that "Lomo," the god of fire, white skimned, and fair haired, had been driven from their island, with his followers, on account of some escapade and indiscretion into whi h the natural fervour of his disposition had led him. The tradition went on to say that he would one day return across the sea to revisit his ancient abode. When the sails of Cook's ships were seen rising like clouds above the blue waters of the Pacific, and moving shorewards, a cry was raised that Lomo, the fire god, was returnins. Priests and people flocked to the beach, and when they saw the strange appearance of the Englishmen, their white faces, smoke issuing from their mouths-owing, no doubt, to the use of that fragrant weed which is generally so dear
to sailors-and still more when they saw and heard the fire of the guns ; doubt was converted into certainty ; victims were prepared, and the great navigater was led to the sacriticial temple, or enclosure of terraced stones: heathen rites were performed, and sacrifice was offiered to him. I'nfortunately, disputes which arose led the natives to believe that Lomo or his followers had not forgotten their ancient propensities, and having failed, as they thought, to propitiate him with their sacrifices and offerings, it was resolved to intlict a fresh term of banishment upon him, and to drive him again across the saas. As Cowk was retreating to his boat, under the pressure of the angry and menacing crowd, one native, more excited than the rest, pushed him violently, cansing pain, which Comk showed by an exclamation, or gesture. They then saw that he was sensible to pain, and conserpuently but mortal, and a native at once dealt him a heary blow with a weapon ; he fell wounded, :und was quickly killed, to their astonishment at first, and subsequent regret. You will, perhaps, pardon this digression, as I think these incidents throw light umon the circumstances of the death of this areat sailor, when compared with the acome given of it in the marrative of his voyages.

It was nearly at the end of October, 185.5, when I landed on the Santwich Islands. I was travelling with an old friend and fellow New \%ealand colmist, the Hon. James Frederick StuartWortley, and after visiting Tahiti, we took our passages in a selooner sailing thence for Sin Francisco, hoping to touch at the Sandwich Islands, which we were anxions to visit, as we had heard that the voleano in Hawaii was in full eruption. We were, after all, only enabled to accomplish our purpose by the kindness of the captain of an American whaler, who allowed us, when near the islands, to transfer ourselves to his ship, and who landed us at Lahaina, on the island of Mawé, in the central part of the group.

On Mawe is the inmense extinct crater of Mauna Haleakala, or monntain of the Honse of the Sim. It is variously estimated at from 24 to 3.3 miles in eircumference, and is not much less than : moft. deep. It stands about 10,0 , 2 ft . above the sea level. Within this enormons basin, which would hold several of the largest cities in the work, rise nunerous fumel-shaped cones, which formerly helched forth Hame and molten lava, and still, though crumbling away, rise to the height of several hundred feet. The walls of this erater, which is, I helieve, the larsest known in the world, are burst through in two places, hy the force of eruptions of lava. Our stay in Mawé was too short to enable us to visit it, an "ipportunity having offered itself which enabled us to proceed to Hawaii, the principal aim and object of our journey; where we visited, as I an about to describe, the similar though smaller crater uf Kilanea, in full activity. The mportunity of reaching Hawaii was afforded us by the departure thither of a small schooner of about :3.) tons, called the Manu (1) ka wai, ("Bird of the Water"), and here let meremark, as an instance of the great similarity of the Marri or New Zealand langnuse to the Kanaka, or Sandwich Island dielect, that in Marri the name would have been Manu no te (or lie) wai ; in fact, the langnage of these two groups, the one in the same latitude as Tasmania, and the other at the northern tropic,
is so nearly identical, that I som found that what I knew of Maori was readily adapted to intercourse with the Sandwich Islanders.

It was on the evening of November 3rd that our little schooner got under weigh, and glided out from anong the fleet of whalers in the roadstead, and away from the scattered cottages and houses, and cocoanut trees of Laihaina. It was a glorions evening, and the great volcanic mountains of Mawé, and the neighbouring islands, loomed grandly in a golden haze, as the sun got low, and we stood out into the open sea. Our tiny craft presented a singularly curious and picturesque appearance ; her cargo, must closely packed, was human ; a very fat chieftainess, with about a dozen of her ladies in waiting, filled the little cahin, and on cleck we connted between eighty and ninety persons, almost all women ancl girls, going on a risit, they told us, to their friends in Hawaii, all dressed in light calico "roundabouts" of hright coloms, and all wearing wreaths and flowers in their hair. This looked well enough in the sunlight ; but I well remember in what a dark blue-black the last island to the westward stood ont against the fading streaks of red on the sky, when the sun went down. The wind began to whistle shrilly ; we took in sail ; our poor lightly clad fellow-passengers huddled together, and a shiver ran fore-and-aft as the first cold spray swished over them. They langhed at tirst, and throughout bore up bravely ; but it grew worse and worse, and nearly all night long heavy seas broke over us ; lut, even had not the deck been Hooded, there was not room on it to lie down ; Wortley and I spent the night sitting against the bulwarks, now and again helping to work the vessel, or taking a turn at the tiller, when the native skipper-who behaved admirably -had to go forward to see to the head saiks, or to keep his crew up to the mark. When at length a dull leaden morning dawned, we were hove to in a tremendous sea, our binnacle and compass smashed, and no land anywhere in sight, though the clouds were begiminis to break. Our derk presented a marked contrast from yesterday evening. It was hidden by superincumbent strata of drenched and shivering feminine humanity, blended in one chaos of sodden calicu, wet dishevelled tresses, draggled wreaths, and general mistry, on which the native sailors trod without the slightest compunction, for there was no stepping room betiveen. At noon it began to clear up, and the sea moderated; still we in vain looked out for the mountain tops. The captain had run before the wind out to sea all the first part of the night, and calculated that we were ahout 80 miles from land. We steered in search of it by my pocket compass, and when night again came the stars shone ont, to thecaptain's great delight ; he, however, was utterly exhausted, and turned in. The native left at the helm had also a theory of the stars and navigation, and was bent on steering in the wrong direction, besides perforning most surprising nauticalaberrations; remonstrance being unavailing, Stuart-Wortley and I were obliged forcibly to depose him, and take command. Under these circumstances of some responsibility, and perhaps with the slightest possible shade of doubt as to our own perfect capability as navigators, and the exact correctness of our course ; for we did not know exactly where we were, and had neither charts nor ship's compass-under these circumstances, we
were not sorry when we saw high above the moning mist the great smooth gently rounded dome of Mauma Loa, with smoke rising from two craters, the somewhat more rugred crest of Mama Kea, and the dark mass of Maman Hualalei. The scene was imposing, calm, and grand, rather from rastness than from any beanty of outline. These three momatains of Hawaii are respectively $13,700,13,800$, and $10,000 \mathrm{ft}$. in height. They have not the sharply defined peaks and crags common to most volcanic mountains.

About mid-lay on the 5th we made the shore, and landed at the village of Kawaihate, on the north-eastern coast of Hawaii, situated some 30 miles north of the Bay where Captain Cook was killed. At Kawaihae we visited the remains of a Heiau, or heathen temple, an enclusure surromaded and paved with stones, and with stone terraces in front, on a slope descending towards the sea. Leaving Kawaihae and its few clumps of cocoa nut palms, my friend and I, with a native guide, turned our backs on the sea, and walking westward ascended a long rise, where the wild indigo plant, the prickly pear cactus, some grass and other vegetation, grew in thin red rolcanic soil amongst stones and scorize. A few miles brought us to an elevated tract of table land of better soil, and to a settler's homestead, where we obtamed a lorse and a little pack bull, and secured the services of one or two more natives, a pleasant relief from carrying our own food and baggage. Our journey then lay along an upland valley, the Waimea, tolerably well grassed, with here and there a grove of trees or bushes, and next entering forests chiefly composed of Koa (Accerice fillcutn) which bears a remarkable resemblance to the Eucalypti in leaf and seed vessel, we rounded the northern shoulder of Mauma Kea, the most northerly of the three great mountains, sometimes catching glimpses of the snow on its summit range through the trees. It was near here that the botanist Douglas met his death by tumbling into a pitfall, into which a wild ox had already fallen, which gored and trampled him to death. We met a few of these animals, with long horns like a buffalo. We had only a shot gun and revolvers. They gazed at us and retired ; had they charged, our little pack bull might have fared badly. Passing through these forests, where the wild strawberry and raspberry abomed, as does the "Cape Cooseberry" at a slightly lower elevation, and having attained a height as nearly as I recollect of about 3,000 or 4,000 feet, we commenced to descend on the north eastern side of the island, in a beantiful and very well grassed country which, deeply ent through by ravines dilled with the candle nut tree ("Aleurites triloba"), bread fruit, banana, and other regetation, and dotted with clumps of Pandanus (l'omedemus ondincutissimut and bamboo, slopes down from the upland forests to the cliffs, which rise ahruptly from the sea. Nothing can be more heautiful than this Hamakna district, or perfect than its climate. Turning now to the sminthwarl, and erossing a seemingly interninable succession of very deep ravines, and wading through clear fresh streams and rivers, that dash down their rocky heds, and often fall in cascades orer the clifts into the sea, we reached the town of Hilo, on Byron's Bay, on the !th of November. As we approached it, we passed a few small coffee and sugar phantations ; and just before we reached it, we were amused ly seeing a great part of its native
population disporting themselves hy jumping from a rock into the Wailuku River, floating on their back down to its waterfall, going over a perpendicular fall of 30 or 40 feet, feet foremost-plump into a deep still pool below. The Sandwich Islanders are probably the best swimmers in the world, and their feats in the surf are far more wonderful than this.

Hilo is a pretty village or small town embowered in cocoanut, breadfruit, and banana trees, and straggling along the shore of Byron Bay. It is, or then was, a great resort of whalers, and is the principal town of Hawaii. The ground rises gradually from it to Mauna Loa, the summit of which is about 40 miles distant in a straight line ; and when I arrived at Hilo the lava of the great eruption was steadily tlowing down towards it and threatening it with speedy destruction. On our arrival we lired a vacant hut embowered in a grove of bananas from a native, and at once sat down to debate "ways and means," for we had wrongly calculated on being able to get money from Honclulu before this, and we found ourselves with a most dilapidated wardrobe and literally penniless, without introductions, and unknown to any one. I only wish that I could ever hope to be able to make some return for the generous confidence with which Mr. Pittman, the principal merchant of the place trusted us, advanced us everything we wanted, and not only extended to us assistance, but the most cordial hospitality.

We now began to prepare for our journey to the volcanoes. The three great mountains of Hawaii are all recent volcanoes; Mauna Kea the most northerly of the three is somewhat the highest. Its summit bears evident traces of activity at no distant period ; but for many years it has not been in eruption. Mauna Hualalei, more to the southward and on the western coast, was in eruption a few years before my visit. By far the most active is Mauna, Loa, Kilauea, on its south eastern acclivity, and is the largest active crater in the world. It has been frequently visited by travellers. Above it Mauna Loa proper, presents an immense bare area, I should say 40 miles in diameter, smooth and gently rounded at its distant aspect; but one mass of rough volcanic debris, scorire, and lavas of different ages, cut by deep lava ducts, and heaped with senrie and ashes; and few years pass ly without its bursting forth in one direction or another. Often it is, as it were tapped, by an eruption of Kilauea, which as I hare satid stands, like a great abscess in its side, some 8000 feet below its summit. In 1840 a flood of molten matter burst through underneath the rocky walls that form the basin of Kilauea, lowering the level of its fioor by 60 feet.

For ten miles it flowed underground, oceasionally lifting the earth and rock above, and sending forth smoke, inflamed gases, and burning lava; then tearing its way out of the hill side, it rolled a flood of liquid fire through forest and jungle, which spread sometimes to a width, as Mr. Coan a resident missionary says, of four miles. In three days it had traversed 30 miles, and rolled itself in a cataract of fire a mile wide, over a cliff 50 ft . high into the sea. For 20 miles around the sea was heated, and innumerable quantity of fish were thrown upon the coast killed by the heated
water, and two islands were formed as the lava cooled after flowing into the sea, for two weeks. In 1843 a great eruption took place from the top of Mauna Loa itself. The melted lava ran down the northern side of the mountain for 30 miles, dividing itself into two streams from one to three miles broad. I owe these details to the Rev. Mr. Coan of Hilo, who, with much danger to himself, ascended the mountain and traced the stream.

In 1832 an erruption again took place at the summit of Mauna Loa, which threw up an immense fiery column of incandescent seorize, and intlamed gases to the height of about 500 feet, some say 1000 feet, and again poured forth a flood of lava. Mr. Coan this time also visited the mountain.
Many former eruptions have been recorded, and an account of them may be found in the journals of the Geological Society, Vol. 12.
I am not aware if besides Mr. Com and myself, many, or indeed any, other persons have ascended Mauna Loa proper excepting Commodore Wilkes, of the American Expedition, who went up with a large body of natives and sailors, established a huspital on the side for those who suffered in the attempt, made some interesting observations, and returned after an absence of some duration to Hilo. A detailed account of his expedition may be found in the narrative of his voyage; he seems to have considered the difficulties of the andertaking much greater than a person more accustomed to bush work and mountain travelling would have found them. The mountain was not in eruption when he ascended.

Kilauea, 4104 feet above the sea, is easily reached ; it has been several times described, I think first by Commodore Byron, after whom Byron's Bay is named.

I now come to the great eruption of 1855 , which I was so fortunate as to witness. On the 11th of August 1850, the lava burst forth at about 12,000 feet above the sea level on the very crest of the range, but about 1000 feet below its highest part, and on the northern side ; it was rather remarkable for the enormous and unprecedented flow of lava than for any projection of intlamed sulstances into the air, though its light illumined the horizon for many miles, and the columm of tire or its reffection was said by some to have been at first apparently 500 feet high. The Rev. Mr. Coan again made the ascent and visited it. At the commencement the lava ran northwards with great rapidity into the upland valley that divides the summit of Mauna Loa from that of Mauna Kea; then taking an easterly direction, it poured down towards Hilo. The main strean was in many places about three miles wide, but as it reached comparatively level country, with forests, jungles, swamps, and streans, it spread to a width of tive or six miles and flowed more slowly. At the time we left Hawaii (November 23rd, 1855), it had been gaining about a mile a week, but during the last week it had been making a somewhat greater progress. The whole length of the flow of the lava, including bends in its course, was then computed by residents at considerably more than 50 miles from the craters ; I should myself put it at about 35 miles as the crow tlies, not allowing for sinuosities. It was then only about 8
miles from Hilo, which it threatened, but it did not advance much further, and ceased to flow not long after I left.

Our first good view of the eruption from Hilo was at night, from the deck of a ship in the bay, as the trees obstructed the view from the shore. The distant craters were scarcely visible, but the burning forests above and behind the town showed the front of the advancing lava torrent lightening up the night with a mighty glare, with sometimes a column of red light shooting up, oceasioned probably either by an explosion of the half-cooled upper crust (from under which little streamlets of red hot lava keep rumning out and covering fresh ground like fiery serpents in the underwood) or by dried trees falling into the fire. The inhabitants of Hilo were justly alarmed, and many were preparing to put their effects on loard ship. I was particularly requested when it became known that I was about to attempt the ascent, to endeavour to ascertain as nearly as possible the rate at which the lava was flowing, that it might be known whether the flow was moderating since Mr. Coan's expedition. Most people, however, said that I should never get to the craters ; Mr. Coan said it would take me a week or more. He kindly pursuaded a native who had been with him to accompany me, and with much dilliculty I engaged two more, all strong and active men. We rot horses to take us as far as Kilanea, and after completing our arrangements and spending a few pleasant days at Hilo we started.
The ascent, though very gradual, may be said to commence at Hilo itself. The weather was unpropitions, and where the path was not old lava it was deep mud; indeed these two component parts of our track were so mixed up together that our horses were soon tired out by plunging along from hard to soft, and it was not till the second afternoon that we reached Kilanea, a distance not very much over 30 miles. The country varied between woods and jungles, chiefly of a tree of the myrtle fanily, hearing red and sometimes yellow Howers, not unlike the New Zealand Rata (Metrosideros?) and open tracts of fern "Ti" (Draccena terminalis), which is also the Maori name for similar species, and grass. A little before reaching Kilanea we entered the region of the Koa tree, already mentioned, which is a useful timber tree, and also remarked a handsome yellow acacia, the raspberry, strawberry, and some tree ferns; the suil, of a red colour, was covered with masses of scorixe, and in m?ny places we crossed hardened streams of old lava.

Our jumey han heen about 30 or 35 miles, at first about south by west, and latterly more westerly, when, on the afternoon of November 14th, we stood on the brink of the great crater of Kilanea, 4104 feet alove the sea. We found a grass-built hut on the upper rim of the crater, and here we took up our quarters. The mountain of Kilanea may best be described as the base of a broad low truncated cone, standing on a high level platean ; an excrescence, as it were, growing out of the side of the huge Mauna Loa. It looks as if the apex had subsided, leaving in the centre of the mountain a flat-floored sunken crater the upper rim of which is about seven miles in circumference ; sometimes the level of the bottom of the crater is tapped and lowered by underground eruptions that burn out at a lower level on the side of the monntain.

From our hat we looked down on two partially smaken ledges eovered with grass, fern, and hushes, which, as well as the place where our hut stood, were in many spots steaming. In one place especially we noticed a lange hank or momal composed apparently of a chalky substance, probably a deposit of some chemical salts with a great deal of sulphur. from which issmed a considerable body of stem. Delow these ledios lay the great crater like a flat-hottomed romml hasin. The depth from the top of the highest of the containing walls on cliffs to the buttom of the crater, has been calculated at 1 , inn feet, thoueh in many places it is considerahly less. These clifis or walls are in most places perpendicular, and arpear to be composed partly of gravelly clay of a rellowish colour, and partly of dark hasaltic or trap rock. The Gootom or foor of the crater is constantly changing, quickly melting or hardening. Sometimes part of it is a lake of molten lava, red hot. Some Americans, that we met returning from it as we ascended, assured us that such was the case the day before we arrived. Such a lake is uften a mile in length, by half-a-mile wide. When we saw it, however, nothing of the sort was visible. Looking down into the crater it had the appearance of a flat plain of dull lead-coloured latva, more or less broken and rugged in places, and containing an infinity of small momeds or cones, whence issued clunds of sunke, especially towards evening. As night came on, the action of the volcano seemed to increase, and the light of the subterrancous fires was seen in many places. Mr. Stuart-Wortley, who was prevented by indisposition from proceeding with me up Mana Loa and remained at Kilanea till my return, observed some of the small comes or craters within the sreat crater oce:sionally ejecting hot stones and liquid lara, and on the night of my return from Mama Loa, I observed the sam thing on a small scale. I may here mention that after my return from Manna Loa, we climbed down a part of the wall where it is not very precipitous or difticult, and descended into the crater. This can easily be done, and some years ago a native chieftainess, named "Kiapiolami," having become a Christian, lerformed a gatlant act, which should ever be remembered to her homomr. The descended into the crater, and adrancing to a pit of fire defied the Heathen divinity to whom the place was sacred, broke the "Tapu," that is its inriolate sanctity, and safely returned to her trembling and awe-struck attendants, who had expected her instant death. P'ele is the name of the goddess who, until that dlay, was supposed jealously to guard her fiery dominion, and to luxuriate in her bath of flames, as her rotaries did in the cool waves that dash over their coral reefs. The capillary lava, which is supposed to be formed by the action of wind on liquid lava, strongly resembles hair of reddish, brownish, or golden hue, and is called by the aatives Pelees hair; I brought away several specimens, but regret that I have none by me. The floner of the crater of Kilanea, on which we spent an homr or two, is simply the couled urper crust of fused lava ; the munerons small momnds or miniature craters scattered over it, have orifices at their tops or in their sides like the mouths of limekiln, often double, through which you may look into the red hot depths below, and into caverns of
subterraneons tire. We also remarked in places, long ridges of smoking masses and fragments of rock that had evidently been upheaved through the lava pavement, and piled confusedly upon one another. The lava itself upon which we walked was sometimes very hot, especially near steam vents and open abysses. The exhalations of sulphurous acid and other noxious gases were also in places an impediment to our explorations. The lava is generally of a dull glossy lead-colour when quite cool ; but of a brighter green or blue when more recent. Symptoms of melting of the crust upon which we walked, and increasing heat and vapour, came on as we left the crater and regained the fresher atmosphere of the upper world.

After a night's rest in the grass-built hut on the verge of the rim of the Kilaueacrater--leaving my friend, whose strength was hardly equal to the enterprise, to keep house at Kilauea-I started on foot with three natives at early dawn on the morning of the 15th November to ascend the "great mountain." After walking a couple of miles we entered a wood, and commenced the actual ascent ; in about two hours we began to emerge from the wood, and by $9 \mathrm{p} . \mathrm{m}$. we were fairly upon the bare lava. It was an old lava stream with various species of Epacris, a red whortle-berry, and similar plants growing in its crevices. Before us lay for miles and miles a wilderness of stones and scorise; high up, far in the distance, rose the wreaths of smoke that marked the site of the new craters, the goal of my ambition. Our course this morning had diverged a little to the north, and then again to the south of west ; but now we made right for the upper crater on the rounded back of Mauna Loa bearing about west. Before us lay a waste of desolation ; on either hand belts of wood, that had escaped cumparatively recent eruptions, struggled yet a little higher up the mountain side. We passed several large caverns ; lava-formed themselves, they had been once the ducts of streams of liquid lava. Some heaps of stones marked a place where a horse, and if I understood my natives rightly, some people had perished; how they got the horse so far ; how they could have hoped to get him yet further, and for what possible purpose they brought him there at all, is a mystery to me, which my imperfect power of conversation did not enable me to solve. About 50 years before, and, so far as I could ascertain, not far from that spot, a native army, attempting to move from the eastern to the western side of the island, with the design of issuing forth upon their enemies from the gap between Mauna Loa and Mauna Kea, were smothered by a shower of ashes, similar to that so graphically described by Pliny, the younger, when Pompeii and Herculaneum were destroyed, and in which the elder Pliny lost his life. Proceeding onwards over lava and loose porous stones like pumice, only harder and somewhat heavier, we arrived, at about 11 a.m., at a few bushes and koa-trees, a little oasis of coarse grass, an old hut, and a deep rock-pool of delicious water in a cave. Here we halted to refresh ourselves, and then, leaving the old track which turns northward leading to the north-west side of the island, and which was, doutbless, that which the ill-fated army intended to pursue, we lept on our toilsome ascent over bare lava, now absolutely destitute
of any restige of regetation. So rough and hose were the scorie boulders, and so sharp the vitritied lava like slag and elinkers from a factory, that 1 found my strong English shonting-boots cut thengh in many places, and blood was flowing from my feet, knees, and even hands; my natives were also in evil plight. I therefore tore strips off my shirt and bound them round my boots, and continued this operation as long as my shirt lasted. When I left the mountain two days after I was shirtless, and hat utterly destroyed two pairs of boots. At about :3 p.m. the gride, disappointed in his expectation of finding another cavern containing water, after consultation with me, altered his plan, and instead of keeping his westerly course for the upper crater, turned to the right, north-west, hoping to find water at a spot some miles below the lower one. The conserquence was, that bad as the walking had been before, it became, if possible, worse as we left an old lava bed and toiled mile after mile over nothing but loose sharp rocks and scorie of every possible size and shape; and piled in the wildest confusion. We succeeded, howerer, in finding a little water amid a few solitary stunted Dushes, the sole residue of a burnt-out forest, and then again tending upwards and to the west, shaped our course directly for the lower crater of the two that were sending out dense volumes of smoke above ns. We lay down for the night on a little patch of half-vitrified ashes. I suppose that we were then about 9000 feet above the sea, but we might have heen considerably more. The next morning we started before sumrise. Having found to my surprise a few dry sticks, I thought so good an opportunity was not to be lost, and endeavoured to make some tea, but owing to the height the water boiled without attaining sufficient heat, and as water was rery precious, I did not long continue the experiment, but returned what remained in the pamikin to our calabash. Our way now lay, mile after mile, over scoriee boulders, yeasty-looking basins, and tortuous folds and waves of solidified lava, caverns and small chasms whence the hot lava had flowed away, hillocks generally of small stmes burnt to a deep orange red, and here and there little smooth places covered with ashes,- altogether dark and dreary in colour, without a living thing or a green blade. That morning we passed the site of the eruption of 18.2 . The view thence of the opposite momitain of Manna Kea was glorious. The old conical craters on its stmmit covered with newly fallen snow, its huge ontline, shadowy and dim ; the clouds of smoke that rose round its hase from the intervening yalley down which the present eruption was flowing ; the wild dreariness of the foreground and the tropical sky above. Who could fitly describe or paint it :
And now a disaster uccurred. A native fell and broke one of our two calahashes or gourds of water. One only remained, and it was not full. Our supply was reduced to a pint bottle of beer and less than two pints of water. We descended into a cave, and scraped off some damp moss and syueezed it into the pannikin, ohtaining, after half-im-hour's labour, little more than lalf-i-pint of dark yelliw lignid, tasting strongly of sulphur and dirt, so undrimkable that we decided on mixing it with the rest, a proceeding that had this alvantage, that 110 one was afterwards inclined to drimk nore than nature absulutely demanded. The natives, now
tired and worn ont, lagged behind, and at noon I found myself alone at the lava of the present eruption, at a spot about a mile and a half below the lower crater, and about three miles below the upper one.

As far as the eye could reach, down the valley between Mama Loa and Mama Kea, I could trace the derouring flood in the valley and forests below; the stream of fresh lava at this point was about two miles in breadth, of a dark greenish colour, and dull metallic lustre where it had cooled or partially cooled on the surface ; below it was liquid, and moving on under the upper crust. The surface, as cooled by the air, had congealed into every possible form and distortion-here wreathed about like rolls of slrivelled parchment-there split into slabs and fragments, sometimes with a smooth surface only broken by cracks and fissures-in other places twisted like strands of coiled rope, or rolled out into luge waves and serpentine convolutions. Through large cracks and openings one looked down into the fire below; and many of these fissures had to be jumped across. Smoke, steam, and gases, rose from many of these places, and often, when walking on apparently hard surface, an upper blister broke beneath the tread, causing a fall amidst steam and hot lava. I was fortunate in receiving no injury worse than a burn or two and the loss of a finger nail. As the day advanced I was somewhat uneasy at the non-appearance of my natives, for though I had no doubt of being able to find my way back, it would be difficult to find them amidst such a chaos of rocky ground; and I had neither food nor water, and time under those circumstances would have been a question of life or death. Mr. Coan, too, had said that it would at the least take two, if not three days, to get back to Kilauea; however, I felt sure that I could see both craters that day, and I had left Kilauea only the preceding morning, and I felt that it was possible by aiming straight for it, to reach it even without food or water by next night. Moreover, I had said at Hilo that I would bring back word as to the speed with which the lava was flowing, and it was of consequence that I should do so, for from its rate of flow might be calculated the probability of the continuation of the eruption, and the likelihood of its reaching the town. Now, to do that, I saw that I must walk on the surface of the cooled or partially cooled lavas till I reached its centre, where large open gaps in the crust showed the fiery flood beneath. They were a long way off, but I could know them by the glare that tinged the dull mantle of smoke and steam that rested on the lava. Besides my nerves were strung up, and, Englishman-like, I did not wish to be beaten. I resolved to go on, and, after I had done what I intended to do, then to go back as nearly as I could to the place where I last saw my natives, and I did not find them at once, not to delay, but to strike straight back to Kilauea at daybreak. I followed up the course of the eruption, keeping along its side. When I was within a mile or two of the lower crater I saw by the glow a very large lake of fire in the centre of the eruption, and determined there to make the attempt to reach it. At that moment, the native who had been on the mountain before, and whom I have called the guide, appeared,
to my great delight. I hailed him, and he rejoined me ; I pointed out to him where I wented to go "to see the fire." He laconically observed, "You go there, you see plenty 'fire,'" and sat down. I went on. The eruption was here about three miles broad. Scrambling with great difficulty; sometimes through hot hollows, where I could hardly breathe, and sometimes jumping or stepping over fissures through which the fire was visible, I reached the object of my aim, the central crag of a huge arch, overhanging a lake of fire ; a place, in fact, where the surface crust had hlown up or fallen in, exposing the flool to view for some acres. The crag seemed solid, and I reached it ; I was scorched and almost blinded by the glare ; I was as it were standing on a bridge, under which a river of fire as large as the Thames was slowly and smouthly rolling, that is, visibly as large, for, in reality, it was fully three miles wide in its underground flow as shown by the cooled surface, and I had reached about the middle. I stood so perpendicularly above the stream as to be able to drop a large mass of lava into the fire, and though the glare was too great to enable me to see distinctly, I thus satisfied myself that the flow was moring at the rate of about three knots an hour; in fact, that its rate of speed had sensibly diminished from the time Mr. Coan had estimated it. I was well satisfied when I rejoined my native, and we proceeded upwards to the lower crater together. Leaving on our right several large abysses and pits, we arrived there. The upper crust of the lava having cooled, the discharge from the crater was not visible. Some dark fantastically shaped rocks, some heaps of small stones, one of which, containing a large proportion of sulphur, was burning most furiously with red and blue flames, the whole surrounded by an ocean of partially cooled lava; such was the lower crater. My native again very sensibly sat down at a little distance ; I scrambled on as best I could, till I reached one of the rocks forming the side of the crater, keeping well to windward on account of the dense smoke. Lying down on the warm stones, I attempted to look over, as it were, down a gigantic chimney, to see into the boiling cauldron, which I heard bubbling and seething. I got my head over the edge, and had just time to see a long, broad, tissure, full of smoke, when I was almost suffiocated with smoke and sulphurous acid gas, the effects of which I felt for some time afterwards, and thought myself fortunate to escape in safety.

Still ascending for about a mile or a mile-and-a-half over the same chaotic confusion of loose scoriaccous rocks, torn and burst asunder, and lava warm and steaning, some of it lying in loose, flat dabs or flakes, as if it had heen thrown hot into the air and fallen with a splash, we reached the upper crater at is height of about $12,000 \mathrm{ft}$. from the sea, or somewhat more.

The uppor crater was simply an irregular and imperfect basin, of no great size, a hollow between two large mounds or hillocks of smanl, loose stones, with an infinity of suall steam and smoke rents. Thence within it, and on the sides of the mounds, it sent up volumes of red smolie, and partially ignited gases; in one place, from a small truncated cone, this was most apparent, the exhalation rising like the panting puffs of a steam enginc. No
doubt at night the inflamed gases would present the appearance of a column of fire, but in the day-time, to one who had seen what I had that day seen, the upper crater lcoked rather curious than imposing. The great heat did not allow a nearer approach than about forty yards' distance.

Nothing now remained but to return to the two natives, who, worn out and dispirited, had laid down about a mile and a half away some 500 ft . below the level of the craters, and there we slept.

Few living men, perhaps, have looked on such a scene with such surroundings as I did that night. The night was clear with us. Over our heads spread the vault of heaven, starlit and moonlit; and all around, scarred and furrowed like an ancient world destroyed by fire, lay the great grey round face of Mauna Loa; above us its two craters sent up rolling volumes of lurid smoke. To the northward Mauna Kea reared its crest of snow into the moonbeams, looking down nearly $14,000 \mathrm{ft}$. upon the mingled gloom and glare of the intervening valley, along which flowed the eruption, running downwards to the forests, and burning its way through them for miles and miles into the far distance by Hilo. To the east and south, before us, the low dark woodlands fringing the coast, slept in shadow with the sea beyond.

Solemnly grand and impressive it was, but it became sublime when clouds gathered some thousand feet below us; their upper surface as we looked down on them, slining white in moonlight, yet through which the lightning flashes played, and deepest thunders reverberated-still we were in perfect calm-and over and beyond the thunder storm I could look upon the glitter of the moon's rays on the placid sea-like Dante, with whose genius the scene so well accorded-

> "Conobbi il tremolar della marina."

Such was my last night on Mauna Loa.

In the morning, rising at the first sign of dawn, very great and sustained exertion, not without much suffering from thirst, and with bleeding feet, brought us back long after nightfall to my friend Stuart-Wortley, and to what seemed to us the comforts and luxuries of the old grass hut above Kilauea.

on sone new tasilanian marine shells.

> [Second Series.]

By the Rev. J. E. Texisin-Woons, F.G.S., \&C., Cor. Mem. Roy. Soc. Thas., N. S. Wales, \&e.
In the Proceedings of the Royal Society for last year (1875), I published descriptions of 82 new marine shells occurring in the Tasmanian scas. I have now to bring under the notice of the Society an equal number which have been derived from the following sources :-1st. From Mr. Ronald Gunn, F.L.S., the eminent botanist, so long connected with your Society, whose extensive collections, extending over many years, were placed at my disposal for description and type specimens of all presented to the Muscum. 2nd. From the collections made by Mr. W. F. Petterd, during some years past, which were purchased by a fer gentlemen and prescuted to the Society, to which also several new and rare species were added by the collector. Mr. Petterd has proved himself to be an industrious and most painstaking collector, who has not only had singular adrantages for observation in his extensive travels, but has also been able to visit nearly all the Australian muscums in the course of his wanderings, and very much enhance the value of his collections by comparison with the trpes therein preserved. 3rd. From the Rev. H. D. Atkinson, who has continued most successfully his dredging operations and thus largely increased the knowledge of our fauna, as the following pages will show, amongst which are several genera new to the Southern hemisphere, including the important discovery of a Scis. surella, differing but little from the European S. crispata. 4. From Mr. W. Legrand, who continues his zeal and industry on behalf of conchological science, which already owes much to him 5. From Mr. Augustus Simson, the entomologist, whose duties unfortunately take him so far from the coast that he cannot always render that valuable assistance which his great industry and powers of observation would enable him to do. 6. From Mr. R. M. Johnston, the geologist, of Launceston, who has presented two or three interesting conchological novelties to the Muscum, in addition to his very large collection of fossils.

The shells hereafter deseribed comprise rare and peenliar forms, but not departing in any remarkable degree from the molluscan character of the Australian seas as far as at
present known. Some of the smaller shells are not easily distinguished from species occurring in the Eastern Archipelago, Japanese, and E. Australian seas, and no doulte as dredging operations are pursued, these resemblances will be fond still stronger. The number of species especcially of the smaller forms in Tasmania would be surprising were it not remembered that it is almost a warm sea, with many islands, an extensive coast line, and an almost uninterrupted littoral conncetion with coral scas within the tropics, and, we may add, almost with the Indian Archipelago.

No. 1. Murex (pteronotus) zonatus. IL.t. subfusiformi triclata, spira brevi, acuta, solidinscula, alba, ,nne fascia bedia zonata;
 crebre cinctis; nodo uno strenuo varicibus interposito ; raricibus haud latis, in 3 serriescontertus dispusitis, contimuis, cominessio, infre suturects ralde emarginatis et in spinam porrectis; in superficie anteriore crenato lamellosis, in cauda attenuatis; ore late orato ; canali postice emarginato et antice canali longo aperto currato instructo ; cauda lata, apice luci, jinuce.edentutu. Long. 132. Lat. 9. Long. apert canali incluso 8. Lat. 3.
It is sufficient to say of this shell that it is a small white species of the peculiar form of Aiurex common in South Australia and formerly common in Europe, during the earlier tertiary periods. It is distinguished by a conspicuous broad brown zone on a white ground. The three wing like varices are not very much expanded. Flinders Islaud. R. M. Johnston.

No. 2. Typhis arceitus. Hinds. Voy. Sulphur. A small specimen of this shell has been dredted from 10 fathoms sand by Rev. H. D. Atkinson at Long Bay. It is paler than the described species, smooth with rounded brad varices which are bent bacis so as to become confluent with the tubes which crown the whorls.

Trophon Assisi. n.s. T.t. orato-fusiforme, griseo-olivacea; unfr. 6, convexis, superne angulatis, eleganter costatis, et peouliariter lonyit. crebre, temuissime, lamellnsu-strictis; tronssersim sipiraliter consispicue liratis, livis alternantibus, sup. cost. transeuntibus; sutura impressa; costis elevatis, angustis, in ult. anfr. 11; apertura orata; labro acuto, tenui; curuli longo, obliquo, intus properisesconte. Long. 12. Lat. $5 \frac{1}{2}$. Long. canal. $3 \frac{1}{2}$.

Shell ovately fusiform, grevish olive; whorls, 6, convex, angular abore, elegantly ribbed and peculianly thickly striate lengthwise, with very fine lamellose strie: transrersely conspicuously lirate, lire alternating, and passing over the ribs, suture impressed; ribs elevated, narrow, 11 in last whorl, aperture ovate, outer lip thin, acute, canal long oblique, purple within.

In form resembling T. paivie, Crosse, and T. hanleyi, Ang, but easily distinguished by its long canal and peculiar lamellose striations. N. Coast. W. F. Petterd.

No. 2. Ranella epitrema. u.s. R.t. late ovata, albida, vel pullidissime fullu, al suturas conspicue profundeque cemaliculata; andi. 隹, limetis et mondusis, liris motymes et puris alternentibus, supra rarices transeuntibus; nodis in spira costiformibus, in ult. anfr. 4 series transtersalibus; raricibus ad suturas curatis, in seriem non serpentibuss sed aliquentulem a seipsis semotis; apertura orate ; labro
 rix recurro. Lat. 23. Lat. 16. Mil.

This rery remarkable Ranella is distinguished by its deep canaliculate suture which causes the varices to overlap in a singular hooked mamer. It does not appear to have any living congeners in any way resembling it and none fossil.

No. 4. Mitra franciscana. n.s. M.t. anguste ovata, sub-turvitu, solich, ulho, lute pullide cestenee fusciute (ult. (unfi. fusc. Z) vis nitentr-unti. re, leclivis trmiter comexis, spiraliter multi-liratis, liris ramilurilms, subdistintilns, et costis obsoletis longitudinalibus decus-sutis-uperturu spira riar upuanti, anyuste orata, sutura bene impressa, lelizo ucutu, columellu sulide, ublique triplicute. Long. 20. Lat. 7. Long apert. 9. Lat. 2. Mil.

Shell narrowly orate, sub-turretted, solid, white, with a broad pale chestuut baud (two on last whorl) scarcely shining ; whorls 7 slopiug, slightly convex, spirally multi-lirate; liræ regular, sub-distant, and decussate with obsolete longitudinal ribs; aperture scarcely equalling the spire, narrowly ovate; suture well impressed, labrum acute, columella solid, obliquely triplicate. Tamar Heads. W. F. Petterd. Obs. Agreeing in form, size, and general habit with M. badia and other similar Australian forms, but differing in being strongly decussate. Most of our Mitras are smooth.

No. כ̃. Mitra (eravativa. n.s. M.t. fusiformé-turvita, nitente, castuncu, pullide onnutu; uиfi. comeris, ri.r motundatis, regulariter. costatiset sulentis; rostis puris, !frenosis, in ult. anfi. 18; interstitios ancellutis (i.e., tionsorsim strintis, sulatis, et longitudinaliter subtillissimistriutis) ; "pire sulf-lloto; spira ult. anfi. aquanti; apertura angusté r'miformi; lalion uremuto, tenui; columella triplicata, solida. Long. 19, lat. 10. Long. apert. 12. Lat. $3 \frac{1}{2}$ mil.

This unique specimen was in the collection of Mr. Ronald Gunn who had olstained it from the North Coast. It was labelled with the abore name by W. Swainson and marked with his initials, though I cannot find that he ever described it. In shape it is not unlike our common Mitra, except that the spire and last whorl are about of equal length. Its shining, almost enamelled appearance and close granulose fine ribs distinguish it from all other 'Iasmanian forms.

No. 6. Marginelda stanislas. n.s. M.t. petica, elliptica, polita,
nitente, pellucida, alba, vel quadrizonata maculis fulvis varie intermutis ; spira vix exserta, obtusa; apertura angusta, antice latiore et emarginata; columella antice oblipue quadriplicatu, lubro vix incrassato. Long. 6, lat. $2 \frac{2}{3}$ mil.

Shell small, elliptical, polisher?, shining, pellucid white or marked with four zones of variously interrupted brown spots, spire scarcely exserted, obtuse, aperture narrow, wider and emarginate anteriorly, columella obliquely quadruplicate, lip scarcely thickened. Blackman's Bay. W. F. Petterd and Legrand. The zones of color and absence of any determinate spire and the thin lip distinguish this shell.

No. 7. Conus carmeli. n.s. C.t. oblongo-rhombiformi, tenui, nitente, alba, una linea pallide rufo maculata zonata; anfr. 8, tenuiter spiral. liratis, liris acutis, interstitiis long. striatis; spira brevi ad suturas canaliculatis et liratis; 2 ult. anfr. tuberculato coronatis; mucleo mammilato, apertura lineari, labro acutissimo. Long. 22, lat. 9.

Shell oblong, rhombiform, thin, shining, white, zoned with one pale red spotted line; whorls 8 , finely spirally lirate; liræ acute, interstices striate lengthwise ; spire short, canaliculate and lirate at the sutures, two last whorls tuberculately coronate; nucleus mammilated, aperture linear, labrum very acute. North coast. W. F. Petterd.

Conus tasmanicus. Mihi (vide Proc. 1875). This name being preoccupied by Sowerby I propose the name C. macleayana for my species as a slight acknowledgment of the great services rendered to natural science in Australia by the learned President of the Linnean Society of New South Wales.

No. 8. Columbella xavierana. n.s. C.t. elongato fusiformi turrita, spira quam apertura longiore, conica, apice acuto, levi, polita, strigis obliquiis, albis, et castuneis latis et undulosis eleganter variegata; sutura subcanaliculata; anfr. S, planatis; apertura ovata, labro crasso, labio inconspicuo ; columella conspicue striata. Long. 12, lat. 4 mil.

A rather long smooth shell, sonspicuously flamed with undulating chestnut longitudinal broad lines of color which under the lens are sometimes seen to be flecked with white. The genus is, however, so rariable in the matter of color that it may be only a variety of some already described. N. coast. W. F. Petterd.

No. 9. Columbella miltostoma. n.s. C.t. parva, ovata, spira, conica acuta, lcevi, nitente, alba; anfi. 6, planatis, ultimo tumido; sutura obsolete marginata; apertura spira cquanti, orata, eleganter rufo marginata; labro incrassato intus conspicue dentato; labio reflexo, tuberculato; columella spiraliter striata, striis 4, ad labrum posticum pertingentibus. Long. 6, lat. $3 \frac{1}{2}$.

A small white smooth tumid species easily distinguished by
its mouth, which is delimately margined with red. The labrum is thickened and conspicuously toothed within. N. coast. W. F. Petterd.

No. 10. Ancillaria margivata. Var-tasmanica. A.t. ovatofusiformi, selidu, spira p!remiduli, quam apertura breviore, obtectu, spiraliter bicarimutu, unutique ullou, cuifi: rentricosis, bulteo calloso alloo superne maryinatis: ultimo anf: antice bulteis sic compositis ornato-primo \sim striis equidistantibus spiralibus, deinde varice Crasso, luts, rotunduto, deinde belteo, lato, pleneto, tandem 4-5 plicis spiralibus ; labrio sub-ctertu, temni ; lebro postice calloso; apertura lata, busi lute emurginutu. Long. 40, lat. 19. Apert. long. 24, lat. 9.

This species is a smaller white variety of A. marginata, Lam., at least so it appears to me, for the forms closely resemble each other. In Sowerby's Thes. Con. Ancil., pl. 3, fig. 47, the above rariety appears to be figured. King's Islaud, Bass' Strait, and Circular Head. W. F. Petterd.

No. 11. Cominella tenuicostata. n.s. C.t. temui, ovala, acuta, subturrita, longitudinaliter confertim plicato-costata, liris minutis confertissimis "quidistentibus cincta; pellide lutea, maculis fulcris plus minuste nebulosé; anfi. r, converis, superné subangulatis, dectivis; ultimo circiter : tutius tester aquante: costis latis, subdeclivis, in ult. anfr. 14-16, lervibus, wut vix: liratis, interstitios cequantibus; apice naticiforme, (2 vel .21 anfr.) ; sutura sat impressa ; cauda brevi, truncata, labro aruto, peulution e.vpenso, columella concura, planata, et retro spiruliter sulcatu, apertura late orata. Long. 21, lat. 11.

A somewhat turretted, very closely ribbed shell with fine spiral striæ very distinct in the interstices, of yellow color and light brown cloudy spots. It has only as yet been found at Eagle Hawk Neck, and was placed in my hands by Mr. W. Legrand.

No. 12. Purpura propinqua. n.s. P.t. "P. littorinoides" simillimi, sed major et crassior, mayis depressa, late orata, apice semper decollutu ; anfr. 4, cel ungulum unicurinutis, spiraliter, 6 -costatis, costis lamellosis interstitiis paulo superantibus; spatio inter. carinam et suturem ollique cormyato striato; ult. anf. indistincte plicato, fauce fulva. Long. 13, lat. 8, mil.

This shell so closely resembles my P. littorinoides, that no better description can be given than to say that it is broader, shorter, with fewer whorls, and the spiral lire become six stout corrugated ribs with a corrugated one at the angle. The aperture is fulvous. It is intermediate between the species just mentioned, and Mr. Angas's P. flindersii of Spencer's Gulf, South Australia. The difference may be due to climate. I am not aware if P. Tittorinoides is found on the N. coast. Future ohservers must solve the question of the specific distinction of these three shells which are different enough at their various stations, many hundred miles apart, but may.

possibly graduate one into another as they are traced north

 or south.*North West Coast extremely abundant on the rocks at low water. W. F. Petterd.

No. 13. Pleurotomia philipineri. n s. P.t.elongato-orata, turrita, solidiuscula, nitente, pallide custenea, ad suturas fulvo punctata; spira conica, quam apertura panlo longiore; anfi. 9, concexis, dectivis superne angulatis et comuliculutis, ad engulum et suturem arcmulosis, undique spiraliter liratis et lomg. temuissime striatis, liris latis, rotmdatis; interstitiis 2-3 linulis instructis; apice acuto nucleo lavi rotundato; aperturia late oratu, labro acuto, simucto, profunto; labio refleso, allo; fance polita; cenali brevi, vix recurro. (íranis ad angul. latis. numerosis. Long. 34, lat. 15. Long. apert. 15, lat. 8 mil.

Shell elongately fusiform, ovate, turretted, rather solid, shining, pale chestnut, at the suture dotted fulvous; spire conical a little longer than the aperture; whorls 9 , convex, sloping, angular above and canaliculate, granular at the angle and sutures; spirally lirate and very finely striate lengthwise all over the test; liræ broad, rounded; interstices furnished with 2 or 3 lirulæ; apex acute, nucleus smooth rounded; aperture widely ovate, labrum acute, sinus broad and deep, lip reflected, white, throat polished, cimal short, scarcely recurved. The granules at the angle wide and numerous. N. W. Coast. W. F. Petterd. Obs. A very large species closely allied to many of our tertiary forms.

No. 14. Drillia incrusta. n.s. D.t. parva, fusiforme-turrita, anguste, solida, badia? (alba fere modique inerusta) anfi. \%, comersis, carinatis et costatis; costis $S 9$ latis, rotumetetis, eleratis ; carinis $\leadsto-3$, (ult anfr. 7-8) supra cost. transemition; interstitiis spiraliter subtillissime concinne striatis; upertura $\frac{1}{4}$ long. testce, angusta; labro extus varicoso, marginem vessus acuin; simu omnino postico, comspicuo. Long. 7, lat. 3 mil.

Shell small, fusiformly turretted, narrow, solid brown? (almost always encrusted with white), whorls 7, convex, leeled and ribbed; ribs 8 to 9 broad, rounded raised; keels $2-3$ (in the last whorl 8-9 passing over the ribs; interstices, spirally very finely and neatly striate; aperture $\frac{1}{4}$ the length of the shell, narrow; outer lip varicose outside but acute towards the margin ; sinus entirely posterior and conspicuous. Blackman's Bay and N. Coast. W. F. Petterd.

No. 15. Drillia minuta. n.s. D.t. minuta, fusiforme turrita, elongata, temui, rufo-castanea saturata; anfi. 6, (apice incluso) convexis, spiraliter multi-carinatis, inter carin, tenuter crebre longitud. liratis; apice (3 anfi.) subinflato, spiraliter requaliter striato;

[^23]aportura quain spia broriore, elongato-otata, labro temi, simato; labio inconspicuo, canali brevi. Long. 3, lat. 1 mil.

Shell minute, fusiform, turretted, elongate, thin, saturated a reddish chestnut, whorls including the inpex G, convex, spirally many leecled, between the keels thickly and slenderly longitudinally lirate; apex of two subinflated whorls which are spirally and equally striate; aperture shorter than the spire, elongately ovate, outer lip thin sinuous, inner lip inconspicuous. Long Bay. Rev. H. D. Atkinson.

No. 16. Drillia weldiana. u.s. D.t. pyramidate-fusiforme, twrita, spinu quem apertura longiose, crasse, polite, late fulto annata et nebulust ; anfi. \quad, crebre oblique costetis et subtillissime cancellutis ; costis superme per simum depressis; apice acuto, apertura anguste orata; postice tuberculo allor conspicuo, insignito, labro extus valde inerussatu, labio reflero, canali brece, aento, columella retro obligue lirata. Long. 25, lat. 10 mil. North coast. W. F. Petterd. Only one specimen found.

Shell pyramidal, fusiform, turretted, spire longer than the aperture, thick, polished, broadly zoned and clouded with brown, whorls 7, closely, obliquely ribbed and very finely cancellate, ribs depressed above by the sinus, apex acute, aperture narrowly ovate and distinguished by a conspicuous posterior white tubercle, outer lip very much thickened outside; lip reflected, canal short, acute, columella obliquely lirate behind.

This somewhat large and peculiar Drillia is remotely allied to Pleurotoma fucata, Reeve, the habitat of which he does not give.

No. 17. Mlangelia st. gallee. n.s: M.t. partu, elongatofusiformi, turite, pullide fulva, elegunter albo fusciuta ; anfr. 9, convesis, superne ungulutis, regulariter long. costatis, costis elecatis, distantilues (ult. anf. 9); in spire bicarinatis, et lineis confertissimis sup. cost. transennt. concime unter carincs *piraliter striutis; anice levi (3 anfr.) rotumduto; apertura spira vie aquanti, orata, labro acuto, simu postico, luto; columella retro oblique striata. Long. 7, lat. $2 \frac{1}{2}$.

Tak? benedicti. Sine carinis, striis et fusciis albis irregulariter cincta brevior et solidior.

Shell small, elongately fisiform, turreited, pale fulvous, elegantly banded with white; whorls 9 , convex, angular above, regularly ribbed lengthwise, with mised distant ribs, 9 in last whorl; bicarinate in the spire, and spirally striate between the leels, with very close, neat lines, which pass over the ribs; apex smooth and rounded, of 3 whorls, aperture searcely equallines the spire, ovate, lip acuto with a posterior lirand siuus, columella obiciunly striate behind. ITariey ? IT. bencedicti, withont liesls, but imuzalary Giruled with strice and whitc bands. Long Bay, Rev. II. D. Atkinson ; N.W. Coast, W. F. Petterd.

No. 18. Mancelia ne silesin. a.s. ML.t. parra, clongato-flusifumi twrita, albida, pallide lutea et irregularitur, albo et fulto ammata, solida ; anfi. mucleo inchusn $\boldsymbol{\tau}$, comerexis oblique eleganter crebre costutis et crebervime spiraliter liratis; costis in ult. unfi. 14, rotundatis subelevatis; liris parvis, distantib. subelevatis, regular. sup. cost. trans.; apice Z anfi. lesri, elmenato; sutura profindat aperturat $\frac{1}{3}$ long. teste, ovata, labro incrassato, intus conspicue dentato, sinu lato, conspicuo, postico: canali longiusento: colunella inconspicua, retro futto intensiore et crebre oblique lirata. Long. 7, lat. 3.

Shell small, elongately fusiform, turretted, whitish, pale yellow, and irregularly zoned, with white and fulvous, solid; whorls, iocluaing the nucleus 7, convex, elegantly thickly obliquely ribbed, and thickly spirally lirate; ribs in last whorl 14 , rounded, subelevate; liræ small, distant, subelevate, regular, passing over the ribs; apex of two whorls, smooth, elongate; suture deep; aperture $\frac{1}{3}$ length of shell, ovate, lip thickened, conspicuously dentate within; sinus broad, conspicuous, posterior; canal somewhat long; columella inconspicuous, a more intense fulvous behind, and thickly obliquely lirate. Long Bay, 5 fathoms, Rev. H. D. Atkinson. Obs. Distinguished by its stnuter habit, closer ribs, regular trans. verse liræ, and toothed outer lip. Two specimens, one a dead shell with the lire somerhat irregular. Also Islands, Bass Straits, Petterd.
No. 19. Daphnella tasmantea. n.s. D.t. parra, tumide orata, albida? tenui, opaca; anfr. 6, convexis, subangulatis, concinne carinatis, carinis parcis rotundatis, eleratis, ot liris regular. distant. parvis eleganter cancellatis; carinisult. anfi. altemantibus; sutura profunde impressa; apice olituso, cancellatu; apertura late orata; labro temui, postice profinde simuato; luhion inconspicu, columella longa, contorta, canali breviore. Long. 6, lat. 3.

Shell small, tumidly ovate, whitish, thin opaque, whorls 6 , convex, subangulate, neatly keeled, keels small, rounded, elevated; and elegrantly cancellate, with regular distant swall lire; keels in the last whorl alternating; suture deeply impressed, apex obtuse, cancellate, aperture widely ovate, labrum thin, deeply sinuated posteriorly; lip inconspicuous, columella long, twisted, canal somewhat short. Long Bay, Rev. H. D. Atkinson ; and Blackman's Bay, Petterd.
No. 20. Daphnella varix. n.s. D.t. ovata, utrimque attenuata, solidn, partim translucida, allua, rustanea pallidissime nelnelosa, polita; anfi. 6, concesis, in spira regular. costatis, costis numerosis, obliqquiis, nitentilnes; interstitiis regulur. et distent. striatis, striis latis sup. cost. non trans. ; ult. anfr. valde longiore, obsolete tantum costato sed valide striato; spira obtusa, apice depresso; apertura elongata, mata, utrimque acuta; labro incrassato, varicoso, extus pallidissime lutea postice inconspicue sinuato, columalla arcuata, antice attenuata. Long. 13, lat. 6. Long. aper. $7 \frac{1}{2}$, lat. 2. Long. ult. anf. 10.

Shell orate, attenuate each way, solid, partly translueent, white, clouded with very pale chesnut, polished; whorls 6 , convex, regularly ribbed in the spire, ribs numerous, oblique, shiuing; interstices regularly and distantly striate, strix broad, not passing over the ribs; last whorl much longer than the others, only obsoletely ribbed, but validly striate, spire obtuse, apex depressed, aperture elongate, ovate, acute each way; labrum thickened, varicose, very pale yellow outside, sinus posterior, inconspicuous, columella arcuate, attenuate, anteriorly. Tamar Heads, R. M. Johnston. Obs. A single specimen somewhat worn. Much the appearance of a Marginella seen from behind.
No. 21. Siphovalia castanea. u.s. S.t. parra, elongato fusijummi, turvita, luri, nitente, castunca suturata et ohscure badia zonata; anfr. 7 , convexis, declivis, conspicue costatis (ult. anfr. $\tilde{\text { r }}$) costis altis, latis, medion comeris, len cibus, in spir. cont tmuis tincis subobliquiis; sutura impressa; apertura $\frac{1}{3}$ long. tester; labro simplici, canali brevi obliquo, labio retteso, columella antive canaliculata. Long. 11, lat. 4.

Shell small, elongately fusiform, turretted, smooth, shining, saturated with chestnut colour, and obscurely zoned with brown; whorls 7, convex, sloping, conspicuuusly ribbed, ribs 7 in last whon, high, bruad, convex in the middle, smooth, continuous in a sub-oblique line along the spre; suture impressed ; aperture $\frac{1}{3}$ leugth of shell ; labrum simple ; canal short oblique; lip reflected ; columella anteriorly canaliculate. N.W. Coast, W. F. Petterd. Smaller, and more turretted than any of the four described Australian and Tasmanian species. Color, a uniform deep chestnut, on which the zone of brown is not easily seen.

No. 22. Siphonalia pulchra n.s. S. parra, subpellucida, allhida, nitente; fusiforme-turrita; anfr. \& superme obtuse curgulatis,
 stifies "quentil) et megnlariter livis cluthratis; liris purcis, ralidis ad sutur. parviorib., supra. cost. transeuntib; sutura bene impressa et Limas castaneal lata minata; apert. Inam spira bircimi, orata ; lahrotrmi, simplici ; columella comentar ; basi concara, iirata, castanea; cramali subbelongato, antice fulto tinato, apice sulingtato lecti. Long. 7, lat. $3 \frac{1}{2}$ mil.

Shell small, sulpellucid, whitish, shining, fusiformly turretted; whorls 8 , obtusely angular above, convex sloping, closely and elegantly ribbed; ribs in last whorl 18, equalling the interstices, and regularly latticed with liræ, lire small ralid, smaller at the sutures, passing over the ribs; suture well impressed, ornamented with a broad chestnut line; aperture shorter than the spire, ovate, outer lip thin, simple, ciumella twisted; base concave, lirate, chestnut; canal subelongate, anteriorly tinted fulvous brown, subinflated and
smooth. A very elegant species. Chappell Island, Bass Strait. Legrand.

No. 23. Cerithiopsis albosutura. n.s. C.t. elongata, myramidali, carinata, badia saturata, marginibus spirce phanatis, suturis impressiis, murginatis, et peculiuriter albo lineatis, quasi lanugeris; anjuce. 9; mel! (recollatis) radiatim creberiméliratis; liris minutis, inter carinulis tantum et supra non transeuntibus; carinis tribus, spiralibus, levihus, rotumlatis, hand estantibus, supra panto pullidioribus, interstitiis erqualibus, concocis; busi vix concaca, radiatim et undulatim sulcata; columella recta, spisceliter retro plicata; ceanali brevi, "perto; labro tenui, trmiter undulato. Long. 12, lat. $2 \frac{1}{2}$ mil. Islands in Bass' Straits. W. F. Petterd.

There is a tricarinate dark brown species of this genus in the West Indies, C. terebellum, C. B. Adams ; and one from the Mediterranean, C. trilineatum, Phil., which resemble the above very closely. Considering what we have learnt from deep sea dredging as to the wide range of species, these three may possibly be the same. C. trilineatum is a little swollen on the spire. The special peculiarity of this species is the white suture which is more like a white cottony iucrustation than a coloring of the substance of the shell, and this appearance occurs at intervals in the interstices between the keels.
No. 24. Turritella tasmanica. n.s. T.t. parva, acuminato turrita, alba tenui; anfr. 11, angulatis, carinatis et subtillissime valde sinuosostriatis; carinis procipuis, 2, sed pervioribus instructis ; interstitiis striis spiralibus, temaibus requidistentibus cinctis ; basi convexa, spiraliter lirata, apertura quadrata; columella alba, encausta. bene definita. Long. 13. lat. 4 , mil.

Shell small, acuminate, turretted, white thin; whorls 11, angulate and keeled, and with very fine widely sinuated strix ; principal keels 2, but furni hed with smaller ones, the interstices girdled with fine equidistant spiral striæ; base convex, spirally lirate, aperture quadrate, columella white, enamelled, and well-defined. Long Bay, Rev. H. D. Atkinson. Obs. Differing from T. sinuata, Reeve (Icon. pl. II. fig. 62), in the whorls and prominent leels besides being smaller and destitute of color. I suppose that the mouth is sinuous from the strix, but no specimen with a perfect labrum has been seen by me.

No. 25. Dentalium tasmaniensis. n.s. D.t. parva, solida, alba. gracile, lente crescenti, vix curvata, cequaliter 8 costata, interstitiis aliquando subcostatis, apice integro. Long. 101 $\frac{1}{2}$, lat. $1 \frac{1}{2}$. Lat. apicis $\frac{1}{2}$ mil. North West coast. W. F. Petterd.

This is a gracefully tapering shell, curved slightly, with valid ribs and often smaller ones in the interstices.

No. 26. Dentalium weldlaja. n.s. D.t. parva, subeylindrica, nitente, albilda, subpelluciota, ixix curvatr, obsolete requaliter costata, apice integro. Long. 10 (decoll), lat. $1 \frac{1}{2}$. Lat. apicis 1. North Coast. W. F. Petterd.

An almost cylindrical shell, sulb-pellucid and shining with obsolete ribs.
No. 27. Piaslanella puleitllea. n.s. P.t. mimuta, tumide orata, aperura quam spira longiore, lavi, nitente, polita, intense olivacea, lineis temuibus, distantibus, regulurib. maculatis cincta, et flamulis latis albis, castanca nebulosis: a suturis procedentibus ornute; apertura late oveta, labro temu; columella alba, conspicue linea oliveces, muculata, marginate:
 coneexo. Long. $3 \frac{1}{2}$, lat. 2 mil.

Shell minute, tumidly ovate, apertare longer than the spire, smooth, shining, polished, intense ulive with girdles of fine regular distant spottect white lines, and ormamented with broad flames of clouded chestant proceeding from the sutures, aperture broadly ovate, lip thin, columella white conspicuously margined with a spotted olive line; base convex with punctate lines; operculum bluish white, swrooth shining and tumidly conver outside. Lones Bay, 3 fathoms, sand. Rev. H. D. Atkinson. Two specimeus of this elegant species were found, in both of which the operculum was in situ. The coloring was constant, hut in all the genus this varies almost infinitely. There is a small species described by Augas, P. rosea, which is rose red. Still, the above may possibly be a variety.

I'urbo (ninella) straminea. Mertyn. A small variety of this shell was found by Mr. Gunn on the N. Coast. As the species is known to vary very much, and is thus identified with T. torquatus, Gmel. and T. lumellosus, Brod, I may mention that Tasmanian specimens are small, and vary from all the above types. There is a strong romded leel on the lower whorls which are hack spotted; the mouth is slightly angular at the keels, the summit of the whorl tuberenlate and the suture channellerl. Diam. 20 Alt. 17, mil. The operculum has two spiral ridges, not unlike the convolutions of the human ear.
No. 28. Turbo (Lunelli) Stisisoni. n.s. T'.t. parea, turbinated, solidiuscula, anguste umbilicata, superne demessa, basi convexa, olivacea, strigis nigris rupisque numerosis ructictim curieyata; anfi. 4, al suturus conspicue fimbriatis, transversim tenuissime confertissimeque striatis ; unjr. ult. medio late planato, carinato, superne fimiviato, al peripheriam acute angulato ; apertura rotundata, feuse urgenten, margaritacea, lubio acuto, trianguluto, anguste cerceuleo mury:inato: columelle ulbe, planata, et subtuberculata, antice acuta ; operculo calcareo, allo interne planato et reguluriler, multispirale, extus ralde convexo in medio, margine planato. Long. 9, lat. 12 mil.

This shell is closely allied to our T. indulatus, Chem., but is much smaller, and has hitherto been confounded with it. Its stmallee size, the red and black flammules, and the pecnliar raisel roumded carina on the upper edge of the last whorl which continmes round the suture as a kind of hem, casily distinguish it. If I mistalic not I have found it myself in

Robe., South Australia, and then imagined it to be the young of T. undulatus. I am now of opinion it is a full grown shell from specimens brought to me by my industrious friend and collector, Augustus Simson, to whom I have dedicated it. Common at George's Bay Heads, A. Simson ; and Blackman's Bay, W. F. Petterd.
No.29. Carinidea tasmanica, n.s. U.t. parva, orbiculata, valde depressa, anguste, umbilicata, tenui, sordide virente, aliquando albida nitente sed seppius rosea incrusta ; anfr. 5, obsolete oblique costatis et striatis, ad periph. conspicue carinatis, carina acuta, undulosa, irregulariter dentata; apert. circulari, fauce margaritacea, labio medio acute simuato, labro arcuato conspicue ieftero, umbilioo pretim obtegente, bani concera tuberculis obsolete ornata. Operculo calcareo, extus spirale albo mucleo castaneo; ult. anfi. convexo incrassato. Mag. diam. 8, min. 7, alt. 4.

Shell sma'l, orbicular greatly depressed, narrowly umbilicate, thin, sordidly green, sometimes whitish shining, but often encrusted with a rose coloured nullipore, whorls five obsoletely obliquely ribbed and striate, conspicuously keeled at the periphery, keel acute, uudulose, irregularly toothed, aperture circular, throat pearly, lip acutely sinuate in the middle, inner lip arcuate, conspicuously reflected, partly covering the umbilicus, base convex ornamented with obsolete tubercles, operculum calcareous, spiral outside white, with a chestnut nucleus, and the last whorl convex and thickened. Common on the east and south coasts, and probably South Australia. I have always hitherto regarded this as a young variety of Trochus aureus, Jonas (Labio), but the form is so constant and so very distinct that I have decided on describing it a distinct shell. Careful observations on its growth can alone settle its position finally. The operculum is nearly always in situ.
No. 30. Gibbula multicarinata. n.s. G.t. parra, orbiculata, subrepressa, solidu, nitente, pallide castanea, fulro punctata et nebulosa; anfr. 4, carinatis et livatis, (carinis in ult. anfr. 4); interstities liratis; carina ad peripheriam majuscula; al suturam granosa et regulariter fulbo punctata ; apice albo, levi ; basi convexa, subdistanter lirata ; umbilico spivaliter striato, albo marginato ; apertura subquadrata ; labro producto, tenui; columella crassiuscula, obsolete tuberculata. Maj. diam. 8, min. 6, alt. $5 \frac{1}{2}$ mil.

A small orbicular, depressed solid shell, shining and pale chestnut in cooour, but more or less spotted and clouded with brown; whorls four, liceled and lirate (four keels in the last whorl) ; interstices lirate; keel at the periphery somewhat larger; granular and regularly brown spotted at the suture; apex white, smooth; base convex, rather distantly lirate; umbilicus spirally striate with a white margin; aperture subquadrate; outer lip produced, thin; columella rather thick and obsoletely tuberculate. N. W. Coast. R. Gunn. Differing

143

from G. coxi, in its smaller size, smooth shining habit and colcur.

No. 31. Gibbula molorosa. n.s. G.t. parva, turbinato-conoidea, solida, lirata, subnitente, atro-purpurea, apice margaritace, rosea; anfr: 4-5, convexiusculis, livis latis, rotundatis, uqualibus cinctis, et transversim oblique obsolete, striis incrementi decussatis ; basi convexa, lirata, purpurea; umbilico angusto, perpendiculariter striato ; apertura rotumlata, splendidé iridescenti ; intus lirata; columella marginata. Diam. maj. et alt. 7.

A somewhat tumidly conical small solid shell, umbilicate and lirate, specially distinguished lyy its blackish purple hue, while the apex is pearly and rose colour. The mouth is splendidly irideseent, and the columella is marginate. Bass' Straits. W. H. Petterd. Rare.

No. 32. Gibbula weldif. n.s. G.t. parta, demesso-turbinata, carinata, sub-late umbilicata, solida, nitente, albida, lineis obliquis tenuibus et maculis fulvis eleganter ornata; anfi: 5, quadratis, superne et infra carinatis, carinis rotundatis, clevatis, maculis fulvis conspienis, undique (carinis exceptis et ult. anf. inter carinas) livatis' "apice obtuso basi planata, striata, lineis roseis radiata; apertura rotundata, peristoma continua incrassata; columella arcuata, conspicua, umbilico marginato, margine alla, et intus liris spiralibus et aqualibus insignito. Long. 7, lat. 61, alt. 6.

A small depressedly turbinate shell, white shining and porcellanons, keeled and lirate throughout except on the lieels and on the last whorl between them. It is prettily marked with brown spots on the keels and fine diagonal lines of the same colour on the whoils; on the base, which is lirate, it is radiately marked with fine rose lines. The umbilicus is white margined and spirally lirate. Rare. Bass' Straits. R. C. Gunn.

This shell may turn out to we G. porcellane. A. Adams, Zool. Proc. 1851, p. 186, sp. 28, but I had no specimens of the latter for comparison.
No. 33. Margarita (minolla) tasmamica. A.f. orbiculato turbinata
 maculis roseis, minimis, anyulatis indistincte cincta ; anfr. 5 rotundatis, rapide crescentibus, creberrime temuissimeque transcersim sulcatis, et long. oblique striatis; ; apice subecserto, acuto ; periphericu obtuse angulata ; basi conrexiuscula, striata; umbilico simplici, peramplo, spira ad apicem pratefaciente ; "pertura rotundata; peristoma via continuct tenui. Maj. diam. 9, min. 8, alt. 5.

Shell orbicularly turbinate, widely and perspectively umlilicate, clouded with pale red and white, and indistinctly zoned with small pale angular rose spots; whorls 5, rounded, rapidly increasins, thickly and finely spirally grooved, and transversely obliquely striate ; apex somewhat exserted and acute, periphery obtusely angulate; base rather convex, striate, umbilicus simple, ample, showing the interior of the spire so the apex, aperture rounded, peristome thin and not quite con-
tinuous. Bass' Straits, R. Gunn. Long Bay, Rev. H. D. Atkinson Not common.

There is a shell somewhat like this in Dr. Cox's collection marked MI. pulcherrima, but without any reference. It differs from M. tusmanica by the raised liræ being connected by innumerable fine close transverse riblets. It comes nearest to the New South Wales MI. angulata, Adams, of which it may possibly be only a variety, but the upper part of the whorls are not angular. Color cannot be relied on as it is very variable in the genus.

No. 34. Clanculus dominicana. n.s. C.t. parva, depressa turbinata, late umbilicata, solidiuscula, atro-badia obscure maculata et nebulosa; anfr. 6, convexiusculis, 5 carinis granosis cinctis, interstitiis liratis, oblique crebre concinne striatis, striis supra liras (non gran.) transeuntib. ; apertura oblique quadrata; labro intus incrassato, fauce margaritacea, columella obsolete midentato, suhb-riflero; umbilico allo, liexi ; basi planuta, spiral. liratce, liris lavibus. Maj. diam. 10 , min. 8 , alt. $7 \frac{1}{2}$ mil.

Shell small, depressed, turbinate, broadly umbilicate, rather solid, bluish brown and obscurely spotted and clouded; whorls 6 , rather convex, obliquely, thickly, and neatly striate, striæ passing over the liræ but not over the granules, aperture obliquely quadrate, lip thickened within, throat pearly, columella obsoletely unidentate subreflected, umbilicus white, smooth; base flattened spirally and smoothly lirate. South coast. Rare. W. F. Petterd. Differs from known species in the smoothly lirate lase and the absence of tubercles round the lip, columelia or umbilicus.

No. 35. Clancules raphaeli. n.s. C.t. parra, clepresso conica, solidiuscula, atro-olivacea, ad suturas autem albo tessellata; anfr. 4-5, planatis, liris spiralibus, irregularibus, granulosis cinctis, aliquando alternantibus, aliquanclo lineis granulosis, minutissimis, intercalantibus: granis in margin. anfr. majoribus; undique lineis obliquiis transtersalibus instrictis; ult. anfir. ad peripheriam sub acute angulato; sutura canaliculata; basi planata, lineis granulosis spiralibus et striis obliquiis ornate, umbilico albo; apertura quadrata, argentect, margaritaceu, conspicue lirata, columella lata, antice conspicue tuberculato, labro dentato. Maj. diam. 6, min. $5 \frac{1}{2}$, alt. 6 .

Shell small, depressedly conical, rather solid, blackish olive but tessellated with white at the sutures; whorls 4-5 flattened, girdled with irregular spiral granulose liræ, sometimes alternating and sometimes with minute granulose lines intervening; granules larger at the margins; shell universally covered with minute transerse oblique lines, last whorl sub-acutely angular at the periphery; suture canaliculate, base flattened ornamented with spiral granulose lines and oblique strix. George's Bay, Simson; and Long Bay, W. F. Petterd.

[^24]punctatis; carinis majoribus lucilus rel olsolete aranosis ; unfr. \bar{j}, convexis, ult. obtuse angulato, busi phence wh hiter conmert, simal. lirata,
 apertura subqualratu, lution cration dentuto, fatues intus conspricue lirata; columella obituse unidentutu, murisime mubilici resuluriter tuberculato tuberculis, granosis rotundatis. Maj. diam. 6 min . 5. $_{2}^{1}$. Alt. 5 mil .

Shell small, turbinate, depressed, orbicular, rather solid, sordid white and clouded red, irregularly keeled all over, with the interstices finely, irregularly, neatly, obliquely lirate, and peculiarly punctate; larger licels smooth or obsoletely granular ; whorls 5, convex, last obtusely angular ; base flat or slightly convex, and spirally lirate with equal lire and spotted brown, interstices transversely neatly striate; aperture subquadrate, lip closely dentate, throat conspicuously lirate, columella obtusely unidentate, margin of the umbilicus regularly turberculate with rounded granular tubercles. Long Bay, 10 fathoms, sand, Rev. H. D. Atkinson ; Blackman's Bay, W. F. Petterd.

No. 37. Diloma atstralis. n.s. D.t. oblique turbinata, subconica, ad peripheriam obtuse anyulata, pallide lutea et lineis pallide fulvis, numerosis, undulose obliquis varieyata, subnitente, anguste umbilicata; anjr: 6, vix convexis, obsolete liratis, "pertura oblique quadrata; jauce argentea, maryaritacea; labro intus incrassato, margine lato conspicuo, postire producto; columellu oblique arcuata, haud tuberculata; basi tantillum convexa, tenuiter ct regulariter spiraliter lirata; umbilico albo, radiatim striato. Diam, maj. $16, \mathrm{~min} .14$, alt. 13.

Shell obliquely conical and turbinate, obtusely angled at the periphery, pale yellow and variegated with numerous pale brown undulating and oblique lines, somewhat shining, narrowly umbilicate; whorls 6 , scarcely convex, obsoletely lirate; aperture obliquely quadrate; throat silvery and pearly; lip thickened within with a broad conspicuous margin posteriorly produced; columella ob liquely arcuate, not tuberculate ; base very slightly convex, finely and regularly spirally lirate; umbilicus white, radiately striate. North Coast. Rare. W. H. Petterd.

I think this shell has been eonfounded with Trochocochlea striolatus, Wood. It is only doubtfully referred to Diloma as it has an umbilicus. But the gen us itself is a very questionable one.

No. 35. Monilea terbinata. n.s. M.t. tw-binato-conoidea, ad apicem usque perspective umbilicatn, carnea-alhila, strigis et maculis pallide fuscis n+hulow ; anjr. E, rotumhtis, snperne obtuse angulatis et subcanaliculatis, syiraliter sulcatis, et liris mume rosis (12 circiter) maj. ot min. alternantibus, cinculatis; sutura impressa ; apice ohiuso, iridescente; ult. anfr. ad priphurriam anyulato; basi convesa, lirata et temiter, spiraliter transversim striala; apertura trensere rap orata; lation inerussato, margutitacea, intus lirato; columella brevi. de elivi-ermeriva; murgine umpilicitricostato, 4 tuberculis terminato. Long. 18, lat. 20, alt. mil.

Shell turbinately conical, perspectively umbilicate to the
apex, fleshy whitish, clouded with pale brown spots and streaks, whorls 6 , rounded, obtusely angulate and subcanaliculate above, spirally sulcate, and girdled with numerous (about 12) liræ alternating great and small ; suture impressed ; apex obtuse and pearly; last whorl angulate at the periphery; base convex, lirate and transversely slenderly, spirally striate; aperture transversely ovate; lip thickened and nacreus, lirate within; columella short, sloping, concave; umbilical margin 3 costate, terminated with four tubercles.

North Coast. R. C. Gunn. Closely allied to Monilea corrugata of New South Wales, but more conical, the whorls not granular, umbilicus wider and terminating in four tubercles. Rare.
No. 39. Ethalia tasmanica. n.s. T.t. orbiculari, depressa, umbilicata conspicue radiatim costata, lirata, alba, sparsim rufo punctata; anf. 5, declivi-costatis, costis latis, rotundatis levibus; ultimo obtusé ad peripheriam enyulato, superne δ-costato, interstitiis latis, concavis, transversim liratis, liris $4-5$ rufo punctatis ; basi valde convexa, spiraliter lirata, liris 5, leevibus; callositate opaca, alba, polita, coarctata, circa umbilicum parvum gyrante; apertura rotundata, intus lirato ; labro postice supra peripheriam expanso et subcalloso; columella concava dente acuto terminata; apice rotundato, levi, polita, convexo. Maj. diam. 121 $\frac{1}{2}, \min .10$, alt. $7 \frac{1}{2}$.

This is the only shell of this genus found in the Australian seas. Mr. Gunn assured me that he found it on the north coast, or I certainly should have thought a mistake had been made. In the Mazatlan catalogue of the Brit. Mus., p. 250, Mr. Phil. Carpenter says :-" Ethatia is a small group of Mazatlan shells of the general aspect of Vitrinelle, and agreeing with Globulus in having a callous base differing from the typical sp. of that genus: 1st. In being frequently sculptured; 2 nd. In the callus winding round generally not covering the umbilicus; 3. In the outside of the callus not being glossy, but having a glossy portion scooped out near the columella. The labium is generally not reflected over the body whorl. Some of the small white shells described as Rotella are probably referable to this form. Mr. Cuming states that the species he found were deep water shells, while Globulus is littoral.
No. 40 Adeorbis picta. n.s. A.t. orbiculari, subdepressa, profundé perspective umbilicata, longitud. temuiter striata, polita, pallidé carnea, lineis 4, parvis, rufo et clbo maculatis tenuiter zonata, et nebulis magnis irregularibus, sanguineis varicgata ; anfr. 5, superne obtuso angulatis, planatis, subcanaliculatis; basi rotunclata, subtillissime striata, rufo et albo punctata; apertura rotundata ; peristoma supra peripheriam ultimi anfractus rakle expansa, callositate ad columellam supra ad labrum continuata; columella antice bituberculata; fauce intus lirato. Long. 8, lat. 13, mil.

From the collection of R. C. Gunn, and stated to come from the N.W. Coast, but so unlike a Tasmanian shell that this unique specimen suggests a doubt as to the habitat. Its
red smonth shining appearance renders it extremely like a Rotella, but it has an umbilicus.

No, 41. ('robostama joserm. C.t. paria, oblique turbinata, crassa, late umbilieutu, ullut, opucte, pullinlissime castuncu maculata; anfr. 5, rotundatis, creberrime concinne striatis; sutura impressa, apertura orbieulata, lubro cruesso, postiee podurto, columella obliqua, basi rotunda, umbilico oblique striato. Long. 3, lat. 3, mil.

Shell small, obliquely turbinate, thick, widely umbilicate, white, oparue, spotted with very pale chestnut; whorls 5 , rounded, very closely and neatly striate, suture impressed, aperture orbiculate, lip thick, produced posteriorly, columella oblique, base round, umbilicus obliquely striate. Blackman's Bay. W. F. Petterd.

No. 42. Cyclostrema micra. n.s. C.t. minuta, turbinata, alba,
 simplici, orbiculatu, ucuta, hourl reftra. Diam. 1! mil., Long Bay. Rev. H. D. Atkinson.

Shell minute, turbinate, white, polished, smooth, perspectively umbilicate, whorls 5 , exactly rounded, aperture simple, orbiculate, acute, not reflected.

No. 43. Cyclosthema weldif. n.s. C.t. depresio-turbinata, minima, albila, suldrliephicuna, tenui ; nitente, umbilicato ; anfrac. 6, depressis, comrexis, luevibus; apertura, orbirulatu, postice suberersta; umbilico marginato. Diam. mag. 2, alt. 2 mil.

Shell depressed turbinate, minute, whitish, somewhat translucent, thin, shining, umbilicate; whorls 6, depressed convex, smooth (though there are faint traces of transverse strix, probably lines of growth) : aperture orbicular, somewhat everted posteriorly, umbilicus marginate. Long Bay, 20 fathoms. Rev. H. D. Atkinson.
No. 44. Cyclostrema susonis. n.s. C.t. minuta, orbiculari, depressa, alba, polita; anfi. 4, rotundatis; spira parum exserta, translucente ; "pperturca simplici, orbiculate, umbilico amplo, haud marginato. Diam. $1 \frac{1}{2}$ mil.

Shell minute, orbicular, depressed, white, polished, whorls 4, rounded, spire slightly exserted, translucent, aperture simple, orbicular, umbilicus ample, not marginate. N. Coast, R. Gunn ; and Blackman's Bay, W. F. Petterd. Obs. Minute, much smaller than the preceding, with fewer whorls, and perfectly devoid of ornament.

No. 45. Cyclostreanh spinoss. n.s. C'.t. minutat discoidea, superne jlanater vel conerara, ullin, umlique obsolete radiatim striata; anfr. 4, superne urute unyulatis, fimlriatis el spinis coronatis; infra rotundatis et conspicur unicarinatis. ; spinis triangulatis, lemellosis, concavis ; umbilico pramplo ; apertura rotnuduta postice conspicue sinuata. Diam. 2 to 3 mil.

A minute shell, flattened above and unicarinate beneath, easily distinguished by its crown of hollow triangular spines,
one of which occurring on the lip causes a deep sinus in the aperture. Long Bay. W. F. Pettėd.

No. 46. Cyclostrema immaculata. n.s. C.t. parca, discoidea, superne planata, alba, undique confertim tenuissime undulose striata; anfr. 4, superne angulatis coronatis et rudiutim costatis, infra rotundatis, 2 carinis obsoletis gramulosis instructis; umbilico peramplo, margine eleganter dentato ; apertura orbiculari, dentata. Diam. 3 mil.

Shell small, discoid, flattened above, white, thickly, very finely undulately striate all over; whorls 4, angular above, coronate and radiately ribbed, rounded below, and furnished with two rounded obsolete granular keels, umbilicus very ample, with an elegantly dentate margin; aperture orbicular, toothed. Long Bay and Blackman's Bay. W. F. Petterd.

No. 47. Liotla incerta. n.s. L.t. minuta discoidea depressa, spira omnino plana, tenui, opaca, undique regulariter et tenuiter spiraliter lirata, profunde, late, perspective umbilicata; anfr. 4, biangulatis, regulariter et distanter costatis; costis elfatis, sublamellosis et cucullatis; liris supra cost. transeunt. ; apertura tenui, integra, haud incrassata; basi convexa. Diam. 5 mil . N.B.-Margaritecea, costis cetate divisis, et rarius spinosis, numerosis.

Shell minute, discoid, depressed, spire quite flattened, thin, opaque, regularly and finely lirate all over, deeply, widely, perspeetively umbilicate ; whorls 4, biangulate, regularly and distantly ribbed, ribs raised, sublamellose, and, as it were, hooded; liræ passing over the ribs, aperture thin, entire, not thickened, base convex. Long Bay. Rev. H. D. Atkinson. Obs. The transverse ribs divide in this shell as it grows older, and sometimes are even covered with numerous spines. It is also nacreous, which makes its generic position very doubtful, especially as the mouth is not thickened. I only provisionally class it as a Liotia.

No. 48. Fossardes tasmanicus. n.s. F.t. parva, depressa, sub. orbiculata, anguste umbilicata, solidiuscula, pallide lutea, carinis spiralibus et liris obliquiis undique conspicue clathrata; carinis elevatis, rotundatis; liris, sublamellosis regularibus, subdistantibus; anfr. 5 angulatis, inter carin. quasi canaliculatis; sutura canaliculata; apertura orbiculata, intus lavi; labio vix reflexo. Diam, 2 mil.

Shell small, depressed suborbiculate, narrowly umbilicate, rather solid, pale yellow, latticed all over with spiral keels and oblique liræ, keels raised, rounded, liræ sublammellose regular, subdistant; whorls 5, angular, canaliculate between the keels, suture canaliculate, aperture orbicular, smooth within, lip scarcely reflected. Long Bay, Rev. H. D. Atkinson; Blackman's Bay, W. F. Petterd. This shell has characters intermediate between the genera Euchelus and Vanikoro, but I think belongs more completely to the genus in which I have placed it.

No. 49. Fossapus bulimoides. n.s. F.t. minuta, orata, subumbilicata, tenui, alba, subpellucida, undique tenuiter regulariter lirata, transver.
oblique striata: apice obluso; anfi. 4, rapile crescentibus, convexis, declivibus: apmrtura spirce aqmanti, orata, postice ungusta, labro acuto, labio incrassato, conspicuo. Long. 3, lat. 2 mil.

Shell minute, orate, subumbilicate, thin white, subpellucid, finely and regularly lirate all over and obliquely transversely striate ; apex obtuse; whorls 4, rapidly enlarging, convex, sloping; aperture equalling the spire, ovate, narrowed posteriorly, outer lip acute, inner lip thickened, conspicuous. Long Bay, Rev. H. D. Atkinsón.

No. 50. Scissurella atkinsoni. n.s. S.t. parva, temui, pallide lutea vix translucida, hurul nitente, ohlique suborbiculari, ad basim dilatata, spira minus caserta vell aliquantulum complanata; anff. 4, vix, convexis, rapidé crescentibus, superné fasciatis, temuiter cancellatis, basim versus subcarinatis (liris longitud. sub fasc. declivis, supra curvatis); simu inconspicuo, fascia sinus prominente, marginibus elevatis, longitrorsum distanter. arcuatim retrorsimque liratis; jissura elongata, antice attenuata non longe ab ore perforante; apertura orbiculari simplici; labro acuto; labio subreflexo, curvato; infima facie cavum infundibulifor. ferente. Long. 2, lat. 1 mil.

This most interesting shell is the first of the genus found in Australian waters. It was dredged from a sandy bottom at six to ten fathoms by the Rev. H. D. Atkinson, and Blackman's Bay, W. F. Petterd. After a careful comparison, I must say that the species is so near the British S. crispata that the differences are almost inappreciable. There were only three specimens seen by me, and in all these the slit was closed, and the sinus not perceptible on the lip. The fascia of the sinus does not extend to the two last whorls of the spire. Prof. Morris in his observations on this genus (Moll. Great Oolite, Palæontograph Soc., 1854, p. 81), accounts for the foramen by supposing the animal to keep the siphon stationary during a considerable period of the formation of the shell matter in adrance. He says: "When the animal was forming new shell in advance of the aperture, the fissure was not advanced forward with it, but the anal syphon remained in the same position until a considerable progress had been made in the formation of new shell. At length that organ was withdrawn to be protruded from the aper ure and the formation of a new fissure immediately commenced." In this state it shows that the genus Trochotoma would be a Pleurotomaria. Both genera have been rather arbitrarily separated from Scissurella and from each other. In the three specimens submitted to me one had the outer lip broken, and the fissure then was like a Pleurotomaria. I separate the Tasmanian species from the British one only to promote further investigation. There is no difficulty in supposing them identical, as we have other instances of British species appearing in Australian seas, while they are utterly unknown in intermediate seas. In the same way in our flora we have
many European weeds which do not occur in the intervening countries, and they have for a certainty not been introduced. A Pleurotomaria has been described fossil by Prof. M•Coy as from the tertiary beds of Geelong.

No. 51. Parthenia tasmanica. n.s. P.t. minuta tumide pyramidali alba, subumbilicata; vertice mucleoso parvo, verticaliter sito, sub-tumente, anfr. 6, conspicue tricarinatis, planutis, et longitud. tenuissime striatis; carinis elevatis rotundatis; suturis junctione, 3 carin. pcene occultis ideoque carinis infra et supra suturas quasi ex una carina lata confectis; basi vix convexa, lirata; apertura pyriformi, integra, labio reflexo. axi plica distincte munita. Long. $1 \frac{1}{2}$, lat. vix $\frac{1}{2}$ mil.

A minute tricarinate shell, dredged in Long Bay by the Rev. H. D. Atkinson. The upper and lower keels of each whorl are so closely united as to appear like one broad one in which the suture is concealed, the mouth is entire, the inner lip reflexed and furnished with a very distinct tooth.

No. 52. Aclis tristriata. n.s. A.t. parva, elongata, myramidali, turritissima, alba, opaca, lavi, vix nitente; anfi. 12, conspicue tri-striatis, striis latis; medio tenuissime concinne lony. liratis; sutura impressa, lira parva instructa; nucleo, minuto, lavi; basi convera; apertura integra pyriformi, postice attemuata, labro tenui, labio reflexo. Long. 10, lat. 2, mil. North West Coast. W. F. Petterd.

Shell small, elongate, pyramidal, very much turretted, white, opaque, smooth, scarcely shining; whorls 12 , conspicuously tristriate with broad strix, slenderly and neatly longitudinally lirate in the middle of the whorls, suture impressed, furnished with a small raised line; nucleus minute, smooth; base convex, aperture entire, pyriform, attenuate posteriorly, outer lip thin, inner lip reflected.

No. 53. Syrnola michaeli. n.s. S.t. parva, aciculata, turritissima, lavi, nitente, alba, B fasciis castancis varie intermptis pallidissime zonata; anfr. 12, planatis; apice? (decoll.' apertura semilunata; labro tenui, producto; labio reflexo, umbilico simulante, plica tuberculoso. Long. 8, lat. 2 mil.

Shell small, acicular, highly turretted, smooth, shining, white, zoned with two variously interrupted very pale chestnut bands; whorls 12, flattened; apex? decollated, aperture semilunate, outer lip thin, produced, lip reflected into a false umbilicus, plait tuberculose. Ncrth Coast. W. F. Petterd.

No. 54. Elusa bifasciata. n.s. E.t. subulata, turrita, tenui, sub. pellucida, alba, castanea late zonata, zona 2 lineis fulvis marginata, sutura impressa, apice levvi, rotundato; anfr. 12, convexis, creberrime costatis (ult. anfr. .26), costis validis rotundatis, leevibus, nitentibus, interstitios aqualibus, intus in spira videtur temiter lirata; apertura integra, pyriformi, labio reflexo, obsolete plicato, labro antice tantillum producto, intus lovev, basi convexa, striata. Long. 7, lat. 11 $\frac{1}{2}$. Blackman's Bay. Rare. W. F. Petterd.

The genus Elusa was established by Adams for turretted subulate shells with ribs, a plait on the columella and often lirate within. In this species the three last whorls are not
lirate within but the upper ones are conspicuously so, as the shell is quite trauslucent. It is very elegant in form. The band of color bordered by two darker lines is only seen on the last whorl; the suture covers the line on the spire so that there the whorls seem half white and half chestnut with a line of deep coloring on the boundary. It is shining, and the ribs are numerous, 26 in last whorl.

No. 55 . Turbonilla malleayana. n.s. T.t. elongatissima, turritissima, solidiuscula, alba, nitente; anfr. 15, planatis, oblique costatis; costis (11-14 in ult. anfr.) lepribus, elevatis, rotundatis, a sutura ad suturamattingentibus, interstitiis. aquantibus, sutura sat impressa, apertura quadrata, apice? (decoll.) Long. 8, lat. 1 mill.

Sheil very long and turretted, rather solid, white, shining, whorls 15 , flattened, obliquely ribbed, ribs (11-14 in the last whorl) smooth, raised, rounded, reaching from suture to suture, equalling the intervals in size, suture well impressed, aperture quadrate, apex? (decollated). Long Bay. W. F. Petterd. Easily distinguished by its small size and turretted habit. It appears to me, however, in shells of such uniform character as Turbonilla, that we are often dealing with varieties instead of species, and the above may be a case in point. If we knew the conditions of growth in these shells we might decide how far they are dependent on very local nfluences.
Cingulina australis. Nobis. (vide Pro. Roy. Soc. Tas., 1875.) Descriptio emendata. Pro. "carinis in ult. anfr. 5, deinde 4, 3 , etc." lege "carinis in ultimo anfrac. 5, deinde 3, usque aul apicem." Et pro "basi convexa liris spiralibus (2) elevatis, rotundatis, ornata "" lege " basi convexa, liris spiralibus, elevatis, rotundatis ornata ; apice levi subinflato."

In the description of the above shell a mistake was made. Instead of "keels in the last whorl 5, then 4, then 3:" It should be, "keels 5 in the last whorl, then 3 to the apex." The base is also spirally keeled in continuation of the 5 of the last whorl, and not, as stated, with two spiral rounded lirx. The apex is smooth.

Triforis tasmanica. Mihi. A variety of this shell is found at Blackman's Bay, in which one of the three granulose ribs is represented by a smooth narrow keel, and the last whorl scarcely granular, but with four or five grooves. The shell is very variable, new species should be very cautiously accepted.

[^25]rather tumid, polished, obsoletely striate, suture widely marginate and scarcely oblique, impressed; aperture pyriform, plait inconspicuous, oblique. Rare. Blackman's Bay. W. Legrand and W. F. Petterd.
No. 57. Stylifer tasmanica. n.s. S.t. parra, pyramidata, lacted, pellucida, lecvi, nitente; anfr. 7, convexis, sutura impressa, vix declivi, apertura oblique pyriforme, apice mammilato, sinistrorso, labro producto, incurvo, antice et postice emarginato, labio inconspicuo sed reflexo. Long. 4, lat. $1 \frac{1}{2}$.

Shell small, pyramidal, milky white pellucid smooth, shining; whorls 7, convex, suture impressed scarcely sloping, aperture obliquely pyriform, apex mammilated, sinistral, outer lip produced, incurved, emarginate at each side, inner lip inconspicuous but reflected. Blackman's Bay. W. F. Petterd.

Dunkeria fasciati. Mihi. (vide Proc. Roy. Soc. Tas., 1875) should be, I think, Alvania fasciata, in which sention are deposited turretted Rissoidee with tumid whorls. Even then I think the genus needs revision. In the species in question I should amend the diagnosis by saying that "bicarinate" hardly applies to more than the upper whorls, and otherwise the species is regularly and equally clathrated.
No. 5S. Rissoa (alvanla ?) cheilostona. n.s. R.t. turrita, parva, elongata undique regulariter clathrata, lutea, solida, vix nitente; apice pallidiore, sed non aliter conspicuo ; anfra. 7, convexis, regulariter crescentibus; suturc profunde impressa et tenuiter uno-lirata; apertura producta, orali, integra, conspicué bilabiato ; basi convexa, lirata. Long. 3, lat. I mil.

A minute turretted yellow shell, conspicuously latticed throughout, with a produced aperture which is bilabiate and entire. Dredged by Rev. H. D. Atkinson at Long Bay in 20 fathoms shell sand. The entire bilabiate mouth and turretted habit easily distinguish it from Rissoa (Alvania) fasciata.

No. 59. Rissoa agnewt. R.t. turbinato-turrita, solidiuscula, subdiaphana, nitente, varie lutea ac fulba nebulosa, apice turbinato, lavi; anfr. 6, (nucleo incluso), conspicue 4-carinatis; carinis validis, elevatis, angustis, levvibus, nitentibas ; interstitiis longitud. tenuissime striatis; apertura integra, ovata; labro producto; labio inconspicuo. Long. 3, lat. 1, mil. Blackman's Bay, W. Legrand, and W. F. Petterd.

Shell turbinately turretted, rather solid,translucent, shining, irregularly clouded yellow and brown ; apex turbinate, smooth, whorls 6 , nucleus included, conspicuously four keeled; keels valid, raised, narrow, smooth, shining; interstices very finely striate lengthways, aperture entire, ovate, outer lip produced, inner lip inconspicuous. Obs. Distinguished by its four keels.
No. 60. Rissoa cyclostoya. n.s. R.t. cylindraceo-elongata, pupceforme, subturvita, medio tumida, lervi, opaca, olivacea; apice obtuso, livido ; anfr. G, convexis, longitud. tenuiter striatis, ultim. anfr. producto; sutura linea alba marginata; aperturea alba, integra, producta, eversa; labio reflexio, udheerente, basi convexa. Long, 4, lat. $1 \frac{1}{2}$ mil.

Var rosea. R.c. ut supra sed rosea tincta.
Shell cylindrically elongate, pupeform, sub-turretted, tumid in the middle, smooth, opaque, olive, apex obtuse, livid; whorls 6 , convex, fincly striate lengthwise, last whorl produced; suture margined with a white line, aperture white, entire, produced, everted; lip reflected and adhering, base convex. Long Bay, Rev. H. D. Atkinson; Blackman's Bay, W. F. Petterd.

There is a rose coloured variety of this shell.
No. 61. Rissoa (setia) sienne. n.s. R.t. turbinato-conica, subumbilicata, opaca, sordida, corrosa, rel cpidermide induta, fumoso cornea; anfr. 5, convexis, striatis (?) apertura integra, semilunari, labro acuto, labio reflexo. Long. 4, lat. 3.

Shell turbinately conical, subumbilicate, opaque, sordid, corroded or clothed with an epidermis, smoky horn color; whorls 5 , convex, striate (?), aperture entire, semilunar, outer lip acute, inner lip reflected. North Coast, W. F. Petterd.
No. 62. Rissoa melanura. n.s. R.t. turbinata, conoided, solida, atra sed translucente rel retate intus alba, levi, nitente; anfr. 5, vix convexis, sutura impressa ; aperturca antice producta, rotundata, simplici, basi convexa, obtuse angulata. Long. 2, lat. 1 mil.

Shell turbinate, conoid, solid, blackish but translucent, or white within when old, smooth, shining; whorls 5 , scarcely convex, suture impressed, aperture anteriorly produced, rounded, simple, base convex, obtusely angulate. Blackman's Bay, W. F. Petterd.
No. 63, Rissoa (cingela) atiensoni. n.s. R.t. minuta, turbinatoconoilea, polita, translucida, pallide cornea, olscure fusco bifasciata, columella nigra, apice minutissima, turbinata, subverticaliter sito, (scepius decollato); anfr. 5, (apice excluso) rotundutis; sutura sat impressa; apertura quam spira brexiore, ovata, antice producta; labro tenui, acuto; labio reftexo, umbilico simulante. Long. vix. 1, lat. $\frac{1}{3}$?

Shell minute, turbinately conical, polished, translucent, pale horn color, obscurely lifascate with dusky brown, and with a black columella, apex most minute, turbinate and subvertical (more often decollate), whorls 5 , exclusive of the apex, rounded; suture well impressed, aperture shorter than the spire, ovate, produced anteriorly, outer lip thin, acute, inner lip reflected into a false umbilicus. Long Bay, Rev. H. D. Atkinson.
No. 64. Rissoa avgeli. n.s. R.t. minuta, umbilicata, turbinatoconoidea, tenui, lutca, pellucida, undique spiraliter tenuiter et regulariter lirata, et obsolete regulariter oblique distante costata; costis angustis, ad peripheriam ult. anfr. desinentibus; livis supra costas transeuntibus; anfr. 5, conversis, superne coronatis; sutura sat impressa ; apertura rotundata, lalro crassiusculo; labio erecto, antice incrassato, retro ad umbilic. canaliculato. Long. $1 \frac{1}{2}$, lat. $\frac{2}{3}$ mil.

Shell minute, umbilicate, turbinately conical, thin, yellow, pellucid, regularly spirally lirate all over, and obsoletely,
regularly, obliquely, and distantly ribbed; ribs narrow, ceasing at the periphery of the last whorl ; liræ passing over the ribs ; whorls 5 , convex, coronate above, suture well impressed, aperture rounded, outer lip thickened, inner lip erect, anteriorly thickened, canaliculate behind to the umbilicus. Long Bay, Rev. H. D. Atkinson; Blackman's Bay, W. Petterd. Obs. The peculiar pointed, narrow, rounded, ribs, are, as it were, hidden under the liræ. The generic position of the shell appears to me very doubtful. Dredged at 10 fathoms sand.

No. 65. Rissoa (ceratia) maccori. n.s. R.t. minuta, elongata, turrita, alba, subpellucida, undique tenuiter spiraliter lirata et obsolete longitud. striata; sutura constricta; anfr. 6, declivis, superne subcana. liculatis, convexis; apice? (decoll.) apertura integra, $\frac{1}{\text { 米 long. spirce, ovata, }}$ tenui, acuta, antice eversa; labio sub-reflexo, umbilico simulante. Long. 3, lat. $1 \frac{1}{2}$ mil.

Shell minute, elongate, turretted, white sub-pellucid, slenderly, spirally lirate and obsoletely striate, lengthwise all over the surface ; suture constricted; whorls 6 ; sloping, subcanaliculate above, convex ; apex? (decollate), aperture entire, $\frac{1}{4}$ length of spire, ovate, thin, acute, anteriorly everted; lip subreflected into a false umbilicus. Long Bay, Rev. H. D. Atkinson; Blackman's Bay, W. F. Petterd.
No. 66. Rissonisa flindersir. n.s. R.t. fusiforme-turrita, minuta, solida, pallidissime carnea vel alba, apice pallidiore, levi et $1 \frac{1}{2}$ anfr. rotundato ; anfr. 7, concexis, in medio tuberculato-costatis costis 8-12, et superne costulis 26 -2S coronatis; apertura integra, rotundata ; labro antice producto; labio conspicue quasi umbilicato reflexo, basi convexa, long. striata. Long. 3, lat. $1 \frac{1}{2}$ mil.

A small fusiformly turretted species, mainly distinguished by the margin of small ribs which crown the whorls. Sometimes a prolongation of the larger almost tuberculous ribs enters into the series of the smaller ones, but on many specimens they are entirely distincl. North West Coast, W. F. Petterd. Not very common.

No. 67. Rissoina st. clare. R.t. pyramidate turrita, latiuscula, nitente, tenui, pallide carnea, lineis tenuibus, et maculis rufis zonata; anfr. 11, 2 ult. lavibus, convexis, reliquis, medio angulatis et convexis, tuberculato costatis; costis 9.10 , nitentibus, basim versus prominentioribus, sutura bene impressa; apice $\frac{3}{4}$ anfr. spiraliter striato; apertura integra, elongato-orata; basi declivo-convexa, labro acuto, producto; labio inconspicuo, reflexo. Long. 9, lat. $3 \frac{1}{2}$ mil.

Shell pyramidal, turretted, rather broad, shining, thin, pale flesh color, zoned with slender lines, and red spots, whorls 11, 2 last smooth and convex, the rest angular in the middle and tuberculately ribbed, ribs $9-10$, shining, rather more prominent towards thebase of the whorls, suture well impressed, apex of 3-4 whorls spirally striate, aperture entire, elongately ovate, base sloping and convex, outer lip acute, produced, inner lip inconspicuous, reflexed. North West Coast, W. F. Petterd.

No, 63. Rissorna conestenata. n.s. R.t. minuta, elongata, turrita, opaca, alba, quasi crosa; anfr: 9, comexis, diclivis, undique irrejular, concatenatis quasi rarinlatis; upice nuclcose, la ri, nitcutc (2 anfr.); apertura ovata, labro tenui, labio reflexo, subuisjuncto. Long. 21 2 , lat. $\frac{2}{3}$ mil.

Peculiarly pitted on the surface like the top of a thimble, which gives the shell a roughened worn appearance. North West Coast, W. E. Petterd. I think also that it occurs as a fossil at Table Cape.

No. 69. Diala tessellata. Nobis. See Proc. Roy. Soc Tas., 1875. Among the species dredged by the Rev. H. I) Atkinson there occur some shells resembling the above species, except that they are covered with a dark horny epidermis, and the inner lip not reflected, or, at least, scarcely perceptibly so. All my typical specimens were old and somewhat worn. It is a question with me whether all ought not to be referred to Angas' Aİaba (?) phasianella.

No. 70. Tornatina marie. n.s. T.t. parra, orata, tenui, alba, lcevi polita, spira parum caserta; anjr: 5; nucleo verticaliter sito, sutura profunde canaliculata apertura angusta, medio vix coarctata; labro acuto; labio antice incrassato et contorto. Long. 5, lat. 2. Spira vix $1 \frac{1}{2}$ mil.

Shell small, ovate, thin, white, smooth polished spire, slightly exsert, whorls 5 , nucleus placed vertically, suture deeply canaliculate, aperture narrow, scarcely constricted in the middle, labrum acute; lip thickened and twisted anteriorly. North West Coast, W. F. Petterd.

No. 71. Ampullarina minuta. n.s. A.t. minuta, globosa, alba, solida, nitente, lari; anfr. 4, rapide crescentibus, rotundatis et tenuissime striatis; spira parum csserta; sutura inpressa ; apertura integra, late orata, intus aurantia, tenui, simplici, umbilico angusto. Diam. 3.

A minute species of ampullarina, the generic position being however doubtful. It differs from the Tasmanian species (probably only one, though two are described) in its size, absence of color (except in the throat which is orange), smoothness, and the spire being less exsert, the shell more approaching Natica in form. Circular Head, W. F. Petterd.

No. 72. Acmat petterdi. n.s. A.t. late orata, tumida, depressa, apice acuto et submarginali; nitente, sordide albida, confertissime undulose concentrice striata lineis incrementi, et irregulariter late sulcis rudis, fulvis, interruptis indistincte rarliatre; margine acute, intus eleganter castanea et fulva fimbriate; pagina albida, pallide castanca nebulosa; spatula fulva, exacte definita. Diam. maj. 22, min. 20 , alt. 7 .

This Acmeea somewhat resembles an old and enlarged Acmea septiformis, but its size is larger than that species is ever known to attain. It is dull white and shining, with the lines of growth very distinctly marked. North West Coast, W. F. Petterd. Rare.

No. 73. Acmfa alba. n.s. A.t. late orata, depressa, scabra, tenui, alba, subnitente; apice submediano, acuto: costis incequalibus, acutis, parris numerosis, imbricato-granosis, aliquando in fasciculis congregatis, radiata;

156

interstitiis tenuiter, confertissime, undulose striatis; intus nitente albida scepe pallide fulvo nebulosa vel radicta; spatula nulla; margine acuta, leviter. undulata, linea pallide fulva eleganter fimbriata. Diam. maj. 26, min. 22, alt. 7, mil.

A white silky species; porcelainous inside and delicately margined with light brown, not unlike the Chinese umbrella shell, but smaller. The fine scabrous ribs are gathered sometimes into a bundle, which thus forms a compound rib. It is very different from any other southern form, and rare. North Coast, W. F. Petterd:

No. 74. Tugalia Tasmanica. n.s. T.t. magna, crassa, ovata, postice attenuata, antice planato, alta, tumide rotundata, convexa, sordide alba, apice rotundato (eroso) submediano; radiatim eleganter crebre costata costis parvis. numerosis, alternantibus et irregul. rugose crenulato clathrata, lineis incrementi concentricis; marginibus crassis, sinuato arcuatis, crebre tuberculis crenulatis ; pagina interna alba, castanea, pallide nebulosa, polita ; sinu lato, inconspicuo. Long. 37, lat. 25, alt. 15.

A very thick large solid Tugalia with many alternating ribs, and rugose irregular sinuous lines of growth. The inside is white, polished and clouded with chestnut. Only one specimen collected. North West Coast, W. F. Petterd. There is a shell very like this in the Nat. Mus., Melbourne, and named Tugalia elegans, Gould. It is stated to come from Victoria. I have not been able to trace the reference.

Macroschisma tasmanica. Mihi. Var. rosea radiata. I have met with a variety of the above shell ornamented with numerous rose colored rays. Sowerby has described a shell under the name of M. tasmanica, which I believe to be no more than a variety. If, however, my name must give way I propose to change it to M. weldii. Circular Head, W. F. Petterd.

No. 75. Nucula minuta. N.t. minuta, orata, postice attenuata, antice subtruncata, nitente, tenui, translucida, argentea, creberrime costulis minutissimis regularibus radiata et lineis incrementi sulcata; marginibus rotundatis subtillissime crenulatis; dentibus card. 12, natibus obliquiis acutis. Long. $1 \frac{1}{2}$, lat. 2, mil.

Shell minute, ovate, posteriorly attenuate, anteriorly subtruncate, shining, thin, translucent silvery, radiate closely with minute regular riblets and sulcate with the lines of growth, margins rounded, very finely crenulate, cardinal teeth 12 , umbones oblique, acute. Blackman's Bay. Common. W. F. Petterd.

No. 76. Limorsis cancellata. n.s. L.t. parva, orbiculari, vix obliqua, crassa, tumide convexa, radiatim costata; costis numerosis (36 ?) rotundatis subgranosis, parvioribus, interdum intercalantibus ; tenuiter, vegulariter, crebre concentrice lirata; natibus parvis, rotundatis, cancellatis ; pagina interna nivea, polita; fossula ligam. trigona, minuta; dentibus 22-24, marginibus incrassatis, planatis, politis, interior, haud nitente, radiatim striata. Long. 12 $\frac{1}{2}$, lat. 13.

Shell small, orbicular, scarcely oblique, thick, tumidly, con-
vex, radiately ribbed with about 36 rounded subgranular ribs, with smaller ones sometimes between; finely, regularly, and closely concentrically lirate; umbones small, rounded, cancellate; inside snowy white and polished; ligamental fossa trigonal, minute ; teeth 22-24; margins thickened, flattened, polished, within which the shell is not shining, but is radiately striate. North Coast, W. F. Petterd. There is much reason to doubt if this rare shell, of which few specimens are ever found out of very deep water, is not identical with the common fossil of Australian tertiaries L. decussata.

No. 77. Mytiles Latus Lam, nov. var ? M.t. late rotundata et postice obtuse angulata, valde compressa, tenui, politu, tenuiter regulariter sulcata, et irregulariter lincis incrementi, et tenuissime radiatim striata, epidermide intense olivacea, duobus lineis latis luteis ab umbonibus marginem versus ornata, ad ligamentum eleganter rufo-fulvo nebulosa, umbonibus parvis, acutis, incurvis, levis, albis, marginibus acutissimis.

There are many species of Mytilus recorded as Tasmanian, and this does not agree with the description of any of them. Its peculiar characters are its very compressed falcate habit, and its brilliantly shining olive epidermis, with the yellowish brown broad arched line proceeding from the umbones along the margins. In Dr. Cox's collection the shell marked MI. dunkeri has an olive epidermis, but it is a tumid solid shell. Reeve's figures of M. dunkeri are evidently from worn specimens. MI. dunkeri is an American shell wrongly called Australian by Reeve, MF. rostratus is a different species. I do not regard it as more than a variety, nor are the variations between the species greater than those to which M. edulis of the European seas is subject, and which has received a dozen names. That shell has also an olive epidermis, but is a much more dull and tumid shell.

No. 78. Mytilus crassus. n.s. M.t. nitente, subquadrata, medio angustata, subgibbosa, postice rotundata et subattenuata, valde tumida, et oblique conspicué unicostata, costis in umbonibus subspiraliter desinentibus; epidermide intense badia; paucis cappilis longis, corncis, in discis albis, convexis, rotundatis, radicatis armata; lineis increment. irregularibus elevatis, conspicuis; marginibus epidermide fulca, nitente, indutis ; umbonibus margarataceis, glabratis; fossula productu, umbonibus parmm excedenti; pagina interna carneo-alba, impressione pallii et musculari purpurascente, conspicua: ligamento longo conspicuo. Long. 21, lat. 11, diam. 2 valvis conj. 13.

This dwarfed Mytilus is easily distinguished by its tumid subgibbose form, and the inordinate thickness of the shell when the valves are conjoined. It has a rugose, shining lacquer-like epidermis of intense brown color, on which are a few wart-like dises supporting long stout bristle-like hairs. It has also a conspicuous rounded ridge or rib on each valve, which curves almost to a spiral at the umbo.

Rare at Circular Head, and abundant at Adventure Bay, W. F. Petterd.

Modiola albicostata. Var. 1, polita. Var. 2, nebulosa. Two varieties of this most variable shell have been forwarded to me, one from Diana Basin, near George's Bay (Aug. Simson), a small deep black or olive tumid shell, very highly polished and seldom divested of the epidermis. Hinge margin very acute, straight and angular. Long. 11, lat. 24, which size it preserves very constantly, and is found in great numbers. 2, var. nebulosa. A larger, more tumid, less polished shell, paler or clouded chestnut and deep brown, often distorted; hinge margin less acute and less angular, ventral margin sinuous. Long. 13, lat. 30. Isthmus Bay, Rev. H. D. Atkinson. Abundant at low water attached to weed.

No. 79. Diplodonta tasmanica. n.s. D.t. orbiculari, subglobosa, tenui, alba, subpellucila, epidermide fusca plus minusve induta; concentrice striata, striis incrementi tantum sed 2-3 latioribus insignita, natibus lcevibus, acutis, ligamento conspicuo, margine dorsali acuto. Long. 17, lat. 18.

Shell orbicular, subglobose, thin, white subpellucid, more or less covered with a fuscous epidermis; concentrically striate with lines of growth only, but distinguished by 2-3 much broader lines; umbones smooth, acute; ligament conspicuous, dorsal margin acute. Storm Bay, and Blackman's Bay, not uncommon. W. F. Petterd, W. Legrand, Rev. H. D. Atkinson.

No. 80. Semele warburtoni. n.s. S.t. orbiculari, sub-inflata, crassiuscula,radiatim tenuiter costata, costis numerosis, depressis, irregularibus, antice latioribus; concentrice creberrime lamellata, lamellis, minutis, regularibus, crassiuseulis, retrorsim curratis; lineis incrementi 3-4, conspicuis; natibus parum exsertis ; alba, margine dorsale, cleganter rosea tincta; intus polita nivea. Long. 30, lat. 34, alt. 12.

Shell orbicular, sub-inflated, rather thick, radiately finely ribbed, ribs numerous, depressed, irregular, broader anteriorly; concentrically thickly lamellated, lamellæ minute, regular, somewhat thick, curved backwards ; lines of growth 3-4, conspicuous; umbones slightly exsert, shell white, dorsal margin elegantly rose tinted, polished and snowy white inside. West Coast. W. F. Petterd.

No. 81. Gouldia tasmanica. n.s. G.t. parra, transversa, acute trigona, alba, compressa, concentrice lirata, liris elevatis, rotundatis, aliquando in medin attenuatis et desinentibus ; interstitiis tenuissime reticulatis, umbonibus acutis, marginibus rotundatis. Long. $2 \frac{1}{2}$, lat. 3.

Shell very small, transverse, acutely trigonal, white, compressed, concentrically ridged, ridges raised, rounded, sometimes becoming attenuate and ceasing in the middle, interstices very finely reticulate; umbones acute, margins rounded. Long Bay, Rev. H. D. Atkinson.

No. 82. Kellia ateinsoni. n.s. K.t. parra, long. oblenfa, obliquetrigona, tumida, nitente, translucida, pallide carnea, lavi, obsolete late sulcata; marginibus, rotundatis crenulatis. Long. 3, lat. 2.

Shell very small, longitudinally oblong, obliquely trigonal,
tumid, shining, translucent, pale flesh-coloured, smooth, but obsoletely widely sulcate, margins rounded, crenulate. Long Bay, Rev. H. D. Atkinson. This shell is doubtfully referred to the genus Kellia.

Chione stutchburyi. Gray. Dieff. N..Z, p. 250. A specimen of this shell (Venus zeylandica, Quoy Voy. Astrol. 3, p. 522) was given to me by Mr. Gunn as having been found by him in Bass' Straits. It is a native of Chatham Island, and previously unknown in Australia.

No. 83. Gasterochena tasseanica. n.s. G.t. in cavitate corallium inventa (ragina?) elongata quasi lancoolata, tenui, fragili, infata, alba, opaca, per totam longitudinem maryinis hiantissima, antice breviore, margine fere recto ; postice latiore, rotundato; concentrice rugoso striata, striis distantibus, irregularibus; ralvis quasi in medio oblique unicostatis et sulcatis, costis latis et in umbonibus, desinentibus. Long. 12, lat. 5, mil.

Shell found in the cavities of corals and the sheath unknown, elongate almost lanceolate, thin, fragile inflated white, opaque, gaping very widely for the whole length of the margin; shorter anteriorly, margin almost straight, wider and exactly rounded posteriorly; concentrically rugosely striate, striæ distant and irregular; valves somewhat unicostate obliquely in the middle with a groove by the side, ridge wide and ceasing in the umbones, which are inconspicuous. South Coast. Rare. W. Legrand; W. F. Petterd. Long Bay Rev. H. D. Atkinson.

ON A NEW REVERSED TASMANIAN HELIX. HELIX WELDII.

> By the Rev. J. E. Tenison-Woods, F.G.S., Cor. Mes. Roy. Soc. Sydxey and Tashania, and of Lin. Soc., N.S. Wales. [Read October 9th, 1876.]

A very few years ago the island of Tasmania was regarded as being poor in land shells, but thanks to the zeal and activity of many naturalists, especially Messrs. Legrand, Atkinson and Petterd, the number of species brought to light is now very large. If the island cannot take a leading position for the number and peculiarity of its forms it has by no means an insignificant one. Up to a recent period the description of the species were scattered over an immense number of scientific works according as they had been described by various observers in different countries. Within the last few years Mr. W. Legrand has published a monograph of all the then known land shells, accompanied with extensive notes on the habits, and very excellent figures of the newer species. What gave the work a greater value was that it was for the most part privately printed by the author, the whole of the work being done by his own hand. This work leaves but little to be desired, though new species are of frequent occurrence. It is remarkable that our land shells are entirely distinct from the Australian fauna, except in a ferw doubtful cases, and some of the forms are beautiful and peculiar in a way that is so marked as to enable us to call it "Tasmanian." I have now to bring under the notice of the Society a new species of Helix which has the additional singularity of being a reversed shell. Helices with a sinistral whorl are uncommon. Out of the vast number hitherto made known, including every variety of form in the genus, I believe I am right in stating that very few more than a dozen are reversed, and this sinistration, if I may be allowed to coin a word, is not confined to any particular section of the genus so as to elevate it to generic importance. It is remarkable, however, that hitherto as far as I am aware it has been only found in Helices of China, the Indian Archipelago, and in the Indian Peninsula. It is, I may say, a tropical peculiarity, but, at least, no such form has as yet been hitherto found in the Southern Hemisphere. The present species is very small, confined, as far as we know, to one restricted locality on the north-west side of the island. It was found by Mr. W. F. Petterd. I have done myself and the Society the honour of dedicating it to Her Majesty's representative in the colony, His Excellency the Governor, F. A. Weld, Esq., C.MI G. The following is the diagnosis :-

Helix Weldir. n.s. H.t. Minuta sinistrorsa, anguste umbilicata, turbinato-discoidea, tenuiuscula, nitente, striisconfertis,

161

sublente tantum bene conspicuis longitudinaliter impressa; pallide corneo-lutea, unicolor, translucent ; spira leviter conica, apice prominulo, oluso ; sutura valide impressa ; anfi. $6 \frac{1}{2}$, convexi, sensim accrescentes, cmbryonales $1 \frac{1}{2}$, albidi, ultimus rotundatus, basi subplanatus ; apertura rotundato-lunaris basali, concolor; peristoma simplex, acutum, corneum, marginibus ab umbilico usque ad $\frac{1}{2}$ ultimi anfractus disjunctis; columella brevi. Diam. maj. et min $1 \frac{1}{2}$; alt. $1 \frac{1}{4}$ mil. Habitat in vicinio civitatis Stanley dicto, Tasmanice. Obs. Sp. valde minuta et sinistrosa, forma vero et colore speciebus multis Tasmanio incolintibus sat proxima.

Shell minute, sinistral, narrowly umbilicate, turbinately discoid, rather thin, shining, with close small longitudinal striæ, which are only visible under the lens; pale yellowish horn and of uniform color, translucent ; spire slightly conical, apes a little prominent, obtuse; suture validly impressed; whorls $6 \frac{1}{2}$, convex, gradually increasing, embryonal whorls $1 \frac{1}{2}$, whitish; last whorl rounded and somewhat flattened, of uniform color; peristome simple, acute, horny; aperture roundly lunate, margins of the peristome separated from the umbilicus to half the height of the last whorl, columella short.

Mr. Petterd notes with reference to this shell. "This small and reversed Helix I have only observed at the foot of the high rocks about Stanley, Circular Head, where I collected it with a few other species of Helices on the surface of blocks of rocks that are overgrown with a thick mass of entangled vegetation. It is extremely abundant and generally in clusters. I have collected some hundreds of specimens. The reversed form is very constant."

ON THE EFFECTS OF WOUNDS ON THE HUMAN SUBJECT INFLICTED BI THE SPUPS OF THE PLATYPUS-(Ornithorhynchus anatinus).

By the Rev. W. W. Spicer, M.A., F.R.M.S.

[Read 13th November, 1876].

I rish to lay luefore the Roval Society, an account of an accident which recently occurred to a friend of mine while handling a Platypus, as there are circumstances connected with it, which are rather singular in their nature, and I think worthy of your attention. The friend I allude to is Mr. Augustus Simson, a member of this Suciety, who is now residing in Gould's Country.

About three meeks ago, he and Mr. Stephens, the School Inspector, were walking by the side of a lagoon, when their attention was attracted by a Platrius, which had swum across from the other side, and ras on the print of making its way under the bank. Mr. Simson, an active, energetic man, at once rushed down the bauk, and secured the animal. Now, I fancy, this fact alone is worthy of record; for of all the shy wary animals in existence, Platypus is among the shiest and most wary. Under ordinary circumstances, it is no easy matter to catch eren a passing sight of one; but here the creature was caught in open daylight, without any preparation, as easily in fact as a rat or a mouse might be in a like case. It made no great struggling; was deposited in a sack, and mas carried to the hotel at George's Bay. Here, by some mishap, he escaped, and it was in the effort to re-capture the animal that Mr. Simson met with his accident. I will here quote MIr. Stephens' words, who was present:-
"After an exciting chase, Platyrus was re-captured; but this time he revenged himsolf br giving my friend a severe wound on the hand, one spur slightly tearing the palm, and the other the back of the hand, making a deep puncture between the knuckles of (I think) the first and second fingers. The pain from this was intense, and almost paralysing. But for the administration of small doses of brandy, he would have fainted on the spot. As it was, it was half-an-hour befure he could stand without support. By that time the arm was swollen to the shoulder, and quite useless, and the pain in the hand rery serere. No ammonia was to be had; no medical assistance was arailable; and the only treatment that could be adopted, was to keep the whole arm for a night and day in wet bandages, which scemed to alleriate the pain a little, and to reduce the inflammation.
"A week later, I was informed br letter, that the swelling had subsided, the hand being still rery tender, with a sensa-
tion as of a severe bruise. From this time thoro was a slow but gradual improvement."

As regards the improvement, I have a letter from Mr. Simson, a portion of which I will read:-
"You have heard throngh Stephens of my Platypus adventure, no doubt; it is a pity he got away after the mischief he did. * * * I did not know before that they were capable of hurting one. Coombes says, that according to Krefft, their spurs are tubes, and that there is a poison-bag at their base ; others also tell me they are hollow. Can you hunt it ap and see if it is true? There must be some kind of poison in them, I fancy, as, though the wounds healed up guickly, I still hare a queer feeling in the hand and fore-arm, and cannot bear any pressure on the hand; the flesh, especially in the morning when I wash, feels as if it were with the skin grazed off, quite sore, and the hand is still rather cramped, and incapable of grasping anything, though I can use the fingers now again. The foregoing sensations extended right up the arm at first, which was everywhere tender to the touch, and all the joints and bones of the fingers also. Some natives tell me they would rather lay hold of a snake than a Platypus."

I may mention, that on MIr. Stephens attempting to seize the animal, it attacked him in a similar manner ; fortunately his hand was protected by a glove, and the spurs only left a deep indentation, without piercing the covering. He says:"The mode of attack is not by scratching, but (as I know from experience) by a powerful lateral and inward movement of the hind legs, the spurs being thus brought together like the points of a pair of callipers.

It is worth noticing, that the animal was in a state of considerable irritation when re-captured; and also that the object of his attack was a strong man, in the prime of life, and in perfect health."

Now, in regard to the wound received by Mr. Simson, to what are we to attribute the painful consequences which ensued? Are they due to the action of poison, or to the laceration of the nerves, or to some other cause?

Having no practical acquaintance myself with Platypi and their halits, I have looked up whatever works were within my reach bearing on the subject; and the results I will lay before you.

There is no doubt, that the spur is not a solid, but a hollow body, or rather it is a sharp-pointed cone of considerable substance, traversed by a very fine tube, which communicates by a canal with a compratively large spougy gland situated, not immediately behind it, but some distance up the thigh.

This is plain from the dissections made by Professor Owen.

Mr. Roblin, the Curator of our Museum, informs me that he has himself expressed a yellowish fluid from this gland through the opening in the spur. Seeing that this is so, and coupling with it the severity of the symptoms following on a wound, one is apt to jump to the conclusion that the gland is a veritable poison bag. Judging from analogy, we might sar that the case is in every respect similar to that of the serpent tribe, only that with Ornithorhynchus, the mechanism for elaborating and injecting the poison, is situated in the heel instead of in the head.

Nevertheless, the opinion of those best able to form a correct judgment appears to be decidedly opposed to this view of the matter.

First, both in date and value, are the observations of the veteran naturalist, Dr. Bennett. (See "Gatherings of a Naturalist," p. 107, \&c.)

Of two German authors, whose books I have, one (Professor Leunis), writes as follows:-"The male has on the hind leg, not far from the foot, a slightly curved movable hollow spur, which opens into a gland, and which may, perhaps, serve some purpose in the animal's connection with the female.

Formerly this gland was supposed to contain poison, which was injected through the spur. But later observations (especially those of M. Verreaux) seem to contradict this theory. Certainly no one has ever seen the the animal attempt to use its spur in self-defence."

Very similar to this are the remarks made by the Zoologists of the French Expedition in the "Astrolabe," as quoted by Owen. They have reference to the male Echidna.
"We have never heard of any accident occasioned by the spur. We ourselves touched and irritated the animal without its once attempting to defend itself by this instrument. No, not even when we made use of considerable pressure." Brehm, the other German author alluded to, contents himself with quoting Bennett. Owen and Waterhouse follow the same leader.
In fact, the question is surrounded with difficulties, and cannot be determined in our present state of knowledge.

If we admit the possibility of the venom theory, then we have in Ornithorhynchus a perfectly unique example, that of a mammal, or warm-blooded animal being endowed with poisonous properties. It is true, that in its "sternal " apparatus, this animal comes very near to the Lizard; and knowing, as we do, how closely allied are Saurians and Ophidians, we may, perhaps, see no difficulty in looking upon the Platypus as a distant relation of the latter, and therefore, as having a sort
of family claim to their dangerous mode of defence-the poison bag. But in every other respect the Platypus is a true mammal, though of a very low type; and it is very far from probable, that (out of all that huge and important class) the Monotremes alone should be entrusted with so terrible a weapon. Moreover, the faculty is still further restricted ; for you must remember that this privilege is entirely confined to the male. In the young female indeed, a small rudimentary spur exists (as we learn from both Owen and Waterhouse) ; but this disappears as the animal advances in age; and in mature life its absence is marked by a slight depression.

Moreover, if we are to be in any degree guided by analogy, we should look for the poison bag in the weaker rather than in the more powerful sex. At least in the only class in which this means of defence is confined to one of the two sexes (I allude to the insects), it is invariably the female, not the male, which makes its presence felt by its sting. On the other hand I do not give much importance to Dr. Bennett's argument, that he could not force the animal to attack him, and that the scratch which he received from the spur, caused him no pain. Nothing is more certain than that the poison of snakes varies in potency at different seasons of the year, and that its virulence depends largely on the circumstances under which it is received.

Baden Powell (in his work called New Homes for the Old Country) observes-" That the Platypus does not attack men with his spurs when caught, may perhaps be attributed to the fact that he is then entirely out of his element. In the water possibly he may be able to make good use of an arm, which, if poisonous, would indeed be most formidable. In cases where scratches have been received from the spur without evil effect, the result may be due to the reservoir of the poison being at the time empty, owing to previous struggles."

Making allowance, however, for all theoretical difficulties, how are we to account for the serious swelling and extraordinary effects suffered by Mr. Simson, except on the supposition of poison having been introduced into his system?

I am well aware that wounds from claws are often very disagreeable and lasting in their effects-even in cases (as of the lion) where there is no suspicion of poison. But in the instance before us, the smallness of the wound-a clean puncture, not an irregular laceration-the intensity of the accompanying symptoms, the celerity with which the parts affected were attacked, seem to point to something more potent than the mere tearing of the flesh.

Still all this is circumstantial evidence, and not of a direct nature.

Nor is it perhaps much more to the purpose to ask: If the spur and its accompanying gland are not intended as weapons, what object are they intended to effect. They may be connected with a sexual object, an opinion which Owen is evidently inclined to adopt. The gland is situated very near the organs of generation, and Bennett suggests that the hollow which takes the place of the spur in the female may not improbably serve for the reception of the spur of the other sex.

It is further conceivable that the fluid in the gland may at, this time of the year have some peculiarly acrid or irritant property, and wheu injected into the human body may produce symptoms similar to those of a true poison.

This is emphatically the season of love among the lower animals. Dr. Bennett notes in his dissections of male Platypi, that during September and October the testes resembled pigeons eggs in size, whereas later in January and February they were not larger than small peas.

May not the season also account for the ease with which the animal was originally captured, knowing as we do how utterly reckless and blind to danger the lower animals often become under this great excitement, and also for the ferocity which it displayed after it was taken, so different to the stupid demeanour which generally characterises it?

One more suggestion has been made in reference to the use of the spur, which I will give in Baden Powell's words:"The blunt nature of the spur in older individuals, together with the fact that the Platypus is especially fond of cleaning itself with its hind legs, has led some to suppose that the juice ejected from the spur is of use for the toilet. But then why should the male have so great an advantage over the female in the province of hair dressing? Why should the husband have the use of pomade, and possibly insect powder combined, while the wife has to content herself with water and vigorous brushing?" I may add to this that that ornithorhynchian hair oil must be of a singularly acrid and unpleasant nature to produce such effects, when applied inwardly, as we have seen to occur in Mr. Simson's case.

This is all I have been able to bring together anent Platypus and his spur, and little enough it is. I dare say when Australia is more settled, and Ornithorhynchus has been improved off the face of the earth, biologists will have leisure and thought to bestir themselves to enquire into the matter. Just as now we are searching for Dodo's bones, and writing books about them, and doing work which ought to have been done two centuries ago.

I have recommended Mr. Simson if he captures a second
male Platypus to perform an operation, which I am afraid will not meet with the approval of the auti-vivisectionists of the old country, viz. : to force it to puncture with its spurs, not himself, but a rat or small bird, and to record the effects. This may do something to unlock what is now a decided and unsolvable mystery.

SYNONYMY OF AND REMARKS UPON TASMANIAN AND OTHER SHELLS, WITH THEIR GEOGRAPHICAL DISTRIBUTION.

By Joun Brazier, C.M.Z.S., M.L.S., M.R.S. N.S.W., Cor. Mem. Roy. Soc., Tas.

[Read 13th November, 1876.]

1. Hellx (Pitys) gunnit.

Helix (Pitys) assimilis, Brazier. Proc. Zool. Soc. London, 1871, p. 697.
tion "of Catalogue TMasmanian Land Shells, August, 1871, sp. 66.

Helix assimilis (Pıtys). Pfr. in Monog. Hel. Viv. 1875 ; vol. VII., p. 166. Hab., near Hobart Town; Mr. Petterd.

I find that Mr. H. Adams described, in the Proc. Zool. Soc., 1866, p. 316, a Helix assimilis from Formosa. I have changed my specific name as above in honor of Mr. Ronald Gunn, whose exertions in the cause of science have made us acquainted with many new and rare specimens of natural history from Tasmania.

2. Helix (Pitys) luckmanir.

Helix (Charopa) neglecta, Brazier. Proc. Zool. Soc. London, 1870, p. 660.
,, (Pitys) neglecta, Brazier in Legrand's Coll. for Mon. Tasmanian Land Shells, sp. 47.

Helix neglecta (Charopa). Pfr. in Monog. Hel. Viv., 1875 ; Vol. VII., p. 149. Hab., Knocklofty, and Old Mill, Hobart Town; Mr. Petterd. Foot of Mount Nelson; Mr. Legrand.

Helix neglecta pre-occupied by Draparnaud for an European species. Name changed as above in honor of Mr. Luckman, who appears to have done some collecting in Tasmania for the benefit of science.
3. Helix (Pitys) collisi.

Helix minima (Hyalina) Cox. Monog. Aust. Land Shells, 1868, p. 10, pl. XII., fig. 8.

Helix (Hyalina) minima, Cox. In Legrand's Coll. for Mon. Tasmanian Land Shells, 1871, sp. 10.

Helix minima (Hyalina). Pr. in Monog. Hel., Viv. 1875 ; vol. VII., p. 181. Hab., Mount Wellington ; Mr. Masters.

Helix minima pre-occupied by H. Adams, Proc. Zool. Soc., 1867, p. 303, species from Island of Mauritius. The Tasmanian species I have named as above.

4. Cyprea umbilicata.

Cyprea umbilicata, Sowerby. Tank. Cat. p. 30, pl. 7.
Cypræ, pl. VII., fig. 42. " Thes. Conch., vol. IV., p. 21,
Cyprovula umbilicata, Gray. Proc. Zool. Soc. London, 1849, p. 125.

$"$	$"$	Angas. Proc. Zool. Soc. London,
1867, p. 205.		
$"$	$" \quad$ Brazier. Proc. Zool. Soc. London,	

Hab., 25 miles off the coast of New South Wales, between Montague Island and Twofold Bay, brought up from the great depth of 1,900 fathoms, one specimen was obtained by Professor (now Sir) C. Wyville Thomson, in the voyage of H.M.S. Challenger, from Melbourne to Sydney. The specimen was smaller and paler in colour, than any I have ever seen from Tasmania.

5. Scapila mamilla.

Voluta mamilla, Gray, Sowerby. Thes. Conch., vol. I., plate L., fig. 57, 58.

Reeve. Conch., Incon., pl. XIX., sp. 44.
Scapha mamilla, Gray. Proc. Zool. Soc., Iondon, 1855 , p. 55.

Cymbium mamilla, Chenu., Manuel de Conch., 1859, tome. 1, p. 186, fig. 942.

Afamillana mamilla, Crosse. Journal de Conch, 1871, vol. XIX., p. 308.

Scapha mamilla, Brazier. Proc. Zool. Soc. London, 1872, p. 23.

Hab., Lake Macquarie, New South Wales, found on the beaches after easterly gales; Brazier.

I have seen it recorded as being found at Black River Beach, the Duck River, Port Sorell, and other localities included between Circular Head and the Tamar in Tasmania.

6. Volutella papillosa.

Toluta papillosa, Swainson, in Appendix to Bligh's Catalogue. " " Sowerby, Thes. Conch., vol. I., p. 207, pl. XLVII., fig. 30.
", papillaris, Reeve. Conch., Icon., pl. IV., sp. 10.
Scaphella papillaris, Swainson, Malacology, part I., page

Tolutella \quad Gray. Proc. Zool. Soc. 1855, pl. 63.
Voluta (Alcithoe) papillosa, Crosse. Journal de Conch., 1871, vol. XIX., p. 297.

Hab., 25 miles off the coast of New South Wales between Montague Island and Twofold Bay, brought up in the dredge with Cypreea umbilicata, from 1,900 fathoms. Encounter Bay, South Australia; Mr. G. F. Angas. Black River Beach to the Duck River, and sometimes in the vicinity of the Tamar Heads, North Tasmania.

7. Volutella fusiformis.

Volutx fusiformis, Swainson, in Appendix to Bligh's Catalogue.
Sowerby. Thes. Conch., vol. I. p. 208, pl. LIV., fig. 100.
Reeve. Conch. Icon., pl. III., sp. 6.
Scaphella füsiformis, Swainson. Malacology, part I., p. 108, 318.

Scapha fusiformis, Gray. Proc. Zool. Soc., 1855, p. 58. Angas. " ", 1864.
Vöuta (Alcithoe) fusiformis, Crosse. "Journal de Conch., 1871, vol. XIX., p. 296.

Hab., Broken Bay, New South Wales, found on the beaches after gales. The specimens found are larger and otherwise distinct from the specimens from the Black River Beach, Tasmania.

8. Scaphella angasi.

Voluta Angasi, Sowerby. Thes. Conch., vol. III., p. 271., and vol. I., pl. XLVIII., fig. 29.
" (Amoria) Angasi, Angas. Proc. Zool. Soc., 1867, p. 193.
vol. ẌIX., p. 2389.
Hab, $3 \frac{1}{2}$ miles east of Port Jackson Heads in 45 fathoms hard sand bottom. Middle Harbour, Port Jackson, Lake Macquarie at Moon Islet, Port Stephens on the North of Sydney; Brazier. Corner Inlet, Victoria; Mr. R. C. Rossiter. The home of this species appears to be from Circular Head to the mouth of the River Tamar.

I consider all these so-called species to be only local varieties of Voluta undulata, Lam ; = var. Angasi, Sowb. ;=var. Australice, Cox ; = var. Kingi., Cox ; = var. Sclateri, Cox.
9. Voluta sophia. Gray.

I found at Warrior Reef on the sands, and at 30 fathoms, Darnley Island, Torres Straits, var. of Voluta Norvisi, Sowb., from Nichol Bay; Camden Harbour and Tien Tsin Passage; North West Coast of Australia.

10. Voluta turneri. Gray.

North Australia. = Var.Ellioti, Sowb.; = var. Jamracki, Gray; from North West Coast of Australia.

11. Voluta pulchra. Sowb.

$=$ Var. Wisemani, Irazier, from North East Australia.
12. Voluta piperita. Sowb.

Typical, Rubiana, Solomon Islands. = Var. Ruckeri, Crosse, from Florida, Savu, Y sabel, Ruhiana, Shortland and Bougainville Islands, Solomon's Archipelago. $=$ Var. Mracgillivrayi, Cox, from Woodlark Island, east side of the fork of New Guinea. Specimens in Australian Huseum named piperita by Mr. G. F. Angas when Secretary.
13. Voluta reticulata. Reeve.
$=$ Var. Reevei, Sowb., from Ashburton River and Tien Tsin Creek, North West Astralia.

14. Voluta rutila. Broderip.

From Darnley Island, Torres Straits. $=$ Var. innexa, Reeve, from Louisiade Islands, near the south fork of New Guinea.

15. Voluta flavicans. Gmelin.

From Katow, New Guinea. = Var. volvacea, Lam.; = var. lugnbris, Swainson ; = var. modesta, Wood ; = var. signifer, Broderil : = var. Tissotiana, Crosse, from Port Essington and Liverpo.. 1 River, North Australia.

16. Voluta harfordi. Cox.

$=$ Voluta canaliculata, McCoy, one and the same species.
A fine living specimen was dredged by Commodore (now Admiral) Loring, at Broad Sound, North East Australia, when in command of H.M.S. Iris, it was found packed up in the collection with other shells from the same place by Mr. Angas in 1872. The locality given by Dr. Cor, when describing it from specimens received from Tasmania, and said to have come from Wreck Reefs, Bird Island, near Lady Elliott Island, is quite a novelty for geographers; I find Lady Elliott Island is just inside the Great Barrier Reef in a direct line with Roundhill Head, near Harvey's Bay, on the North East Coast of Australia. Wreck Reefs are 300 miles outside the barrier, about E.N.E. of Lady Elliott Island. Professor McCoy, when describing specimens received from the same person from whom Dr. Cox obtained his, gives Port Denison, Queensland, as a habitat for this shell. I doubt very much its being found so far north.

17. Callista victorie.

Callista victoric, Woods. Proc. Royal Soc. Tas. 1875, p. 27.

Hab., Lake Macquarie and Port Stephens, New South Wales, found in a living state on the sand beaches after heavy
weather. The Rev. J. E. Tenison-Woods records it from Cloudy Bay on the south of Bruny Island, Tasmania. I have received dead and worn valves from Cloudy Bay.

METEOROLOGY FOR JANUARY, 18\%G.

Owing to unaroidable circumstances, the Hobart Town Meteorological Table for January is incomplete, no observations having been recorded until the $22 n d$. The results of the observations from that date until the end of the month (10 days) are as follows :-

Barometcr. -Mean Pressure, 29.921 inches.

| Max. | $30 \cdot 226$ |
| :--- | :--- | :--- |
| Min. | 29.444 |

Wind.-Mean Force, "3llb. per sq. foöt.) Prevailing Max., 2601 b . $, \quad, \quad\}$ direction, Min. ., $0^{\circ},, \quad, \quad$ S.E.
Thermomoter, Fahrenheit.-Meän Témp. $66^{\circ} 05^{\circ}$, Max. 88.0°, Min. $55^{\circ} 0^{\circ}$.
Relative Humidity, percent.-Mean 74, Max. '94, Min. 52. Highest T'mp. in Sun.-Mean ${ }^{\circ} 104^{\circ} 95$, Max. ${ }^{\circ} 1211^{\prime} 0$, Min. ${ }^{\circ} \mathrm{u} 40$.

Ditto in Shade-Mean ${ }^{\circ} 78 \cdot 85$, Max. $93 \cdot 0$, Min. 60.5.
Terrestrial. Radiation.-Mean ${ }^{\circ} 51 \cdot 45$, Max. ${ }^{\circ} 62 \cdot 0$, Min. ${ }^{\circ} 41$ '5.
Rain in Inches.-Total, '68.
Spontancous Evaporation.-Total amount, 3.44.
Cloutl.-Mean amount, 6° (scale $0-10$).
()zone.-Mean amount, 4.30 (chromatic scale).

Electricity.-Positive 5, negative 12, nil 3.
Time of Leafing, Flowering, and Fruiting of a few Standard
Plants in the Royal Society's Gardens during the month of January, 1876 :-
18th.-E'irst ripe Apricot gathered.
20th.-Veronica Angustifolia in full flower.
24th.-Jargonelle Pear ripe.
25 th.-Grevillea Robusta in flower.
31st.-Mulberries commencing to ripen.
F. ABBOTT, JUN., Superintendent.

Results of observations taken at New Norfolk for January, 1876 :-

Barometer (corrected and reduced), mean of three daily readings, 29804 in .

Thermometer, mean of three ditto, 644°.
Dew-point, mean position of three ditto, 53.40°.
Elastic Force of Vapour, mean of three ditto, 402.
Humidity, mean of three ditto, $\cdot 66$.
Solar Intensity, mean of max. temp., 130.61°.
Terrestrial Radiation, mean of min. temp., $45^{\circ} 10^{\circ}$.
Rainfall, 1 G6in.
Evaporation, $4^{\prime} 73 \mathrm{in}$. ; in excess of rainfall, 3.07 in .
Clouds, mean of three daily registers, 5.62 .
Ozone ditto of two ditto, 58 ?
Wind, total of three ditto, 79.27 lb . per sq. foot.
Horizontal Movement, $25 \cdot 27$ miles.
49 obs. of electricity, 27 negative, 18 positive, 4 nil. W. E. SHOOBRIDGE, Valleyfield.

METEOR
 Privat
 Intitude 42 ${ }^{\circ}$
 (legista

The Metcorological form brought into ui 1876 differs in some respects from the ten adopted with the view of assimilatin cords more closely with those of s merica, etc., in order to co-operate in Itional Meteorology. Readings are add ade thermometer, that being the instru: J the continent of Europe.
The mean is in all cases taken from tl Lily registers, not from the maximum an The direction of the wind is registered ight of 92 feet above sea level, and i uare font.
The relative quantity of rain that fell inds is registered each morning at $7 \cdot 30$: The thirty-flve years' standard tables a: e difference from average.

FRANCIS ABBO'
me of leafing, flowering, and fruiting
plants in the Royal Society's Gardf
loi6:-

METEOROLOGY FOR FEBRUARY, 1876.
Private Obserfatory, Habart Town.
Latitude $42^{\circ} 5 y^{\prime} 13^{\prime \prime} \mathrm{S}$; Longítute 9h. $49 \mathrm{~m}, 29,-2 \mathrm{~s}, \mathrm{E}$.
Registered for the Roysl society of Tasmania)

The Metcorological form brought Into use at the begianing of 1 sio diffors in some respects from this former one. It has bena supted with the view of assimilating the Hobart Town Acordy more closely with those of atations in Europe, Aurcrica, ete, in order to co-operate in a aystem of Inter. nutional MAetuorology. Readiugs are added from the centimate therouoneter, that being the instrument gexerally used on the continent of Europe.
The mean is in sull cases taken from tho sums of the two

1.. harw thon of the wind is recistermi from currente at a
 are turst
Trit ruhther quantity of rain that full umper the different

Lo elfference fry yars' shandard tahles are used for obtaining Lid diferonce from aperace
FRANCIS ABBOTE, F.R.A.S., etc.

Time of leaing, flowering, and fruiting of a few standari plate in the Royal society's Garien during February 2670:-
10th - Kerry Pippin Apple commenctng to ripen.
124h - Windacr Pear ditto ditto
Sth-Bon Cliretien Pear ditto ditto.

- 13, - Green Gage Plum ditto ditto.

27 th -Ash commencing to shed seed.
2 2thr.-Sycamore ditto ditto.
E. ABBOTT, JUN.,

Superintendent.
Results of observation taken at New Norfolk February 18i6, in accordance with new forms, and registered at 730 Bm , and 430 pm . :-
Ih,sromiter, the an "f -idaly radings, correctei and reduced, 291/11

litten, ditho, lisuleg tentigtude

Dilastac forec of wir ur mean, of 22 ditto, 3 i.
Hutulity neesn, uf \& ditto, 67.
Ablar intensity, mean of matumurn temperature, 132 58Ieg.
Terrestrial radiation, mean of minimum tomperature, 19 obdes
Rainfall, "69in.
Eveporation, 674 jn . In excess of rainfall, $0 \% 1 \mathrm{in}$.
Ozone, mesn smount of 2 daily registers, $0 \cdot 15$.
Clond 9 , mesn ditto, 2 ditto ditto, $\$ 34$
Wind, force in lbs. per square foot, mean of 2,71 -4illbs.
Ditto, horizontal movement, 2715 mites
iv, E. SHOOBRIDGE
Valleyflela

Private \mid

Latitude 42° b:
(Registered

	Thermometers (Reading.)		Thermomets (Self-Resister:	
$\because 181429$ (5)\%	12.J	$49.0 \quad 64.0$	111.0	7-0
$\cdots 57.120 \times 317$	11 U	$5 \pm .0 \quad 650$	10J 5	72
	12.5	$55.0 \quad 6 \pm 0$	107.0	69.0
$\therefore 93420 \cdot 91$	$12 \cdot 0$	53.0 63.0	111.0	78.5
$\therefore 04930 \cdot 0.74$	$12 \cdot 0$	$55^{\circ} 006$	1105	760
$\therefore 1418 \pm 2013$	$13^{\circ} 0$	$57 \cdot 0 \quad 7+0$	1150	83.5
	16.0	(2.0 7 5) 0	120.0	S7.0
$\therefore 19752.9817$	$17 \cdot 0$	62.0 (i+5	1130	$80 \cdot 0$
\because it $30 \cdot+20.5$	120	54 566	100.5	720
, 19.9218	$1 \because U$	5.506	110.0	75.0
	13.0	67075	111.0	75.5
$\because 31229-533$	18.0	$645 \quad 75 \%$	1125	77.0
. .015 29:959	150	$61.0 \quad 83.0$	$120 \cdot 0$	90.0
$\therefore 902-762$	18.0	6 1.0 8) 3	122.1)	9:3:5
$\because 1 \cdot 11334 \sim 245$	125	$55^{\circ} 0 \quad 570$	(is.5	62\%
$\because 1.385$ 30 330	100	50.0630	10t.0	(5) 0
$\therefore 121230 \cdot 157$	S.0	$48.0 \quad 62.0$	$103 \cdot 0$	710
$\therefore 057204037$	900	$49.0 \quad 63.0$	$102 \cdot 0$	72.0
- $\because 309$ - 29.515	115	52.2600	101\%	66.5
$\because \cdot+120 \cdot 899$	$10 \cdot 0$	$50.0 \quad 67 \cdot 0$	10:) 0	$77 \cdot 0$
$\because r .1) 29503$	160	$61.0 \quad 565 \cdot 5$	78.0	63.0
$\because \cdot 10530 \cdot 16 S$	8.0	$47 \cdot 0 \quad 58 \cdot 0$	(17\% 5	62.0
: 1.2	11.0	51.069 .0	107.0	77.5
- 4.14$)-23.833$	9.0	$49.0 \quad 63.5$	91.5	$73 \cdot 0$
$\because 1: \% 029 \cdot 355$	$15 \cdot 0$	$59.0 \quad 70 \cdot 5$	111.0	83.0
$\because \therefore$: 2) 810	13.0	$54 \cdot 0 \quad 60 \cdot 0$	93.0	72.5
$\because 1: 18398 \geqslant 0$	$7 \cdot 0$	450,675	$107 \cdot 0$	73.0
$\because 1 . \cdots 5$) 30.099	$11 \cdot 0$	52.0 , 65.0	107.5	750
$\because 1.7929-643$	$10 \cdot 0$	51.0 '72.0	72.0	76.0
- + ;) 24) 5-3	11.0	$52.0{ }^{\prime} 55^{\circ} 0$	93.5	7.0
$\because \cdots 151-29 \cdot 433$	8.0	$47^{\circ} 0: 54^{\circ} 5$	79.0	65.0

Iran Press. 29013	$\frac{\text { Mean }}{12^{\prime} .30}$	M'n Tein. $60^{\circ} .34$	Mean Mean $103^{\circ} .4574^{\circ} .7$
	$\begin{gathered} \text { Max. } \\ 15^{\circ} 0 \end{gathered}$	$\begin{aligned} & \text { Max. } \\ & 82^{\circ}, 0 \end{aligned}$	Max. Max $123^{\circ} .0003^{\circ} .5($
2.1: :	$\left\|\begin{array}{l} \operatorname{Min} \\ 7^{\circ} 0 \end{array}\right\|$	$4 \operatorname{Lin} .$	$\frac{\text { Min. Min }}{72^{\circ} .00} 62^{\prime} 5$

\therefore Mreteorological form brought into use al -in differs in some respects from the form i mal.pted with the view of assimilating th : 1- more closely with those of static -rien. etc., in order to co-operate in a s n.1 Meteorology. Readings are added 1 1 tamometer, that being the instrument Continent of Europe.
fie mean is in all cases taken flom the st r risters, not from the maximum and mi lirection of the wind is registered fror -it of 92 feet abovo sea level, and its fo tre fowt.
\because relative quantity of rain that fell und I. is resistered each morning at $7 \cdot 30 \mathrm{a} . \mathrm{m}$. ?w thirt γ-five years' standard tables are us diflerence from average.

FLANCIS ABBOTT,

ant leafing, flowering, and fruiting of Whits in the Royal Society's Gardens 1sini:-
A - Nornbeam leares commencing to tu: :h - Cine's Golden Drop Plum ripe. ith, -rekle Pear commencing to ripen. M-Tips of Elm (Clmus campestris) tur thel.-Horse Chestnut leaves turning broy

Private Obs

Latitude $42^{\circ} 52^{\prime} 13$
(Registered fo

Thermometers
 Thermometers
 (Reading.) Self-Registering

				$\begin{aligned} & \text { Highest in Shade, } \\ & 4^{\circ} 30 \text { p.m. } \end{aligned}$	
110	51.0	57.0	99°	$65^{\circ} 0$	40
9.0	$48^{\circ} 0$	60.0	$95^{\circ} 0$	67.5	42
$10 \cdot 0$	50.5	57.5	93:5	$69^{\circ} 0$	43
$9 \cdot 0$	490	57.5	86.5	$63^{\circ} 0$	44
$7 \cdot 5$	45.0	5 ± 5	6 ± 0	58.5	41
6.0	$45 \cdot 0$	69.0	$97 \cdot 5$	68.5	30
10.0	50) 0	55%	64.0	63.0	45
$9 \cdot 5$	4!) 5	5:3.0	99.0	$60^{\circ} 0$	43
S.5	4%	56.0	$94^{\circ} 0$	58.5	4 C
55	420	60.0	$99 \cdot 5$	$65^{\circ} 0$	3 C
$6 \cdot 5$	44.0	54.5	$95 \cdot 5$	65.0	3
95	495	63.0	1010	72.0	4
90	490	$67 \cdot 0$	$101^{\circ} 0$	72.0	4
$11 \cdot 0$	51.0	6.5	98.5	715	4
130	51.0	69.0	93.5	72.0	51
50	+0.01	51.0	96.0	$68^{\circ} 0$	4
$5 \cdot 0$	470	$5: 0$	85.5	$64^{\circ} 0$	4.
$12^{\circ} 0$	54.0	61.0	69.0	63.5	4.
110	53.0	$61^{\circ} 0$	75.0	$64^{\circ} 0$	4.
50	470	6×5	90.5	$65^{\circ} 0$	4
$10^{\circ} 0$	50.0	55.5	95.5	$64^{* 5}$	4
9%	490	50.0	S7.0	$61^{\circ} 0$	4
6.0	430	$55^{\circ} 0$	87.0	$62^{\circ} 0$	3
$11^{\circ} 0$	53.0	69.0	92.0	$73^{\circ} 0$	4
$8 \cdot 0$	$47^{\circ} 0$	$53^{\circ} 0$	$92 \cdot 0$	$70^{\circ} 0$	4
70	45.0	519	945	$63^{\circ} 5$	4
$\therefore 0$	420	51.0	86.0	$65^{\circ} 0$	8
80	$47 \cdot 0$	$47 \cdot 0$	67.0	59.0	4
50	41.0	54.0	$87 \cdot 0$	56.5	
$10 \cdot 0$	51.0	$5: 30$	71.5	55.0	$1 \leqslant$

Mean Press, 29.316	Mean	M'n. Tem.	Iean.	Mean $65^{\circ} 08$	1
$\begin{gathered} \text { Greatest do. } \\ 30.011 \end{gathered}$	$\begin{gathered} \operatorname{Max}, \\ 100 \end{gathered}$	Max. 69.00	$\begin{aligned} & \text { Max. } \\ & 10100 \end{aligned}$	Max. $72^{\circ} 0$	A
Lea t do. $2: 530$	Niil. -50	$\operatorname{Min}_{4100}$	Min. $64 \cdot 00$	$\operatorname{Min}_{53.0}$	$!$

e Meteorological form brought into use at th 23 differs in some respects from the former adopted with the view of assimilating the J: als more closely with those of stations in Euro in order to co-operate iu a system of I rorology. Readings are added from the cen eter, that being the instrument generally inent of Europe.
e mean is in all cases taken from the sum registers, not from the maximum and minim e direction of the wind is registered from it of 92 feet above sea level, and its forc re fuot.
e relative quantity of rain that fell under s is registered each morning at $7.30 \mathrm{a} . \mathrm{m}$.
e 35 years' standard tables are used for c
rence from sverage.
FRANCIS ABBOTT, F. 1

Of leafing, flowering and fruiting of a plants in the Royal Society's Gardens duri if April. 1876.
 2.- Coe's fine late Hed Elum commencing 1.- Elm leaves commencing to fall.
 h. - Chinese Chrysanthemums commence t ih. - Mountain Ash leaves commence to fa'

METEOROLOGY FOR APRIL, 1876.

Private Obrerfatory, Hobart Tomn.
Latitude $42^{\circ} 52^{\prime} 13^{\prime} \mathrm{S}$.; Lougitude 5 l .49 m .20 s . E ,
Registered for the Royal Society of Tasmanis)

The Meteorological form brought into uso at the beginning of 2 tid differs in 60 me respects from the former one. It hus becs atopted with the view of assimilating the Hobart Town recotds more closely with thase of ststions in Euzope, America tic, In order to co-operate if a syatem of International Heteorology. Readings are adiled from the centigrade therusmeter, that being tho instrument gencrally used on the coatinent of Europe.
The ruan is in ell cases taken from the sums of the two Falls registers, not frous the maximum and minimum.
Tbe direction of the wiad is registered from currents ata teight of 02feat alvovo sea level, and Its forco in lbe. por 4quate foot.
The rolative quantity of rain that fell under the different Findu is regintered aach morzing at $7.30 \mathrm{k} . \mathrm{m}$.
The 35 yeara' standard tables are used for obtaining the Wierence irom average.

ERANCIS ABBOTT, F.R.A.S., ole.
TIm of leafing, flowering and frattiog of a few standard plants in the Roysi Society's Gardens durling the month of Aprli, 1876.
thi,-Cae's fine late Red Plum commeneing to riper. 640.-Elm leaves commeacing to rall.

13 h .-Chinese Chryanthumums commence to fiower.
20th.-Mountain Ash leaves commence to fall.

28th,-Seerls of Hornbeam ripe,
99th.-Black Kulberry leaves commence falliog.
F. ABBOIT, Jon , Superintendent

Resulta of observations taken at Nem Norfolk for April, 1876, in accoriance with new forms, and registered at $7.30 \mathrm{a} . \mathrm{m}$, and 490 pm . :-
Barometer, mean of two dally readingy, corrected and reduced, 20'sluin.
Thermometer, menn of 2 ditto, B0.podee
Dew point, mesn position of 2 ditto, 40 80deg
Elastic force of rapour mean, of 2 aitto 253 .
Fumidity of air, mean of 2 ditto, '(18.
Solar inteusity, moan of maximum temporature, 214 vodeg. Terrestrial radiation, mean of minimum temperature, 3610 deg

Rainiall, I (1)fu.
Evaporation, 9.20 Hn , fa excess of rainfall 20 Ha .
Clouds, mean amount of 2 daily observatlons, 820.
Ozone, mean ditto, 2 ditto ditto, 700.
Wind force in lbs, per square fool of 2 ditio uitto, $\$ 929 \mathrm{lbs}$. Ditto, horizontal movement, 1,772 milles.
Electricity, 62 observations, 29 negative, 7 positive, 16 nil.
W. E. sHOOBRLDGE, Vallepfeld.

PRIVATE
Latitude $42^{\circ} 52^{\prime}$
（Registered

	Thermometers （Teading．）		The （Self－	momete Registeri
$129 \cdot \Omega 9 \%$ 99－5．561	3.0	$370 \quad 540$	Si	（i2） 0
$\because 2.173425 .839$	$12 \cdot 0$	$54^{-0} 54^{\circ} 0$	90 －	（i5\％）
$\because 30 \cdot 12330 \div 222$	8.0	46．0 53.0	91.5	$1: 5 \cdot 0$
9 ．$)=1$ B） 21 ，	$\therefore 0$	41459.0	90\％ 5	（i） 5
S $1110 ; 3) 04: 1$	（i）	$4 .: 9530$	（1） 5	（i．1）
（i）？1：1－5－．1．	＋ 0	41050	S 15	5！） 0
	！10	$4!1053.0$.65	$\therefore 0$
\＆3） $1 \therefore$－ 611331	： 1	47 1 53.0	120	120
	75	3.5530	850	5．） 0
	10.5	5105490	87.5	55.5
1－2） 520 20＊912	－ 13	3．0 0.110	$1: 6.0$	5.50
2.215862 .422	（i．）	$4: 3550$	≤ 35	（i3） 0
$32.1067{ }^{2} 9^{\circ} 250$	$\because 5$	$3 \cdot 9450$	（15\％）	375
\＄ 30.33330 .393	75	450 is 10	915	610
－ $30 \cdot 333359239$	4%	$40.5 \quad .15$	74.0	5） 0
（i） $30 \cdot 76) 3.350$	20	$3 \div 0.0$	10%	（6） 0
$7130-32 \pm 30-375$	10	$320 \quad 53 \cdot 0$	sso	63%
§ $3031030 \sim 233$	s．0	40.50 .5	，$\ddagger \cdot 0$	$\mathrm{CF}^{-1} 0$
（ $34 \cdot 10): \ldots+16$	S 0	4.9 .550	（12．0）	（i） 0
\because 显	（1）	490500	61.5	59.0
：131211 ：11－1～1；	$\therefore \quad \therefore$	410.510	¢50	59.0
	30	350 515	发 15	535
3 $2 \times 750 \times 3+737$	50	41.052 .5	835 5	5； 0
＋ 3.78229 .374	130	$5 i \cdot 5 \quad 55 \cdot 0$	70.0	60.0
\therefore ？1\％15－ 31	9.9	4：0 -3.50	（0\％）	57.0
	55	$4 \div 0520$	E50	60.0
	$\because 11$	3；1）． 310	75	5． 0
－ $30 \cdot 27030 \cdot 055$	49	4）0 490	61．0	540
$\therefore 203072: 926$	51）	4.0 － 78.5	と35	62.5
	49	410560	740	5，） 0
	1リ0	$500 \quad 50 \cdot 0$	82.0	is 0
Iean Press． $29.3 J 3$	$\begin{gathered} \text { Mean } \\ 0.5 \end{gathered}$	M＇n Tem． $48 \cdot 13$	$\begin{gathered} \text { Mean } \\ 81: 18 \end{gathered}$	$\begin{aligned} & \text { Mea } \\ & 60.4 \end{aligned}$
Ireatest clo． $30 \div 49$	$\begin{aligned} & \text { Max. } \\ & 13.0 \end{aligned}$	Max． 59.00	Max． 9100	$\begin{aligned} & \text { MaI } \\ & 67^{\prime \cdot} \end{aligned}$
$\begin{aligned} & \text { Least du. } \\ & 23: 024 \end{aligned}$	Min．	$\begin{aligned} & \text { ALin. } \\ & 35 \cdot 00 \end{aligned}$	Min．	Mi1

The Meteorolozical form brought into use a 1－70 differs in some respects from the forn in alopted with the view of assimilating tl ards more closely with those of stati verica，etc．，in order to co－operate in a Anal Meteorology．Readings are added de thermometer，that being the instrumen t？e continent of Europe．
he mean is in all cases taken from the s if registers，not from the maximum and m In direction of the wind is registered fro ght of 92 feet abore sea level，and its are foot．
The relatire quantity of rain that fell unc rds is registered each morning at $7.30 \mathrm{a} . \mathrm{m}$ ． ine thirty－five years＇standard tables are u ：difference from average．

FRANCIS ABBOTT，
ne of leafing，flowering，and fruiting of I！ints in the Royal Society＇s Gardens od of May， 1876 ：－
inte－Uwing to the absence of heavy tuan months of 187 G ，the plants usual ver in May were very backward；none ：del flowers up to the beginning of June e accounted for by the dryness of the su＇

Private Observatory, Hobart Town,
Iatftude $12^{*} 52^{2} 13^{\prime} \mathrm{S}$; Longitade 0h. $49 \mathrm{~m}, 29 .-2 s$, E. Registeral fur the Royal Bociety of Tasmanla.)

The Met-orological form brought into usa at the beginning of 187 s ditfers in somo respects from the former one. It has bena adonted with the view of nssimilating the Hobart Town recards more closely with those of stations in Europe, Anserics, ric., in order to co-operate in a system of Internatiand Motcorology. Realings aro alded from the centigrude thermameter, that being the instrument generally used on the continent of Europe

The maen is in all cases caken from the sums of the two daity reglsiers, not from the maximum and minimum.
Tho dirertion of tha wind is registered from currents at a letigh of 122 teet above lea level, and its force in lbs. per muare font
The relative quantity of rain that fell under the different winds is regiatered esch moraing at 780 a ml .
The thirty-Ave yearst standsrd tables are ueed for obtaining the diference from average.

FIANCIS ABBOTT, F.R.A.S., etc.

Time of leating, flowering, and fruiting of a few stan lard biants in the Hoyal Soolety's Gardens during the month of Mray, 1870:-
Nines-Uwiog to the absence of heavy talne during the Antuan months of 1876 , the plants usually commencing to fower in Alay wese very bsckward; nono of them la 1 ex. Proiled fosists up to the begianing of June; this is no duubt Wh be accounted for by tho drymees of the aubsoil.

The plants usually flowering are Coronilla glauca, Photinia serrulats, Dlosma alba, and Spirze pruaifolia.
F. ABBOTF, JUK,, Stperintendent.

Resulta of observationa taken at Now Norfolk for May, 1876, In accorinace with new formis, and registered at 730 am . athd $\$ 30 \mathrm{p}, \mathrm{mi}$, -

Berameter, mean of 2 daily rendings, corrected nad radu zed, 4 120.
Chermometer, mesn of 2 ditto, 4500 deg
Dew point, mesu pasition of 2 ditto, 11 'a0deg.
Humidity of air, mesn of I ditto, 8 is
Elustio forco of vajour inean, of 9 ditto, 203.
Solar intensity, mean of naximum temperature, $101 \cdot 2$ sideg. Terrestrial radiation, weas of nivimuna temperature, $3374 d \mathrm{gg}$.

Tainfall, 82in.
Evaporaklon, 120 En . in excess of rainfall, 4.4 in .
Ozono, mean dilto, 2 ditto ditto, 677.
Clouids, mean atuonnt of 2 daily olservations, 5/75.
Wiad, force in lbs, per equare foot of 2 ditto ditio, 47 - 331 ls .
Pitto, horizontal movement, 2012 miles.
Electricily, 63 observations, 28 negative, 8 ponitive, 20 nil.
W. E. SHOOBRIDGE, Valleyfich.

Rainfall at IIIl Station, 1,850ft. above sea level, 1 47 in .

	Thermometers (Reading.)			Tharmoms (Self-Regist	
-ง. 510	,	370	46.0	76.0	56
2 2.) 77029% \% 2	60	$43^{\circ} 0$	50.0	750	52
$3 \times 9 \times 50 \pm 29751$	75	416	$50^{\circ} 0$	S1.0	(i)
429.80029 .907	100	.10) 5	\$1-5	75.5	\because
$53002 \pm 30 \cdot 134$	14	350	52.0	$\therefore 0.5$	is
630057 2.9)9	$\ddot{6}$	3, 0	49.0	6	53
	5.0	410	415	720	55°
$823 \times 15!29!142$	$5 \cdot 0$	420	485	¢ 65	5 4
$930.00230 \cdot 032$	$1 ; 5$	4+0	$54^{*} 0$	73.5	55°
1030036	90	4) 0	$55^{\circ} 0$	$65^{\prime} 5$	59
1129.87829 .776	115	6335	58.5	59.5	59
1229732 27.52 s	130	560	50.0	62.0	51.
$1329 \cdot 25223 \cdot 125$	135	5.70	54.0	60.0	60
$14 \cdot 29 \cdot 15529 \cdot 416$	70	450	$46 \cdot 0$	745	12
$15 \cdot 29 \cdot 49523 \cdot 496$	20	35.5	48.0	76.0	5 5
$16.29 \cdot 11 \geq 29 \cdot 093$	6.0	$43 \cdot 0$	$45 \cdot 5$	640	5.2
$17.29 \cdot 57329 \cdot 853$	$2 \cdot 0$	35.5	$42^{\circ} 0$	63.5	48
$1830 \cdot 12730 \cdot 081$	$3 \cdot 0$	3 S 0	44.5	55.0	55
19 299.903 30.113	105	51%	55.0	65.5	53
2030.01129 .910	80	470	$55^{\circ} 0$	79.5	60
21 $30 \cdot 16430 \cdot 19.5$	$5 \cdot 0$	400	47.0	67.0	55
2.2 30.253 30-240	$6 \cdot 0$	43.0	490	71.0	$5 \pm$
$2330 \cdot 20830 \cdot 182$	$7 \cdot 5$	$46^{\circ} 0$	$54^{\circ} 0$	805	60
2t $30 \cdot 20330 \cdot 225$	6.0	$43 \cdot 0$	52.0	S45	61
$2530 \cdot 39 \pm 30 \cdot 239$	2.0	36.0	51.5	$81^{\prime} 5$	6
$2630 \cdot 33430 \cdot 307$	1.0	$35 \cdot 5$	$46 \cdot 5$	72.0	5 ¢
$2730 \cdot 025 \quad 29 \cdot 898$	$3 \cdot 5$	39.0	$45^{\circ} 0$	53.5	5
23 29'612 29-765	6.5	4.40	44.0	$65^{\circ} 0$	5
29) $29 \cdot 883$ 29.852	± 0	400	53.5	765	$5 t$
$30,29 \cdot 931-29 \cdot 746$	$6 \cdot 5$	43.0	54.0	7 ± 5	$5:$

Mean Press. 29.368	$\begin{array}{r} \text { Mean } \\ 6.00 \end{array}$	M'n. Tem. 46.89	Mean $71 \because 3$	M 5
$\begin{aligned} & \text { Greatest do. } \\ & 30^{\circ} 2 \mathrm{~s} 0 \end{aligned}$	$\left\lvert\, \begin{gathered} \operatorname{Max} . \\ 13.50 \end{gathered}\right.$		$\begin{gathered} \text { Max. } \\ 8650 \end{gathered}$	1 6 6
$\begin{gathered} \text { Least d } \mathrm{J} . \\ 29.099 \end{gathered}$	$\operatorname{Min}_{1.00}$		Min. 55.00	$\frac{3}{5}$

The Mettorological form brought into use of 1876 differs in some respects from the fc reen adousted with the view of assimilating 'ecords more closely with those of sta Imerica, etc., in order to co-operate in lational Meteorology. Realings are alde rale thermometer, that being the instrum on the continent of Europe.
The mean is in all cases taken from the laily registers, not from the maximum and The dirention of the wind is registered 1 leight of 92 feet above sea level, and its 'lluare foot.
The relative quantity of rain that foll u vinds is registered each morning at 7 " 30 a . The thirts-five years' standard tables are he difference from averaze.

FRANCLS ABBOT

Iime of leafing, flowering, and fruiting plants in the Royal society's Gardens. of June, 18.6 :-
10th.-Diosma alba in flower.
20th.-Calycanthus pracox in flower.
25 th. -Pyrus japonica commencing to f 30th.-Snowtlake commencing to flowe aaves all shed; Osage orange leaves all sh

Prtivite Gbaemvatory, Hobart Town.

Fiegisterell for the Nongal snefety of Tasmania

 been adonceil with the view of usfintlating the Hobart Town reconls more closely with those of atations in Europe. records move closuly with baves etc. in order to comperata in a system of InterAnrerica, elc., in order 60 conopersta slded from the centi. Hational Meteorology. Reaulings ard silded from the cent grale thermometer, that being the instrument genetally used on the continent of Europe.
Tho mean is in all cases taken from the sums of the two daily rogisters, not from the muximum and minimum.
the direction of the wind is ragistereal from carrents at a lienght of 位 feat above sen level, and its ferce in Jbs. iner zquare loat

Whe relative qunatity of rain that fell under the different yinds is registered each morning nt $780 \mathrm{a} . \mathrm{m}$.
Ihe thirtis-flve yenrs' standard tables are used for obtaining fo hifference froun avers

FRANCIS ABBOTT, F.R.A.S., eto.

Tinie of leafing, flowering, and fruitiog of a few standard plants in the Royal Society's Gartena during the month of Jun0, 1870:
20th,-Diosma allon in flown
")th.- Calycanthis pracox in flawer
tuth-Pyrus japonica coavmenang to flower.
30th - Snnwtakt commenelng to Hower: Black ALulberry
leaves all shed; Usage orange leaves all slied.
17ic, is 4revilanos with wex froms, atal re fivterel at 780 a m. buft 430 pm : -
Barometer, menn of 2 inaily readiags, corrected and reduced.

Thermometor, mean of 2 ditto, $44-21 \mathrm{deg}$.
Dew point, mesp position of 2 ditto, 39 vodeg.
Elastic fores of vapour mean, of 2 ditto, 245 .
Iumidity mean of 2 ditto, 8 .
Solar Jakensity, menn of maximum tempersture, 9783 leg .
Terreatrial radiation, mesn of minimum temperature, 32 93deg.

Rainfall, 2 givin in exceas of evaporation, 101 n.
Evaporation, 2 ghin.
Clouds, mean of 2 daily registers, 505.
Ozone, mean ditto, 9 ditto titto, 7 \$0.
Wind, force in liss. per equara foot total of 2 ditto ditto, fs-bulbs.
Horisontat movement, 2,350 miles; 1,070 miles from 10 Lh to 14th.

Electricity, 69 observations, 18 negative, 14 positive, 27 nib: Retive on +th, $11 \mathrm{th}, 12 \mathrm{th}_{3}, 19 \mathrm{~h}_{\mathrm{h}}$, and $2 s$ th.
Highest flood since 1869 in the Styx River on the 14 th.
W, E. snoobridge, Valleytiedd.

			METEOROLC Private Obsef Latitude $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$ (Registered for th			
		rmometers Reading.)		Registe	eters tering.)	I
1-1: $23 \cdot 735$	S 5	47.5495	700	550	-	
a $1: 1: 10 \cdot 002$	2.5	$37^{\circ} \cdot 0.51 .0$	71.5	5.5	$31 \cdot 5$	
re2t-r39	3.5	33 5 56\%	(6) 0	59) 5	$3 \geqslant 0$	
1-1 30002	5.0	41.0	760	53.0	33.5	
-65 30041	15	$3 \pm .5 \quad 4{ }^{\circ} 0$	74.5	640	$30 \cdot$	
10\% 30.025	20	$35 \cdot 0 \cdot 49.0$	68.0	55.0	$30 \cdot 5$	
11.7	$5 \cdot 0$	$11.0 \quad 54.5$	705	57.0	$35 \cdot 5$	
104130.03i	9.5	$49.5 \quad 51 \%$	67.0	55.0	40.0	
1 6 it 30.0421	3.9	$37.5 \quad 50 \cdot 0$	70.0	5.5	31.5	
1176	10	136051.5	70.5	55.0	$32 \cdot 0$	
91-30 0121	20	$135 \cdot 545.0$	52.5	520	31.5	
$1 \cdot 15280 \div 031$	$3 \cdot 0$	1350 430	62.0	500	320	
1-2 3) 331	5	131.0 460	65.5	52.0	30.0	
$\therefore 4530 \cdot 441$	1.5	34.547 .5	74.0	$52 \cdot 5$	305	
$1:-1: 1404$	1.0	$31.512 \cdot 5$	71.0	50.0	27.0	
N-20	30	$37 \cdot 0: 4{ }^{3} 5$	600	50.0	30.0	
mpray	5.0	$41.0: 550$	74.5	54.5	31.0	
$\cdots 1110.114$	$3 \cdot 0$	$33.0 \quad 53.0$	83.5	59.0	31.0	
$1: 2$	5.5	$41 \cdot 5,52 \cdot 0$	695	59.0	$32 \cdot 5$	
17.j: $2 \times n 1$	8.0	$47.0 .43 \% 5$	65.0	52.5	31.0	
1-2, 3	50	$41^{\circ} 0 \quad 48.0$	740	53.0	$30 \cdot 5$	
,	4.0	$30 \cdot 5.50 \cdot 0$	76.5	54.5	34.0	
	65	$43 \cdot 5 \quad 54 \cdot 5$	81.0	59.0	34.5	
(14) 2.145	35	38-5:53.0	830	$55^{\circ} 0$	34.0	
172	6.0	430560	76.0	67.0	320	
$1 \times 4 \div 3$	60	42.0 : 50.0	70.5	53.0	3 ± 5	
$1: 15 \div 1=-1$	140	53.0. 57.5	66.0	50.0	31.0	
7-3	13.0	55:5.57.0	67.5	51.5	$30 \cdot 5$	
1-iter	$1 \geqslant 0$	55.5153 .5	72.0	55.0	32.5	
111:1,	11.0	$54.0: 57.0$	73°	56.5	31.0	
- 253113	12%	$\begin{array}{ll}54.5 & 54.0\end{array}$	65%	$53^{\circ} 0$	32.5	
$\text { Sean } 1 \text { rr }$	Man Si)	I'n Tein. $40: 35$	$\left.\begin{array}{\|c\|} \text { Mean } \\ 70 \cdot \mathrm{cs} \end{array} \right\rvert\,$	$\begin{array}{\|c\|c\|} \|M e a n\| \\ 55 \nmid 2 \mid \end{array}$	Mean	
π	$\begin{gathered} 3 \operatorname{rax} \\ 1+\cdots \end{gathered}$		Max. $8 \pm .00$	1 Max.	${\underset{42}{\mathrm{Max}} .0 \mathrm{C}}^{2}$	
Lent (d).	Iim_{1-1}		$\operatorname{Min}_{52^{-} .50}$	$\mathrm{Min}_{50.0}$	$\begin{aligned} & \text { Nin } \\ & 27 \cdot 0 \\ & \hline \end{aligned}$	

Metsorolozical form brought into use at the b \therefore ? 1 opted with the view of assimilating the Hobs more closely with those of stations in en, etc., in order to co-operate in a system । al Meteorology. Readings are added from tl tilermometer, that being the instrument gener: enatinent of Europe.
mean is in all cases taken from the sums of \because iters, not from the maximum and minimur: dirertion of the wind is registered from curri of 92 feet above sea level, and its force in font.
relative quantity of rain that fell under the is lecistered each morning at $7.30 \mathrm{a} . \mathrm{m}$.
thirt y-flve years' standard tables are used for ference from average.

FRaNCIS ABBOTT, F.R.A.
of leafing, flowering, and fruiting of a few ants in the Botanical Gardens during the aly, 1876 :-

- Arbutus unedo commencing to flower. - Garrya elliptica, ditto.
- Almond, ditto : Ycllow Crocus, clitto.
F. ABBOTT, Jus., Superin!

METEOROLOGY FOR JULY, 18%.

Phivate Observatory, Hobart Town,

Latituile 12^{\prime} is $13^{\prime \prime} \mathrm{S}$. Longitate $\%$. 49 mm . as $2 \mathrm{I}_{\mathrm{s}} \mathrm{E}$ E.

Ragisteres for the Royal Society of Posmanis.)

[^26]F. ABBOTT, JUS., Superiateudent.

Private (

latitude t2"
Registerel

Tho Mettorological form brought into use a 15.6 ditfers in some respects from the fort sen adopted with the riew of assimilating t: cords more closely with those of stati merica, etc., in order to co-operate in a 3 tional Meteorology. Readings are added ade thermometer, that being the instrumer a the continent of Europe.
The mean is in all cases taken from the ε vily remisters, not from the marimum and rr The direction of the wind is ragistered frc tight of 92 feet above sea level, and its 1 filare font. The relative nuantity of rain that foll und inds is registered each morning at $7.30 \mathrm{a} . \mathrm{m}$ The thirty-flve years' standard tables are u de difference from arerage.

FRANCIS ABBOTT,
ime of leafing, floxering and fruiting of
plants in the Rnyal Society's Gardens
1870 :-
1::h. Sambnens niger commencing to bres
Eirl 1. Horse chestnat disto ditto.
2:1. Gnoseberrins commencing to start.
$\because: 4$. Common Jim commencing to thow
:3:- Lombards P'oplar commencing to bs
F. AbEOTT, Jư.,

METEOROLOGY FOR ATVTST, 1S\%G,
Private Oescrvatory, Hobart Tows.
Latimie $42^{\circ} 5{ }^{\circ} 13^{\prime} \mathrm{S}$; Longitude 9 h .47 m .29 .2 s E
Regiatesed for the Roval Society of Tasmabia

Th, Metturulngical form bronght intn use at the beginning Fwoults of obsernations then at New Norfolk for August, of 1874 differs in some respecta from the former one. It has been mopted with the view of assinilating the liobart Town records tane closely with those of stations in Europe, America, etc, in order to co-operste in a systers of International Meteorology. Regdings are adided from the centigrale thermometer, that beiog the instrarnent generally used on the continent of Europe.
The mean is in all cases taken from the sumg of the two daily regislers, not from the maximum and minimurn.
The dirention of the wint is registered from ourrents at a hefight of 92 feet sbove sea levol, sad its forcs in lbs: per bquate foot
The relativn nometty of rain that foll under the different winds in registecerl each mornirg at 730 nm .
The thirty-five years' standard tablea are natd for obtaining the difference Irom averaze.

FRANCIS ABBUTT, F.R.A.S., ete.
Thas of leating, flowering and fraiting of a few standard plants in tho Enyal Soclety'a Gardens during August,
18th. Sambincus niger coramancing to break into leat,
24at. Horve chestout ditto ditto.
esth. Goosoberries collamencing to start.
30th. Common Fion golnmencing to Hiswer.
31st. Lumbardy Poglar commoncing to breake into loaf.
F. ABBOTT, JuN., Superintendent.

18\%0, in accordance with new forms, and registered at 730 sm , and $480 \mathrm{p}, \mathrm{m}$. :-
Barometor, menn of 2 daily readings, corrected and reduced, 21) visbin.

Thermometer, mean of 2 ditto, 41^{-2} ideg; menn of mas. and rain. In shade, 43.00 deg
Dew point, mean position of 2 dsily resdings, $39 \cdot 03$ deg.
Lumillity mesu of 2 ditto, 23.
Elastic force of vapour mean, of 2 ditto, 242 .
Solar fatensity, sacan of maximum teopprature, 100 -2siteg.
Terrestrial radiation, mean of minimnm temperature. 3083 deg .
Rainfall, 217 tn .
Evaporation, 2 sfin. : fo excess of rainfall ${ }^{-28 i n}$.
Ctouds, mean of 2 ditto, $5 \cdot 17$.
Ozone, mean of 2 daily obeervations, 733.
Wind, forco in lts. per equare foot, Lotal of 2 daily obserrations, 37 '2slbs.
Horizontal movement, 2,010 miles.
Electricity, 55 observatlons, 10 negative, 12 positivo, 21 nil-
W, E. SHOORELDGE, Valleylieh.

METEOR
Prival
Latitude 4:
(Regisi

		Thernometers (Reading.)		Thermo (Self-Regi	
	29.46229 .468	50	$41.0 \mid 450$	715	6
	29.725 .29773	4.0	40.0 45.0	62.0	5:
	2982029 S*1	10.0	$50 \cdot 5: 56 \cdot 5$	78.0	6
	29 '802 29.857	11.5	$53^{\circ} 0,53^{\circ} 0$	72.5	6
	30.078 .30 .074	$6 \cdot 5$	$44^{\circ} 0.54 .0$	71.5	6
	$30^{\circ} 062.29802$	70	45.0 - 635	81.0	6
	$29.85029 \cdot 857$	11.5	53.5 ¢0.0	91.5	${ }_{6}$
	29 -600 $29 \cdot 460$	10.0	50.5 60-0	91.5	${ }^{\text {f }}$
	29.76429 .992	$5 \cdot 5$	42.5 , 47.0	61.0	6
	$30-2.38300228$	- 5	$46 \cdot 5$ '51.5	90.0	5
	$30-21930 \cdot 065$	4.0	$39.5 \quad 55.5$	750	
	29) 86129.702	6.0	43.0155 .5	82.5	ϵ
	$29 \cdot 50320-280$	85	47.5153 .0	75.0	
	$29 \cdot 05228931$	$9 \cdot 0$	$48: 5 \quad 51.5$	65.0	
	28.90229 .035	100	$50.0 \quad 54.0$	72.5	
	$29 \cdot 115 \quad 29.235$	$6 \cdot 5$	$44.0 \quad 49.0$	81.0	
	$\because 9.705 \times 29704$	8.5	47.5 5.0	85.5	
	$29 \cdot 81829.754$	9.5	$49.5: 63.0$	$8 \geq 0$	
	$2972+29 \cdot 781$ $29 \cdot 7+29.515$	16.0	$\begin{array}{lll}61.0 & 70.0\end{array}$	${ }^{91} \cdot 0$	
	$29 \cdot 74229.548$ 29.433 20.495	11.0 9.5	$\begin{array}{ll}52.0 & 630 \\ 50 \cdot 0 & 50\end{array}$	89.0 72.5	
	$29.65429 \cdot 851$	8.5	47.5 $55^{\circ} 0$	75.0	
	$30 \cdot 15430 \cdot 105$	8.0	$47.0{ }^{\prime} 61.5$	80.0	
	$30 \cdot 100 \cdot 29 \cdot 854$	8.5	47.51660	83.5	
	$29 \cdot 995$ 29.957	90	$45.5 \quad 59 \%$	85.0	
	29:900 29.829	9.5	$40^{\circ} 0 \quad 62.0$	1010	
	$29 \cdot 737-29.664$	$11 \cdot 5$	53.0 - 540	84.5	
	29:853 29.922	8.0	46.5.58\%	80.0	
	30.06830 .00 .5	8.5	47.061 .0	85.0	
	$30 \cdot 00029 \cdot 960$	80	$47 \cdot 0: 61.5$	88.5	
	Mean Press. $29 \% 51$	$\begin{gathered} \text { SIean } \\ 8: 55 \end{gathered}$	M'n. Tem. 52.30	$\begin{gathered} \text { Mean } \\ 80 \cdot 60 \end{gathered}$	
	Greatest do. 30 223	$\begin{gathered} \text { Max. } \\ 10^{\circ} 00 \end{gathered}$		$\begin{aligned} & \text { Max. } \\ & 10100 \end{aligned}$	
	Least (i). 2502	Min. $4 \cdot 00$		$\begin{aligned} & \operatorname{Min} . \\ & 62.00 \end{aligned}$	

The Meteorolagical form brought into u of $15 \pi \mathrm{C}$ ditters in some respects from the been adopted with the view of assimilatir records more closely with those of : America, etc., in order to co-operate in national Metcorology. Readings are adr grade thermometer, that being the instru on the continent of Europe.
The mean is in all cases taken from t ' hily registers, not from the maximum ar The direction of the wind is registeres 2. ight of 92 feet above sea level, and : - inare font.

The relative quantity of rain that fell winds is registered each morning at 7 '30

FRANCIS ABBO
Xime of leafing, flowering and fruiting plants in the Linyal Society's Gartel 157f:-
2oth. Oak commencing to break into le 2lst. Moutan P'eony commencing to 11 2Gth. Ash commencing to break into 1 27 th. (irape vines ditto.
Both. Horsechestnut commencing to fl. I acia commencing to leaf.

METE MROLOH FUR SETTEMLER, 1 MO.

Phifate Obvervitury, Ifobaft Tows.

Registered for the Finyal moctety of Tasmania

The Neteorolngical form brought into use at the hegioning of 1 s 70 ditters in some reypects Irom the former noe. It has been alogzerl with the view of assimusumg the hobart Town records moro closely with fhose of stations in europo, Americh, etc, In order to co-operate in a system of Internatlonal Metcorologs. Nealing are sulded from the centi-
 on the contizent of tsurope.

Thiodirection of the wind is regtifered frotu curcents at a heigit of 2 a feet above sca level, and ats force is lbs. per symare foot.
TI * relatine quantity of min that fell undur the different

IRAN'IS ABBUTT, F.R.A.S, ete.
Time of lenfing, flowering and fruiting of a few standard banta in the fingal society's tiatdeas thering Neptember, 13i6:-

This. Ash cormmencing to lireak into leaf irupe vines ditto
Atacia commeacing to leaf
F. ARLWTT, $J_{1} \times$, Superintendent.

Fesults of observations taken at Now Norfolk for September, 1876, in accordunce with oew forms, and registered at 7.30 a.m. and 430 p .1 ta . :-

Barometer, mean of 2 diilj' readings, corrected and reduced (4) Tilin
 and min. in sisatle, 50 thiteg.

Rumidity of nir, mem of 2 ditto, "
Elastic force of zapour] mean of 3 ditto, 209.
Solar intensity, theau of imaimun tetaperaturo, 113 soaleg.
 3203 useg
Tainfall, 8 Titin.
Evaporation, 5 10in ! in excess of rainfall, 383 in .
Touts, mean of 2 dady legister3, 5:30
Ozons, meau of a daity olseerwations, 724
औान। 1..
vations, 75° Fitlles
\#ottrontel movemonf, 3,022 2 milos.

W, 1. SHOOERIDGE, Falleyioh.

Private Obsei
Latitude $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$ (Registered for th

	Thermometers (Reading.)			Thermometers (Self-Registering.)		
$330 \cdot 07$ t		48	54° 5	90.0		360
$30 \cdot 118 \quad 29.947$	--5	46.0	67.0	90.5	690	$33 \cdot 5$
$29.830 .29 .805^{\prime}$	$12^{\circ} 0$	$54^{\circ} 0$	$61 \cdot 5$	92.5	73.0	36.0
12979029.588	110	52.0	70.5	1007	79.5	34.5
129.940 .29 .925	$9 \cdot 5$	49.5	55.5	$88^{\circ} 0$	72.0	33.0
$29 \cdot 980 \quad 29.606$	110	52.0	62.0	75.0	63.0	38.5
$30 \cdot 807$ 29.009	$9 \cdot 5$	49.5	56.0	70.0	65.0	36.0
$30.14030 \cdot 193$	95	49.5	56.5	$92 \cdot 5$	61.5	34.0
${ }^{1} 30 \cdot 19+30 \cdot 082$	$5 \cdot 5$	42.5	53*5	73.0	58.0	$32 \cdot 5$
$1.29 .970 \cdot 29.970$	10.5	$51^{\circ} 0$	56.5	61.5	59.0	$37 \cdot 0$
25092929.925	$12 \cdot 5$	$55^{\circ} 0$	64.5	90.0	68.5	38.5
$29 \cdot 42929.963$	$12^{\circ} 0$	54.0	53.0	65.5	65.0	37.0
$\therefore 30.09030 .082$	10.5	$51^{\circ} 0$	$51^{\circ} 0$	62°	$60 \cdot 0$	$34 \cdot 5$
$30 \cdot 19+30 \cdot 132$	9.0	49.0	52.0	58.5	58.0	$33^{\circ} 0$
; 30.14230 .092	$10 \cdot 5$	51.0	520	$57^{\circ} 0$	55.5	36.5
; 29.90429 .771	12%	$54^{\circ} 0$	59.0	72.5	$63^{\circ} 0$	43.5
-29*(80 29.583	12.5	55.0	$64^{\circ} 5$	96.0	$75^{\circ} 0$	$44^{\circ} 0$
- 29.70429742	110	$52 \cdot 0$	60.5	$90^{\circ} 0$	68.0	41.0
129.829 29.756	75	$46^{\circ} 0$	$63^{\circ} 5$	$104^{\circ} 5$	73.0	33.5
- $20 \cdot 43929 \cdot 448$	12.0	$54^{\circ} 0$	59.0	76.0	68.0	36.0
23)-548 $29 \cdot 356$	8.0	$47^{\circ} 0$	$61^{\circ} 0$	78.5	68.0	$34^{\circ} 0$
! $29-445 \geq 9.464$	11.5	53.0	63.5	$79^{\circ} 0$	68.0	38.5
; $29 \cdot 383$ 29-336	$9 \cdot 5$	49.5	63.0	$90^{\circ} 0$	645	36.5
(29) 49329.668	8.0	$47^{\circ} 0$	$59^{\circ} 0$	83.5	52.0	$35^{\circ} 0$
; $29 \cdot 795,29 \cdot 752$	9.0	49.0	$65 \cdot 0$	$96^{\circ} 0$	68.0	$37 \cdot 5$
! $30.00730-198$	$9 \cdot 5$	$49 \cdot 5$	56.5	72.5	64.0	38.5
$30.082,29.987$	12.5	55.0	66.0	930	76.0	42.0
; $20 \cdot 10 \cdot 929$ 29-786	13.0	56.0	72.0	940	75.0	$43 . \mathrm{C}$
$129 \cdot 675,29 \cdot 509$	$12 \cdot 5$	55.0	61.5	$92 \cdot 5$	73.5	$50^{\circ} \mathrm{C}$
129.446.29-537	7.5	$66^{\circ} 0$	57.5	72.5	67.0	42*
29.585 29.526	13.0	$56^{\circ} 0$	60.5	78.0	$67^{\circ} 0$	43^{\prime}
Mean Press. 29.829	Mean 10.60	$\begin{array}{r} \text { M'n } \\ 5 \end{array}$	em.	Mean $85 \cdot 00$	$\begin{gathered} \text { Mean } \\ 66 \% 4 \end{gathered}$	$\begin{aligned} & \text { Me2 } \\ & 37 * \end{aligned}$
Greatest do. 30 -198	$\begin{aligned} & \operatorname{Max} . \\ & 13.00 \end{aligned}$			$\begin{aligned} & \text { Max. } \\ & 104 \cdot 50 \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & 79 \cdot 50 \end{aligned}$	$\begin{aligned} & \mathbf{M a} \\ & 50^{\circ} \end{aligned}$
Least do. $29 \cdot 336$	Min. ${ }_{5}$			Min. $61 \cdot 50$	$\begin{aligned} & \text { Min. } \\ & 58 \cdot 00 \end{aligned}$	$\begin{aligned} & \mathrm{Mi} \\ & 32^{*} \\ & \hline \end{aligned}$

he Meteorological form brought into use at the 876 differs in some respects from the former on 1 adopted with the view of assimilating the Hol irds more closely with those of stations ir erica, etc., in order to co-operate in a syster onal Meteorology. Readings are added from le thermometer, that being the instrument gene he continent of Europe.
he mean is in all cases taken from the sums c y registers, not from the maximum and minimu he direction of the wind is registered from cul ;ht of 92 feet above sea level, and its force i re font.
he relative quantity of rain that fell under th ds is registered each morning at $7.30 \mathrm{a} . \mathrm{m}$.
he 35 years' standard tables are used for ob arence from average.

FRANCIS ABBOTT, F.R.J
re of leafing, flowering and fruiting of a fe plants in the Royal Society's Gardens durin 1876 :-
.h. Carpinus betulus commencing to leaf.
sth. Ailanthus glandulosus ditto.
Ist. Tilia Europæa ditto.
th. Black Mulberry dltto.
th. Elm seeds commencing to shed.
ith. Melia azederach commencing to leaf.
F. ABBOTT, JUZ., Super

KHELEURYLUKX FUR UULUDENE, LOSO
Phivate Observatory, Hobart Tows.
Latitude $42^{\circ} \mathrm{BZ} 13^{\prime \prime} \mathrm{g}$: Longitude $9 \mathrm{~h} .49 \mathrm{~m}, 29 .-2 \mathrm{~s}, \mathrm{E}$.
Registered for the Rojal Soclety of Tasmanla.)

The Meteorological torm brought into use at the begioning of 2870 differs in some respects from the former one, It bas been sdupted with the view of assimllating the Hobart Town reeorde coore closely with those of stations in Europe, America, etc., in order to co-operate in a system of Internstional Meteorology. Readings are sdded from the contigrade thermometer, that being the instrament generally ued on the continent of Europe.
The moan is in all cases taken from the sums of the two daily registers, not from the maximum and minimum.
The dirention of the wind is registered from currents st a helght of 02 feet shove ses level, and its force in lbs. per equare font
The relative quantity of rain that fell under the different miads is registered each morving at $7.30 \mathrm{k} . \mathrm{m}$.
Tho $\$ 5$ years standard tables are used for obtaining the diference from average.

FRANCTS ABBOTT, F.R.A.S., etc.
Time of lesfing, flowering and fruiting of a few standard plants in the Rojal Society's Gardens during October, 1870:-
7th. Caroinus betrilus commencing to leaf.
letb. Ailinnthus glandulocus ditio.
2lst Tilla Europea ditto,
25 th . Black at diberry ditto.
2th. Elm seeds commencing to shed.
2th. Mella avederach oommencing to leap.
F. ABBOTT, JUN., Superintendent.

Results of observations taken at New Norfolk for October, 1876, in accordance with bew forms, and registered at 7:30 a.m. and $\mathrm{s} 30 \mathrm{p}, \mathrm{m}$, :

Barometer, mean of 2 daily readings, corrected and reduced 0. 847 in .

Thermometer, maan of 2 ditto, 54.79 deg ; meen of rax. anil min. in shadt, 515 -80deg.

Dew point, mean position of 2 daily readings, 47 -80deg.
Elastic force of vapour mean of 2 difto, 351 .
Humidity of aix, mean of 2 ditto, 77 .
Solar fatensity, mean of maximum temperature, 120 .00deg.
Terrastrisl radiation, mean of mininuam temperature, 30 suileg.

Rainfall, $2 \cdot 16$ in.
Evaporation, 54 Shn : : tu excess of rainfall, 33inn.
Clouds, mean of 2 daily registers, 608
Orone, mean of 2 daily observations, 654.
Wind, force in lba. per square foot, total of 2 dally obserFations, 69.69 lbs.

Horizontal movement, 2,570 miles.
Electricity, 47 obsarvstions, 22 negative, 11 positive, 14 nil. W. E. SHOOBHIDGE, Valleydioh.

Rainfall st Eill Statlon 1550tt, above ses level, 3.75in.

Priva

Latitude 4:
(Regist

The Meteorological form brought into of 1876 differs in some respects from the been adopted with the view of assimilat records more closely with those of America, etc., in order to co-operate i national Meteorology. Readings are ai grade thermometer, that being the instr on the continent of Europe.

The mean is in all cases taken from daily registers, not from the maximum ε The direction of the wind is register height of 92 feet above sea level, and square foot.

The relative quantity of rain that fe winds is registered each morning at $7 \cdot 3 \mathrm{C}$
The 35 years' standard tables are u difference from average.

FRANCIS ABB
Time of leafing, flowering and fruitis plants in the lanyal Society's Gari 1876:-
16th. First ripe Strawberry gathered. 2uth. First May Duke Cherry ditto.
25th. Black Mulberry in full flower.

METEOROLUGY FOR NOHEMBER, 156.

Private Obeervatory, Hobart Town.

Latitude $\ddagger z^{*} 52^{\prime} 15^{\prime \prime} \mathrm{S}$, Longitude $9 \mathrm{~h}, ~ 42 \mathrm{~m}$. 20 -2s, E.
[Registered for the Royal Society of Tasmania,)

The 3reteorological form brought into use at the begisning of 1870 differs in some respects from the former one. It has becn adopted with the view of assimitating the Hobart Town records more closely with those of stetions in Europe, America, eto., in ordor to co-operate in a system of International Meteorology. Readings are added from the cenhgrade thermometer, that boing the instrument generally used on the continent of Europe
The mesn is in all cases taken from the oums of the two dally registers, not from the maximum and minimum.
The direction of the wind is registered from currents at a
helght of 92 feet sbove ses level, and its force in lbs. per square foot.
The relative quantity of rain that fell under the different winds is registered each horning at 730 a m.
The 35 yeara standard tables are used for obtaining the diference from average.

FRANCTS ABBOTT, F.R.A.8., etc
Ttme of leafing, flowering and fruiting of a fow standard plants in the Ragal Soclety's Gardens during November, 1878:-
16th. First ripe Strawberry gathered.
2uth. First May Duke Cherry ditto.
25 th . Llack Muiberry in ful flower.

20th. Punica pieno commencisg to flower.
30th. FIrst ripe Antwerp Faspherry gathered.
Bougafinvillea in full bloom
F. ABBOTT, JUN., Superintendent.

Regults of observations thked at New Norfolk for Navember, 1870, in accordanco with new forma, and registesed at 730 a m and 430 pm -
Parometcr, mean of 2 daily readings, corrected and reduced, 2. 708 in .

Thermometer, mean of a ditto, $50^{2} 21 \mathrm{deg}$.
Dew point, mean position of 2 daily readings, 4930 deg.
Elastic force of vapour mean of 3 ditto, $3+2$.
Humidity of sir, mean of 2 ditto, 70 .
Solar intenaity, mean of maxirnum temperature $121 \cdot 46 \mathrm{llgg}$., Terrestrial radiation, mean of minimum temperabiare, 40 suden

Rainfall, 1 bial
Evaporation, 566 in ; in excess of rainfall, 1.14in.
Clourds, mese of 8 dsily registers, 5 . 61
Ozone, mean of $\&$ dally observations, 6 c0.
Wind, force in Ibs. per square foot, totsl of 2 daily observations, 85.67168.

Horizontal movement. 3,110 miles.
Electricity, of observations, 32 negative, if pogitive, 12 sil. w. E, s月00BRIDGE, Valleyfield.

The Meteorological form brought int of 1876 differs in some respects from 1 been adopted with the view of assimil records more closely with those of statit etc., in order to co-operate iu a sy Meteorology. Meadings are added fri mometer, that being the instrument continent of Europe.

The mean is in all cases taken fros claily registers, not from the maximum

The direction of the wind is registe height of $y 2$ feet above sea level, ar square foot.

The relative quantity of rain that f winds is registered each morning at $7 \cdot \mathrm{~g}$
The 35 years' standard tables are difference from average.

FRANCIS AB1
Time of leafing, flowering and fruit: plants in the Royal Society's Gar of December, 1876.
18th. First bunch red Currants ripe. 20th. First bunch black Currants rip 21 st . Common Privet commencing t. ", Juneating Apple commencing

METEOROLOGY FOR DECEMBER, $18 \% 6$.

Private Observatory, Hobart Town.

Lstitude $42^{\circ} 25^{\prime} 13^{\prime \prime} 8$. ; Longitude $9 \mathrm{~h}, 49 \mathrm{~m} .29 .2 \mathrm{~s}$. E.
Riegistereil for the Royal Soclety of Tasmania

The Meteorological form brought into use at the beginning of 1870 differs in some respects from the former one, It has been adonted with the view of assimilating the Hobart Town records more closely with those of stations in Eumope, America ctc. in order to co-operato fr a system of international Heteorology Feadings are odded from the centigrade therheveor bin mometer, of being
The mean is in all cases taken from the sums of the two laily registers, not from the maximum and mialuum.
The direction of the wind is regintered from currents at a height of 12 feat above ses level, and its force in lbs. per suluare foot.
The relative quaratity of rain that fell under the different winds is regietered each morning at $7^{-3} 30 \mathrm{~B} . \mathrm{m}$
The 35 years' standard tables are used for obtaining the tillerence from average

FRANCIS ABBOTT, F.R.A.S, ote.
Time of lesfing, flowering and fruiting of a few standard plants in the Royal Society's Garlens during the inonth of December, 1576
18th. First banch red Currants xipe.
path First bunch black Curranta rip
20th. First
") Juneating Apple commencing to ripen.

25th. Dorenne d'Ete Pesr commencing to ripen.
25th. Doyenhe d'Ete Pear commescing to rip
ABBOTT, JUs., Superintendent.
Results of obsorvations Laken at New Norfolk for December. 1870, in accordanofe with new forms, at 7.30 s.m3., and $430 \mathrm{p} . \mathrm{m}$. : -
arometer, mean reduced, 29817 inches
Thermometor, mean iot two ditto, 08.61 deg.
Thermometer, mean,
Dew point, mean position of two daily retiliggs, $50-00 \mathrm{deg}$.
Elastic force of vepour, mean of two ditto, - B 75 .
Humidity, mean of pro ditto, '6s.
Terrestrial zatiation, mean of minimum temperatures, 43.03 deg.

Solar infensity, meali of maxionum tewperature, 131.06 degRainfall, 205 inches
Evaporation, 818 incles: in excess of rainfall, 0.08 inches.
Clouds, mean amotiht of two daily registers, $4^{\prime \prime} \mathrm{BS}$.
Orone, mean of two ditto, 646
Wiad, force in lbs, per siogre foot, total of two ditto,

10233 lbs.

Ditto, horisontal mmvement, 3,625 miles
Electricity, 52 obset $\begin{aligned} & \text { wations, } 20 \text { negative, } 25 \text { positive, } 7 \text { ni) } \\ & \text {, }\end{aligned}$
W. E, SGOOBRIDGE, Valleyded.

METEOROLOCICAL OBSERVATIONS.

Recorded daily at Hobart Town, Tasmania, at 10 h .33 m . r.M., simultaneously with Iegistration made at 7 h .35 m . A.M., at Washington, United States, in pursuance of a proposition of the late Vicnna Congress for a system of International Synchronous Observations.

Private Observatory, Hobart Town.
Lat. $42^{\circ} 5 \cdots \ddot{H}^{\prime \prime} \mathrm{S} . \quad$ Long. $9 \mathrm{~h} .49 \mathrm{~m}, 29^{2} 2 \mathrm{~s}$. E. (Registered for the Ronal Society, Tasmania.)

[^27]
METEOROLOGICAL OBSERVATIONS.

From the 10th to the 30tif June, 1876.
Recorded claily at Hoburt Town, Tasmania, at 10 h .33 m . p.m., simultaneously with registration mado at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress for a system of International synchronous Observations.

Private Observatory, Hobart 'Jown.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$. Long. 9h. $49 \mathrm{~m} .29 .2 \mathrm{s}$. E.

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart 'I'own, 10h. 33 m . p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From thir 1st to the 15 tif July, 1876, inclusive.
Fiecorded daily at Hobart Town, Tasmania, at 1 (h. 33m. p.m., simultaneously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congres3 for a system of International Synchronous Observations.

Private Observatory, Hobart 'Iown.
Lat. $42^{2} 52^{\prime} 13^{\prime \prime} \mathrm{S}$.
Long. 9h. 49m. 29"2s. E.
(Reyistered for the Royal Society, Tusmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10h. 33 m . p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOCICAL OBSERVATYONS.

Fros the 16 th to the 31st July, 1876, inclusive.
Recorded daily at Hobart Town, Tasmania, at 10 h .33 m . p.m., simultaneously with registration male at 7 h . 35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress for a system of International Synchronous Observations.

Private Observatory, Hobart 'Lown.
Tat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$. Long. 9h, $49 \mathrm{~m}, 29 \cdot 2 \mathrm{~s} . \mathrm{E}$.
(Reyistered for the Royal Society, Tiesmunia.)

Fravels Abbotr, F.R.A.S., etc., Observer.
N.B. - The time of registration at Hobart 'Town, $10 \mathrm{~h} .33 \mathrm{~m} .1 \mathrm{~m} . \mathrm{m}$. , being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 1st to the 15 th Λ ugust, 1876 , inclusive.
Recorded daily at Hobart Town, Tasmania, at 10 h .33 m . p.m., simultaneously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress for a system of International Synchronous Observations.

Private Observatory, Hobart 'Town.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$.
Long. 9h. $49 \mathrm{~m} .29^{2} \mathrm{~s}$. E.
(Redistercd for the Royal Society, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10 h .33 m. p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m , a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 16tif to the 31st August, 1876, inclusive.
Recorded daily at Hobart Town, Tasmania, at 10 h .33 m . p.m., simultancously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress for a system of International Synchronous Observations.

Private Observatory, Hobart 'Town.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$.
Long. 9h. 49 m .29 .2 s . E.
(Registered for the Royal Society, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10h. 33m. p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 1st to the 15th Sept., 187G, inclusive.
Recorded daily at Hobart Town, Tasmania, at 10h. 33m. p.m., simultaneously with registration made at 7 h . 35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International Synchronous Observations.

Private Observatory, Hobart 'I'own.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$. Long. 9h. $49 \mathrm{~m} .29{ }^{2} 2 \mathrm{~s}$. E.
(Registered for the Royal Socicty, Tasmania.)

		ercters 永							Wealher.
								In.	
129.530	53.5			SW	$2 \cdot 60$		N	38	$\begin{aligned} & \text { Cloudy, with } \\ & \text { rain } \end{aligned}$
$220 \% 15$	56.0		S6	NW	$2 \cdot 60$	$10 \cdot 0$	N	47	Cloud \& rain continued
3 $29 \cdot 330$	58.5		S1	NW	2.60	65	K		Moonlight
4.29 .545	63.0	17.0	78	NW	. 52		K		$\begin{aligned} & \text { Moon and } \\ & \text { starlight } \end{aligned}$
$5 \cdot 30 \cdot 120$	61.0	16.0	76	NW	-26	4.5	K		Ditto ditto
629.815	610	175	S2	W	20	$7 \cdot 5$	K		Halo round the moon
720720		8.0		NTV	. 52		K		Dif. density, sky covered
$820 \cdot 525$	63			SW	$2 \cdot 60$	3.0	K		Starlight, brilliant
9			7	W	$2 \cdot 6$	70	II		Stars faint
1030	$5 C \cdot 5$		So	-	-	- 0	- 0		Starlight
11			S7	S	0		KN		Few stars, faint
1220.510	62.0	165	S7		0	10.0	N		Cloudy, not a star
132			83	N					Strong scintillation in the
1423	63.0	70	94		0		N		$\begin{aligned} & \text { stars } \\ & \text { Dark, calm, } \\ & \text { rain } \end{aligned}$
$1529 \cdot 000$	161.0	16.0	87	w	52		KN		Squally, low

Franicis Abbott, F.R.A.S., etc., Observer.
N.J. - 'lim tim of reitration at Inbent Town, 10h. $: 33 \mathrm{~m}$. p.m., being after dark, renders it impossible to malke the wind mind elom recombls more than approximately correct. The rainfall is measured at 7h. 30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 16th to the 30th Sept., 1876, inclusive.
Recorded daily at Hobart Town, Tasmania, at 10 h .33 m . p.m., simultaneously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International Synchronous Observations.

Private Observatory, Hobart 'Town.

Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S} . \quad$ Long. $9 \mathrm{~h} .49 \mathrm{~m} .29{ }^{2} 2 \mathrm{~s} . \mathrm{E}$.
(Registered for the Royal Society, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.I.-'The time of registration at Hobart Town, 10 h .33 m. p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOGLCAL OBSERVATIONS.

Fhom the 1 ist to the 15 thi Oct., 1876 , inclusive.
Recordect daily at Hobart Town, Tasmania, at 10 h .33 m . p.m., simultaneously with registration made at 7 h . 35 m a.m., at Washington, United States, in pursuance of a proposition of the late Vieuna Congress, for a system of Intermational synchronous Observations.

Private Observatory, Hobart 'Town.

Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$.
Loncr. $9 \mathrm{~h} .49 \mathrm{~m} .29{ }^{2} 2 \mathrm{~s}, \mathrm{E}$.
(Registered for the Royal Socicty, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.--The time of registration at Hobart 'lown, 10h. 33 m. p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at Th. 30 m . a.m. local time.

From the 16 tif to the 31st Oct., 1876 , inclusive.
Recorded daily at IIobart Town, 'lasmania, at 10h. 33m. p.m., simultaneously with registration made at 7 h .35 m a.m., at Washington, Unitel States, in pursuance of a proposition of the late Vicmna Congress, for a system of International syuchronons Observations.

Private Ubservatory, Hobart 'Iown.
Lat. $42^{\circ} 52^{\prime \prime} 13^{\prime \prime} \mathrm{S}$.
Long. $9 \mathrm{~h} .49 \mathrm{~m} .29 \approx 2 \mathrm{~s}$. J.
(Registered for the Royal Society, Tasmanir.)

Fravels Abrott, F.di.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10h. 33m. p.m., leing after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at Th. 30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 1st to the 1óth Nov., 1876, inclusive.
Recorded daily at Kobart Town, Tasmania, at 10 h .33 m . p.m., stmultaneously with registration made at 7 h .35 m a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International Synchronous Observations.

Private Observatory, Hobart 'Town.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$. Long. $9 \mathrm{~h} .49 \mathrm{~m}, 299^{\prime 2} \mathrm{~s} . \mathrm{E}$.
(Rerpisteral for the Roynel Society, Tasmania.)

Francis Abeott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10 h .33 m . p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at $7 \mathrm{~h} .30 \mathrm{~m}, ~ \mathrm{a} . \mathrm{m}$. local time.

METEOROLOGICAL OBSERVATIONS.

From the 16тie to the 30 fi Novi, 1876 , inclusive.
Recorded daily at Hobart Town, Tasmania, at 10h. 33 m . p.m., simultaneously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International synchronous Observations.

Private Observatory, Hobart 'Town.
Lat. $42^{3} 5 e^{\prime} 13^{\prime \prime} \mathrm{S}$
Long. 9h. $49 \mathrm{~m} .29^{2} 2 \mathrm{~s}$. E.
(Reisistered for the Royal Society, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart 'lown, 10 h .33 m . p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m , a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 1 st to the $15 t h$ Dec., 1876 , inclusive.
Recorded daily at Hobart Town, Tasmania, at 10h. 33 m . p.m., simultaneously with registration made at 7 h . 35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International Synchronous Observations.

Private Observatory, Hobart Town.
Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$. Long. 9 h .49 m .29 .2 s . E.
(Registered for the Royal Socicty, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart Town, 10h. 33 m . p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

METEOROLOGICAL OBSERVATIONS.

From the 16 th to the 31st Dec., 1876 , inclusive.
Recorded daily at Hobart Town, Tasmania, at 10h. 33 m . p.m., simultaneously with registration made at 7 h .35 m . a.m., at Washington, United States, in pursuance of a proposition of the late Vienna Congress, for a system of International Synchronous Observations.

Private Observatory, Hobart 'Town.

Lat. $42^{\circ} 52^{\prime} 13^{\prime \prime} \mathrm{S}$.
Long. $9 \mathrm{~h} .49 \mathrm{~m} .29{ }^{\circ} \mathrm{s}$. E. (Reyistered for the Royal Society, Tasmania.)

Francis Abbott, F.R.A.S., etc., Observer.
N.B.-The time of registration at Hobart I'own, 10 h .33 m. p.m., being after dark, renders it impossible to make the wind and cloud records more than approximately correct. The rainfall is measured at 7 h .30 m . a.m. local time.

Months．	Barometer	Thermometers Realing＇		Thermometers（Self－registering）．			炭示趽 른葡家 응気	Clouds	iscale 0－10．	Wind ；lbs．per square foot				烒	Ozono．
						$\begin{aligned} & \text { Mean of Lowest } \\ & \text { on Grass. } \end{aligned}$						$\begin{aligned} & \text { 运 } \\ & \text { 品 } \\ & \text { 会 } \end{aligned}$			
January．．．．．．．．．．．	In． 29.921 09.811		66.05 60.92	$104-95$ $103 \cdot 88$	78.85 73.52	51.45 48.53	．74	6.00 $6 \cdot 21$		$\mathrm{SE}_{\text {SF，}} \mathrm{S}$	lbs 34 1.02	2.60 10.42	． 63	3.44 6.11	4.30 4.33
February ．．．．．．．．	29.811	12 ＇6is	$60 \cdot 92$	103.88	73.52	48.30	\bigcirc	6×1	K，KN	NW，S，SE	42	$5 \cdot 21$	$1 \cdot 21$	346	$4 \cdot 6$
Marcha ．．．．．．．．．．．．．	29.913	$1 \geq 30$	60.34	10345	6.96	$42 \cdot 12$	． 6	$7 \cdots 9$	K，KN゙	W，Niw，SW	4.5	5.21	$1 \cdot 9$	$3.05{ }^{1}$	$5 \cdot 4$
April．．．．．．．．．．．．．．．．	$\begin{array}{r}99.816 \\ \hline 99908\end{array}$	50\％	52.23 48.13	83.66 81.18	60.45	436	－68	6.09	K，K	NW，Siv	$\cdot 55$	20.00	－93	1.21	4.78
May ．．．．．．．．．．．．．．．	29998 29.868	6.50 600	$4{ }^{4} \cdot 13$	71.23	50.65	－35 63	－ 89	60	k，KN，KS	NWW	110	26.04	$2 \cdot 23$	$3 \cdot 27$	$5 \cdot 27$
June．．．．．．．．．．．．．．．．	29.868 30	600 5.40	40.35	70.68	55.42	32．50	－ 80	6.20	K，K，KS	NW	$\cdot 76$	5.21	203	91	5.00
August．．．．．．．．．．．．．．	29.930	8.76	49.46	78.79	60.24	32.60	－ 80	$0 \cdot 67$	K，iKN，KS	NW，W	$\cdot 39$	$5 \cdot 21$	$1 \cdot 9 \star$	342	476
September ．．．．．．．．	29.751	8.55	52.30	80.60	64.43	36.65	－72	635	K，KS		－ 9.15	5.21 20.83	$2 \cdot 14$	$\stackrel{3}{3 .} 97$	$4 \cdot 95$
October ．．．．．．．．．．．	29.829	$10 \cdot 60$	55.50	85.00	66.74	37.71	－74	7.31 7.38	K，KN	S，W，NW	${ }^{1} \cdot 96$	－ $5 \cdot 21$	4.36	5.07	5.10
November	29.685 29.773	11.32 13.80	5675 62.26	84.33 101.06	65.50 75.69	42.42 43.76	． 67	6	K，${ }_{\mathbf{K}}$	W	1－22	5．21	1.56	4.93	4.03
December	29.773	13.80	$62 \cdot 26$	10106	150	43									
Sum	358.357	102.54	657 18	1053.81	707．34	487.85	$9 \cdot 20$	77.83			9.83		23.63	$40 \cdot 68$	58.71
Mean for Year．．．	29.863	${ }^{*} 9.32$	54．76	87.82	66.45	40.65	17	649	K，KN	NW．W	－82		1.97	$3 \cdot 39$	$4 \cdot 59$

The Meteorological form brought into use at the beginning of 1876 differs in somo respects from the former one．It has been adopted with the view of Readings are added from the centigrade thermometer，that being the instrument generally used on the continent of Europe．

$\begin{aligned} & \stackrel{\dot{n}}{\ddot{y}} \\ & \stackrel{y}{z} \end{aligned}$	－．リ！！u！ 		1	\％		
			色	$\stackrel{12}{15}$	令	3 0 0 7
				\geqslant	宗 \vdots	－
$\underset{\text { ミ }}{\Xi}$		앙	－	$\stackrel{3}{3}$	－	¢
			－	$\overrightarrow{0}$	－	$1-$
E	－と．tode：i ：：	 		10		
	［13 M Me？ 		$\|\underset{\sim}{2}\|$	$\left\|\begin{array}{c} -7 \\ =1 \end{array}\right\|=$		$\begin{array}{l\|l} \vec{~} & 0 \\ \overrightarrow{-} & = \end{array}$
			$\left\lvert\, \begin{aligned} & \text { 荡 } \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ -1 \end{array}\right\|$		㫛
E			$\begin{array}{ll} 3 \\ 1 \\ 1 & 1 \end{array}$	101		
$\begin{aligned} & \Xi \\ & \vdots \end{aligned}$			$\stackrel{\div}{\div} \mid$	10	12	\％
三	Hotulisos 			$\begin{aligned} & \text { 순 } \\ & \hat{i} \\ & i \rightarrow \end{aligned}$		
品		 	$\begin{aligned} & 0 \\ & 0 \\ & i n \\ & i n \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered}\hat{1} \\ \stackrel{y}{*} \\ \vdots\end{gathered}\right.$	骨	
		 		$\left\|\begin{array}{l} 15 \\ 0 \\ 3 \\ \hdashline \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{n} \\ \dot{\theta} \\ = \end{array}\right\|$	
		 	$\begin{array}{r} 1 \\ \vdots \\ \vdots \\ 0 \\ 1 \\ 1 \end{array}$	$\left.\right\|^{\stackrel{3}{5}}$		
	 	 	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\underset{1}{3}$		
	 	 	$1 \frac{13}{30}$	$\left\|\begin{array}{c} \hat{9} \\ \vdots \\ \vdots \end{array}\right\|$	$\left\|\begin{array}{c} \text { ? } \\ 3 \\ 30 \end{array}\right\|$	－
边					¢	

\qquad
\qquad

REPORT

OF THE
 ROYAL SOCIETY
 OF

 TASMANIA.

 TASMANIA.}

- FOR THE YEAR

1876.

TASMANIA:

\{ jartron:

 HER MAJESTY THE QUEEN.
㭵esivent:

HIS EXCELEENCY FREDERICK ALOYSIUS WELD, ESQ., C.M. C_{x}.

Fite=率sixients:

Ven. ARCHDEACON DAVIES, B.A. J. W. AGNEW, Esq., M.D.
SIR R. OFFICER, KNt., M.H.A. M. ALLPORT, Esq., F.L.S., F.Z.S.
C.M.A.I., \&C., \&C., \&C.

fitembers of Council:

SIR ROBERT OFFICER, KNt.
*T. STEPHENS, Esq., M.A., F.G.S.
H. J. BUCKLAND, Esq.
J. BARNARD, Esq.

VEN. ARCHDEACON DAVIES, B.A.
Right Rev. BISHOP BROMBY, D.D.
M. ALLPORT, Esq., F.L.S., F.Z.S., C.M.A.I., \&C., \&C.
J. W. AGNEW, Esq., M.D.
F. ABBOTT, Lse., F.I.A.S., F.I.M.S.
T. Glblin, Ess.

JUSTIN MCC. BROW NE, Ess.
A. G. IVEBSTER, EsQ.

Treasurex: \quad 39an. Secretary :

C. J. BarCLAY, Esq.
J. W. AGNEW, Esq., M.J.

Guxitors of \mathfrak{A} Munal Grcounts:
H. COOK, Esq.

JOHN MACFARLANE, Esq.

Guitors of fxlontyly Accounts:
M. ALLPORT, Esq.
F. ABBOTT, Ess.
(furator of tye ftuseum:
MR. T. ROBLAN:

Superintenout af Garourns:
MR. F. ABBOTT, JUN,

* Members who retire next in rotation,

> - Members who have contributed papers which have been published in the Society's Transactions.
W. H. AROHER, Es η., Melbourne, Victoria.

JOHN JOSEPH BENNETT, Esq., F.R.S., British Museum, London.
REV. W. B. CLARKE, M.A., F.G.S., dc., Sydney.
JOHN GOULD, Esq., F.R.S., London.
JOHN D.L'TON HOOKER, Esi., M.D., R.N., F.R.S., de., London.
REY. R. L. KING, B.A., Sydney.
*BAR(IN F. V'ON MCELLER, C.M.G., M.D., F.R.S., F.L.S., de., Government Botanist, Melbourne, Victoria.
JOHN PEET, Esy., Professor Grant's College, Bombay.
W. WILSON SAUNDERS, Esq., F.R.S., \&c., London.

ALFRED R. C. SELIVYN, Esq., F.G.S.
RET. CHARLES PLEJDELL N. WHTON, M.A., Newcastle, New South Wales.
ADAM WHITE, Esq., F.L.S., ©c., British Museum, London.
C. TOMLINSON, Esq., F.R.S., F.C.S., de., Highgate, near London.
*(r. BENNETT, Esq., M D., F.Z.S., Sydney, New South Wales.
*G. KREFFT, Esy., F.L.s., C.M.Z.S., dc., dc., Sydney.
PROFESSOR G. NEUMAYER, Munich.
*RET. JULIAN E. T. WOODS, F.L.S., F.G.S , F.R.G.S., dec. DR. W. (). SONDER, Foreign Hon. Sec. Society of Naturalists, Hamburg.
REV. J. J. BLEASDALE, D.D., F.G.S., Melbourne.
*CAPTAIN W. V. LE(※GE, R.A., F.Z.S., M.R.A.S., Ceylon. CAPTALN O'REILLY, Brisbane, Queensland.
R. BROUC'H SMYTH, Esq., Secretary for Mines, Melbourne.

PROFESSOR JOHN A(:ARDH, M.D., University of Lund, Sweden
DR. JULITS HAAST, F.R.S., Director of Musemm, Christchurch, New Zealand.
ARCHIBALD LIVERNIDGE, Esg., F.G.S., Professor of Geology and Mineralogy in the Sydney University.
PROFESSOR W. H.IRKNESS, U.S.N., United States Naval Observatory, Washington.
HENRI HAYLIN HAYTER, Government Statist, Melbourne.
*FREDRRICK M. B.MLLET, Esq., Brisbane, Queensland.
A. THo/ET, Esq., Brtanist, Rockhampton, Queensland.

COMTE DE CASTELNAC, Consul-General for France, Melbourne.
*RALPH TATE, Esq., F.G.K., P'rofessor of Natural History, University of Adelaide.
*JOHN BRAZIER, Esq., C.M.Z.S., Sydney.
*RICHARD ふUHOMEBLREK, Ph.D., C.M.Z.S., de., de., Director of Botanic Gardens, Adelaide.

* Fellows who have contributed papers which have been published in the Society's Transactions. + Denotes Life Membership.

(1) Irituaty

BEDFORD, EDWARD SAMUEL PICKARD, F.R.C.S., England. Born in London, 1808 ; died at Sydney, 24th February, 1876. Mr. Bedford was one of the founders of the Tasmanian Society, the parent of the present Royal Society. He contributed several papers to its Proceedings, and always took the liveliest interest in its progress. All local institutions indeed, having for their scope moral and intellectual progress, found in him a warm and zealous advocate. Having passed the most active period of his life in the practice of his profession in this city, he proceeded in 1863 to Sydney where for some years past, in addition to his private practice, he acted as Medical Adviser to the Government of New South Wales, and was one of the Examiners in Medicine at the Sydney University. He was the first Tasmanian medical student who proceeded to England for professional education.

BROUGHTON, JOSEPH, Solicitor. Born in London, 1824 ; died at New Town, 26th November, 1876.

GRAVES, JOHN WOODCOCK, Barrister. Died at Hobart Town October 30th, 1876 ; ret. 47 . Mr. Graves took much interest in the Society. The subject of acclimatisation especially engaging his attention.

IRVINE, PATRICK. Born in Edinburgh. Joined the Civil Service in India, in 1833, from which he retired as a Judge in 1862. Died at New Town, June 14th, 1876 ; æt. 62.

LEWIS, JOHN KENRICK, M.R.C.S., England. Born in Wales, 1819 ; emigrated in 1860 , and after a residence of a few years in Tictoria was appointed in 1866 as a Medical Officer at Port Arthur. Subsequently practised in Hobart Town, where he died October 26th, 1876 ; æ. 56.

MORRISON, ASKIN. Born in Ireland. For many years a leading merchant in this city, and a Fellow of the Society for upwards of 30 years. Died May 29th, 1876 ; æet. 76.

Minutes of the Annual Geniral Meeting of the Royal Society of Tasmania, held at the Museum, Macquarie-street, at half-past 7 o'clock p.m., on the 30th January, 1877, the Right Rev. the Lord Bishop of Tasmania in the chair.

The advertisement by which the meeting had been convened having been read, the Charman called upon the Secretary to read the Report.

The Report for 1876 was then read.
It was moved by Mr. Allport, and seconded by the Rev. W. W. Spicer and carried :-"That the Report be adopted and printed for circulation amongst the Fellows."

The Secretary having reported that the retiring Members of Council were Messrs. F. Abbott, T. Giblin, Justin Mcc. Browne, and A. G. Webster, it was unanimously resolved, on the motion of Mr. Sway, seconded by Mr. Bilton, that they should be re-elected.

Messrs. H. Cook and John Macfarlane were reelected Auditors of Annual Accounts, on the motion of Mr. Grant, seconded by the Rev. W.W. Spicer.

William Baynes, Esry., of Queensland, and the Rev. J. B. Richards, President of Horton College, were then, by ballot, clected Fellows of the Society.

Mr. Barvard said that every succeeding year only served to increase the obligations the Society was under to their Hon. Secretary, Dr. Agnew, whose efforts had not slackened, and who had neglected no opportunity of advancing the Society's interests. They were all deeply indebted to Dr. Agnew for the way in which he fulfilled his self-imposed cluties, and he would move-and he was sure all present would gladly
concur with it-that the best and warmest thanks of the Mecting be given to that gentleman for his indcfatigable excrtions on behalf of the Society and in the cause of science. (Applause.)

The Rev. W. W. Spicer, in seconding the motion, said they ought to thank all whose labours benefited the Society, and few were more deserving of those thanks than Dr. Agnew.

The motion was carried with acclamation.
Dr. Agnew said he was deeply sensible of the kindness that had invariably been shown to him at these Annual Mectings; but he would be glad to pass on a great portion of the thanks so cordially given, to their excellent Curator, Mr. Roblin-(applause)-whose good, honest, faithful work was deserving of all praise. The number of Fellows kept up very well, and never since its foundation had the Society been in a more healthy and flourishing condition than at present. If the Government could only see fit to give them a little more assistance, a great deal more could be done both for the MLuseum and the Gardens. It must be remembered that the grant given by the Government to the Museum and Gardens was strictly confined to those institutions ; the Royal Society did not receive a farthing. The Society was entirely self-supporting, and they did not require aid for themselves.

Some conversation then ensued on the subject of applying for an increased grant-in-aid, and ultimately it was resolved, on the motion of Mr . Dowdell, seconded by Mr. S. Scott, that Dr. Agnew, Mr. M. Allport, and the Rev. W. W. Spicer be appointed a sub-committee to wait upon the Colonial Secretary and point out the urgent claims of the Museum and the Gardens for increased support.

The Meeting then terminated.

REPORT.

"The session of 1876 was opened on the 14 th of March, but, owing to his absence from town, the inaugural address by His Excollency, as President, was not delivered until the subsequent meeting in April. The attendance of Fellows throughout the session has been larger probably than in any previous year, and papers of both local and general interest have been brought forward. Amongst these may be mentioned :-'An opening Address,' by His Excellency Frederick A. Weld, Esq., C.M.G. 'Notes on a new species of Nudibranchiata,' by the Rev. J. E. Tenison-Woods. F.G.S., F.R.G.S., etc. 'Contributions to the Phytograpy of Tasmania,' part 4, by Baron F. von Mueller, C.M.G., M.D., F.R.S., etc. 'On the Codlin Moth,' (Carpocapsa pomonella) by His Honor Mr. Justice Dobson. 'On some Tasmanian Patellidæ,' by the Rev. J. E. Tenison-Woods, 'History of Australian Gcology,' by the same. 'Notes on the Tertiary Marine Deposits of Tasmania,' by MIr. R. M. Johnston. 'Notes on the Fussils reterred to in the foregoing paper,' by the Rev. J. E. Tenison-Woods. 'On a new species of Ampulluriu', by the same. 'Reminiscences of a Visit to the Volcanoes of Hawaii,' by His Excellency F. A. Wold, Esq. 'On a new reversed Helix, (IIcli. Weldii) from the North West Coast of Tasmania,' by the Rev. J. E. Tenison-Woods. ' On the effects of wounds inflicted on the human subject by the spur of the Platypus,' by the Rev. W. W. Spicer, M. A., F.R.M.S.' 'Synonomy of, and remarks upon, Tasmanian and other shells, with their Geographical distribution,' by John Brazier, C.M.Z.S.
"In reference to one prominent point in His Excellency's address--the conservation of a portion of Mount Wellington-it may be mentioned that owing to the exertion in Parliament of one of our Fellows, Mr. Russell Young, this great boon has been permanently secured to the public. Those papers which have not yet been published are now in the printer's hands and will appear in the transactions of the year. We have to regret the absence from the Colony of one of our most valued contributors, the Rev. J. E. TenisonWoods, but we hope to receive some communications from him during the ensuing year."
"In addition to the papers previously noticed, communications on the following subjects have been read and brought under discussion, viz. :'Soundings taken by H.MI.S. Challenger between Australia and New Zealand,' from Mr. Audley Coote. 'On the roaring heard in the neighbourhood of the Western Mountains,' from Rev. E. P. Adams. ' On the high temperature experienced in some silver mines in America,' from Mr. A. Coote. ' Notes on Mr. A. T. Newton's microscopical examination of Tasmanite, the so called Dysodile of the Mersey,' from T. Stephens, Esq., F.G.S. ' On the Language of the Aborigines of Tasmania,' from Mr. Calder. 'Notes on Euculyptus globulus, showing the improbability of spurious seed being supplied from Tasmania,' from F. Abbott, jun. 'The geological age of the more recent basalts on the south side of T'asmania,' from M. Allport, Esq., F.L.S., F.Z.S. 'The destruction of trees and shrubs on Mount Wellington.' 'On the shaft lately sunk for coal at Spring Bay,' etc.
"We have, as usual, to thank Baron von Mueller for learned and elaborate papers.
"Many valuable additions, as will be seen by the printed list, have been made to the library.

As on former occasions, our most liberal contributor has been the American Government, to whom accordingly our warmest acknowledgments are due.
"The usual meteorological observations have been regularly carried on by Mr. Abbott and Mr. Wr. E. shoobrides ; and the monthly returns from the various lighthouses have been regularly received. In addition to these duties, Mr. Abbott has kindly undertaken to carry out the simultaneous daily meteorological observations which are now being made throughout almost all the scientific world. These special observations were commenced some monthis ago at the request of the United States Metcorological Department to which we transmit them regularly twice in each month. Metcorological abstracts for the quinquennial period 1870 to 1875 for Hobart Town have been carefully compiled with much labour by Mr. Roblin, and amalgamated with the existing 30 year's' series. Mr. Roblin has aiso made abstracts, for the same period, of the returns from the lighthouse and other coast stations. All these are now in the hands of the Government printer.
"Our thanks are due to the Tasmanian Steam Navigation Company, Messrs. W. Crosby \& Co., Mactarlane Bros., and Belbin \& Dowdell for the transmission of various parcels to England and the neighbouring colonies. Thanks are also due to Messrs. Walch and Sons for the gratuitous distribution of the Society's publications to members residing in the country.
"During the year fiftecn Fellows and four corresponding members have been elected; and there have been three resignations and six deaths.
"Cruncil.-No vacancy has occurred during' the year. The list of retiring members has been

16

posted in the library for the last three days, in accordance with No. 32 of the amended rules of the Society.
" Finance.-The income from all sources was as follows :-Government Grant-in aid to the Museum, £200; ditto, Gardens, £ 400 ; Subscriptions, $£ 188$; from Marine Board $£ 20$; sale of plants, etc. at Gardens, $£ 782 \mathrm{~s} .1 \mathrm{~d}$. : this with $£ 3012 \mathrm{~s} .0 \mathrm{~d}$., in the hands of the Superintendent of the Gardens, for the payment of wages, arrears of subscriptions, $£ 30$; and $£ 3$ in the hands of the collector, will give a total of $£ 949 \mathrm{l4s}$. 1d. The expenditure and liabilities as per balance sheet amounted to $£ 99: 314 \mathrm{~s}$. 1d., leaving a balance to debit of $£ 4310 \mathrm{~s}$.
"It will be noticed that the outlay for Printing, etc.,-£79 19s. 9d. has been very large, but none of this expenditure could be omitted, as we have been fortunate in the value of the papers contributed during the year; and the publication of such must always be regarded as a matter of necessity, being the great means whereby we are enabled to veep up friendly relations with learned bodies in karious parts of the world.
"The subscriptions generally have been more promptly forwarded than usual, we regret to say, however, that some members are still in arrears, although the usual notices have been duly forwarded to them.
"Gardens.-It is to be regretted that the new entrance has not yet been completec?. The ground work has been for some time past in as forward a state as desirable, and but little remains to be done except the erection of suitable gates. For them the public are entirely dependent on the action of Parliament, and until provision is made
for the necessary cost this much needed entrance must remain in its present unfinished and discreditable condition.
"The ordinary garden expenditure for the past year has exceeded the receipts by upwards of £ $£ 0$. Moreover, many pressing repairs for tools, implements, and buildings, which have involved increased and necessary outlay have been postponed for want of funds, and for the same reason a very fair petition from the labourers for a slight increase their pay (four shillings per diem) could not be complied with. It is oiily by the most rigid economy, accompanied by considerable difficulty, that the gardens have been kept in a fair state of order for some years past. All such institutions are necessarily progressive, but unfortunately no provision for progress has been made in the present case, for while as far back as 1843 the annual sum of $£ 400$ was granted to the Society for the management of the gardens, no addition to this amount is now allowed, although the area of cultivated ground has been very largely increased, immense additions have been made, and are still being made to the collection of plants, and labour and provisions are two-thirds higher in value. This amount, although supplemented by the unskilled labour of a small gang of prisoners, is totally inadequate to the present requirements of the place, and ridiculously small in comparison with the sum voted for Public Gardens in the neighbouring colonies. For the year $1876-7$ the sums voted in Vietoria were, Botanical Gardens, $£ 7220$; Domain and Government House Grounds, £5550. New South Wales, Botanical Gardens, £4469; IydePark and Domain, £3513. South Australia, Botanical Gardens, $£ 6700$. Queensland Botanical Cardens, £2485. Under such adverse circumstances it must be painfully evident that it is no longer possible,
unless more assistance is rendered by Government, to keep the Gardens in a condition calculated to reflect any credit either on their immediate management or on the colony at large.
"The plants introduced during the year have been greater in number and of more intrinsic value than for some years past. About 500 have been added to the collection. From the Royal Gardens, Kew, a case containing Himalayan Rhododendrons was received in good coudition ; and from Messrs. A. Verschaffelt and A. Van Geart, cases containing Himalayan and hybrid Rhododendrons, pictorial trees, deciduous Magnolias, Lilies, and numerous other plants have been received.
"The number of Visitors to the gardens is estimated at 48,004, being an increase of nearly 10,000 over that of last year.
"Museum.-Six new show cases for shells, etc., have been constructed, and as Mr. Legrand has commenced the arrangement of the Tasmanian specimens, we hope in a very short time to have all the collection properly displayed. Mr. R. C. Gunn, in the early part of the year presented, in a most liberal spirit, the entire of his immense herbarium to the museum. As the collection had become much disarranged, and as many of the plants and much of the paper were quite destroyed, it was found necessary to re-name and re-paper the whole. This formidable task was most kindly undertaken by the Rev. W. W. Spicer and J. R. Scott, Esq., whose services in this matter it is difficult to over-rate, and who are therefore well entitled to the best thanks of the Society. Their task will still probably require several months for completion.
"Among the donations doserving special mention may be enumerated a collection of type speci-
mens of new shells from Long Bay, presented by the Rev. H. D. Atkinson; a large collection of named shells from Mr. J. Brazier, of Sydney; several clubs and spears from New Britain and New Ireland, the gift of the Rev. G. Brown, of Sydney; a large number of type specimens of Tasmanian shells from Mr. W. Legrand ; a collection of Table Cape tertiary fossils from Mr. R. M. Johnston; and a valuable named and classified collection of Algæ from Orford, Prossers' Bay, prepared and presented by Mrs. Charles Meredith.
"Although the most rigid economy has been exerted, and much which ought to have been done left undone, the grant-in-aid has been exceeded by $£ 27$ 17s. With a large and continually increasing collection, it is clear that some addition to the insufficient Government grant has become a necessity.
"The number of visitors to the Museum was 18,726, being an increase of 3,711 over that of $1875 . "$
STATEMENT OF FUNDS OF THE ROYAL SOCIETY OF TASMANIA for the Year 1876.

21

BOOKS, Etc., PURCHASED AND PRESENTED DURING 1876.

[Presentations marked thus*]

Arts, Journal of Society of, current numbers.
Agricultural Gazette, The, ditto.
Athenæum, The, ditto.
*Address, at opening of Session 1876. By His Excellency F. A. Weld, Esq., C.M.G. From the author.
--, Inaugural, at opening of S'ession 1876, Adelaide University. From the University.
Astronomical and Meteorological Observations, United States Naval Observatory, 1870 and 1872. From Rear-Admiral F. B. Sands, Washington.
Australia, McKinlay's tracks across.
Ampullaria, On a new Species of. By the Rev. J. E. TenisonWoods, F.G.S., F.R.G.S., etc. From the author.
Academy, American of Arts and Sciences, Proceedings vol. 9, 1874 ; vol. 2, 1875.
, Commemorative Notice of Louis Agassiz, by Theodore Lyman. From the Academy. - f Natural Sciences, Philadelphia, Proceedings of, parts 1, 2, 3; 1875. From the Academy.
*Botanical Gardens, Imperial, of St. Petersburgh, Publications of, $18{ }^{\circ} \mathrm{F}$.
*Bible, The, printed in the Irish language. Presented by Miss Fergusson, Tinderbox Bay.
*Botanical Reminiscences of British Guiana. By Dr. R. Schomburgk. From the author.
*Birds of the North-West (Tnited States). By Elliott Cones. Presented by F. T. Hayden, Esq., United States Geological Survey.
*Colonies, The, current numbers. From the publishers.
*Catalogue, British Musemu, "Marine Polyzoa," Part 3, 1875. From the Trustees.

* , Musemm of Comparative Zoology, Harvard College, Cambridge, U.S.
Conchologia Iconica, Parts 322 to 329.
*'Collectors' Handy Book for Ferns, Mosses, etc. Presented by the Rev. W. W. Spicer, M.A., F.R.M.S.
*Cholera, Epidemic of, in Tnited states, 1873, Report on. By J. M. Woodward, M.D. Presented by the United States Government.
*Climbing Plants, on the hahits and movements of, 1875. By Charles Darwin, M.A., F.R.S. From His Excellency the Governor.
*Exhibition, Melbourne, isti), Oficial Record of. From the Commissioners.
*Education, Phblic, Pemnsylvania, C..S., Report of Buard of, 1874. From the Board.
——, the scientific, of Mechanies and Artizans. By Andrew P. Peaborly: From the simithsonian Institution, Washington.
*Earths Interior, Present comdition of. By G. Kittredge. From the Buffalo Society of Natural Sciences.
*Explorations of the Colerado of the West, United States. By Professor Powell.
Florist and Pomologist, The, current numbers.
Feathers, Stray (Indian Ornithology), Vol. 3, parts 5 and s; Vol. 4, parts $1,2,3$.
*Flora of S. Australia, The. By Dr. R. Schomburgk. From the Author.
*- Colerado, Synopsis of. By T. B. Porter and J. M. Coulter. From F. V. Hayden, Ess., United States Geologist.
* British India, Part 4. By J. D. Hooker, C.B. From the Secretary of State for India.
*Flowers, British Wild, in relation to Insects. By Sir John Lubbock, M.P., F.R.S. From Rev. J. E. Tenison-Woods.
Gardeners' Chronicle, The, current numbers.
Geological Magazine, The, ditto.
*Geography, Physical, of the Atlantic. By Captain Toynbee, F.R.A.S., F.R.G.S. From Meteorological Office, London.

Geological Survey of India, Records of Vol. 8, parts 1 to 4; Vol. 9, part 1. Memoirs of Vol. 1, Nos. 2 and 3, "Jurassic Fauna of Cutch," "Cephalopoda" (Palroontologia Indica), Ditto Vol. 2, Part 2. Ditto Part 4, ser. 9. From the Government of India.
port Vol. 6. - Bulletin of No. 2, and 2-3, second series.Geological and Geographical Survey of Colerado, 1873.Lists of elevations of part of United States, west of the Mississippi River.-Catalogue of publications of the department. Report of, Vol. 2, 1865. Bulletin of Vol. 1, Nos. 5 and 6, and Vol. 2, No. 1. Catalogue of Photographs 18691875. From F. V. Hayden, Esq., United States Government Geologist.
*Geological Exploration of the 40th Parallel, C'nited States, Vol. 3, "Mining Industry," with Atlas ; Vol. 5, "Botany."

* \quad and Geographical Explorations and Surveys west of the 100 th meridian (U.S.), "Topographical Atlas," 12 sheets and title-page. From the American Government.
*Geology, History of Australian. From the author, the Rev. J. E. Tenison-Woods, F.G.S., \&c.
*Historical and Archreological Society of Ireland, Annual volume of, for 1874. Journal of Nos. 20, 21, 22. From Dr. Agnew.
*History, Surgical, of the War of the Rebellion, Vol. 2. From the United States Government.
*Hawaii, Reminiscences of a Visit to Volcnnoes of. From the Author, His Excellency F. A. Weld, Esq., C.M.G.
*Helix, on a new reversed Tasmanian. From the author, the Rev. J. E. Tenison-Woods.
*Institute, Essex (Salem, Mass., Lnited States), Bulletin, Vols. 5 and 6, 1873-4. From the Institute.
*Journal, Quarterly of Science, current numbers.
*Journals, House of Assembly, Tasmania. From Government.
*Locusts, on the appearance of, on Lake Bieler, 1875. From the author, Albert Müller.
*Longitude, Report on difference of, between Washington and St. Louis. By Prof. W. Harkness, From the author.

Magazine, Country (ientleman's, The, current numbers.
*Mathematische anzieger, Nus. 21 and 28, 1844-5. From the Royal Academy of Sciences, Vienna.
*Muscé Tayler, Haatlem, Archives, vols. 1, 2, 3, and part 1 vol. 4. From the Directors.
*Memoir of C. P. yon Martius, by Charles Rau. From the Smithsonian Institution, Washington.
*Museum of Comparative Zoology, Harvard College, Report for 1873. From the Trustees.

* Ifinerals of New south Wales, The. From the author, Professor A. Liversidge.
*1Iuth, Codlin, on the. By His Honor Mr. Justice Dobson. From the author.
*Meteorology. Onservations in New Zealand, 1874-5. Ditto for Wellington, Nov., 1875 to Oct., 1876 Abstracts of observations January to July, 1876. Comparative table of climate, for 1875 . From the Director of Observatories, Wellington.
* _ Results of Observations in New South Wales, 1874, Monthly tables from October, 1875, to April, 1876. From the Government Observatory.
* _ Report of Kew Committee of Royal Society, 1875. From Royal Society, London.
*--_-. Report of Chief Signal Officer, Washington, U.S., 1872-3. Daily Bulletin, Dec., 1872, to June, 1873. Washington Observations, 1873. From Brig.-Genl. Myer, Chief Signal Officer, Washington, U.S.A.
*Meteorological Ottice, London. Quarterly Weather Report, part 2, April to June, 1874. Meteorology of Japan, 1876. From the office.
*- Observations, Hobart Town, monthly tables. From F. Abbott, F.R.A.S., F.R.M.S.
* Coverdale.
*- Mount Nelson, Goose Island, Swan Island, Kent's Group, King's Island, and South Bruni, ditto. From the Hobart Town Marine Board.

, Melbourne, monthly tables. From the

 Government Observatory.*Magnetic Dip, Observations on, at Kerr. From the Director, Kew Observatory.
Natural History, Annuals and Magazine of. Vol. 16, Nos. 95, 96 ; vol. 17, Nos. 97 to 102 ; vol. 18, Nos. 103 to 106.
Nature, Current numbers.
*Natural History, Anderson School of, Penikese Island, United states, The Origin and Progress of. From the 'Trustees.
*Newspapers, Old English, 10 Reprints of. From Mr. J. B. Mather.
*Nudibranchiata, Notes on New Species of. By the Rev. J. E. Tenison-Woods, F.G.S., etc. From the author.
*Nary Register, United States. From the American Government.
*Orchids, Australian, Vol. 1. From C. M. Maxwell, Esq.

* ——, parts 1 and 2. From Government of New South Wales per Colonial Sccretary, Tasmania.
*Phytographiee Australie, Fragmenta, vols. 1, 6, 9. From the author, Baron F. von. Mueller, C.M.G., M.D., F.R.S., etc.
*Phytography of Tasmania, Contributions to, part 4. By the same. From the author.
*Plants, on select texile. From the same.
* ——, on Food of. By W. E. McIvor. From the same.

Plantarum, Genera. By G. Bentham and J. D. Hooker.
*Patents, Abstracts of Victorian, 1876. From Registrar-General, Victoria.
*Photgraphy, Dictionary of. By Thos. Sutton. From the Rev. J. E. Tenison-Woods.
*Patellidx, On some Tasmanian. By the Rev. J. E. Tenison-Woods, F.G.S., etc. From the author.
*Platypus, On the effects of wounds inflicted by the spur of. By Rev. W. W. Spicer, M.A. From the author.
Report of British Association, 1875.

* _ 10th Annual, of Colonial Muscum, Wellington, New Zealand. From the Director.
* —_ 7th Annual, Museum of Natural History, New York. From the Director.
*__ of progress and condition of Botanic Gardens and Government Plantations, Adelaide, 1875. From Dr. R. Schomburgk.
* Smithsonian Institution.
* on the Chemistry of the Earth. By F. Sterry Hunt. From the same.
* s on Meteorological, Magnetic, and other observations in Canada, 1875. From G. T. Kingston, Esq., Government Observatory, Toronto.
*Society, Philosophical and Literary of Leeds, Report 1874-5. From the Society.
* _ Entomologique de Belgique, Comte Rendu. From the Society.
* ———Meteorological of London, Journal of. From the Society.
* _ Royal, Proceedings of, current numbers. From the Society.
*-_, Zoological, of London. Proceedings, part 4, 1874 ; parts $1,2,3,1875$, \&c. From the Society.
* ——, Geological of London, Quarterly Journal of, Nos. 119 to 124. List of, 1875. From the Society.
*—__, Royal Geographical, Journal Vol. 14, 1874. Proceedings Vol. 19, Nos. 1 to 7, 1875.
* _ , Royal Asiatic, Journal of, Vol. 7, part 2. Annual Report, 1875.
* ___ Linnean, Journal of, Nos. 78 to 8 (Botany) ; No. 12 (Zoology).
*—_ Royal Asiatic of Japan, Transactions, Vol. 3, part 2.
*__ Linnean of New South Wales, Proceedings of, Vol. 1, parts 1, 3.
* 1876. Memoirs of, Vol. 39, part 2, 1871-2 ; Vol. 42, 18731875.
*—__, Boston, of Natural History, Memoirs of, Vol. 2, part 2 No. 4 ; part 3, Nos. 1 to 5 ; part 4, No. 1. From the Society.
*Society, Boston, Proceedings of, Vol. 15, parts 3 and 4; Vol. 16, parts $1,: 2,3,4$; Vol. 17 , parts 1,2 . Report of meeting of. From the Society.
*-, Buthalo, of Natural Sciences, Bulletin of, Vol. 1, No. 4 ; Vol. 2, Nos. 1, 2, 3, 4 ; Vol. 3, Nos. 1 and 2. From the Society.
*—__ American Philosophical, Proceedings of, Vol. 14, Nos. 92, 93, 94, 95. From the Society.
*——_, Royal, of New South Wales, Proceedings of, Vol. 9, 1875.
*__._- Adelaide Philosophical, Publications of, various. From the Society.
*———, Geologrical and Polytechnic, of West Riding of Yorkshire, Proceedings of, n. s. parts 1 and 2. From the Society.
*Statute Index, Tasmania. By H. M. Hull. From the Author.
*Statistics of New Vealand. From New Yealand Government.
*- Tasmania. From Government Statistician.
*-_Victoria. From Government Statist.
*Stars, Catalogue of 1845 to 1871 . From the U.S. Naval Observatory, Washington.
*- Zones of, observed with mural circle, 1846-1849.
*

*——_Results of observations, 1853 to 1860. From ditto.
*——, Equatorial Fundamental, On Right Ascensions of, 1870. From ditto.
*Sinithsonian Miscellaneous Collections, vol. 10. From the Smithsonian Institution.
*Shells, Descriptions of eleven new species. By J. Brazier, C.M.Z.S. From the author.
*——————By By the same. From ditto.
*_ Synonymy of and Remarks upon Tasmanian and other. By the same. From ditto.
*Trade, Free, the creed of, 1875. By D. A. Wells, LL.D. From the Cobden Club, London.
*Treaties of Commerce, On. From ditto.
*Transactions of New Zealand Institute, vol. 8, 1875. From Dr. Hector.

* __ of Society of Engineers and Shipbuilders in Scotland, vol. 19, 1876. From the Society.
*Tea, a lecture on. By Baron von Mueller. From the author.
*Tertiary Marine Deposits of Tasmania, Notes on. By R. M. Johnston. From the author.
*Tertiary Fossils, Tasmanian. By the Rev. J. E. Tenison-Woods, F.G.S., etc.
*University, Howard, United States, Report of, 1875-6.
*Victoria, Natural capabilities of. By Baron F. von Mueller, C.M.G. de.
*Victorian Year Book. By H. Hayter, Govermment Statist, Victoria (3 Copies.)
*Wales, New South, Progress and Resources of, 1876. From Government of New South Wales.
*_ - Mineral Map and Statistics of. From ditto.
Zoology of the "Erebus and Terror," parts 19 to 24.
*Zoprs hudsonensis, Account of. By Dr. Elliott Cones. From United States Government.

PRESENTATIONS TO MUSEUM DURING 1876, WITH NAMES OF DONORS.

Atkinson, Rev. H. D. -26 specimens of new shells from Long Bay.
Bennett, Dr. G., F.Z.S., Sydney.-An ammonite from Western Australia. Two portions of Humerus, and two ditto of Lower Jaw of Diprotodon, from Darling Downs, Queensland.
Boyes, Mr. Lukin. - A large specimen of a species of Spondylus. Two very large Earthworms from Gould's Country.
Baker, Mr. J., Sydney.-Two samples of Tin Ore from New South Wales.
Barclay, C. J., Esq.-Specimens of the copper coinage withdrawn from circulation in 1875. 25 pence, and 25 half-pence. 28 specimens of the Bronze coinage in circulation in Tasmania at the time of the withdrawal of the copper currency.
Blyth, Mr., Honeywood.--Two Black Snakes (Hoplocephalus curtus.) Two insects from the upper branches of a Stringy Bark tree.
Baynton, Mr.-Specimen of silicified wood from Brown's River Beach.
Barnard, Mr. D. M.-A yellow-bellied Beaver Rat (Hydromyss chrysogaster) from Fingal.
Butler, A. A., Esq.-Tin specimens from lode, tin nuggets, etc., from Cascade River, Belmont, Ringarooma.
Briant, Mr. W. G.- 32 specimens Tasmanian Lepidoptera.
Bealey, Mr.-A large fungus (probably Polyporius igniarius) from a tree.
Bailey, Rev. J. H. Brooke.-3 Silver and 4 copper coins from Ceylon.
Bidencope, Mrs. J.-Two cases of Indian Lepidoptera.
Browne, Mr. R. M. -15 New Zealand and 3 Australian copper tokens.
Brown, Rev. G., Sydney. -8 spears and 3 clubs from New Britain and New Ireland.
Brazier, Mr. John, C.M.Z.S., Sydney. 755 named specimens of Shells, with list.
Bagley, Mr., Oatlands.-A young Tippet Grebe (Podiceps australis.)
Coverdale, Dr., Port Arthur.-A large hair ball from the stomach of a calf six weeks old.
Coote, Mr. Audley.-6 sections of Australian and New Zealand Telegraph Cable showing shore end, intermediate, and deep sea portions.
Crowther, Dr. E. L.-A large collection of tin specimens from Gould's country. A specimen of the Nankeen Night Heron (Nycticorax caledonicus.)
Cooper, Mr. Sorell.-Head of Sheep with curious horny growth from ear.
Castray, L. R., Esq.-A very large Egg from a half-bred Brahma Fowl.
Castles, Mr.-Tin Ore from Schouten Island.
Dumbleton, Major. - Two casts of Fossils from River Mersey.
Davies, Mr. C. E.-A Chestnut-faced Owl (Strix castanops.)
Edwards, Mr. F.-Tusk of large Boar, shot in New Zealand.
Edmonson, E., Esq.-A white-breasted Oyster Catcher (Hcematopus longirostris.)

Forrest, Master L.- 33 specimens of Lepidoptera.
Feeney, Mr.-Sample of Coal from Sandly Rivulet.
Fergissom, Mr. J., Tinderhux Bay.-A collection of Shells from Cloudy Bay.
Free, Mr. W.-A Petrel (Broad-billed Prion) Prion rittutus, killed inland at Muddy Plains.
Gillon, Mr.- Specimen of (1pal from Cornelian Bay Cemetery.
Graves, Mr. J. W.-A Water Crake (Porzence tubuensis.)
Gum, R. C., Esyl., F.R.S., ete.-An extensive Herbarium of Tasmanian Plants.
Groom, F., Esy.-A specimen of the Brown (Quail (N゙ymicus australis) partially albino, from St. Mary's.
(iueston, Mr. A slab of mudstone with numerous casts of fossils, from Bruni Island.
Culliver Miss, per ML. Allport, Esq.-Six prepared slins of birds from Gulf of Carpentaria.
(iill, Mr. H., Ringarooma.-Tin (Ore from Star claim, Cascade River.
Harrison, Mr. Cades, Brown's River:--Specimen of the Owlet Nightjar (Aigotheles nove hollandice.)
Hull, H. M., Esy.- Skull of "Native Tiger" (Thylarinus cynocephalus.)
Hall, Mr. W. E.-A specimen of the Long-eared Bat (Nyctophilus unicolor).
Hardy, Mr. W. F., St. Mary's.-Eggs and young of Leech.
Hood, Master E. - Specimen of the "Gulf Weed" (Sicriquessum sp.)
Hickman, Mr. O.-An Echidna.
Jeffrey, Mr., New Norfolk. Specimens of fossiliferous limestone.
Jackson, Mr. A. - An alhino Wattle Bird (Anthocherce inumis).
Johnston, Mr. R. M. - -A collection of Tertiary Fossils from Table Cape.
Juhnston, Mr. A. R., Telomphaph Department, Townsrille, Queensland. A net bag made by Aborigines of Northern Queensland.
Johnston, Mr. H.-A tenpenny piece 1813, Irish.
Keen, Mr. J.-Sample of a plumbago-like substance from Kingston.
Ludbey, Mr.- Two specinens of Fossil Wood from Brighton.
Lewis, J. K., Essl.-. Specimen of the Caspian Tern (Sylochelidons caspia) shot at Frederick Henry Bay.
Legrand, Mr. W.-About 50 specimens of new Tasmanian Shells.
Legge, Captain R.A. A living specimen of the White-bellied Sea Eagle (Halictus loucoyaster) from Ceylon.
Morrishy, Mr. T.-A White Hawk (Lercospitat nora hullumicr).
Maclanachan, Hon. J., Esq.-An Egyptian Goose (Chenulopers egyptiaca).
Martin, Mr. J. J.--Boulder (Nopturium) from Moeraki Beach, New Zealand. Part of stem of Tree Fern prepared for pictureframe making. linck specimen with crystals of arragonite from Dunedin. Specimen of Oamarn Limestone, Lignite from Green Island, and coal from Greymonth, New Zealand.
Meredith, Mrs. Charles.-A valuable named and classified collection of Algee from Orford, Prosser's Bay. Skin of a "Rock" Opossum.
Miles, Mr. - A Tiger Shark.

McDiarmid, Captain, Brig "Moa."-Vertebra of a Whale. A Club from Island of Tanna.
Nairn, Mr.-Two Black Snakes (Hoplocephalus curtus.)
Nichols, Mr.-Sample of Coal from Port Cygnet.
O'Keefe, Mr. - Barnacles from bottom of steamship "Mangana."
Piguenit, Mr. W.-Specimen of the paper like bark of a species of Tea-tree from N. S. Wales.
Pettord, Mr. W. F.- 18 Specimens of Land Shells from Yule Island, New Guinea.
Petersen, Mr.-Tin Specimens from Ringarooma.
Pearsall, Mr.-A Tiger Cat (Dasyurns maculatus.)
Ross, Rev. J.-A large mounted specimen of the Monitor Lizard, from Australia.
Risby, Mr. J. E.-A large Crab from Pirate's Bay, Eagle Hawk Neck.
Rice, Mr. G.-A Fresh-water Crayfish (Astacus sp.) from McRobie's Gully.
Roberts, Mr., Huon.-A mass of fibre of bark of a tree which had been struck by lightning. A white-fronted Falcon (F'alco lunulatus.)
Scholes, Mr. J. S.--Two silver, and 34 brass and copper coins. Specimen of "Chrome," from Dun Mountain, New Zealand.
Simson, A., Esq.-Skins and Skeletons of Autechinus swainsonii, and two species of Rat from Gould's Country.
Stephens, T., Esq. -Specimens of wood and foliage of "Red Pine" (Athrotuxis selaginoides) and "Pencil Cedar" (Athrota.ris chriessiformis) from Middlesex Plains, Tasmania.
Stephenson, Mr. - A Rail (Rellus brechipnes) from Jericho.
Savage, Mr. R.-A Grey Flying Syuirrel (Belidens sciurus) from the Shannon.
Spencer, Mr.-Sample of Coal from Jerusalem.
Scott, J., Esq., M.H.A. - An aboriginal Stone Implement.
Spicer, Rev. W. W.-A sample of "Pulu," or down of a species of Tree Fern-used in the Hospital for pillows, etc.
Swan, J., Esq.-Skin of Belidens sciurus.
Turner, Mr.-A Musk Duck (Biziura lobata.)
Valentine, Dr., Campbell Town. - A Pouched Lamprey (feotria allporti.) From the South Esk.
Williams, Mr. T.-A specimen of the Pacitic Heron (Avelea pacifica) shot on Lake Tiberias.
Weston, Maurice, Esq.-Skeleton of Australian Crane (Grus australasianus).
Woods, Rev. J. E. Tenison.-Crabs from Bruni Island.
Wilkins, Mr. A.-Speciinens of Tin, Antimony, Copper, etc., from Cudegong, N. S. Wales. Silver ore from Mitchell's Creek.
Weeding, Mr., Oatlands.-Mass of fibrous substance from a hollow tree.
Wright, S. P. H., Esq., Glenorchy.-Ditto.
Williams, Mr. R. M.-Crystals of Oxide of Tin, and two Sapphires from Queensland.
Young, Mr. J.-Specimen of "Sea Hare" (Aplysia) from beach in Domain.
Young, Mr. J., Wellington, N. Zealand.-A portion of the Cook's Straits Telegraph Cable, broken nine years after submersion.

PLANT'S ANH SEETS RECEIVED AT BO'TANIC GARDENS DURING THE YEAR 1876.

January 13th. From Messrs. Vilmorin, Andrieux di Cie., P'aris.1 packet seed, 4 ditto Achimenes.
January 1ith. From Baren Ferd. von Mueller.-if packets seeds.
January 2end. From Mons. J. Verschaftelt, Ghent, Belgiom, per St. Osyth. -1 case Rhododendrons, Tree Peonys, and Pictorial I'rees.
January 2:2nd.-From Walter Hill, Esq., Director Botanic C'ardens, Queensland. -1 case plants.
January 2(ith.-Frem the Botanic Gardens, Christchurch, New Zealand. -1 case plants.
January ${ }^{2}$ '̈th.-Mr. S. P'urchase, nurseryman, Sydney, New South Wales.-1 case plants.
January $2{ }^{2}$ th. -From the Butanic Gardens, Calcutta.-Seeds of Pinus longifolia.
February 5th. From Mr. Wim. Bull, New Plant Merchant, London. -22 varieties Lily.
Jannary 28th.-From Mr. Wm. Waterhouse. - Seeds, "Pride of Demerara."
March 14th.- From Messrs. Vilmorin, Andrieux © Cie, Paris.-3 packets seeds.
March 21st.-From Dr. Curl, Otago, New Zealand.-2 packets seeds.
April 8th. From the Royal Giardens, Kew.-Case containing Cork Oaks and Himalayan Rhododendrons.
April 2end.--From Jules Cock \& Swurs. - 18 packets seeds.
April 22 nd. - From Messrs. Hubers and Co., France.-48 varieties seeds.
April 29th -From Lady Rolle, Picton, Chudleigh, England.-11 packets Coniferæe seeds.
May 17 th. -From His Excellency F. A Weld, Esq.-20 papers seeds.
May 19th.-From Dr. Webster, Dunedin.- 3 New Zealand Tree Ferns.
June 2nd.-From Mir. (k. Firnsmouth, London.-1 case seedling Rhododendrons.
June Sth.--From the Chamber of Agriculture, Washington.-63 papers seeds.
June 19th.-From Mr. Samuel Purchase, nurseryman, Sydney, New South Wales.-Case containing 60 plants.
June 23 rd ---From Dr. Curl, Wellington, New Zealand.-6 papers seeds.
Junc 26ith. -From Messss. Nardy id Cie., Hyerès, France.-16 papers seeds.
August Brd.-Fxom Mr. (i. Bruming, St. Kilda Nurseries, near Melbourne.-Case containing 78 plants.
Augnist 7th. From Messrs. Shepherd id Sons, Darling Nursery, Sydney.-Case containing 63 plants, and 33 varieties scions, 83 papers seeds.
September 11.-From A. Thozet, Esq., Queensland.-Seeds, 4 species Cycads.
September 18th. From the Botanic Gardens, Christchurch, New Zealand, one box scions.

October 13th.-From the Royal Gardens, Kew, London.-48 papers seeds.
November 13th.-From the Botanic Gardens, Christchurch, New Zealand.-Box containing 60 plants.
November 25th. -From F.Sander and Co.,St. Alban's, near London. -9 varieties Orchids.

PLANTS AND SEEDS SENT FROM THE BOTANIC GARDENS DURING 1876.

Jan. 29th.-To Mons. J. Linden, Ghent, Belgium.--12 Tree Ferns. January 29th.--Per "Lufra," to Mons. J. Verschaffelt, Ghent, Belgium.-12 Tree Ferns.
March 7th.-To the Chamber of Agriculture, Washington, United States.-Package seeds.
March 7th.-To Mr. M. Tunaki, Agricultural Department, Japan.-1 package seeds.
April 19th.-Per "Alfred Hawley," to Mons. August Van Greet, Ghent, Belgium. 6 Tree Ferns.
May 15th.-To Jules Cock iE Sour, France.-3 species Cordyline seeds.
May 15.-To Ch. Huber \& Cie., Hyerès, France.--3 species Cordyline seeds.
May 15th.-To Messrs. Vilmorin, Andrieux \& Cie., France, 3 species Cordyline seeds.
May 30th.-To Mr. Samuel Purchase, nurseryman, Parramatta, near Sydney. -1 case plants.
May 30th.-To Messrs. Shepherd Sons, Darling Nursery, Sydney, New South Wales.-1 case plants.
June 10th.-To the Acclimatisation Society, 19 Rue de Lille, Paris. -1 package seeds.
June 14th. -To the Botanic Gardens, Melbourne. -1 case plants.
June 20th.--Mr. Samuel Purchase, Somerset Nursery, Sydney.-1 box seeds.
June 20th.- To Messrs. Shepherd \& Co., Sydney.-One box seeds.
July 24th. - To the Rotanic Gardens, Christchurch, New Zealand. Case containing 48 plants.
July 25th.-To Mr. G. Brunning, nurseryman, Melbourne.Case plants and seeds.
September 29th. -To the Botanic Gardens, Christchurch, New Zealand. $\mathbf{1}$ box plants.

PLANTS SUPPLIED FOR PLANTING PUBLIC PLACES DURING 1876.

May 16th.--For the Launceston Hospital.--30 Conifere.
May 18th.-FFor Church of England Grounds, Bothwell. - 130 plants.
June 9th.-For the Queen's Asylum.-Collection plants.
June 23rd. - For the Hobart Town Cemetery. - 180 plants.
July 10th.-For Church grounds, Avoca.- 50 plants.
July 10th.-For Grounds of Horton College, Ross. - 100 plants.
July 29th.-For Congregational Church, Richmond.- 36 plants.
August 8th,-For the Cornelian Bay Cemetery.- $\mathbf{1 5 0}$ plants.
F. ABBOTT, Jun., Superintendent.

PLANTS INTRODUCED INTO THE ROYALSOCIETY'S GARDENS, 1876 .	
Abutilon boula de neige	Callicarpa cama
," megapotanicum varie-	Campanula glomerata
gatum	Cassia chamecirta
Sellowianum marmor-	Cantaurea procumben
	Cerasus folius variegatus
Acer dissectum	Ceropegia elegans
,, roseus pictis	Cimnamomum dulce
,, atropurpureum	Clarkia elegans alba pleno
Achillea eupatorium	Clerodendron Thompsoni
Achyranthus aurea reticulata	Coleus grotesque
Adiantum hirsutum	Cookie punctata
pubescens	Corylus avellana pendula
Esculus Stevensi	Cupressus filifera
laciniatum	,, horozontalis argentea
Allsophila Cooperi	", ,, Turneri
Alocasia metallica	variegata
violacea	,, sempervirens variegata
Aloysia bergamotta	Cycas angulata
Alphistonia excelsa	Cydonia Moorlosi
Andromeda mariana	Cyperus alternifolius varie gatus
Angelonia grandiflora	Cystopteris Dyckiana
Anigozanthus pulcheri	
Anthericum Rossie	Dalecampia Roezliana
Anthurium cordifolium	Dombeya Mastersi
Aquilegia olympica	,, natalensis
Aristolochia gigantea	Dichorisandra thyrsiflora
Aspidistra lurida variegata	Dicksonia Smithii
Asplenium falcatum	, Youngiana
Aucuba femmina	Dieffenbachia picta
,, limbata	Dillwynia acicularis
,, longifolia	", mollissinia
," macrophylla	Dracena amabilis
", mascula	alba marginata
" picta	,, Gayi
,, salicifolia	Guilfoylei
viridis	Shepherdi
Audibertia polytricha	Wrightii
Baccharis halamifolia	Dracocephalun Ruysciana
Beaumontia grandiflora	
Begonia argyrites	Echeveria abyssinica
,, canary bird	Edworthia grandiflora
Veitchei	Erica autumnalis
Betula laciniata	Eryngium Lewenworthi
,, pendula	pandanifulimm
Bignonia alba lutea	Eschynanthus Lobbi
Bossiaea microphylla	Eucalyptus hemastoma
,, scolopendrium	hemophloia
Bowenia spectabilis	longifolia
Brazillian cherry	meliodora
Bubthalmium salicifolium	siderophlvia
Buxus sempervirens variegata	Euphoria Litchi

Eurya latifolia variegata
Ficus Bengamini
,, lucida
," lurida ," obtusata
Franciscea latifolia
Fraxinus excelsa Stewarti
dissectum variegatum
Fuchsia microphylla
Garcinia mangostana
Gardenia magnifica
Genetylis fuchsioides
Gymnogramma Muelleri
Gymnostachya giganteum
Hebeclinum ianthinum
Heliotropium aureum

Inga aurea
," pulcherrima

Jacaranda mimosicefolia
Laelia albida
,, autumnalis
", majalis
Lactaria calicarpa
Laurus ceylonica ,, nitida
Ligustrum aureus variegatus
Lobelia cardinalis ,, syphilica
Lygodium scandens
Macrolopia strigosa
Macrozamia corallipes gyrata

,	
,	Migueli Perowskiana

Mangifera indica
Magnolia Campbelli
Maranta regalis
,, sanguinea
Marshallia cæspitosa
Mimulus alatus
Musa superba
Nephelium longana

Nerium album pleno
Odontoglossum cordatum
Leopoldianum
Oncidium barkeri
,, cavandishianum
", tigrinum
Owenia cerasifera
Oxycoccus macrocarpus
Panicum plicatum
Papaver pilosum ,, umbrosum
Passiflora Bounapartea ," decaisneana
,". granadilla
Pavonia coccinea
Pentstemon albiflora
Periploca greca
Petrophila pulcheri
Phillodendron lindenianum
Phlox Nelsoni
Pimenta vulgaris
Pinus edulis
,, Kashiana
", Lowdoniana
", macrocarpa
,", monophylla
,, Pattoniana
Polypodium glaucum
Pteris pedata
.,, scaberrula
Pyrus aucuparia pendula
Retinospora obtusa variegata
Rhaponticum nivium
Rubuṣ rugosa
Salvia gigantea ,, sanguinea grandiflora
Scutellaria macrantha
Spirea palmata
Silene saponaria
Stephanotus Thouarsi
Stipa tenacissima
Strelitzia juncea
Syncarpia albens
Tacsonia Buchananni
,, insignis
Taxus baccata argentea
Tecoma fulva

, Stans

", velutina

Tetratheca verticillata
Thibandia macrantha
Thunbergia laurifolia Harrisi
Thuja occidentalis variegata
Tilia argentea variegata pendula
Tulipa clusiana cornutal elegans lutea major Markgraf de Bade oculis solis perfecta persica parrot constantinople ,, gloriosa red rubra et lutea yellow
Tupa Bridgesi
Tydea venosa
Ulmus aurea
Vanilla aromatica
Whitsenia solanacea
Wisteria Bidwilli
Yucca oloifolia variegata
Zamia Mackenzii

ROSES.

Annie Laxton
Auguste Rigotard
Deuil de Paul Fontaine
Emile Hansburgh
Felix Genero
Francois Sacharme
," Michelon
," Madame Eugene Verdier
,, Madame Morceau
,, Marie Beauman
", Maurice Bernardin
,, Monsienr Boncenne
,, Perle de Lyon
," Princess Beatrice
," Queen of Waltham
,, Reynolds Holes
,, Richard Wallace
," Star of Waltham

RHODODENDRON.
Adelo
Amazon
Alarm
Aboreum
August van Geert
Carbatum
Beranger
Bijou
Blandfordiæflorum
Camellireflorum
Cinnabarinum
Compt de Flandre
Dalhousie
Evelyn
Griffithianum
Isabella
John Waters
Lady Molesworth
Lord Elgin
Macculatum nigrum
Maddenni
Marion
Nero
Ninon d'Enclos
Ophelia
Paxtoni
President Van den Heck
Prince Camille de Rohan
Prince of Wales
Princess of Wales
Princess Alice
Rebecca
Rhoda
Rosalie
Rosetta
Satanella
Sir Thomas Ackland
Souvenir de Jean Byls
Stella
Stephanie
Towardianum
Vicompt de Blois
Vivid
CAMELLIA.
Augnsta superba
Beali rosea
Belle de fierense
Belle de pontean
Bonomiana
Countesse Cellini

Carlotta Papindoff
Compt de Paris
Countesse of Orkney
Don Raleri
Henri Favre
Imbricata
Jenny Lind
La pace
Lavinia Maggi
Lavinia Maggi rosea
Noli ne tanque
Princess Frederick William
Queen Victoria
Rose la Reine
Sanchezi
Tragioni
Tandessa superba
AZALEA.
Alba delecta
Amœena
Baron de Prie
Colorans
Duc Adolph de Rossau
Duc ile Brabant
Exquisite
Fielderi
Glory of Sunning Hill
Murrayanum
Obtusifolia
Obtima
Rosea superba
Splendens
Vittata punctata
MOUTAN PEEONY.
Cardinal Antonella
Comptesse de Flandre
Elizabeth
Evelyn
Fimbriata carnea pl.
Fragrans maxima ploeno
George Rollison
Leader
Madame d'Andrimont
,, Catelan
,, Jules urban
,, Leduc
,, Stewart Low
Mademoiselle Shenmakers
Professor Dalbeauf
,, de Konninck

President Lambinon
Purpurea violacea
Regia
Rubra odorato plenissima
GERANIUM.

Agrippa
Brigand
Brigantine
Black Prince
Celeste
Charles Turner
Cynthia
Czar
Duke of Edinburgh
Edgar
Happy thought
Imperator
Lady of the Lake
Leotard
Mayday
Mrs. Ford
Miss in her teens
Pompey
Prime Minister
Pasha
Queen Victoria
Sultana
FUCHSIA.
Cannell's gem
Delight
Lady Heytesbury
Little Bobby
Lizzie Hexham
Nabob
Pyrene
Symmetry
Transplendent
CHRYSANTHEMUM.
Barra
Clementine
Dr. Rogers
Ernest
Gazelle
Gustave Roy
Japanese Empire
Lustina Lewia
Mrs. Dix
Mrs. S. Morgan

Mrs. L. Peabody
Miss Florence Nightingale
Nelly
Pablo
Rajah
Baron des Sandwich Isles
The little gem
Thermos
Yeddo lilac

LILIUM.

Californicum
Callosum
Candidum variegatum
Chalcedonicum
Dovuricum fulgidum ,, grandiflorum
,, Johnsoni
,, Sappho
Elegans atrosanguineum maculatum
splendida
staminosum
eximeum
Humboldtii
monodelphum Schooitzianum parvum
purpureum
superbum superbum pyramidale tenuifolium tigrinum fiora plono
,, jacundam

HYACINTH.
Charles Dickens
Crcesus
Grand Lilas
Garrick
Grand vedette
Heroine
Homerus
King Acingarius
Latour d'Auvergne
Lord Wellington
Lieutenant Waghorn
Mammoth
Mars
Mimosa
Prince of Waterloo
Queen of Netherlands

TULIPS.

Admiral Kingsbergen
Belle Lisette
Canary bird
Cornuta
Cerise gris de lin
Cousine
Claremont
Couronne Imperiale
Cramoise superb
Duc van Thol, crimson
," gold striped
," white
Elegans
Fiance
Florentina
Germanire
Globe de Rigot
Leon d'orange
La blason
La belle Alliance
Lac de Chine
Lutea major
Maulas
Markgraff de Bade
Meteor
Oculis solis
Poony gold
Parroquet Constantinople
,, gloriosa
,, red
,, rubra et lutea
,, yellow
Pax alba
Persica
Pottebacker white
yellow
Proserpine
Queen Victoria
Red gris de lin
Regince rubrum
Roi Pepin
Rose aplatis
,, mundi
,, triomph
Standard royal
Vander Nees
Wonverman

APPLES.

Annie Elizabeth
Api

Betty Geeson
Sceptor d'or
Buff
Buncomb
Burchard reinette
Carolina red June
Cheoce
Dougharty
Early harvest
Evagil
Kentish fillbasket
Maidens apple
Mother
Shockley
Small's admirable
Striped beaufin
Stirling castle
Tower of Glammis
Warner's king
Wheeler's russet
Winter queening
Wormsley pippin

> PEARS.

Alexander Bivort
Beurre de Amalis
Compt de Flander
Doyenne Défais
Fondant de Curne
Gansels Seckle
Huyshe's Prince of Wales
Leopold
Soldat d'Esperen
Triomph de Lamy

PEACHES.

Barrington
Lady Palmerston
Prince of Wales
Salway
NECTARINES.
Albert Victor
Balgowan
Elruge
Lord Napier
Stanwick Elruge
Victoria

CHERRY.

Ohia beauty
Reine hortense

PLUMI.

Imperatrice de Milan
Jodoigu green gage
Prince Engelbert

> GRAPE VINES.

Allan's black
Black Manuka
Catarmba
Chaptal
Elsinburgh
Trentham black
F. ABBOTT, Jun.,

Superintendent.

Rencernen

[^0]: * Dr. Hooker says the Australian orders (abundant there and rare elsewhere) are very unequally distributed in Australia. There is a greater specific difference between S.E. and S.W. Australia than between Australia

[^1]: and the rest of the glable, and the most marked characteristies of the flom are concentrated at that point, which is geographically nost remote from any other portion of the globe.-F'lora of Tasmania. The Introd. : xxxiii.

[^2]: *These and the two following descriptions are taken from Darwin's Geological Observations in South America, etc., page 163. Appendix. Quoted also in Strzelecki's New South Wales and Van Diemen's Land, page 268.

[^3]: *Proceedings of Geological Society, Λ pril 24 th, 1872, p. 332.

[^4]: * Including still-births until 1873, in which year the rate was 38.99 .

[^5]: * Previous to 1873 still-births were included.

[^6]: ＊Assumed as the population on 31st December，1800，the number by census on 7 th February，1870，being 99，328．

[^7]: Thophon clathrates, n.s. T. t. parea, fusiformi, turvita, fulea; spice ecominuta; anfructihus \& , conerexis, declivilus, validis, lmuitu-
 chatis, cluthrotis ; "purtural lute, intense rujo fullea (fasciuta?), labro temui ; cencli subelongata recurvo. Long. 9. Lat. 4.
 T. shell small fusiform, turretted, brownish; spire act-

[^8]: Trecectella tasminte. n.s. T. t. decollata cylindraceo-turrita, piame, temsi, nitente, pmllida; unfructibus 5 (non decoll. 7) coneexiussuntis, plicis purcis sub-urntis,confertissime instructis (in ult. enfruc.
 bimarginato sub-expanso, labio inflexo. Long. 7. Lat. 3.
 T. shell decollate, cylindrically turretted, small, thin, shining, pale fulvous, whorls 5 (if not decollate 7), somewhat convex, furnished very thickly with small subacute plaits (in last whorl 30-35) ; aperture pyriform, angulate and sulcate above; outer lip bi-marginate sub-expanded; lip reflected; peristome continuous.

 Bass Straits, common. The plaits or ribs on the shell are very like those on most Scalaria. For my own part I think, it very difficult to distinguish the species from T. teres, Pfi.,

[^9]: Dosinia mamaculata. n.s. D.t. suborbiculari subinflata; umbones versus subrattenmete, niect, sulmitida et sublente deyanter irridescenti, umbonibus leciter ectrucole meneulatis, conentriee tenuiter strinte ; striis subtillissime clegrentissimerue decussatu; ara ligumenti angusté lanreolata; lunula piaria, late cordatu, impircsse, malio carinater, intus alber; sinu palliuri mrofundo, obtuse triangulato. Long. 20. Lat. 26.

[^10]: Venerupis reticulata. n.s. V. t. transiersa, subquadrata, tenui, dc-
 latiorc, subtruncata; costis transversis obsoletis, planatis, divaricatis, undu-
 valvis intus albis, cardine parro incequaliter tridentato, dentibus medianis et

 Long. 17. Lat. 17. Alt. 12.
 V. shell transverse, sulbuadrate, thin, depressed, very inequilateral anteriorly rounded, short, somewhat depressed, posteriorly and border very thickly girdled with transverse obsolete flattened, undulating ribs, under the lens longitudinally striatu in every part; valves white within, hinge small, unerually tridentate, with the median and posterior teeth

[^11]: * Since writing the above I have had access to the illustrated plate of Vaccinium Rollisoni. It differs from V. Whitmeci also in its hairy pedicels and (especially) filaments.

[^12]: 13th－Arbutus unedo commencing to flower．
 16th．－Garrya elliptica ditto
 2sth．－Almond in full flower．
 31st．－White Mulberry commencing to start．
 ，＂－Yellow Crocus in flower．
 FRANCLS ABBOTY．

[^13]: Leafing, Flowering, and Fruiting of a few Standard Plants in the Royal Society's Gardens during the Month.
 12th-Sambucas niger commencing to break.
 16th.-Horse Chestnut ditto.
 17th. - Gooseberry ditto.
 28th.-Elm commencing to flower.
 29th.-Lombardy Poplar commencing to break.
 30th.-Royal Apricot commencing to tlower.

[^14]: Leafing，Flowering，and Fruiting of a fow Standard Plants in the Royal Society＇s Gardens during the month．
 21st．－First ripe Strawberry gathered．
 25th．－Ditto ditto Cherry（May Duke）ditto．
 28th．－Black Mulberry in blossom．
 The flowering of Punica plecha and Bougainvillea spectabilis，and the ripening of
 raspberries fully ten days later this season than usual．

[^15]: Melbourne,
 March, 1876.

[^16]: * The following very apposite passage from Butler's Analogy is worth recalling:-"The thing objected against this scheme " (he is speaking of the Gospel) "is that it seems to suppose God was reduced to the neecasity of a long series of intricate means in order to accomplish His ends. As men, for want of understanding, or power, not leming able to come at their ends, directly, are forced to go roundabout ways, and make use of many perplexed contrivances to arrive at them. Now everything which we see shows the folly of this.

 For, according to our manner of conception, God makes use of a variety of means.
 for the acemplishment of His ends. Imleer, it is certain, there is someWhat in this matter quite beyond our comprehension, lut the mystery is as !frat in nuture as in Christianity."—Butler's Analogy, part 2, chap. 4. The italics are my own.

[^17]: * All measurements in millimetres.

[^18]: *See the Rev. J. E. Tenison-Woods' paper.

[^19]: * I have since been informed by Mr. Ulrich that the composition of the intrusive rock at Geilston Bay is similar to that at Breadalbane and Table Саре.

[^20]: * New species not yet described.
 \dagger Discovered by A. Willis, Esq., Wynyard.

[^21]: *Sec table.

[^22]: * At Table Cape this shell has invariably 29 radial ribs, not 39 as figured and described by Prof. McCoy in the Victorian Decades.
 \dagger A very different species to that which characterises the Turitella group ut Table Cape.

[^23]: * Since writing the above I have found P. littorinoides in Port Phillip, Western Port, Apollo Bay, Loutit Bay, all in Victoria. Some specimens had a Nassa-like mouth, that is, teeth on the outer lip. I think a new genus should be erected for the species.

[^24]: No. 36. Clayculds avaeli. n.s. C.t. parva, turbinata, depressa, orlicularic, wlidinserulu, sordide allor et rufo nebuloso, umblique irregulariter carinate, intorstitis tenui ist gulariter concinne oblique liwetis et peculiariter

[^25]: No. 56. Styloptygma tasmanica. n.s. S.t. parva, elongato-fusiforme, antice rotundata et latiore, lactea, translucente; mucleo hyalino, inflato, rotundato, transverso; anfi. (nucleo excluso) 7, tumidiusculis, politis, obsolete striatis ; sutura late marginata, vix obliqua, impressa; apertura pyriforme ; plica inconspicua, obliqua. Long. 4, lat. 1, mil.

 Shell small, elongately fusiform, rounded and broader anteriorly, milky white, translucent, nucleus hyalini inflated, rounded, transverse; whorls, exclusive of the nucleus, 7 ,

[^26]:

 tmerica, eto. in order to co-operals in in aratem it int is Imerica, eto, in order to co-operato in a artumi if Irter
 The loatibent of Europe.
 The mean is in all cases taken from the sums of the two

 elshit of 92 foet above sea level, and its force in lbs per twis fo. t
 1 bo relative quantity of rain that foll under tha differtut plnds is registered each moraing at 730 am .
 he thiferctse fruta average.

 ## FRANCIS ABBOTT, F.R.A.B., etc.

 T the rif: afiag fowering, and fruiting of a fow stavdard finns in the butumeal Gardens during the month of July, 1a-t, :-
 Yoth - Arbutus anedo commenclag to flower.

 - 4 th - larrya elliptica, ditto
 \&lot.- Nhamont, ditto. Yellow Crocus, litto

 and ruin. in shade, 41.59 deg .
 Hew paint, musir of \& dutly readsties, 30 e0.deg-

 Humidity mean of Zditto, os.
 Sintar intmasity. mean of maxitall in temil sature, 41 wheloge
 20 90deg

 Orone, mean of 0 drill nhareations, $7 \cdot 52$.

 Rainfall, 1 kisin. ; in excess of eysporation, buia.
 Evanporation, OSia.
 Evaporation, $05 i a$, per square foot, total of 2 daily obser-
 Wiad, forec in 165 . per vations, $18 \cdot 0 \mathrm{HLh}$.
 Horizontal movemenh, 1,150 mille .
 Of 09 observations, 25 ware calms, 8 rainy daya.
 On 13 th tho Lerreatrial radiation was 1 sileg.
 The uerisl movement was lass by 620 millea than during any month in the last twelve.
 W.E. SHOOBRIDGE, Valleyfield.

[^27]: * During this storm the max. Wind force was 26.04 lbs . per square foot, between 3 h. and 5 h. a.m. ; the barometer reading $2 \sigma^{\circ} 910$.

 Er.ancis Abbott, F.R.A.S., etc., Observer.
 N.B. - The time of Registration at Hobart Town, 10 h . 33 m . P.M. being after dark renders it impossible to make the Wind and Cloud records more than approximately correct. 'Lhe Rainfall is measured at 7 h . 30 m . A. 3s. local time.

