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MOLL IFIERS FOR GAMES IN NORMAL FORM AND THE 

HARSANYI-SELTEN VALUATION FUNCTION 

1. INTRODUCTION 

Littlechild-Vaidya [1976] defined and studied ratio measures 

of coalitions' "propensity to disrupt" in an n-person characteristic 

function game. Th2 attendant difficulties with the choice of ratio 

measures led to the introduction and development by Charnes-Rousseau-

Seiford [1978] of new incremental measures giving rise to a wide variety 

of "disruption" and "mollifier" solution concepts free of various ratio 

defects. 

Shapley raised the question of the relation of these "mollifier" 

concepts to the Harsanyi-Selten [1959] modification of von Neumann-

Morgenstern's [1953] construction of a characteristic function for games 

in normal form to take better account of "disruption" or "threat" possibilities. 

In this paper, we show for a large class of games that the 

Harsanyi-Selten construction yields a constant mollifier. In general, it 

can be non-superadditive when the von Neumann-Morgenstern function is 

superadditive. 

We then extend the "mollification" concept to games in normal 

form. In the extended theory, the Harsanyi-Selten construct is a constant 

mollifier with the preceding non-superadditive impediment. It also fails 

to take account of coalitional sizes. Our extended "homomollifier" concept 

does and always yields a superadditive constant sum characteristic function. 

2. COMPLEMENTS AND MOLLIFIERS 

The concepts of complement and mollifier for n-person games in 

characteristic function form were defined and studied in Charnes-Rousseau-
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Seiford [1978]. Since we will require some of these results and also as 

motivation for our extended theory to games in normal form, we give the 

following brief summary. 

Let (N,v) be a characteristic function game where N = {l,2,...,n} 

is the set of players and v is a characteristic function, i.e., a non-

negative function defined on the subsets of N with v(0) = 0. The complement 

of a game v, denoted v, is defined by 

v(S) = v(N) - v(N-S). 

We have immediately that 

(i) v = v (i.e., the complement transformation is involutory). 

(ii) v(0) = 0 and v(N) = v(N). 

(iii) For two games u and v 

u + v = u + v (i.e., the complement of a sum is the sum 

of the complements). 

While v will not necessarily be superadditive, even if v is 

superadditive, v does inherit some of the structure of v. 

Theorem 2.1: 

(i) If v is monotone, i.e., A9B=^v(A) < v(B), then v is monotone. 

(ii) If g is strategically equivalent to v, i.e., 

g(S) = r- v(S) + JZ a- with r > 0, then g is strategically 
ieS 1 

equivalent to v. 

Theorem 2.2: The Shapley value of a game v and its complement v are identical, 

i.e., 

$.(v) = ^ ( v ) , V i e N. 

If we assume that v is superadditive, the structure of v becomes 

more fixed. 

Theorem 2.3: If v is superadditive, then 
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(i) v(S) > v(S) ( V S C N ) . 

(ii) v(s) + v(N-S) > v(N). ( V S 9 N ) . 

(iii) v(S U T)> v(S) + v(T), whenever SO T = 0. 

(iv) v is superadditive iff v = v. 

Corollary 2.3: v is constant sum iff 

v(S) = v(S) for all S 9 N . 

The value v(S) can be considered as a maximum feasible "goal" 

of coalition S. It is the largest amount that they can reasonably "expect" 

to get just as v(S) is the least they would "accept." 

We, therefore, define a mo!1ifier of a game v as any componentwise 

convex combination of the function v and its complement v. In particular, 

wy> a "constant" moll ifier of v is defined for 0 < ]i <_ 1 by 

Wy (S) = y v(S) + (1 - y ) v(S), 

and a coalitional mollifier is defined by 

w(S) = y s v(S) + ( l - y s ) v(S) 

where y s e[0,1] , V S. This allows us to "mollify" different coalitional 

values to a greater or lesser degree than others. In particular, if 

we call the associated w(S) a "homomollifier." = 

It is again immediate that w(0) = 0 and w(N) = v(N) for any 

mollifier w of a game v. Mollification also is additive and preserves 

strategic equivalence. 

Theorem 2.4: Let w u , w v and w 9 be mollifiers of the n-person games u, v 

and g, respectively, with g strategically equivalent to v. Then 

/ • \ U + V U V 
(l) w v = w + w v . 

(ii) w 9 is strategically equivalent to w v . 

Constant mollifiers are not necessarily superadditive, but do 

possess some attractive properties. 



4 

Theorem 2.5: Let w be a constant mollifier of a game v. 

(i) If v is constant sum, then w^(S) = v(S) for all ye[0.1]. 

(ii) If v is superadditive, then 

(a) w^ (S) is linear and monotone non-decreasing in y . 

(b) if W p is superadditive, then w ̂  is superadditive 

for all y 2 £ 

(c) the core of w is contained in the core of v. 
y 

Coalitional mollifiers, however, are superadditive and constant 

sum if one imposes some reasonable conditions on the weights y^-

Theorem 2.6: Let w be a coalitional mollifier of a superadditive game v. 

(i) If the weights y^ satisfy y ^ + y j = l ^ y y whenever S O T = 0, 

then w is a superadditive game. 

(ii) If in addition to (i) y N = then w is a constant sum game. 

3. THE HARSANYI-SELTEN VALUATION FUNCTION 

An n-person game in normal form is defined by a set of players 

N = {1,2,...,n} where each player i has a strategy set n. and a payoff 

function M. defined as a mapping from the product of the strategy sets 

into the real numbers. Thus, M. : x Jl̂  x . . . x n n —> R. 

If each player k selects strategy 7rk e n^, then each player i receives a 

payoff M. ( tt̂  , tt2,..., 7rn). 

If we assume that the payoffs to each player are in the same 

transferable utility, then each subset S 9 N has a payoff function 

¿ C M . ( t t - , t t 0 , . . . , tt ) where each player k uses strategy tt , e I I , . The 
c 1 1 C n K K 

i e S 

set of joint strategies for subset S 9 N is defined as the product of the 

strategy sets of the members of S, and is denoted by n s ; a particular 

joint strategy is denoted by TT̂ . 
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An n-person game is normal form, denoted (M, n^), is constant sum 

if X ) = c^V71!^ £ nfyj a n d is zero sum if c = 0. 
i e N 1 

For a constant sum normal form game (M, n^) the associated 

von Neumann-Morgenstern characteristic function [1953] is defined on the 

subsets S5:N by 

v(S) = Max Min A-* M i ( 77 S' 11 N-S }' 
TT TT 1 £ 
JiS N-S 

If the game is not constant sum, von Neumann-Morgenstern adjoin a fictitious 

player whose payoff is the negative of the sum of the payoffs to the other 

players, thus forming a zero sum game, and restrict the resulting characteristic 

function to subsets S 9 N . 

For a superadditive characteristic function game (N,v), consider 

the normal form game (M where 
J_ L-

S. = { T : T 9 N , i e T } is the i player's strategy set, 

+• h 
and S^ = S^ x S^ x ... x S n Then, the i player's payoff function 

is M-j (Tj, T 2 , ..., T n) = V ( V i C T T _ ,th j—:— if T. = T. V-e T., the i player's choice 
* -i J ' J ' l 

v({i}) otherwise 

This is the normal form game constructed in the inverse theorem of 

von Neumann-Morgenstern, The characteristic function derived from this 

game is the original characteristic function v, i.e., 

v(T) = Max Min M. V {sJ9 
ST s

N - t
 i e T 

where Sy e Sy and s ^ y e S 

Thus, for each normal form game (M, n^) there is an associated 

characteristic function game (N, v ), and for each superadditive 

characteristic function game (N, v) there is an associated normal form 

game (M v, S j . 
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For games in normal form a modified concept of characteristic 

function was advanced by Harsanyi [1959] and Selten [1964] that is 

supposed to be sentitive to "threats" that the classical max-min 

definition overlooks. 

We denote by M* the maximal total payoff, i.e., 

M* Max £ M.(,n), 
nN ieN 

This modified characteristic function, denoted h(S), may then be defined 

by the two conditions 

(i) h(S) + h(N-S) = M* 
(3.1) 

(ii) h(S) - h(N-S) = A s 

where A^ is the minimax value of the two person zero sum game between 

coalitions S and N-S in which the payoff to S is the difference 

Z m - X X - . 
ieS 1 ieN-S 

This characteristic function h is obviously constant sum and 

M ^ - M M 
(as shown later) satisfies v < h < v where v is the classical 

-M 
von Neumann-Morgenstern characteristic function and v is its complement. 

A question posed by Shapley is whether there might be a simple, 

"natural" way to construct a normal form game whose classical characteristic 

function would be a given (superadditive) function v, and whose modified 

characteristic function h would be a mollifier. The following theorem 

shows that this is indeed possible using the construction given by the 

von Neumann-Morgenstern inverse theorem. Moreover, the resultant 

modified characteristic function is in fact a constant mollifier. 

Theorem 3.1: Let 

(N,v) be a superadditive characteristic function game and 

(M v, S M) the associated normal form game. Then 

N 

(i) the classical characteristic function of (MV,S^) is V, 
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and (ii) h, the Harsanyi-Selten modified characteristic function of 

(MV,S^) is a constant mollifier of v withy= i , i.e., 

h(T) = i v (T) + i v (T), V T 9 N 

Proof: Since h(N) = Max £ M
v (s N) = M

v* = v(N), it follows from (3.1) that 

N ieN 1 

h(T) = v(N) + A t 

2 

and 

h(N-T) = v(N) - A t 

2 ' 

The proof will be complete if we show that 

A t = v(T) - v(N-T) (=v(T)). 

Let Sj be the joint strategy where each player ieT chooses strategy T. Then 

E ^ (ST. S n _ t ) = E -RFP- = v(T) for any strategy s N _ T 

ieT ieT 1 1 

Considering next this fixed Sy, we see that 

Max 
S N - T E S N - T I £ N " T 

2 M i ( i T ' SN-T ) = v ( N " T ) 

Thus, 

v(T) - v(N-T) = v(T) - Max Z ) M^ (s T, s M T ) 

S N _ T i^N-T1 1 N " T 

= £ [ V ( t ) - S t " " ^ SN-T>] 

MI ( IT- SN-T» - <5T> SN-T 

[E H» (sT, sN.T) - E t $ (sT, sN.T)J 

N-T 

= Min 

£ Max Min 
S T SN-T 

=
 A

T 

Similarly, v(N-T) - v(T)£ . 
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Since A n _ t = -Ay, we have v(T) - v(N-T) = Ay . Q.E.D. 

Theorem 3.1 shows that for a large class of games in normal 

form the characteristic function implied by Harsanyi-Selten's definition 

is in fact the average of the von Neumann-Morgenstern characteristic 

function and its complement. Thus, a game with a superadditive characteristic 

function can have a non-superadditive Harsanyi-Selten valuation function 

as the following example demonstrates. 

Consider the characteristic function v(l) = v(3) = 5, 

v(2) = 14, v(12) = v(23) = 20, v(13) = 10, v(123) = 30 whose complement 

is v(l) = v(3) = 10, v(2) = 20, v(12) = v(23) = 25, v(12) = 16, and 

v(123) = 30. Even though v is superadditive (and has non-empty core), 

the Harsanyi-Selten modified characteristic function is not superadditive 

since 

h 4 ( l ) + hi(2) = = h 4 (12). 

In fact, for this example, h^ is not superadditive for any y > 1/6. 

In the next section, we extend the mollifier concepts of section 2 

to games in normal form, and show that the homomollifier in this extended 

theory, in contrast to the Harsanyi-Selten construct, is both constant 

sum and superadditive. 

4. PAYOFF M0LLIFIERS FOR NORMAL FORM GAMES 

For a general sum n-person game in normal form (M, n^), the 

associated two person game between coalitions S and N-S will also be a 

general sum game. In such a case, a coalition's desire to make a gain 

may be tempered by its wish to inflict a loss. That is, should coalition 

S choose its joint strategy according to Max Min X ) M. (T^, ttn_s) o r 

n S nN-S i e S 
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Min Max M. ( t t c , t t m c ) 9 
T-R TT • IM C T ^ IN-O I 

S N-S 

Alternatively, coalitions S and N-S could choose to cooperate 

and form the grand coalition. This possibility for cooperation should be 

taken into account. 

As before, let M* denote the maximal total payoff, i.e., 
M* = Max M. ( tt m). Then the maximal share of M* that coalition S 

IIN ieN 1 1X1 

could legitimately claim as payment for cooperation with N-S is given by 

(4.1) Max Min M* - Y I , M. (tT , t t w ) 
n s N N _ S L I B N-S 1 N"s J 

We therefore define the characteristic function of (M, n^), an 

n-person game in normal form, by 

M ^ 
(4.2) v(S) = Max Min 2-r M. (TT$, TTN ) 

N S NN-S I E S 

and the complement characteristic function of (M, n^) by 

M 
(4.3) v(S) = Max Min M* 

n S nN-S 

- 2 M. (tts,TTn_s) . 
leN-S 1 b J 

In section 2 the complement v of a characteristic function v was 

defined by v(S) = v(N) - v(N-S). 

The following theorem shows that this definition is equivalent to (4.3), hence 

the relations between v and v proved in Charnes-Rousseau-Seiford [1978] are 

valid for v M and v M defined by (4.2)and (4.3). 

Theorem 4.1: v M(S) = v M(N) - v M(N-S) 



Proof: v
M
(S) E Max Min 

n
S

 n
N-S 

M* - Z Mi ( v ¥ s
} 

ieN-S 

M* - Min Max £ M. ( T ^ T T ^ ) 
n S nN-S i e N " S 

= Max 2 M ^ J " M i n M a x S M. (TTq,7Tn -) 
n N ieN 1 n s n N _ s ieN-S 1 * 

M 

= v (N) - Min Max ¿ ^ (^c» '"M <;)• 
n S nN-S i e N " S 

M 

Since v (N-S) E Max Min ¿ ^ M- ^m c h the proof is completed 
n
N-S

 n
S

 i e N
"

S 

by 

applying the minimax theorem to the two person zero sum game between S 

and N-S with payoff (to N-S) X ) M- K ^ ^m c) . Q.E.D 

ieN-S 1 * ^ 

As in section 2, we remark that any reasonable "goal" of 

coalition S should lie between v^(S) and v^(S). Thus, any characteristic 

function which attempts to model a game in normal form should lie between 
M _ M JS/J — JV| 

v and v . By theorem 4.1, if we mollify v and v as characteristic 

functions, we would obtain results identical to those of section 2, and 

our theory would have failed to capture the "normal form" structure of 

the game. 

Therefore, for games in normal form, we first mollify the 

payoffs and then construct a characteristic function from these mollified 

payoffs. 

As motivation for the general case, we first reexamine Harsanyi-

Selten's modified characteristic function (Cn with n= in Selten's 

notation) given by 

(4.4) h(S) = iM* + i A $ 
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or equivalently by 

(4.5) h(S) = Max Min 
n S nN-S 

i E M . ( t t s , t t n _ s ) + i ( M * - £ M . (rr , tt ) ) 
ieS 1 a n a i £ N _ s l 5 

For conciseness, we frequently will omit the arguments and TT̂  

from the payoff functions; our meaning, however, should be clear. 
/N 

Note in (4.5) that h is obtained from the average of the two 

M -M ^ 

payoffs used in defining v and v . It can be shown that h(S) is the Nash 

arbitrated threat solution for the two person game between coalitions S and 

N-S with payoff functions ]C M. and » under the assumption of 

ieS 1 ieN-S 1 

linearly transferable utility between the two players at the rate 1:1. 

This rate does not seem reasonable; a dollar should be worth more to a 

smaller coalition that to a larger one. A more reasonable assumption 

might be a linear transfer of utility between S and N-S at the rate |S| : |N-S| 

Under this assumption, the Nash solution is given by 

J i s N-S L X 7 ieS W X ieN-S ' 

where s = |S| 

Observe that the payoffs used in defining v M and v M are them-

selves mollified in (4.6). We, therefore, define a payoff mollifier, 

denoted h(S), as any characteristic function which results from the 

mollification (convex combination) of the payoffs used in defining v M and 

-M v . In particular, a constant payoff mollifier is defined by 

(4.7) h (S) = Max Min 
n S nN-S 

(1-y) M. + y(M* - J ] M.) 1 
ieS ieN-S 1 J 

where y e [0,1], 

and a coaliitional payoff mollifier is defined by 
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(4.8) h(S) = Max Min 
n S nN-S 

(1-Pc) L M. + y s (M* - 2 M.) 
ieS ieN-S 

where y^ e [0,1] , V S. 

Since the payoff functions used in defining a payoff mollifier 

M -M , 
lie between those used in the definitions of v and v , we immediately 

have the following theorem. 

Theorem 4.2: Let h(S) be any payoff mollifier for the n-person normal 

form game (M, n^). 

Then (i) v M(0) = h(0) = v M(0) = 0 

(ii) V M ( N ) = h ( N ) = V
M
( N ) = M * 

(iii) v M(S) < h(S) < v M(S), V S C N. 
/N 

We note from (4.5) that Selten's construct h(S) is a constant 

mollifier (=h^(S)) and is not generally superadditive. In view of this 

and the unreasonable transfer rate for utility assumed, we examine more 

closely the payoff mollifier suggested by (4.6). 

We define a payoff homomollifier as the payoff mollifier for 
c 

which the weights are given by y $ = -y^j . This payoff homomoll ifier will 

be the Nash arbitrated threat solution under the assumption of linear 

transferability of utility at the rate |S| : |N-S| . In addition, as shown 

by the following two theorems, the payoff homomol1 ifier will always be a 

constant sum superadditive characteristic function. 

Theorem 4.3: Let h(S) be a coalitional payoff mollifier of (M, n N ) . If 

the weights are additive for disjoint coalitions, i.e., 
+ y T = j i s u T whenever S O T = 0, then h(S) is superadditi ve. 
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Proof: 

h(S) + h(T) = Max Min |(l-Uc) E Mi + (M* - E M.) 
n<- L ieS 1 3 ieN-S 1 

f(l-y T) E M + y (M* - E M-) 
L ieT 1 1 ieN-T 1 

M* + Max Min (l-y<.) E M. 
n S W i e S 1 

lS N-S 

+ Max Min 
n T nN-T 

= (y s + y T ) 

+ Max Min 
n T nN-T 

- yc L^ M. 
5 ieN-S 1 

(l - y T ) E M. - y T E M 
1 1 1 ieN-T 1 ieT 

h(S UT) = Max Min 
n S U T n N - S U T 

^sut> E Mi +ŜUT(m* " . E,itV 
ieSUT 

ieN-SUT 

- yc ii T^* + Max Min 
b u i n n 

S U T N-S U T 
(1-̂ ut) E M,-y 

i£SUT 
SUT -^ri, -r"i " S U T ..^TTmt" E M 

i e N - S U T 

Now let M 

and M 

s = [ ( l - V E M t - y s E M 
L 5 i e S 1 b i e N - S 1 

,T = |"(l - y T ) £ M . - y T £ M1 

L i e T i e N - T 

[ = f (Kin) E M, - y 
i e S U T s u r - - S U T i £ N _ V u T M i 

T h e n M S U T = M $ + M T . 

t f ( V ' ^N-S^' ^ V V T ^ a n d ^ S U T'^N-S U T ^ a r e °P t i m a 1 P a i r s o f 

joint strategies, we then have 

Max Min M c (ir c ) + Max Min NL ,) 
n S nN-S S S ' " S n T "N-T 

= M s («*. V s ) + M t ( V W N _ T ) 

1 M S ffT, V S U T )
+ m

T < V "S' V S U T > 

=
 " s U T ^ ' V V S U T

} 

- M S U T ( \ U T ' V S U T ) E S a X M n n " S U T ^ S U T ' V S U T * 
SUT N-SUT 

Therefore, h(S) + h(T) 1 h(SUT). Q.E.D. 
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Theorem 4.4: If in addition to the assumptions of Theorem 4.3 = 1, 

then the coalitional payoff mollifier h(S) is constant sum. 

Proof: 

h(S) + h(N-S) = Max Min 
n S nN-S 

+ Max Min 
nN-S n S 

(1-MS) E M- + y s (M* - E M.) 
ieN-S ieS 

N-S' ¿ ^ M + y 
ieN-S 1 5 

(M* - M.) 
ieS 

= n c M* + Max Min 
S n s V s 

(1-VS) E M - y s E M. 
° i £S 1 3 iEN-S 

+ y M - M* + Max/ Min 

V s n s 
^ - V s ) E Mi - V s E Mi 

i £N-S i£S 

= ( y c +
 c ) M* + Max Min 

s S n s V s 

+ Max Min 

V s n s 

= (Vc + ^M c) M* + Max Min 
n s Vs 

- Min Max 

V s "s 

(1-P ) Z) M 1 - u s E M 
5 i£S 1 5 ieN-S 1 

p s E M i " » " V E M i 
i£N-S i £S 

" ( 1 _ y s } E M i " y s E Mi 
i £S i £N-S 

('-•V E M i " p s E Mi 
i £S i^N-S 

y N M* = M* = h(N). Q.E.D. 

We note that the construction of payoff mollifiers for a normal 

form game differs from the construction of mollifiers for the characteristic 

function derived from the game. In the former, the max-min operator is 

applied to a convex combination of the two payoff functions, while in the 

latter, one takes a convex combination of the two max-min values. Though, 

in general, these two constructions will lead to different values, the 

following theorem provides a partial answer as to when the constructions 

coincide. 
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Theorems: Let (N, v) be a superadditive characteristic function game 

and (M v, S^) the associated von Neumann-Morgenstern normal form game. 

Then both mollifier constructions coincide, i.e., 

w(S) = h(S) V S C N 

Proof: The key to the proof lies in the observation that the construction 

of M v is such that the payoff to a particular coalition depends only on 

the strategies of the members of that coalition. Thus, for a particular 

ifs c n s 

M s
v (I S) E ^ M ^ (TTS, TTn_s) is constant for all ^ s ^ N - S ' 

ieS 

Hence, it follows that for any S 

h(S) = Max Min 
n S nN-S 

Max Min 
n S nN-S 

(i - ps> 2>iv • "S <"
v* - E Miv» 

ieS ieN-S 

(1 - y s ) Mg
V (irs) + P S („»* - M^.j ( V ) 

= Max (1 - P S ) M s
v ( *s) + Min P s (M v* - ( V s ) ) 

n. 
S "N-S 

= (1 - y $ ) v(S) + y $ v (S) 

= w(S). Q.E.D. 
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