BRYODIVERSITY OF DISTRICT BUDGAM (JAMMU AND KASHMIR) HAPLOLIPDEA I

Amarpreet Kour \& Anju Rao \& Sunita Kapila
Department of Botany, Panjab University, Chandigarh-160014

Received: October 01, 2018
Accepted: November 01, 2018

Abstract

Worldwide diversity of bryophytes is 18,500 species in nearly 1,050 genera. It is a matter of great concern that 102 species of bryophyta are listed in the IUCN world red list of 2014. In view of the threatening situation the study of the bryophytic flora of the unexplored area District Budgam (J\&K) assumes greater importance. The present survey of the unexplored area till date has revealed the occurrence of 73 bryophyte species in various habitats. These species fall in 32 genera in 10 orders and 18 families. Among these, there are 23 haplolepidous specices.

Keywords:

INTRODUCTION

Bryophytes are simple, small, green land plants; gametophyte thalloid or leafy, without vascular system, roots absent, attached to substratum by rhizoids; flowers and seeds absent, reproduction by means of spores; sporophyte permanently attached to the gametophyte. They are treated as subkingdom Bryobiotina and divided into three phyla namely, Bryophyta, Marchantiophyta and Anthocerotophyta (Crum, 2001; Shaw and Renzaglia, 2004; and Zander, 2006).Worldwide diversity of bryophytes is 18,500 species in nearly 1,050 genera (Oren et al., 2007). 2489 taxa of bryophytes are recorded from India. Of these 1786 (in 355 genera), 675 (in 121genera) and 25 (in 6 genera) species are of mosses, liverworts and hornworts respectively (Dandotiya et al. 2011). It is a matter of great concern that 102 species of bryophyta are listed in the IUCN world red list of 2014. In view of the threatening situation the study of the bryophytic flora of the unexplored area District Budgam (J\&K) assumes greater importance.
MATERIALS AND METHODS
In the present study, previously unexplored chosen areas of the district Budgam (Figure 1), in state Jammu and Kashmir were investigated to assess diversity of bryophytes. The materials were collected from different regions of district Budgam (J\&K). The field data were recorded on the spot.
The systematic arrangement of the genera and families of mosses is after Buck and Goffinet (2000) and Goffinet and Buck (2004) and the systematic arrangement of the genera and families of liverworts is after the sequence of Crandall-Stotler et al. (2009).

RESULTS AND DISCUSSION

Schistidium apocarpum (Hedw.) B.S.G. ssp. gracile (Roehl.) Meyl. Bull. Soc. Vaud. Sci. Nat. ser. 5, 41;100(1905).

Plate 1

Grimmia apocarpa Hedw., var. gracile Roehl. Ann. Vet. Ges., 3(1): 97(1812).
Grimmia stricta Turn., Musc. Hib., 20: (1804).
G. schleicheri Spreng. Einl. Stud. Krypt. Grew.: 277(1804).
G. apocarpa Hedw., var. schleicheri (Spreng.) Brid. Sp. Musc., 1: 97(1806).
G. gracilis Scleich. ex Schwaegr. Sp. Musc. Suppl. 1(1): 98(1811).
G. trichodon Brid Bryol. Univ., 1:171(1826).

Barbula albicuspis Mitt., Musc. Ind. Or. :35(1859).
Schistidium gracile (Roehl.) Limpr., Laubm. Deutschl., 1:705(1889).
Didymodon albicuspis Mitt., Nat. Pfl., 1(3): 407(1902).
Monoecious or dioecious. Plants growning in loose tufts. Stem erect, usually branched, reddish brown, ± 3 cm long. Leaves erect when dry, erectopatent when moist, crowded at apex, 2.9 mm long and 1 mm wide, broadly ovate-lanceolate, leaf ending in a short spine, tip transparent, disintegrating early, margins denticulate, recurved just below the apex; costa prominent, deep brown, thick, ending before the apex, \pm 65μ broad at base; upper laminal cells $\pm 50 \times 10 \mu$, quadrate, incrassate, mamillose, tumescent, o paque, basal laminal cells $\pm 17 \times 10 \mu$, incrassate, rectangular, smooth near costa, marginal cells shorter, tumescent. Seta erect, $\pm 1.7 \mathrm{~cm}$ long; capsule dark red, $\pm 1.2 \mathrm{~mm}$ long, exothecial cells usually quadrate, stomata present;
peristome erect, 16 in number, often twisted, red, densely papillose, usually perforated. Spores smooth, yellow, $\pm 11 \mu$ in diameter.
Plants were found growing on rocks near the stream in shaded habitats. Capsules mature in late spring. A cosmopolitan species.

Specimen examined

Budgam: Khansahib, Beerwah; Collected from rock, where they were attached; Feb 2014, PAN 6122.
Distribution: Kashmir, Sikkim, Japan, Europe, Caucasus and North and Central America.
Chromosome number: n=13

1. Plants about 1 cm long, Leaves $\pm 3 \mathrm{~mm}$ long and $\pm 1 \mathrm{~mm}$ broad with long arista, apophysis indistinct. \qquad Grimmia ovalis
Plants 1.5 cm long, Leaves $\pm 1.5 \mathrm{~mm}$ long and 0.7 mm wide with short arista, apophysis distinct ...Grimmia apophysata

Grimmia apophysata Hamp. ex Gangulee, Nova Hedw., 12: 428 (1966).

Plate 2

Grimmia apophysata Hamp., Jaeg.,: Ber. S.Gall. Naturw. Ges. 1872-73:66(1874).
Dioecious. Plants branched, dark green to brown, growing in lose tufts. Stem slender, branched or unbranched, $\pm 1.5 \mathrm{~cm}$ long. Leaves crowded in upper parts, erect when dry, erectopatent when wet, folded, $\pm 1.5 \mathrm{~mm}$ long and 0.7 mm wide, ovate-lanceolate, apex acute, ending into short transparent tip, lamina recurved at the base; costa brown, $\pm 75 \mu$ broad at base, percurrent; upper laminal $\pm 25 \times 14 \mu$, quadrate, marginal cells $\pm 17 \times 14 \mu$, quadrate-rectangular, smooth, basal cells $\pm 30 \times 14 \mu$, rectangular. Seta apical, erect, brown, $\pm 5.5 \mathrm{~mm}$ long; capsule prominent, erect, $\pm 1.75 \mathrm{~mm}$ long and $\pm 0.6 \mathrm{~mm}$ broad; operculum conicrostrate; a prominent short apophysis, peristome teeth 16 , smooth or papillose, orange to dark red, entire, often perforate or cleft above; operculum convex conic, rostrate; calyptra mitrate or cucullate, smooth.
It is a distinct species characterised by short prominent apophysis and ovate-lancolate leaf shape. Earlier, this species has been reported from Darjeeling and it is for the first time that it has been reported from Kashmir. It is endemic in these areas.

Specimen examined

Budgam:Charari Sharief; They were attached to rock and growing on a tree; Feb 2014. PAN 6124.
Distribution:Darjeeling and Kashmir.
Chromosome number: n=12
Grimmia ovalis (Hedw.) Lindb., Act. Soc. Sci. Fenn., 10: 75(1871)

Plate 3

Dicranum ovale Hedw., Sp. Musc.: 140(1801).
Grimma ovata(Hedw.) Web. et Mohr., Nat. Reis. Schwed: 132(1804).
Grimmia nigricans Lam. Cand., Fl. France. 2: 459(1805).
Trichostomum ovatum (Hedw.) P. Beauv., Prodr.: 91(1805).
Dicranum ovatum (Hedw.) Sw. ex Brid., Sp. Musc., 1: 214(1806).
Grimma patens Hornsch., Flora, 2 : 84(1819).
Campylopus ovatus (Hedw.) Brid., Mant. Musc.: 76(1819).
C. ovalis (hedw.) Wahlenb., Fl. Suec., 2: 748(1826).

Grimmia commutata Hueb., Musc. Germ., : 185(1833).
G. neilgherriensis C. Muell., (Corr.nilghiriensis Mitt.in Musc. Ind. Or.; 44, 1859) Bot. Zeit., 11: 62(1853).
G. lurida Wils., Kew J. Bot., 9:323(1857).
G. neelgheeriensis C. Muell., ex Kindb. Enum. Bryin. Exot.: 61(1888).
G. hemipolia Stirt., Ann. Scott. Nat. Hist., 11: 109(1902).

Dioecious. Plants simple, dark green to brown, growing in close tufts. Stem branched or unbranched, slender,$\pm 1 \mathrm{~cm}$ long. Leaves erect when dry, erecto-patent when moist, compact, $\pm 3 \mathrm{~mm}$ long and $\pm 1 \mathrm{~mm}$ broad, ovate, acute, concave, margins plane,leaves ending in transparent tip, arista covers $1 / 4^{\text {th }}$ of total length, lower leaves lacking hyaline tip, perichaetial leaves erect, longer than normal leaves, $\pm 4 \mathrm{~mm}$ long, erect, ending into transparent tip; costa stout, percurrent, $\pm 0.65 \mu$ broad at base; upper laminal cells $\pm 13 \times 10 \mu$, short, rounded-quadrate, median laminal cells $\pm 20 \times 14 \mu$, rounded, shorter, marginal cells $\pm 42 \times 8 \mu$, narrower, transparent, basal laminal cells near costa $\pm 28 \times 7 \mu$, rectangular. Seta erect, apical, brown, $\pm 1.2 \mathrm{~cm}$ long; capsule brown, smooth, erect, $\pm 1 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, apophysis indistinct; peristome single, teeth 16 , smooth or papillose, orange to dark red, entire, often perforate or cleft above; operculum convex conic, rostrate; calyptra cucullate. Spores smooth, yellowish, $\pm 12 \mu$ in diameter.
This species was found to occur on dry, exposed to partially shaded rocks of a hill and also growing on a tree.

Specimen examined

Budgam:Charari Sharief; They were attached to rock and growing on a tree; Feb 2014, PAN 6123.
Distribution:Western Himalayas, Kashmir, Central Asia, Western Tibet, South India, Ceylon China, Korea Japan, Europe, North Central South Africa, North Central South America and Australia.
Chromosome number: $\mathrm{n}=10$

Campylopus fragilis (Brid.) B.S.G., Bryol. Eur., 1:164(1847).

Plate 4

Dioecious. Plants simple or branched, silky, yellow-green, growning in close tufts, whitish tomentose below. Stem erect, simple or dichotomously branched. Leaves erect when dry, erectopatent when moist, extending into a long canaliculate subula, margins inflexed except at base, $\pm 8 \mathrm{~mm}$ long, $\pm 1 \mathrm{~mm}$ broad, ovate-lanceolate, widest below, tapering at apex, apex serrulate; costa broad, covering two-third of leaf width, shortly excurrent, slightly serrate at tip, in transverse section showing very wide adaxial hyalocysts (easily recognizable in surface view of the costa), filling half of the width of the costa and abaxial substereids, slightly abaxially ridged; alar cells few, orange, distinct from costa, basal laminal cells $\pm 60 \times 14 \mu$, rectangular, yellow, thin-walled, hyaline, very distinctly differentiated from the distal thick-walled cells, upper laminal cells smaller, $\pm 17 \times 8 \mu$, rhomboid. Seta apical, $\pm 1 \mathrm{~cm}$ long, lightbrown; capsule $\pm 0.8 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, brown, elliptical, peristome teeth dicranate, papillose, calyptras cucullate. Spores, brown, warty, $\pm 12 \mu$ in diameter.
Specialzed fragile small branches (Serving as asexual reproductive units) facilitate easy determination and also spread of species. It isfound in a few localities with lush green grasses.

Specimen examined

Budgam: Khansahib; Growing on moist soil; Sep 2014, PAN6125.
Distribution: Western Himalaya, Siberia, China, Africa and Europe.
Chromosome number: $\mathrm{n}=12,13$

KEY TO THE SPECIES OF GENUS OXYSTEGUS

1. Leaves ovate..Oxystegus cylindricus Leaves lanceolate to linear-
\qquad
2. Leaves linear lanceolate, apex crenulated, basal laminal cells short , $\pm 18.2 \times 11 \mu$...Oxystegus khasianus Leaves lanceolate to ligulate-
lanceolate, basal laminal cells elongate, $\pm 49 \times 12 \mu$ Oxystegus stenophyllus
Oxystegus cylindricus (Brid.) Hilp Beih. Bot. Centralbl., 50: (2) 620 (1933).
Plate 5
Oxystegus cylindricus (Brid.) Hilp Beih. Bot. Centralbl., 50: (2) 620 (1933).
Weisia cylindrica Bruch ex Brid. Bryol. Univ., 1: 806(1827).
Weisia tenuirostris Hook. \& Tayl. Musc. Brit. ed. 2: 83, Suppl. 3 (1827).
Didymodon tenuirostris (Hook. \& Tayl.) Wils in Hook.
Barbula longifolia Griff. Cal. J. Nat. Hist., 2 : 490(1842).
Didymodon longifolius Griff. Cal. J. Nat. Hist., 2:510(1842).
Didymodon cylindricus (Brid.) B. S.G. Bryol. Eur., 2: 139 (1846).
Didymodon calyptratus Tayl. Lond. J. Bot., 7: 18(1848).
Trichostomum cylindricum (Brid) C. Muell. syn., 1: 586(1849).
Tortula cylindrica (Brid.) Mitt. Musc. Ind. Or.: 28(1859).
Tortula longifolia (Griff.) Mitt. Musc. Ind. Or. : 28(1859).
Trichostomum tenuirostris (Hook. \& Tayl.) Lindb. Oefv. K. Vet. Ak. Foerh, 21: 225 (1864) .
Mollia tenuirostris (hook. \& Tayl.) Lindb. Musci Scand., 21(1879).
Barbula leptotortuosa C. Muell. N. Giorn. Bot. Ital. n.s., 5: 179(1898).
Barbula leptotortella C Muell. Hedwigia, 38: 110(1899).
Trichostomum leptotortuosum (C. Muell.) Broth. NAt. Pfl., 1(3): 394(1902).
Tortella cylindrica (Brid) Loesk. Stud. Morph. Syst. Laubm.: 97(1910).
Trichostomum longifolium (Griff.) Broth. Nat. Pfl., 1(3): 394(1902) .
Oxystegus longifolius (Griff.) Hilp. Beih. Bot. Centralb., 50(2): 667(1933).
Oxystegus leptotortella (C. Muell.) Hilp. ibid.Oxystegus leptotortuosum (C.Muell) Hilp ibid.
Dioecious. Plants small to medium sized, yellowish green, growning in close tufts. Stem yellow, flexuose, ± 3 cm long. Leaves erect when dry, erectopatent when moist, $\pm 4 \mathrm{~mm}$ long and $\pm 1 \mathrm{~mm}$ wid e, fragile, ovate, apex acute with short apiculus, margins flat, wavy at apex, smooth below, perichaetial leaves not differentiated;
costa brown, prominent, percurrent or excurrent; upper laminal cells rounded-quadrate, $\pm 13 \times 10 \mu$, incarassate, multipapillate, basal laminal cells rectangular, hyaline, thin walled, $\pm 74 \times 12 \mu$. Seta apical, yellowish, erect, $\pm 1.2 \mathrm{~cm}$ long; capsule $\pm 3.5 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, brown, cylindrical, straight; peristome teeth deep brown, usually not split, articulated, papillose; operculum rostellate, beaked. Spores pellucid, deep brown, finely papillose, $\pm 11 \mu$ in diameter.
Plants were growing in mats. They were growing on moist soil and some were attached to wooden log near the water fall. For the first time, this species is reported from Kashmir. Earlier, it was reported from Western Himalaya (Tehri, Mussoorie, Chakrata and their surroundings) and Central India. This species is endemic to India.

Specimen examined

Budgam: Beerwah; Growing on moist soil and wood log; Feb 2013, PAN 6126.
Distribution: Western Himalaya (Tehri, Mussoorie, Chakrata and their surroundings), Kashmir, South India, Ceylon, Burma, Central Asia, China, Africa, Europe and America.
Chromosome number $\mathrm{n}=13,13+\mathrm{m}$
Oxystegus khasianus (Mitt.) Gangulee, Nova Hedwigia, 8: 149(1964).

Plate 6

Tortula khasiana Mitt. Musc. Ind. Or. 29(1859).
Barbula khasiana (Mitt.) Jaeg. Ber. S.Gall. Naturw. Ges. 1871-72: 415(1873).
Trichostomum khasianum (Mitt.) Broth. Nat. Pf., 1: 394(1902).
Dioecious. Plants small to medium sized, yellow brown, growing in lax, close tufts. Stem simple to branched, fragile, $\pm 1 \mathrm{~cm}$ long. Leaves spreading and curled when dry, erect when moist, $\pm 3 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, linear-lanceolate, canaliculate, concave base, apex acute, margins flat, crenulate; costa brown, prominent, covers one-third of leaf length, short excurrent; upper laminal cells short, $\pm 8 \mu$ wide, chlorophyllose, rounded, highly papillose, basal laminal cells $\pm 18.2 \times 11 \mu$, rectangular, transparent.
Sporophyte not observed.
This species was found growing on moist soil near the water fall. The plants are were yellow to green in color and growing in mats. The present discovery is a new record for the area first time recorded from Kashmir. Earlier, it was reported from Eastern India (Khasia Hills). It is endemic in India.

Specimen examined

Budgam: Khansahib;Growing on moist soil; Feb 2013; PAN 6127.
Distribution: Eastern India (Khasia Hills).
Chromosome number: $\mathrm{n}=13$
Oxystegus stenophyllus (Mitt.) Gangulee, Nova Hedwigia, 12: 429(1966).
Plate 7
Tortula stenophylla Mitt. Musc. Ind. Or.: 28(1859).
Barbula stenophylla (Mitt.) Jaeg. Ber. S. Gall. Naturw. Ges., 1971-72: 415(1873).
Trichostomum stenophyllum (Mitt.) Broth. Nat. Pfl., 1: 394(1902).
Dioecious. Plants small to medium-sized, green, growing in close tufts. Stem erect, flexuose, $\pm 1.5 \mathrm{~cm}$ long. Leaves erect, narrowing to spreading, curled when dry, $\pm 3 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, concave, ovate, base sheathing, lanceolate, apex acute, margins flat, smooth and mildly serrate at apex; costa brown, percurrent; upper laminal cells comparatively smaller than basal laminal cells, $\pm 17 \times 11 \mu$, rectangular-rounded to quadrate, multipapillose, basal laminal cells $\pm 49 \times 12 \mu$, rectangular, smooth, hyaline, papillate; pericheatial leaves erect, longer than normal leaves, $\pm 3.8 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide. Seta pale brown, apical, erect, ± 1.5 cm long; capsule erect, $\pm 2.4 \mathrm{~mm}$ long and $\pm 0.4 \mathrm{~mm}$ wide, slightly nodding, brown, erect; peristome teeth redbrown, irregularly divided, papillose, fragile; operculum conic rostrate, beaked. Spores yellow, pellucid, ± 12 μ in diameter.
Plants were growing on moist soil near the stream. Earlier it was not reported from the valley Kashmir. It is endemic in India.

```
Specimen examined
Budgam: Khansahib; Growing on moist soil; Feb 2013, PAN }6128
Distribution: Western Himalayas and South India.
Chromosome number: n=13
```


KEY TO THE SPECIES OF GENUSHYOPHILA

3. Nerve percurrent, seta $\pm 1 \mathrm{~mm}$ long.

Hyophila rosea
Nerve
excurrent, seta $\pm 1.5 \mathrm{~cm}$ long.. Hyophila spathulata
Hyophila involuta (Hook.) Jaeg.,Natur. 1871-72: 356 (1873).

Plate 8

Gymnostomum involutum Hook., Musc. Exot., 2: 154(1819).
G. tortula Schwaegr., Sp. Musc. Suppl. 2:78, 175(1826).
G. cylindricum Hook., Icon. Pl. Rar., 1:17(1836).

Barbula spathulata Doz. \& Molk., Ann. Sci. Nat. Bot. ser. 3, 2:300(1844).
Hyophila hookeri Hamp., ibid. Ann. Sci. Nat. Bot. ser. 3, 2:300(1844)..
Pottia involuta (Hook.) C.Muell., Syn ., 1: 560(1849).
P. cylindrica (Hook.) C.Muell., Syn ., 1: 562(1849).

Desmatodon involutus (Hook.) Mitt., Musc. Ind. Or. : 39(1959).
Pottia zollingeri C. Muell., Bot. Zeit., 14: 419 (1856).
P. circinnata C. Muell., Linn., 36:38(1869).
P. riparia Aust., Musc. Appal., 112(1870).

Trichostomum bescherelli Schimp., Besch, in Mem. Soc. Sc. Nat. Cherbourg, 16:477(1872).
Hyophila cylindrica (Hook.) Jaeg., Ber. S. Gall. Naturw. Ges., 1871-72: 356(1873).
H. circinnata (C. Muell.) Jaeg., Ber. S. Gall. Naturw. Ges., 187o-72: 357(1873).
H. bescherelli(Schimp.) C.Muell., Flora, 58: 538(1875).

Trichostomum warnstorfii Limpr., Laubm. Deutschl., 1:587(1888).
Leptodontium riparium (Aust.) E. G. Britt., Bull. Torr.Bot. Club, 19:275(1892).
L. canadense Kindb., Macoun. cat. Canad. Pl., 6:45(1892).

Hyophila micholitzii Broth., Oefv. Finsk. Vet. Soc. Foerh., 35: 39(1893).
Didymodon riparias (Aust.) Kindb., Eur. N. Am. Bryin., 2: 280(1897).
Hyophila stenocarpa Ren. et Card., Bull. Soc. R. Bot. Belg., 38(1): 10(1900).
H. moutieri Par. et Broth., Rev. Bryol., 28: 38(1901).
H.commutata Broth., Nat. Pfl., 1(3): 403(1902).
H. riparia (Aust.) Fleisch., Britt. Bryologist, 7:69(1904)
H. warnstorfii (Limpr.) Fleisch., Musc. Fl. Buitenz., 1:330(1904).
H. dozy-molkenboeri Fleisch., ibid p. 328.
H. tsunodae Broth. ex Yas., Bot. Mag. Tokyo, 29:151(1915).
H. attenuata Broth., Symb. Sin, 4: 37(1929).
H. subcylindrica Broth., Bruehl., Rec. Bot. Surv. Ind., 13(1): 126(1931).
H. sinensi Dix., Yang: Sc. Rep. Nat. Tsing Hua Univ. B. Biol., 2:117(1936).

Dioecious. Plants dark green, growning dense tufts on calcareous walls, small in size. Stem erect, $\pm 1 \mathrm{~cm}$ long, simple or branched, stem covered by red rhizoids, stem densely crowded at apex of stem. Leaves $\pm 3 \mathrm{~mm}$ long, $\pm 1 \mathrm{~mm}$ wide, erect when moist, curled circinately when dry, oblong-lingulate, carinate, the lower oblong part pale, apex broadly pointed, leaf rolled when dry, flat, wavy when moist, upper margins serrulate to denticulate; costa deep red-brown, plano-concave, percurrent, broader at base, perichaetial cells not much differentiated; upper laminal cells chlorophyllose, mamillose, rounded-quadrate, $\pm 8 \mu$ in diameter, basal laminal cells $\pm 50 \times 20 \mu$, rectangular, smooth, becoming smaller above. Seta apical, erect, red -brown, paler above, $\pm 1 \mathrm{~cm}$ long; capsule cylindrical, $\pm 0.7 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, brown, erect or slightly curved, annulus of very thick-walled lenticular cells; peristome absent; operculum conical, rostrate; calyptra cucullate. Spores small, pellucid, finely papillose, $\pm 10 \mu$ in diameter.

Specimen examined

Budgam: Budgam;Growing on moist soil on calcareous wall; Mar 2014, PAN 6129.
Distribution:Central India (Madhya Pradesh, Orissa) North-East India (Assam, Arunachal Pradesh, Bengal, Bihar, Darjeeling, Western Himalaya, Khasi hills), Kerala, Karnataka, Tamil Nadu, Gujarat, Sri Lanka, Nepal, China, Japan, Java, Korea, Philippines, Sumatra, Taiwan, New Guinea, Europe South and America.
Chromosome number: $\mathrm{n}=7,13,13+\mathrm{m}$
Hyophila rosea Williams, Bull. N. Y. Bot. Gard., 8: 341 (1914).
Plate 9
Dioecious. Plants very small, green, growning densely. Stem simple, erect. Leaves crispate when dry, erect when moist, $\pm 3 \mathrm{~mm}$ long and $\pm 0.65 \mathrm{~mm}$ wide, leaves form rosette tufts, spathulate, carinate, apex acuminate, margins involute; costa brown, rough with papillae, percurrent, broader at base $\pm 70 \mu$ wide; upper laminal cells cholorophyllose, multipapillose, hexagonal-rounded, $\pm 9 \mu$ wide, basal laminal cells $\pm 40 \times 20 \mu$, rectangular, marginal laminal cells smaller, $\pm 5 \mu$ in diameter, rounded. Perichaetial leaves not differentiated.

Seta apical, erect, light brown to yellow-green; capsule erect, brown, cylindrical, $\pm 2.5 \mathrm{~mm}$ long and $\pm 0.3 \mathrm{~mm}$ wide, peristome absent; operculum beaked. Spores small, pellucid, light brown, $\pm 9 \mu$ in diameter.
Plants were very small, growing in rosette form. The species is the first record from the area.

Specimen examined

Budgam: Budgam;Growing on a moist wall; Mar 2014, PAN 6130.
Distribution: North-Western Himalayas and South India.
Chromosome number: $\mathrm{n}=13$
Hyophila spathulata (Harv.) Jaeg., Ber. S. Gall. Naturw. Ges., 1817-72: 353(1873).
Plate 10
Gymnostomum spathulatum Harv., Hook. Icon. Pl. Rar.,1: 17(1836).
Pottia spathulata (Harv.) C.Muell., Syn., 1: 559(1849).
Desmatodon spathulatus (Harv.)Mitt., Trans.Linn. Soc. Lond. Bot. Ser. 2, 3:160(1891).
Dioecious. Plants small to medium-sized, green to yellow, growing in close tufts. Stem erect, $\pm 5 \mathrm{~mm}$ long. Leaves erectopatent when moist, curled when dry, $\pm 2.5 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, spathulate, carinate, broad at the upper part, apex acute and pointed, margins inrolled, entire; costa prominent, red-brown, excurrent; upper laminal cells $\pm 11 \mu$ wide, chlorophyllose, thin walled, rounded-quadrate; basal leaf cells $\pm 50 \times 11 \mu$, rectangular, thin walled, transparent; perichaetial leaves not differentiated. Seta apical, erect, reddish brown, $\pm 1.5 \mathrm{~cm}$ long; capsule $\pm 2 \mathrm{~mm}$ long and $\pm 0.4 \mathrm{~mm}$ broad, cylindrical, tapering towards tip, peristome absent; operculum conical; calyptra cucullate. Spores brown, pellucid, spherical, $\pm 10 \mu$ in diameter.

Specimen examined

Budgam: Budgam; Growing on a moist wall and Wood log; Feb 2014,

PAN 6132.

Distribution: Western Himalayas, South India, Ceylon, China and Japan.
Chromosome number: $\mathrm{n}=13$
Hyophila walkeri Broth., Rec. Bot. Surv. Ind., 1:317 (1899).

Plate 11

Dioecious. Plants very minute, growing very closely, yellow-green, growing on wooden logs, mostly on tree trunks. Stem $\pm 1 \mathrm{~cm}$ long, unbranched, green, with rosette of leaves, radiculose below. Leaves erect to erectopatent when moist, curled circinately when dry, $\pm 2.5 \mathrm{~mm}$ long, $\pm 0.5 \mathrm{~mm}$ wide, concave, oblong to oblong-spathulate, apex obtuse, margins smooth; costa prominent, brown, percurrent, smooth, broader at base, $\pm 70 \mu$ wide; upper laminal cells $\pm 10 \mu$ wide, chlorophyllose, irregularly quadrate to rounded, papillose, basal laminal cells rectangular $\pm 40 \times 15 \mu$, hyaline, cover more than half of the length of leaf. Seta apical, erect, brown, $\pm 4 \mathrm{~mm}$ long; capsule erect, cylindrical, brown, $\pm 1 \mathrm{~cm}$ long and $\pm 0.5 \mathrm{~mm}$ broad; peristome absent; operculum conic-rostrate. Spores brown, smooth, spherical $\pm 17 \mu$ in diameter.
The minute plants were growing in patches on wood. Earlier, this species was reported from Central India. The present record from the area extends its range of distribution.

Specimen examined

Budgam: Budgam; Growing on a moist wall; Mar 2014, PAN 6131.
Distribution: Central India (Madhya Pradesh), Kashmir.
Chromosome number: Not known so far.
KEY TO THE SPECIES OF GENUS BARBULA

1. Leaf margins crenulated ... 2 ... 2
smooth .3
2. Plants very long (9 cm), costa percurrent...................................... Barbula asperifolia Plants short
($\pm 2 \mathrm{~cm}$), costa excurrent.. Barbula constricta
3. Margins recurved through leaf length Barbula vinealis

Margins not
recurved .. 4
4. Seta $\pm 1.9 \mathrm{~cm}$ long,

Barbula
cylindrica
Seta $\pm 7 \mathrm{~mm}$ long long...Barbula nigrescens
Barbula asperifolia Mitt., Musc. Ind. Or. 34(1859
Plate 12
Didymodon rufus Lor. ex Rabenh., Bryoth. Eur. 13.13:n. 621(1863).
Tortula rufa (Lor.) Braithw., J. Bot. 9:293(1871).
Barbula rufa (Lor.)Jur., Laubm. Fl. Oest. Ungarn. :113 (1882).
Dioecious. Plants robust, reddish green to brown-green, growing in close tufts. Stem branched, erect, $\pm 9 \mathrm{~cm}$ long. Leaves appressed to stem when dry, erecto-patent when moist, flexouse tip, $\pm 2.5 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, lanceolate to oblong, concave, non-decurrent, apex acute, margins crenulate, unbordered; costa
strong, prominent, red-brown, percurrent, papillose, $\pm 70 \mu$ broad at base; laminal cells unistratose, incrassate, upper laminal cells quadrate to hexagonal, $\pm 11 \mu$ diameter, highly papillose, median laminal cells quadrate to sub-rectangular; basal laminal cells rectangular-elongate, $\pm 28 \times 11 \mu \pm$, smooth, incrassate; alar cells absent; perichaeital bracts longer than stem leaves, $\pm 3 \mathrm{~mm}$ long and $\pm 1 \mathrm{~mm}$ broad.
Sporophyte not observed.
The plants were found growing in very close tufts, appearing like green balls on the soil. In the field, it look like Grimmia.

Specimen examined

Budgam: Budgam,Khansahib; Growing on a moist soil; Feb 2013, PAN 6133.
Distribution:Eastern India, Nepal, Iran, Caucasus, Turkey, China, Europe, N. Africa, Canada (British columbia), U.S.A.
Chromosome number: Not known so far.
Barbula constricta Mitt., Musci Ind. Or.: 33(1859).
Plate 13
Barbula schensiana C. Muell., var. longifolia C. Muell., N. Giorn. Bot. Ital. n.s., 3:101(1896). Barbula altipes C. Muell., ibid, 4:254(1897).
Barbula magnifolia C.Muell., ibid, 4:(1897).
Dioecious. Plants yellow-green to brownish, growing in close tufts. Stem brown, elongated, slender, branched, $\pm 2 \mathrm{~cm}$ long. Leaves $\pm 2.3 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, erect, ovate-lanceolate, carinate, flexouse, crumpled when dry, margins recurved $2 / 3$ of leaf at base, entire; costa prominent, brown, smooth on back, excurrent; upper laminal cells $\pm 10 \mu$, irregularly quadrate, papillose, low papillae, basal laminal cells $\pm 31 \times 9 \mu$, hyaline, rectangular; perichaetial leaves erect, longer than stem leaves, $\pm 2.8 \mathrm{~mm}$ long and $\pm 0.9 \mathrm{~mm}$ broad. Seta erect, slender, apical, $\pm 1.6 \mathrm{~cm}$ long; capsule erect, brown, ellipitico-cylinderical, $\pm 2.5 \mathrm{~mm}$ long, \pm 0.7 mm broad; peristome teeth filiform, papillose, spirally wound, brown; operculum brown, conic-rostrate. Spores spherical, yellow to brownish, $\pm 10 \mu$ in diameter, smooth.

Specimen examined

Budgam: Budgam,Charari Sharief; Growing on moistsoil; Mar 2014,PAN 6134.
Distribution:India, China, Nepal, Pakistan, Myanmar, Indonesia, Philippines, Japan.
Chromosome number: $\mathrm{n}=7$
Barbula cylindrica (Tayl.) Schimp.,var. vinealis(Brid) Lindb., Musci. Scand.: 32 (1879).
Plate 14
Barbula schensiana C. Muell., N.Giorn. Bot. Ital. n.s., 3:101(1896).
Barbula ellipsithecia C. Muell., ibid, 4: 258(1897).
Barbula viridescens Stirt. Ann. Scott. Nat. Hist., 58: 110(1906).
Dioecious. Plants mostly branched, olive-green, growing in close tufts. Stem erect, slender, $\pm 3 \mathrm{~cm}$ long. Leaves erect when moist, erectopatent to mildly crispate when dry, lanceolate, $\pm 3 \mathrm{~mm}$ long, 0.5 mm wide, apex acute, margins smooth, leaves crowded towards apex; costa light brown, wider at base, $\pm 90 \mu$, percurrent or vanishing in tip; upper laminal cells chlorophyllose, irregularly quadrate, $\pm 28 \times 11 \mu$, papillose and obscure, densely papillose towards the margin and also towards the upper lamina, marginal laminal cells $\pm 60 \mu$, small, quadrate, basal laminal cells $\pm 30 \times 12 \mu$, rectangular, papillose; perichaetial leaves erect, longer than stem leaves, $\pm 3.6 \mathrm{~mm}$ long, 0.5 mm wide. Seta apical, brown, usually curved, $\pm 1.9 \mathrm{~cm}$ long; capsule $\pm 3.8 \mathrm{~mm}$ long, $\pm 0.7 \mathrm{~mm}$ broad, chestnut, brown, smooth, elliptico-cylinderical; peristome teeth brown, filiform, papillose and nodulose, twisted; operculum conical. Spores light brown, smooth, pellucid, $\pm 12 \mu$ in diameter.
This species was found growing on trunk of the Platanus orientalis in association of preceding species.

Specimen examined

Budgam: Budgam,Charari Sharief,Beerwah; Hanging from tree trunk ; Mar 2014, PAN 6136.
Distribution:India, Nepal, China, Russia, Europe, and North America, Algeria.
Chromosome number: $\mathrm{n}=13$
Barbula nigrescens Mitt., Musci Ind. Or. 36(1859).

Plate 15

Dioecious. Plants yellow-green, growing in close tufts, often branched. Stem 2 cm long, dark brown, covered with erectopatent leaves, laxer near base. Leaves erect when moist, erectopatent when dry, cosely appresed to the stem when dry, orange brown, $\pm 1.7 \mathrm{~cm}$ long and $\pm 0.9 \mathrm{~mm}$ wide, lanceolate, concave, sheathing at base, apex acute, margins smooth, reflexed from base to near tip; costa prominent, dark-red, vanishing below the tip; upper laminal cells $\pm 25 \times 8 \mu$, thin walled, smooth, rectangular, basal laminal cells thin walled $\pm 40 \times 10 \mu$, smooth, rectangular, laminal cells highly pappilose; perichaetial leaves longer than normal leaves, $\pm 2.3 \mathrm{~cm}$ long and $\pm 1 \mathrm{~mm}$ wide. Seta orange-brown, $\pm 7 \mathrm{~mm}$ long; capsule $\pm 2.2 \mathrm{~mm}$ long, $\pm 0.7 \mathrm{~mm}$ broad, erect,
reddish brown; peristome teeth filiform; operculum conic-rostrate. Spores pellucid, smooth, $\pm 10 \mu$ in diameter.
Plants were found along the bank of stream. The substratum was sandy, often flooded by stream water.
Specimen examined
Budgam: Budgam,Charari Sharief,Chadoora; Growing on moist soil; Feb 2013,PAN 6137.
Distribution:Eastern andWestern Himalayas, China and North America.
Chromosome number: Not known so far.
Barbula vinealis Brid, Bryol. 1: 830(1827).
Plate 16
Barbula fallax Hedw.var. vinealis (Brid.) Hueb., Musci. Germ.:327(1833).
Tortula fallax (Hedw.)Schrad. var. vinealis (Brid) de Not., Mem. Acad. Torin., 40: 319 (1838).
Tortula vinealis (Brid) Spr., Lond. J. Bot., 4: 194(1845).
Barbula artocarpa Lesq., Trans. Am. Phil. Soc.n.s., 13:4(1865)
Barbula cylindrica (Tayl.)Schimp. s.sp. vinealis (Brid.) Dix., Stud. Handb. Brit. Moss.: 197(1869).
Dioecious. Plants dark green, branched, growing in close tufts. Stem erect, elongated, slender, $\pm 3 \mathrm{~cm}$ long. Leaves flexuose when dry, erect when moist, $\pm 3 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, lanceolate, carinate, apex acute, concave base, margins smooth, recurved throughout the length of leaf; costa light brown, stout, wider at base, 90μ, percurrent; upper laminal cells $\pm 11 \mu$ in diameter, chlorophyllose, quadrate, densely papillose, marginal cells shorter, $\pm 7 \mu$, basal laminal cells $\pm 35 \times 11 \mu$, rectangular, papillose; perichaetial leaves erect, longer than stem leaves, $\pm 3.8 \mathrm{~mm}$ long and $\pm 0.7 \mathrm{~mm}$ broad. Seta apical, $\pm 1.5 \mathrm{~cm}$ long, brown, curved; capsule chestnut, brown, smooth, elliptico-cylinderical, $\pm 3.5 \mathrm{~mm}$ long, $\pm 0.7 \mathrm{~mm}$ broad; peristome teeth brown, filiform, papillose nodulose; operculum conical. Spores light brown, pellucid, smooth, $\pm 11 \mu$ in diameter.
Found on trunk of the Platanus orientalis.
Specimen examined
Budgam:Budgam, Khansahib; Hanging from tree trunk; Mar 2014, PAN 6135.
Distribution: India, China, Nepal, Russia, Europe and North America Algeria.
Cosmopolitan species.
Chromosome number: n=11

KEY TO THE SPECIES OF GENUS SEMIBARBULA

1. Leaf apex acuminate, Spores upto 11μ in diameter. Semibarbula orientalis Leaf apex blunt, Spores upto 25μ in diameter. \qquad Semibarbula ranuii
Semibarbula orientalis (Weber) Wijk. \& Marg., Taxon, 8: 75(1959).
Plate 17

Trichostomum orientale (Web. Arch. Syst. Nat., 1:129(1804).
Dicranum orientale (Web.) Mohr., Ann. Bot., 2: 546(1806).
Trichostomum indicum Schwaegr., Sp. Musc. Suppl.1(1):142 (1811).
Tortula indica Hook., M. Exot., 2: 135(1819).
Barbula indica (Hook.) Spreng., Steud. Nomencl. Bot., 2: 72(1824).
Barbula orientalis (Web.) Broth., Nat. Pfl., 1: 409(1902).
Anoectangium nossibeanum Besch. Card. in Hist. Madag., 39: 215(1915).
Semibarbula indica(Hook.) Herz. ex Hilp., Bot Centralbl., 50(2):626(1933).
Dioecious. Plants yellow-green, growing in close tufts. Stem brown, unbranched, $\pm 2 \mathrm{~cm}$ long. Leaves lax, erectopatent when moist, curled when dry, $\pm 1.5 \mathrm{~mm}$ long and $\pm 0.32 \mathrm{~mm}$ broad, oblong to ovate, carinate, apex acuminate, margins flat; costa strong, light greenish yellow, percurrent or short excurrent, $\pm 47 \mu$ wide; upper laminal cells chlorophyllose, multipapillose, obscure rounded, quadrate to quadrate-hexagonal, $\pm 8 \mu$, basal laminal cells large, $\pm 42 \times 8 \mu$, rectangular, hyaline ; perichaetial leaves not differentiated. Seta apical, reddish, $\pm 7 \mathrm{~mm}$ long; capsule apical, $\pm 1.7 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ in diameter, yellow-brown, pellucid; peristome teeth split into 32 short filamentous segments; operculum conic; calyptra cucullate. Spores spherical, smooth, brown, $\pm 11 \mu$ in diameter.
Plants were found growing on moist and black soil near the bank of stream.

Specimen examined

Budgam: Charari Sharief; Growing on moist soil; Mar 2015, PAN 6138.
Distribution:South India (Kerala), North-East India (Darjeeling, Arunachal Pradesh, Bengal, Orissa), Pakistan, Sri Lanka, China, Nepal, New Guinea, Celebes, Taiwan, Madagascar, Malaysia, Siam and Central and Southern Africa.
Chromosome number: $\mathrm{n}=16$

Dioecious, green, growing in close tufts; Stem brown, unbranched $\pm 2 \mathrm{~cm}$ long. Leaves erect when moist, erectopatent when dry, oblong-lanceolate, $\pm 2 \mathrm{~mm}$ long and $\pm 0.4 \mathrm{~mm}$ wide, carinate, apex blunt, margins usually flat; costa prominent, $\pm 47 \mu$ broad, excurrent; hyaline, papillose; upper laminal cells chlorophyllose, multipapillose, rounded-quadrate to rounded-hexagonal $\pm 5-8 \mu$, basal laminal cells large, rectangular, $\pm 42 \times 13 \mu$, hyaline with thin walls; perichaetial leaves not differentiated. Seta apical, yellow brown, erect, $\pm 7 \mathrm{~mm}$ long; capsule brown, erect, cylindrical, $\pm 1.7 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ in diameter, exothecial cells thinwalled, irregularly hexagonal; peristome teeth split into 32 brown filiform teeth. Spores spherical, brown, $\pm 25 \mu$ in diameter, smooth.
The plants were growing near water spring. The soil was moist. Plants were growing in close tufts.
Specimen examined
Budgam: Beerwah; Growing on moist soil; Mar 2015, PAN 6139.
Distribution: Kashmir,Punjab, Rajasthan plains and Gangetic plains.
Chromosome number:Not known so far.

KEY TO THE SPECIES OF GENUS HYDROGONIUM

1. Leaves lanceolate,leaf apex rounded, upper laminal cells densly papillose...................... ... Hydrogonium consanguineum
Leaves ovate-oblong, leaf apex acute, upper laminal cells not papillose or scarcely so............. Hydrogonium gracilentum
Hydrogonium consanguineum (Thw. et Mitt.) Hilp., Beih. Bot. Centrabl., 50(2): 626 (1933). Plate 19
Tortula consanguinea Thw. et Mitt., J. Linn. Soc., 13: 300(1873).
Barbula consanguinea (Thw. et Mitt.) Jaeg., Ber. S. Gall. Naturw. Ges., 1877-78:409(1880).
Barbula eroso-cuspis C. Muell., Fleisch in Musci Fl. Buitenz., 1;308(1904).
Dioecious. Plants yellow green, slender, growing in dense tufts. Stem erect, yellow, $\pm 2 \mathrm{~cm}$ long, whole stem covered by erectopatent leaves, lower part of stem is covered by radicles. Leaves curled, carinate, lanceolate, $\pm 2 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ wide, concave base, leaf apex rounded, mucronate, margins flat; costa prominent, covers one third of leaf length, pale yellow-brown, rough, excurrent; upper laminal cells $\pm 6-8 \mu$ in diameter, chlorophyllose, quadrate-hexagonal, densely multipapillose, basal laminal cells hyaline, $\pm 42 \times 10 \mu$, pale walls, elongated rectangular; perichaetial leaves not differentiated. Seta apical, slender, erect, $\pm 1.5 \mathrm{~cm}$ long; capsule red-brown, $\pm 1.5 \mathrm{~mm}$ long and and $\pm 0.4 \mathrm{~mm}$ in diameter, erect, ovate-cylindrical; peristome teeth red brown, filiform, papillose, twisted spirally; operculum conical, cucullate. Spores spherical, light greenish, $\pm 14 \mu$ in diameter.
This taxon was found growing near the bank of stream. Male plant were smaller, antheridia, orange, stalked, axillary, club shaped, filamentous paraphyses; female plants unbranched, larger than the male plant. Multicelluar gemmae was a characteristic feature.

Specimen examined

Budgam: Beerwah; Growing on sandy soil near stream; Mar 2015, PAN 6140.
Distribution:Western Himalaya, Upper Gangetic Plains, West-Central-South India, Ceylon, Burma, Thailand, Vietnam, Malay, Singapur, Java, New Guinea, Philippines, Taiwan and China.
Chromosome number: $\mathrm{n}=13$
Hydrogonium gracilentum (Mitt) Chen Hedw., 80: 237(1941).
Plate 20
Barbula gracilenta Mitt., Musc. Ind. Or.: (1859).
Desmatodon latifolius (Hedw.) Brid., Mant. Musc.: 86 (1819).
Dicranum latifolium Hedw., Sp. Musc.: 140(1801).
Swarzia pilifera Brid., J. Bot. 1800(2): 289(1801).
Bryum piliferum Dicks., Pl. Crypt. Brit., 4:10 (1801).
Trichostomum piliferum (Brid.) Sm., Fl. Brit., 3: 1245(1804) as var.
Dicranum lanceolatum Schleich., Brid., Mant. Musc.: 86(1819) nom. nud. synon.
Didymodon pilifer Wahlenb., Fl. Suec., 2:755(1826) as var.
D. apiculatus Arnott., Mem. Soc. Linn. Paris, 5: 264(1827).

Trichostomum hoppeanum Schultz., Syll., 2 : 140(1828).
Tortula latifolia (Hedw.) Lindb., M. Scand.: 20 (1879).
Barbula latifolia (Hedw.) Kindb., Eur. N. Am. Bryin., 2: 252(1897).

Dioecious. Plants yellow-green, small plant, growning in close tufts. Stem unbranched, $\pm 2 \mathrm{~cm}$ long, erect, yellow. Leaves stiff, $\pm 2.5 \mathrm{~mm}$ long, erect when moist, erecto-patent when dry, ovate-oblong, concave, carinate, apex acute, denticulated at apex; costa excurrent modified into long awn, brown; upper laminal cells $\pm 9 \mu$ in diameter, chlorophyllose, hexagonal, multipapillose, papillae horse-shoe-shaped to ring-shaped papillae; basal laminal cells $\pm 49 \times 13 \mu$, rectangular, hyaline, papillose. Seta apical, erect, brown, slender, $\pm 1.5 \mathrm{~cm}$ long; capsule apical, $\pm 2 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ in diameter, erect, brown, cylindrical; peristome teeth brown, 32 in number; operculum conic-rostrate. Spores smooth, pellucid, $\pm 11 \mu$ in diameter .
They were growing near the bank of stream. The soil was moist and sandy.They were yellow to green in color.
This species is exclusively found in North Western Himalaya and is endemic to this area.

Specimen examined

Budgam: Beerwah; Growing on sandy soil near stream; Mar 2015, PAN 6141.
Distribution:Western Himalaya and Kashmir.
Chromosome number: $\mathrm{n}=15$ ($14+\mathrm{m}$)

KEY TO THE SPECIES OF GENUS DESMATODON

1. Leaf ovate-oblong, apex blunt, Gemmiferous. Desmatodon lati......................esmas apex acute, Not gemmiferous \qquad
Desmatodon gemmascens Chen, Hedwigia, 80: 297(1941).
Plate 21
Didymodon gemmascens Broth., Symb. Sin., 4: 48(1929).
Didymodon (Erythrophyllum) saxicola Broth. n. sp. in Herb.
Desmatodon latifolius (Hedw.) Brid., Mant. Musc.: 86 (1819).
Dicranum latifolium Hedw., Sp. Musc.:140(1801).
Swarzia pilifera Brid., J. Bot. 1800(2): 289(1801).
Bryum piliferum Dicks., Pl. Crypt. Brit., 4:10(1801).
Trichostomum piliferum(Brid.,) Sm., Fl. Brit., 3:1245(1804).
T. latifolium (Hedw.) Schwaegr., Sp. Musc. Suppl.,1(1):145(1811).

Dicranum lanceolatum Schleich, Brid. Mant. Musc. 86(1819).
Didymodon pilifer Wahlenb. var. spathulatus Wahlenb., Fl. Suec., 2: 775(1826).
D. apiculatus Arnott. Mem. Soc. Linn. Paris. 5, :264(1827).

Trichostomum hoppeanum Shultz., Syll., 2: 140 (1828).
Tortula latifolia (Hedw.) Lindb., M. Scand.: 20(1879).
Barbula latifolia(Hedw.) Kindb., Eur.N. Am. Bryin., 2: 252: (1897).
Dioecious. Gemmiferous, Plants yellow-green to reddish-green, small, growning in close tufts, branched at tip. Stem erect, $\pm 1.5 \mathrm{~cm}$ long, tomenta all over the stem. Leaves erect to erecto-patent when moist, crumpled and curled when dry, $\pm 3 \mathrm{~mm}$ long and $\pm 0.6 \mathrm{~mm}$ broad, ovate-oblong, concave, carinate, upper leaves long, base rectangular, apex blunt, margins smooth; costa excurrent, brown; upper laminal cells chlorophyllose, hexagonal $\pm 15 \mu$, multipappilose, papillae horse-shoe shaped to ring- shaped, basal laminal cells rectangular, $\pm 90 \times 20 \mu$, hyaline, papillose. Seta apical, $\pm 1.5 \mathrm{~cm}$ long, erect, brown; capsule $\pm 1.5 \mathrm{~mm}$ long and $\pm 0.6 \mathrm{~mm}$ broad, apical, erect, brown, cylindrical; operculum conic-rostrate, peristome teeth erect, lanceolate, with a low basal membrane, usually divided 2-3 times. Spores large, rounded, yellow or reddish brown, papillose, $\pm 12 \mu$ in diameter.
Plants were very small and found growing on a piece of rock near the bank of the stream.

Specimen examined

Budgam: Budgam; Growing near bank of the stream; Feb 2013, PAN 6142.
Distribution: Western Himalaya and China. It is an An Indo-Chinese species.
Chromosome number: Not known so far.
Desmatodon latifolius (Hedw.) Brid., Mant. Musc.: 86 (1819).
Plate 22
Dioecious. Non- gemmiferous, Plants yellow green, growning in close tufts, small. Stem very small, about $\pm 3 \mathrm{~mm}$ long, erect, often branched. Leaves erect when moist, erectopatent when dry, $\pm 1.7 \mathrm{~mm}$ long, carinate, ligulate, cucullate, upper leaves longer, base rectangular, apex acute, margins involute; costa brown, broad at base, $\pm 80 \mu$, excurrent; upper laminal cells $\pm 9 \mu$ in diameter, chlorophyllose, quadrate-hexagonal, densely papillose, basal laminal cells $\pm 150 \times 20 \mu$, rectangular, thin walled, densely multipapillose with horseshoe or ring-shaped papillae, papillae obscure. Seta apical, $\pm 1.4 \mathrm{~cm}$ long, erect, brown; capsule apical, $\pm 1.8 \mathrm{~mm}$ long and $\pm 0.5 \mathrm{~mm}$ broad, erect, brown, cylindrical; peristome teeth brown, split into two papillose cvure; operculum conic-rostrate, beak usually bend to one side. Spores yellow, papillose, $\pm 11 \mu$ in diameter.
j176 \quad IJRAR- International Journal of Research and Analytical Reviews
Research Paper

Plants were very small, found growing on a piece of rock along the bank of the stream.

Specimen examined

Budgam: Budgam; Growing near bank of the stream; Feb 2013, PAN 6143.
Distribution:Western Himalaya (Garhwal, Kulu, Lahul) Kashmir, Caucasus, Central Asia, Altai, Kamchatka, China, Europe, North Africa and North America.
Chromosome number: $\mathrm{n}=26,28$
Syntrichia princeps (De Not.) Mitt., Musc. Ind.Or. :39(1859).
Plate 23
Tortula princeps DeNot. Mem. R. Acc. Sc.Torino, 40: 288(1838).
Barbula princeps(De Not.) C. Muell Syn., 1:636(1849).
B. muelleri B.S.G. Bryol. Eur., 2: 106(1849).

Tortula muelleri Hook. F. et Wils Fl. Antarct., 1: 103(1847).
Monoecious. Plants green to yellow, growing on rocks. Stem sturdy, green, dichotomously branched, $\pm 4 \mathrm{~cm}$ long. Leaves erectopatent when moist, flexouses and appressed to stem when dry, oblong, elliptic, apex rounded, obtuse, slightly emarginated margins, margins revolute in the two-third of leaf; costa strong, brown, $\pm 130 \mu$ wide at base, excurrent, spinose, awn transparent; upper laminal cells $\pm 15 \mu$ wide, chlorophyllose, flattened, multipapillose, papillae +horse-shoe shaped, round, collenchymatous, marginal laminal cells $\pm 130 \times 11 \mu$, papillose, border cells rectangular, basal laminal cells $\pm 140 \times 15 \mu$, transparent, smooth, rectangular; perichaetial leaves not differentiated. Seta apical, erect, $\pm 1.5 \mathrm{~cm}$ long; capsule curved, $\pm 5.6 \mathrm{~mm}$ long, and $\pm 0.7 \mathrm{~mm}$ in diameter, golden brown; peristome brown, papillose, spirally twisted; operculum conic-rostrate, brown. Spores brown, pellucid, $\pm 10 \mu$ in diameter.
Medium-sized, green to brown, plants growing on a piece of rock. The plants that were in direct influence of sunlight were red. The transparent awn and reddish tinge of the plants help easy recognition of this species.

Specimen examined

Budgam: Budgam; Attached to the rock; Feb 2013, PAN 6144.
Distribution:Western Himalaya, Caucasus, Central Asia (Tajikistan), Australia, New Zealand, Europe, North Africa, N. C. \& S. America and Oceania.
Chromosome number: $\mathrm{n}=12,24+\mathrm{m}, 28,36+2 \mathrm{~m}$

Discussion

Haplolepidous mosses are distributed among three families Pottiaceae, Dicranaceae and Grimmiaceae. Family Pottiaceae has evolved ecologically to exploit diverse habitats. The short and thickened leaf cells increase the surface area for water absorption and increased photosynthetic activity, the dense papillae in the cells check loss of water and provide protection from high insulation, the densely clothed stems and hair pointed leaves help in water conservation. All these features, singly or in combination found in the Pottiaceae and Grimmaceae, confer adaptive advantage to these families for colonization in exposed habitats.
It seems that the families, Pottiaceae and Grimmaceae, both haplolepideous, have evolved ecologically to exploit diverse habitats.

c

Plate 1:Schistidium apocarpum (Hedw.) B.S.G. ssp. gracile (Roehl.) Meyl. Bull. Soc. Vaud. Sci. Nat. ser. 5, 41;100(1905); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 2:Grimma apophysata Hamp.ex Gangulee, Nova Hedwigia, 12: 428 (1966); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 3:Grimma ovalis (Hedw.) Lindb.Act. Soc. Sci. Fenn., 10: 75(1871); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 4:Campylopus fragilis (Brid.) B.S.G., Bryol. Eur., 1:164(1847);A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 5:Oxystegus cylindricus (Brid.) Hilp Beih. Bot.Centralbl., 50: (2) 620 (1933); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 6:Oxystegus khasianus (Mitt.) Gangulee Nova Hedwigia, 8: 149(1964); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 7:Oxystegus stenophyllus (Mitt.) Gangulee, Nova Hedwigia, 12: 429(1966); A. Dry plant (1X), B. Wet plant (2X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 8:Hyophila involuta (Hook.) Jaeg.,Natur. 1871-72: 356 (1873); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 9:Hyophila rosea Williams, Bull. N. Y. Bot. Gard., 8: 341 (1914); A. Dry plant (2X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 10: Hyophila spathulata (Harv) Jaeg.,Ber. S. Gall. Naturw.Ges., 1817-72: 353(1873); A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 11: Hyophila walkeri Broth., Rec. Bot. Surv. Ind., 1:317 (1899); A. Dry plant (1X), B. Wet plant (5X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 12:Barbula asperifolia Mitt.Musci Ind. Or. 36(1859); A. Dry plant (1X), B. Wet plant (4X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

E

Plate 13:Barbula constricta Mitt., Musci Ind. Or.: 33(1859); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 14:Barbula cylindrica (Tayl.)Schimp.var.vinealis(Brid) Lindb.,Musci. Scand.: 32(1879); A. Dry plant (2X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 15:Barbula nigrescens Mitt.Musci Ind. Or. 36(1859); A. Dry plant (2X), B. Wet plant (3X), C. Leaf (75X),
D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 16:Barbula vinealis Brid Bryol. 1: 830(1827); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 17:Semibarbula orientalis (Weber) Wijk.\& Marg. Taxon, 8: 75(1959);A. Dry plant (1X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

A

C

D

Plate 18:Semibarbula ranuii Gangulee NovaHedwigia, 8:149(1964); A. Dry plant (2X), B. Wet plant (2X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 19 :Hydrogonium consanguineum (Thw. et Mitt.) Hilp.,Beih . Bot. Centrabl., 50(2): 626 (1933); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 20:Hydrogonium gracilentum (Mitt) Chen Hedwigia, 80: 237(1941); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 21:Desmatodon gemmascens Chen, Hedwigia, 80: 297(1941); A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

C

Plate 22:Desmatodon latifolius (Hedw.) Brid., Mant. Musc.: 86 (1819); A. Dry plant (1X), B. Wet plant (4X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

Plate 23: Syntrichia princeps (De Not.)Mitt.Musc.Ind.Or. :39(1859);A. Dry plant (3X), B. Wet plant (3X), C. Leaf (75X), D. Apical laminal cells (290X), E. Middle laminal cells (290X), F. Basal laminal cells (290X).

References

1. Buck WR, Goffinet B. Morphology and classification of mosses. In A.J. Shaw \& B. Goffinet (eds.), Bryophyte Biology. Cambridge University Press. 2000; 71-119.
2. Crum HA. Structural Diversity of Bryophytes. The University of Michigan Herbarium, Ann Arbor, MI, 2001, pp. 379.
3. Dandotiya D, Govindapyari H, Suman S, Uniyal PL. Checklist of the bryophytes of India. Archive for Bryology, 2011; 88: 1-126.
4. Goffinet B, Buck WR. Systematics of Bryophyta: from molecules to a revised classification. In: B. Goffinet, V. Hollowel \& R. Magill (eds.), Monographs in Systematic Botany from the Missouri Botanical Garden, 2004; 205239.
5. Oren M, Uyar G, Keceli T. The bryphyte flora of Erdec, Bandirrma, Manyas district, (Balikesir, Turkey). International Journal of Botany, 2007; 3 (1):1-14.
6. Shaw J, Renzaglia K. Phylogeny and diversification of bryophytes.American Journal of Botany, 2004; 91: 15571581.
7. Zander RH. Initiation of search for fossil traits in the genome. Bryological Times, 2006; 119: 5-6.
