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The pan-tropical wild relatives of rice grow in a wide variety of

habitats: forests, savanna, mountainsides, rivers and lakes. The

completion of the sequencing of the rice nuclear and cytoplasmic

genomes affords an opportunity to widen our understanding of the

genomes of the genus Oryza. Research on the Oryza genus has

begun to help to answer questions related to domestication,

speciation, polyploidy and ecological adaptation that cannot be

answered by studying rice alone. The wild relatives of rice have

furnishedgenes for the hybrid rice revolution,andothergenes from

Oryza species with major impact on rice yields and sustainable rice

production are likely to be found. Care is needed, however, when

using wild relatives of rice in experiments and in interpreting the

results of these experiments. Careful checking of species identity,

maintenance of herbarium specimens and recording of genebank

accession numbers of material used in experiments should be

standard procedure when studying wild relatives of rice.
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Abbreviations
QTL quantitative trait loci

RAPD random amplified polymorphic DNA

RFLP restriction fragment length polymorphism

Introduction
The genus Oryza is small, including only about 23 species,

but is remarkable in the diverse ecological adaptations of

its species (Table 1). The Oryza genus has given rise to

rice (Oryza sativa L.), a major source of nutrition for about

two-thirds of mankind. Rice has been grown, perhaps

uniquely, in sustainable high-output agroecosystems for

thousands of years. In relation to genera containing other

cereals, Oryza occupies a distinct phylogenetic position in

a separate subfamily, the Ehrhartoideae [1].

The genus Oryza was named by Linnaeus in 1753. The

haploid chromosome number of rice was determined by

Kuwada in 1910, 46 years before the correct chromosome

number of humans was known. It was not until the 1960s,

however, that the characters that define the Oryza genus

were clarified [2,3]. The principle morphological charac-

teristics of the genus include rudimentary sterile lemmas,

bisexual spikelets, and narrow, linear, herbaceous leaves

with scabrous margins.

The basic nomenclature of Oryza species has changed little

since the 1960s (for review see [4��]). Tateoka [5] analyzed

species across the whole genus on the basis of studies

carried out in the world’s main herbaria and in the field

in Asia and Africa. His work clarified the basic groups of

species within the genus, and he called these groups

species complexes (Table 1). Since the 1960s, four new

Oryza species have been described, O. meridionalis, O.
rhizomatis, O. indandamanica and O. neocaledonica. These

areall closely relatedtopreviouslyknownspecies (Table1).

Germplasm collection of wild Oryza species was initiated

in the late 1950s (as compiled in [6�]). In the early 1970s,

international efforts to collect landrace rice germplasm

began in response to the spread of green revolution

varieties [7]. Subsequently, these efforts broadened to

collect more widely from the Oryza genepool [8]. In this

paper, we review and discuss issues related to wild Oryza
genetic resources. We also highlight particular Oryza
species that reveal the current focus of research involving

wild relatives of rice from conservation, phylogenetic and

breeding perspectives.

Issues
The domestication syndrome and its degeneration in the

O. sativa complex (AA genome)

In AA genome Oryza species, it appears that natural selec-

tion and artificial selection (i.e. selection by humans) have

different genetic consequences. Asian cultivated rice

evolved from the wild species O. rufipogon sensu lacto (an

AA genome wild relative of rice that includes both annual

and perennial ecotypes). The adaptation of O. rufipogon,

particularly to different hydrological regimes, has resulted

in distinct annual and perennial ecotypes. The genetic

factors that are associated with these ecotypes are not

clustered on chromosomes [9��]. However, the domestica-

tion of rice and the differentiation of the main varietal

groups of O. sativa, indica and japonica, are associated with

clustered genetic factors [9��,10]. It appears that the multi-

factorial linkage of domestication traits is a common fea-

ture of cereals. Not all grasses have the same propensity for

domestication, however, as is apparent from the difficulty

of domesticating Zizania (North American wild rice), a

close relative of Oryza [11]. A consequence of the lack of

clustering of genetic factors that are associated with natural

ecotypic differentiation within the AA genome of wild rice
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is that these genotypes have a high level of genetic diver-

sity even at a local level [12].

Weedy rice is an increasing problem, particularly in areas

where rice is sown by broadcasting [13]. Weedy rice has

spikelets that shatter very easily, leaving a seed bank in

the soil that infests subsequent rice crops. It appears that

weedy rice commonly evolves through the degeneration

of domesticated rice, as weedy types of rice can occur

where wild rice is not present [14]. The degeneration of

Table 1

Oryza species: their chromosome number, DNA content, genome group and usual habitat.

Section Complex Species Chromosome number

(DNA content [pg/2C])�
Genome

group

Usual habitat

Oryza

Oryza sativa complex
Oryza sativa L. 24 (0.91–0.93) AA Upland to deepwater; open

O. rufipogon sensu lactoy (syn: O. nivara

for the annual form O. rufipogon sensu

stricto for the perennial form)

24 (0.95) AA (Annual) Seasonally dry; open (Perennial) Seasonally

deepwater and wet year round; open

O. glaberrima Steud. 24 (0.87) AA Upland to deepwater; open

O. barthii A. Chev. 24 AA Seasonally dry; open

O. longistaminata Chev. et Roehr. 24 (0.81) AA Seasonally dry to deepwater; open

O. meridionalis Ng 24 (1.02) AA Seasonally dry; open

O. glumaepatula Steud.z 24 (0.99) AA Inundated areas that become seasonally dry; open

O. officinalis complex
O. officinalis Wall ex Watt 24 (1.45) CC Seasonally dry; open

O. minuta JS Presl. ex CB Presl. 48 (2.33) BBCC Stream sides; semi shade
O. rhizomatis Vaughan 24 CC Seasonally dry; open

O. eichingeri Peter§ 24 (1.47) CC Stream sides, forest floor; semi shade

O. malapuzhaensis Krishnaswamy and

Chandrasakaran

48 BBCC Seasonally dry forest pools; shade

O. punctata Kotschy ex Steud. 24 (1.11), BB, BBCC (Diploid) seasonally dry; open

48 (Tetraploid) forest floor; semi shade

O. latifolia Desv.# 48 (2.32) CCDD Seasonally dry; open

O. alta Swallen 48 CCDD Seasonally inundated; open

O. grandiglumis (Doell.) Prod. 48 (1.99) CCDD Seasonally inundated; open

O. australiensis Domin 24 (1.96) EE¥ Seasonally dry; open

Ridleyanae Tateoka
O. schlechteri Pilger 48 Unknown�� River banks; open

O. ridleyi complex
O. ridleyi Hook. 48 (1.31–1.93) HHJJ Seasonally inundated forest floor; shade

O. longiglumis Jansen 48 HHJJ Seasonally inundated forest floor; shade

Granulata Roschev.

O. granulata complex�

O. granulata Nees et Arn ex Watt 24 GG Forest floor; shade

O. meyeriana (Zoll. et Mor. ex Steud.) Baill. 24 GG Forest floor; shade

Brachyantha B.R. Lu
O. brachyantha Chev. Et Roehr. 24 (0.72) FF Rock pools; open

�Data for diploid species from [71] and tetraploid species from [72]. yMany workers have considered that the annual and perennial wild relatives of

O. sativa should be considered separate species. However, crop complexes consisting of perennial and annual wild relatives together with the

cultigen have generally been given sub-specific ranking [11]. Research results suggest that for rice and its relatives, the evolution of annual forms

from perennial forms is a local phenomenon, morphologically intermediate types are abundant and no major crossing barriers exist between rice

and its close relatives [12]. zWe refer to the Latin American AA genome as O. glumaepatula because this name is widely used in the literature

despite the fact that the taxonomy and nomenclature of this species is in a state of flux. No key characters have been found to distinguish this

species from perennial O. rufipogon [52]. §There have recently been several reports of tetraploid O. eichingeri. However, all correctly identified

germplasm of O. eichingeri that has had chromosome numbers checked by collectors has been diploid ([73]; DA Vaughan unpublished data). #A

diploid population of O. latifolia from Paraguay has been reported but attempts to confirm this have failed. This report is thus discounted. �Two

other species have recently been named within this complex: Oryza indandamanica Ellis is restricted to Rutland Island, the Andamans, India,

whereas Oryza neocaledonica Morat is from the Pouembout region of New Caledonia. The former is a diminutive variant of O. granulata and the

latter was distinguished primarily on the basis of microscopic epidermal characters. Both species probably warrant sub-specific status only, but
further studies of these two taxa are needed. ¥Recently, it has been suggested that the EE genome is the same as the DD genome [24]. However,

this has been shown not to be the case [21�,39]. ��It has been suggested on the basis of molecular studies of part of the genome that O.

schlechteri has the HHKK genome [24]. However, recent data indicate that this may not correct [39]. Here, O. schlechteri is tentatively placed in

section Ridleyanae. Further information is necessary to determine the sectional status of this species.
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traits associated with domestication involves clusters of

genes or quantitative trait loci (QTL) [15�]. The cluster-

ing of the genes/QTL that are associated with weedy rice

traits helps to explain the emergence of weedy rice within

a few seasons and reflects aspects of the domestication

syndrome in reverse.

Speciation associated with polyploidy in the Oryza

officinalis complex

Nine of the 23 species of Oryza are allotetraploid

(Table 1). The CC genome is one of the genomes for

six of these allotetraploid species. This genome is con-

sidered to be closest to the AA genome, the genome of the

two cultivated rice species [16–18]. However, the AA

genome is only known in diploid species. Among the

CC genome tetraploid species, polyploid events leading

to stable species have occurred at least four times. On

three occasions these events have resulted in BBCC

genome species and probably on one occasion the CCDD

genome species (see below).

Among the BBCC tetraploid species O. minuta and O.
malampuzhaensis have cytoplasm from the diploid BB

genome species O. punctata. The tetraploid form of O.
punctata (BBCC) has cytoplasm from a CC genome spe-

cies [19,20]. On the basis of distinct morphology [21�],
current distribution [22] and molecular analyses [23�], it

seems logical to conclude that O. minuta and O. malam-
puzhaensis arose from different polyploid events.

The CCDD genome species of Latin America, O. latifo-
lia, O. grandiglumis and O. alta, have generated much

research interest because no diploid DD genome species

is known. Consequently, researchers have tried to deter-

mine whether the DD genome is a modification of a

genome in a currently known diploid species. Among the

most frequently proposed candidates for the origin of the

DD genome are the CC genome [17] and the EE genome

[24]. However, current data support the original cytolo-

gical observations that suggest that the DD genome is

distinct [21�]. The DD genome originated either in an

extinct species or in an extant one that has yet to be

discovered. The diploid DD genome species may be

undiscovered because specific germplasm collecting for

Oryza species has yet to be undertaken in large parts of

Latin America, including coastal Ecuador and Venezuela.

The CCDD genome species of Latin America are very

closely related and appear to have diversified in relation to

different ecological conditions. The key characteristics

that distinguish these species are not clear. For example, a

population in the Amazon appears to be a mixture of O.
grandiglumis and O. alta [6�]. Such field observations

suggest that the CCDD genome species are in fact one

complex species with different ecotypes, and this hypoth-

esis is supported by molecular and cross-compatibility

data [25,26].

Allotetraploid species that have the CC genome do not

always have CC-genome components that might be

expected from studies of diploid CC-genome species.

For example, some CC-genome genes do not appear in

CCDD genome species [27], and some repetitive DNA

probes that are specific for the CC genome and that are

detected in the diploid species O. officinalis are not detected

in the BBCC and CCDD species [28]. The CC and BB

genomes (but not the AA genome) have been repeatedly

involved in polyploid events, leading to widely distributed

species.Whythis is soandthegeneticconsequencesofsuch

polyploid events in Oryza require further investigation.

Population genetic structure

Population studies have focused primarily on the close

relatives of Asian rice, which have the AA genome. An

impressive amount of information has now been assembled

on the population genetic structure of these species in

selected regions (for review see [29]). For AA genome

species, experiments are biased towards accessions that

produce seeds when conserved ex situ. In several regions in

Australasia where there is little annual fluctuation in water

level, such as northern Sumatra and northern Papua New

Guinea, vast stands of O. rufipogon with strong perenniality

produce few seeds. Similarly in Africa, many populations of

rhizomatous O. longistamminata produce few seeds. When

these African populations are conserved ex situ, they gen-

erally need to be maintained in a vegetative state.

Across much of mainland Asia, common O. rufipogon sensu
lacto and cultivated rice either are or were sympatric, and

geneflow between them is possible. Thus, the results of

studies using wild rice must be interpreted carefully as

the wild populations may contain genes from the cultigen

[30]. Truly wild O. rufipogon occurring in habitats not

shaped by man is probably rare in mainland Asia. Analyses

of O. rufipogon using restriction fragment length poly-

morphisms (RFLPs) and random amplified polymorphic

DNAs (RAPDs) have shown that Chinese populations of

O. rufipogon have a wider genetic diversity than those from

other regions [31,32�]. It has been suggested that gene-

flow from cultivated rice to natural populations of wild

perennial rice is a factor that may explain the high genetic

diversity of Chinese O. rufipogon populations [31]. True

wild rice, growing far from rice cultivation, may be found

in parts of Australia, Indonesia, South America and Papua

New Guinea.

Recently, more information has become available on the

population structure of a broad array of Oryza species. O.
officinalis (CC genome) and O. granulata (GG genome)

have a high level of genetic differentiation between

populations [33,34,35�,36]. O. officinalis appears to have

an intermediate level of intra-population diversity, how-

ever, with outcrossing estimated at a surprisingly high

level of 33% [35�]. Analysis of the balance between

vegetative and sexual (seed) reproduction in O. rufipogon
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(AA genome) has revealed the importance of local dis-

turbance and soil moisture in the genetic make up of

populations [37�]. The genetic and ecological information

gradually being accumulated on a range of ecotypes and

species in the genus Oryza can help to determine the

location and numbers and sizes of population for appro-

priate in situ and ex situ conservation of these species.

Molecular markers, taxonomy and misidentified

germplasm

Molecular methods have been proposed as tools for

identifying Oryza genomes (e.g. dot blot and genome-

specific ribosomal DNA [rDNA] probes [38], and restric-

tion sites of PCR-amplified alcohol dehydrogenase [Adh]

genes [39]) and for validating the identification of wild

Oryza species (e.g. RAPDs [40]). However, the results

obtained using molecular markers do not always concur

with those generated by other methods, such as assess-

ment of morphological characters [41]. The foundations

of basic nomenclature rely on observable differences

among taxa (which allow the construction of taxonomic

keys) and the principle of priority, the historic sequence

of valid names determines which name is correct. Thus,

there exists an International Code for Botanical Nomen-

clature (ICBN). In addition, although molecular markers

may be a useful adjunct for identification, they cannot

always be used and are far from inexpensive in terms of

equipment, chemicals and personnel costs.

The scientific literature reveals various difficulties asso-

ciated with using wild Oryza species, particularly regarding

identification. During an experiment, it may be clear that

germplasm is misidentified whereas in other cases mis-

identification may be less obvious. For species that can be

readily identified on the basis of their morphology, this

should not pose a problem. However, morphological dis-

tinction among species that are cross compatible is often

not clear. This is the case, for example, among Asian,

Australian and Latin American AA genome species and

can adversely affect the interpretation of experimental

results. Using a RAPD analysis, Martin et al. [40] reported

that 16 out of the 93 AA genome accessions analyzed had an

identity that appeared to be different from that provided by

the genebank. Despite bagging panicles, it is impossible to

rule out hybridization among cross-compatible germplasm

during regeneration in a genebank. This has important

implications when choosing germplasm for use in com-

parative studies. Experimental documentation should

always include (seed and herbarium) voucher specimens

of the wild Oryza germplasm used in published experi-

ments. Careful genetic monitoring and identification of

germplasm in genebanks by trained staff is important,

particularly as the number of regeneration cycles increases.

Incongruous results

There have been attempts to explain evolution in the

genus Oryza on the basis of the analysis of different

classes of major DNA sequences [42,43]. Sometimes

the results of these analyses agree with what might be

expected from other branches of biosystematics. Other

times, however, the results are incongruous. Phylogenetic

interpretation of the transposable element group Tourist
in Oryza provides two examples. Among the Tourist ele-

ments, the Tourist-olo9 (O. longistamminata-9) class has

only been found in the AA (O. sativa complex) and FF (O.
brachyantha) genomes of Oryza, and this has been inter-

preted to suggest that these two genomes are closely

related [44]. However, many taxonomic and other mole-

cular studies suggest otherwise [4��,45,46]. O. brachyantha
is a distinct Oryza species within its own section that

seems to be closely related to the genus Leersia.

Analysis of the Tourist element in the 50-flanking region of

the CatA (Catalase A) orthologue gave rise to the sugges-

tion that the AA genome species diverged from the

ancestor of O. longistamminata (AA genome) before the

divergence of the ancestors of the other Oryza genomes

[47]. This interpretation fits the data from the analysis of

the Tourist element but is contrary to all previous inter-

pretations of Oryza evolution.

These examples show that the phylogenetic interpretation

of the results from analyses of parts of the genome must be

interpreted in the light of all other data. We do not yet

understand the array of factors that influences rates of

evolutionary change (convergence and divergence) in dif-

ferent parts of the genome, and there does not seem to be a

single ‘molecular clock’ with which to gauge the rate of

evolution [48]. Particular parts of the genome may be

evolving at different rates in closely related species, as

suggested for the rDNA spacer in Oryza [27].

Species-focused research
The wild relatives of rice were initially used in breeding

because of the need for new traits in the cultivated rice

genepool [49]. However, the ability to introduce QTL

from wild Oryza germplasm in wide crosses that could

potentially improve quantitative traits, such as yield [50],

and the desire to broaden the genetic base of rice cultivars

[51] have recently resulted in the development of wide-

hybridization programs in many countries. In the follow-

ing sections, we describe two species for which there have

been new collections and analyses of their genetic

resources, O. glumaepatula and O. eichingeri, and discuss

how these species are used within breeding programs.

Oryza glumaepatula (synonym Latin American O.

rufipogon, AA genome)

AA-genome wild rice is found in various parts of Latin

America from 23 8N in Cuba to 23 8S in Brazil. This taxa is

now generally known as O. glumaepatula, although this

name was first used to describe a cultivated rice from

Suriname. No clear morphological characteristic distin-

guishes O. glumaepatula from AA-genome wild rice from
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Asia and Australia [52]. However, there are sterility

barriers between accessions of this species and AA-gen-

ome accessions from Asia [53,54]. Although it is clear that

there is an indigenous AA-genome wild rice in Latin

America, the possibility that AA-genome wild rice from

Asia and/or Africa was also historically introduced into

Latin America cannot be discounted. The ecological and

genetic complexity of O. glumaepatula revealed by recent

studies may support this.

Most of the O. glumaepatula germplasm in the interna-

tional Oryza species collections results from collecting

missions in the early 1960s in the Caribbean and South

America and in the 1990s in Brazil [6�] and Costa Rica

[55]. The materials from these collecting missions have

been the basis of ecological and diversity studies [56,57]

and of genetic studies [51,58–60,61�].

The combination of field observations and studies of

genetic diversity has revealed characteristics of Brazilian

O. glumaepatula that are related to life-history traits [56,57].

The gene flow and intra-population genetic diversity of

Amazonian O. glumaepatula, unlike those of the related

wild AA-genome species of Asia, appear to reflect seed

flow rather than pollen flow. O. glumaepatula is predomi-

nantly an inbreeding species and a prolific seed producer

(possibly with an essentially annual life cycle). These traits

reflect the habitat of O. glumaepatula, which can be dry in

one season followed by flooding of 10–20 m in the next

season. The greatest genetic diversity is generally found

downstream of high ground, probably because the culms

tend to detach just above the node in rising water causing

plants to float down stream ([56]; Figure 1). In other parts

of Latin America, O. glumaepatula is subject to different

ecological conditions and has different characteristics,

implying that certain traits are being selected; for example,

O. glumaepatula in the Paraguay river system has much

lower inter- and intra-population genetic diversity than

Amazonian O. glumaepatula [57].

AA-genome Oryza germplasm exhibits remarkable

eco-geographic differentiation worldwide, both regionally

and locally. Thus, this wild germplasm can be expected

to have significant adaptive gene differences among

accessions.

Detailed morphological, biochemical and molecular ana-

lyses suggest that O. glumaepatula consists of at least two

main groups: one group centered on the Amazon basin and

the other in the Pantanal of Brazil and Caribbean regions.

Studies of variations in mitochondrial, chloroplast and

nuclear DNA suggest that O. glumaepatula has multiple

origins [62,63]. Various accessions of O. glumaepatula are

more similar either to the African annual AA-genome wild

rice, O. barthii, or to the African perennial AA-genome wild

rice, O. longistamminata. Dally and Second [19] found two

accessions of Latin American AA-genome wild rice that

have a chloroplast plastotype that is related to that of the

Asian AA-genome species.

Several studies have tried to make practical use of genetic

variation within O. glumaepatula. Reciprocal introgression

lines between O. glumaepatula and O. sativa have been

developed [58]. These introgression lines have been

developed so that most parts of the O. glumaepatula
genome are represented in lines with both O. sativa
cytoplasm and O. glumaepatula cytoplasm. These lines

are leading to the identification of novel genes, such as

Rhw for restoration of hybrid weakness from O. glumae-
patula cytoplasm [60] and S22 for pollen semi-sterility/

hybrid sterility from O. glumaepatula [59].

Microsatellite markers have been developed from an O.
glumaepatula genomic library and used, with other mole-

cular markers from rice, to map an interspecific cross

between O. glumaepatula and O. sativa [51]. The main

focus of the interspecific cross was to broaden the genetic

base of Brazilian rice cultivars and to identify useful traits

from O. glumaepatula in the genetic background of rice.

Potentially useful QTL have been found that are asso-

ciated with tiller and panicle numbers [61�].

Oryza eichingeri (CC genome)

The diploid CC-genome species, O. eichingeri, belongs to a

group of species that show morphological and genetic

differentiation in relation to habitat and geographic ori-

gin. O. eichingeri is particularly interesting because it has a

remarkably disjunct distribution in West and East Africa

and in Sri Lanka. This may be one reason why this species

exhibits a surprising degree of intraspecific variation at

the genome level [17,19]. O. eichingeri usually grows in

shade or semi-shaded forest environments (Figure 2).

This species is believed to be the genome donor to the

Figure 1

O. glumaepatula detached from its roots and floating downstream in the

Rio Negro, Amazon Basin, Brazil.
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tetraploid form of O. punctata of Africa and is genetically

the closest of the CC-genome species to the tetraploid

Oryza species of Latin America (O. latifolia, O. alta and

O. grandiglumis) [23�].

Germplasm collections for O. eichingeri were undertaken

in Africa in the 1960s [6�] and 1990s [55], and this species

has also been found in and collected from various parts of

Sri Lanka (DA Vaughan, unpublished data). O. eichingeri
has a similar morphology and is found in similar habitats

in Africa and Sri Lanka. This species has been used in

recent diversity studies [23�,64] and cytological studies

[21�], and in rice improvement [65].

O. eichingeri has been used in a rice breeding program as a

source of resistance to brown planthopper [65]. Wide

hybridization and introgression of alien genes can give

insights into genome interaction and the creation of novel

variation. However, the rate of success for intergenomic

crosses is very low [66]. In crosses between O. sativa and

two accessions of O. eichingeri, the rate of success was just

0.36% and 1.65% [65]. Embryo rescue was necessary to

produce F1 plants and the F1 plants were almost always

sterile. Subsequent to the original cross, monosomic alien

addition lines (MAALs), backcross euploid plants, and a

triploid plant were generated. It was possible to identify

the chromosomal constitution of these plants by fluores-

cent in situ hybridization (FISH) and genomic in situ
hybridization (GISH) [18]. The analysis of introgression

in 67 euploid plants by RFLP revealed six RFLP markers

that could detect small introgressed segments from O.
eichingeri in between 28 and 42 plants. The fact that the

same six markers could be used in so many of the back-

cross progeny suggests there may be ‘hot spots’ for high

meiotic recombination [67��].

One intriguing result of wide crosses in the genus Oryza
has been the discovery of novel variation [67��,68]. Sev-

eral explanations have been suggested for this novel

variation, including inter-genomic translocation and the

activation of some transposable elements [49,67��].

Repeated studies of inter-genomic introgression in Oryza
have shown that the size of introgressed segments is very

small [49,67��,68]. This has caused some to suggest that

the mechanism of alien-gene introgression in Oryza is not

conventional [49].

Conclusions and future directions
The sequencing of the rice nuclear (in 2001–2002),

chloroplast (in 1989) and mitochondrial (in 2002) gen-

omes of rice has now been completed. The next decade

will see the sequencing of other Oryza genomes. The

recent approval of funding for the construction of a

bacterial artificial chromosome (BAC) library for the

genomes of Oryza is progress in this direction [69]. An

early genome map using the CC-genome species O.
officinalis initiated the study of comparative genomics

in the genus Oryza [70]. During the coming years, studies

of the different Oryza genomes will open the door to rapid

advances in Oryza research and will answer some of the

complex questions related to the genus Oryza. Among

these questions are those related to the genetic and

ecological characteristics of Oryza species that are not

present in rice, such as polyploidy and rhizome formation.

Standard accessions for each taxa are needed, in the same

way that the Kasalath and Nipponbare varieties have

been used as standards for rice genome studies, to ensure

that our growing understanding of the genus Oryza is

placed on a firm foundation. The study of well-character-

ized standard accessions in many laboratories and from

different perspectives would be valuable, and the Inter-

national Rice Research Cooperative may take a lead in

determining the appropriate accessions.

Much basic research, particularly in the area of overcoming

cross-compatibility barriers, must be undertaken to lay the

foundation for the use of Oryza genomes in routine rice

improvement. Rice improvement programs that incorpo-

rate germplasm from wild relatives of rice in pre-breeding

may lead to important breakthroughs. Genes from the

common wild rice (O. rufipogon) have already provided

cytoplasmic male sterility, triggering the hybrid rice ‘green

revolution’. Other Oryza genes may lead to new directions

in rice improvement.
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