

Kinetic Molecular Theory

I. MOLECULES IN MOTION:

- A. <u>Kinetic Molecular Theory</u> (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.
 - 1) theory developed in the late 19th century to account for the behavior of the atoms and molecules that make up matter
 - 2) based on the idea that particles in all forms of matter are always in motion and that this motion has consequences
 - 3) can be used to explain the properties of solids, liquids, and gases in terms of the energy of particles and the forces that act between them
 - 3 assumptions of KMT:
 - 1. All <u>matter</u> (solid, liquid, gas) is made of <u>particles</u> (atoms, ions, molecules)
 - 2. Particles are in constant motion (electrons move)
 - Particles of a **GAS** travel in completely *random* motion
 - Particles of a <u>LIQUID</u> appear to vibrate around moving points
 - Particles of a <u>SOLID</u> appear to vibrate around *fixed* points

- 3. <u>Collisions</u> are perfectly <u>elastic</u> (no change in the total kinetic energy of 2 particles before and after their collision); No <u>loss</u> of energy!
- B. Kinetic energy (KE) = energy of motion
 - Depends on the <u>MASS</u> of the object and its <u>VELOCITY</u>
 (<u>SPEED</u>)
- C. <u>Temperature</u> = measure of kinetic energy (how fast molecules travel)
 - <u>Decrease</u> in temperature means a <u>decrease</u> in particle speed (i.e. a <u>decrease</u> in kinetic energy)
 - <u>Increase</u> in temperature means an *increase* in particle speed (i.e. an *increase* in KE)
 - ⇒ <u>Kelvin (K)</u> = temperature scale used in Kinetic study
 - ⇒ <u>Absolute Zero</u> = (0 K or 273°C) temperature in which all molecular motion stops
 - Convert between °C and K:
 K = °C + 273

Practice:

- 86 K = <u>-187 ° C</u>
- 23° C = **296 K**
- 533K = 260° C
- -90° C = 183 K

Thermometers compare Fahrenheit, Cdsius and Kevin scales. Water Boils 212 °F 100 °C 373 K Water Freezes 32 °F 0 °C 273 K Absolute Zero

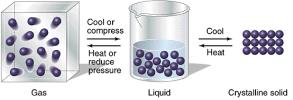
Celsius

Fahrenheit

Absolute Zero

STP = Standard Temperature & Pressure @ sea level D.

Standard Temperatures:

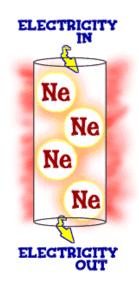

- 0° C
- 273 K

Standard Pressures:

- (kilopascal) • 101.3 KPa
- 1 atm (atmosphere)
- 760 mm Hg (millimeters of mercury)
- 760 torr

States of Matter: E.

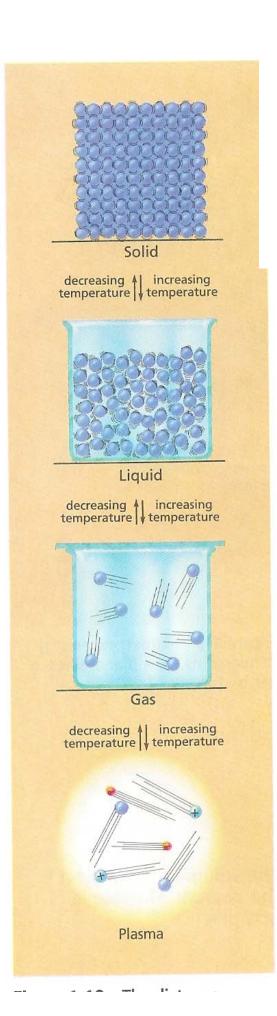
- 1) Solid
- 2) Liquid
- 3) Gas



Total disorder: much empty space; particles have complete freedom of motion; particles far apart.

Disorder, particles or clusters of particles are free each other; particles close together.

Ordered arrangement; particles are essentially in fixed positions; particles close together.


- 4) Plasma = (4th state of matter) heated to very high temperatures, the collisions between particles are so violent that electrons are knocked away from atoms.
 - Atoms are made up of free electrons and ions of the element.
 - Don't happen regularly on Earth
 - Takes a special environment to keep plasmas going
 - •Ex: Fluorescent light bulb or a neon sign-
 - Inside the long tube is a gas and electricity flows through the tube when the light is turned on. The charging and exciting of the atoms creates glowing plasma inside the bulb
 - •Ex: Stars -

- Large balls of gases at really high temperatures. The high temperatures charge up the atoms and create plasma.
- Note: Fluorescent lights are cold compared to really hot stars. They are still both forms of plasma, even with different physical characteristics.

F. Summary of the 4 PHASES of Matter:

Phase	<u>Shape</u>	<u>Volume</u>	Avg. Kinetic	
			<u>Energy</u>	
Solid	Definite	Definite	Slow	
Liquid	Not Definite	Definite	Medium	
Gas	Not Definite	Not Definite	Fast	
<u>Plasma</u>	Not Definite	Not Definite	Violent	

This picture shows how increasing or decreasing the temperature affects the particles of solids, liquids, gases, and plasmas.

Kinetic Molecular Theory (KMT) Worksheet

	me:				
<u>Directions</u> : Answer the following questions completely and concisely.					
1.	What is kinetic energy?				
2.	Describe the 3 assumptions of the KMT (Kinetic Mo	olecular Theory).			
3.	According the KMT, "collisions between particles a	re perfectly elastic	". What does that mean?		
4.	Describe the particle motion of solids, liquids, and g	ases.			
5.	How would increasing the temperature affect kineti	c energy of molect	ules?		
6.	How would decreasing the temperature affect kinet	ic energy of molec	ules?		

7. Compare the average kinetic energies of solids, liquids, gases, and plasma.					
8. What happens at absolute zero?					
a. What temperatures are considered absolute zero?					
a. What temperatures are considered absolute zero:					
9. What does STP stand for?					
10. List the standard temperatures.					
11. List the standard pressures.					
11. List the standard pressures.					
12 would contain atoms made up of free electrons and ions of the element.					
13. Where could you find the fourth state of matter, plasma?					
14. How are Kelvin and Celsius related? (write the equation showing this relationship)					
(1 2 1/					
15. Conversions:					
a. 137°C = K d. 93 K =°C					
b. 23°C = K e. 497 K = °C					
c. 121°C = K f. 270 K =°C					