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1 Introduction

As we all know, in probability theory, a random variable X on [0, 1] is arcsin-distributed
if its cumulative distribution F (x) satisfies

F (x) = P (X ≤ x) =
2

π
arcsin(

√
x)

In Brownian motion theory, there are at least three arcsin laws which are a collection of
results for one-dimensional Brownian motion. In this project, firstly we will introduce
three kinds of arcsin law and give some proofs of them. Then, we will use matlab software
to simulate them and check the result in the theoretical proofs. At last,in order to see the
importance of the arcsine laws, we will give an application of arcsine laws in the finance
market.

2 Statements of The Laws

Throughout we suppose that (Bt) 0 ≤ t ≤ 1 ∈ R is the one-dimensional Brownian motion
on [0, 1].

Theorem 2.1. Let T+ =| {t ∈ [0, 1], Bt > 0} | be the measure of the set of times in [0, 1]
at which the Brownian motion is positive. Then T+ is arcsine distributed, i.e.

P (T+ ≤ x) =
2

π
arcsin(

√
x) ∀x ∈ [0, 1]

Proof : We can rewrite T+ as
´ t

0
1{Bs>0}ds, where t=1 in our theorem. We prove a general

situation where t is a fixed time point on (0,∞). Applying Feynmann-Kac Formula1, we
define

f(x) = Ex
ˆ ∞

0

[exp(−αt− β
ˆ t

0

1{Bs>0}ds)]dt

Then f(x) solves the following differential equation:

αf(x) =
1

2
f ′′(x)− βf(x) + 1, x ≥ 0

αf(x) =
1

2
f ′′(x) + 1, x ≤ 0

1Introduction to Stochastic Processes, chapter 9, Lawer
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Then the solution for the differential equation are given by

f(x) = Ae−x
√

2(α+β) +
1

α + β
, x ≥ 0

f(x) = Bex
√

2α +
1

α
, x ≤ 0

Relying on the continuity of f and f ′ at zero, we get

A =

√
α + β −

√
α

(α + β)
√
α

,B =

√
α−
√
α + β

α
√
α + β

Then, let x = 0,

f(0) =

ˆ ∞
0

[e−αtE0(e−βT+)]dt =
1√
α + β

We can invert the laplace transform using the identity

ˆ ∞
0

e−αt(

ˆ t

0

e−βu

π
√
u(t− u)

du)dt =
1√
α + β

and the density of T+ is obtained

P (T+ ∈ ds) =
ds

π
√
s(t− s)

, 0 < s < 1

Hence, let t = 1

P (T+ ≤ x) =

ˆ x

0

ds

π
√
s(1− s)

=
2

π
arcsin(

√
x) ∀x ∈ [0, 1]

The first theorem is proved.

Theorem 2.2. Let L = sup{t ∈ [0, 1] | Bt = 0}, the last time when the Brownian motion
changes its sign. Then L is arcsine distributed, i.e

P (L ≤ x) =
2

π
arcsin(

√
x) ∀x ∈ [0, 1]

Lemma 2.3. Define Et = {∃s ∈ [a, t], Bs = 0}, then,

P (Et) = 1− 2

π
arctan(

√
a

t− a
)

Proof : By the symmetries of Brownian motion, Let us say that Ba = b > 0, then Et is
realized iff

∃s ∈ [a, t], s.t. Bs −Ba ≤ −b⇐⇒ ∃s ∈ [0, t− a], s.t.Ba+s −Ba ≤ −b

Hence, if Ix = inf{Ba+s − Ba, s ∈ [0, x]}, then Et is realized iff It−a ≤ −b, and It−a is
independent of Ba by simple Markov property.

P (Et) = 2

ˆ ∞
0

P (Et|Ba = b)P (Ba ∈ [b, b+ db])
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= 2

ˆ ∞
0

P (It−a ≤ −b|Ba = b)P (Ba ∈ [b, b+ db])

= 2

ˆ ∞
0

P (It−a ≤ −b)P (Ba ∈ [b, b+ db])

= 2

ˆ ∞
0

P (St−a ≥ −b)P (Ba ∈ [b, b+ db])

= 2

ˆ ∞
0

P (|Bt−a| ≥ −b)P (Ba ∈ [b, b+ db])

= 4

ˆ ∞
0

P (Bt−a ≥ −b)P (Ba ∈ [b, b+ db])

=
2

π
√
a(t− a)

ˆ ∞
0

ˆ ∞
b

e
−x2

2(t−a)dxe
−b2

2a db

The substitution u = x√
t−av = b√

a
in the inside integral reduce this integral to

2

π

ˆ ∞
0

ˆ ∞
√

av√
t−a

e−
u2+v2

2 dudv

This integral can be computed using polar coordinates. Note that the region {0 < b <
∞, b(t − a)1/2 < u < ∞} corresponds to the polar region {arctan(

√
a/(t− a)) < σ <

π/2, 0 < r <∞}. Hence the probability equals

1− 2

π
arctan

√
a

t− a

Here we have proved the important lemma, then we will use it to prove Theorem 2.2.

Proof of theorem 2.2: Note that for x ∈ [0, 1], L ≤ x means that from time x to time
1, the Brownian motion does not reach 0, which implies that E1 = {∃s ∈ [x, 1], Bs = 0}
does not realize. Hence by the last lemma,

P (L ≤ x) = 1− P (E1) = 1− (1− 2

π
arctan

√
x

1− x
) =

2

π
arctan

√
x

1− x

Then, it suffices to show that

2

π
arctan

√
x

1− x
=

2

π
arcsin(

√
x)

In fact, let f(x) = 2
π

arctan
√

x
1−x−

2
π

arcsin(
√
x), then it is easy to compute that f ′(x) = 0

for all x ∈ [0, 1]. And f(0) = 0, hence we get that f(x) ≡ 0 on the interval [0,1), which
implies that

P (L ≤ x) =
2

π
arcsin(

√
x) ∀x ∈ [0, 1]

Here we finish the proof!

Theorem 2.4. Let T = the point t ∈ [0, 1], where Bt = sup{Bs, s ∈ [0, 1]} = S1, the
time when brownian motion achieves its maximum. Then T is arcsine distributed, i.e

P (T ≤ x) =
2

π
arcsin(

√
x) ∀x ∈ [0, 1]
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Proof : For any t ∈ [0, 1], let Xr = Bt−r − Bt, Ys = Bt+s − Bt, then (Xr, 0 ≤ r ≤ t) is a
Brownian motion starting from zero and is Ft measurable, and (Ys, 0 ≤ s ≤ 1− t) is also
a Brownian motion starting from zero and is independent of Ft, with this setup, we have

P (T ≤ t) = P (max
[0,t]

Bu > max
[t,1]

Bu)

= P (max
[0,t]

(Bu −Bt) > max
[t,1]

(Bu −Bt))

= P (max
[t,1]

(Bt−r −Bt) > max
[0,1−t]

(Bt+s −Bt))

= P (max
[t,1]

Xr > max
[0,1−t]

Ys)

= P (|Xt| > |Y1t)

= P (
√
t|N1| >

√
1− t|N2|)

= P (
|N2|√
N2

1 +N2
2

< t)

Note that if we treat Q = (N1, N2) as a point on the xy plane, then N2√
N2

1 +N2
2

= sinθ, where

θ denotes the angle between OQ and the X axis. What’s more, since N1, N2 ∼ N(0, 1)
are independent, θ is uniformly distributed on [0, 2π), hence the probability equals

P (|sinθ| <
√
t) =

2

π
arcsin(

√
t)

Hence, P (T ≤ x) = 2
π

arcsin(
√
x) ∀x ∈ [0, 1], the theorem is proved.

Note: As we can see, Theorem 2.4 is not valid unless the maximum point is unique on
[0,1]. In fact, we can prove that T is uniquely determined 2, but considering the limitation
of length, we don’t write down here. Any way, it is right and Theorem 2.4 is valid!

Up to here, we have proved the three kinds of arcsine laws. As you can see, apart
from the proof of the first theorem, the other two proofs are quite friendly, which is not
hard to think. But the first one is quite complicated ,where we even apply Feynmann-Kac
Formula, which is a result in stochastic integration! But our main aim is not proving
the laws in mathematical symbols, in the next section, we will simulate the process and
verify the results in this section. Instead of the painful mathematical symbols, we will
use figures to demonstrate the three laws!

3 Simulation

3.1 How to simulate Brownian motion

As we have known, we can treat the Brownian motion as a limit of random walk. Based on
the idea, it is easy to simulate the process on the computer. Choose a small number of ∆t.
We can simulate the Brownian motion by a simple random walk with time increments
∆t, and the space increments

√
∆t. To do this let Y1, Y2, . . . be independent random

variables with

P(Yi = 1) = P(Yi = −1) =
1

2

2Morters, Peter and Peres, Yuval, Brownian Motion, Chapter 2
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Consider the standard Bronian motion, where B0 = 0. For n > 0,

Bn∆t = B(n−1)∆t +
√

∆tYn

In our codes in the appendix, we make the increments normal, which is more usual in
the practice. i.e. If Z1, Z2, . . . are independent standard unit normals,then we have

Bn∆t = B(n−1)∆t +
√

∆tZn

That is our basis idea of this simulation!
There is another thing to mention, in the process of simulation, apart from the basic

idea, the most important thing is that how to find the point which satisfies the the
theorems respectively in the last section. Next, we will explain them respectively.

3.2 Simulation of Theorem 2.1

If you have read the proof in the last section carefully, you will find that Theorem 2.1 is
the hardest to prove, but in the simulation, it is the easiest, I think. Recall that the first
theorem states that the proportion of the time that the Brownian motion spends beyond
zero. So we try to find the points which are bigger than zero. It is easy to achieve on
the computer if we count when the point is Larger that zero, and then we calculate the
proportion. That is the way we get an realization of T+. Fig 1 and 2 show the results,
where the left hand side show the probability density function(pdf) and the right hand
side is cumulative distribution function(cdf). Note the the SLIM LINEs are the real pdf
and cdf.

As the figures illustrated, the histograms fit amazingly well, which indicates that our
first theorem is absolutely right!

Fig 1: pdf Fig 2: cdf

3.3 Simulation of Theorem 2.3

When facing the simulation of this theorem initially, we think that it is easy to simulate.
Because we just have to find the the last zero out. But this is the difference between
theoretical proof and simulation, in the simulation, there is no zero points almost surely
since you just find finite points and the jump is discrete. So we give up finding the zero
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points, and we try to find the the point which is close to zero. Once again, we failed,
because it is hard to decide the ”how close is close”. In mathematical words, we can not
find ε properly. At last, considering the continuity of Brownian motion, we product the
adjacent points, if the outcome is smaller than zero, which implies that the Brownian
motion attains zero between the two points. That is way we find the point satisfies
Theorem 2.3. Fig 3 and 4 show the results!

The same as the last subsection, as the figures illustrated, the histograms fit amaz-
ingly well, which indicates that our second theorem is absolutely right!

Fig 3: pdf Fig 4: cdf

3.4 Simulation of Theorem 2.4

In the last simulation, our aim is to find the maximum point, which is quite easy to
realize on the computer. Hence we show the results directly(Fig 5 and 6).

Once again, without any accidence, the histograms fit both pdf and cdf well. So the
last theorem is quite right!

Fig 5: pdf Fig 6: cdf

Up to now, we believe that nobody is skeptical about the rightness of the three
arcsine laws. Now that the laws are right, we will see an applications of the first acsine
law in stocks in the next section, showing that it is not the toy that the mathematicians
plays.
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4 Application

4.1 The application of the first arc-sine law

We extend the first arc-sine to an asymmetry walk model,and gets its limit behavior.
With the arc-sine law, we compare the Shanghai and Hong Kong stock market from a
view that focus on the proportion of win time to the whole investment period.

4.1.1 Introduction

In the earlier time, the investor just pay attention to the asset price change and only
the price increasing will bring the profit. But whatever we focus on ,the asset profit
or volatility, we have ignored an important problem-the proportion of win time to the
whole investment period. And the investment process is completed by investors, so
the knowledge and psychology circumstance of the investor will decide the investment
behavior and the investment strategy. If a investor lose the money for a long time , it
will have a influence on the opinion about the market surely. In conclusion, its necessary
to analyze the market from the view-the win time in the whole investment period. This
is the reason that we try to compare Shanghai and HongKong stock market from this
point view.

4.1.2 Detailed explanation

Here, we try to use the arc-sine law to observe the securities market. Assume that we
have known the any day purchase index before the stock market closed. Over the next n
days, if the day of the closing index point higher than the purchase index, it means the
investor is in the win time. So, what we consider is the proportion of cumulative win time
to the whole investment time. If this proportion is so lower, the investor will lose money
in a long time. And the investor concerned are not only whether losing money but also
the loss duration. Usually when we mention the loss , we will care about a time point
of view on this issue and ignore overlooking the circumstance of the entire investment
range. Under a long loss time, the psychology and expected situation of the investor will
change. For instance, the most normal person is the risk aversion . As stated in the
prospect theory, when we related to the loss, we prefer to pursue the risk.

4.1.3 Data calculation and simulation

In our practical example, we collect one years data from Shanghai and HongKong stock
market. For the Shanghai stock market, we use the Shanghai composite index(000001)
from 6/23/2014 to 6/12/2015(Fig 7). And for the Hongkong stock market, we use the
Hang Seng index from 06/03/2014 to 06/15/2015(Fig 8).

Assume that there are T days closing index Ii, i = 1. The investor use the closing price
buy the indexation fund on the j-th day and calculate the number(ki) of index higher
than Ii betweenIj+1 and Ij+n−1

Def:Ptj =
Kj

n

Which is the proportion of the positive profit to the whole investment period. Due to
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Fig 7: The stock index(000001)data in Shanghai

Fig 8: The stock index(000001)data in Hong Kong

our collective data , we get (T − n + 1) samples to calculate the proportion of the n-th
day. According to the first arc-sine law, we can get the arc-sine distribution , which can
compare to our realistic data and prove the rationality of our assumption. The table as
followed:

Fig 9: SH and HK stock market the win time proportions probability

4.1.4 The analysis of data result

From the table 1,we can find some facts as followed:
• According to the standard arc-sine distribution, we can get the probability of

over-5% and low-5% are both 0.1436. When the continue investment time of this two
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stock market is about 20 days,we can find that the realistic probability that the win time
proportion is over -5% or low-5% is bigger than the arc-sine probability. On the other
hand, by the chi-square test, we will reject the assumption that two stock market win time
proportion is discrete arc-sine distribution under the sufficient lever 1%, which means that
the random walk hypothesis does not hold in those two stock market. Practical example
shows that the probability of continued loss and earning may be large. Compare with
the fair gamble, its easier to happen the situation. So,if we just choose to get in the stock
market in a short time, we should have a good psychology situation to dace to the long
time loss.And it will have a impact on the later investment strategy.
•When the investment period is long enough, we will find that the probability in the

table is less than before. For the HongKong market, in the case of 250 days or longer, the
probability of the situation that the market happen the longtime loss is so small. This
suggests that the expected value of the day profit is positive for the HongKong market,
which means that the probability of the positive return id bigger than the probability
of the negative return or the rise rate id larger than the decline rate. The phenomenon
is consist with the idea of long-term appreciation, but also reflect the fairness for the
investor.
• For the Shanghai stock market, compared with the HK, the win time proportion

probability is larger than the HK. It shows that it will exist a big probability to appear
a long time loss situation. The shanghai market is not so mature compared with the HK
stock market.

4.1.5 Conclusion

We use the method derived from the arc-sine law to observe the Shanghai and HK stock
market. An we find that the probability of continued loss and earning are quite large in
both stock market during the short-term investment. This shows a greater risk of short-
term investment. With the increase in the investment during the period, the continued
loss probability are getting smaller and smaller. At last, for most of investors, the factors
considered should not just include only the aspect of revenue and earning volatility, but
should also include the duration of the loss or profit.

5 Conclusion

From theoretical proof to visual simulation, then to important application in our real life,
we have demonstrated the three arcsine laws from three different aspects, and we know
that the seemingly useless laws( which are just the toys that the mathematicians play)
play an important role in finance market. Maybe it is one of the reasons that ”boring”
Math exists all the time and a lot of people, like us, go for it!

6 Appendix

The first three following functions are used to find the points we want in the theorem
respectively!

Code 1
function[P ] = Pf1(n)
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B = zeros(n);
P = 0;
B(1) = normrnd(0, 1)/(sqrt(n));
for i = 2 : n
B(i) = B(i− 1) + normrnd(0, 1)/(sqrt(n));
end
for j = 1 : n
if B(j) > 0
P = P + 1;
else
P = P ;
end
end
P = P/n;
end

Code 2
function[P ] = Pf2(n)
B = zeros(n);
P = 0;
B(1) = normrnd(0, 1)/(sqrt(n));
for i = 2 : n
B(i) = B(i− 1) + normrnd(0, 1)/(sqrt(n));
end
for j = n : −1 : 2
if B(j) ∗B(j − 1) <= 0;
break;
end
end
P = j/n;
end

Code 3
function[P ] = Pf3(n)
B = zeros(n, 1);
P = 0;
B(1) = normrnd(0, 1)/(sqrt(n));
for i = 2 : n
B(i) = B(i− 1) + normrnd(0, 1)/(sqrt(n));
end
P = find(B == max(B));
P = P/n;
end

The last two functions are used to get pdf and cdf.

Code 4
function[ ] = pdff(m,n)
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P = zeros(m, 1);
for i = 1 : m
P (i) = Pf3(n);
end
[e, f ] = hist(P );
bar(f, 10 ∗ e/sum(e))
hold on;
x = linspace(0, 1, 100);
y = 1./(pi. ∗ (x. ∗ (1− x)).(1/2));
plot(x, y,′−r′,′ LineWidth′, 3)
end

Code 5
function[ ] = cdff(m,n)
P = zeros(m, 1);
for i = 1 : m
P (i) = Pf2(n);
end
[cumP, f ] = hist(P, 20);
cumP = cumsum(cumP./m);
axis([0 1 0 1])
bar(f, cumP )
hold on;
x = linspace(0, 1, 100);
y = (2/pi). ∗ asin(x.(1/2));
axis([0 1 0 1])
plot(x, y,′−r′,′ LineWidth′, 3)
end
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