Table 3. A summary of published information on relations between relative fecundity ($f f$) and matermal age or size in exploited populations of north temperate and arctic marine fishes

						predictor		f^{\prime}		staticicat test						predicted	f^{\prime}		
Boops boops	arrowlooth flounderbogue	Atlantic coast, Portugal	4	1987-1989	TL	mm	145-365	eggs/g TM	400-1458	regression	$f^{\prime}=-0.041 \cdot \mathrm{TL}^{2}+20.966 \cdot \mathrm{TL}-1557.391$	0.75	0.57	0.5575	<0.001	621-1123	1.81	2 (table 1)	our regression
			"	"	Age	years	1-10		"	"	$f^{\prime}=-17.180 \cdot \mathrm{Age}^{2}+180.59 \cdot$ Age +633.856	0.57	0.33	0.3175	<0.001	797-1107	1.39	"	,
Clupea harengus	Atlantic herring	Baltic Sea (ICES 29)	13	1988, 1991	tL	mm		eggsg TM		correlation	f was not correlated with TL			78				3 (textp. 70)	n : sum of all shoals and years
		Iceland (summer)	15	1999, 2000	tL	cm	25-39	egges/g SM	200-880	regression	$f=590.3-e^{1199-0.2995}$-TL		0.57	451	<0.001	116-571	4.94	4 (figure 10)	
Coryphaena hippurusCynoscion nebulosus	common dolphinfishspoted weakish	Western Mediterranean	4	1990, 1991	FL	mm	65-117	eggs/g SM	71-1977	regression	$f=-0.364 \cdot \mathrm{FL}+154.109$	0.21	0.04	-0.0414	0.470	130-111	0.85	5 (table 2)	batch fecundity, our regression
		Atlantic coast, South Carolina	6	1998-2000	TL	mm	272-530	eggs/g SM	205-1372	regression	$f^{\prime}=0.944 \cdot \mathrm{TL}+239.343$	0.26	0.07	0.06113	0.006	496-740	1.49	6 (figure 5)	our regression
Dexistes rikuzenius	Rikuzen flounder	Pacific coast, Japan	10	2000, 2001	Age	years	1-8	oocytes/g SM	843-2009	regression	$f=-31.355 \cdot \mathrm{Age}^{2}+317.203 \cdot \mathrm{Age}+820.381$	0.53	0.28	0.2441	0.002	1106-1622	1.47	7 (figure 7)	our regression
Engraulis encrasicolus Gadus morhua	European anchovy Atlantic cod	Southwestern Adriatic Sea Atlantic coast, Scotland	4	1993	tL	mm	119-171	eggs/g SM	271-584	regression	$f=-0.213 \cdot \mathrm{TL}+466.220$	0.05	<0.01	-0.0172	0.705	441-430	0.97	8 (table 4)	batch fecundity; our regression
			21	1969, 1970	Age	years	3-8	oocytes/g predicted SM		regression	$f^{\prime}=652.6 \cdot \mathrm{Agc}{ }^{0.005}$		<0.01	69	0.969	656-659	1.00	9 (table 3)	
			"	2002,2003	"	"	2-6	"	265-1226	"	$f^{\prime}=29.8 \cdot \mathrm{Agc}^{0.613}$		0.29	50	<0.001	582-1062	1.82	${ }^{\prime}$	
		Baltic Sea (ICES 25)	26	1987	TL	cm	32-104	eggs/g TM		residual regression	TL did not explain residual variation in the fecundity-total mass relation			64	>0.400			10 (table 2, text p. 1911)	
			"	1988	"	"	27-76	"		"	"			115	>0.700			"	
			"	1989	"		37-62				"			65	>0.300			"	
			"	1990	"	"	35-68	"		"	"			104	>0.800			"	
			"	1991			38-87	"		"	"			77	>0.200			"	
			"	1992	"	"	41-98	"		"	"			43	>0.800			"	
				1996	"		36-84	"		"	"			91	>0.800			"	
			"	1998	"	"	35-91	"		"	"			40	>0.500			"	
			"	1999	"	"	26-126	"		"	"			65	>0.400			"	
			20	2000 1095	TL	cm	28-108	TM		ession	$f=48 . \mathrm{TL}+912$			94	>0.800			11 (figue 7 table 5)	
		Iceland	$\stackrel{20}{10}$	1995	$\stackrel{\text { TL }}{ }$	${ }_{\text {cm }}$	$67-125$ $57-133$	eggs/g TM	199-1192	regression	$f=4.8 \cdot \mathrm{TL}+91.2$ $f=4.6 \cdot \mathrm{TL}+184.7$		0.20 0.23		<0.001 <0.001	$413-691$ $447-796$	1.67	11 (figure 7, table 5)	
			"	1996	"	"	57-133 $66-128$	"	$342-1325$ $50-1241$	"	$f=4.6 \cdot \mathrm{TL}+184.7$ $\mathrm{f}=5.5 \cdot \mathrm{TL}-8.4$		$\begin{aligned} & 0.23 \\ & 0.14 \end{aligned}$		< <0.001	447-796 $354-696$	1.78 1.96	"	
			${ }^{\prime}$	1998	"	"	59-129	"	50-1117	"	$f=8.3 \cdot$ TL- 200.2		0.38		<0.001	289-870	3.01	"	
			"	1999	"	"	59-133	"	300-1233	"	$f=4.5 \cdot \mathrm{TL}+258.6$		0.19		<0.001	$524-857$	1.63	"	
			"	2000	"		62-131	"	182-1167	"	$f^{\prime}=5.1 \cdot \mathrm{TL}+168.6$		0.21		<0.001	485-834	1.73	"	
		Northeastern Arctic	22	1986	тL	cm	55-135	eggsg TM	226-688	regression	$f=1.685 \cdot \mathrm{TL}+271.577$	0.31	0.09	0.0748	0.035	364499	1.37	12 (figure 3), 13 (textp. 310)	our regression
				1988			50-122		220-715		$f=3.026 \cdot \mathrm{TL}+139.437$	0.56	0.31	0.2945	0.001	291-509	1.75		
			"	1989	"	"	50-126	"	216-787	"	$f=1.668 \cdot \mathrm{TL}+303.492$	0.35	0.12	0.11105	<0.001	387-514	1.33	"	"
			${ }_{2}^{22}$	1987	${ }_{\text {TL }}$	${ }_{\square}^{\text {cm }}$	$50-86$ $50-127$	eggs/g TM		correlation	f was not correlated with TL			${ }_{8}^{23}$	>0.500			13 (textp. 311)	
		North Sea (inshore)	21	${ }_{\text {1969, } 1970}$	Age	years	${ }_{3-5}{ }^{50-127}$	oocytes/g predicted SM		regression	$f^{\prime}=561.2 \cdot \mathrm{Age}^{0.097}$		<0.01		$\begin{gathered} >0.500 \\ 0.752 \end{gathered}$	624656	1.05		
			"	2002, 2003			2-8		269-1400		$f^{\prime}=357.8 \cdot \mathrm{Age}^{0.607}$		0.20	109	<0.001	545-1264	2.32	"	
		North Sea (offshore)	"	"	"	"	2-6	"	211-1182	"	$f^{\prime}=138.8 \cdot \mathrm{Age}^{1.075}$		0.50	47	<0.001	292-953	3.26	"	
Glyptocephalus cynoglossus	witch flounder	Northwestern Atlantic (NAFO 3L)	18	1974-1977	тL	cm	44-63	eggs/g TM	128-663	regression	$f^{\prime}=61.663 \cdot \mathrm{TL}^{0.095}$	0.08	0.01	-0.0163	0.558	285-330	1.16	14 (figure 2, 5, 8)	our regression
			"	"	Age	years	11-23	"	"	"	$f^{\prime}=-8.306 \cdot \mathrm{Age}+463.335$	0.16	0.03	0.0163	0.205	372-273	0.73	"	"
			18	1993-1998	TL	cm	35-61	eggs/g TM	111-740	regression	f was independent of TL			41				14 (textp. 1763)	
			18	1993-1998	TL	cm	35-61		119-828					177					
		Northwestern Atlantic (NAFO 3NO)	18	1974-1977	TL	cm	42-65	eggsg TM	137-671	regression	$f^{\prime}=0.921 \cdot \mathrm{TL}^{\text {.506 }}$	0.37	0.14	0.13103	<0.001	256-495	1.93	14 (figure 2, 5, 8)	our regression
			"	"	Age	years	10-26	"	"	"	$f=5.094 \cdot \mathrm{Age}+272.133$	0.11	0.01	0.00103	0.250	323-405	1.25	"	"
		Northwestern Atlantic (NAFO 3Ps)	18	1974-1977	TL	cm	39-59	"	116-530	"	$f=0.232 \cdot \mathrm{TL}^{1.441}$	0.48	0.23	0.22107	<0.001	198-422	2.14	"	"
			"	"	Age	years	8-22	"	${ }^{\prime}$	"	$f^{\prime}=50.385 \cdot \mathrm{Age}^{0.644}$	0.39	0.15	0.14107	<0.001	192-369	1.92	${ }^{\prime}$	*
			18	1993-1998	TL	cm	30-58	eggsg TM	93-852	regression	f was independent of TL			131				15 (textp. 1763)	
Hippoglossoides platessoides	American plaice	Atlantic coast, Scotland	19	1954	TL	cm	15-31	eggs/g SM	797-1807	regression	$f=4.759 \cdot \mathrm{TL}+1146.464$	0.07	0.01	0.00117	0.464	1218-1294	1.06	16 (table 30)	our regression
					Age	years	2-5				$f=12.514 \cdot \mathrm{Age}+1209.854$	0.05	<0.01	-0.10 116	0.594	1235-1272	1.03		
		Northwestern Atlantic (NAFO 3LNO)	19	1993-1998	TL	cm	24.67	eggsg TM	117-1077	regression	f was independent of TL			606				15 (table 1, text pp 1763, 1766)	
		Northwestern Atlantic (NAFO 3Ps)	"	"	"	"	26-72	"	78-1071	"	"			358				"	
Hoplostethus atanticus		Northeastern Atantic	100	2002	SL	mm	362-528	eggsg TM	10-65	regression	$f=0.074 \cdot$ SL -2.100	0.23	0.05	0.0461	0.075	25-37	1.50	17 (figure 2, 3)	our regression
Limanda ferruginea	yellowtail flounder	Northwestern Atlantic (NAFO 3LNO)	8	1993-1998	тL	cm	30-54	eggs/g TM	182-7263	regression	f was independent of TL			444				15 (table 1, text pp 1763, 1766)	
		Northwestern Atlantic (NAFO 3Ps)	"	"	"	"	30-50	$"$	340-8349	"	"			102				"	
Malostus villosus	capelin	Barents Sea	,	1997	TL	mm	111-162	eggs/g SM	49-115	regression	$f^{\prime}=0.709 \cdot$ TL- 25.136	0.58	0.33	0.3264	<0.001	54-90	1.67	18 (figure 2, 3)	our regression
Melanogrammus aeglefinus	haddock	Atlantic coast, Scotland	14	1986, 1987	Age	years	2-6	eggsg TM			f increased with age and then plateaued			447		278-493	1.77	19 (figure 5)	predicted range and ratio are from age-2 vs age-3+ mean
		North Sea	14	1976	TL	cm	30-47	eggs/g SM	223-701	regression	$f=-2.557 \cdot \mathrm{TL}^{2}+198.065 \cdot \mathrm{TL}-3306.375$	0.44	0.20	0.1767	0.001	334-529	1.58	20 (appendix table 1,2)	our regression
			"	1977	"	"	22-44	"	208-635	"	$f=3.164 \cdot \mathrm{TL}+365.821$	0.17	0.03	0.0141	0.273	435-505	1.16	"	"
			"	1978	"	"	26-45	"	210-802	"	$f=-1.404 \cdot \mathrm{TL}^{2}+106.903 \cdot \mathrm{TL}-1458.936$	0.35	0.12	0.11119	0.001	371-576	1.55	"	"
			"	1976	Age	years	2-5	"	223-701	"	$f=-66.355 \cdot \mathrm{Age}^{2}+504.795 \cdot$ Age - 417.589	0.40	0.16	0.1367	0.004	327-550	1.68	"	"
			"	1977	"	"	${ }^{2-6}$	"	208-635	"	$f=0.600 \cdot$ Age +464.376	0.01	<0.01	-0.03 41	0.977	466-468	1.00	"	"
				1978			2-8		210-802		$f^{\prime}=-24.001 \cdot \mathrm{Age}^{2}+215.346 \cdot$ Age - 70.830	0.32	0.10	0.09119	0.002	264406	1.54		

scientific name	common name	population	RLS	year(s)	predictor			${ }^{\prime}$		statistical test	result	r	r^{2}	$r_{\text {a }}{ }^{2} n$	P	predicted f^{\prime} range	$\begin{gathered} f^{\prime} \\ \text { ratio s } \end{gathered}$	source	notes
					variable	unit	range	unit	range										
Melanogrammus aeglefinus	haddock	Northwestern Atlantic (Grand Bank)	13	1957	TL	cm	38-64	eggs/g SM	145-1468	regression	$f^{\prime}=0.403 \cdot \mathrm{TL}^{\text {L, } 910}$	0.49	0.24	0.2392	<0.001	419-1135	2.71	21 (figure 2, 3)	our regression
			"	1958	"	"	39-53	${ }^{\prime}$	262-1116	"	$f=0.123 \cdot \mathrm{TL}^{2} 234$	0.46	0.22	0.1822	0.029	441-875	1.98	"	"
			"	1960	"	"	36-54	"	109-1193	"	$f^{\prime}=0.016 \cdot \mathrm{TL}{ }^{2} 782$	0.60	0.37	0.3552	<0.001	342-1056	3.09	"	"
Pleuronectes platessa	European plaice	Atlantic coast, Scotland	27	1956	TL	mm	305-566	eggsg TM	178-400	regression	$f=0.133 \cdot$ TL +203.872	0.17	0.03	0.0031	0.350	$244-279$	1.14	22 (appendix)	our regression
			"	1957	"		327-438		136-402		$f=0.537 \cdot \mathrm{TL}+60.338$	0.24	0.06	0.0331	0.188	236-295	1.25		
			"	1956	Age	years	4-10	$"$	178-400	"	$f=1.910 \cdot \mathrm{Age}+248.024$	0.07	0.01	-0.04 24	0.748	256-267	1.04	"	
			"	1957			3-10	"	$136-402$	"	$f^{\prime}=-6.688 \cdot \mathrm{Agc}^{2}+82.502 \cdot$ Age - 23.767	0.38	0.14	0.0831	0.117	163-230	1.41	"	"
		Celtic Sea (Bristol Channel)	25	1990	TL	mm	244-413	eggs/ SM	168-439	regression	$f^{\prime}=0.082 \cdot \mathrm{TL}+271.22$	0.04	<0.01	-0.0425	0.836	291-305	1.05	23 (table 1)	our regression
				1990	Age	years	2-7				$f^{\prime}=15.685 \cdot \mathrm{Age}+239.891$	0.20	0.04	0.0025	0.328	271-350	1.29		
		Celtic Sea (Irish coast)	"	1991	${ }^{\text {TL }}$	mm	285-455	"	136-457	"	$f^{\prime}=0.958 \cdot \mathrm{TL}-91.778$	0.66	0.44	0.4123	0.001	181-344	1.90	"	
				"	Age	years	3-8	"		"	$f^{\prime}=47.009 \cdot \mathrm{Age}+8.494$	0.69	0.47	0.4523		149-385	2.57	"	
		Irish Sea (Cumbrian coast)	25	1995	SM	g		cggs/g TM		regression	$f=0.059 \cdot \mathrm{SM}+230.40$		0.03	0.0295				24 (table 6)	
		Irish Sea (Liverpool Bay)	"	"	"	"		"	"	"	$f=0.203 \cdot$ SM +170.09		0.31	0.2942				"	
		Irish Sea, west		"	"	"		"	"	"	$f=0.197 \cdot \mathrm{SM}+112.54$		0.37	0.3646				"	
		Irish Sea (Cardigan Bay)	"	"	"	"		"	"	"	$f=0.059 \cdot \mathrm{SM}+181.73$		0.15	0.1343					
		North Sea	${ }_{1}^{25}$	1982	${ }_{\text {TL }}$	mm	284.613 259	eggsg SM	${ }^{121-381}$	regression	$f^{\prime}=0.059 \cdot \mathrm{TL}+218.916$	0.07	<0.01	-0.01 102	0.507	236-255	1.08	25 (appendix)	our regression
			"	1983			259-649	"	115-390	"	$f^{\prime}=0.100 \cdot \mathrm{TL}+184.622$	0.13	0.02	0.01153	0.103	210-249	1.18	"	"
			"	1984	"	"	260-588	"	$90-340$	"	$f=0.169 \cdot \mathrm{TL}+145.148$	0.24	0.06	0.05129	0.007	189-244	1.29	"	
				1985			286-547	"	80-353	"	$f=0.198 \cdot \mathrm{TL}+133.974$	0.22	0.05	0.04104	0.026	191-242	1.27	"	
			"	1982	Age	years	3-19	"	121-381	"	$f=0.247 \cdot \mathrm{Age}+244.898$	0.02	<0.01	-0.01 102	0.884	246-250	1.02	"	"
				1983			3-18	"	115-390	"	$f=1.822 \cdot$ Age +213.677	0.12	0.02	0.01153	0.133	219-246	1.12	"	
			"	1984	"	"	3-18	"	90-340	"	$f=1.575 \cdot \mathrm{Age}+205.164$	0.09	0.01	0.00127	0.316	210-233	1.11	"	
			"	1985	"	"	3-16	"	$80-353$	"	$f=2.556 \cdot \mathrm{Age}+196.59$	0.13	0.02	0.01104	0.181	204237	1.16	"'	"
Reinhardtius hippoglossoides	Greenland halibut	North Atantic (ICES XIVb)	13	1997	TL	cm	63-110	eggs/g SM	6-21	regression	$f^{\prime}=0.098 \cdot$ TL +5.980	0.32	0.11	0.10100	0.001	12-18	1.38	26 (figure 3, 5)	our regression
Salmo salar	Atantic salmon	Barents Sea (River Teno)	8	1994-1998	TL	cm		eggs $/ \mathrm{kg} \mathrm{TM}$		regression	$\log \left(f^{\prime}\right)=-0.358 \cdot \log (\mathrm{TL})+9.143$		0.03	0.0046	0.298			27 (table 2)	
Sardina pilchardus	European pilchard	Aegean Sea	6	2000-2001	SM	g	10-26	eggsg TM		intercept test	The intercept of the f^{\prime}-SM relation was not significantly different from 0				>0.050			28 (textp. 21)	batch fecundity
		Ionian Sea	"	"	"	"	7-24	"		"					"			"	"
Scomber japonicus	chub mackerel	Izu Islands, Japan	11	1993	FL	mm	329-393	eggs/ SM	32-250	regression	$f^{\prime}=-0.293 \cdot \mathrm{FL}+266.545$	0.09	0.01	-0.0814	0.774	170-151	0.89	29 (table 4)	batch fecundity; our regression
		Pacific coast, California	12	1985	FL	mm	300-340	eggs/g SM	53-315	regression	$f=0.130 \cdot \mathrm{FL}+129.349$	0.02	<0.01	-0.0913	0.935	168-173	1.03	30 (table 7)	batch fecundity; our regression
Sebastes melanops	black rockish	Pacific coast, Oregon	23	1995-1998	Age	years	6-16	cegss/ SM	170-315	parallel lines multiple linear regression	$f^{\prime}=357.7+17.5 \cdot$ Age - 106.5 - stage		0.27	166	<0.001	371-552	1.49	31 (figure 9)	stage refers to prefertilization and fertlized eggs; f^{\prime} was estimated from the latter
Solea solea	common sole	English Channel (ICES VIId)	25	1991	TL	mm	260-440	eggs/g SM	129-1416	regression	$f^{\prime}=1.994 \cdot \mathrm{TL}+75.445$	0.36	0.13	0.1149	0.011	594-953	1.60	32 (appendix 1)	our regression
			"	"	Age	years	2-19	"	"	"	$f^{\prime}=172.716 \cdot \operatorname{Ln}(\mathrm{Age})+478.564$	0.35	0.12	0.1049	0.014	598-987	1.65	"	"
		English Channel (ICES VIIe)	"	"	TL	mm	312-500	"	372-884	"	$f=0.026 \cdot \mathrm{TL}+585.369$	0.01	<0.01	-0.0333	0.957	593-598	1.01	"	
		Irish Sea (ICES VIIa)	"	"		"	282-411	"	465-1169	"	$f=1.269 \cdot \mathrm{TL}+412.603$	0.23	0.05	0.0229	0.221	770-934	1.21	"	
			"	"	Age	years	3-10	"	"	"	$f^{\prime}=23.442 \cdot \mathrm{Age}+682.411$	0.17	0.03	0.0029	0.390	753-917	1.22	"	
		North Sea (ICES IVb east)	"	"	TL	mm	258-481	"	666-1422	"	$f=0.819 \cdot$ TL +702.787	0.26	0.06	0.0440	0.112	914-1097	1.20		
			"	"	Age	years	3-12	"	"	"	$f^{\prime}=11.857 \cdot \mathrm{Age}+931.175$	0.17	0.03	0.0040	0.291	967-1073	1.11	"	"
		North Sea (ICES IVb west)	"	"	tL	mm	241-456	"	371-1005	"	$f^{\prime}=1.650 \cdot \mathrm{TL}+64.039$	0.53	0.28	0.2645	<0.001	462-816	1.77		
			"	"	Age	years	3-19	"	"	"	$f=351.185 \cdot \mathrm{Age}^{0.285}$	0.54	0.29	0.2845	<0.001	480-813	1.69	"	"
		North Sea (ICES IVc)	"	"	TL	mm	248-456	"	651-1504	"	$f=0.849 \cdot \mathrm{TL}+707.530$	0.24	0.06	0.0455	0.074	918-1095	1.19	"	"
			"	"	Age	years	3-15	"		"	$f=9.469 \cdot \mathrm{Age}+951.822$	0.10	0.01	-0.0155	0.456	980-1094	1.12		
		Northeastern Atlantic, Bay of Biscay (ICES VIIIa)	"	"	тL	mm	287-471	"	365-918	"	$f^{\prime}=0.978 \cdot \mathrm{TL}+253.557$	0.37	0.14	0.1139	0.020	534-714	1.34	"	"
			"	"	Age	years	3-19	"	"	"	$f^{\prime}=23.442 \cdot \mathrm{Age}+682.411$	0.17	0.03	-0.0139	0.390	753-1128	1.50		
		Northeastern Atlantic, Portugese coast (ICES IXa)	"	"	TL	mm	290-475	$"$	349-776	"	$f^{\prime}=0.937 \cdot \mathrm{TL}+183.474$	0.37	0.14	0.1133	0.034	455-628	1.38	"	"
Spondyliosoma cantharus	black seabream	Adriatic Sea	10	1994	тL	cm	19-34	eggs/g SM	454-1155	regression	$f=25.665 \cdot \mathrm{TL}+38.377$	0.71	0.50	0.4959	<0.001	526-911	1.73	33 (table 1)	our regression
					Age	years	2-7				$f^{\prime}=385.697 \cdot \operatorname{Ln}(\mathrm{Age})+173.566$	0.65	0.42	0.4159	<0.001	441-924	2.10		
Tanakius kitaharai	willowy flounder	Pacific coast, Japan	7	2003, 2004	Age	years	2-8	oocytes/g TM		ANOVA	f ' increased and then decreased with age			58	<0.050	1022-1245	1.22	34 (figure 5)	predicted range and ratio based on age class means
Theragra chalcogramma	Alaska pollock	Strait of Georgia, British Columbia	15	1980, 1981	FL	cm	32-67	oocytes/g TM	530-830		f decreased with FL							35 (text. 340)	
Trachurus symmetricus	Pacific jack mackerel	Pacific coast, California	27	1991	FL	mm	382-540	eggs/g SM	47-172	regression	$f=0.120 \cdot \mathrm{FL}+59.735$	0.13	0.02	-0.0133	0.463	106-124	1.18	36 (table 4)	our regression

1. Zimmermann, M. 1997 Maturity and fecundity of arrowtooth flounder, Atheresthes stomiass, from the Gulf of Alaska. Fish. Bull. 95, 598-611.
2. Gordo, L. S. 1996 On the fecundity of the bogue, Boops boops (L, 1788), from the Portuguese coast. J. Appl. Ichthyol. .12, 27-30.

Gordo, L. S. 1996 On the fecundity of the bogue, Boops boops (L. 1758), from the Portuguses coast. J. Appl. Ichthyol. 12, 27-30.
Laine, P. \& Rajasita, M. 1998 Changes in the reproductive properties of Baltic herring females during the spawning season. Fish. Res. 36, 67-73.
4. Oskarsson, G. J. \& Taggart, C. T. 2006 Fecundity variation in Icellandic summer-spawning herring and implications for reproductive potential. ICES J. Mar. Sci. $63,493-503$. (doi: 10.1016 j .icesjima.2005.10.002)

6. Roumillat, W. A. \& Brouwer, M. C. 2004 Reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina. Fish. Bull. 102, 473-487.

Narimatsu, Y., Kitagawa, D. \& Hatori, T. 2005 Reproductive biology of female Rikuzen sole (Dexistes rikuzeniuss). Fishh. Bull. 103, 635-647.
C. Casavola, N, Marano, G. \& Rizzi, E. 1996 Batch fecundity of Engraulis encrasaicolus L Lin the south-western Adriatic sea. Sci. Mar. 60.369 -377.
9. Yoneda, M. \& Wright, P. J. 2004 Temporal and spatial variation in reproductive investment of Atlantic cod Gadus morhua in the northern North Sea and Scottish west coast. Mar. Ecol. Prog. Ser. 276, $237-248$
10. Kraus, G., Tomkiewicz, J. \& Koster, F. W. 2002 Egg production in Baltic cod (Gadus morhua) in relation to variable sex ratio, maturity, and fecundity. Can. J. Fish. Aquat. Sci. 59, 1908-1920. (doi: 10.1139F02-159)
11. Marteinsdotir, G. \& Begg, G. A. 2002 Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar. Ecol. Prog, Ser. $235,235-256$
12. Marshall, C. T., Kjesbu, O. S., Yaragina, N. A., Solemdal, P. \& Ulltang, O. 1998 Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? Can. J. Fish. Aquat. Sci. 55 . $1766-1783$,
13. Kjesbu, O. S., Witthames, P. R., Solemdal, P. \& Greer Walker, M. 1998 Temporal variations in the fecundity of Arcto-Norwegian cod (Gadus morhua) inresponse to natural changes in food and temperature. J. Sea Res. 40, 303 - 221

16. Bagenal, T. B. 1957 The breeding and fecundity of the long rough dab Hippoglossoides platessoides (Fabr.) and the associated cycle in condition. J. Mar. Biol. Ass. U.K. 36, 339-375.
17. Minto, \& Nolan, C. P. 2006 Fecundity and maturity of orange roughy (Hoplostelthus attanticus Collett 1889) on the Porcupine Bank, Northeast Atlantic. Environ. Biol. Fish. 77, 39-50. (doi: 10.1007/s10641-006-9053-0)
18. Huse, G. \& Gjosaeter, H. 1997 Fecundity of the Barents Sea capelin (Mallotus villosus). Mar. Biol. 130 , $309-313$.
19. Hislop, J. R. G. 1988 The influence of maternal length and age on the size and weight of the eggs and the relative fecundity of the haddock, Melanogrammus aeglefinuss, in British waters. J. Fish. Biol. 32, 923 -930.
20. Hislop, J. R. G. \& Shanks, A. M. 1981 Recent investigations on the reproductive biology of the haddock, Melanogrammus aeglefinus, of the northern North Sea and the effects on fecundity of infection with the copepod parasite Lernaeocera branchialis .J. Cons. Int Explor. Mer. $39,244-251$.
21. Hodder, V. M. 1963 Fecundity of Grand Bank haddock. J. Fish. Res. Board. Can. 20, 1465-1487.
22. Bagenal, T. B. 1958 The fecundity of Clyde Place. J. Mar. Biol. Ass. U.K. 37, 309-313.
23. Horwood, J. W. 1993 Fecundity and biomass of plaice (Pleuronectes platessa L) in the northern Celtic Sea. ICES J. Mar. Sci. 50, 315-323.
4. Nash, R. D. M.. Withames, P. R.. Pawson, M. \& Alesworth, E. 2000 Regional variability in the dynamics of reproduction and growth of trish Sea plaice, Pleuronectes platessa L. J. Sea Res. 44, 55-64. 25. Rijnsdopp, A. D. 1991 Changes in fecundity of North Sea plaice (Pleuronectes platessa L.) between three periods since 1900. ICES J. Mar. Sci. 48, 253 -280.
26. Gundersen, A. C., Ronneberg, J. E. \& Boje, J. 2001 Fecundity of Greenland halibut (Reieihar rtius shippoglossoides Walbaum) in East Greenland waters. Fish. Res. $51,229-236$.
27. Heinima, S. \& Heinimaa, P. 2004 Effect of the female size on egg quality and fecundity of the wild Atlantic salmon in the sub-arctic River Teno. Boreal Environ Res 9,55 . 6 .

30. Dickerson, T. L., Macewicz, B. J. \& Hunter, J. R. 1992 Spawning frequency and batch fecundity of chub mackerel, Scomber japonicus, during 1985. Cal Coop. Ocean. Fish. Invest. Rep . 33, $130-140$.
31. Bobko, S. J. \& Berkeley, S. A. . 2004 Maturity, ovarian cycle, fecundity and age-specific parturtion of black rockfish (Sebastes melanops). Fish. Bull. 102,418 -429.
32. Witthames, P. R., Walker, M. G., Dinis, M. T. \& Whiting, C. L. 1995 The geographical variation in the potential annual fecundity of Dover sole Solea solea (L) from European shelf waters during 199

