SURVEY OF MOLLUSKS IN SOUTHERN SARASOTA SAY, FLORIDA, EMPHASIZING EDIBLE SPECIES BY
 Ernest D. Estevez and
 Davi d A. Bruzek
 Mbte Marine Laboratory
 1600 City Island Park
 Sarasota, Florida 33577

J une 3, 1986

Techni cal Report Number 102

Suggested reference Estevez ED, Bruzek DA. 1986. Survey of Mbllusks in southern Sarasota Bay, Florida, emphasizing edible species. City of Sarasota. Mbte Marine Laboratory Technical Report no 102. 97 p. Available from Mbe Marine Laboratory Li brary.

In April of 1986 the Mbte Marine Laboratory was asked by the City of Sarasota to performan inventory of shellfish resources of Sarasota Bay between the Manatee County Line and the Ringling Causenay. The survey was to be a rapid and qualitative napping of nolluscan shellfish only, because crustaceans counted anong edible shelfish (shrimps and crabs) are seasonally abundant and highly nobile, characteristics not anenable to rapid survey techni ques.

This report is organized into seven parts. Part l describes the bay, defines traditional shellfish, reports historical shellfish landings, and identifies potentially edible species. Part ll summarizes the existing Iiterature pertinent to shelfish and the bay. Part lll presents and discusses the results of the survey, and considers all nollusks, al I potentially edibe ones, and the very common hard shell clam Part IVis a summary. Part Vis an annotated bi blography of the references summarized in Part II. The annotations include maps and tables which appeared in the original literature. The final parts contain figures, tables, and listings of all original data.

We believe such surveys are infornative and necessary steps in the devel opment of sound resource managenent prograns and look forward to the time when Sarasota Bay's living resources are known nore compl etely and their stat us moni tored on a regul ar, neani ngf ul basis.

Table of Contents

Page
Title Page
Pref ace i
Contents ii
List of Figures iii
List of Tables iv
Part I: Introduction 1
Part II: Literature Revi ew 5
Part III: Sarasota Bay Shellfish Survey 8
Part IV: Summary 16
Part V: Annotated Bi bliography 18
Part VI: Figures and Tabl es 57
Part VII: Appendi x

LIST OF FIGURES

Page

1. Location of Sarasota Bay and the Study Area.
2. Sarasota Bay and Prominent Landmarks.
3. Sarasota County Marine Landi ngs, 1953 to 1981.
4. Location of Shel Ifish Survey Stations.
5. Managenent Areas of Sarasota Bay.
6. Overall Pattern of Species Richness.
7. Distribution of the Hard $\mathbf{C l a m}$ Mercenaria campechi ensis.
8. Distribution of the Cross-Barred Venus, Chionecancel lata.
9. Distribution of the Sunray Venus, Macrocallista ni nbosa.
10. Di stri bution of the Cockl e, Di nocardi um robustum
11. Distribution of the Eastern Oyster, Crassostreavi rgi ni ca.
12. Stations with Live or Dead Speci mens of Common Edi ble Mbl lusks.
13. Station Net work Used for Tier Anal ysis.
14. I sopl eth Map of Coprostanol Concentration, ng/g DrySedi ment.
Page Number Title71 1. Distribution of 93 Stations by Governnent, Water Quality,and Shellfish Classification.
15. Molusks of Sarasota Bay.3. Mbst Common Mllusk Speci es of Southern Sarasota Bay,Ranked in Decreasi ng Order.
16. Distribution of all Mllusk Species in Southern Sarasota Bay.
17. Frequency Distribution of Potentially Edi ble Mblusks in Southern Sarasota Bay.
18. Distributi on of the Hard $\mathbf{C l}$ am Mercenaria campechi ensi s, in Southern Sarasota Bay.
81 8. Effect of Di stance from Whi taker Bayou, and Coprostanol, on Mercenaria Distribution in Southern Sarasota Bay.

PART I
Introduction

Goal
The goal of this investigation was to inventory existing and potential shellfish areas in southern Sarasota Bay. Objectives incl uded (a) equitable coverage of natural and political sections of the bay; (b) rapid generation of semi-quantitative data amenable to trend anal ysis; (c) eval uation of survey results in rel ation to historical infornation; and (d) recommendations for future study.

Description of the Study Area

Sarasota Bay is a large Iagoon located on the southwest Fl orida coast south of Tampa Bay (Fi gure 1). The bay enters Anna Maria Sound at Cortez to the north and Little Sarasota Bay to the south. The bay is connected to the Gulf of Mexi co by three tidal inlets, Longboat Pass (bet ween Anna Maria Island and Longboat Key); New Pass (between Longboat Key and Lido Key); and Bi g Pass (bet ween Lido Key and Si esta Key). Three streans enter the bay. Bow ees Creek is an urbanized waterway. Whitaker Bayou di scharges stormater and the City of Sarasota's sewage treat ment plant (STP) effluent. Phillippi Creek, another urbani zed watervay, enters the bay near its southern outlet. Other promi nent I andmarks incl ude Stephens Point near the Uni versity of South Fl orida campus, Bi rd Key, City Island, Bi shop Point on Longboat Key, Buttonwood Harbor behi nd the point, and channel narkers of the inl and waterway (Fi gure 2).

Envi ronmental Characteristics

The bay is wide and shallow Its widest part is 3.5 miles across and about half of its 22,000 acre expanse is shallower than $6 \mathbf{f t}$. Seagrasses fringe shorelines and undi sturbed shorelines are veget ated by mangroves. Some shal I ow areas have Iarge accumul ations of drift al gae. Mbst bottom areas are
comprised of unconsol idated quartz sedi ments but patches of oyster shel or other carbonaceous material exist in the bay.

Whter quality generally is good, but conditions uorsen near shore, especi ally al ong the eastern side of the bay. Salinities are usually hi gher than 30 o/ 00, and variation is not great. For this reason the bay should be consi dered a I agoon rather than an estuary. Surface-to-bottom differences in temper at ure, sal inity, and di ssol ved oxygen are minimel except near the nout hs of tributaries.

Circulation in the bay is dominated by tides and wind. A line connecting Bi shop Point to Bow ees Creek is considered to be the node or null zone bet ween influences from Longboat Pass to the north and New and Big Passes to the south. The southern bay currents are domi nated by Bi g Pass, perhaps due to the presence of a large flood-tidal delta just east of New Pass.

Common Shellfish of Fl orida
According to annual narine landing reports issued by the Florida Departnent of Natural Resources, shellfish have been defined in a broad sense to incl ude certain sponges, nol lusks, crustaceans, and turtles. Mlluscan shel Ifish traditional y landed in Fl orida incl ude conch (Stronbus gi gas), hard cl ans (Mercenaria mercenaria and M campechiensis), sunrays (Macrocallista ni nbosa), scallops (Pecten irradians and P. gibbons), oysters (Crassostrea virginica) and squid (Doryteuthis plei, Lolliguncula brevis, and Loligo peal ei).

Common Shellfish of Sarasota Bay

Crustacean shellfish known to occur in the bay incl ude bl ue crab (Callinectes sapidus), stone crab (Meni ppe nercenaria), and pink shrimp (Penaeus setiferus). Their distribution could not be nade part of the present study due to seasonality, nobility and gear-rel ated problens, but crab bi ol ogy in the bay has been studi ed (Ginka, 1980). Traditional nol luscan shellfish in Sarasot a Bay have incl uded hard clans, sunrays, oysters, scallops, and squi d.

Historical Shel Ifish Landings

Except for one small report from Sarasota County in 1980, squid have not been Ianded in Sarasota or Manatee Counties since 1953 and therefore will not be consi dered further. Manatee County I andings of shel Ifish al so are very Iimited, because only 2 reports of snall Iandings of oysters have been made bet ween 1953-1981 (see annotated bi blography). Mbst landings of shellfish from the Sarasota Bay area have been made in Sarasota County, although there have been no comerci al I andings since 1971 (Fi gure 3).

Scallops, oysters and hard clans constituted the comercial shellfish resource of Sarasota County. Scallop Iandi ngs were reported for 7 years and usually ranged between 100-800 pounds. Scallops were last landed in Sarasota County in 1964. Oysters represented the next I argest I anding, with annual reports of 210 27, 639 pounds over a 15 year period which ended in 1967. The I argest commercial shellfish resource Ianded in Sarasota County has been the hard clam Landings over a 19 year period (1953-1971) ranged from 2,100-95, 814 pounds and averaged nearly 16,000 pounds per year.

Other Edi ble Shel Ifish in Sarasota Bay

Recreational harvest of nol lusks from Sar asota Bay is widespread but very poorly docunented. Speci es collected for consumption probably incl ude several snails and clans not nentioned in traditional landing reports. Raynond (1973), for example, gi ves reci pes for surf clans, coqui nas, and pen shells. Gibbons (1964) descri bed the collection and preparation of seventeen species of mollusks, and di scussions with local biologists resultedin still other shellfish candi dates for recreational harvest and consumption.

Si nce the goal of this study is to describe the qualitative di stribution of nol luscan shel lfish in Sarasota Bay, we have expanded the traditional definition to incl ude several other species. Our list (see Table 2) is based entirely on earlier reports and personal communi cations, and must be used onl y as a guide to the potential shelfish resources of the bay. No recommendations for harvest or consumption of any listed species are intended,
and any species could be a health hazard if collected fromparticular areas or at certain times, or prepared in the wrong manner.

Acknow edgnents
Ue appreci ate hel p from Sue Hof mann and Jay Sprinkel during fiel d work, and from Jay Sprinkel, Jay Gorzel any and Jim Culter during sample processing. Greg Bl anchard assisted with I anding reports and Laurie Fraser processed the text. Hal Pelta edited preliminary drafts.

PART
Literature Revi ew

Abstract

Introduction Thi s section summarizes the findings of several reports rel evant to the present study. Additional infornation on each appears in Part V: Annotated Bi bl i ography.

Previ ous Mblusk Inventories in the Regi on
The nost extensi ve survey of nol lusks conducted in the area was nade in 1970-1971 by the Fl orida Departnent of Nat ural Resources (Godcharles and Jaap, 1973a and 1973b). Stations al ong the entire Fl orida west coast were sampl ed by dredges. Use of this gear prevented the survey fromentering Sarasota Bay, so their findi ngs are of secondary usef ul ness. They reported three dozen nol lusk species, which is a rel atively snall number due to the large nesh size of the dredge screens.

Previ ous Molusk Inventories in Sarasota Bay
Wbodburn (1960) is the earliest report on nollusks from the bay in this collection. The report was one of a series on marine life al ong the west coast and concerned waters of Sarasota County. Wbodburn recomended Buttonnood Harbor as a potentially good site for hard clamcultivation because of favorable envi ronnent al conditions. He al so noted clam predators, i ncl udi ng crown conchs, Fl orida horse conchs, and banded tulips.

Later in that decade, the Arvida Corporation proposed to devel op a I arge tract of nangroves and shal low waters al ong the bayshore of Longboat Key, and hi red Southern Fish Culturists, Inc. to eval uate the ecol ogical i mpact of the project. DeQui ne (1969) found that nollusk bi onass was hi gher in turtlegrass than in other bottomtypes of the bay and that shellfish losses due to destruction of natural areas nould be offset by new oyster grouth on seavalls. DeQui ne's report includes an appendix listing nollusks in the bay,
but the appendi x was missing from the copy available for inspection.
The first published checklist of invertebrates in Sarasota Bay listed 136 species, of which 80 (54\%) were mol usks (Tiffany, 1974). Bucket dredge sampl es were anal yzed to reveal lower species di versity at the Bow ees Creek STP effluent site than at the Whitaker Bayou STP site. Whale Key was the "heal thi est" station sampled. The area around Marina Jacks was the ' nost unheal thy" site sampled. Tiffany suggested two nollusk species as potential indicators of poor water quality and another species as a clean water species.

In 1976 the U.S. Army Corps of Engi neers published a draft Envi ronnental Impact Statement for deepening of the inl and water way through Sarasota Bay. The report incl udes very lengthy species lists for the whole southwest Fl orida coast and states that ' waters of the Sarasota Bay systemare anong the richest on the Fl orida west coast in terns of invertebrate variety and abundance".

Sevage I mpacts on Local Fauna

The first local investigation of sewage impacts on bottomfana was conducted as a seni or thesis project by a New College student (Conner, 1974). Conner compared the pol ychaetes and nollusks in a "cl ean area" near Whale Key to an area near the Bow ees Creek STP effluent (a low vol une secondary treatment outfall of 0.75 ngd). The percentage of carni vores and scavengers was found to be negativel y correl ated with di stance from the effluent. Conner reported lower densities and speci es numbers of nollusks in the di sturbed area and found no evi dence of an enrichment zone.

Enrichment zones are not unusual around point sources of di ssol ved and particulate nutrients. Dauer and Conner (1976, 1980) docunented increased densities, speci es numbers and bi onass of pol ychaetes around STP effluents in Tampa Bay, especi ally where sedi ments were coarse. Indi rect evi dence for an enri chment zone around the nouth of Whitaker Bayou was presented by Tiffany (1974), Ginka (1980), and Mahadevan et al. (1981). The I atter study employed a snall number of samples but concl uded that the bayou fauna was notably different than bay fauna. Mhadevan et al. al so opi ned that increased
di scharge noul d affect turbidity, plankton, seagrasses, and fish nore than the benthic fauna.

Other Sewage I mpacts Rel evant to thi study

Tho other reports bear on the distribution of shel Ifish in Sarasota Bay. Sauers and Patten (1981) documented a 28.8% decline in seagrass beds in the southern bay area, with up to 100% loss occurring close to the bayou. Si nce Dequi ne (1969) reported that seagrass beds contai ned the largest shellfish bi onass of several bay bottomtypes, reductions in grassbed area have probably led to declines in shellfish abundance.

Sedi ment cont ami nation by the sewage tracer coprostanol has been documented by Pierce and Brown (1984). Coprostanol is not directly toxic but does reflect the long term di spersi on of particul ates (and presumably other senage constituents). Pi erce and Brown reported very hi gh coprostanol concentrations in Vkitaker Bayou and a $15.4 \mathrm{~km}^{2}$ area of the bay centered at the bayou nouth where the tracer was detectable. They al so reported a northward drift of coprostanol al ong the bay's eastern shorel ine toward Stevens Poi nt.

[^0]PART III
Sarasota Bay Shellfish Survey

INTRODUCTION

Sampling Dates and Conditions

Al field work was conpl eted during the period April 19 - May 5, 1986. Rai nfall during weeks prior to this period was negligible, so waters of the bay were clear. Mbrning visibility al ong the west side of the bay was very good, and the bottom could be seen in 10-15 ft of uater. Afternoon winds decreased visibility, and water clarity east of the inl and waterway was usually poor.

METHODS

Position has determined using LORANC and a map of LORAN Iines devel oped by Mbte Marine Laboratory for Sarasota Bay. Positions al so were determined by taking beari ngs on prominent landmarks.

Depth was determined with an el ectronic depthfinder and recorded to the nearest tenth of a foot. Conductivity, salinity, and temperature were neasured at the surface and near the bottom with a Becknan SCT meter. Di ssol ved oxygen uas neasured at the surface and bottom with a YSI Mbdel 57 di ssol ved oxygen neter.

Three net hods were used to collect nol lusks at each station. A di ver usi ng SCUBA gear swamin circles around the anchor collecting visible shells, looking for burrous and si phons, and naking shallow hol es in the bottomin search of nol lusks. The di ver reported observations to the boat crew and ret urned speci mens which required further identification.

Sampl es were taken tuo ways. Three throws of a Petite Ponar grab were pool ed on a $\mathbf{2 m m s i}$ eve and placedindouble-labelled plastic bags for return to
the Laboratory. In addition, a bucket dredge was towed behi nd the boat until full, and its contents were washed on a 10 mm sieve and bagged for later inspection. Li ve speci nens of common speci es were noted in the logbook and returned to the water.

In the Laboratory, bags were enptied one at a time and shells were sorted as live or dead, and to species. Identifications were made using standard literature and the MM Reference Collection.

RESULTS

Stations
A total of 93 stations was sampled in the area from New Pass to Whitaker Bayou and from Big Pass to Manatee County. A few stations were sampled in Manatee County for completeness (Fi gure 4). Station locations are Iisted in the Appendi x.

Depths

Station depths ranged fromthe intertidal zone to 15.9 ft . Mean depth for all subtidal stations was $8.0 \mathbf{f t}$, and 10 stations were intertidal.

Types of Stations

Parts of the study area may be di vided into $\mathbf{C l}$ ass 2 and \mathbf{C} ass 3 waters of the state (Ch 17-3, FAC), and into waters of Longboat Key, the City of Sarasota, or Sarasota or Manatee Counties. In addition, waters may be uncl assified, conditionally approved for shellfish harvest, or prohi bited (Figure 5).

The di stribution of stations is shown in Table 1. Mbre stations were I ocated in the city of Sarasota (55% than el sewhere, but bal ance was good bet ween Cl ass 2 and Cl ass 3 waters (54% and 46% respectively). Mbst stations were closed to shellfishing (83%).

Physi cal Factors

Sal inity ranged from 25.4 o/ 00 to 35.6 o/ 00 throughout the study. The water col um was well mixed, with the greatest surface to bottom difference being 8. 7 o/ 00 in Witaker Bayou. Temperat ures were uniform ranging from 21. $5^{\circ} \mathrm{C}$ to $28.4^{\circ} \mathrm{C}$. Bottom di ssol ved oxygen val ues ranged from $3.7 \mathrm{ng} / \mathrm{l}$ to 13.4 ng / I, with lowest values occurring in the early morning. No bottom di ssol ved oxygen val ues were seen which posed a hazard to bottomdwelling fauna.

Bottom Types

Sedi ments were categorized as silt, mud, sand, shell, or combi nations thereof. The nost common bottom type was muddy sand (68\%), followed by silty sand (14%, shelly sand (5%, silty mud (4%, sand (3%, and oyster reef (10%). Nine sites (10% were vegetated by seagrasses, principally Thal assia testudi num and Hal odule wrightii.

Mbl Iusks of Sarasota Bay
A total of 196 species of nol lusks has been reported from Sarasota Bay or adjacent waters (Table 2). The list has been edited for synonyns but reflects the identifications of several authors. The total number of species from the bay and nearby waters is nost probably between 200 and 250.

Species Collected in this Study
Ninety-ei ght nol lusks were recorded, whi ch happens to be one-hal f of the total number of species known for the area. The tuenty nost common species (i.e., those occurring at the nost stations) are listedin Table 3. The southern quahog (known al so as the hard shel llam, Mercenaria campechiensis, was the nost common species encountered in the survey.

Distribution of Total Species

On the average, each species occurred in the bay at 6 stations out of 93 stations (i.e., 7\% . No strong patterns were evident in the di stribution
of species across governments or uater-use classifications (Table 4). The I argest area with adjacent stations contai ning 10 or nore speci es crossed the bay south of New Pass, from Pansy Bayou to Indi an Beach (Fi gure 6).

Edi ble Speci es
Thi rty-four species of nollusks reported fromthe bay, or likely to occur in it, are consi dered edible (although any may be unfit for consumption at particular times or places). Seventeen of the potentially edible species have been reported from Sarasota Bay (Table 2). Additional species not reported fromthe bay so far but which are likely to occur incl ude Aequi pecten gi bbus, Barnea truncata, Busycon caniculatum Cryptopleura costata, Littorina irrorata, Lolliguncula brevis, Macrocallista naculata, Modiolus demissus, Ostrea frons, Pecten ziczac, Rangea cuneata, Stronbus al atus, Stronbus raninus, Stronbus pugilis, and Turbo castanea.

Rel ati ve Abundance of Edible Species

The nost common edi ble nollusk in the study area was the hard clam Mercenaria campechi ensis. Dead speci mens were found at 37 stations; live ones were found at 23 others. A total of 60 stations produced live or dead hard cl ans, or 65% of all stations. Other less common species included, in decreasing order of abundance, Chi one cancel lata, Macrocallista ni mbosa, Di nocardi um robusturn, and Crassostrea virginica (Table5).

Distribution of Mercenaria campechiensis

Hard clans were found at nunerous sites north of the Ringling Causenay (Fi gure 7). Recently dead shells out numbered living ones, and live and dead shells were found together at about 10% of the stations. Half (50% of all stations in \mathbf{C} ass 2 uaters had hard $\mathbf{c l}$ ans, and 52% of stations in Class 3 nater had clans (Table 6). Whters of Sarasota County were rel atively nore productive than Manatee County or Longboat Key waters. Witers in the city of Sarasota were least productive. One-half of all stations in waters
conditionally approved for shellfish harvest had hard clans, whereas 59% of stations in prohi bited water had hard clans.

Distribution of Other Common Edi ble Mol usks
The next nost common edible mol usks were Chi one cancellata, Macrocal lista ni nbosa, Di nocardi um robustum and Crassostrea virgi nica. Chi one appeared at 30% of all stations, but none of the others was found at nore than 15% of the stations. Distribution of the four species is mappedin Figures 8 through 11. Chi one and Di nocardi um were found in deeper water than Macrocallista, and live Crassostrea was found only at intertidal stations. Di nocar di um occur red al ong shorel ines less frequently than the ot her common edi ble shellfish.

Overal I Distribution of Edi ble Mllusks
Li ve and recently dead shells of the five nost common edibe nollusks were found at many (66, or 71% stations in the study area. Evi dence of shellfish was lacking in an area between Bird Key and Marina Jack; around the flood-tide delta east of New Pass; and in an area south of Bi shop Point on Longboat Key (Fi gure 12).

Station Location Rel ated to Whitaker Bayou

Influences of Whitaker Bayou on bay shellfish were eval uated by tabul ating species as a function of distance fromthe Bayou and al so in rel ation to documented level s of the senage indi cator, coprostanol (Pi erce and Brown, 1984). Di stance from the bayou was described as tiers (arcs of i ncreasi ng radi us) which intersected seven different transects and accounted for $\mathbf{6 1 \%}$ of all stations (Figure 13). About 56% of all stations occurred in areas where coprostanol concentrations were bel ow detection limits of $10 \mathrm{ng} / \mathbf{g}$ dry sedi ment (Fi gure 14). The renai ning stations were located where coprostanol val ues ranged from 10 to $2,500 \mathrm{ng} / \mathrm{g}$. Areas of the bay with coprostanol from sources other than Whitaker Bayou were considered in the
anal ysi s .

Effect of Di stance on Speci es Ri chness
Most tiers in the bay had an average of 4 to 8 species per station (Table7). Ti er 1 had a very low station richness val ue (1.3 species ± 2. 3), i ndi cating an adverse influence of the bayou. Tier 2, the cl osest station array to the bayou, had an above-average richness val ue of 12 species per station (t 5.4). Tier 2 had the largest number of uni que species and tier 1 had the smallest number, suggesting a "halo effect" of the bayou on the nearby bay.

Effect of Coprostanol on Speci es Ri chness
There uas no difference in the nean number of species per station in areas affected by coprostanol and areas not affected by the sevage tracer (Table 7).

Effect of Distance on Mercenaria Distribution

No live or dead hard cl ans were found in Whitaker Bayou or the one station in the bay nearest the bayou (Table 8). Tier 2 near the bayou contai ned hard clans at 5 or 6 stations ($83^{\circ} \%$ due to the occurrence of young $\mathbf{c l}$ ans. The remai nder of the ti ers had $43-57 \%$ occurrence of hard clans with no pattern rel ated to di stance from Whitaker Bayou.

Effect of Coprostanol on Mercenaria Distribution

The number of live clans al one or together with dead shells determined the outcone of this compari son (Table 8), in which stations not affected by coporstanol had nore clans than stations affected by the sewage tracer (56\% vs. 46% respecti vel y).

Distribution of Other Whter Quality Indi cator Speci es

Tiffany (1974) identified Macons tenta and Mel ongena corona as
potential indi cators of "poor" uater quality, and Noetia ponderosa as a possi ble sign of "clean" conditions. Mel ongena was consi dered an indicator if it occurred in large numbers in the absence of other species, a condition not seen inthis survey. Macona tenta was not collected, and its congener M constricta was collected at only one station. Noetia occurred at one station onl y.

DI SCUSSI ON

Sampl ing
Methods used in this study allowed for a rapid, economical survey of a I arge area. The bucket dredge yi el ded fewer speci mens than the Ponar grabs or di rect observation and its use could be eliminated or replaced with a small scale cl am dredge. The point-station method does not work well for intertidal areas, and subsequent studi es uould benefit by longshore or downshore transects. Where possible, sampling should be repeated to assess seasonal patterns of shellfish abundance. Finally, use of dead shells should be pl anned on a species-specific basis, and only for areas uhere transport is unl i kel y.

Di versity and Distribution

This collection effort resulted in 98 species, or hal f of the known nol lusk fauna of the bay. It is the nost diverse collection resulting froma si ngle study to date, but probably nould be richer if nore grassbeds and intertidal areas could have been sampl ed. As expected, the di spersi on of common speci es was not so great when based only on live speci nens as when dead shells were used, as well.

Effects of Whitaker Bayou
Whitaker Bayou had fewer nol lusk speci es than other parts of the bay, and no speci nens of the nost common speci es and domi nant edi ble speci es,

Mercenaria campechi ensis. An area of Sarasota Bay near the nouth of the bayou had an above average number of species and stations with hard clans, which we interpret as evi dence for enrichnent from the bayou. Areas free of the sewage tracer coprostanol had about 20% nore stations with clans than did areas where the tracer could be detected, but the significance of this finding will renain uncl ear until nore is known of the tracer's rel ationship to sedi nents and water quality.

CONCLUSI ON

Hard clans are present at many stations throughout the study area incl uding waters which are closed by testing or because the waters are uncl assified. Scallops and oysters are too rare in the area to support a commercial fishery but hard cl ans nay be capable of nanaged harvest. Quantitative distribution data and life history infornation on hard clans should be a research priority in the bay, especially if new areas can be opened to shellfishing. The bay supports a di versity of other nollusks whi ch are or could be of recreational importance where water quality allows their harvest.

1. A literature review and field collections were made to assess the hi storical and present distribution of shellfish. This survey was restricted to nollusks in Sarasota Bay south of Manatee County.
2. Mbst traditional shellfish species occur or have occurred in the bay. Scallops have not been landed in the county si nce 1964 and reports of thei r presence si nce then have been rare.

3 Oysters were landed in the county until 1967. Hard clans, the largest shel Ifish resource of the bay, were I anded for 19 years of record at an annual rate of nearly 16, 000 pounds. Hard clam landi ngs ended in 1971.
4 A variety of non-traditional nolluscan shel Ifish occur in the bay and may be harvested for recreational consumption. A total of 34 species are likely to occur in the bay and surrounding inshore waters. Ni nety ei ght species of mollusks were collected or observed at 93 stations in the southern bay. The listed species represent one hal f of al l nol lusk speci es reported from the bay.
6. Each speci es occurred at 6 stations, on the average. Above-average speci es richness was found in an area across the bay, from Pansy Bayou to I ndi an Beach.
7. Fi ve speci es uere consi dered both commond edi ble, or potentiallyso. The nost common of these was the hard clam followed by the cross-barred venus, sunray venus, cockles, and oysters.
8. A total of 60 stations produced live or dead hard clans. Clamstations were equally common in Cl ass II and Cl ass III uaters. Sarasota County and City of Sarasota waters were the most and least productive clam areas, respecti vel y.
9. The cross-barred Venus and cockles occurred in deeper water than sunray venus clans, and oysters were primarily intertidal. For the 5 nost common edi ble species, live or dead specimens were found at 71% of all stations.
10. Poor water quality in Whitaker Bayou was responsible for very low species di versity and the total absence of hard clans. The bayou apparently enriches bay bottons near its nouth, resulting in a "hal o" effect for sone par aneters.
11. Rapid survey techni ques were found to be economical and infornative but could be improved by repl acenent of bucket dredges with small-scale clam dredges. Oyster inventories should be made by transect nethods rather than by the point-station approach.

PART V
Annotated Bi bl i ography

This section contains annotated references for ei ghteen papers and books dealing with shellfish, nollusks, Sarasota Bay, Whitaker Bayou, and effects of sewage treatment plant effluents. Fi ndi ngs of the indi vidual reports have been summarized in Part II: Literat ure Revi ew

Each citation is descri bed in a uniform manner, and incl udes subject, geographic area, date of sampling, gear, species reported, and rel ation of the report to this study. References listedin this section may be found at the Mbte Marine Laboratory, in either the library or with Dr. Estevez, or in the Iibrary of the New College, USF in Sarasota.
Ref erence: Conner, E. F. 1974. Effects of a donestic sewage outfal Ion the distribution and abundance of marine benthicPol ychaeta and mollusca, with comments on continua andcommity struct ure. Seni or Thesis, New Col lege USF,Sarasota, Fl ori da.
Subj ect: Sewage i mpacts on mol lusks.
Geographi c Area: Northern Sarasota Bay.
Sampling Date: J anuary and February 1974.
Gear: Hand dri ven PVC pl ugs.
Speci es Reported: 83 species of gastropods and bi val ves (see attached list).
Rel ation to Thi s Study: A low di scharge STP near Bow ees Creek was comparedto Whal e Key. Percentage of carni vores and scavengers wasnegativel y correl ated with di stance fromthe outfall,across the bay. For the area nearest the outfall, feedingpatterns changed in rel ation to di stance, as did thesimilarity between dead shells bearing periostracum andlive shells. Commity similarity was average (0. 50 -0.69 in a range fromzero to 1.0). Results were affectedby snall sample size and sampling only once. Density andspecies richness of nollusks were lower in the di stributedarea. There uas no evi dence of an enrichnent zone.Distribution of nollusk shel ls had no predictive val ue inrel ation to live nol lusks.
Attachnent: Map of stations and list of nollusks by station.

Station Codes

CLASS PELECYPODA
\sim

Nucula proxima						X						
Anadara ovalis												X
Anadara transversa	X	X	X	P	P	P	P	X	P	X	X	P
Brachidontes exustus	P	P	P	P	P	P	P	P	P	P	P	P
Amygdalum pupyria												P
Musculus lateralis						X						
Aequipecten gibbus		X			X						X	P
Ostrea equestris	P	P	P	P	P	P	P	P	P	P	P	P
Ostrea frons					P							
Crassostrea virginica	P	X	P	P	P		X	P			P	X
Anomia simplex	P	P	P	P	P	P	P	P	P	P	P	P
Pseudocyrena sp.		X										
Cardita floridana	P	P	P	P	X	P	P	P	P	P	X	P
Lucina floridana				X					X	P		P
Lucina multilineata	P	X	P	X	P	X	X	P	X	X	P	X
Lucina nassula	X	P	P	P	P	X	P					X
Aliqena sp.		P	X	X	X	P		X			X	P
Erycina sp.			X	X	X							X
Trachycardium muricatum						X				X		X
Laevicardium pictum	P	P	P	P	P	P	P	P	P	P	X	P
Mercenaria campechiensis	X		X		P		P	P	P	P	P	P
Chione cancellata	P	P	P	P	X	P	P	P	P	P	X	P
Chione grus		P										
Anomalocardia cuneimeris	P	P	X	X		X	P	P	P	X	P	P
Cyclinella tenuis							X					
Transennella cubaniana				P	X	X	X		X			
Pitar simpsoni	P	P	X	P	X	P	X	P	P	X	X	X

Table 3

Mollusc Shell Species Distribution

P - shell species present with periostracum persistent

X - shell species present without periostracum

Station Codes
$A_{1} \quad B_{1}$
A_{2}
B_{2}
A_{3}
B_{3}
C_{1}
D_{1}
C_{2}
$\begin{array}{lll}D_{2} & C_{3} & D_{3}\end{array}$

CLASS PELECYPODA
(Cont.)

Pitar fulminata		P		X	X				P			
Macrocallista nimbosa								X	X		P	
Parastarte triquetra	P	P	X	P	X	X	P	P	P	P	P	P
Mactra fragilis		X	X	X			P	P	X			
Mulinia lateralis	X	X	X	X	X	X	P	P	X	X	X	X
Tellina lineata		X		X	P	X	P	P	P	P	P	P
Tellina tampaensis			X					P	P			
Tellina texana	P	P	X		X	X		X				
Tellina versicolor	X	X	P	X	P	X	P					
Macoma brevifrons			X	X		X						
Macoma tenta		P			X	X	P	P	P	X		P
Taqelus divisus		X	X	X	X	X	P	P			X	
Semele proficua	P		P									
Cumingia tellinoides	P	P	P	P	P	P	P	P	P	P	P	P
Abra aequalis	P	X	P		X				X	X		
Ensis minor	P	X							P	X		

CLASS GASTROPODA

Rissoinia catesbyana	P	X					P			P	X	
Turritella exoleta			P				X					
Vermicularia fargoi							X		X			
Modulus carchedonius										X		
Modulus modulus	X	X		X	X	X		X	X		X	P
Batillaria minima	P	X		X	P	P	X		P	X	X	
Cerithium muscarum	P	X	P	X	X	X	X	X	P		X	
Bittium varium	P	P	P	P	P	P	P	P	P	P	P	P
Crepidula aculeata			X			P						
Crepidula fornicata	P	P	P	P	P	P	P	X	P	X	X	X
Crepidula maculosa	P	P	P	P	P	P	P	P	P	P	P	P
Crepidula plana	P	P	X	P	P	P	P	P	P	X	P	X

Station Codes

CLASS AMPHINEURANA

Ref er ence: Dauer, D.M and WG Conner. 1976. Organi c enri chnenteffects upon benthic pol ychaete popul ations. V.J. Sci ence27(2): 43.
Subj ect: Effects of sewage on benthic worns.
Geographi c Area: Tampa Bay.
Sampling Date: August 1974 - July 1975.
Gear: Cores.
Speci es Reported: Pol ychaetes (annel ids).
Rel ation to This Study: Species number and density of worns at a siteaffected by senage treatment plant effluent weresignificantly hi gher than at a control site. Anaerobicconditions caused by al gal bl oons reduced speci es numberand density, but at other times the two sites weresimilar. Where oxygen was not limiting, the enrichnentboosted faunal di versity and density anong worns.
Attachnent: None24
Reference: Dauer, D.M and WG Conner. 1980. Effects of moderate sewage input on benthic pol ychaete popul ations. Estuar. Coast. Mar. Sci . 10(3) 335-346.
Subj ect: Effects of sewage on benthic worns.
Geographi c Area: Tampa Bay
Sampling Date: Septenber 1974-August 1975
Gear: Cores
Speci es Reported: Pol ychaetes (annel ids)
Rel ation to This Study: This st udy expands findings of Dauer and Conner(1976) to incl ude bi onass val ues, whi ch were greater inareas affected by sevage treat ment pl ant effluent than ata control area. They al so denonstrate speci es-specificresponses to the enrichnent. Nutrient enrichment enhancesbenthic productivity nore in coarser, sandy sedi ment thanin finer, silty sedi ment.
Attachnent: NoneReference: DeQui ne, J.F. 1969. Ecol ogi cal studi es in Sar asota Bay,Fl ori da August 1968- February 1969, with speci al referenceto Arvida Corporation subnerged I ands on Longboat Key.Southern Fi sh Culturists, Inc., Leesburg, Fl orida.
Subj ect: Whter quality and biology of Sarasota Bay in relation to aproposed devel opnent.
Geographi c Area: Sarasota Bay near Longboat Key, with other stations.
Sampling Date: August 1968-February 1969
Gear: Enery dredge, shovel.Speci es Reported: An appendix listing nollusk species fromthe bay ismentioned in the report but did not accompany the copyavailable for inspection.
Rel ation to this Study: Faunal bi onass of veget ated areas was greater thanunveget at ed areas. Turtlegrass beds had hi gher bi onassval ues than shoal grass or manatee grass areas. Mlluskbi onass was mach hi gher in turtlegrass (645 pounds peracre) than any other bottom type in the bay.
Attachnent: Table 2 of Dry Véi ght Bi omass Data.

Table 2. Dry wei ght of maj or groups of bi onass estimated on and adjacent to Arvi da Corporation subnerged I ands, Longboat Key, Sarasota Bay, Fl orida in pounds per acre and per zone, August 1968-January 1969.

MAJOR GROPP	$\begin{gathered} \text { I nterti dal } \\ \text { Zone } \\ \hline \end{gathered}$	Shoal grass Zone	Pounds Per Turtl egrass Zone	Acre Sandbar Zone	Manat eegrass Zone	Open Bay Zone
BEATHIC FLORA	--	285	552	--	9	--
Shoal grass	2	1,757	9	5	232	--
Turtl egrass	--		2, 293	.-	661	-
Manat eegrass	-.	-.	,	-	328	--
BENTHIC FAUNA						
Mbl lusks:						
Uni val ves	72	212	460	25	77	35
Bi val ves	10	40	185	7	37	15
Peanut Wbrns	42	94	19	4	2	0.1
Annelid Wbrns	0.4	0.4	0.3	0.2	0.4	0.4
Crust aceans	51	47	190	3	115	19
Echi noderns	4	1	10	4	1	0.5
NETPLANKTON	3.6	0.6	1. 6	1. 2	12. 5	--
Total Flora/ Acre	2	2, 044	2, 854	5	1,230	--
Total Fauna/ Acre	179.4	394.4	864	43	232	71
Tot al Net pl ankt on/ Acre	3.6	0.6	1. 6	1. 2	13	.-
Total Bi onass/ Acre	185	2,439	3,720	49	1,475	71
Number of Acres/ Zone	10	39	137	25	298	--
Tot al Fl ora/ Zone	20	79, 716	390, 998	125	336, 540	--
Total Fauna/ Zone	1,794	15,382	118,368	1,075	69,136	- -
Total Net pl ankt on/ Zone	36	23	219	30	1,725	
Total Bi onass/ Zone	1,850	95,121	509,585	1,230	409,401	--

Ref er ence:	FI ori da Departnent of Envi ronnental Regul ation, 1986. Proposed Desi gnation of Sarasota Bay and Lenon Bay as Outstanding FI ori da Whters. Report to the Envi ronment al Regul ation Commi ssi on.
Subj ect:	Whter quality of Sarasota and Lenon Bays.
Geographi c Area:	As noted, except for tributaries, artificial water bodies, and areas near the nouths of Whitaker Bayou and Phillippi Creek.
Sampl ing Dates:	Not applicable.
Gear:	Not applicable.
Speci es Reported:	Oysters, clans, scallops, shrimp and crabs.
Rel ation to This	Study: Poor nater quality in the bayou was recognized. Loss of seagrass around the mouth of the bayou was reported, as nere impacts to the benthic faunal communities. The study recommended an exemption in OFW desi gnation for a circle of the bay 1,500 feet in radi us from the nouth of the bayou.
Attachnents:	Report el enents addressing shellfish and Whitaker Bayou, and water quality maps.

Shellfish

Shellfish is a broad term that includes many invertebrate species such as oysters, clams, scallops, shrimp, and crabs. There are several portions of both the Sarasota Bay and Lemon Bay estuarine systems that are approved by the Florida Department of Natural Resources for shellfish harvesting. In fact, most of Lemon Bay is approved for this use. Generally, approved areas meet water quality standards consistently (Palik and Lewis, 1983).

Areas that are prohibited for shellfish harvesting have high levels of coliform bacteria. Septic tank effluent, urban run-off, run-off from agricultural areas (such as pastures), and inadequately treated sewage effluent are the primary causes of coliform violations in Sarasota Bay and Lemon Bay.

Both bay systems contain healthy populations of oysters. Oyster populations in prohibited shellfish harvesting areas are important to other bay areas since they produce spat (juvenile oysters) which will colonize and relocate elsewhere. Occasionally, oyster bar (reef) growth may be so vigorous as to pose navigational obstructions.

Shrimp and crab are both common in these estuaries. Pink shrimp (Penaeus duorarum) which are found in both bays are the most economically significant shrimp species in the state Palik and Lewis, 1983). Blue crab Callinectes sapidus) is another economically important shellfish species that occurs in these waters.

WHITAKER BAYOU

Located in southeastern Sarasota Bay, this tributary runs through the City of Sarasota, collecting some urban and agricultural runoff on its way. It is also the recipient of about $9 \mathrm{~m} . g . \mathrm{d}$. of secondarily-treated sewage from the City of Sarasota. The treated sewage discharge, together with the other pollutants contributed to the bayou, creates serious violations of state water quality standards.

The City of Sarasota is planning to transfer its discharge point to a spray field 18 miles east of the bay. This would be in compliance with a DER enforcement order on the Whitaker Bayou discharge and also consistent with Sarasota County's requirement for a minimum of advanced wastewater treatment of all sewage discharges to surface waters. The planned spray field has been purchased, but the proposal has received considerable opposition from nearby residents.

Whitaker Bayou itself, and possibly an area extending into Sarasota Bay, could be exempted from the OFW designation because of existing degraded conditions. Water quality data analysis indicates an approximately 1500 foot zone of influence in Sarasota Bay from the mouth of Whitaker Bayou.

HISTORICAL COLIFORM CONDITIONS

(D) Good
(D) Fair

- Poor

1985 COLIFORM CONDITIONS

Ref er ence:	Fl orida Department of Natural Resources 1959-1980. Summary of Fl ori da comerci al mari ne I andi ngs. Tal I ahassee, FL. Al so, Fla. Board of Conservation, with data before 1964 from Uni versity of Mami Marine Laboratory.
Subj ect:	Shel Ifish I andi ngs.
Geographic Area:	Manatee and Sarasota Counties.
Sampl ing Date:	1959-1980.
Gear:	Various unspecified commercial equipnent.
Speci es Reported:	Oysters, hard clans, scallops and squid.
Rel ation to This	Study: These reports recogni ze Mercenaria, Crassostrea and Pecten (hard clam oyster and scallop) as shellfish, and al so the gastropod Stronbus (conch) and squid (Lolliguncul a). The DNR Iist includes blue and stone crabs, spiny lobster, shrimp, certain turtles and sponges. Oysters and clans have been I anded Iocally up to 1971. Very snall anounts of squid and scallop have been I anded in the two county area over the period of record. Overall, the hard cl am was the I argest nolluscan shel Ifish I andi ng.
Att achnent:	Definition of shellfish and Ianding summaries for Manatee and Sarasota Counties.

SNAPPER (RED), predominantly the red snappers. Luljamus ampechamus and I. biachfordi; but includes a minority of silk smapper, L. vitasums; blacktin smpper, L. buccanclla; tane snapper, muttonlish; ycllowtail: queen smapper, Etelis oculatus; common bigeye, Priacanthus arenatus (Priacanthidae) and squirrelfish, Holocentrits ascemionis (Holocentridae).
SNAPPER (VERMILLION), Rhomboplites aurorubens (Lutjanidae).
SNAPPER (WHITE), porgy, predominantly Calamus spp. (Sparidae).
SNAPPER (YELLOWTAIL), yellowtail, Ocyurus chrysurus (Lutjanidae).
SPANISH MACKEREL, Scombcromorus maculatus (Scombridae).
SPANISH SARDINE, Sardinella anchovia (Clupeidae).
SPOT, Butterfish, Lciostomus xanthurus (Sciaenidae).
STURGEON, either or both of the two Florida species, the Atlantic sturgeon, Acipenser oxyrhynchus, and the shortnose sturgeon, A. brevirostrum (Acipenseridae).
TILEFISH, Lopholatilus chamaeleonticeps (Branchiostegidae).
TRIGGERFISH, predominantly the common triggerfish, Balistes capriscus, and the queen triggerfish, B. vetula (Balistidae).
TRIPLETAIL, Loboies surinamensis (Lobotidae).
WARSAW, warsaw grouper, black jewfish, Epinephelus nigritus (Serranidae).
UNCLASSIFIED: BOTTOMFISH, a species composite which consists of less choice edible fishes here listed, such as barracuda, croaker, spot, pigfish, sheepshead, drum, pinfish, grunts, mojarra, mangrove snapper, triplctail; et al.

TRASH FISH. a species composite of nonfood fishes or food fishes which are too small for eating. Consists of whiting, spot, croaker, drums, et al. The bulk of this category are by-proclucts from shrimp trawling. Usually used for bait.

MISCELLANEOUS, a specics composite of fish not in this list and which are rarely landed. Consists of angelfishes, Holacanthus and Poma. canthus spp. (Chactodontidac) ; moonfish, V'omer setapinnis (Carangidae) ; spadefish, Chaeto dipterus faber (Ephippidac) ; wahoo, Acanthocybium solanderi (Scombridae) et. al.

Non-Food Fish

ALEWIFE, Alosa preudoharengus on the east coast. The west coast fish are close relatives, probably most are thread herring, Opisthonema oglinum (Clupeidae).

BALLYHOO, Halfbeak, Hemitamphus brasiliensis (Ilemiramphidace).
Cit;MRFISH, predominantly Decapterus spp. (Carangidac).
MENHADEN, pogy, bunkers, Brevoortia tyrannus on the east coast and Brevoortia patronus on the west coast (Clupeidae).
SHARK, predominantly Carcharhinus spp. (Carcharhinidae).
TENPOUNDER, Ladyfish, skipjack, bigeye herring, Elops saurus (Flopidae).

Shellfish

CLAMS, HARD, Mercenaria mercenaria and M. campechiensis (Veneridae).
CONCH, Strombus gigas (Strombidae).
CRAB, BLUE, Callinectes sapidus (Portunidae).
CRAB, STONE, Menippe mercenaria (Xanthidae).
LOBSTER, SPINY, Crawfish, Panulirus argus (Palinuridae).
OYSTER, Crassostrea virginica (Ostreidae).
SC:ALLOP, Peclen ir radians and P. gibbus (Pectinidae).
SHRIMP,
East Coast, predominantly white shrimp, $P e$ naeus seliferus, also brown shrimp, P. aztecus (Penacidac).
Tortguas, exclusively pink shrimp, Penaeus duoraru": (Penacidae)
Campeche, predominantly pink shrimp, Penaeus duoramm, also brown shrimp, P. aztecus (Pe nacidae)
Upper W'est Coast, predominantly white shrimp, l'enaeus setiferus, also pink shrimp, P. duorarum; brown shrimp, P. aztecus; and sea bobs, Xiphopencus kroyeri (Penaeidae).
SQUID, Doryteuthis plei, Lolliguncula brevis, and Loligo pealei (Loliginidae).
TURTLE, GREEN, Chelonia mydas (Cheloniidae). Sea turtles not reported by species are put in this category.
TURTLE, LOGGERHEAD, Caretta caretta (Cheloniidae). May include some Ridley turtles, Lépidochelys kempii.
SPONGES:
YELLOW, Spongia zimocca (Spongiidae).
SHEEPSWOOL, Hippiospongia lachne (Spongiidae).
GRASS, Spongia graminea (Spongiidae).
GLOVE, Spongia spp. (Spongidae).

Summary of Marine Shel Ifish Landi ngs for Manatee and Sarasota Counties, 1953-1981. Al l val ues in pounds.

Year	Manat ee			Sarasota		
	Oysters	Hard Cl ans	Scal I ops	Oysters	Hard Cl ans	Bay Scallops
1953	0	0	0	2,622	10,090	0
1954	0	0	0	1,587	15,120	0
1955	0	0	0	448	15,264	1,648
1956	0	0	0	554	16,541	0
1957	0	0	0	2,627	23,708	0
1958	0	0	0	210	16,878	144
1959	0	0	0	1,018	16,219	170
1960	0	0	0	131	18, 511	148
1961	0	0	0	12,473	13,906	750
1962	65	0	0	13, 115	3,913	384
1963	0	0	0	10, 800	2,100	0
1964	17	0	0	11,396	17,454	128
1965	0	0	0	27,639	95,814	0
1966	0	0	0	3,763	2,607	0
1967	0	0	0	405	3,541	0
1968	0	0	0	0	7,146	0
1969	0	0	0	0	10,439	0
1970	0	0	0	0	9,484	0
1971	0	0	0	0	4,007	0
1972	0	0	0	0	0	0
1973	0	0	0	0	0	0
1974	0	0	0	0	0	0
1975	0	0	0	0	0	0
1976	0	0	0	0	0	0
1977	0	0	0	0	0	0
1978	0	0	0	0	0	0
1979	0	0	0	0	0	0
1980	0	0	0	0	0	0
1981	0	0	0	0	0	0

| Reference: | Gibbons, E. 1964. Stal king the bl ue eyed scallop. David |
| :--- | :--- | :--- |
| | MtKay Co., Inc., New York. |

Rel evance to This Study Establishes listed species as edi ble.

Ref erence:	Ginka, C. 1980. Survey of bl ue crab and stone crab di stribution in Sarasota Bay, pp. D-l through D. 57 in W.J. Tiffany, III (Editor) Envi ronmental Stat us of Sarasota Bay: Sel ected Studies. Published by Mbte Marine Laborat ory,
Subj ect :	Bl ue and stone crab di stri bution.
Geographi c Area:	Sarasota and Roberts Bay (11 stations).
Sampling Date:	April-October 1979.
Gear :	Wre nesh traps baited with lobster bait and fish scraps.
Speci es Reported:	Callinectes sapidus, Meni ppe nercenari a.
Rel ation to This	Study: Mbre stone crabs were caught near Whitaker Bayou than of f New Col lege. About the sane numbers of bl ue crabs were caught at these stations. Crabs of commercial and sport val ue occur throughout the bay, incl udi ng areas close to the bayou.

Reference: Godcharl es, M F. and WC. Jaap. 1973a. Fauna and flora in hydraulic clam dredge collections from Florida west and southeast coasts. Fla. Dept. Nat ural Resources Spec. Sci. Rept. No. 40.
Subject: Shal low water nacroi nvertebrates and al gae.
Geographic Area: Fl orida west and southeast coast. Whters off Longboat and Lido Keys.
Sampl ing Dates: Novenber 1970-J ul y 1971.
Gear: Hydraulic Nant ucket dredge and Maryl and escal ator soft-shel l cl am dredge.
Speci es Reported: (Shal low or noderate depth nater onl y) Crepi dul a fornicata, Strombus al at us, Xenophora conchyliophora, Polinices duplicatus, Ficus commis, Eupleura sulcidentata, Murex dilectus, Murex pomm Murex rubidus, Busycon contrarium Busycon spi ratum Fasciolaria hunteria, Pleuropl oca gi gantea, Oiva sayana, Terebra dislocata, Anadara lienosa floridana, Arca zebra, Noetia ponderosa, Arcinella cornuta, Chama nacerophylla, Anodontia al ba, Luci na pensyl vanica, Di nocardi um robustum vanhyni ngi, Laevi cardi um I aevi gat um Trachycardi um egnontianum Chione intapurpurea, Dosinia discus, Macrocallista naculata, Macrocallista ni mbosa, Mercenaria campechi ensis, Rupel laria typica.
No. Gastropod Speci es: 15
No. Bi val ve Speci es: 19
Total Species No.: 34
Rel ation to This Study: Samples were taken only in Gulf waters, not in Sarasota Bay. List suggests a di verse Gulf fauna but these speci nens were retai ned on very coarse si eves (11. 6 to 31.0 mm).
Attachnents: Map of station locations.

Figure 10. C\&GS Chart 1256: Lemon Bay to Passage Key Inlet.

Reference: Godcharl es, MF. and WC. Jaap. 1973b. Expl orat ory cl am survey of Fl ori da nearshore and est uari ne uaters with commercial hydraulic dredgi ng gear. Fla. Dept. Nat. Resour. Professi onal Papers Series No. 21.

Subject: Popul ation structure of sel ected speci es.
Geographic Area: Fl orida south and east coasts and waters off Sarasota County.

Sampl ing Date: May 1970-Septenber 1971.
Gear: Hydraulic Nant ucket clam dredge and Maryl and soft shel I escal ator cl am dredge.
Speci es Reported: Mercenaria nercenaria, M campechi ensis, Macrocallista ni mbosa, Rangi a cuneata.

Rel ation to This Study: Hard cl ans and sunrays are di stributed throughout shal Iow waters of the Florida west coast, sonetimes in commercial abundance. They are found in seagrass beds and unveget at ed areas. Rangi a was confined to river areas and thri ves best at Iower salinities,

Reference: Heal d, E.J. 1970. Fi shery Resources At as II. West Coast of Fl orida to Texas. Sea Grant Tech. Bull. No. 4, Uni v. of $\mathbf{M a n i}$.

Subject: \quad Rel ative productivity of coastal areas.
Geographi c Area: Northeast Gulf coast.
Sampl ing Date: 1956-1965
Gear: Various unspecified comercial equi pment.
Speci es Reported: (anong others) Bay scallop and hard clam

Rel ation to This Study: Heald states that hard clamis an important resource in Lenon Bay and Charl otte Harbor, and that "small quantities [are] occasi onally taken from Sarasota Bay".
Reference: Mahadevan, S. and others. 1981. A prel iminary assessmentof the effects of treated sewer discharge on the benthicinf aunal communities of Whitaker Bayou and adj oiningSarasota Bay. Mbte Marine Laboratory Report to SarasotaCounty Coastal Zone Managenent Department.
Subj ect: Sof t bottom macroi nvertebrate inf auna.
Geographi c Area: Whitaker Bayou and Sarasota Bay.
Sampling Date: J anuary 1981.
Gear: 3 inch PVC cores.Speci es Reported:_Crepi dul a_pl ana, Epi toni um sp., Hami noea succi nea,Nassarius vi bex, ${ }^{\text {di vella sp. , Nudi branch sp. , Luci na }}$radi ans, Lyonsi a hyalina floridana, Mulinia lateralis,Mysel I a planul at a, Nucul ana crenul at a, Nuculana acuta,Sol emya occi dental is, Tagel us di vi sus, Tellina versicol or.
Rel ation to This Study: Sample size was shown to be too snall to be definitive. Aut hors concl uded that sedi ments and fauna of the bayou indi cated pol I uted condi tions, and that bayou effects into the bay were limited. The fauna of stations in the bayou (\#l) and at its nouth (\#2) differed from bay stations (\#3-7). They al so concl uded that fauna uould not be affected adversel y by increased di scharge, al though adverse affects were expected on turbi dity, plankton, seagrasses, and fishes.
Attachnent: Map of station locations.

Ref er ence:	Pierce, R.H and R.C. Brown. 1984. Coprost anol di stribution from sewage di scharge into Sarasota Bay, Fl ori da. Bul I. Envi ron. Contam Toxi col . 32: 75-79.
Subj ect:	Concentrations of sewage tracers.
Geographi c Area:	Sarasota Bay.
Sampling Date:	1982.
Gear:	Petite Ponar grab.
Speci es Reported:	Not applicable.
Rel ation to This	Study: "An area contai ni ng coprostanol that may be consi dered to originate from the City of Sarasota wastewater di scharge into Whitaker Bayou is approxi nately $\mathbf{7 k m}$ ($\mathbf{N} \mathbf{- S}$) by $\mathbf{2 . 2 k m}$ ($\mathbf{E - W V}$ or about $15.4 \mathbf{k m}^{\mathbf{2}}$. approxi natel y 20% of t he Bay sedi ment". Concentration contours "exhi bited a skewed distribution in a north-south di rection al ong the eastern shoreline" and "very high concentrations ($2,500 \mathrm{ng} \mathrm{g}^{-1}$ sedi ment) in Whitaker Bayou", were reported.
Attachnents:	See Figure 14 of this Report.

Reference: Raynond, D. 1973. Catch and cook shellfish. GreatOut doors Publ ishi ng Company, St. Petersburg, Fl ori da. 65
p.
Subject: Collection and preparation of local seafood.
Geographi c Area: Fl orida west coast.
Sampling Dates: Not applicable.
Gear: Not applicable.
Speci es Reported: Mercenaria campechi ensis, Macrocallista ni nbosa, Spi sula
solidissi na raveneli, Donax variabilis, Pecten sp.,
Crassostrea virginica, Stronbus gigas, and "pen shells"
(Atrina sp.).
Rel ation to This Study: This cookbook establishes recreational harvest and consumption of these species in local waters.
Reference: Sauers, S. C. and R. Patten. 1981. A compari son of 1948and 1979 seagrass bed di stribution in the vicinity ofWhitaker Bayou, Sarasota Bay, Florida. Sarasota CountyOffice of Coastal Zone Managenent, Sarasota, Florida.
Subj ect: Sewage impacts on seagrasses.
Geographi c Area: Sarasota Bay.
Sampl ing Date: 1948 and 1971.
Gear : Aerial photographs.
Speci es Reported: Hal odule wrightii, Thal assia testudi num Syringodi umfiliforne, U va Iactuca.
Rel ation to this Study: Grassflats loss has been greatest at the nouth ofWhitaker Bayou. Percent age I oss decreased as di stancefrom the bayou increased. "It appears that the depthdi stribution of seagrasses is shri nking. Fornerly,grasses were limited to the $0 \mathbf{O}^{\prime}$ contour zone (MW) buttoday are sel dom seen bel ow the $0 . \mathbf{4}^{\prime}$ contour zone (MW."
Attachments: Maps of 1948 and 1979 seagrass beds.

Reference:	Stanl ey, J.G. 1985. Hard clam a species profile. U.S.
	Fish and WIIdife Service Bi ol ogical Report 82(11.41).
Subject:	Bi ol ogy of the hard clam
Geographic Area:	Atlantic and Gulf coasts.
Sampling Dates:	Not applicable.
Gear:	Not applicable.

Rel ation to This Study: Mercenaria nercenaria and M campechiensis hydridize so the latter nay be a subspecies of the former. It is intertidal and subtidal. Spawning in temperate water occurs from March through Novenber. Sexual naturity is a function of size, normally corresponding to an age of 2 years. Eggs are buoyant and I arvae are pl anktonic. Cl ans are very sedentary and prefer protected uater of hi gh salinity. The hard clamis more widely di stributed than any ot her commercial clamspecies in U.S. waters and is the nost val uable comercial and sport species. The fishery is characterized by large fluctuations in I andi ngs. The potential for col oni zation of new areas is consi dered great. Hard clans are filter feeders; crabs and ot her I arge nollusks are their principal predators. They are affected nore by temperature and salinity than by di ssol ved oxygen. Sand is preferred over mud as hard clam substratum Excess turbi dity causes death.

Ref er ence:	Tiffany, W.J., III. 1974. Checklist of benthic invertebrate communities in Sarasota Bay with special reference to water quality indicator species. Contribution Nb. 2, Fl ower Gardens Oceans Research Center, Mari ne Bi onedi cal Institute, Gal veston, TX.
Subj ect:	Checklist of nacroi nvertebrates.
Geographi c Area:	14 stations in Sarasota Bay.
Sampling Date:	June 1973-May 1974.
Gear:	Bucket dredge.
Speci es Reported:	136 speci es, of which 80 (59%) were nol lusks (see at tached list).
Rel ation to This	Study: Speci es di versity was I ow at the Bow ees Creek STP site but (relatively) high at the Whitaker Bayou STP site. Whal e Key was the heal thi est station sampl ed. The "nost unheal thy area sampled" uas near Marina Jacks and was affected by storm drai nage and sanitary sevage. In nost cases, nutrient enrichnent was associ ated with species enrichment, with extra species known or suggested to be "pollution indi cators". Mllusks identified as potential indi cators incl uded the bi val ve Macona tenta (high silt and organi c content) and the gastropod Mel ongena corona (if found by itself in high numbers, an indicator of "I ow envi ronmental quality in general "). The bi val ve Nbetia ponderosa nay indicate "cl ean" conditions and two other speci es (Marginella apicina and Tellina lineata) are widespread but their usef ul ness as indicators is uncertai n.
Attachnents:	Map of station locations and a tabular sumnary of species, by station.

APPENDIX A: Location of Sample Sites

Table 1. Alphabetical list of benthic invertebrates dredged from Sarasota and Roberts Bays.
(Am, Amphineuran; Bi, Bivalve; Br, Bryozoan; Co, Coelenterate; Cr, Crustacean; Ec, Echinoderm; Ga, Gastropod; Po, Polychaete; Sc, Scaphapod; Si, Sipunculid; Sp, Sponge; Tu, Tunicate)

NAME	CLASSIFICATION								STATION						
		1	2	3	4	5	6	7	8			11	12	131	
Abra aequalis	Bi	X						x	x	x			X		
Amphicteis gunneri	Po													X	
Amaroucium pellucidum	Tu					X									
Amnotrypane aulogaster	Po								X		X				
Ampelisca sp.	Cr		x	x			x	x	x	x		X		x	x
Amygdalum papyria	Bi			X						X				x	x
Anachis avara	Ga										X		X		
Anachis obesa	Ga							X							
Anadara transversa	Bi					X					X			x	x
Anomalocardia cuneimeris	Bi		X												
Apseudes sp.	Cr													X	
Atrina rigida	Bi					X									
Barbatia candita	Bi													X	
Botrylus schlosseri	Tu					X									
Brachiodontes exustus	Bi			x		x		X						X	
Branchioma nigromaculata	Po		X							X				x	x
Bugula sp.	Br					X							X		
Bulla striata	Ga												X		
Busycon contrarium	Ga	X													
Callinectes sapidus	Cr									x	x				X
Callocardia texasiana	Bi					x							X		
Cantharus multangulus	Ga					X									
Cardita floridana	Bi		X			X									
Cerianthus sp.	Co					X									
Cerithium muscarum	Ga		X			X					X				
Cerithium variabile	Ga									X			X		

name	CLASSIFICATION	1	2	3	4	5	6	7	Station					1314	
									8	9					
Libinia dubia	Cr				x									X	
Linga amiantus	Bi	X													
Loemia medusa	Po								x						
Lucina amiantus	Bi								X			x			
Lucina floridana	Bi							x							x
Lucina multilineata	Bi				x	X	x		x	X	x	X			
Lucina nassula	Bi	X					X		X			X			
Lyonsia floridana	Bi	X	x				X		X		x	X		X	
Lysarete brasiliensis	Po								X						
Macoma tenta	Bi	X									X	X			
Macrocallista nimbosa	Bi							X		X					
Mactra fragilis	Bi					X								X	
Magelona Sp.	Po							X							
Maldane sarsi	Po					X				X	x			X	x
Marginella apicina	Ga	X	X		X		X	X	X	X	X	X			X
Megalomma bioculatum	Po													X	
Melinna maculata	Po													X	X
Mellita quinquiesperforata	Ec	X	X						X						
Melongena corona	Ga			X			X								
Membranipora sp.	Br				X										
Menippe mercenaria	Cr				X										
Mercenaria campechiensis	Bi	X		X	X		X	X	X	X		X		X	
Modiolus squamosus	Bi								X						
Mulinia lateralis	Bi			X		X	X	X				X	X	X	X
Nassarius vibex	Ga				X				X	x				X	
Nephtys bucera	Po								X						
Nereis pelagica	Po		X		X				X	X					
Nereis succinea	Po							X							
Neritina reclivata	Ga						X								
Niso interupta	Ga								X						
Noetia ponderosa	Bi				X										
Nucula proxima	Bi	x						X	X			X			
Nuculana acuta	Bi	X				X	X	X				X		X	X

Ref er ence:	U. S. Army Engi neers Di strict. 1976. Fi nal Envi ronnental I mpact St at ement. Mai ntenance dredgi ng west coast inl and uat er way, Cal oosahat chee Ri ver to Ancl ote River, Fl orida. J acksonville, Fl ori da.
Subj ect :	Exi sting and proposed conditions in connection with channel improvenents.
Geographi c Area	Sarasota Bay.
Sampling Date:	Variable, by
Gear:	Variable, by subc
Speci es Reported:	Long speci es lists for west central Florida coastline, incl udi ng two nol lusk lists.
Rel ation to This	Study: The report stated "the consensus expressed in reported cited above was that uaters of the Sarasota Bay system are anong the richest on the Fl orida west coast in terns of invertebrate variety and abundance". Scallops and hard cl ans were noted as local fisheries. In Tampa Bay, the list al so included squid (Lolliguncula) and sunray venus (Macrocallista). Early bul khead surveys in the bay were noted.

Ref er ence:	Wbodburn, K. D. 1960. Sarasota County Marine Survey. Fla. State Bd. Conserv. Mar. Lab. FSBCM No. 60-15, CS No. 60-I.
Subj ect :	Existing and potential shellfish areas.
Geographi c Area:	Sarasota County.
Sampl ing Date:	1960
Gear:	Sei ne and pushnet.
Speci es Reported:	: Mercenari a campechi ensi s, Mel ongena corona, Stronbus al at us, Pl europl oca gi gantea, Fasci ol ari a tulipa.
Rel ation to This S	Study: Oyster predators incl uded crown conchs, Fl orida horse conchs, and banded tulips, and were present throughout the study area. Buttonnood Harbor was recommended as a potentially good northern hard shell clam growing area because of suitable salinities, water depth, favorable bottom types, and limited urbanization.

figure 1. LOCATION OF SARASOTA bay and the study area

FIGURE 2. SARASOTA BAY AND PROMINENT LANDMARKS.

FIGURE 3. SARASOTA COUNTY MARINE LANDINGS, 1953 TO 1981

FIGURE 4. LOCATION OF SHELLFISH SURVEY STATIONS.

FIGURE 6. OVERALL PATTERN OF SPECIES RICHNESS.

FIGURE 7. DISTRIBUTION OF THE HARD CLAM, MERCENARIA CAMPECHIENSIS.

FIGURE 8. DISTRIBUTION OF THE CROSS-BARRED VENUS, CHIONE CANCELLATA.

FIGURE 9. DISTRIBUTION OF THE SUNRAY VENUS, MACROCALLISTA NIMBOSA.

FIGURE 10. DISTRIBUTION OF THE COCKLE, DINOCARDIUM ROBUSTUM.

Dead Only Live Only Dead \& Live

00

FIGURE 11. DISTRIBUTION OF THE EASTERN OYSTER, CRASSOSTREA VIRGINICA.

FIGURE 12. STATIONS WITH LIVE OR DEAD SPECIMENS OF COMMON EDIBLE MOLLUSKS

FIGURE 13. STATION NETWORK USED FOR TIER ANALYSES.

FIGURE 14. ISOPLETH MAP OF COPROSTANOL CONCENTRATION, NG/G DRY SEDIMENT.

Table 1. Distribution of 93 stations by government, water quality, and
shellfish cl assification. All val ues are percent total.

Political Unit Cl ass IL

Cl ass IIL
Tot al
Sarasota County
80\%
20\% 16\%
Longboat Key 100\%

Not appl i cable 22\%

City of Sarasota
33\%
66\% 55\%
Manatee County Not appl icable 100\% 7\%
Over al I 54\% 46\% 100\%
Uncl assified Stations 28 \%
Conditionally Approved Stations 17 \%
Prohi bited Stations 55 \%

Table 2. Mblluscs of Sarasota Bay. This list is a compilation of Estevez and Bruzek (1986), Mahadevan et al. (1981), Conner (1974), Tiffany (1974), Godcharles and Jaap (1973) and Willians (no date). Underlined names were collected in this study. Nares with an asterisk are consi dered edi ble or i ndi cat ors of water qual ity. I ncl usi on of a speci es as edi ble does not mean it is safe to eat fromany area of Sarasota Bay.

Abra aequalis
Acteoci na canal icul ata
Acteon punctostriatus
Aequi pecten gi bbus
** Aequi pecten irradi ans
Amygdal um papyria
Anachi s avara
Anachi s obesa
Anachis floridana
Anachis sparsa
Anachis semplicata
Anadara Iienosa
Anadara ovalis
Anadara transversa
Anodontia al ba
Anomal ocardi a cunei meris
Anomi a si mpl ex
Arca zebra
Arcopsis adansi
Atrina rigida
Atrina semi nuda
Atrina serrata
**Atrina sp.
Barbatia candi da
Batillaria minim
Bittium varium
Brachi dontes exustus
Bulla occi dentalis
Bulla striata
Bullata ovuliformis
**Busycon contrarium
Busycon spi ratum
Callocardi a texasi ana
Cantharus tinctus
Cantharus multangul us
Cardita floridana
Cerithi um flori danum
Cerithi um muscarum
Cerithi um variabile
Chaet opl eura api cul ata
Chama macerophylla
** Chi one cancellata
Chi one grus

Table 2. Mblluscs of Sarasota Bay. continued.

Chi one pygmaea
Col unbel la rusticoides
Conus floridanus
Conus jaspideus
Conus spurius
Conus stearnsi
Corbula barrattiana
Corbula contracta
Crassi nella I unulata
Crassi spira l eucocyma
Crassi spira mesol euca
Crassispira tampaensis
**Crassostrea virgi ni ca
Crepi dul a acul eata
Creni dula convexa
**Crepi dula forni cata
Crepi dul a nacul osa
Crepi dul a plana
Cumingi a antill ar um
Cumingi a telli noi des
Cymat oi ca oriental is
Cyclinella tenuis
Cylichna bi dentata
Dent al i um pi I sbryi
**Di nocar di um robustum vanhyni ngi
Donax variabilis
Dosi ni a discus
Dosini a el egans
Ensis min nor
Epi toni um humphreysi
Eupl eura caudata
Eupl eura sul ci dentata
Fasciol aria hunteria
Fasciol aria tulipa
Fi cus communi s
Hamin noea antillarum
Hami noea solitaria
Hami noea succi nea
Hyal i na avenacea
Hyal ina pallida
Hyal i na vel i ei
I schadi um recurvum
Ischnochiton papillosus
Laevi cardi um I aevi gat um
Laevi cardi um mortoni
Laevi cardi um pi ctum
Luci na ami antus
Luci na fl ori dana
Luci na multilineata
Luci na nassula
Luci na pensyl vani ca
Luci na radi ans

Table 2. Mblluscs of Sarasota Bay. conti nued.

Table 2. Mblluscs of Sarasota Bay. conti nued.

Pol ymesoda maritima
Prunum api ci num
Prunum guttat um
Pseudocyrena flori dana
Pseudonept unea mul tangul a
Pteria colynbus
Pyrani della crenul ata
Raeta plicatella
Ret usa canaliculata
Ri ssoi na catesbyana
Rupel I aria typica
Semele bellastriata
Semele proficua
Sol emya occi dental is
**Spi sul a solidissin ravenel i
Spisula solidissim similis
Strigilla mirabilis
Tagel us di vi sus
**Tagel us plebei us
Tectonatica pusilla
Tellidora cristata
Tellina alternata
Tellina iris
Tellina I ineata
Tellina magna
Tellina mera
Tellina tampaensis
Tellina tayloriana
Tellina texana
Tellina versicol or
Terebra concava
Terebra dislocata
Terebra protexta
**Trachycardi um egmontianum
Trachycardium muricatum
Transennella conradi na
Transennella cubani ana
Turbonilla dalli
Turbonilla hemphilli
Turbonilla incisa
Turritella exol eta
Urosal pi nx perrugata
Vermicularia fargoi
Vermicularia spirata
Xenophora conchyliophora

Table 3. Mbst common mollusk species of southern Sarasota Bay, ranked in
decreasing order.

1. Mercenaria campechi ensis
2. Nassarius vi bex
3. Tellina I ineat a
4. Chi one cancellata
5. Mulinea lateralis
6. Nucul ana acuta
7. Luci na radi ans
8. Cardita floridana
9. Nucul a proxi ma
10. Terebra di slocata
11. Macrocal lista ni moosa
12. Laevi car di um mort oni
13. Crepi dul a pl ana
14. Busycon contrarium
15. Dosi nia di scus
16. Tellidora cristata
17. Crepidul a formicata
18. Prunum api ci num
19. Brachi dontes exustus
20. Cerithi um floridanum

Table 4. Distribution of all mollusk species in southern Sarasota Bay.

No. of St ations

Mean No. of
Speci es/Station
S. D.
CLASS II WATERS
Sarasota County 12
20
Longboat Key
Cl ass II Overall: 49
CLASS III WATERSSarasota County3
City of Sarasota 34
Manatee County 7
Cl ass III Overall: 44
SHELLFI SH STATI ONS
Uncl assi fi ed 26
Condi ti onal 16
Prohi bi ted 51
17
City of Sarasota
6.7
2. 35
4. 4 3. 397. 34. 50
6. 0 3. 78
7. 0 1. 00
6. 6 4. 54
9. 3 4. 23
7.1 4. 39
6. 1 4. 45
5. 2 3. 27
7. 1 4. 11

Table 5. Frequency distribution of potentially edi ble mollusks in southern Sarasota Bay.

Speci es	Nunber Dead	of Stations Al i ve	Speci es Ei ther	Found Rank
Mercenaria campechi ensis	37	23	60	1
Chi one cancellata	16	12	28	2
Macrocallista ni moosa	11	3	14	3
Crepidula fornicata	8	3	11	4
Di nocar di um robust um vanhyni ngi	9	2	11	5
Crassostrea virginica	5	3	8	6
Busycon contrarium	3	3	6	7
Trachycar di um egmonti anum	3	1	4	8
Polinices duplicatus	2	1	3	9
Pleuropl oca gi gantea	2	1	3	10
Spi sula solidi ssima ravenel i	1	1	2	11
Donax variabilus	1	1	2	12
Busycon spiratum	2	0	2	13
Atrina sp.	2	0	2	14
Macoma constricta	1	0	1	15
Mel ongena corona	0	1	1	16
Aequi pecten irradians	1	0	1	17
Tagel us pl ebi us	1	0	1	18
Noetia ponderosa	1	0	1	19

Table 6. Distribution of the hard clam Mercenaria campechiensis, in southern Sarasota Bay.

	Number Live	Number Dead	Number Both	$\begin{gathered} \text { All } \\ \text { Cases } \end{gathered}$	Percent Tot al Stations
CLASS II WATERS					
Sarasota County	2	4	3	9	75\%
Longboat Key	1	6	2	9	45\%
City of Sarasota	2	5	0	7	41\%
Cl ass II Overall:	5	15	5	25	50\%
CLASS III WATERS					
Sarasota County	1	0	2	3	100\%
City of Sarasota	4	8	3	15	29\%
Manatee County	1	2	2	5	71\%
Cl ass III Overall:	6	10	7	23	52\%
SHELLFI SH STATUS					
Uncl assi fi ed	3	6	1	10	38\%
Condi ti onal	0	6	2	8	50\%
Prohi bi ted	7	14	9	30	59\%

Table 7. Distribution of all mollusk species in southern Sarasota Bay in rel ation to Witaker Bayou.

ILER	No. Stations	Mean No. Speci es/Ti er	S. D.	Tot al No. Uni que Speci es/Ti er
1	3	1.33	2.3	4
2	6	12	5.4	41
3	7	7.7	4.15	33
4	7	6.3	4.35	27
5	7	7.4	3.5	35
6	7	5.7	4.5	28
7	7	4.1	2.19	20
8	7	0.6	4.7	32
COPROSTANOL $>10 \mathrm{ng} / \mathrm{g}$ $40 \mathrm{ng} / \mathrm{g}$	41	52		

Table 8. Effect of distance from Witaker Bayou, and coprostanol, on Mercenaria distribution in southern Sarasota Bay.

Di st ance Ti er	No. of Stations	No. Li ve	No. Dead	No. Both	Total	Percent
1	3	0	0	0	0	0\%
2	6	1	3	1	5	83\%
3	7	0	2	1	3	43\%
4	7	2	0	1	3	43\%
5	7	1	2	1	4	57\%
6	7	0	2	1	3	43\%
7	7	1	2	0	3	43\%
8	7	1	1	1	3	43\%
COPROSTANOL						
> $10 \mathrm{ng} / \mathrm{g}$	41	6	10	3	19	46\%
$<10 \mathrm{ng} / \mathrm{g}$	52	5	15	9	29	56\%

APPENDI X

Table A. LORAN Coordinates for Mbllusk Stations Sampled in Sarasota Bay.

Table B. Sarasota Bay Mbllusk Study - Abi otic Data.

Table C. Names and Species Codes of Mbllusks Collected from Sarasota Bay, May 1986.

Table D. Station Reports. See Table C for species names. D, dead speci men; L, live specimen; P, petite Ponar; D, dredge; 0, observed by di ver.

Table A. LORAN coordi nates for mollusk stations sampled in Sarasota Bay.

Table A. Continued.

Station	LORAN	Coordi nates	Station	LORAN	Coordi nates
55	14179. 2	244449.0	82	14178. 6	6 44470.9
56	14178. 6	44453.9	83	14177.7	44467.0
57	14177. 4	444460.9	84	14175.8	844459.7
58	14177. 9	44463.8	85	14175. 0	044445.5
59	14182.4	444428.1	86	14175. 3	344440.1
60	14183. 0	44432.2	87	14175. 5	544436.4
61	14182. 3	344433.0	88	14176. 5	544438.0
62	14183. 2	244437.9	89	14177. 5	44436.6
63	14182.7	744438.9	90	14178.8	844431.0
64	14182. 0	44438.9	91	14174. 3	44434.5
65	14183. 2	244443.0	92	14174. 3	44433.1
66	14184. 2	244442.1	93	14175. 4	444432.4
67	14181. 2	244444.5			
68	14181. 0	44450.2			
69	14182. 5	544448.9			
70	14183.7	744448.0			
71	14185. 3	34446.2			
72	14184. 3	34453.1			
73	14182.4	44455.1			
74	14180. 5	44455.0			
75	14180. 0	44459.0			
76	14182.5	544459.1			
77	14184. 4	44456.5			
78	14186. 0	44450.0			
79	14186. 7	744454.9			
80	14182. 4	444464.8			
81	14179. 5	544464.1			

Table B. SARASOTA BAY MOLLUSK STUDY - ABI OIC C DATA

STA	DEPTH (ft)		SUR/ BOT	SAL.	(ppt)	TEMP.	(C)	D. O. (ppm)
1	6. 4	S		25. 36		24. 95		4. 6
1	6. 4	B		34. 05		24. 05		6. 6
2	1	1		I		1		1
3	5. 9	S		34. 51		24. 35		7. 5
3	5. 9	B		34. 70		24. 22		7.6
4	12.0	S		34. 70		24. 15		7. 8
4	12.0	B		35. 07		22. 50		8.1
5	11.7	S		35. 04		23. 67		8.1
5	11.7	${ }_{\text {B }}$		35. 25		22. 25		8.7
6	2.4	S		35. 00		25. 58		7.8
6	2. 4	B		35. 02		25. 32		7.8
7	7. 0	S		35. 27		25. 95		9.5
7	7.0	B		35. 22		22. 62		8.7
8	14.9	S		32. 23		22. 55		8.3
8	14.9	B		35. 44		22. 08		8. 2
9	10.7	S		35. 28		22. 30		8. 5
9	10.7	B		35. 30		21. 97		8. 6
10	6. 2	S		35. 03		23. 20		8.6
10	6. 2	B		35. 22		22. 35		8. 8
11	1	।		1		I		I
12	4. 2	S		35. 35		25. 76		13.4
12	4. 2	B		35. 36		25. 80		13. 4
13	2. 5	।		35. 28		23. 16		6.0
13	2. 5	B		35. 13		21. 50		3.7
14	15.9	S		35. 16		23. 12		8. 3
14	15.9	B		35. 11		22. 78		8. 2
15	2.0	S		34.97		22. 43		4. 9
15	2.0	B		35. 15		22. 36		5. 2
16	6. 2	S		35. 11		23. 82		7. 8
16	6. 2	B		35. 00		23. 45		8. 0
17	8. 5	S		35. 19		24. 31		8.1
17	8. 5	B		34. 96		24. 06		8.1
18	9. 8	S		34.87		24. 46		8.1
18	9. 8	B		35.00		24. 19		7.1
19	9. 9	S		34.93		24. 73		8.1
19	9. 9	B		35. 04		23. 00		8. 2
20	8. 5	S		34. 86		24. 82		8.0
20	8. 5	B		34. 65		24. 66		8. 0
21	1	1		1		1		1
22	8. 2	S		34. 35		25. 66		7.8
22	8. 2	B		34. 27		24. 60		7.8
23	3.7	S		34. 42		26. 71		9. 6
23	3. 7	B		34. 58		25. 86		9. 8
24	3. 9	S		34. 85		25. 90		7. 9
24	3. 9	B		34. 64		25. 81		8. 3
25	14.2	S		34. 70		25. 35		8. 0
25	14.2	B		34. 94		23. 55		8. 3
26	1	1		1		I		1

Table B. (cont.) SARASOTA BAY MOLLUSK STUDY - ABI OTIC DATA

STA.	DEPTH (ft)		SUR/ BOT	SAL.	(ppt)	TEMP.	(C)	D. 0
27	3.0	S		34.80		26.55		8.9
27	3.0	B		34.68		25.37		9.6
28	4.0	S		34.84		26.15		9.7
28	4.0	B		34.50		26.05		9.7
29	4.6	S		34.75		26.11		8.5
29	4.6	B		34.73		26.00		8.8
30	9.7	S		35.04		23.94		8.4
30	9.7	B		35.25		23.03		8.7
31	5.7	S		35.28		23.92		9.0
31	5.7	B		34.66		23.88		9.2
32	7.8	S		35.28		23.27		8.7
32	7.8	B		35.29		23.05		8.9
33	3.6	S		35.35		23.27		8.5
33	3.6	B		35.33		23.26		8.8
34	12.8	S		35.27		24.90		9.8
34	12.8	B		35.36		22.74		9.5
35	12.9	S		35.25		24.95		9.4
35	12.9	B		35.19		23.26		9.3
36	5.4	S		35.36		24.55		8.8
36	5.4	B		35.24		23.72		9.2
37	10.5	S		35.00		24.31		8.0
37	10.5	B		35.00		24.17		7.9
38	10.8	S		34.97		23.77		8.2
38	10.8	B		35.13		23.01		8.0
39	9.4	S		35.26		23.65		8.3
39	9.4	B		35.07		23.45		8.0
40	10.9	S		35.05		23.02		8.2
40	10.9	B		35.45		21.64		8.3
41	10.0	S		35.17		23.53		8.3
41	10.0	B		35.28		22.64		8.2
42	9.3	S		35.28		24.65		8.0
42	9.3	B		35.23		24.35		7.9
43	9.7	S		34.75		25.34		6.4
43	9.7	B		35.31		24.43		5.6
44	I	I		I		I		I
45	2.1	S		35.16		26.57		11.8
45	2.1	B		35.20		26.48		11.9
46	10.1	S		35.08		25.21		8.0
46	10.1	B		35.15		24.85		8.2
47	11.4	S		34.92		24.76		7.9
47	11.4	B		34.95		24.60		8.1
48	10.6	S		34.92		24.66		8.3
48	10.6	B		34.97		24.28		8.0
49	10.7	S		35.04		24.76		8.2
49	10.7	B		35.03		24.20		8.3
50	11.4	S		35.15		25.00		8.6
50	11.4	B		35.14		24.65		8.8
51	8.0	S		35.02		25.45		8.5

Table B. (cont.) SARASOTA BAY MOLLUSK STUDY - AbIOTIC DATA

STA	DEPTH (ft)	SUR/ BOT	SAL. (ppt)	TEMP. (C)	D. $\mathbf{0}$ (ppm)
51	8.0	B	35.02	25.45	8.6
52	11.0	S	35.11	25.32	9.0
52	11.0	B	35.26	25.18	8.9
53	11.4	S	35.02	25.18	9.3
53	11.4	B	35.16	24.92	9.4
54	9.4	S	34.98	25.06	8.8
54	9.4	B	35.03	24.92	8.9
55	12.2	S	35.16	25.37	8.4
55	12.2	B	35.28	25.18	8.4
56	10.5	S	35.05	25.55	8.6
56	10.5	B	35.06	24.68	8.7
57	8.1	S	35.20	26.18	9.2
57	8.1	B	35.05	26.02	9.3
58	2.7	S	35.22	27.28	12.7
58	2.7	B	35.36	27.37	13.2
59	2.0	S	33.69	25.55	5.2
59	2.0	B	34.54	25.71	4.7
60	5.5	S	34.28	25.26	6.0
60	5.5	B	34.82	25.44	5.2
61	9.0	S	34.75	25.17	8.0
61	9.0	B	34.94	25.19	7.9
62	5.2	S	34.79	25.55	7.3
62	5.2	B	34.85	25.50	7.2
63	8.2	S	35.05	25.64	8.6
63	8.2	B	35.06	25.64	8.5
64	10.2	S	35.02	25.68	8.5
64	10.2	B	35.00	25.11	8.5
65	6.8	S	35.11	26.05	8.4
65	6.8	B	35.19	25.92	8.4
66	4.6	S	35.02	26.59	8.5
66	4.6	B	34.86	26.31	8.5
67	10.3	S	35.14	25.80	8.8
67	10.3	B	34.84	25.36	8.8
68	11.2	S	35.16	26.14	8.0
68	11.2	B	35.12	25.75	8.2
69	9.2	S	34.80	26.29	8.3
69	9.2	B	34.93	26.29	8.4
70	8.2	S	35.15	26.41	8.2
70	8.2	B	35.25	26.27	8.3
71	2.0	S	35.20	27.90	11.1
71	2.0	B	35.17	27.86	11.1
72	6.9	S	35.34	26.53	8.3
72	6.9	B	35.40	26.48	8.4
73	10.7	S	34.84	26.31	8.2
73	10.7	B	35.16	26.25	8.4
74	12.0	S	35.12	26.22	8.5
74	12.0	B	35.24	26.03	8.4
75	9.0	S	35.18	26.27	8.9

Table B. (cont.) SARASOTA BAY MOLLUSK STUDY - ABI OTIC DATA

Table C. Names and species codes of mollusks collected from Sarasota Bay, May 1986.
NameSpeci es Code
Abra aequal is 1
Acteoci na canal icul ata 2
Anachi s floridana 3
Anachi s obesa 4
Anodontia al ba 98
Anomi a si mpl ex 5
Arcopsis adansi 6
Aequi pecten irradi ans 7
Atrina sp. 91
Barbatia candida 95
Batillaria minima 8
Bittium varium 9
Brachi dontes exustus 88
Bulla striata 10
Busycon contrarium 11
Busycon spi ratum 12
Canthar us tinctus 90
Cardita floridana 13
Cerithi um floridanum 14
Cerithi um muscarum 15
Chi one cancellata 16
Chi one pygnaea 17
Col unbella rusticoi des 18
Conus floridana 20
Conus spurius 21
Corbula contracta 22
Crassinella I unulata 23
Crassispira I eucocyma 24
Crassospira tampaensis 25
Crassostrea virginica 92
Crepi dula acul eata 26
Crepi dul a convexa 27
Crepi dula forni cata 28
Crepidula maculosa 29
Crepi dul a pl ana 30
Cymatoica orientalis 31
Dental ium pil sbryi 32
Di nocar di um robust um vanhyni ngi 33
Donax variabilus 34
Dosi ni a di scus 35
Dosi ni a el egana 36
Fasciol aria hunteri 37
Fasciol aria tulipa 38
I schadi um recurvum 39
Laevi cardi um nortoni 40
Laevi cardi um pi ctum 41
Luci na nassul a 43

Table C. Continued.
Name Speci es Code
Luci na radi ans 44
Lyonsi a hyal ina floridana 45
Macoma constricta 46
Macrocallista ni mbosa 86
Mactra fragilis 47
Mangelia stellata 48
Mel ampus monilus 49
Mel anel I a sp. 50
Mel ongena corona 96
Mercenaria campechi ensis 51
Mbdi ol us americanus 56
Mbdul us modul us 52
Mulinea I ateralis 53
Miscul us I ateralis 89
Nassarius vibex 54
Natica canrena 55
Noetia ponderosa 94
Nucul a proxi ma 57
Nucul ana acuta 58
Odostoma bi suturalis 59
Oliva sayana 60
Oivella mutica 61
Ostrea equestris 62
Pandora bushi ana 63
Peripl ona margaritaceum 64
Pl eur opl oca gi gantea 65
Polinices duplicatus 87
Pol ymesoda maritima 66
Prunum api ci num 67
Raeta plicatella 68
Sol emya occi dentalis 69
Spi sula solidi ssi ma raveneli 70
Tagel us di vi suss 71
Tagel us pl ebi us 93
Tellidora cristata 72
Tellina alternata 73
Tellina lineata 74
Tellina magna 97
Tellina mera 75
Tellina versicolor 76
Terebra di slocata 77
Terebra protexta 78
Tr achycar di um egmonti anum 79
Trachycar di um muri cat um 80
Turbonilla dalli 81
Turbonilla hemphilli 82
Turbonilla incisa 83
Turritella exol eta 84
Vermicularia fargoi 85

PAGE NO. 00001
06/ 03/ 86
Table D. SARASOTA BAY MOLLUSK Study Station data

STA. CODE COND GEAR

3	8	D	P
3	54	L	P
3	71	D	P
3	72	L	P
4	6	D	P
4	16	D	D
4	16	D	P
4	21	D	P
4	22	L	P
4	29	L	P
4	30	D	P
4	35	D	P
4	36	D	D
4	36	D	P
4	40	D	P
4	44	D	P
4	51	D	D
4	51	D	P
4	53	L	P
4	54	L	P
4	57	L	P
4	58	D	P
4	61	L	P
4	79	D	P
4	79	D	D
4	89	D	P
5	11	L	0
5	28	L	0
5	32	L	0
5	33	L	D
5	35	L	0
5	36	L	P
5	51	D	0
5	53	D	P
5	54	L	0
5	57	L	P
5	58	L	P
5	68	L	P
5	71	D	0
5	72	L	D
5	87	L	0
6	12	D	0
6	13	D	P
6	16	L	P
6	20	D	P
6	20	L	P
6	35	D	D
6	35	L	P

STA. CODE COND GEAR

6	41	L	P
6	51	D	O
6	54	L	P
6	57	L	P
6	65	D	P
6	67	L	P
6	74	L	P
6	84	D	P
6	85	D	P
7	33	D	P
7	44	D	P
7	54	L	P
7	74	D	P
8	13	D	P
8	16	D	0
8	28	D	P
8	37	L	0
8	51	D	0
8	57	D	P
8	66	D	P
8	74	L	P
8	86	D	O
8	88	D	P
8	95	D	P
10	70	L	P
12	47	D	O
12	54	L	P
12	67	L	P
12	91	D	0
13	10	D	O
13	12	D	O
13	13	D	P
13	13	D	O
13	14	L	P
13	16	L	P
13	16	L	0
13	18	D	P
13	29	L	P
13	37	D	O
13	38	L	O
13	52	D	O
13	52	D	P
13	54	L	P
13	67	D	P
13	73	D	P
13	85	D	P
13	85	D	0
13	95	D	0

PAGE NO. 00002
06/ 03/ 86
Table D. (Cont.) SARASOTA BAY MOLLUSK STUDY - STATION DATA

STA. CODE COND GEAR

14	28	D	P
14	44	D	P
14	74	L	P
14	74	D	P
15	5	D	P
15	13	L	0
15	14	L	P
15	16	D	0
15	51	L	0
15	52	D	P
15	52	D	0
15	67	L	P
15	84	D	P
15	85	D	P
15	85	D	0
15	95	L	P
16	14	D	0
16	14	L	P
16	16	D	0
16	35	D	0
16	43	L	0
16	71	L	P
16	74	L	P
16	74	D	0
17	7	D	P
17	11	D	0
17	16	L	0
17	23	D	P
17	28	D	0
17	30	D	P
17	35	L	P
17	43	D	P
17	51	L	P
17	54	L	P
17	55	L	P
17	57	L	P
17	60	D	0
17	87	D	0
17	92	D	0
18	11	L	P
18	57	L	P
18	58	L	P
18	74	L	P
19	16	D	0
19	33	D	0
19	44	L	P
19	57	L	P
19	74	L	P

STA. CODE COND GEAR

20	51	L	P
20	51	D	0
20	53	D	P
20	53	D	D
20	53	L	D
20	58	L	P
20	74	D	P
20	82	D	P
20	86	D	P
20	13	D	O
21	16	D	O
21	28	D	O
21	54	L	P
21	14	D	O
22	16	L	P
22	22	L	P
22	35	D	P
22	40	D	P
22	51	L	O
22	51	D	P
22	67	L	P
22	71	D	P
22	71	D	O
22	72	D	P
22	76	L	P
22	86	D	O
24	11	L	O
24	33	D	0
24	54	L	0
24	74	D	O
24	74	L	0
25	74	L	P
25	79	L	P
26	8	D	P
26	28	D	P
26	30	D	P
26	35	D	P
26	40	D	P
26	51	D	O
26	92	L	P
27	14	D	P
27	16	D	O
27	16	D	P
27	51	D	O
27	54	L	P
27	74	L	P
28	5	L	P
28	13	D	P

PAGE NO. 00003
06/03/86
Table D. (cont.) SARASOTA BAY MOLLUSK STUDY - STATION DATA
STA CODE COND YEAR
STA. CODE COND GEAR

28	24	D	P	34	86	D	0
28	40	L	P	34	88	D	P
28	46	D	P	34	97	D	P
28	54	L	P	35	16	L	0
28	67	L	P	35	38	L	0
28	74	L	P	35	54	L	0
28	70	D	P	35	74	L	0
29	26	L	P	36	38	L	0
29	45	L	P	36	51	D	0
29	54	L	P	36	54	L	P
29	71	D	P	37	1	L	P
29	72	L	P	37	4	L	P
29	86	D	0	37	5	D	D
30	28	L	P	37	6	D	P
30	74	L	P	37	16	D	0
30	80	D	P	37	16	D	D
31	35	D	P	37	16	D	P
31	40	D	P	37	22	L	P
31	43	L	P	37	29	D	P
31	51	D	0	37	29	D	D
31	53	D	P	37	33	D	D
31	58	L	P	37	40	D	0
31	69	D	P	37	51	D	0
31	72	L	P	37	51	D	P
31	74	L	P	37	51	D	D
31	80	D	P	37	54	L	P
32	9	D	P	37	57	L	P
32	17	D	P	37	68	D	D
32	35	D	D	37	68	D	0
32	36	D	P	37	73	D	0
32	44	D	P	37	74	L	P
32	48	D	P	37	94	D	0
32	53	D	P	38	11	L	0
32	63	D	P	38	44	D	P
33	28	L	P	38	72	D	P
33	35	D	P	39	33	D	0
33	51	L	P	39	54	L	P
33	60	L	D	39	58	L	P
33	74	D	D	39	77	L	P
33	74	D	P	40	34	L	0
33	79	D	0	40	44	D	0
33	98	D	D	40	51	L	0
34	5	D	P	40	51	D	0
34	13	D	P	40	57	L	P
34	16	D	P	40	58	L	P
34	28	D	P	40	72	D	P
34	37	L	0	40	74	L	P
34	74	L	P	41	2	L	P

PAGE NO. 00004
06/03/86
Table D. (cont.) SARASOTA BAY MOLLUSK STUDY - STATION DATA

STA. CODE COND GEAR

41	22	L	P
41	44	L	P
41	51	D	0
41	60	L	D
41	77	L	D
42	51	D	0
42	55	L	P
43	53	D	P
43	57	D	P
43	70	D	P
44	38	L	O
44	51	D	0
45	13	D	P
45	14	D	P
45	15	D	P
45	29	L	P
45	30	L	P
45	38	L	0
45	51	D	0
45	52	L	P
45	52	D	P
45	54	L	P
45	57	D	P
45	66	D	P
45	86	D	0
46	44	L	P
46	51	D	O
46	51	L	O
46	74	L	P
47	22	L	P
47	47	D	0
47	51	D	0
47	54	L	P
47	57	L	P
47	77	L	0
47	83	L	P
48	22	L	P
48	51	D	0
48	54	L	P
48	57	L	P
48	58	L	P
48	77	L	0
49	33	D	0
49	51	D	0
49	53	L	P
49	60	L	0
49	72	L	D
49	77	L	0

STA. CODE COND GEAR

49	77	L	P
50	43	D	P
50	53	L	P
50	54	D	0
50	58	L	P
50	68	D	0
50	77	D	P
50	77	L	P
51	5	L	P
51	5	D	O
51	16	D	P
51	22	D	P
51	25	D	D
51	35	D	P
51	40	D	P
51	51	D	P
51	67	D	P
51	71	D	P
51	72	D	P
51	74	D	P
51	86	D	P
52	11	L	0
52	13	D	0
52	29	D	0
52	55	L	P
52	58	L	P
52	73	D	P
52	86	D	0
53	11	L	0
53	16	L	P
53	28	D	P
53	51	D	0
53	51	L	0
53	54	L	P
53	58	L	P
53	72	L	P
53	89	D	P
54	5	D	D
54	16	L	P
54	28	D	P
54	51	D	P
54	53	D	P
54	54	L	P
54	62	D	D
54	71	D	P
54	74	D	P
54	88	D	P
54	92	D	P

Table D. (cont.) SARASOTA BAY MDLLUSK STUDY - STATI ON DATA

STA CODE COND GEAR

54	93	D	D
55	22	L	P
55	26	D	P
55	51	D	O
55	51	L	O
55	54	L	P
55	58	D	P
55	74	L	P
55	88	D	P
56	33	L	P
56	51	L	P
56	53	D	P
56	58	L	P
57	44	L	P
57	53	L	P
57	58	L	P
57	73	D	0
57	77	L	0
58	11	D	0
58	11	L	0
58	13	L	0
58	15	L	0
58	16	L	0
58	16	D	P
58	29	L	0
58	37	L	0
58	40	D	0
58	40	L	P
58	51	D	0
58	52	D	P
58	56	D	0
58	65	D	0
58	74	L	P
58	86	L	0
59	11	L	0
59	14	D	P
59	26	D	P
59	29	D	P
59	30	D	P
59	40	D	P
59	50	L	P
59	51	L	0
59	54	D	P
59	54	L	P
59	61	L	P
55	66	L	0
	76	L	P
5			
5			
59			

STA. CODE COND GEAR

59	88	L	P
59	91	D	O
60	1	D	P
60	2	L	P
60	9	D	P
60	53	D	P
60	58	L	P
60	74	D	P
61	9	D	P
61	13	D	O
61	22	L	P
61	31	L	P
61	51	D	0
61	57	L	P
61	68	D	0
61	74	D	P
62	53	L	P
62	77	L	P
63	2	D	P
63	14	D	P
63	51	L	P
63	51	L	0
63	53	L	P
63	71	L	P
63	74	L	P
63	86	D	0
64	54	L	P
64	57	L	P
64	58	L	P
64	67	L	P
65	53	D	P
65	58	L	P
65	67	L	P
65	53	L	P
66	66	77	L
66	88	L	P
67	77	L	0
67	11	D	P
67	40	L	0
67	51	D	P
66	9	D	P
66	30	D	P
66	51	L	P
66	53	L	P
66	58	L	P
67	65	L	0
67			
67			

```
PAGE NO. 00006
```

06/03/86
Table D. (cont.) SARASOTA BAY MDLLUSK STUDY - STATI ON DATA
STA. CODE COND GEAR
STA. CODE COND GEAR

67	51	D	P
67	53	D	P
67	54	D	P
67	54	L	P
67	66	D	P
67	72	L	P
68	30	D	P
68	51	L	O
68	55	L	P
68	66	D	P
68	67	L	P
68	74	L	P
68	82	D	P
68	92	D	P
69	33	D	0
69	51	L	P
69	53	D	P
69	54	L	P
69	77	D	0
69	87	D	0
70	2	L	P
70	2	D	P
70	9	D	P
70	44	D	P
70	44	L	P
70	51	D	0
70	66	D	P
70	74	L	P
70	77	L	P
71	3	L	0
71	5	L	0
71	11	L	0
71	14	D	0
71	16	D	0
71	29	L	0
71	38	L	0
71	39	L	0
71	40	D	P
71	47	D	0
71	51	L	0
71	52	D	P
71	54	L	P
71	78	L	P
71	92	D	P
72	92	L	0
74	D	P	
74	L	P	
71			
70			

73	16	L	P
73	44	L	P
73	51	L	0
73	51	D	0
73	53	D	P
73	54	L	P
73	58	L	P
73	88	D	P
74	16	L	P
74	30	D	P
74	41	L	P
74	44	L	P
74	51	L	0
74	51	D	0
74	53	D	P
74	58	L	P
74	73	L	P
74	82	D	P
75	2	L	P
75	33	D	0
75	54	L	P
75	58	L	P
75	74	D	P
75	77	L	0
76	5	D	P
76	16	L	P
76	30	D	P
76	35	D	P
76	40	D	P
76	44	L	P
76	51	D	0
76	51	L	P
76	53	L	P
76	54	D	P
76	71	D	P
76	86	D	0
76	88	D	P
77	2	D	P
77	13	D	0
77	16	L	P
77	30	L	0
77	41	L	P
77	44	L	P
77	51	L	0
77	51	D	0
77	53	L	P
77	58	L	P
77	61	L	P

PAGE NO. 00007
06/03/86

Table D. (cont.) SARASOTA BAY MOLLUSK STUDY STATION DATA

STA. CODE COND GEAR

77	72	D	P
77	77	L	0
77	81	D	P
77	88	D	0
77	88	D	P
78	15	D	P
78	29	L	P
78	51	D	0
78	54	L	P
78	66	D	P
78	74	D	P
79	8	D	0
79	8	D	P
79	13	D	P
79	27	D	P
79	30	L	0
79	40	L	P
79	54	L	0
79	54	L	P
79	88	D	P
79	92	L	0
79	96	L	0
80	27	D	P
80	45	L	P
80	51	D	P
80	53	D	P
80	54	D	P
80	69	L	P
80	80	L	P
81	55	L	P
81	58	L	P
81	67	L	P
81	74	D	P
81	77	D	P
82	13	D	P
82	16	D	P
82	51	D	0
82	65	L	0
82	90	L	P
82	95	L	P
83	16	D	P
83	34	O	P
84	15	L	P
84	20	L	P
84	49	D	P
84	54	L	P
84	74	L	P
84	92	D	0

STA. CODE COND GEAR

85	16	D	P
85	54	L	P
85	73	D	P
86	10	D	P
86	13	L	P
86	16	D	P
86	51	L	O
86	51	D	O
87	11	L	O
87	44	D	P
87	51	O	O
87	62	D	P
87	66	L	P
87	86	D	P
88	15	L	O
88	44	L	P
88	67	L	P
88	86	L	O
89	1	D	P
89	1	L	P
89	58	L	P
89	74	L	P
30	30	D	P
90	44	L	P
90	54	L	P
90	64	L	P
92	33	D	O
92	34	L	P
93	9	D	P
93	16	L	P
93	44	L	P
93	51	L	O
93	64	L	P
93	73	D	P
93	81	D	P
93	86	L	O
8			

[^0]: Recent Managenent Deci si ons
 In 1986 the Fl orida Depart nent of Envi ronnental Regulation recomended to the Envi ronnent al Regul ation Comission (ERC) that Sarasota Bay be desi gnated as Outstanding Fl orida Water (OFW, because it is a "thriving est uarine system" and "nany shellfish and finfish speci es rely upon the assets of these bay waters for survi val ". Desi gnation of the Bay as OFW means that nore stringent criteria will be used in issuing state and regi onal permits. The ERC adopted the recomendation but exempted an area of the bay $1,500 \mathrm{ft}$ in radi us from the nouth of Whitaker Bayou.

