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Rewriting in proof assistants

increasing interest in using rewriting in proof assistants
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e © Dedukti
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° Agda
° Coq ?

— How to Tame your Rewrite Rules (TYPES 2019)
— Modular Confluence for Rewrite Rules in MetaCoq (TYPES 2020)

common point: all these systems use dependent types



Rewriting in Agda

https://agda.readthedocs.io/

@ ES I (0@ s foren/v2.6.1 lang iting.htrr

Pragmas Docs » Language Reference » Rewriting

Prop

Record Types

Eetiection Rewriting

© Rewriting

= Rewrite rules by example Rewrite rules allow you to extend Agda's evaluation relation with new computation rules.
General shape of rewrite rules
Contirce kv
Advanced usage This page is about the --rewriting option and the associated REWRITE builtin. You might be

Run-time Irrelevance looking for the documentation on the rewrite construct instead.

Safe Agda

ErEp= Rewrite rules by example

Syntactic Sugar

Syntax Declarations To enable rewrite rules, you should run Agda with the flag --rewriting and import the modules

Agda.Builtin.Equality and Agda.Builtin.Equality.Rewrite :
Telescopes

Termination Checking
{-# OPTIONS --rewriting #-}
Universe Levels
module language.rewriting where
With-Abstraction g ¢
Without K open import Agda.Builtin.Equality
open import Agda.Builtin.Egualitv.Rewrite



Confluence checking in Agda

‘\(—\w > G @ [ © | @ hips/agdar io/en/v2.6.1/lang -checking
Once a rewrite rule has been added, Agda automatically rewrites all instances of the left-hand side
Pragmas to the corresponding instance of the right-hand side during reduction. More precisely, a term
Prop (definitionally equal to)  pis ... p.o is rewritten to vo , where o is any substitution on the
Record Types pattern variables x: , .. x. .
Reflection . .
Since rewriting happens after normal reduction, rewrite rules are only applied to terms that would
2 Rewriting 9
otherwise be neutral.
= Rewrite rules by example
S R Confluence checking
Confluence checking
Advanced usage Agda can optionally check (local) confluence of rewrite rules by enabling the --confluence-check

Run-time Irrelevance
Safe Agda

Sized Types

Syntactic Sugar
Syntax Declarations
Telescopes
Termination Checking
Universe Levels
With-Abstraction
Without K

flag.

Advanced usage

Instead of importing Agda.Builtin.Equality.Rewrite , a different type may be chosen as the rewrite
relation by registering it as the REWRITE builtin. For example, using the pragma

{-# BUILTIN REWRITE -~ #-} registers the type - as the rewrite relation. To qualify as the

rewrite relation, the type must take at least two arguments, and the final two arguments should be
visible.

© Previous Next @
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Dedukti

Dedukti:

— purely functional “programming” language (\-calculus)

with dependent types (types can take values as arguments)

functions and types A\ can be defined (by rewrite rules R)

implements the Al-calculus modulo rewriting (AT/R)

Example:
symbol N:TYPE symbol O:N symbol s:N — N
symbol F:N — TYPE

rule F O — N
with F (s $x) < N — F $x

assert F 2 =N —- N — N



Applications of Dedukti

— logical framework for representing the theories and the proofs
of many logical systems (HOL-Light, Coq, Agda, PVS, etc.)

see Guillaume Genestier's FSCD talk on July 3rd at 15:00 &
— independant proof checker

— proof transformations



Dedukti v2
https://deducteam.github.io/

0 & /deducteam.github.io

dedukti

A Logical Framework

What is Dedukti?

Dedukti is a logical framework based on the Al-calculus modulo in which many theories and logics can be expressed.

Where does the name "Dedukti" comes from?

“Dedukti” means "to deduce"” in Esperanto.

How to get/install/use Dedukti?

See the GitHub repository.

See the manual for the current version (v2.5.1) of Dedukti.
There is also a tutorial.

Dedukti libraries

Manual developments

« DKIib is a library defining basic data structures.
« Sigmaid (SIGMA-calculus In Dedukti) is an encoding of the simply-typed c-calculus in Dedukti.
« Libraries A github repository that aims to contain every hand-written Dedukti files. In the short run, the two links above should be outdated.

Generated libraries
Each tarball contains a Makefile in order to check the library. You may want to modify the variables DKDEP and DKCHECK that are the paths of the

ry i the library produced by Holide on the standard library of the common format for HOL proof assistant: OpenTheory
thmetic library is a library of Dedukti files generated by Krajono.

ibrary is a library of Dedukti files generated by Focalide.

Zenon Modulo Set Theory library is a library of Dedukti files generated by Zenon Modulo and dealing with the B Method set theory. (Rem




Dedukti v3 aka Lambdapi

https://github.com/Deducteam/lambdapi/

[@ |& Iigithub. OCUMENTATION. md

User manual for Lambdapi

Lambdapl Is a proof assistant based on the All-calculus modulo rewriting, mostly compatible with the proof checker Deduki.
This document provides a good starting point for anyone wishing to use or to contribute to the project.

Table of contents

® Whatls Lambdapl?
* Installation
* Getting started
* Command line options
® User Interfaces
© Emacs
© VSCode
o Vim
© Atom
® Module system
® Syntax of terms
® Commands
® Tactics
* Compatibllity with Deduktl
® Bibliographic references

o |Includina Lambdapl code Into a Latex document



Rewrite rules and matching in Dedukti

— LHS can be overlapping:

rule 0 + $y — 3y
with s $x + 3y — s ($x + $y)
with $x + O — $x
with $x + s $y = s ($x + $y)



Rewrite rules and matching in Dedukti

— matching on defined symbols:

rule ($x + $y) + $z — $x + ($y + $z)



Rewrite rules and matching in Dedukti

— LHS can be non-linear:

rule $x + (- $x) — 0



Rewrite rules and matching in Dedukti

— higher-order pattern-matching:

rule diff (Ax.sin $f[x]) — diff (Ax.$f[x])*cos
rule lam(Ax.app $£[] x) — $£[]1 // n-rule



Rewrite rules and matching in Dedukti

— LHS can be overlapping:

rule 0
with s $x
with $x
with $x

+
+
+
+

Sy — 3y
3y — s ($x + $y)
0 — $x

s $y — s ($x + 3By)

— matching on defined symbols:

rule ($x + $y) + $z — $x + ($y + $z)

— LHS can be non-linear:

rule $x + (- $x) — O

— higher-order pattern-matching:

rule diff (Ax.sin $f[x]) — diff (Ax.$f[x])*cos
rule lam(Ax.app $£f[] x) — $£f[]

See Gabriel Hondet's FSCD talk on July 3rd at 15:30 &



Confluence checking in Dedukti

Dedukti rewrite systems can be exported to the HRS format of the
confluence competition (CoCo) but:

s://github.com/Deduct

mbdapirblob/master/docfoptions.md

Confluence checking

Lambdapl provides an option --confluence cMD to check the confluence of the rewriting system by calling an external prover
with the command cmp . The given command recelves HRS formatted text on Its standard Input, and It Is expected to output on
the first line of its standard output either YES , NO OF MAYBE .

As an example, echo MAYBE Is the simplest possible (valid) confluence-check that one may use.

For now, only the cs1sho confluence checker has been tested with Lambdapi. It can be called using the flag - -confluence

"path/to/csiho.sh --ext trs --stdin" .

To Inspect the .trs file generated by Lambdapl, one may use the following dummy command: --confluence "cat >
output.trs; echo MAYBE" .

Termination checking

Lambdapli provides an option --termination cMD to check the termination of the rewriting system by calling an external
prover with the command cmp . The given command recelves XTC formatted text on Its standard Input, and It Is expected to
output on the first line of its standard output elther YES , NO or MAYBE .

As for confluence, echo MAYBE Is the simplest possible (valid) command for checking termination.

To the best of our knowledge, the only termination checker that is compatible with all the features of Lambdapl Is
SizeChangeTool . It can be called using the flag --termination "path/to/sct.native --no-color --stdin=xml"

If no type-level rewriting Is used wanda can also be used. However, It does not directly accept input on Its standard input, so it




Confluence checking in Dedukti

Dedukti rewrite systems can be exported to the HRS format of the
confluence competition (CoCo) but:
— the HRS format does not accept dependent types

github.com/De bdapifblob/master/docfoptions.md

Confluence checking

Lambdapl provides an option --confluence cMD to check the confluence of the rewriting system by calling an external prover
with the command cmp . The given command recelves HRS formatted text on Its standard Input, and It Is expected to output on
the first line of its standard output either YES , NO OF MAYBE .

As an example, echo MAYBE Is the simplest possible (valid) confluence-check that one may use.

For now, only the cs1sho confluence checker has been tested with Lambdapi. It can be called using the flag - -confluence

"path/to/csiho.sh --ext trs --stdin" .

To Inspect the .trs file generated by Lambdapl, one may use the following dummy command: --confluence "cat >
output.trs; echo MAYBE" .

Termination checking

Lambdapli provides an option --termination cMD to check the termination of the rewriting system by calling an external
prover with the command cmp . The given command recelves XTC formatted text on Its standard Input, and It Is expected to
output on the first line of its standard output elther YES , NO or MAYBE .

As for confluence, echo MAYBE Is the simplest possible (valid) command for checking termination.

To the best of our knowledge, the only termination checker that Is compatible with all the features of Lambdapi Iis
SizeChangeTool . It can be called using the flag --termination "path/to/sct.native --no-color --stdin=xml"

If no type-level rewriting Is used wanda can also be used. However, It does not directly accept input on Its standard input, so it




Confluence checking in Dedukti

Dedukti rewrite systems can be exported to the HRS format of the
confluence competition (CoCo) but:

— the HRS format does not accept dependent types

— the TRS format does not accept A-abstractions

& nhpsy/github.com/Deducteam/lambdapi/blob/master/docfoptions.me

Confluence checking

Lambdapl provides an option --confluence cMp to check the confluence of the rewriting system by calling an external prover
with the command cmp . The given command recelves HRS formatted text on Its standard Input, and It Is expected to output on
the first line of its standard output either YES , NO OF MAYBE

As an example, echo MAYBE Is the simplest possible (valid) confluence-check that one may use.

For now, only the cs1sho confluence checker has been tested with Lambdapi. It can be called using the flag - -confluence
"path/to/csiho.sh --ext trs --stdin" .

To Inspect the .trs file generated by Lambdapl, one may use the following dummy command: --confluence "cat >
output.trs; echo MAYBE" .

Terr

ination checking

Lambdapli provides an option --termination cMD to check the termination of the rewriting system by calling an external
prover with the command cmp . The given command recelves XTC formatted text on Its standard Input, and It Is expected to
output on the first line of its standard output elther YES , NO or MAYBE .

As for confluence, echo MAYBE Is the simplest possible (valid) command for checking termination.

To the best of our knowledge, the only termination checker that Is compatible with all the features of Lambdapi Iis
SizeChangeTool . It can be called using the flag --termination "path/to/sct.native --no-color --stdin=xml"

If no type-level rewriting Is used wanda can also be used. However, It does not directly accept input on Its standard input, so it
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Dedukti and the Al-calculus modulo rewriting (AM/R)



AlN-calculus modulo a set R of rewrite rules (Al/R)

terms/types t,u, A, B =

| (function /type symbol)
| x (variable)
| Ax:A.t (abstraction)

(application)

| tu
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AlN-calculus modulo a set R of rewrite rules (Al/R)

terms/types t,u, A, B =

| (function /type symbol)
| x (variable)
| Ax:A.t (abstraction)
| tu (application)
| s € {TYPE,KIND} (sort)
| Nx:A.B (dependent product, written A — B if x ¢ B)

typing environments [ A =
| 0 (empty environment)
| T, x:A (variable declaration)

rewrite rules p =
| Abft...th—u (rewrite rule)



Typing rules of A\[1/R

decl Mvalid THA:s
vaid (e —FAvand

(empty) 7



Typing rules of AI1/R

I valid I x:A, T valid
FrEr-Ar VY T XA Fx:A

(fun)

MxAFt:B TFHINxAB:s N=t:MxAB TFu:A
[ AAL:xAB @PP) B o 0

(abs)



Typing rules of AI1/R

I valid NFA:TYPE [ x:AFB:s

t d
(sort) [+ TYPE : KIND (pro M=MNx:AB:s

Tt A A\L[)’RB [B:s AlgrBifAand B have a common
(COI’IV - reduct wrt the [-rule of A-calculus
N=t:B and the user-defined rules R




Typing rules of AI1/R

Mvalid THA:s

(empty) ———  (decl)

(0 valid I, x:A valid
c I valid I x:A, T valid
) 72, ) FArEx A
NxAFt:B THIMNxAB:s N=t:MxAB TFu:A
(abs) (app)
= Ax:At:NMxAB M- tu: B{x — u}
. I valid d NFA:TYPE [ x:AFB:s
(sort) I+ TYPE : KIND (pro N=MNxAB:s
=t A A\L[)’RB T'EB:s Algr B if Aand B have a common
(COI’IV reduct wrt the [-rule of A-calculus

l=t: B and the user-defined rules R

remark: the type of a term is unique up to ¢2R



Outline

Properties of the Al-calculus modulo rewriting (AI/R)



Some important properties

TC | decidability of the typing relation

SN termination of < g from typable terms
SRs | preservation of typing by —3

SRy | preservation of typing by <z

LCR | local confluence of < g on arbitrary terms
CR | confluence of <3 from typable terms

Question: what are the dependencies between those properties ?



Decidability of type-checking (TC)



Decidability of type-checking (TC)
mix type-inference f} and type-checking |

et A Al B

(conv) -ty B




Decidability of type-checking (TC)
mix type-inference f} and type-checking |

et A Al B

(conv) -ty B
. I" valid d NIN-AJTYPE @, xAFB{s
(sort) T TypErxmp (Po9) FFNxABTs
I valid I, x:A, I valid

f
) 77 a, ) A 1A

b FrN-AJTYPE I, xAFtf B B #KIND
(abs) M= Ax:At f Nx:A.B

et € CoiplxAB THul A
M= tuf B{x+— u}

(app)



Decidability of type-checking (TC)
mix type-inference f} and type-checking |

et € CoiplxAB THul A
M= tuf B{x+— u}

(app)



Decidability of type-checking (TC)
mix type-inference f} and type-checking |

et A Al B

(conv) -ty B
. I" valid d NIN-AJTYPE @, xAFB{s
(sort) T TypErxmp (Po9) FFNxABTs
I valid I, x:A, I valid

f
) 77 a, ) A 1A

b FrN-AJTYPE I, xAFtf B B #KIND
(abs) M= Ax:At f Nx:A.B

et € CoiplxAB THul A
M= tuf B{x+— u}

(app)

Conclusion: for TC we use SN, SR, LCR



Termination (SN)
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Step 1 define a function

[1: types — subsets of SN
A = [Al

invariant by reduction: A < sr A’ = [A] = [A]]

+ other conditions



Termination (SN) [B. Genestier Hermant, FSCD 2019]

Step 1 define a function

[1: types — subsets of SN
A = [Al

invariant by reduction: A < sr A’ = [A] = [A]]

+ other conditions

Step2 prove THt:A = te][A]



Termination (SN) — Step 1

Goal: define a function

[1: types — subsets of SN
A = [A]

invariant by reduction: A —gr A" = [A] = [A]

+ other conditions
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Goal: define a function

[1: types — subsets of SN
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invariant by reduction: A —gr A" = [A] = [A]
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Solution: - [A] _{ [nf(A)] otherwise

using SR and LCR



Termination (SN) — Step 1

Goal: define a function

[1: types — subsets of SN
A = [A]

invariant by reduction: A —gr A" = [A] = [A]

+ other conditions

- I if Ais in normal form (nf)
Solution: - [A] _{ [nf(A)] otherwise

using SR and LCR

A previous works assumed no critical pairs on types



Termination (SN) — Step 2

Goal: prove THt:A = te[A]



Termination (SN) — Step 2

Goal: prove THt:A = te[A]

Solution: for a rule A+ f ] — r with f : lNx : A.B, we assume
Abr:B{x—I}

in any sub-system of A\[1/R + other conditions



Termination (SN) — Step 2

Goal: prove THt:A = te[A]

Solution: for a rule A+ f ] — r with f : lNx : A.B, we assume
Abr:B{x—I}

in any sub-system of A\[1/R + other conditions

Conclusion: for SN we use SR, LCR, TC



Subject-reduction (SR)



Subject-reduction (SR)
aka preservation of typing by reduction

forall T, t, u, A ifTFt:Aand t —gg u, thenT Fu: A

applications:
— in programming languages: ensures memory safety

— in logical systems: correctness of cut elimination



Subject-reduction for S-reduction (SRp)



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7
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Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7

M= (AxcAt)u: B'{x~ u} B{x—u}lsr C THC:s"

(conv)
M= (Ax:At)u: C



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7

M- At Mx:A.B TrHu:A

p (app) Y
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s

(conv)
M= (Ax:At)u: C



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7

M Ax:At: Nx:AB Mx:AB |p NMx:A'B" THNxA.B":s (con)
conv
M= Ax:At: Nx:A B
S
M= Ax:At:Nx:A.B Thu:A
- (app) .
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s

M= (Ax:At)u: C

(conv)



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7
MxAFt:B TxAB:s

(abs)
M Ax:At: Nx:AB Mx:AB |p NMx:A'B" THNxA.B":s (con)
conv

M= Ax:At: Nx:A B
S
M= Ax:At:Nx:A.B Thu:A
p (app) Y
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s
(conv)

M= (Ax:At)u: C



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7
MxAFt:B TxAB:s

(abs)
M Ax:At: Nx:AB Mx:AB |p NMx:A'B" THNxA.B":s (con)
conv

M= Ax:At: Nx:A B
S
M= Ax:At:Nx:A.B Thu:A
p (app) Y
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s
(conv)

M= (Ax:At)u: C

Problem: A" |3z Aand B{x > u} l5r C7



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7
MxAFt:B TxAB:s

(abs)
[ Ax:At:Mx:AB Mx:AB |p NMx:A'B" THNxA.B":s (con)
conv

M= Ax:At: Nx:A B
S
M= Ax:At:Nx:A.B Thu:A
p (app) Y
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s
(conv)

M= (Ax:At)u: C
Problem: A’ |5 Aand B{x > u} [}z C7?

Solution: Mx:A.B [ Mx:A.B' =5 A3 A A Bl B



Subject-reduction (SR) - Case of — 3

Goal: TH(MAx:At)u:C = TkFt{x—u}:C 7
MxAFt:B TxAB:s

(abs)
[ Ax:At:Mx:AB Mx:AB |p NMx:A'B" THNxA.B":s (con)
conv

M= Ax:At: Nx:A B
S
M= Ax:At:Nx:A.B Thu:A
p (app) Y
N (Ax:At)u: B'{x— u} Bi{xw—u}ljr C TEC:s
(conv)

M= (Ax:At)u: C
Problem: A’ |5 Aand B{x > u} [}z C7?

Solution: Mx:A.B [ Mx:A.B' =5 A3 A A Bl B

Conclusion: for SRz we use CR



Subject-reduction for rewriting (SR%)



Subject-reduction (SR) - Case of a rule | < r

oal: VI,o,C, THlo:C = Ttkro:C 7



Subject-reduction (SR) - Case of a rule | < r

Goal: VI,o,C, THIo:C = Tkro:C 7

see my FSCD talk on July 3rd at 14:30 ! ©



Example: tail function on vectors

symbol
symbol
symbol

symbol

V:N — TYPE
nil:Vvo
cons:A — Mn:N,Vn — V(sn)

tail:Mn:N,V(sn) — Vn

tailn (consxpv) < v



Example: tail function on vectors

symbol V:N — TYPE
symbol nil:VO
symbol cons:A — Nn:N,Vn — V(sn)

symbol tail:ln:N,V(sn) — Vn

tail n  (consxpv) — Vv
~ -~ —~—

N :V(sn) :Vn 7




Example: tail function on vectors

symbol
symbol
symbol

symbol

tail n
~—~

V:N — TYPE
nil:Vvo
cons:A — [n:N,Vn — V(sn)

tail:Mn:N,V(sn) — Vn

(cons x, p v ) <
A N :Vp

/

V(sp) Ly V(sn)

:Vn

Vp V% Vn ?



Subject-reduction (SR) - Case of a rule | < r

Goal: VI,o,C, THIlo:C = TFkro:C 7



Subject-reduction (SR) - Case of a rule | < r

Goal: VI,o,C, THIlo:C = TFkro:C 7

Solution:

Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /



Subject-reduction (SR) - Case of a rule | < r
Goal: VI,o,C, THIlo:C = TFkro:C 7
Solution:

Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /

A=1n:TYPE,n:n,x:TYPE x X,...



Subject-reduction (SR) - Case of a rule | < r
Goal: VI,o,C, THIlo:C = TFkro:C 7
Solution:
Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /
A=1n:TYPE,n:n,x:TYPE x X,...

Step 2: compute the equations on X;, x;, X for having A+ [: X



Subject-reduction (SR) - Case of a rule | < r
Goal: VI,o,C, THlo:C = Tkro:C 7
Solution:
Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /
A=1n:TYPE,n:n,x:TYPE x X,...
Step 2: compute the equations on X;, x;, X for having A+ [: X

tail n  (cons _x p
~ ~~




Subject-reduction (SR) - Case of a rule | < r

Goal: VI,o,C, THIo:C = TFkro:C 7

Solution:

Step 1: let A=...,X;: TYPE, X; : X;, ... be the variables of /
Step 2: compute equations on X;, x;, X for having A+ /: X
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Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /
Step 2: compute equations on X;, x;, X for having A+ [: X

Step 3:

Step 4:
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replace gt = gu by t = u if g is undefined
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apply Knuth-Bendix completion to transform the equations
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Goal: VI,o,C, THIo:C = TtFkro:C 7

Solution:
Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /
Step 2: compute equations on X;, x;, X for having A+ [: X

Step 3:

Step 4:

Step 5:

replace gt = gu by t = u if g is undefined
n=N Xx=A p=N v=Vp p=n Vn=X

apply Knuth-Bendix completion to transform the equations
into a convergent rewrite system S

n—N XA p—=N v—=Vn p—n X <—Vn
check A F r: X in any sub-system of A[l/R + S
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Subject-reduction (SR) - Case of a rule | < r

Goal: VI,o,C, THIlo:C = TFkro:C 7

Solution:
Step 1: let A =...,X;: TYPE, x; : X;, ... be the variables of /
Step 2: compute equations on X;, x;, X for having A F /: X
Step 3: replace gt = gu by t = v if g is undefined

Step 4: apply Knuth-Bendix completion to transform the equations into
a convergent rewrite system S

Step 5: check A+ r: X in any sub-system of AT[I/R + S

Conclusion: for SRz we use TC, CR
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We need a finer analysis . ..
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Termination (SN) revised

do we really need
— LCR 7 ok
— TC ? yes but SN(R + | < r) requires TC(R) only

— SR ? no (conjecture, ongoing work)
a simple syntactic condition seems sufficient: that every rule
maps an object to an object, and a type to a type



Outline

Conclusion
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Preservation of properties by rule addition

assume we have a calculus Al/R with LCR, SN, SRg, SRz

how to prove LCR’, SN' and SR’ for Al/R’ with R C R’ ?

Step 1: try to prove LCR’

Step 2: try to prove SN’ using LCR" and TC

Step 3: then CR' by Newman's Lemma

Step 4: then SR'g

Step 5: try to prove SR'z/ using Knuth-Bendix completion and TCr s

= we need termination and confluence criteria for 5+ R + S
when S is closed and there are shared symbols



Another approach: prove CR without assuming SN

possible methods:
— (weakly) orthogonal systems
— development-closed critical pairs

— locally decreasing diagrams



Conclusion

— for finding out new criteria

— for providing tools

Thank you!
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