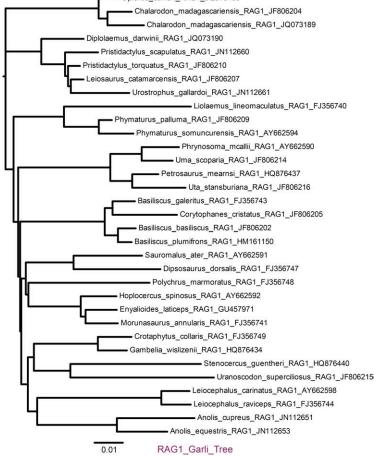
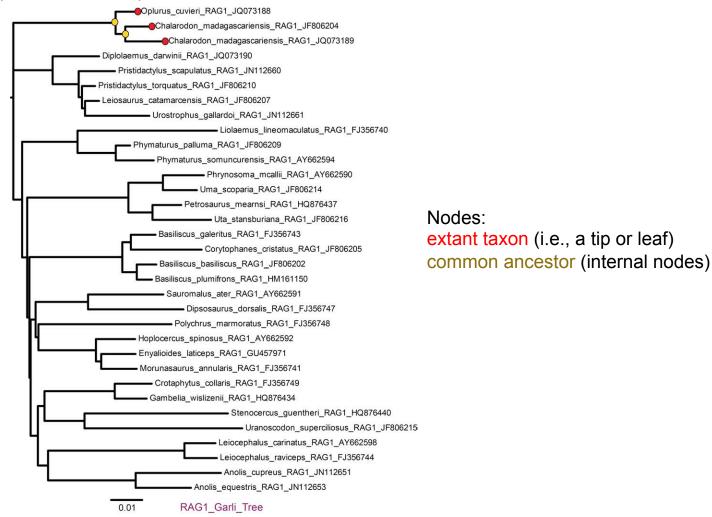
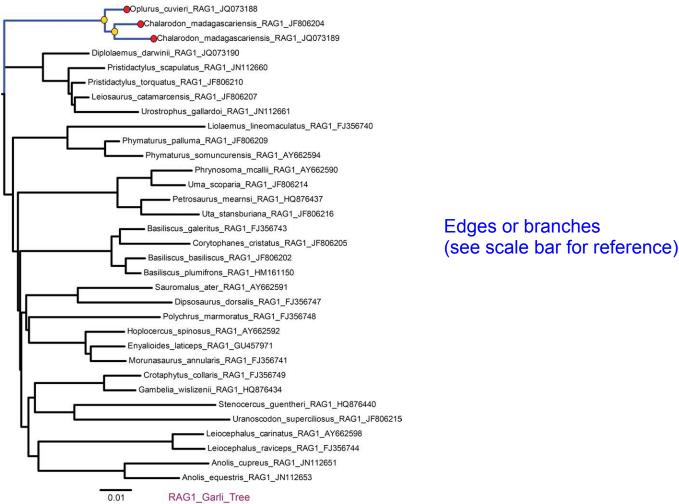

Biology 559R: Introduction to Phylogenetic Comparative Methods

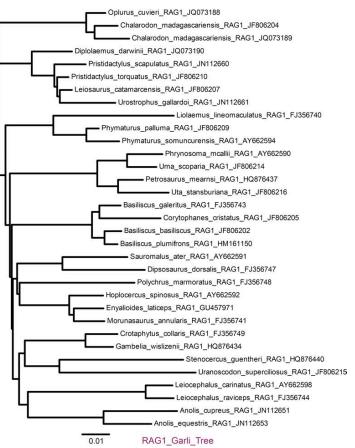

Topics for this week (Feb 3 & 5):

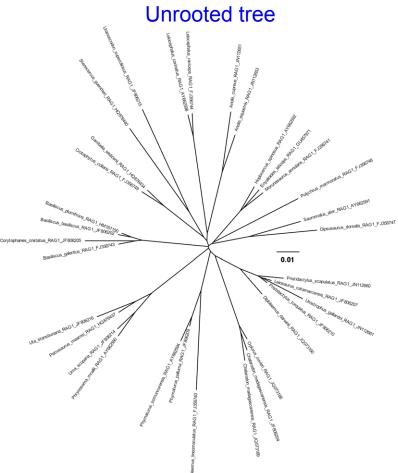
- Chronogram estimation: Penalized Likelihood Approach BEAST
- Presentations of your projects



• The trees (phylogenies) represent the evolutionary relationships among a group of organisms of interest.

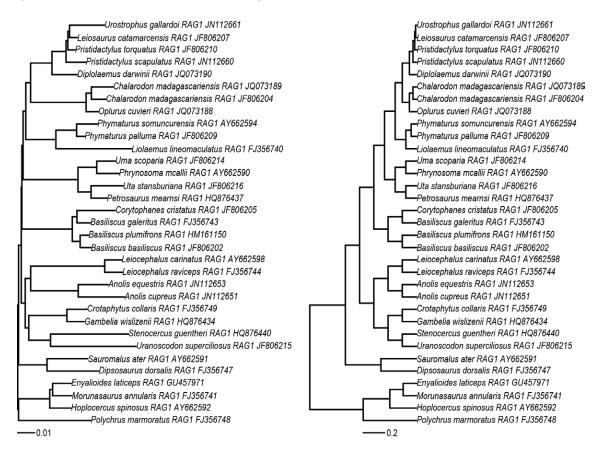

• A phylogeny is graph formed by a set of nodes and a set of edges that connect pairs of nodes.


• A node in a phylogeny represents an extant taxon (i.e., a tip or leaf) or a common ancestor for a set of taxa (internal nodes).


• An edge is the part of the phylogeny that connects two nodes (or tips), and is represented by a connecting line (i.e., a branch). We interpret the length of an edge as the amount of evolutionary change or time for transition from an ancestral taxon to a descendant taxon.

• The root is the node that represents the last common ancestor of all taxa in the tree.

A phylogeny where the time is represented by a single direction (bottom-up)

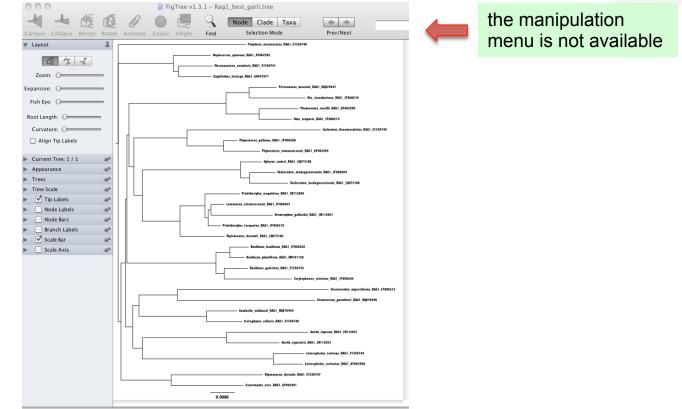


A phylogeny without a reference of time

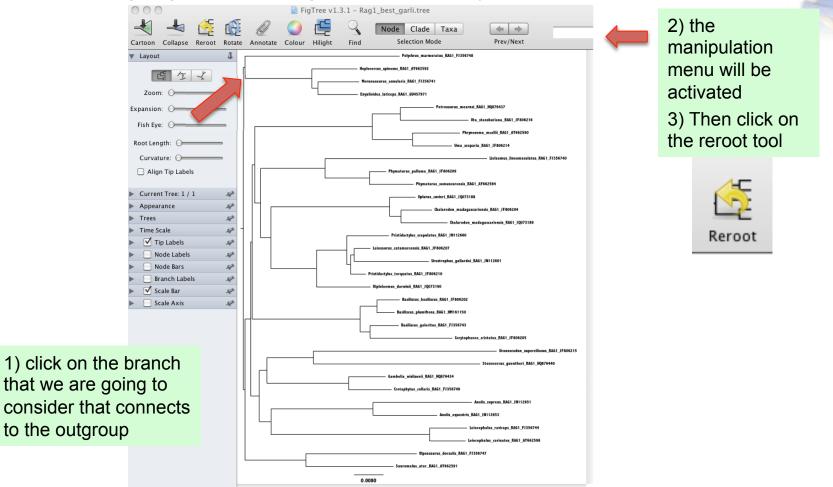
Time-calibrated Phylogenies: Chronograms

• The trees that we have inferred have branch lengths that correspond to the amount of change that has happened on each tip and edge

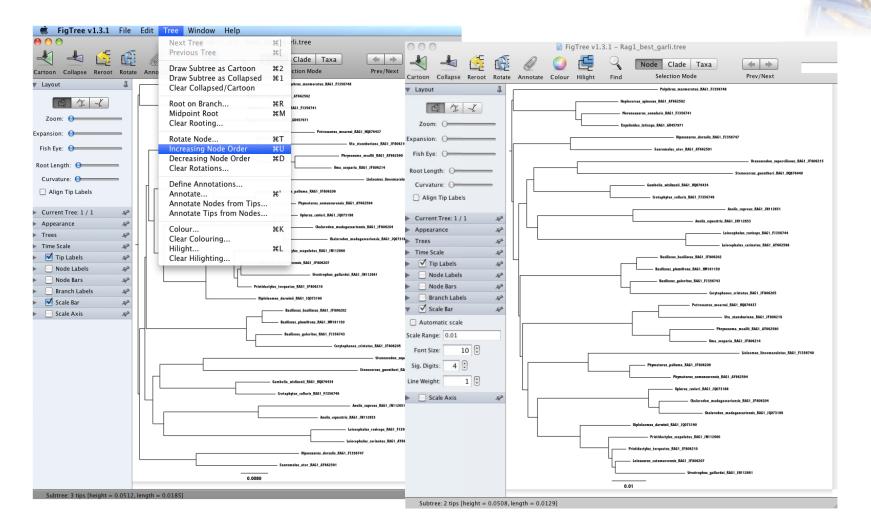
• Most methods and analyses of character evolution are better suited if we use phylogenies whose branch lengths correspond with time (i.e., these trees are ultrametric)

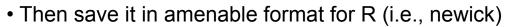


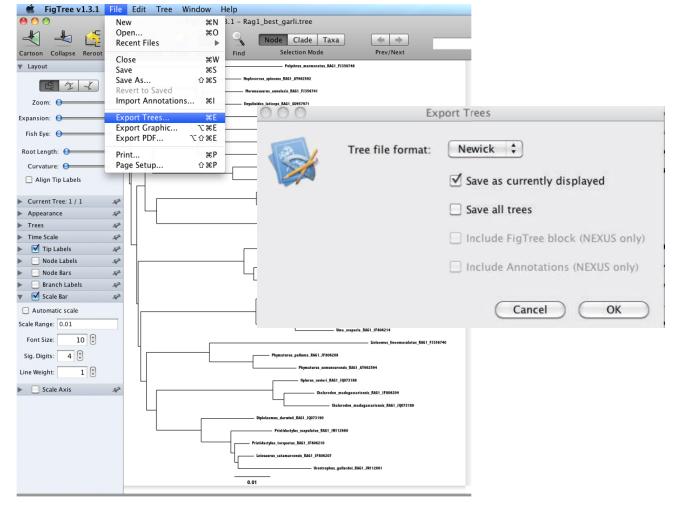
ultrametric tree is one in which the distances from the root to every branch tip are equal.


• We are going to use R and FigTree to estimate an starting chronogram to be input in BEAST. You can use only R for this purpose, but I think it is useful to visualize

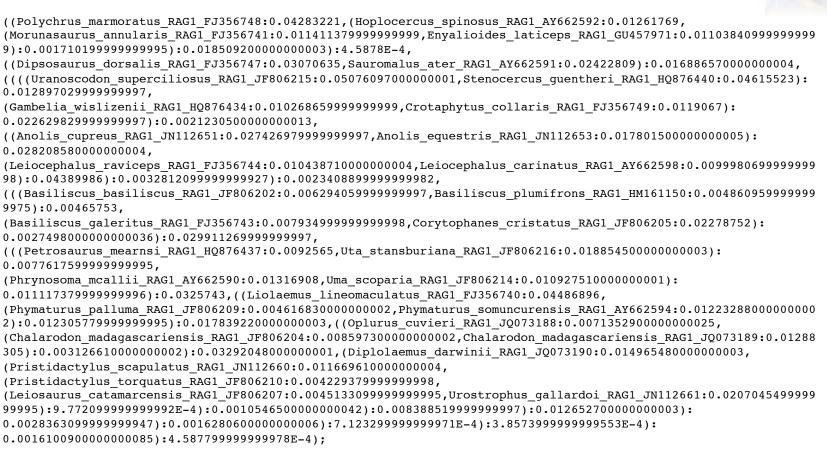
these fist steps.




• Open the Rag1_best_garli.tree from the course website that we estimated using garli


• We are going to 'root' (i.e., give a directionality to) the tree

• Our tree will change in shape and then increase the node order (for aesthetics)



• This is how a tree in newick looks like

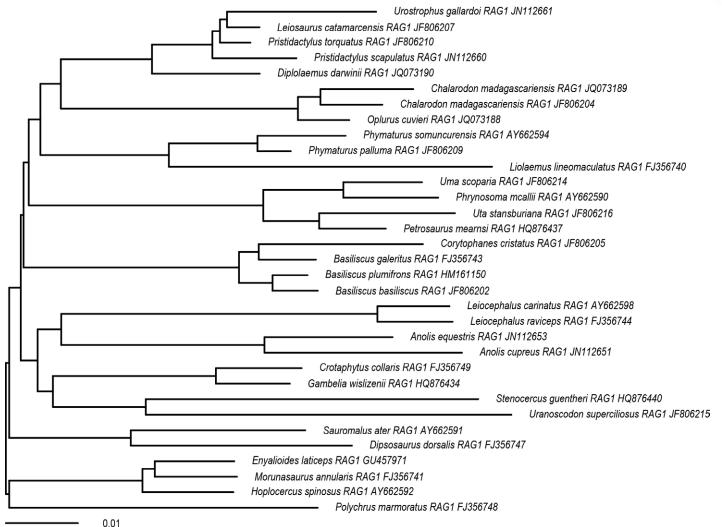
• You can use r8s: <u>http://loco.biosci.arizona.edu/r8s/</u> See Sanderson (2002) and the r8s manual for further information. However, most of it has been implemented in R.

 \bullet We are going to use ' $\mathtt{ape'}\,$ package to ultrametrize our tree. Load the following package

library(ape)

 \bullet Make a working directory and select it as your working. Suggestion: you can also use ${\tt setwd}(\).$

R top menus: Misc>Change Working Directory (select the directory that has our file)


• Read our RAG1-phylogeny

rag1_rooted_garli <-read.tree(file = "Rag1_best_garli_rooted.newick")</pre>

• Let's take a look to our phylogeny

```
plot(rag1_rooted_garli)
add.scale.bar(x=0, y=0)
```

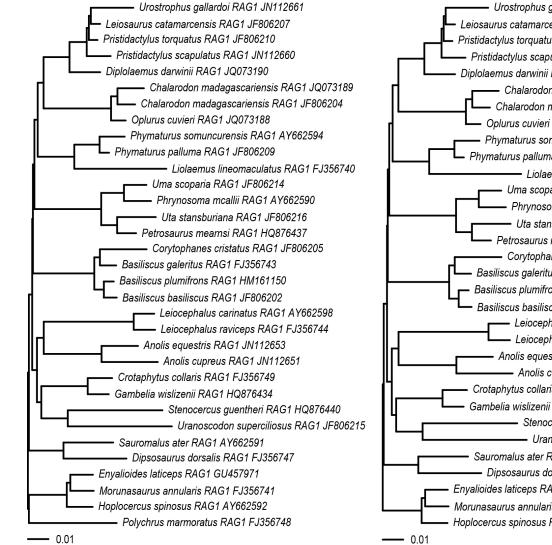

• Let's get names of variables in phylogeny

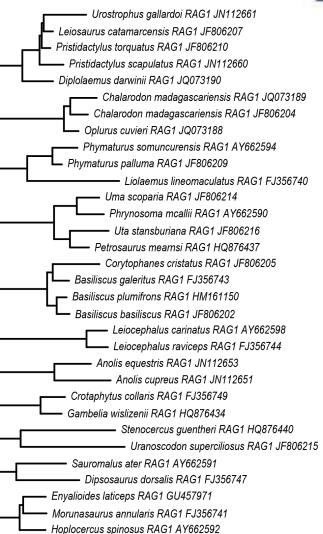
```
names(rag1_rooted_garli)
```

• Let's get tip labels

```
rag1_rooted_garli$tip.label
```

• Suggestion: for comparative analyses is better to drop outgroups, so we limit the effect of long branches on the penalized likelihood function that renders our tree ultrametric


I will drop one tip, but for the starting BEAST tree we will use the full tree


```
rag1_rooted_garli_no_out <- drop.tip(rag1_rooted_garli, tip
="Polychrus_marmoratus_RAG1_FJ356748")
```

· Let's take a look to our tree with and without that tip

```
par(mfrow=c(1,2))
plot(rag1_rooted_garli)
add.scale.bar(x=0, y=0)
plot(rag1_rooted_garli_no_out)
add.scale.bar(x=0, y=0)
```


- We can force the tree to be ultrametric using the chronos() function in 'ape'.
- If we don't have a calibration point, we can set the age of the whole tree to "1". First, we need to define the internal function 'makeChronosCalib(rag1_rooted_garli)' of the function 'chronos()'

For relative age chronogram let's fix root at 1

```
cal_relative <- makeChronosCalib(rag1_rooted_garli, node = "root", age.min = 1, age.max =
1, interactive = FALSE, soft.bounds = FALSE)</pre>
```

cal_relative

For absolute age chronogram, we need to provide a range of possible ages of the reference nodes

Notice the change in the parameter to interactive = TRUE and soft.bounds = TRUE

```
cal_absolute <- makeChronosCalib(rag1_rooted_garli, node = "root", age.min = 1, age.max =
1, interactive = TRUE, soft.bounds = TRUE)# in macs use rigth-click (control + click) on
the plot to exit</pre>
```


Molecular Phylogenetics and Evolution 61 (2011) 363-380

• For absolute age chronogram, we need to provide a range of possible ages of the reference nodes

cal_absolute <- makeChronosCalib(rag1_rooted_garli, node = "root", age.min = 1, age.max =
1, interactive = TRUE, soft.bounds = TRUE)# in macs use rigth-click (control + click) on
the plot to exit</pre>

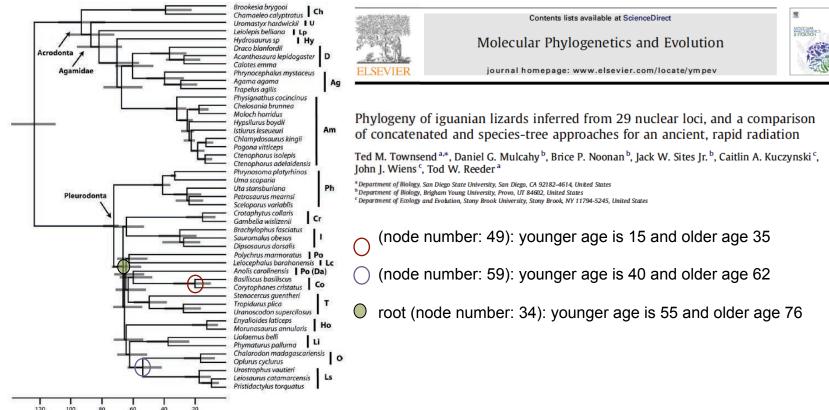
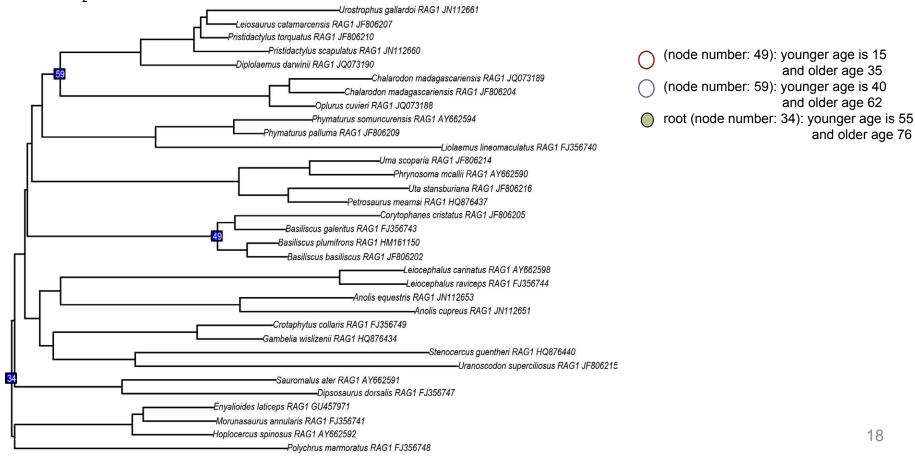



Fig. 4. Bayesian chronogram produced by BEAST analyses with 29 genes (based on mean age estimates). Non-iguanian taxa have been removed for clarity. Shaded bars represent 95% highest probability densities. Numbers on scale bar are millions of years before present. Clade name abbreviations as in Fig. 3.

• For absolute age chronogram, we need to provide a range of possible ages of the reference nodes

cal_absolute <- makeChronosCalib(rag1_rooted_garli, node = "root", age.min = 1, age.max =
1, interactive = TRUE, soft.bounds = TRUE)# in macs use rigth-click (control + click) on
the plot to exit</pre>

• Both cal_relative and cal_absolute are data frames, so you can modify these data without the interactive mode

cal_relative cal_absolute

• Let's estimate our chronogram using Penalized Likelihood and Maximum Likelihood. We need to select a method, I prefer a relaxed clock model to account for heterogeneity among branches.

• We also need to select a smoothing parameter lambda (see Sanderson, 2002)

If lambda = 0, then the parametric component dominates and rates vary as much as possible among branches, whereas for increasing values of lambda, the variation in the rates are smoother and tend to a clock-like model (same rate for all branches)

• However, I prefer **BEAST** for my chronogram estimation given that it is more parametrized and used the actual data to estimate the chronogram. So, you can pick an arbitrary lambda or test of different lambdas for this chronogram (This is just a starting tree for our BEAST analysis)

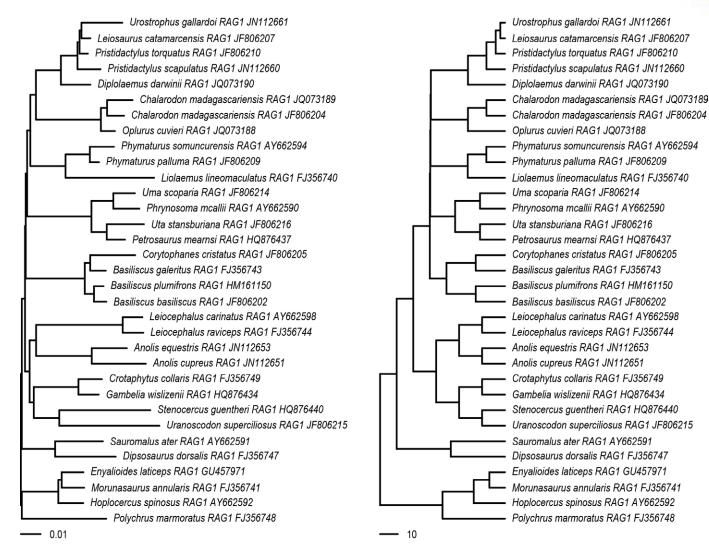
• Relative age chronogram with three smoothing parameters

```
rag1_chrono_rel_garli_lambda_0 <- chronos(rag1_rooted_garli, model = "relaxed", lambda =
0, calibration = cal_relative)
rag1_chrono_rel_garli_lambda_0_1 <- chronos(rag1_rooted_garli, model = "relaxed", lambda
= 0.1, calibration = cal_relative)
rag1_chrono_rel_garli_lambda_1_0 <- chronos(rag1_rooted_garli, model = "relaxed", lambda
= 1.0, calibration = cal_relative)
rag1_chrono_abs_garli_lambda_0 <- chronos(rag1_rooted_garli, model = "relaxed", lambda =
0, calibration = cal_absolute)
rag1_chrono_abs_garli_lambda_0_1 <- chronos(rag1_rooted_garli, model = "relaxed", lambda =
0.1, calibration = cal_absolute)
rag1_chrono_abs_garli_lambda_0_1 <- chronos(rag1_rooted_garli, model = "relaxed", lambda
= 0.1, calibration = cal_absolute)
rag1_chrono_abs_garli_lambda_1_0 <- chronos(rag1_rooted_garli, model = "relaxed", lambda
= 1.0, calibration = cal_absolute)
```

• Check the 'Penalised log-lik' values, the you want the largest likelihood; i.e., largest likelihood or smallest negative log-likelihood. Negative numbers are OK. A log-likelihood of -2 is better than -4.

The best in this case corresponds to the lambda = 0 (i.e., Penalised log-lik = -3.885571)

• After the calculations are done, we can write the trees in newick format for future use.


```
write.tree (rag1_chrono_rel_garli_lambda_0, file
="rag1_chrono_rel_garli_lambda_0.newick")
write.tree (rag1_chrono_rel_garli_lambda_0_1, file
="rag1_chrono_rel_garli_lambda_0_1.newick")
write.tree (rag1_chrono_rel_garli_lambda_1_0, file
="rag1_chrono_rel_garli_lambda_1_0.newick")
```

```
write.tree (rag1_chrono_abs_garli_lambda_0, file
="rag1_chrono_abs_garli_lambda_0.newick")
write.tree (rag1_chrono_abs_garli_lambda_0_1, file
="rag1_chrono_abs_garli_lambda_0_1.newick")
write.tree (rag1_chrono_abs_garli_lambda_1_0, file
="rag1_chrono_abs_garli_lambda_1_0.newick")
```

• Let's check that our trees are ultrametric

```
is.ultrametric(rag1_rooted_garli)
is.ultrametric(rag1_chrono_rel_garli_lambda_0)
is.ultrametric(rag1_chrono_rel_garli_lambda_0_1)
is.ultrametric(rag1_chrono_rel_garli_lambda_1_0)
is.ultrametric(rag1_chrono_abs_garli_lambda_0_1)
is.ultrametric(rag1_chrono_abs_garli_lambda_0_1)
is.ultrametric(rag1_chrono_abs_garli_lambda_0_1)
```


22

Chronogram estimation: BEAST

 One of the most widely used software to estimate chronograms and most recently species trees

Drummond AJ, Suchard MA, Xie D & Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7 Molecular Biology And Evolution 29: 1969-1973

http://beast.bio.ed.ac.uk/

From the authors:

BEAST is a cross-platform program for Bayesian analysis of molecular sequences using MCMC. It is entirely orientated towards rooted, time-measured phylogenies inferred using strict or relaxed molecular clock models. It can be used as a method of reconstructing phylogenies but is also a framework for testing evolutionary hypotheses without conditioning on a single tree topology. BEAST uses MCMC to average over tree space, so that each tree is weighted proportional to its posterior probability. We include a simple to use user-interface program for setting up (BEAUTi) standard analyses and a suit of programs for analysing the results.

Chronogram estimation: BEAST

• This software has detailed manuals and tutorials:

http://beast.bio.ed.ac.uk/tutorials

• After installation, you will also require the extensive set of auxiliary programs. Most of them are included in the BEAST package, but others require independent installation.

Bayesian Evolutionary Analysis Utility (BEAUti): GUI application for the preparation of the BEAST XML files.

LogCombiner: Program that allows you to combine log and tree files from multiple independent runs of BEAST.

TreeAnnotator: Program that assists you in summarizing the information from a sample of trees produced by BEAST.

Tracer: is graphical tool for visualization and diagnostics of MCMC output. It can read output files from MrBayes and BEAST (Not in BEAST package): http://tree.bio.ed.ac.uk/software/tracer/

FigTree: You know this one.

Chronogram estimation: BEAST

• This is very important, you need to install BEAGLE

BEAGLE is a high-performance library that can perform the core calculations at the heart of most Bayesian and Maximum Likelihood phylogenetics package. It can make use of highly-parallel processors such as those in 3D graphics boards found in many PCs.

http://beast.bio.ed.ac.uk/BEAGLE

MACs: <u>https://code.google.com/p/beagle-lib/wiki/MacInstallInstructions</u>

Windows: https://code.google.com/p/beagle-lib/wiki/WindowsInstallInstructions

• You need to create a folder with a nexus file with the sequences and the chronogram that we estimated using 'ape'.

Folder: RAG1_BEST

• Edit and add the chronogram at the end of the nexus file (I have added the edited file to the courser website): RAG1_nucleotide_chrono.nex

	GIN DATA;-	
Δ	DIMENSIONS··NTAX=33·NCHAR=2925;¬ FORMAT·DATATYPE·=·DNA·GAP·=·-··MISSING·=·?;¬	
Δ	FOCMAI - DATAITYE = - UKA - GAP - = MIDSING == - ?; - MATRIX-	
Δ	MAIRIA- Phymaturus_palluma_RAG1_JF806209	
Δ	rnymiturus_puttuma_Naurowczoy Chalarodon_madagascariensis_RAG1_F806204	
Δ	Chailaroadh_maadascariensis_kaka_provozon Gambelia_wisilzeni_RAGLH0876434	
Δ	uambetta_Misitzenit_NAAL_mayorw3+. Basiliscu:_plumifrom_RAG1_MH61150	CACTO
Δ	bds LitsCus_piumitrons_kau_mtelitsCus_addetactertGaGAAGCCACTTGAGAAGCCACTTGGGAAAGCCACTTGGGAAAAGCCACTGGGAGAAGCCACTGGGAGAAGCCACTGGGAGAAGCCACTGGGAGAAGCCACTGGGAGAAGCCACGGAGCCACCGGAGCCACCGCGAGCCACGCGAGCCCACGGAGAGCCACGGAGCCACCGGAGCGACGCCCGCGAGCGAGCCCACGGAGAGCCACGGAGCGAGCCGACGCGAGCCGCC	CACTO
Δ	Phymiture 5. Submitture 1515, AND 14 1602 394 CAADI AADA CACH UNDADAGCACH THE TO TO CACAD CACH CHOC AACAA HAADAGAAAAD GUCACH THE TO GUCAAAD CA HAADAGAAAD CA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAD CA HAADAGAAAD CA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAACH TA HAADAGAAACH TA HAADAGAAAD GUCACH THE TO GUCAACH TA HAADAGAAAAD GUCACH THE TO GUCAACH TA HAADAGAAAACH TA HAADAGAAACH TA HAADAGAAAACH TA HAADAGAAAAACH TA HAADAGAAACH TA HAADAGAAAACH TA HAADAAAAACH TA HAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	JACTO
Δ	Corycoprines_Cristatus_RAGL_Prove200	
7		CACTO
Δ	Hoplocercus_spinosus_RAG1_AY662592·····CAAAGTGAGATCACTTGAGAAGCCACTTCCTGATGACAAGCCATCTGGCTAACAACAATAAAGGAAAAGTGGCAGTTTCTCTGGAGAAAAGTGAGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGAGAAAAGTGACAACTTCTCTGGAGAAAAGTAAGGAAAAGTGACAACTATGAGAAAAGTGACAACAATAAAGGAAAAGTGTCAACTTCTCTGGAGAAAAGTCACTGAGAAAAGTGAGAAAAGTGACAACTATGAGAAAAGTGACAACAATAAAGGAAAAGTGACAACTTCTCTGGAGAAAAGTCACAACTACAACAATAAAGGAAAAGTGAGACAACAATAAAGGAAAAGTGACAACTACAACTACAACAATAAAGGAAAAGTGACAACTACAACTACAACTACAACAATAAAGGAAAAGTGACAACTACAACTACAACTACAACTACAACTACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGGAAAAGTGACAACAATAAAGAAAG	
Δ		
Δ	ADDITS_CUPPEDS_RAU_UNILOSI	
Δ	Stenoterus_guentner_LAAL_NQF0+40 Pristidarylus_torgutus_RAG1_P806210	
Δ	Pristinuty lus_longuluts_NAU_PROVIDE	
Δ	enyai totaes_iaticeps_raad_uows/s/i · · · · AAAGTGAGATCATTTGAGAAAGTCACTTCCTGATGACAGCCATCTGGCTAACAACAATAAAGAAAAGGTGACAGCTTCTTTGGACAAAGTCATTGGAGAAAA Urostrophus_aallaradoi_RAGi_JNI266i · · · · AAAGTGAGATCATTTGAGAAAGTCACTTCCTGATGACAGCCATCTGGCTAACAACAATAAAGAAAAGGTGACAGCTTCTTTGGACAAAAGTCAAT	слете
Δ	0105CF0pHd_g0LCtr00_CA02_0F12001AAAG 0AAA CTACTTAGAAGCACTTCCTGCTAACAACAATAAAGGACAATAAAAGTGCAACAATCACTTCCTGGAAAACTGCAAAAGTGCAAAACTGCTAAAAGTGCAAAACTGCTAAAACTGCAAAACTGCAAAACTGCTAAAAGTGCAAAACTGCTAAAAGTGCAAAACTGCTAAAAGTGCAAAACTGCAAAACTGCAAAACTGCAAAACTGCAAAAGTGCAAAACTGCAAAACTGCAAAACTGCAAAACTGCAAAAGTGCAAAAGTGCAAAACTGCAAAAGTGCAAAACTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAGTGCAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAGTGCAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAAAGTGCAAGTGCAAAGTGCAAGTGCAAAGTGCAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAAGTGCAAGTGCAAAGTGCAAGTGCAAAGTGGCAAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAGTGCAAAGTGCAAAGTGGCAAAGTGCAAAGTGCAGTGAAGTGCAAGTGCAAGTGCAAGTGC	
Ā	El Ditemis_ Informactus_RAGL_F355748 CAAAGTAGATCICTIGAGAAGTCACTICCIGACAACTAACTGACTAGATAAAGGTGGCAGACAAGTAGTCICCIGAGAAGTCACTAAA	
Ā	POLYCITUS_IMITOTUCS_POSTA_FOSTAFA	
Ā	CTOUDING LOUIS L	
Ā		JACTO
A	Option US_COVERT L_MADL_DQD > 100 Anolis_covertis_RAGI_INI2653	слете
Δ	Anot Las equest is characterized and control to a control and cont	
Δ	The provide media accurrence is a Kad_10073189	
Δ	Una utrouon_superciliosus_RAG_JP806215	
Δ	Unandscool_superctitusus_aval_feedets:	
Ā	Lectosan us_catama census_naac_naac_naaca	
Ā	Umi_Scopinto_Nadi_record_+ Basiliscus_basiliscus_t4	
Δ	DESTITICUS_DESTITICUS_NOLOND_	
Δ	Letocephalus_ravices_RAG1_P356744 CAAAGTAGAGTACTTGAGAGCACTTTCGATGACAGCACTAGGCAACATAAAGGAAAAGTGGCACTCTCCCGGACAAAGTGGCACATAAAGGAAAGTGGCACATCTCCCGGACAAAGTGGCACATAAAGGAAAGTGGCACAAGTGAGAGAAAGTGGCACAAGTGACGACAAGTGACGACAAGTGACGACGACTTCCCGGACAAAGTGGCACATAAAGGACGACTTCCCGGACAAAGTGGCACATTAAGGAAAAGTGGCACAAGTGACGACGACTTCCCGGACGACAAGTGACGACGACTTCCCGGACGACAATAAAGTGGCACTTCCCGGACGACAAGTGACGACGACTTCCCGACGACAAGTGACGACGACTTCCCGACGACAAGTGGCACGACTTCCCGACGACGACGACTTCCCGGCGACAAGTGACGACGACTTCCCGGCGACAAGTGGCACGACTTCCGCGACGACGACGACGACTTCCGCGGCGACAAGTGGACGACATTAAGGACGACTTCCGCGACGACATAAAGTGGCACGACTTCCCGCGACGACGACGCACTTCCGGCGACGACGACTTCCGCGGCGACAAGTGGACGACTTCCGCGCGACGACGACTTCCGGCGGCACAAGTGGACGACGACTTCCCGCGCGACGACGACGACTTCCGGCGGCGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGCACTTCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCACTTCCGGCGGCGACGACGACGACGACGACGCCACTTCCGGCGGCGACGACGACGACGACGCACTTACGAGGACGACGCACTTCGGCGGCGACGCACTTAGGAGAAGGCGACGCACTTCCGGCGGCGACGACGACGACGACGACGACGACGACGACGA	
Δ	Les company and the second state of the second	
Δ	BUSTITICUS_UNITICUS_CADUL_F7550FX	
Δ	יריבינו מונין ווש בערייה וווידער איז	UNCIU
Δ	DEDECTOR AND A CONTRACT OF	GACTO
Δ	moranisadors_mail_col_mail_col_mail_col_mail_col_mail_col_mail_col_mail_col_col_col_col_col_col_mail_col_col_col_col_col_col_col_col_col_co	GACTO

FND;FND;BEGIN-SETS;A CHARSET · position_1 ··· =·· -2-2924\3;A CHARSET · position_2 ·· =· · 3-2925\3;A CHARSET · position_3 ·· =· · 1-2923\3;END;-

Partitions by codon (if you have multiple genes)

begin trees;-

△ tree rag1_chrono_abs_garli_lambda_1_0 =- ((Polychrus_marmoratus_RAG1_FJ356748:30.343504, (Hoplocercus_spinosus_RAG1_AY662592:15.38144795, (Morunasaurus_end:-

Our chronogram

Open BEAUti v1.8.1 and import the nexus file with chronogram

🗯 BEAUti v1.8.1	File Edit Window	Help	
0 0	New	ЖN	BEAUti
	Open	жо	Sites Clocks Trees States
Use species tree ar	Recent Files	•	Drummond 2010
_ ose species tree al	Import Data	жI	
Unlink Subst. Mode	Import Traits	二第1	Clock Models (Link Clock Model
Partition Name File	🌣 Generate BEAST Fil	e ЖЕ	s Data Type Si
	Close	жW	
	Save	жS	
	Save As	ΰ₩S	
	Print	жP	
	Page Setup	企業P	

• Open BEAUti v1.8.1 and import the nexus file with chronogram

	$\odot \bigcirc \bigcirc$			BE	AUti				
		Partitions Tax				tes Priors Op	perators MCMC)	
Our data file	Unlink Subs			Unlink Clock Models	Link Clock Mode	ls Unlink Tr	ees Link Trees)	
	Partition Name	File Name	Taxa	Sites	Data Type	Site Model	Clock Model	Partition Tree	
	position 1	RAG1_nucleotide_chrono.nex		975	nucleotide	position_1	<pre>\$ position_1</pre>	<pre>‡ position_1</pre>	
	position_2	RAG1_nucleotide_chrono.nex		976	nucleotide	position_1	<pre>position_1</pre>	<pre>position_1</pre>	÷
· · · · ·	position_3	RAG1_nucleotide_chrono.nex		975	nucleotide	position_1	<pre>\$ position_1</pre>	<pre>\$ position_1</pre>	\$
Our starting chronogram and partitions (e.g.,									
genes, codon positions)	+-	View Partition Cre	ate partiti	on from trait					
	Data: 33 taxa, 3	partitions, 1 user tree; Fix c	ock rate t	o 1.0 in nucleotide_group	;			Generate BEAS	F File

• We are going to change the partitions defaults for codon positions in

a single gene, but you can do the same procedure for multiple genes. You need to do the following to allow to run a partitioned dataset:

1) On the partitions tab select all partitions or genes

2) We like to analyze each partition/gene under separate substitutions models, while assuming the clock and tree are linked

Highlight all three partitions/genes Unlink Subst. Models

3) Rename Partition Clock Model. Changes are done by highlighting all partitions

Highlight all three partitions/genes Link Clock Models Rename this to Rag1_clock

000	Create New Partition (Clock Model
6 222	Partition clock model:	Rag1_clock
	✓ Rename clock model partition to:	Rag1_clock
		Cancel OK

4) Rename Partition Tree. Changes are done by highlighting all partitions

Highlight all three genes Link Trees Rename this to Rag1_tree

000	Create New Parti	tion Tree
8	Partition tree:	Rag1_tree 🛟
	☑ Rename tree model partition to:	Rag1_tree OK

• After all of these changes you should have something like this:

Unlink Subst	t. Models) (Link Subst. Mod	E	ed & Drummond 20 link Clock Models		unlink Tr	rees Link Trees	C	
Partition Name	File Name	Taxa	Sites	Data Type	Site Model	Clock Model	Partition Tree	
osition_1		33	975	nucleotide	position_1	<pre>\$ Rag1_clock</pre>	<pre>\$ Rag1_tree</pre>	
osition_2	RAG1_nucleotide_chrono.nex		976	nucleotide	position_2	Rag1_clock	<pre>\$ Rag1_tree</pre>	
osition_3	RAG1_nucleotide_chrono.nex	22	975	nucleotide	position_3	<pre>\$ Rag1_clock</pre>	<pre>\$ Rag1_tree</pre>	1

• We will create the calibration nodes and identifying internal nodes in the Taxa tab

Notice: If not enforced monophyletic, then it is possible to define a node using a pair of descendant taxa and use the name of the node corresponding to their MRCA (most recent common ancestor) to define calibration times. This procedure will reduced the time editing the xml BEAST file

(6)	0.0		Partitions	Taxa Tips	Traits		BEAUti	ees Stat	tes Prior	rs Oper	ators MCN	IC]	
	Taxon Set untitled 1	Mono?	Stem? Tree Rag1	Age \$	Taxon set:		IN112651			Include	1 Taxa		
Click of + to sta defining groups that will used to calibrations	3				Anolis_e Basiliscu Basiliscu Chalaroo Chalaroo Corytopi Crotaph Diplolae Dinsosa	equestris_RAC us_basiliscus_ us_galeritus_R us_plumifrons don_madaga don_madaga hanes_cristat hanes_cristat wrus_collaris_ emus_darwini uurus_dorsalis excluded	1_JN11265 RAG1_JF800 AG1_FJ356 _RAG1_HM: cariensis_R cariensis_R us_RAG1_JF RAG1_FJ350 _RAG1_JQ0	3 5202 743 .61150 AG1_JF80 AG1_JQ0 806205 5749 73190			ncluded		
	+ -				Select:		<u>, </u>		:		taxon set	•	:
Da	ata: 33 taxa, 3	8 partition:	s, 1 user tree;	Fix clock rate	o 1.0 in nu	cleotide_gro	up;					🗇 🕸 Gener	ate BEAST File

• We are going to use the same calibration nodes that we did in the Penalized Likelihood Approach

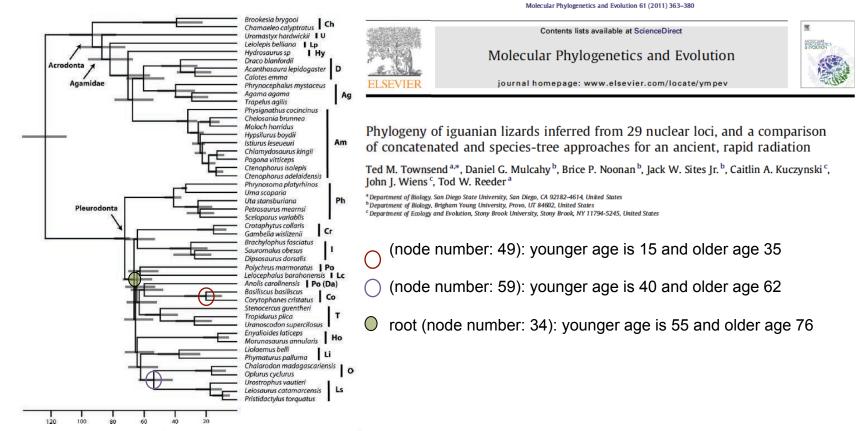
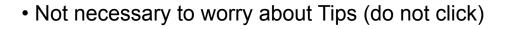


Fig. 4. Bayesian chronogram produced by BEAST analyses with 29 genes (based on mean age estimates). Non-iguanian taxa have been removed for clarity. Shaded bars represent 95% highest probability densities. Numbers on scale bar are millions of years before present. Clade name abbreviations as in Fig. 3.

• We are going to use the same calibration nodes that we did in the Penalized Likelihood Approach

axon Set Mono? Corytophanidae 🗌	Stem? Tree Age Rag1\$	Taxon set: Corytophanidae		
		Excluded Taxa Anolis_cupreus_RAG1_JN112651 Anolis_equestris_RAG1_JN112653 Chalarodon_madagascariensis_RAG1_JF80 Chalarodon_madagascariensis_RAG1_JQ0 Crotaphytus_collaris_RAG1_FJ356749 Diplolaemus_darwinii_RAG1_JQ073190 Dipsosaurus_dorsalis_RAG1_FJ356747 Envalioides_laticeps_RAG1_GU457971 Gambelia_wislizenii_RAG1_HQ876434 Hoplocercus_spinosus_RAG1_AY662592 Leiocenbalus_carinatus_RAG1_AY662598	0	Included Taxa Basiliscus_basiliscus_RAG1_JF806202 Basiliscus_galeritus_RAG1_FJ356743 Basiliscus_plumifrons_RAG1_HM161150 Corytophanes_cristatus_RAG1_JF806205
		29 taxa excluded		4 taxa included
		Select: taxon set		Select: taxon set 🛟


(node number: 49): younger age is 15 and older age 35

• We are going to use the same calibration nodes that we did in the Penalized Likelihood Approach

2	1	The second second second	
Taxon Set Mon Corytophanidae Chalo_Uros	Stem? Tree Age Rag \$ Rag \$	Taxon set: Chalo_Uros Excluded Taxa	
		Phymaturus_palluma_RAG1_JF806209 Phymaturus_somuncurensis_RAG1_AY662594 Polychrus_marmoratus_RAG1_FJ356748 Pristidactylus_scapulatus_RAG1_JF806210 Sauromalus_ater_RAG1_AY662591 Stenocercus_guentheri_RAG1_HQ876440 Uma_scoparia_RAG1_JF806214 Uranoscodon_superciliosus_RAG1_JF806215 Uta_stansburiana_RAG1_JF806216	
		31 taxa excluded 2 taxa included	
		Select: taxon set 🛟 Select: taxon set	\$

(node number: 59): younger age is 40 and older age 62

• Not necessary to worry about Traits tab (do not click)

• On the Sites tab will select the substitution models for each partition/gene. We did this part for the entire RAG1 gene in jModelTest, but not for each of its codon positions. For this exercise, we will assume that each position has a GTR+G+I model. Notice the limited number of models

Substitution Model	Nucleoti	ide Substitution Model – position_1		
position_1 position_2 position_3		Substitution Model: Base frequencies: Site Heterogeneity Model: Number of Gamma Categories:	Estimated Camma + Invariant Sites	
	^	Partition into codon positions:	Off Image: Constraint of the second seco	
Clone Settings			Use Yang96 model	

• On the Clocks tab will estimate the clock (click on Estimate) The model will be 'Lognormal relaxed clock (Uncorrelated)' which is fit for more distantly related taxa and low taxon sampling.

	Partitions Taxa Tips Traits	Sites Clocks T	iees sta	tes Priors Operators MC	MC
Clock Model :	Model	Fstimate	Rate	Group	1
Rag1_clock	Strict clock		1.0	nucleotide_group	
ingr_clock	Lognormal relaxed clock (111		
	Exponential relaxed clock				
	Random local clock				
	Fixed local clock				
	1				

• On the Trees tab will we are going to select a tree prior and starting trees

Tree Prior -> Speciation: Birth-Death Incomplete Sampling (also Yule process is useful) Random starting tree if you do not have an starting tree

0.0	BEAUti
	Partitions Taxa Tips Traits Sites Clocks Trees States Priors Operators MCMC
✓ Link tree prior	fee all tease
Trees	Tree prior shared by all tree models
Rag1_tree	
hugz_nee	Tree Prior: Speciation: Birth-Death Incomplete Sampling
	Stadler, T; On incomplete sampling under birth-death models and Citation: connections to the sampling-based coalescent;
	JOURNAL OF THEORETICAL BIOLOGY (2009) 261:58-66
	Tree Model - Rag1_tree
	The estimated initial root height: 0.038
	The estimated initial root height. 0.038
	O Random starting tree
	O UPGMA starting tree
	• User-specified starting tree
	Select user-specified tree: rag1_chrono_abs_garli_lambda_1_0 🛟

Data: 33 taxa, 3 partitions, 1 user tree; Estimate clock rate in nucleotide_group;

Generate BEAST File...)

- Not necessary to worry about States (do not click)
- On the Priors tab will input some a priori information to allow us find our time calibrated chronogram

Node upper		Parameter	Prior	Bound	Description
	N	tmrca(Corytophanidae)	* Using Tree Prior	n/a	tmrca statistic for taxon set untitled1 on tree Rag1_tree
and lower ages		tmrca(Chalo_Uros)	* Using Tree Prior	n/a	tmrca statistic for taxon set untitled2 on tree Rag1_tree
ind lower ages		position_1.ac	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-C substitution parameter
		position_1.ag	* Gamma [0.05, 20], initial=1	[0, ∞]	GTR A-G substitution parameter
		position_1.at	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-T substitution parameter
		position_1.cg	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR C-G substitution parameter
		position_1.gt	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR G-T substitution parameter
		position_1.frequencies	* Uniform [0, 1], initial=0.25	[0, 1]	base frequencies
		position_1.alpha	* Exponential [0.5], initial=0.5	[0, ∞]	gamma shape parameter
		position_1.plnv	* Uniform [0, 1], initial=0.5	[0, 1]	proportion of invariant sites parameter
		position_2.ac	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-C substitution parameter
		position_2.ag	* Gamma [0.05, 20], initial=1	[0, ∞]	GTR A-G substitution parameter
		position_2.at	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-T substitution parameter
		position_2.cg	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR C-G substitution parameter
		position_2.gt	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR G-T substitution parameter
		position_2.frequencies	* Uniform [0, 1], initial=0.25	[0, 1]	base frequencies
		position_2.alpha	* Exponential [0.5], initial=0.5	[0, ∞]	gamma shape parameter
		position_2.plnv	* Uniform [0, 1], initial=0.5	[0, 1]	proportion of invariant sites parameter
		position_3.ac	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-C substitution parameter
		position_3.ag	* Gamma [0.05, 20], initial=1	[0, ∞]	GTR A-G substitution parameter
		position_3.at	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR A-T substitution parameter
		position_3.cg	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR C-G substitution parameter
		position_3.gt	* Gamma [0.05, 10], initial=1	[0, ∞]	GTR G-T substitution parameter
		position_3.frequencies	* Uniform [0, 1], initial=0.25	[0, 1]	base frequencies
		position_3.alpha	* Exponential [0.5], initial=0.5	[0, ∞]	gamma shape parameter
		position_3.pInv	* Uniform [0, 1], initial=0.5	[0, 1]	proportion of invariant sites parameter
	N	ucld.stdev	* Exponential [0.333333], initial=0.333333		uncorrelated lognormal relaxed clock stdev
ameters for the		ucld.mean	? Not yet specified	[0, ∞]	uncorrelated lognormal relaxed clock mean
		treeModel.rootHeight	* Using Tree Prior in [0, ∞]	[0, ∞]	root height of the tree
ck model		birthDeath.meanGrowthRate	* Uniform [0, 1E5], initial=550	[0, 1E5]	Birth-Death speciation process rate
		birthDeath.relativeDeathRate	* Uniform [0, 1], initial=0.5	[0, 1]	Birth-Death speciation process relative death rate
		birthDeath.sampleProbability	* Beta [1, 1], initial=0.01	[0, 1]	Birth-Death the proportion of taxa sampled from birth-death tree
		meanRate	* Indirectly Specified Through Other Param		The mean rate of evolution over the whole tree
		covariance	* Indirectly Specified Through Other Param		The covariance in rates of evolution on each lineage with their ance
		coefficientOfVariation	* Indirectly Specified Through Other Param	n/a	The variation in rate of evolution over the whole tree
		(Link parameters together)	Link parameters into a hierarchical model		ink parameters)

Data: 33 taxa, 3 partitions, 1 user tree; Estimate clock rate in nucleotide_group;

Generate BEAST File...

• Nodes with an upper and lower within an uniform distribution

Partitio	ons Taxa	Tips	Traits	Sites	Cloc	s Trees	States	Priors	0
	in in	. nps	Traits	United	cioci		Diates		-
Priors for model parameters a	nd statistic	5:							
Parameter	Prior				В	ound	Description		
tmrca(Corytophanidae)		ng Tree P			n	/a	tmrca stati:	stic for tax	on s
tmrca(Chalo_Uros)		ng Tree P			n	/a	tmrca stati:	stic for tax	on s
position_1.ac			5, 10], init		[(), ∞]	GTR A-C s	ubstitution	par
position_1.ag			5, 20], init		[(), ∞]	GTR A-G s	ubstitution	par
position_1.at			5, 10], init		[(), ∞]	GTR A-T s	ubstitution	par
position_1.cg			5, 10], init		[(), ∞]	GTR C-G s	ubstitution	pai
position_1.gt	* Ga	mma [0.0	5, 10], init	al=1	[(), ∞]	GTR G-T s	ubstitution	pa
position_1.frequencies	* Un	iform [0, 1	1], initial=0	.25	[(0, 1]	base frequ	encies	
position_1.alpha			[0.5], initia		[(), ∞]	gamma sha	ape param	ete
position_1.plnv	* Un	iform [0, 1	1], initial=0	.5	[(D, 1]	proportion	of invariar	nt si
position_2.ac	* Ga	mma [0.0	5, 10], init	al=1	[(), ∞]	GTR A-C s	ubstitution	pa
position_2.ag	* Ga	mma [0.0	5, 20], init	al=1	[(), ∞]	GTR A-G s	ubstitution	pa
position_2.at	* Ga	mma [0.0	5, 10], init	al=1	[), ∞]	GTR A-T s	ubstitution	pa
position_2.cg	* Ga	mma [(🧲		rior for P	Paramet	er tmrca(C	orytophani	dae))n	pa
position_2.gt	* Ga	mma [(, ,)n	pa
position_2.frequencies	* Un	iform [(Select pric	r distrib	ution fo	r tmrca(Co	rytophanid	ae)	
position_2.alpha	* Ex	oonenti					.,		ete
position_2.plnv	* Un	iform [(ar	nt si
position_3.ac	* Ga	mma (('n	pa
position_3.ag	* Ga	mma ((bn	pa
position 3.at	* Ga	mma [('n	pa
position_3.cg	* Ga	mma ((bn	pa
position_3.gt	* Ga	mma ((Prior Dis	tribution	n: N	one (Tree l	Prior Only)) n	pa
position_3.frequencies	* Un	iform [(U	niform			
position 3.alpha	* Ex	oonenti			E	kponential		m	ete
position 3.plnv	* Un	iform [(aplace		ar	nt si
ucld.stdev	* Expone	ntial [0				ormal		m	ial r
ucld.mean	? No	t yet sp						m	ial r
treeModel.rootHeight	* Us	ng Tre				ognormal		ee	2
birthDeath.meanGrowthRate	* Un	iform [(-	amma		io	n p
birthDeath.relativeDeathRate	* Un	iform [(In	verse Gam	ima		n pi
birthDeath.sampleProbability	* Po:	a [1, 1,			1	/x		~ plop	

) 🔿 🔘 Prior for	Parameter tmrca(Corytophanidae)
Select prior distrib	ution for tmrca(Corytophanidae)
Prior Distribution	n: Uniform 🗘
Initial value:	25
Upper:	35.0
Lower:	5.0
	Cancel OK
O O Prior for	Parameter tmrca(Chalo_Uros)
Select prior distrib	ution for tmrca(Chalo_Uros)
Prior Distributio	on: Uniform
Initial value:	51

62

Cancel

Upper:

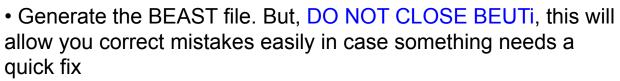
Lower: 40

C

OK

• Parameter for the clock model

O O O Prior	r for Parameter ucld.r	nean
Select prior distrib	oution for ucld.mean	
Prior Distribution	n: Exponential	:
Initial value:	1.0	
Mean:	10	
Offset:	0.0	
Truncate to:		
Upper:	+INF	00
Lower:	0.0	-∞
0.1 7.5E-2 6E-2 2.5E-2 0 0 0 10	20 20 Quantiles: 2.5%: 0.253 5%: 0.513 Median: 6.931 95%: 29.96 97.5%: 36.89 Cance	

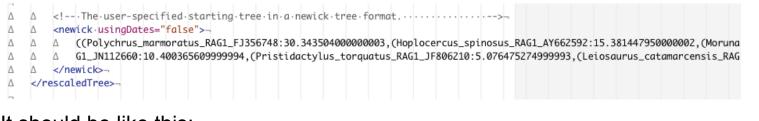

I trust the theoreticians and this values for this prior seems to work well

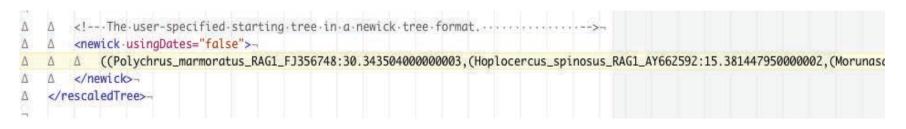
• On the tab Operators left them as they are, the software is going 'Auto optimize' while searching for the optimal chronogram.

- On the MCMC tab will like to have a really long chain > 90 million (depends on the computational disponibility and time).
- I usually run at least 4 independent starts (based on random numbers)

Partitions Taxa	Tips Traits Sites Clocks Trees States Priors Operators MCMC					
Length of chain:	1000000					
Echo state to screen every:	1000					
Log parameters every:	1000					
File name stem:	RAG1_nucleotide_chrono					
	Add .txt suffix					
Log file name:	RAG1_nucleotide_chrono.log					
Trees file name:	RAG1_nucleotide_chrono.trees					
	Create tree log file with branch length in substitutions:					
Substitutions trees file name:						
	✓ Create operator analysis file:					
Operator analysis file name:	RAG1_nucleotide_chrono.ops					
	Sample from prior only - create empty alignment					
	orm marginal likelihoood estimation (MLE) using path sampling (PS) / stepping–stone sampling nal analysis after the standard MCMC chain has finished.					
	\Box Perform marginal likelihood estimation (MLE) using path sampling/stepping-stone sampling					
	Settings					

• A tab about un changed defaults priors will appear, just click 'Continue'


Length o	of chain: 1000000		\cap
	Unchanged Default Prior		
10	Unchanged Default Phor	5	
Parameter	Prior	Bo Description	
osition_1.ac	* Gamma [0.05, 10], initial=1	[0 GTR A-C substitution parameter	
position_1.ag	* Gamma [0.05, 20], initial=1	[0 GTR A-G substitution parameter	
position_1.at	* Gamma [0.05, 10], initial=1	[0 GTR A-T substitution parameter	
position_1.cg	* Gamma [0.05, 10], initial=1	[0 GTR C-G substitution parameter	
osition_1.gt	* Gamma [0.05, 10], initial=1	[0 GTR G-T substitution parameter	
osition_1.frequencies	* Uniform [0, 1], initial=0.25	[0 base frequencies	
osition_1.alpha	* Exponential [0.5], initial=0.5	[0 gamma shape parameter	
osition_1.plnv	* Uniform [0, 1], initial=0.5	[0 proportion of invariant sites parameter	
osition_2.ac	* Gamma [0.05, 10], initial=1	[0 GTR A-C substitution parameter	
position_2.ag	* Gamma [0.05, 20], initial=1	[0 GTR A-G substitution parameter	Generate BEAST XML File
position_2.at	* Gamma [0.05, 10], initial=1	[0 GTR A-T substitution parameter	
position_2.cg	* Gamma [0.05, 10], initial=1	[0 GTR C-G substitution parameter	
position_2.gt	* Gamma [0.05, 10], initial=1	[0 GTR G-T substitution parameter	Save As: RAG1_nucleotide_chrono_BEAST
position_2.frequencies	* Uniform [0, 1], initial=0.25	[0 base frequencies	Where: BEAST_Rag1 +
position_2.alpha	* Exponential [0.5], initial=0.5	[0 gamma shape parameter	where: BEASI_Ragi
position_2.plnv	* Uniform [0, 1], initial=0.5	[0 proportion of invariant sites parameter	
position_3.ac	* Gamma [0.05, 10], initial=1	[0 GTR A-C substitution parameter	(Cancel) (Save)
position_3.ag	* Gamma [0.05, 20], initial=1	[0 GTR A-G substitution parameter	Cancer Save
position_3.at	* Gamma [0.05, 10], initial=1	[0 GTR A-T substitution parameter	e sampling
position_3.cg	* Gamma [0.05, 10], initial=1	[0 GTR C-G substitution parameter	
position_3.gt	* Gamma [0.05, 10], initial=1	[0 GTR G-T substitution parameter	ine sampling
oosition_3.frequencies	* Uniform [0, 1], initial=0.25	[0 base frequencies	
position_3.alpha	* Exponential [0.5], initial=0.5	[0 gamma shape parameter 🛛 🧡	
osition_3.plnv	* Uniform [0, 1], initial=0.5	[0 proportion of invariant sites parameter	V
icld.stdev	* Exponential [0.333333], initial=0.3333.	[0 uncorrelated lognormal relaxed clock std	
reeModel.rootHeight	* Using Tree Prior in [0, ∞]	[0 root height of the tree	🗱 Generate BEAST File
birthDeath.meanGrowthRate	* Uniform [0, 1E5], initial=0.2	[0 Birth-Death speciation process rate	
birthDeath.relativeDeathRate	* Uniform [0, 1], initial=0.5	10 Birth-Death speciation process relative d	


Fixing the BEAUTi file

• BEAST has tends to split long trees into pieces that need to put in a single line:

It should be like this:

• During a test run I found that one of the lower bound of the uniform distribution of the Corytophanidae node was to high and I have to fix it to a lower value. It is very likely that you will have to review the BEAUTi file for such changes.

Running BEAST

• If you made a good job, then BEAST will run for a long time and will produce several intermediate files. I recommend to create a folder for each run and have at least 4 independent starts.

• The same xml file will run in the cluster, so check that it runs in your computer before you send it to the cluster

• Click on BEAST v1.8.1, select you xml file and run.

• For independent starts, change the Random Number Seed

000)	hrot
	Institute of Evolut University of a.rambaut@e	Edinburgh
	David Geffen Schoo University of Califor msuchard@uc	mia, Los Angeles
	000	BEAST v1.8.1
Source c	5	BEAST
•	83	Bayesian Evolutionary Analysis Sampling Trees Version v1.8.1, 2002-2014
	BEAST XML File:	not selected Choose File
		Allow overwriting of log files
	Random number seed:	1422858571987
	Thread pool size:	Automatic 🛟
	☑ Use BEAGLE library	if available:
2		CPU ÷
	_	Use CPU's SSE extensions when possible
	Prefer precision:	Double 🗘
	Rescaling scheme:	Default 🗘
	E	Show list of available BEAGLE resources and Quit
	additional computationa	rmance phylogenetic library that can make use of al resources such as graphics boards. It must be ed independently of BEAST:
	nccp.//beagie-rib.g	JOQIECOME.COM/
1		Quit Run

Running BEAST

• Check the performance of the run and wait until it finishes

	v1.8.1, r6542					
			L5 [seed=14228585			
state	Posterior	Prior	Likelihood	rootHeight	ucld.mean	
0	-28772.1693	-243.6374	-28528.5319	66.0000	1.00000	-
5000	-14593.1593	-213.7703	-14379.3890	71.7504	3.56228E-2	-
10000	-14407.9203	-215.8216	-14192.0986	88.9196	2.73428E-2	-
15000	-14310.7501	-216.0205	-14094.7296	86.6680	2.65093E-2	0.08 hours/million states
20000	-14194.7552	-209.9604	-13984.7948	82.4061	3.03578E-2	0.08 hours/million states
25000	-14161.6366	-205.8780	-13955.7586	74.9694	3.34211E-2	0.08 hours/million states
30000	-14099.9320	-215.6315	-13884.3006	110.228	1.89855E-2	0.08 hours/million states
35000	-14057.8879	-204.6979	-13853.1901	77.1003	1.87304E-2	0.08 hours/million states
40000	-14050.6278	-204.2057	-13846.4221	77.3917	1.72719E-2	0.08 hours/million states
45000	-14021.7850	-195.6160	-13826.1690	58.4651	1.69514E-2	0.08 hours/million states
50000	-14029.7041	-197.9477	-13831.7564	64.9551	1.80641E-2	0.08 hours/million states
55000	-14009.3050	-198.6718	-13810.6332	65.4767	1.43401E-2	0.08 hours/million states
60000	-14005.0601	-204.1453	-13800.9148	85.8936	1.13346E-2	0.08 hours/million states
65000	-14005.8682	-200.2025	-13805.6656	69.3222	9.35976E-3	0.08 hours/million states
70000	-13991.6573	-195.0670	-13796.5903	70.5298	1.19357E-2	0.08 hours/million states
75000	-13988.4780	-197.6260	-13790.8520	70.0007	6.46186E-3	0.08 hours/million states
80000	-13987.1500	-199.3932	-13787.7568	70.4576	5.48735E-3	0.08 hours/million states
85000	-13972.5891	-190.4962	-13782.0929	55.0260	6.45007E-3	0.08 hours/million states
90000	-13962.3126	-189.3563	-13772.9563	56.7294	6.85487E-3	0.08 hours/million states
95000	-13977.4897	-196.0226	-13781.4671	63.3262	4.49752E-3	0.08 hours/million states
100000	-13965.4051	-187.8012	-13777.6039	50.9620	4.16763E-3	0.08 hours/million states
105000	-13960.3971	-184.1117	-13776.2854	52.0825	3.69256E-3	0.08 hours/million states
110000	-13977.2950	-191.2086	-13786.0864	76.1688	2.36382E-3	0.08 hours/million states
115000	-13958.3660	-192.3255	-13766.0405	69.1255	2.38537E-3	0.08 hours/million states
120000	-13949.8271	-186.6823	-13763.1448	53.1830	2.97116E-3	0.08 hours/million states
125000	-13953.1798	-184.5700	-13768.6098	52.1756	2.18359E-3	0.08 hours/million states
130000	-13947.2597	-183.4735	-13763.7862	51.1387	1.78493E-3	0.08 hours/million states
135000	-13966.1815	-196.0768	-13770.1047	75.3659	1.03537E-3	0.08 hours/million states
140000	-13969.9735	-192.9568	-13777.0168	67.3515	1.15771E-3	0.08 hours/million states

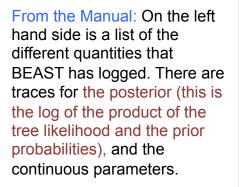
Running BEAST

• The run will finish with a report about the operators

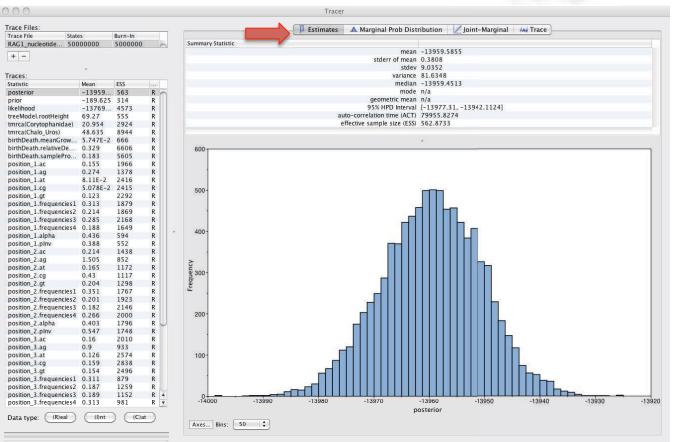
÷.											
	49970000	-13949.6312	-188.4724	-13761.15		.7572		4E-3		hours/millio	
	49975000	-13958.1611	-196.4494	-13761.71		.5909		5E-4		hours/millio	
			-195.0457	-13763.61		.0201		2E-4		hours/millio	
	49985000	-13939.4367	-182.4271	-13757.00	96 57	.6833 .7646	1.2891	1E-3		hours/millio	
	49990000		-195.4775	-13756.05			1.0209	3E-3		hours/millio	
- 1		-13956.5522	-185.5091	-13771.04		.1001		9E-3		hours/millio	
	50000000	-13946.8169	-181.2748	-13765.54	21 59	.9515	1.3358	6E-3	0.09	hours/millio	n sta
	Operator analys	ia									
- 1	Operator	15		Tuning	Count	Time	Time /On	Pr(acc	ont)		
- 1	scale(position)	1 20)		0.405	45374	20757	0.46	0.2751	epc)		
	scale(position			0.466	45235	20661	0.46	0.2805			
- 1	scale(position			0.282	45269	20551	0.45	0.2896			
- 1	scale(position			0.276	45146	20466	0.45	0.2786			
	scale(position_			0.33	45140	20622	0.46	0.2531			
	position 1.freq			0.058	44996	20762	0.46	0.2716			
	scale(position			0.482	45011	19448	0.43	0.2611			
	scale(position			0.555	45173	19548	0.43	0.279			
	scale(position			0.318	45486	17998	0.4	0.2817			
	scale(position)			0.322	45265	17843	0.39	0.2763			
	scale(position)			0.308	45259	17869	0.39	0.3081			
	scale(position)			0.318	45595	18133	0.4	0.277			
	scale(position			0.245	45057	17774	0.39	0.2941			
	position 2.freq			0.06	45261	18128	0.4	0.2741			
	scale(position			0.441	45247	16626	0.37	0.2579			
	scale(position			0.648	45429	16790	0.37	0.2265			
	scale(position			0.483	45568	36966	0.81	0.2557			
	scale(position			0.662	45238	36589	0.81	0.2606			
	scale(position			0.504	44789	36162	0.81	0.2615			
	scale(position			0.435	45320	36625	0.81	0.2722			
	scale(position			0.487	44959	36389	0.81	0.2731			
- 1	position 3.freq	uencies		0.049	45339	36563	0.81	0.2568			
- 1	scale(position	3.alpha)		0.464	45185	35342	0.78	0.2702			
- 1	scale(position	3.pInv)		0.175	45194	35334	0.78	0.3163			
	scale(ucld.mean			0.782	1356415	1254398	0.92	0.2212			
- 1	scale(ucld.stde	v)		0.54	1356488	1255277	0.93	0.2477			
	subtreeSlide(tr			9.79	6786741	1842723	0.27	0.2334			
- 1	Narrow Exchange	(treeModel)			6787151	1269337	0.19	0.1021			
- 1	Wide Exchange(t:	reeModel)			1355796	186515	0.14	0.0037			
- 1	wilsonBalding(t:	reeModel)			1355947	368565	0.27	0.0066			
	scale(treeModel	.rootHeight)		0.833	1359805	146776	0.11	0.2415			
	Narrow Exchange Wide Exchange(t: wilsonBalding(t: scale(treeModel scale(birthDeat) scale(birthDeat) scale(birthDeat) up:ucld.mean dor swaOpmertor(br	ghts(treeModel))			13578475			0.2952			
	scale(birthDeat	h.meanGrowthRate	:)	0.502	1356241	50330	0.04	0.2622			
	scale(birthDeat	h.relativeDeathF	late)	0.174	1355747	32609	0.02	0.2645			
	scale(birthDeat	h.sampleProbabil	.ity)	0.261	1358500	47544	0.03	0.2578			
	up:ucld.mean do	wn:nodeHeights(t	reeModel)	0.603	1356231	518721	0.38	0.2366			
- 11	paurober acor (pr	anomaces.cacege	11001		4525097	1662619		0.4712			
	uniformInteger()	branchRates.cate	gories)		4525831	1325832	0.29	0.6072			
- 1											

4.276963611111111 hours

BEAST: Visualizing the results in Tracer



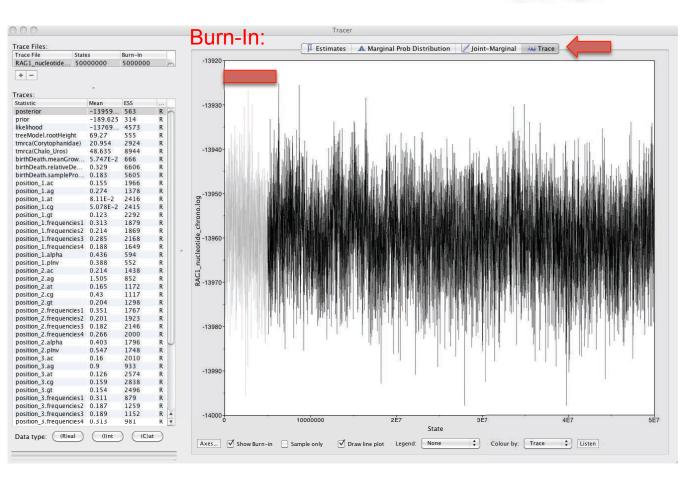
• Open Tracer and explore the results of the course website: RAG1_nucleotide_chrono.log.zip


00		Tracer
race Files:		🗍 Estimates 🔺 Marginal Prob Distribution 📝 Joint-Marginal 🚧 Trace
Trace File States No files loaded	Burn-In	Summary Statistic
	0	Summary statistic
+ -		
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
races:		
Statistic Mean	ESS	
	0.	O Open
		t nice
		Name A Date Modified
	ling	
		RAG1_nucleotide_chrono.ops Monday, February 2, 2015 3:50 AM
		RAG1_nucleotide_chrono.trees Monday, February 2, 2015 3:50 AM
	son	RAG1_nucleotide_chrono_4.xml Sunday, February 1, 2015 11:22 PM
	177	
	_	
	_	
	_	
		File Format: BEAST log (*.log) Files 🛟
		Cancel Open
Data type: (R)eal (I)nt	(C)at	
		(B)

BEAST: Visualizing the results in Tracer

• Open Tracer and explore the results of: RAG1_nucleotide_chrono.log

Selecting a trace on the left brings up analyses for this trace on the right hand side depending on tab that is selected.



BEAST: Visualizing the results in Tracer

• Open Tracer and explore the results of: RAG1_nucleotide_chrono.log

From the Manual: On the left hand side is a list of the different quantities that BEAST has logged. the posterior (this is the log of the product of the tree likelihood and the prior probabilities), and the continuous parameters.

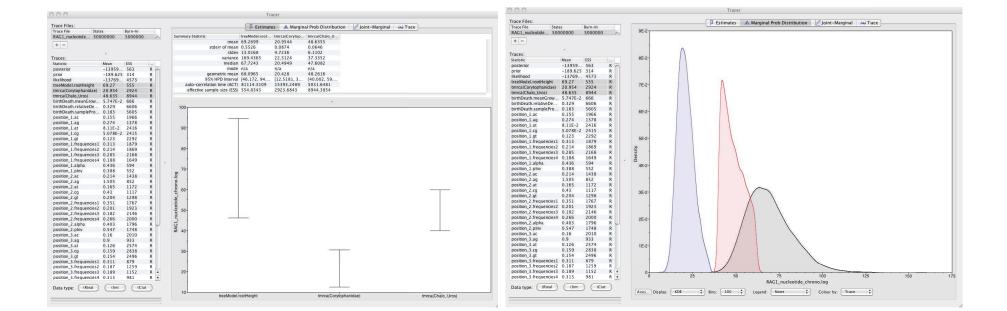
Burn-In: We need to discard early very bad estimates that usually do not add information to our parameter estimation. These wrong estimates are usually visualized using the Trace Tab

BEAST: Visualizing the results

• Tracer will display summary statistics (e.g., means) and in the estimates in each parameter as the run progresses (graph).

• We are interested in Effective Sample Size (ESS). This value indicates the size of a set of independent data points with the same information.

• If ESS is good if it is high enough (i.e., > 100) it will also be indicated in black.


• A low ESS (e.g., < 100) means that even though we may have sampled many data points, our search is rejecting most of its proposals (e.g., node ages) and thus may not represent the posterior distribution well. Other reason is that the proposals it accepts are all very close together so that it is not moving freely across the surface.

Tracer will color Effective Sample Size (ESS) statistic under 100 as RED indicating a run which is too short. We need to run longer our chains (as many times the lowest ESS to get > 100 ESS for that parameter: if ESS = 25 you should run > 4 times the chain).

• It is suggested to have ESS > 200 to be confident in our estimates. For more information read:<u>http://beast.bio.ed.ac.uk/analysing-beast-output</u>

BEAST: Visualizing the results

 Let's explore the results of our nodes that we assigned calibration dates

• This BEAST search look in general good, so lets estimate our summary chronogram.

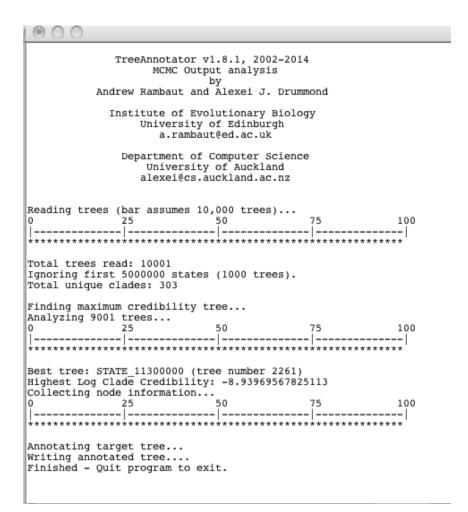
• If you have more than 1 run, you need to be combined the tree and log files using LogCombiner v1.8.1 (see Manual).

- Use Tracer to determine if your total runs are long enough to get a high ESS
- Then, open TreeAnnotator v1.8.1 and select the file from the course website:

RAG1_nucleotide_chrono.trees.zip

to create a summary tree for the graphs make sure:

- 1) to define the number of trees to burn-in with at least stationary posterior, in our case 5000000
- 2) posterior probability limit at 0.0
- 3) set to maximum clade credibility tree
- 4) set to Mean or Median heights



TreeAnnotator v1.8.1, 2002-2014 MCMC Output analysis by Andrew Rambaut and Alexei J. Drummond

Institute of Evolutionary Biology University of Edinburgh a.rambaut@ed.ac.uk

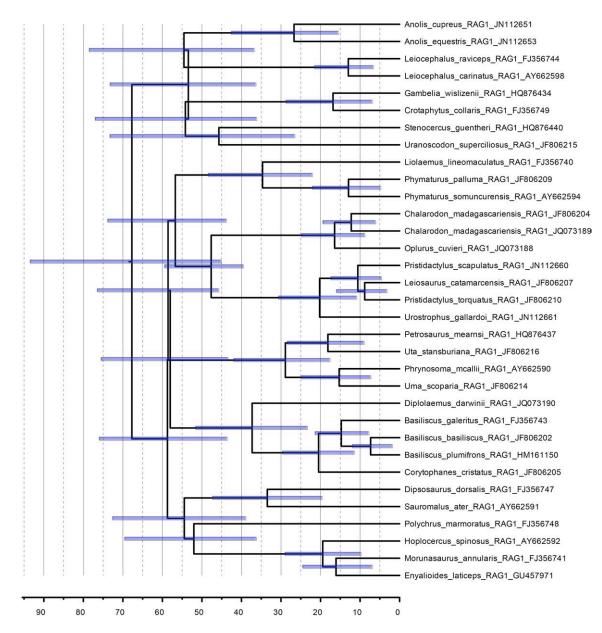
Department of Computer Science University of Auckland alexei@cs.auckland.ac.nz

000	TreeAnnotator v1.8.1	
 Specify the burnin as the 	number of states	
Burnin (as states):	500000	
\bigcirc Specify the burnin as the	number of trees	
Burnin (as trees):	0	
Posterior probability limit:	0.0	
Target tree type:	Maximum clade credibility tree	
Node heights:	Median heights	•
Target Tree File:	not selected	Choose File
Input Tree File:	RAG1_nucleotide_chrono.trees	Choose File
Output File:	Jcleotide_chrono_summary.tre	Choose File
		Quit Run

We will get in our folder the annotated tree:

RAG1_nucleotide_chrono_summary.tre

We can now visualize our chronogram in FigTree and this can be used for comparative analyses


• We can explore this tree or the one in the course website:

RAG1_nucleotide_chrono_summary.tre

and see the nodal 95% HPD (highest posterior density interval) which represents the most compact interval on the selected parameter that contains 95% of the posterior probability.

• These 95% HPD can be thought of as a Bayesian analog to a confidence interval.

Presentations

- This next Thursday (Feb 5th)
- You have 5 minutes (3 min for presentation and 2 min for questions)
- You will need to send me or bring a pdf of your presentation (so I put it in my computer)
- You will need to give me an abstract of your project:

Title: 150 characters (including spaces)

Text: 300 words maximum for your abstract.

This should include:

A brief background introduction Your main question or hypothesis Summary or names of comparative methods that you plan to use Your expected results