

An Elsevier Indexed Journal

ISSN-2230-7346

Journal of Global Trends in Pharmaceutical Sciences

PHARMACOLOGICAL SCREENING OF METHANOLIC EXTRACT OF RED MARINE ALGAE *GRACILARIA CORTICATA* J.Ag.

Shireesha T^{*1}, Ravindra Reddy K², Jayaveera K. N³

 ¹Department of Pharmaceutical Biotechnology, Govt. Polytechnic for Women, Ramanjaneyapuram, Kadapa-516 001 A.P., INDIA.
 ²Department of Biotechnology, P. Rami Reddy Memorial College of Pharmacy, Prakruthi Nagar, Utukur, Kadapa-516 003, A.P., INDIA.
 ³Department of Chemistry, Vemu Institute of Technology, P. Kothakota-517 112, Near Pakala, Chittoor Dist, A.P., INDIA.

*Corresponding author E-mail: tshireeshapharma@gmail.com

ARTICLE INFO Key words

Gracilaria corticata J.Ag., anti-ulcer, antiobesity, anti-diabetic and anti-cancer activity.

ABSTRACT In the present study, methanolic extract of the red seaweed *Gracilaria corticata* J.Ag. (ME of *G. corticata*) at 200 and 400 mg/kg was screened for the activities: Anti-ulcer (Aspirin induced model), anti-obesity (Monosodium glutamate induced model), anti-diabetic (Alloxan induced model) on Wistar albino rats and anti-cancer (MTT assay) against Molt-4 cell lines. ME of *G. corticata* showed significant (P < 0.05) dose dependent activities (400 > 200 mg/kg doses) except the anti-diabetic activity. This may prove helpful for developing new drugs from this red marine algae *G. corticata* for managing gastric ulcers, obesity, cancers and their associated complications. However further studies required to elucidate the exact mechanism of action and the structure of the secondary metabolites which are responsible for these activities for the development as potent anti-ulcer, anti-obesity and anti-cancer drugs.

INTRODUCTION

Among the heterogeneous group of plants, seaweeds or marine algae has a long fossil history and has great medicinal value. They are found in the coastal region and in the sub-tidal regions of the availability of 0.01% of photosynthetic light and also classified into three main categories: brown algae (Phaeophyta), green algae (Chlorophyta), and red algae (Rhodophyta)¹. More than 600 trace elements are found in high concentration in the seaweeds compared to the terrestrial plants, because of which it has various pharmacological activities The Gracilaria corticata J.Ag. (Fig.1) are generally considered to be important

of their industrial because and biotechnological uses due to the presence of constituents like, α -(1,4)-3,6 anhydro-lgalactose and β -(1,3)-d-galactose which is one of the main source of agar with cell wall has slight esterification in it ³. Discovery of novel moieties using these natural sources is an immense assignment and was successful to a great extent, thus serve as a source of many useful drugs with fewer side effects has reached about 4 30% of pharmaceutical market According to the previous literature review, around one thousand molecules entered into the market. in which approximately 49 % of substances were

isolated, characterized and identified from natural origin including seaweeds and the skeleton of these structures can be used as a template for the synthetic and semiderivatives 5. synthetic Ever since scientists faces a great challenge in identifying new effective medicines for many life threatening diseases. Therefore, all over the place in the world, many scientists have an eye on the natural sources for new molecules identification. Hence this research article aims in the pharmacological screening of red algae G. corticata which is one of the important species and various rich in active constituents.

MATERIALS AND METHODS:

Collection of plant material: G corticata J.Ag. (Fig.1) is marine red algae / red seaweed belonging to family: Rhodophyceae. They were collected from the Thoothukudi in the south east coast of Tamil Nadu, India. The collected samples were rinsed with marine water to remove debris and epiphytes. The entire epiphytes were removed using soft brush. The plants were brought to the laboratory. In the laboratory, the plants were once again washed in freshwater and stored in refrigerator for further studies⁶.

Preparation of methanolic extract of G. corticata: The collected red sea weed was washed thoroughly and placed on blotting paper and spread out at room temperature in the shade for drying. The shade dried samples were grounded to fine powder using a tissue blender. The powdered samples were then stored in the refrigerator for further use. 3 g powdered sample was packed in soxhlet apparatus and extracted with methanol for 8 h separately. The excess amount of methanol was evaporated and fine crude powder was obtained and stored in the refrigerator for the further pharmacological screening studies⁷.

Statistical analysis of data: All quantitative measurements were expressed

as means \pm SD for control and experimental animals. The data were analyzed using one-way analysis of variance (ANOVA) on Graph Pad Prism 7.0 free version software and the group means were compared by Duncan's multiple range test (DMRT). The results were considered statistically significant if the *p* value is less than 0.05.

handling and Animal experimental protocols: Were approved by the Institutional Animal Ethics committee, P. Rami Reddy Memorial College of Pharmacy, Kadapa-516 003, A.P., INDIA. (CPCSEANo.1423/Po/a/11/CPCSEA/04/20 13).

Anti-ulcer activity (Aspirin induced model): Wistar albino rats of either sex weighing 150-200 g, were divided into four groups of six animals each (n = 6). Animals were fasted for 24 h before the study, but had free access to water. Animals in the control group received only distilled water. ME of G. corticata at 200 and 400 mg/kg were given to the animals in the treatment group. Ranitidine (10 mg/kg) was used as a standard. After 1 h of drugs treatment. they were anaesthetized with anesthetic ether and the abdomen was opened by a small midline incision. Pyloric portion of the stomach was slightly lifted out and ligated according to method of Shay et al.8 avoiding traction to the pylorus or damage to its blood supply. The stomach was replaced carefully and the abdominal wall was closed by interrupted sutures. Rats were sacrificed by an over dose of anesthetic ether after 4 h of pyloric ligation. The abdomen was opened, cardiac end of the stomach was dissected out and the contents were drained into a glass tube. The volume of the gastric juice was measured and centrifuged at 2000 rpm for 10 min. From the supernatant, 1 mL of aliquots were taken for the determination of pH, total and free acidity. The stomachs were opened along the greater curvature, rinsed with saline to remove gastric contents and blood clots and examined by

a 10X magnifier lens to assess the formation of ulcers. The number of ulcers were counted. Scoring of ulcers will be given as per (Table 1). Mean ulcer score for each animal will be expressed as ulcer index which is expressed as follows:

$$UI = [(UN + US + UP) X 10] - 1$$

Eq. No. 1

Where: UI= Ulcer Index; UN = Avg. No. of ulcers per animal; US = Avg. No. of severity score; UP = % of animals with ulcers

% inhibition of ulceration is expressed as follows:

$$\frac{\text{%Inhibition of ulceration}=}{\frac{\text{UI(control)}-\text{UI(test)}}{\text{UI(control)}}} X 100$$

The results of anti-ulcer activity as (mean ± SD) are represented in (Table2).

(Monosodium Anti-obesity activity glutamate [MSG] induced model): Wistar albino rats of either sex weighing 150-200 g, were taken for the study and they were broadly divided in to five groups of six each (n=6). Groups include normal, control, ME of G. corticata 200 mg/kg, ME of G. corticata 400 mg/kg, and Orlistat (5 mg/kg) as standard⁹. Experiment was conducted according to Dee man's protocol¹⁰. All groups, except the normal received MSG 2 mg/kg for the first 5 days through subcutaneous injection along with high fat diet (HFD). They were given HFD for 42 days consecutively. However, the normal was fed by normal diet. All rats had free access to water during the experiment. The composition of both normal and high fat diet was presented in (Table 3). Starting from day 22, either ME of G. corticata and Orlistat was given to rats according to their group, meanwhile control group received Na CMC suspension only. 24 h after the last day of experiment, all rats were sacrificed by using carbon-dioxide. Body weight from each group was monitored every week throughout periods. Other parameters which were also determined include food index, urine index, feces index, and serum level of triglycerides.

Obtained feces during the study was observed further to examine the presence of oil and/or fat by exposing them to the filter paper. The results of anti- obesity activity as (mean \pm SD) are represented in (Table 4). Histology of liver from each group after 21-day treatment was shown in (Fig. 2).

Anti-diabetic activity (Alloxan induced model): Wistar albino rats of either sex were fasted for 18 h before the study, but had free access to water. To the test group alloxan (150 mg/kg), in freshly prepared 0.1M citrate buffer (pH 4.5) was given. Control group received citrate buffer (pH 4.5) only. 48 h after alloxan induction, blood samples were collected from retro orbital plexus and plasma glucose was determined. The induction of diabetes mellitus was confirmed by determination of plasma glucose level ($\geq 250 \text{ mg/dL}$). Diabetic rats were kept untreated for four weeks. At the end of 4th week, the rats with plasma glucose $\geq 250 \text{ mg/dL}$ was selected for anti-diabetic studies. Alloxan induced diabetes mellitus Wistar albino rats of either sex were divided into five groups of six animals each (n = 6). Negative control group receives normal saline (1 mL/100g/day); positive control group is alloxan induced diabetic rats. Alloxan induced diabetic rats administered with glibenclamide (0.60 mg/kg) orally is the standard group. Alloxan induced diabetic rats administered with ME of G. corticata at 200 mg/kg and 400 mg/kg orally are the test group. After 48 h of alloxan induction, and at intervals of: 0, 1, 3, 5 and 7 h after the test drug administration, blood was collected from retro orbital plexus and the blood glucose levels were mean measured¹¹. The results of anti- diabetic activity as (mean \pm SD) are represented in (Table 5).

Anti-cancer activity (MTT assay): Was conducted at *Biogenix Research Center*, Thiruvananthapuram-695 012, Kerala, India.

Cell lines: Human Molt-4 (lymphoblastlike) cell lines were chosen as proper representatives of human leukemic cell lines.

Cell culture: The cells were cultured in 50 mL cell culture flasks (Orange Scientific) or 96 wells cell culture microplates (Orange Scientific) by using RPMI 1640 (Gibco) containing 10% fetal bovine serum (Gibco) and were incubated at 37° C in the presence of 5% CO₂ as per Morgan et al.¹².

Methyl Thiazolyl Tetrazolium (MTT) assay: To determine the cytotoxicity of methanolic extract G. corticata against studied cancer cell lines, MTT assay test was used as a quantitative and approved method. In this method, 10 µL of MTT stock solution (5 mg/mL in PBS) was added to 90 µL medium of wells which treated by different conc. of were methanolic extract G. corticata for 72 h. The microplate was incubated at 37°C for 4 h and then, the optical density of each well was read by microplate reader (ASYS - EXPERT 96) at 540 nm as per Van de Loosdrecht et al.¹³. The results of MTT assay to determine the anti-cancer activity was represented in (Table 6).

RESULTS & DISCUSSION:

Anti-ulcer activity (Aspirin induced model): ME of G. corticata showed a dose dependent protection against aspirin (500 mg/kg body weight) induced ulcers in rats. Maximum protection was seen in the Ranitidine treated group. The volume of gastric secretion and total acidity was significantly reduced in all drug treated groups as compared to control. Gastric pH was also found to be increased in all drug treated groups as compared to control. with maximum increase being produced by ranitidine as standard drug. The effect of ME of G. corticata on aspirin induced ulceration was shown in (Table 2). Further it was observed that aspirin induction has ulcerations caused gastric and pretreatment with the ME of G. corticata has reduced significantly (P < 0.05) in a dose dependent manner. In this model, the

percentage inhibition of ulceration was found to be 65.25 and 53.25 at 200 and 400 mg/kg respectively.

Anti-obesity activity (MSG induced model):

The body wt. change: There were significant differences in body weight between control and normal group (p < 0.05). Even though the body weight of all groups grew throughout the periods, elevation of that in a group treated with ME of *G. corticata* 200 and 400 mg/kg was lower than that of the control group (Table 4).

Organ Index (in terms of perirenal and perianal fat): Of the group treated with ME of *G. corticata* 200 and 400 mg/kg were lower than that of the control group. At a dose of 400 mg/kg, ME of *G. corticata* possessed the ability to reduce both perirenal and perianal fat compared to the Orlistat treated group (Table 4).

Urine and Feces Index: The group treated with ME of G. corticata, 400 mg/kg had significant lower urine index compared to the control group (p < 0.05). The similar results were obtained in the measurement of feces index, in which ME of G. corticata, 400 mg/kg showed lower value than control (p < 0.05). Moreover, there were oil spots when rat feces exposed to the filter paper. Histopathological studies examination on liver histology displayed that, in the normal group, hepatocytes are structurally organized with a few small circles. As shown in (Fig. 2), there were small circles (pointed by an arrow) distributed in the liver tissues that was seemingly used as fat storage. However, the size of each spots was higher in the control group. It is most likely mean that without any treatment, absorbed fat will be stored particularly in the liver with greater size of vesicles. These histopathological findings were relevant to measurement of liver index, where there was a significant increase in the liver index value in all induced group compared to normal group (Table 4).

Observation	Score
Normal colored stomach	0.0
Red coloration	0.5
Spot ulcer	1.0
Hemorrhagic streak	1.5
Deep ulcers	2.0
Perforation	3.0

Table 1. Scoring of ulceration

Table 2. Results of anti-ulcer activity

Animal groups	Vol. of gastric	pН	Acidity (mEq/L)		Ulcer	% Ulcer
	juice		Free	Total	Index	inhibitio
						n
Control	4.52±0.2	3.95±0.1	121.7±9.8	132.5±4.5		
Ranitidine (10 mg/kg)	4.70±0.2	4.18±0.2	47.0±1.22	63.50±5.6	74.25±2.	74.25%
				7	9	
(200 mg/kg) ME	5.41±0.1	5.33±0.1	50.45±1.14	63.58±2.6	65.25±0.	65.25%
					8	
(400 mg/kg) ME	5.73±0.1	5.24±0.16	60.17±1.52	74.9±2.14	53.25±1.	53.25%
					3	

Table 3. Composition of normal and high fat diet

Ingredient	Normal diet (g/ kg)	High fat diet (g/ kg)
Casein	80.0	80.0
Corn starch	60.0	60.0
Sucrose	200.0	122.6
Corn oil	45.0	0.0
Lard	0.0	219.2
AIN-76 vitamin mix	4.0	4.0
DL-methionine	1.2	1.2
Energy (kcal/100 g)	390.2	487.0
Calories from fat (%)	11.5	45.0

Table 4. Results of anti-obesity activity

Animal groups	I	Body weight (g		Food	Urine	Feces	Serum TG	
	1st Wk	2nd Wk	3rd Wk	Index (% W/W)	Index (% W/W)	Index (% W/W)	level (mg/dL)	
Normal control	185.00±7.64	251.00±3.26	290.83±1.62	$19.08 \pm$	3.32±	2.51±	$168.33 \pm$	
Normal control	183.00±7.04	231.00±3.20	290.85±1.02	1.93	1.31	0.82	27.97	
HFD+MSG control	184.17±4.12	310.17±3.50 380.50±3.74		$30.08 \pm$	2.51±	2.51±	$280.16 \pm$	
	104.1/±4.12	510.17±3.30	360.30±3.74	5.16	1.38	1.25	30.16	
HFD+MSG+(5	183.17±4.71	303.50±4.19	329.33±4.36	$22.50 \pm$	3.82±	2.82±	$191.80 \pm$	
mg/kg)Orlistat		505.50±4.19		3.66	0.82	1.31	25.41	
HFD+ MSG+(200	185.33±3.79	305.17±3.84	349.17±3.05	$19.67 \pm$	3.32±	2.73±	$203.80 \pm$	
mg/kg) ME	183.35±3.79	505.17±5.84	549.17±5.05	2.38	1.67	1.67	22.45	
HFD+ MSG+(400	194 50 2 10	304.00±3.28	210 67 2 75	$15.00 \pm$	4.64±	2.92±	127.50±	
mg/kg) ME	184.50±3.19	304.00±3.28	310.67±2.75	1.92	1.25	1.14	28.52	

Animal groups	Blood glucose (mg/dL)		Blood	glucose af	ter drug a (mg/dL)	dministrat	ion at
	Before	After 48 h	0 h	1 h	3 h	5 h	7 h
Control	70.5±1.1	81.0±5.2	75±5.8	73±3.3	71±0.7	70±1.4	70±1.0
Alloxan 150 mg/kg	72.0±0.7	195±60.8	193±6	222±7	202±6	206±6	207±6
Glibenclamide 0.60 mg/kg	70.2±1.0	258±31.5	79±1.4	76±1.8	73±1.8	71±1.0	70±1.1
Alloxan 150 mg/kg + 200 mg/kg ME	70.7±1.2	196±54.8	192±7	220±8	201±6	207±6	205±9
Alloxan 150 mg/kg + 400 mg/kg ME	70.7±1.0	197±62.8	191±6	221±7	204±5	208±5	207±6

Table 5. Results of anti-diabetic activity

Table 6. Results of anti-cancer activity

OD at 540 nm (molt-4 cells)	Conc. of ME (µg/µL)
0.810	0
0.444	2.723
0.390	4.668
0.370	5.057
0.326	5.835
0.325	6.224
0.315	7.391
0.309	8.167
0.290	8.947
0.290	9.336
0.255	9.726

Fig.1. Photograph of Gracilaria corticata J.Ag.

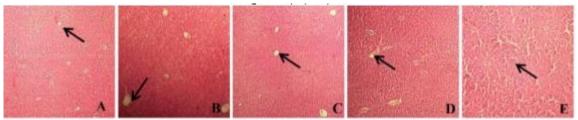


Fig. 2. Histology of liver from each group after 21-day treatment with 40 times magnification in microscope. A: Normal group, B: Control group, C: ME of *G. corticata* 200 mg/kg b.w.; D: ME of *G. corticata* 400 mg/kg b.w.; E: Orlistat 5 mg/kg b.w. The arrow is pointed at small circle where the fat existed.

Serum levels of triglycerides: A significant increase of triglyceride serum levels on the control group comparing to normal group. The results proved that administration of high fat diet caused their elevation. Group

treated with ME of *G. corticata* 200 and 400 mg/kg showed lower triglyceride levels remarkably compared to the control group (Table 4).

Anti-diabetic activity (Alloxan induced model): The test group treated with 200 and 400 mg/kg ME of *G. corticata*, does not showed the significant decreased in the blood glucose level when compared to the group treated with alloxan. From the present investigation, it can be concluded that ME of *G. corticata* does not show the anti-diabetic activity (Table 5).

Anti-cancer activity (MTT assay): As shown in (Table 6), the result of MTT assay confirmed that the most effective conc. of ME of G. corticata against molt-4 cells was 9.726 μ g/ μ L. Based on previous experience, filtration method is the best way for algal extract sterilization as per Zandi et al.¹⁴. The heat sensitivity of some biological constituents of algal extract is the most important reason for not using autoclave for sterilizing extract. In this study, the ME of G. corticata showed reasonable activity against tumor cells replication. The most effective conc. of ME of G. corticata against Molt-4 cells is 9.726 μ g/ μ L. In this study, the effective conc. is higher than other similar studies in which the purified biological active compound(s) were used instead of crude extract. Therefore, fractionation and purification for G. corticata extract in future studies is recommended.

CONCLUSION:

Anti-ulcer activity (Aspirin induced model): From the results obtained, it can be concluded that the ME of *G. corticata*, possess significant anti-ulcer activity. Among the two conc. of ME studied, 400 mg/kg had the highest effect than 200 mg/kg.

Anti-obesity activity (MSG induced model): From the results by HFD-induced and MSG-induced models, it can be concluded that the ME of *G. corticata*, possess significant anti-obesity activity. Among the two conc. of ME studied, 400

mg/kg had the highest effect than 200 mg/kg.

Anti-diabetic activity (Alloxan induced model): From the results obtained, it can be concluded that the ME of *G. corticata* does not show the anti-diabetic activity.

Anti-cancer activity (MTT assay): From the results obtained, it can be concluded that the ME of G. corticata, possess significant anti-tumor activity against Molt-4 cell lines. Among the two conc. of ME studied, 400 mg/kg had the highest effect than 200 mg/kg. Also, in regards to the significant results of these studies, the isolated and purified biological active compound(s) must be used instead of crude extract. This may prove helpful for developing new drugs from this marine algae G. corticata for managing gastric ulcers, obesity, diabetes, cancers and their associated complications. However further studies required to elucidate the exact mechanism of action and the structure of the secondary metabolites which are responsible for these activities for the development as potent anti-ulcer, anti-obesity, anti-diabetic and anti-cancer drugs.

ACKNOWLEDGMENTS: The authors are thankful to the management and Dept. of pharmacology P. Rami Reddy Memorial College of Pharmacy, Kadapa-516 003, A.P., INDIA, for permitting to carry animal work. *Biogenix Research Center*, Thiruvananthapuram-695 012, Kerala, India, for conducting anti-cancer (MTT assay) studies.

REFERENCES:

- 1. Subhash RY, Uday NH, Bhupal BC. Therapeutic potential and health benefits of Sargassum species. Pharmacogn Rev. 2014; 8(15):1-7.
- 2. Sahoo D, Sahu N, Sahoo D. A Critical Survey of Seaweed

Diversity of Chilika Lake, India. Algae. 2003;18(1):1-12.

- 3. Kain JM, Destombe C. A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol. 1995; 7: 269–81.
- Kirkpatrick P. Antibacterial drugs. Stitching together naturally. Nat. Rev. Drug Discovery. 2002; 1:748–52.
- Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981– 2002. J Nat Prod. 2003; 66:1022-37.
- John Peter Paul J, Shri Devi SDK. Effect of seaweed liquid fertilizer of Gracilaria dura (Ag.) J.Ag. (Red Seaweed) on Pennisetum glaucum (L.) R.Br., in Thoothukudi, Tamil Nadu, India. Indo American Journal of Pharmaceutical Research. 2014; 4(4): 2183-87.
- John Peter Paul J, Yuvaraj P. Phytochemical analysis of Padina distromatica Hauck. Indo American Journal of Pharmaceutical Research. 2013; 3(7): 5290-97.
- Shay H, Komarov SA, Fels SS, Meranze D, Grunstein M, Siplet H. A simple method for uniform production of gastric ulcers in rats. Gastroenterol. 1945; 5: 43-61.
- Adnyana I K, Safitri, Christopher W. Preventive Effect of Jasmine Flower Ethanol Extract on MSG-High Fat Diet Induced in Male Wistar Rats. International Journal of Pharmacognosy and Phytochemical Research. 2016; 8(7): 1066-70
- 10. Diemen VV, Trindade EN, Trindade MRM. Experimental Model to Induce Obesity in Rats, Acta Cir. Bras. 2006; 21(6): 425-42.
- Yuvaraj P, John Peter Paul J. Anti-Diabetic Activity of Methanol Extract of *Rosenvingea intricata* (J.Ag.) Boergesen-An Important

Brown Seaweed. World Journal of Pharmaceutical Research. 2017; 6(10): 1539-44.

- Morgan SJ, Darling DS (1992).
 Animal cell culture: A practical approach. 2nd Edn. IRI press, Chicago, USA.
- 13. Van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM. Aetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods. 1994; 14: 311-20.
- 14. Zandi K, Fouladvand MA, Pakdel P, Sartavi K. Evaluation of in vitro antiviral activity of a brown alga from Persian Gulf, Cystoseira myrica against herpes simplex virus type 1. Afr. J. Biotechnol. 2007; 6: 2511-14.