

Simpson AGB, Roger AJ (2004) Curr Biol 14: R693-R696

Multicellular eukaryots

"PROTOZOA"

SYSTEM of PROTOZOA

(Adl et al., 2005)

EXCAVATA

RHIZARIA

- 1. phylum: Metamonada
- 2. phylum : Parabasalia
- 3. phylum : Euglenozoa
- 4. phylum : Heterolobosea
- 5. phylum: Preaxostyla
- 1. phylum: Phytomyxea
- 2. phylum : Foraminifera
- 3. phylum : Radiolaria

AMOEBOZOA

- CHROMALVEOLATA 2. 3.
- phylum : Amoebozoa
 - phylum: Dinoflagellata
 - phylum: Apicomplexa
 - phylum: Ciliophora

PROTOZOA (PROTISTS)

- •eukaryotic cell
- •endomembrane systems
- •membrane-bound nuclei
- •endoplasmatic reticulum
- •nuclei contain multiple DNA strands (unlike prokaryotes)
- •numerous organelles
- •can reproduce mitotically, some are capable of meiosis for sexual reproduction
- •most are unicellular, some are colonial

- <u>The life cycle</u> of majority of protozoans alternates between **trophozoite** and **cyst** (oocyst)

EXCAVATA

•<u>with suspension-feeding groove</u> – cytostome (presumed to be secondarily lost in many taxa)

 feeding groove used for capture and ingestion of small particles from feeding current generated by a <u>posteriorly directed flagellum</u>

 right margin and floor of groove are <u>supported by</u> parts of the microtubular root

Jakoba libera

1.Phyllum: Metamonada

- no mitochondria (hydrogenosoms)
- no Golgi apparatus
- feeding groove with flagellum running through it
- flagella have no paraxial rod
- flagellates anterior flagella and recurrent flagellum

Genus Giardia

- 9-20 x 7-12 μm
- "tear-drop" shape
- two nuclei
- 8 flagella
- suction disk
- mammals, vertebrates

Transmission:

- elliptically shaped cysts
- (6 10 microns)
- passed in the feces
- resistant to environmental factors
- and disinfection
- giardiasis is most frequently associated with the <u>consumption</u> <u>of contaminated water</u>

100X

40X

Giardia lamblia

<u>small intestine of the human, domestic animals</u> (dogs and cats) and <u>wild</u> <u>animals</u> (beavers and bears)

the <u>most frequent cause of human non-bacterial diarrhea</u> in North America

more prevalent in children than in adults

the infection prevent the absorption of essential nutrients and vitamins

with diminished resistance, other diseases can attack host

2.Phylum: Parabasalia

- parabasal apparatus
- no mitochondria hydrogenosoms
- flagella have no paraxial rod
- with axostyle made of microtubulus

parabasal apparatus

 two or more <u>striated</u> <u>parabasal fibres</u>
<u>connecting</u> the Golgidictyosomes to the flagellar apparatus

Order: TRICHOMONADIDA

- pyriform shape
- anterior tuft of flagella
- median rod (axostyle)
- <u>undulating membrane along the</u> <u>recurrent flagellum</u>
- parabasal body present
- cysts

Human Trichomonads

- Trichomonas vaginalis
- veneral disease
- Trichomonas tenax
- commensal in mouth
- Pentatrichomonas hominis
- commensal in intestine

- Dientamoeba fragilis
- parasite

Trichomonas vaginalis

- approximate size = $26 \ \mu m$
- 5 flagellum (4 and undulating flagellum)
- transmitted <u>through vaginal</u> <u>intercourse</u>
- often asymptomatic
- infection can cause <u>vaginitis in</u> women and urethritis in men
- prevalence 2-5%

Tritrichomonas foetus

- reproductive disease in <u>cattle</u> (infertility, abortion and endometritis)
- a sexually transmitted disease worldwide distribution
- prevalence of infection from relatively low percentages (2% to 5%) to significant levels (15% to 40%) in others
- diarrhea in <u>cats</u>

Trichomonas gallinae

- parasite of <u>upper digestive tract</u> of many avian species (<u>pigeons, doves, turkeys,</u> <u>chickens, quail, hawks</u>, eagles, falcons, canaries, parrots)
- cause <u>white plaques and inflammation</u> in the oral cavity
- accumulation of <u>necrotic material</u> in the mouth and esophagus (yellow growths)
- a disease of <u>young birds</u> (pigeon milk produced in the crop)
- avirulent strains (not cause disease), highly virulent strains (causing disease and death)
- much less frequent than was the case in the past

Histomonas meleagridis

- affects <u>turkeys, chickens</u>, and occasionally other galliform birds
- <u>in turkeys, most infections are</u> <u>fatal (blackhead)</u>
- disease of the digestive tract (caecal wall and liver)
- affected birds depressed, dull, reluctant to move to take food

Life cycle

•in embryonated eggs of the Heterakis gallinarum

•Histomonads are released_from *Heterakis* larvae <u>in the</u> <u>ceca</u>

•<u>submucosa</u> and <u>muscularis mucosae</u> (extensive and severe necrosis)

•<u>liver</u> (either by the vascular system or via the peritoneal cavity)

3. Phylum Euglenozoa

- a uniform nucleus
- **one or more flagella** (may have pseudopodia)
- flagella with the paraxial rod

- autotrophic_or heterotrophic
- unicellular or colonial
- asexual or sexual

Subfyllum: Euglenida Subfyllum: Kinetoplastida

flagella with the paraxial rod

- <u>9 + 2 pattern of microtubules</u>
- with paraxial rod
- the 2 flagellae with mostly unequal length
- originate <u>in the apical saccula</u> <u>flagellae</u>

Phylum Euglenozoa

- Subphylum: EUGLENIDA
- Subphylum: KINETOPLASTIDA

Subphylum: EUGLENIDA

• <u>pellicle</u>

 one third have the <u>chloroplasts –</u> <u>chlorophyll</u> a

 <u>paramylon</u> is the carbohydrate store

Fig. 1. Cross-section through the pellicle of a euglenoid.

• **pellicle** is organized as a series of <u>ridges and</u> <u>grooves</u>

Fig. 3. Scanning electron micrograph of a pellicle with few longitudinally arranged strips.

- green plastids
- switch from auto- to heterotrophy
- most phototropic species need supplementary substances - auxotropic

Euglena viridis, 2 Euglena gracilis, 3 Euglena polymorpha,
Menoidium tortuosum, 5 Phacus tortus,
Colacium cyclopicola, 7 Trachelomonas volvocina, 8
Urceolus cyclostomus

All after Entwisle et al. (1997)

• Colacium

Genus Euglena

- freshwater
- about 150 species

- spindle shaped bodies
- 0.025 to 0.254 millimeter

Phototaxis is co-ordinated:

- sensoric paraflagellar body
- light-absorbing stigma

Subphylum: KINETOPLASTIDA

unique mitochondrion

kinetoplast

- one or two flagella
- are best known for causing serious diseases in the tropics, some free-living

Ichthyobodo necator ("costia")

- the skin and gills
- $10 20 \ \mu m$
- two unequal flagella
- cause significant aquaculture losses worldwide
- multispecies complex with differing host preferences

• <u>free and parasite forms</u>

• <u>cysts</u>

Trypanoplasma borreli

- fish sleeping sickness
- blood parasite of carp and other fish
- 10 30 µm in length
- transmitted
 by several species of
 leeches

Blood smear of carp infected with Trypanoplasma borelli

Bodo candatus, B. urinarius

- length: 10-25 μm
- moves in a "jerking" or "corkscrew" fashion
- INDICATORS IN THE ACTIVATED- SLUDGE PROCESS
- indicate an **unstable wastewater environment** and a sludge that is in poor health
- high numbers during type up of a treatment plant, during recovery from a toxic discharge to the treatment plant, or at <u>low dissolved oxygen</u> <u>levels</u>

Trypanosoma brucei (T.b.brucei, T.b.gambiense, T.b.rhodesiense)

•parasitic protist species that causes African trypanosomiasis (or **sleeping sickness**) in humans and **nagana** in animals in Africa.

•the insect vectors - *Glossina morsitans, G. pallidipes, G.swynnertoni* (*T.b.b.,T.b.r.*) and *G. palpalis a G. tachinoides* (*T.b.g.*)

•parasites develop in the **anterior portions** of digestive tract

•fly inoculate a host from the salivary glands

Trypanosoma brucei gambiense, T.b.rhodesiense

•etiological agents of African sleeping sickness

Pathogenesis

- repeated changes in surface antigens
- host immune system greatly stimulated
- huge amount of immunoglobulins are produced
- swelling lymph nodes
- **invade nervous systems** (sleeping stage of infection)

Trypanosoma brucei brucei

 parasite of native antelopes and other African ruminants

• <u>NAGANA</u>

Trypanosoma cruzi

•CHAGAS DISEASE

also called American trypanosomiasis

•distributed throughout most of **South** and Central America

•another 35 million people are exposed to infection

•16-18 million people are infected•50,000 will die each year

•many kinds of wild and domestic mammals serve as reservoir

•the insect vectors are **bugs (Hemiptera, Reduviidae, subfamily Triatominae)**

•trypanosomes develops in hindgut (undergo posterior station development)

an infected bug deposits feces on a person's skin

The person **rubs the feces into the bite wound**, an open cut, the eyes, or mouth.

Leishmania spp.

- heteroxenous
- vector <u>fly (Phlebotomus)</u>
- parasite of vertebrate tissues
- in the gut the form of a promastigote
- in tissues only **<u>amastigote</u>** form

Leishmania promastigotes (culture form) (by P.) rdrop) Leishmania amastigote

(by Mike Belosevic)

Leishmania tropica, L. major

- produce <u>cutaneous ulcers</u> variously known as <u>oriental sore</u>, <u>cutaneous leishmaniasis</u>, <u>Jericho boil</u>, <u>delhi boil</u>
- they are found in west-central Africa, the Middle East, Asia Minor into India

cutaneous leishmaniasis

(by Mike Belosevic)

Phlebotomus

L. donovani - Kala-azar

- Dum-Dum fever or kala-azar
- diseases:
- lowgrade fever and malaise
- wasting and anemia,
- **protrusion of the abdomen** (from enlarged liver and spleen)
- death in two to three years

Leishmania donovani

4. Phylum: Amoeboflagellates (Heterolobosea)

- **<u>ameboid</u>** protozoa
- most species have a temporary <u>flagellate stage</u>
- free living (soil), rarely <u>parasitic</u>, <u>symbiont</u>

5. Phylum: Preaxostyla

- unicells with flagella and kinetosomes per kinetid
- lacking mitochondria
- "preaxostylar" substructure

Class: Oxymonadida

- symbionts of termites
- axostyle
- no extranuclear spindle
- many flagella
- no pellicle
- use pseupodia, phagocytosis
- digest cellulose
- transmit protozoans from termit to termit via licks one's excrements

Trichonympha sp. with many long flagella

Rhizaria

ameboid body filose, reticulose, microtubule-supported pseudopods shells or skeletons

lobopods

filopods

axopods

reticulopods

1. Phylum: Phytomyxea

- protozoans, not fungi
- <u>plant pathogens</u>
- <u>zoospores with two, anterior flagella</u>
- <u>multinucleated protoplasts (plasmodia)</u>
- cruciform nuclear division
- obligate, intracellular parasitis
- environmentally-resistant resting spores (cysts)

• 10 genera

Membranosorus heterantherae on Heteranthera dubia

ভাবালের ভিবের্জনের ভিবের্জনের বিষয়ের বিষয়ের বিষয়ের বিষয়ের Gall on Veronica caused by Sorosphaera

10 mm

C J. P. Braselton, Ohio University

ulls (arrows) on *Zannichellia palustris* caused by *Tetramyxa parasitica* n is a 20 pennia piece from Finland.

Shoot of Halodule wrightii infected with Plasmodiophora diplantherae, collected from Indian River, FL, 20 March 1984.

J. R.Braselton; Onto University

Life Cycle

Plasmodiophora brassicae

Economically significant plasmodiophorids

Plasmodiophora brassicae - clubroot of cabbage and other brassicaceous crops

Spongospora subterranea subterranea - powdery scab of potato

S. subterranea sp. nasturtii - crook root of watercress

Polymyxa betae - rhizomania of sugar beet

Polymyxa graminis, *P. betae*, and *S. subterranea* serve as vectors for viruses of crops including barley, wheat, potatoes, and watercress.

Spongospora subterranea

2.Phyllum: Foraminifera

- marine
- <u>benthic</u>, <u>planktic</u> (which live in the upper 300 feet or so of the ocean)
- typically range <u>from 0.1 mm to 1</u> <u>mm</u> in size
- granuloreticulose pseudopodia (<u>thin, fairly rigid</u>)
- <u>form skeletons (</u>calcite, organic compounds and sand grains)
- the shells (or tests) are commonly <u>divided into chambers</u>
- geologic significance

Forammferans// CaCO₃ fest

3.Phyllum: Radiolaria

- planktonic protozoa
- axopods
- shells (silica, strontium sulphate)
- the radial symmetry
- spherical, cone-like and tetrahedral forms
- in many rocks
- 50 1000 μm

0.0kV ESD ×300 6.9mm 4.8T 1996:09:10 14:43:11

AMOEBOZOA

pseudopods, cells "naked" or testate, cysts common

1.Phyllum: AMEBAS (Amoebozoa)

- temporary extension (pseudopodia)
- no flagellate stage
- contain a single nucleus
- body naked (without pellicle)
- may produce skeletons or test
- feed mainly on bacteria or detritus

- vary in size from about 1/100 inch (0.25 millimeter) to 1/10 inch (2.5 millimeters) across
- <u>if conditions are unfavorable</u>, amebas secrete a firm <u>protective covering</u>

Entamoeba histolitica

- **amebic dysentry** of man and other animals
- amoebic liver abscess

- 50 million infection, and about 100 000 deaths
- particularly in the developing world

The main stages in the life cycle:

- <u>Trophozoites</u>
- diameter 20 50 μm
- initiate tissue invasion (hydrolyse mucosal cell)
- blood-ingesting
- <u>cyst</u> very resistant, diameter
 5-10 μm (with 4 nuclei)

Entamoeba coli

- nonpathogen
- coexist with E. histolitica
- the morphologies of *E*. *histolytica* and *E*. *coli* are similar in most of the stages

• cysts with five or more nuclei

Amoeba proteus

- **300-1000** µm long
- on the surface of water plant

CHROMALVEOLATA

Plastid from secondary endosymbiosis with an ancestral archaeplastid

plastid secondarily lost or reduced in some

1. phylum: Dinoflagellata

- commonly regarded as "algae"
- freshwater and marine environments
- <u>transverse flagellum</u> (encircles the body in a groove known as the cingulum)
- longitudinal flagellum

• cell wall of many dinoflagellates is divided into plates of cellulose

- bizarre in shape and appearance
- heterotrophic and autotrophic (photosynthetic)
- bioluminescence
- free living, some parasites on fish or on other protists
- about 2100 species

"red tide"

- "bloom" during the warm months of summer
- reproduce in great numbers
- produce a neurotoxin
- ciguatera, PSP (can be serious but are not usually fatal

Zooxantella, Symbiodinium

• endosymbionts of corals

2. phylum: APICOMPLEXA

- <u>apical complex</u> (micronemes and rhoptries, polar rings, conoid)
- the apical organelles play a role in these host-parasite interactions

APICOMPLEXA cause serious illnesses

- genus *Plasmodium* cause malaria (450 million people are infected with malaria, and over 1 million die from it each year)
- coccidiosis and toxoplasmosis

• apicomplexans that infect insects have been used experimentally <u>to control populations of insect pests</u>

classification

- Classes:
- 1. Gregarinea
- 2. Cryptosporidea
- 3. Coccidea
- 4. Haematozoea

1.Class: GREGARINEA

- mature trophozoit
 extracellular, large
 (to 10 mm)
- parasites of gut and body cavities of invertebrates

• epimerite (region specialised for attachment to the host tissue)

- <u>protomerite</u>
- <u>deutomerite</u> containing nucleus

Monocystis lumbrici

• Host: earthworms

2.Class: CRYPTOSPORIDEA

- monoxenous
- 3-5 µm
- <u>parasites of the intestinal</u> <u>tracts</u> of fishes, reptiles, birds, and mammals
- do not display a high degree of host specificity

 it lives on the surface of the cells lining the <u>small intestine</u>

 cells' membrane envelops them

transmission of the infection occurs via the **oocysts**.

- thick-walled oocysts with 4 sporozoites passed in the feces
- <u>thin-walled oocysts</u> remain in gut, excysting and releasing merozoites (= autoinfection)

photograph courtesy of B. Stein, TUSVM

Cryptosporidium parvum

- *Cryptosporidium* isolated from humans (calfs, dogs) is now referred to as *C. parvum*
- parasite of mammals, birds
- in immunocompromised hosts
- <u>the contamination of drinking water</u> with oocysts from agricultural "run-off" (i.e., drainage from pastures), so it is considered a zoonosis
- the infection causes a **short term, mild diarrhea**
- <u>the symptoms of cryptosporidiosis</u>- the most common include <u>watery diarrhoea</u>, <u>abdominal cramps</u>, <u>nausea</u>, <u>and headaches</u>. These symptoms occur within two to 25 days of infection and usually last one or two weeks; in some cases they stick around for up to a month.

3.Class: COCCIDEA

- small, intracellular
- parasites of many tissues of vertebrates and invertebrates
- some monoxenous, others heteroxenous

- many species are **pathogenic**
- infective stage **oocyst**

life cycle with three major phases

• <u>asexual</u>: **sporogony**

• <u>asexual</u>: **merogony** (schizogony)

• <u>sexual</u>: gametogony

transmission: via the oocysts

• MONOXENOUS LIVE CYCLE (one host)

• Eimeria spp.

• HETEROXENOUS LIVE CYCLE (two hosts)

• Sarcosystis spp., Toxoplasma spp.

Eimeriidae (Eimeria spp.)

- monoxenous life cycle
- <u>most species parasitize domestic</u> <u>animals</u>, (poultry, rabbits, calfs, sheeps, goats, piglings)
- dangerous mainly **for kittens** (frequently lethal course)
- factors: animal concentration, stress, hygiene
- **host-specific** (restricted to a certain host species)

Life cycle of Eimeria tenella

- MEROGONY
- GAMETOGONY
- SPOROGONY

Life cycle of Eimeria tenella

the infectious stage: the sporulated oocysts:

- 4 sporocysts containing 2 sporozoites each
- micropyle
- bilayer oocyst wall
- 'stieda body'

WWW.POULTRYMED.COM

WWW.POULTRYMED.COM

Coccidia of <u>domestic fowl</u>

- <u>Eimeria acervulina</u>
 Eimeria brunetti
 <u>Eimeria maxima</u>
 Eimeria mitis
 - Eimeria mivati
 <u>Eimeria necatrix</u>
 Eimeria praecox
 <u>Eimeria tenella</u>

Control of coccidiosis

• Hygienic measures

• Zootechnic, management measures

• Chemotherapy

Vaccination methods

Hygienic measures

- basic <u>regular cleaning and disinfection</u>
 (common disinfectants do not destroy oocysts)
- gassing of metallic cages and structures by soldering lamp
- regular exchange of bedding
- mechanical cleaning and disinfection of haunts
- **regular removal of faeces** and biothermal sterilization of faeces at dung-pits
- maintaining the **lowest humidity** of environment and bedding possible
Zootechnical measures

- not overcrowding the animals
- cage fostering
- separated breeding of the young and older animals
- quarantine and examination of new animals

Heteroxenous life cycle

(Sarcocystic spp., Toxoplasma gondi)

• Sporogony (into the environment)

 Merogony - formation <u>zoitocysts (or tissue cysts)</u> in muscle of <u>herbivorous</u> <u>intermediate host</u>

 Gametogony - <u>in definitive hosts (mainly carnivorous mammals)</u> merozoits transform into gamonts and <u>produce micro and macrogametocytes</u>.

• Sarcosystis spp.

- intermediate host, definitive host both of them <u>host-</u>
 <u>specific</u>
- only <u>vertical transmission</u> (from intermediate to definitive host)

• Toxoplasma gondi

- intermediate host <u>nonspecific</u>, definitive host only <u>felines</u>
- vertical and horizontal transmission, transplacental transmission

THE LIFE CYCLE OF SARCOCYSTIS CRUZI

(Parasites and Parasitological Resources)

Sarcocystis gigantea

• Esophagus.

TOXOPLASMA GONDI

- the most important zooantroponosis in Europe (in all temperate zone)
- 30 % of the population of the Czech Republic are infected with *Toxoplasma gondi*
- toxoplasma is <u>cosmopolitan in the human population</u>
- toxoplasma infection is common, but full-blown disease is rare

the INTERMEDIATE host

• all warm-blooded animals, including man

• the FINAL host

• domestic, wild, and feral cats

FINAL host

- cats 20 % to 100 % infection rate with *T. gondii*.
- **stray and feral cats** have a higher incidence of infection than pet cats
- oocysts are excreted in the feces <u>for two</u> to three weeks
- oocysts can survive in moist shaded soil or sand for months

the intermediate hosts **become infected**

- **by eating sporulated oocysts (**oocyst contains 2 sporocysts with 4 sporozoites)
- by <u>eating raw contaminated meat</u>
- transovarially

4. Class: Haematozoa

- life cycle in outside <u>environment absent</u>
- <u>heteroxenous</u>
- sporozoites in invertebrates

- <u>1 order: Haemosporida</u>
- <u>2 order: Piroplasmida</u>

1. zygote motile (ookinete)

2. heteroxenous, <u>definitive host - blood</u> <u>sucking insect</u>

1. <u>hemozoin pigment produced in some</u> genera

PLASMODIUM

- <u>genus *Plasmodium:*</u> are responsible for the disease "malaria" in both animals and man
- produce pigment called <u>hemozoin</u>
- <u>"malaria"</u> is caused by *Plasmodium ovale*,
 P.malarie, *P.vivax* a *P. falciparum* transmitted by
 Anopheles (A.gambiae)

Life cycle of *Plasmodium*

• <u>asexual</u>: **sporogony (mosquito)**

• <u>asexual</u>: merogony(mammal)

• <u>sexual</u>: gametogony (mosquito/mammal)

 The mosquito <u>injects</u>
 <u>sporozoites into the</u> human when it feeds

MEROGONY:

- 1. The sporozoites <u>develop in the</u> <u>liver cells (the hepatocytes)</u>
- 2. Merozoites invade **blood cells**

Once established, the parasite cell ingests hemoglobin and enlarges to form a "schizont"

The schizont ruptures, and the next generation of merozoites is released to invade new RBC's.

GAMETOGONY

- 1. in vertebrates (man)
- 2. in Anopheles

GAMETOGONY in vertebrates:

- the merozoites enter red blood cells and <u>develop</u> <u>into gametocytes</u>
- male and female gametocytes circulate in peripheral blood
- get sucked up as part of blood meal by female mosquitos

GAMETOGONY in mosquitos:

- male gametocytes seek female gamectocytes
- ookinete
- ookinete migrate through gut wall
- **oocyst** outside wall of mosquito stomach

MALARIA of man

species of *Plasmodium*

• P. ovale

• P.malarie

• P.vivax

• P. falciparum

DISEASE

clinical manifestation may be attributed to two general factors:

1, host inflammatory response (chills, fever)

2, anemia, arising from enormous destruction of red blood cells

- *Falciparum* malaria is the most serious form (cerebral malaria) and *vivax* and *ovale* the least dangerous
- kidney, liver, brain damage
- worlwide prevalence 500 million
- 5 mil. are fatal

<u>life cycle cannot take place in temperatures below 17 °C</u>

• most important of antimalarials - chloroquine

Order: Piroplasmida

- merogony in vertebrates, gametogony, sporogony in invertebrates (<u>tick</u>)
- <u>transstadial</u> transmission in the tick
- undergo <u>binary fission</u> in blood cell of vertebrates and ultimately kill their host cell
- in red blood cell (*Babesia*), or in both white and red cell (*Theileria*)

Babesia

- infect mammals, particularly cattle, sheep, goats, horses, pigs, dogs and cats and occasionally man
- <u>Babesiosis</u>, '<u>redwater fever'</u> or '<u>tick fever'</u>
- major impact on the livestock industries in many countries
- <u>vector</u> <u>the one-host ticks</u>, <u>belonging to the genus *Boophilus*</u> (*Boophilus microplus*, *B*. *decoloratus* and *B*. *annulatus*) and *Rhipicephalus*
- transovarian transmission
- in contrast to the malaria life cycle, there is <u>no tissue stage for *Babesia*</u>

- fever disease, anemie
- <u>red-colored urine resulting</u> from massive destruction of erythrocytes
- Babesia bovis in Europe
- *Babesia bigemina* -Texas cattle fever (mortality rate in acute cases in untreated cattle is as high as 50 90%)
- *Babesia microti* infects human, rodents

Rhipicephalus

3. Phylum: Ciliophora

• presence of hair-like organelles called <u>cilia</u> (<u>identical in structure to **flagella**</u>)

- <u>ecto</u> and <u>endosymbiotic</u> members
- obligate and opportunistic <u>parasites</u>
- a large protozoa, a few reaching 2 mm in length
- water lakes, ponds, oceans, and soils
- 10,500 species

- CILIA arranged in <u>longitudinal</u> rows (kineties)
- <u>cytostome</u> (cell mouth)
- <u>nuclear dualism</u> two types of nuclei in every cell
- polygenomic (polyploid) somatic <u>macronuclei</u> - more important for protein synthesis
- 2. diploid germinal <u>micronuclei</u> important for reproduction
- <u>cross fission</u>
- <u>conjugation</u>, a sexual process involving temporary union of two cells

<u>Cilia</u>

 cilia are arranged in mono, di or polykinetids

• **KINETID**:

- one, two or more kinetosomes (basal bodies)
- fibres
- microtubule bundles

Polykinetids

- **polykinetids** form bristles called **cirri**
- these are arranged <u>into</u> <u>rows called kineties</u>

cirri (photo by Kuniyasu)

Infraciliature

- kinetids
- fibrils
- microtubules

involved in coordinating the cilia

Cell cortex

1. pellicle

2. the infraciliature

3.<u>the alveoli</u> (small vesicles under the cell membrane that are packed against it)

Oral and Other Structures

- mouth (cytostome)
- oral structures
- food vycuoles
- path through the cell
- cytoproct

Contractile vacuole

Extrusomes

- are membrane-bound structures
- <u>discharge their contents</u> <u>outside the cell</u>
- used as a defense against would-be predators

Reproduction

- reproduce asexually <u>cross dividing</u>
- exchange genetic information <u>conjugation</u>
- during this process two cells unite, the micronuclei undergo meiosis, then pair up and fuse with similar haploid micronuclei from the other organism, mixing the DNA from the two organisms.

cross dividing

- 1. Class Spirotrichea
- 2. Class Litostomatea
- 3. Class: Phyllopharyngea
- 4. Class: Nassophorea
- 5. Class: Oligohymenophorea

1. Class Spirotrichea

- bristles called cirri
- dikinetids, polykinetids
- right and left oral and/or preoral ciliature (polykinetids - "undulating membranes")

Euplotes sp., *Aspidisca* sp. *Oxytricha* sp.

- <u>crawler ciliates</u> ("crawl" over surfaces such activated sludge floc)
- the "setae" which act as their legs
- both *Euplotes* and *Aspidisca* are common in activated sludge and their presence is desired as they indicate a well operating plant

Aspidisca sp.

Oxytrixa trifallax

2. Class Litostomatea

Litostomatea

- divided into two groups, ranked as subclasses
- The **HAPTORIA** includes mostly <u>carnivorous forms</u>, for instance *Didinium*, which preys exclusively on the ciliate *Paramecium*
- The TRICHOSTOMATIA are mostly <u>endosymbionts</u> in the digestive tracts of vertebrates.
 These include the species *Balantidium coli*, which is the only ciliate parasitic in humans.

HAPTORIA Didinium

- <u>the mouth is surrounded:</u>
- 1. by a <u>ring of coronal cilia</u>
- 2. by a ring of <u>extrusomes</u> <u>called *toxicysts*</u>.
- These discharge on contact with prey, penetrating and immobilizing them, and beginning digestion.

TRICHOSTOMATIA

- the mouth lies <u>in a</u> <u>depression, or vestibule</u>
- containing modified somatic cilia.

Order Entodiniomorphida

- the cilia are arranged into tufts or bands, and may be packed together to form syncilia, membranelles and cirri
- **endosymbionts** in the digestive tracts of vertebrates

Entodiniomorphida - infusorian symbionts

several hundred thousand to 2 mil. protozoa in each millilitre of rumen contents

120 species of infusorias

symbiotic cellulose digestion is the <u>only way</u> <u>that cellulose beomes</u> <u>available to mammals</u>

•cellulase activity only by some species of infusorias

Isotricha spp.

Diplodinium spp. with adherent bacteria on the (x 1065)

Ophryoscolex spp.

Balantidium coli

- 0,05-0,2 mm
- cilia seriated longitudinaly
- in the cecum and colon <u>of pigs</u>, <u>rats</u>, <u>where it feeds on the</u> <u>contents as a commensal</u>
- **<u>parasite of human</u>** -invades the mucosa as a pathogen
- produce **proteolytic enzymes** that digest away intestinal epithelium of the host

pathogenesis:

- diarrhea
- dysentery (bloody diarrhea)
- colitis
- abdominal pain
- prevention
- proper hand washing practices
- water treatment
- <u>separation of human and swine</u> <u>habitats</u>
- proper waste disposal

3. Class: Phyllopharyngea

- tubular cytopharyngeal apparatus (<u>cyrtos</u>)
- free living, some **parasites** on fish
- some which are extremely specialized

Cyrtos (tubular cytopharyngeal apparatus)

Chilodonella cyprini

- <u>Ektoparasites of fish</u>
 - oval or heart shape
- size between 40 and 70 μ m
- cilia are arranged in rows along its underside
- causes a <u>slimy skin appearance, the skin</u> <u>and gills discoloured</u> showing bluishwhite to grey
- <u>heavily infested</u> epithelial damage, skin erosion
- weak, young fish in spring

Suctoria

- <u>sessile and lack cilia in the adult</u> <u>phase</u>
- the mouth is often modified to form an extensible <u>tentacle, with toxic</u> <u>extrusomes</u>
- non-contractile stalk and often a lorica or shell
- 15-30 μm
- freshwater and marine environments

A bell shaped cell body B tentacles that extend all the way around the bell C macronucleus, large pink body shaped like a "C" D stalk, may be very faint

Figure 2-46 A colony of the suctorian *Heliophrya* feeding on *Paramecium*. Some individuals of *Paramecium* have just been captured. Others have been ingested to various degrees. (From Spoon et al., 1976: Observations on the behavior and feeding mechanisms of the suctorian *Heliophyra erhardi* preying on *Paramecium*. Trans. Am. Micros. Soc., 95:443-462.) From R. D. Barnes

4. Class: Nassophorea

 cyrtos welldeveloped (,,basket") in several groups, and typical of class

Paramecium sp.

- from 100-350 um long
- <u>foot-shaped or cigar-shaped</u>
- <u>uniformly ciliated</u> over the entire body surface with longer cilia tufts at the rear of the cell
- a <u>large feeding groove</u>
- filter-feeding its cilia move and filter bacteria from the water

Paramecium caudatum

- easily maintained and cultured
- feed on bacteria
- fresh water

- **ventral groove** containing the mouth and distinct oral cilia
- these include a <u>paroral membrane</u> to the right of the mouth and <u>membranelles</u>, usually three in number, to its left

- widely distributed
- many free-living (typically freshwater, but many marine)
- symbiotic forms

Tetrahymena pyriformis

Ichthyophthirius multifiliis

- 0,5 1 mm
- causes common disease known as ich
- attacks the epidermis, cornea, and gill filaments
- form pustule in the skin

infective stage

 (termed therons or swarmers) can
 survive about 96
 hour without a host

Order: Sessilida

- settled lifestyle
- modified posterior kinetosomes which secrete a <u>contractile</u> <u>stalk</u>
- <u>bell or disc shaped</u>
- <u>prominent paroral membrane</u> arising from the oral cavity

- the unattached stage, called a **telotroch**, is mouthless
- common in both freshwater and marine environments
- many live attached to aquatic plants and animals
- the rest of the body is unciliated, except for a **telotroch band** circling the posterior in mobile species and stages

Vorticella sp.

- ranging in length from about 30 to 150 µm
- food source is suspended bacteria
- the contracting stalk provides some mobility to help the organism capture bacteria and avoid predators
- Indicator:
- treatment conditions are bad -*Vorticella* will leave their stalks
- a bunch of empty stalks indicates poor conditions in an activated sludge system
- <u>Vorticella sp.</u> are present when <u>the</u> plant effluent quality is high.

Order: Mobilida

- the posterior of the cell is enlarged and modified to form a complex holdfast (allowing attach to some host organism)
- **parasite** most live on the integument or gills of freshwater and marine invertebrates, fish and even other ciliates, and other locations as well
- some can be pathenogenic in high populations

Trichodina domerquei

- round or disc-shaped, with a flattened underside
- underside reveals a suction attachment with a ring of hooks located within it

• once the parasite attaches to its host it continually rotates

<u>common symptoms</u> :

- slimy secretion
- Irritation
- skin damage
- gasping for air at the surface
- loss of weight
- can survive in freeswimming form for up to 24 hours

FUNGI Microsporea

- <u>intracelular parasites</u>
- without mitochondria
- extrusion apparatus
- <u>transmitted by the Spores (unicellular</u> and have a single sporoplasm)
- life cycle: <u>change sporogony and</u>
 <u>schizogony</u> (the process may not be strictly analogous to merogony found in the Apicomplexa)

• usually 3 to 6 μ m in length

• <u>ameboid</u> **sporoplasm surrounds** the extrusion apparatus

- nucleus and most of cytoplasm lying <u>within the</u> <u>coils of the filament</u>
- <u>polar cap or sac</u> covering the attached end of the filament

- infected hosts defecate spores that are infective to other host
- swallowed spores enter the midgut and lodge on the peritrophic membrane
- <u>extruded filaments pierce the</u> <u>peritrophic membrane</u> and intestinal epithelial cell and <u>sporoplasm enters</u> <u>epithelial cell</u>
- the sporoplasm flows through the tubular filament, thereby gaining acces to its host cell

Nosema apis

- cause *Nosema* disease and <u>dysentery in</u> <u>honeybees</u>
- is widespread and can cause extensive losses of adult bees

• <u>symptoms :</u>

- inability of bees to fly
- excreta on combs or lighting boards
- a pile of dead or dying bees on the ground in front of the hive
- bees become infected when <u>they pick up the</u> <u>spores in the excreta as they clean the soiled</u> <u>combs</u>
- spores will **remain viable for many months** in dried spots of excreta on brood combs

http://max.af.czu.cz/kzr/natural/index.htm