1 The evolution of Zoraptera

- 3 Yoko Matsumura^{1,2,*}, Rolf G. Beutel^{1, †,*}, José A. Rafael^{3,†,*}, Izumi Yao^{4,†}, Josenir T. Câmara^{5,†}, Sheila P.
- 4 Lima³, Kazunori Yoshizawa^{4,*}
- ⁵ ¹Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum,
- 6 Friedrich Schiller University Jena, Erbertstr. 1, 07743 Jena, Germany
- 7 ²Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am
- 8 Botanischen Garten 1–9, 24118 Kiel, Germany
- 9 ³Instituto Nacional de Pesquisas da Amazonia, Caixa Postal 2223, 69067-375 Manaus, AM, Brazil
- 10 ⁴Systematic Entomology, School of Agriculture, Hokkaido University, 060-8589, Sapporo, Japan
- 11 ⁵Universidade federal do Piauí, Bom Jesus, Piauí, Brazil
- 12 [†]equally contributed
- 13

 $\mathbf{2}$

- 14 *correspondence
- 15 Yoko Matsumura: yoko.matumura.hamupeni@gmail.com
- 16 Rolf G. Beutel: rolf.beutel@uni-jena.de
- 17 Jose A. Rafael: jarafael@inpa.gov.br
- 18 Kazunori Yoshizawa: psocid@res.agr.hokudai.ac.jp
- 19

20 Abstract

- 21 Zoraptera is one of the most enigmatic and least understood orders in insects. Based on
- a wide taxon sampling from all continents where the group is known, we applied a
- 23 phylogenetic approach using multiple DNA sequences to elucidate species-level
- relationships. The resulting phylogeny shows that Zoraptera is divided into three major
- clades, and that two comprise species distributed on different continents. The
- monophyly of these clades is at least partly supported by shared derived morphological
- features. The divergence age estimation and ancestral distribution area reconstruction suggest an ancient origin and early radiation initiated in the Permian. Plate tectonics
- theory suggests that the present distribution of Zoraptera was mainly established by
- vicariance, rather than dispersal. The three major clades likely originated on the
- 31 Pangaea supercontinent, or alternatively on the Gondwana and Laurasia
- 32 supercontinents. Their ancient origin explains previously found conspicuous
- interspecific variation of the genital apparatus, sperm structure, and mating behaviour,
- in striking contrast to a highly conserved general body morphology. We compiled data
- of available reproductive features and reconstructed the character evolution. Our
- analyses revealed repeated acquisitions and/or losses of a hyper-elongated intromittent
- organ, mating hooks, and tergal protuberances.
- 38

39 Introduction

- 40 Zoraptera is the third smallest order in Insecta after Mantophasmatodea and
- 41 Grylloblattodea. The group is mainly distributed in subtropical and tropical regions
- 42 (Grimaldi & Engel, 2005; Beutel *et al.*, 2014; Mashimo *et al.*, 2014c; Choe, 2018). Its
- 43 phylogenetic position has been controversial (reviewed in Mashimo et al., 2014c; Kjer
- 44 *et al.*, 2016; Beutel *et al.*, 2017), with consensus apparently reached recently with
- 45 Zoraptera being placed in a monophyletic Polyneoptera based on different sources of
- 46 evidence (Yoshizawa, 2011; Mashimo et al., 2014a, 2015; Misof et al., 2014; Wipfler &
- 47 Pass, 2014; Matsumura *et al.*, 2015; Wipfler *et al.*, 2019). Recently, Wipfler *et al.*
- 48 (2019) reconstructed the morphology of the common ancestor of Polyneoptera and

subsequent evolutionary developments, based on a robust phylogenetic hypothesis 49 congruent with Misof et al. (2014). They recovered Zoraptera as the sister group of 50Dermaptera, and both orders were placed as sister to the rest of the polyneopteran 51orders. They also postulated that the last common ancestor of Polyneoptera was 'a 5253 ground-dwelling insect with a largely unmodified body relative to the last common ancestor of winged insects' (Wipfler et al., 2019). Considering the winged morphs of 54Zoraptera (e.g., Friedrich & Beutel, 2008; Mashimo et al., 2014c; Matsumura et al., 55562015), it is reasonable to postulate that extant species are relatively similar in their 57morphology to the aforementioned 'ancestral' polyneopteran. The combination of mostly plesiomorphic morphological features with few autapomorphies partly explains 58the difficulty of placing this order phylogenetic context (Mashimo et al., 2014c). 59

60 In contrast to the species diversity found in major polyneopteran orders (e.g., Phasmatodea, Mantodea, Blattodea, Orthoptera), to date only 44 extant species and 14 61 extinct species are described in Zoraptera (Mashimo et al., 2018; Chen & Su, 2019). 62 Kukalová-Peck & Peck (1993) proposed six genera within Zoraptera based on the wing 63 venation. However, this character complex is known to vary even within a species 64 (Choe, 1989). Consequently, these genera were synonymized with Zorotypus by Engel 65 66 (2000) who considered 'their homologies tenuous and their system unstable'. Likewise, 67 a genus described by Chao & Chen (2000) was similarly synonymized with Zorotypus (Engel, 2000). Since then, Engel's monogeneric classification has been widely accepted 68 69 (Rafael & Engel, 2006; Terry & Whiting, 2012; Mashimo et al., 2013; Yin et al., 2015; 70Wang *et al.*, 2016; Choe, 2018). The described species of *Zorotypus* are relatively small, typically less than 3 mm and live cryptically mainly in rotten trees. They lack any 71conspicuous features with the exceptions of a very distinct dimorphism (apterous and 7273 alate morphs) and extremely varying genitalia (Mashimo *et al.*, 2014c; Choe, 2018). Considering the assumed reconstructed common ancestor of Polyneoptera (Wipfler et 7475al., 2019), Zoraptera apparently have acquired a life style characterized by cryptic habitats, gregarious behaviour and miniaturization. However, their evolutionary origin 7677and morphological transformations over time are still largely obscure.

78The striking diversity of genital structures is in strong contrast to the external homogeneity among species. The highly diversified male genitalia have been 79investigated intensively, with detailed anatomical reconstructions (Hünefeld, 2007; 80 81 Matsumura *et al.*, 2014), but also in the framework of taxonomic studies (e.g., Gurney, 82 1938). In some species a spiral-shaped elongated male genital structure was reported (e.g., Gurney, 1938; New, 1978, 2000; Mashimo et al., 2013). To our best knowledge 83 this is a unique character state in Polyneoptera. Different types of elongation of the 84 intromittent organs are also known within Zoraptera, looped for instance in Z. 85 zimmermani (Gurney, 1939) and straight in Z. barberi (Gurney, 1938). Some species 86 possess asymmetrical genitalia (Gurney, 1938; Paulian, 1949, 1951; Hwang, 1974, 87 1976; Rafael & Engel, 2006; Hünefeld, 2007; Rafael et al., 2008; Mashimo et al., 2013, 88 2018; Wang et al., 2016; Kočárek et al., 2017; Yin & Li, 2017), in some species 89 remarkably differing in their specific features. Another conspicuously diversified 90 91character system is the structure of elements of the terminal abdominal segment, the presence or absence and size of spines and mating hooks (e.g., Gurney, 1938). This 92variation may be related to the mating posture to some extent. Males are probably 93 94 connected to females by these terminal structures, laying in an upside-down position in 95 the majority of the species, in which the mating posture is known (Shetlar, 1978; Choe, 1994, 1995; Mashimo et al., 2011; Dallai et al., 2013). The disparity between a far-96 reaching uniformity of the general morphology and an extreme diversity of genital 97

features is obviously a fascinating phenomenon and a challenging topic in evolutionary
biology. However, a reliable evaluation was not possible so far due to the lack of formal
phylogenetic analyses on the species level (see Engel, 2003).

101 The primary aim of our study is to reconstruct the phylogeny within Zoraptera 102 using molecular data. The taxon sampling covers species from all continents. The 103 evolutionary history is evaluated by means of divergent time estimation and based on 104 the plate tectonics theory (see Seton *et al.*, 2012). The character evolution with a special 105 focus on reproductive structures was reconstructed based on the phylogenetic trees.

106

107 Materials and methods

108

109 Most of the specimens were collected for this study and fixed with 80 - 99.5 % ethanol

110 (Fig. 1). Type specimens of *Z. novobritannicus* were borrowed from Arthropod

111 Collection, Brigham Young University, Provo, UT, USA. In total 31 individuals

belonging to 21-22 species were included (Fig. 2). We failed to trace the identity of

sample YK16-10 collected from Ecuador and named it as Z. sp. 6. We collected only Z.
 huxleyi and Z. *hamiltoni* from the same locality at the same time, and Z. sp. 6 likely

huxleyi and *Z. hamiltoni* from the same locality at the same time, and *Z.* sp. 6 likely belongs to the latter species. Outgroups were selected from all polyneopteran orders and

some species from Psocodea, Hemiptera, Ephemeroptera, Odonata, Zygentoma and

Archaeognatha. The tree was rooted with Archaeognatha. The sequences of the

118 outgroup taxa were obtained from GenBank (metadata of the samples are listed in

- 119 Tables S1 and S2).
- 120

121 DNA extractions, amplifications, sequences and alignment

122Partial sequences of the following genes were used: nuclear 18S rRNA and Histone 3, 123mitochondrial 16S rRNA and 12S rRNA. The following primers were used for 124amplifying 18S (18S-Zora-f: 3'-ATT AAG CCA TGC AAG TGT CAG-5'; 18S-Zora-r: 3'-TTA RYA TAT GCT ATT GGW GCT GG-5'), Histone 3 (His3-Embio-f: 3'-AAR 125GCY CCW MGM AAR CAR CT-5'; His3-Embio-r: 3'-TGR ATR GCR CAV AGR 126127TTR GTR TCY TC-5'), 16S (16Sbr: 3'-CCG GTC TGA ACT CAG ATC ACG T-5'; 16Sar-Locust: 3'-CGC CTG TTT ATC AAA AAC AT-5') and 12S (12S-Zora-f: 3'-TGG 128CGG YRW DWW RWT YTW TYR GRG G-5'; 12S-Zora-r: 3'-TTA CTM TYA AAT 129CCA CCT TC-5'). Methods for DNA extraction, polymerase chain reaction 130 131amplification, and sequencing followed Yoshizawa & Johnson (2008). Some faintly 132amplified gene fragments were cloned prior to sequencing using the pGem-T Easy Vector system (Promega, Maddison, Wisconsin) following manufacturer protocols. 133 Alignment of protein coding genes was straightforward as no gap was identified in the 134135sequences. Ribosomal RNAs were aligned using MAFFT 6.5 (Katoh & Standley, 2013) with the Q-INS-i option, in which secondary structure information of RNA is 136 considered. Apparent misalignments were corrected manually, and poorly aligned 137regions were excluded from the analyses. 138

139

140 Model selection and phylogenetic estimation

141 The best substitution models and partition schemes were estimated using 142 PartitionFinder 2.3.3 (Lanfear *et al.*, 2017), with the greedy algorithm. The codon 143 positions for Histone 3 (3 partitions) and rRNA (3 partitions) were predefined for the 144 PartitionFinder analyses. The best fit partition scheme and models were described in the 145 paywa formatted data matrix (Supplementary Data)

145 nexus formatted data matrix (Supplementary Data).

Previous studies showed that the phylogenetic relationships of polyneopteran
orders cannot be estimated accurately using a limited number of gene sequences (e.g.,
Kjer, 2004; Yoshizawa & Johnson, 2005; Ishiwata *et al.*, 2011; Misof *et al.*, 2014;
Wipfler *et al.*, 2019). Therefore, we constrained the phylogenetic relationships among
orders according to Misof *et al.*, (2014) and Wipfler *et al.*, (2019) for the following
phylogenetic analyses. In addition, unconstraint analyses were also performed to test the
monophyly of Zoraptera (see Supplementary Data).

153We estimated a maximum likelihood tree using IQ-Tree 1.6.3 (Nguyen et al., 1542015), with 10,000 replicates of an ultrafast likelihood bootstrap with -bnni option 155(Hoang *et al.*, 2018) to obtain bootstrap branch support values. To see the stability of results, ten independent IO-Tree analyses were performed. All the analyses resulted in a 156concordant result, and we selected the tree obtained from the last run for Fig. 3. A 157158Bayesian analysis was performed using MrBayes (Ronquist & Huelsenbeck, 2003). We performed two runs each with four chains for 1,000,000 generations, and trees were 159sampled every 1,000 generations. The first 10% of sampled trees was excluded as burn-160 in, and a 50% majority consensus tree was computed to estimate posterior probabilities. 161 162 Tracer in the BEAST software package (Bouckaert et al., 2014) was used to check that 163 the MCMC runs reached a state of convergence.

164

165 Divergence time estimation

166 For divergence date estimation, a Bayesian method was adopted using the software MCMCtree in the PAML 4.8 software package (Yang, 2007) and BEAST 2.6 167168 (Bouckaert et al., 2014). The following fossil ages were used as soft minimum bounds according to Misof et al. (2014) and Tong et al. (2015): 160 MYA for the deepest 169 divergence of Plecoptera; 130 MYA for the deepest divergence of Isoptera; and 99 170 MYA for the deepest divergence of Embioptera (Table 1). For all fossil calibrations, the 171172age of Rhynie chert (412 MYA) was used as the hard maximum bound according to 173Evangelista et al. (2019). In addition, the hard maximum bound 450 MYA was also adopted for Zygentoma-Pterygota divergence age according to Misof et al. (2014) and 174175Tong et al. (2015).

176For the MCMCtree analysis, we first estimated the substitution rate prior using the divergence date 419 MYA for the Polyneoptera - Paraneoptera branching according to 177Tong *et al.* (2015). Based on the result, a gamma prior for the substitution rate was 178179estimated using baseml in the PAML software package. The GTR+G model was 180 adopted with an alpha = 0.5, which was a close approximation of the best substitution model estimated by iModeltest (Posada, 2008) for entire dataset. We performed a run 181 for 1,000,000 generations, and the values were sampled every 50 generations. The first 182183 10% of the obtained values were excluded for burn-in. We ran two independent 184analyses to check that the MCMC runs reached a state of convergence (dos Reis *et al.*, 1852017).

For the BEAST analysis, we used the Clade Ages package (Matchiner *et al.*, 2017).
The following options were selected: BEAST Model Test for the site model, Relaxed

188 clock Log Normal for the clock model, Birth-Death model for the priors. We performed

- a run for 20,000,000 generations, and the first 10% of the obtained values were
- excluded for burn-in. Tracer in the BEAST software package (Bouckaert *et al.*, 2014)
- 191 was used to check that the MCMC runs reached a state of convergence.
- 192

193 Biogeographical analysis

Ancestral area reconstruction was performed using the dated tree obtained from the 194 MCMCtree analysis. Outgroup samples were excluded from the analysis. We used a 195196 Dispersal-Extinction-Cladogenesis (DEC) model (from Lagrange: Ree & Smith, 2008) as implemented in the software RASP 3.2 (Yu et al., 2015). Dispersal-Vicariance 197 Analysis (DIVA: Ronquist, 1997) was a potential alternative to the DEC model. 198199However, a previous study showed that DIVA wrongly identifies ancestral areas with complex patterns of dispersals and within-area speciation events (Kodandaramaiah, 200 2012010). Five geographical realms were defined: Afrotropical, Indomalaysian, Nearctic, Neotropical and Australasian. The maximum number of areas allowed for ancestral 202203distributions at each node was set to two, and dispersal between all pairs of 204distributional areas was equally weighted. For extant species, there are no species distributed in two or more biogeographical regions. The biogeographical region coding 205206 of each sample was based on the known distributional range of the species.

207

208 Character evolution

We focussed on the following eight features, (1) absence or presence of an elongated 209intromittent organ, (2) symmetry of genitalia, (3) absence or presence of basal plate, (4) 210absence or presence and size of mating hook, (5) absence or presence of records of 211males, (6) absence or presence and size of protuberances on abdominal tergites 9-12, (7) 212modifications of subgenital plate, and (8) absence or presence of hairy patch on vertex 213214('fontanelle gland' in the literature). The relevant data are provided in many taxonomic studies, and most of the information was obtained from the literature. If necessary, we 215216examined specimens under a stereomicroscope Olympus SZX12 (Olympus Corporation, 217Tokyo, Japan) to obtain additional information. For an overview of the diversity focus 218stacking images of the caudal view were taken using a stereomicroscope Leica M205 A equipped with a camera Leica DFC420 and the software LAS 3.8 (Leica Microscopy 219GmbH, Wetzlar, Germany). Relevant information for the outgroups was obtained from 220the following studies: Tuxen (1970), Helm et al. (2011), and Klass et al. (2013). 221222Character evolution was reconstructed with the software Mesquite 3.6 (Maddison & 223Maddison, 2018).

- 224
- 225 **Results**

226 Phylogeny, dating, and biogeography

The aligned sequences consisted of 1753 bp (of which 75 bp were excluded from the analyses), and the obtained maximum likelihood (ML) and Bayesian trees (Fig. 3, suppl. Figs. 1-3) were congruent except for one weakly supported branch. Both analyses, with and without constraining phylogenetic relationship among outgroup orders (Misof *et al.*, 2014 and Wipfler *et al.*, 2019), did not yield different phylogenetic

relationships within Zoraptera (Fig. 3, Figs. S1 - S3). Therefore, the influence of the

analytical methods on the evolutionary history discussion is negligible, and we focussedon the ML tree thereafter.

235The monophyly of the order Zoraptera was strongly supported (100 % bootstrap (BS), 1 posterior probability (PP)) (Figs. S1, S3) and it can be divided into three major 236clades (Fig. 3). Clade 1 comprises five species from different continents: Z. hubbardi 237(Nearctic: NA), Z. impolitus (Indomalaysia: IM), Z. shannoni (Neotropic: NT), Z. 238asymmetristernum (Afrotropic: AF), and Z. sp. 1 (AF) (Fig. 3). The ancestral 239240distribution areas of Zoraptera and clade 1 were not convincingly estimated (Fig. 4). 241Clade 1 is estimated to have split around 270 Mya (210 - 385 Mya) from the rest and 242diverged around 224 Mya (163 – 285 Mya) (Fig. 4). Within clade 1, Z. hubbardi (NA) and Z. impolitus (IM) separated 155 Mya (89 - 225 Mya) (Fig. 4), and the ancestral area 243244remains uncertain (Fig. 4) as in the previous cases. Z. shannoni (NT) derived 85 Mya 245(42 – 143 Mya) from a common ancestor with Z. asymmetristernum (AF). The ancestral distribution of the clade including Z. sp.1 (Afrotropic: AF) was presumed as either 246 Afrotropic + Neotropic (77.15 %) or only Afrotropic (22.85 %) (Fig. 4). 247

Clades 2 and 3 were estimated to have diverged around 236 Mya (179 – 295 Mya) 248(Fig. 4), presumably in an area corresponding with the contemporary Neotropic region 249(100 %). Clade 3 includes only Z. barberi (SA) among the included species, while clade 2502 comprises the majority of species evaluated in our study (Fig. 3). Clade 2 diversified 251around 183 Mya (134 – 238 Mya) (Fig. 4). The ancestral distribution was estimated as 252either Neotropical (74.47 %) or the Indomalaysia + Neotropic regions (25.53 %) (Fig. 2534). Clade 2 comprises three major lineages (Fig. 3). The first emerging clade 2c 254comprises Z. weidneri (NT), Z. brasiliensis (NT), and Z. huxlevi (NT) (Fig. 3), with a 255subclade of Z. weidneri and Z. brasiliensis. These species were estimated to have 256257diverged around 128 Mya (86 – 180 Mya) (Fig. 4) in the Neotropical region (Fig. 4). 258The rest of clade 2 was estimated to have split 161 Mya (114 – 214 Mya). One subgroup (clade 2a) diverged in the Neotropical region and the other (clade 2b) in 259260continents corresponding to the current Indomalaysian region + Australasia (35.33 %), Indomalaysia (33.21 %), Indomalaysia + Neotropical region (26.23 %), or only the 261262Neotropical region (5.24 %) (Figs. 3, 4). The Neotropical clade (c2a) diverged around 103 Mya (64 – 155 Mya), and Z. mexicanus (NA) arose 30 Mya (14 – 56 Mya) (Fig. 4). 263The origin of Z. mexicanus was estimated as the Nearctic + Neotropical regions. 264265Zorotypus novobritannicus (Australasian) was placed as sister to the Indomalaysian group, and their divergence date was estimated as 138 Mya (94 - 190 Mya). The rest 266267diverged around 104 Mya (64 – 155 Mya) in the Indomalaysian region (Fig. 4).

The divergence age estimation based on a BEAST model (Fig. S4) showed very similar results. The divergence ages of each node were estimated slightly older than those obtained from a MCMCtree analysis, while the estimated divergence ages of clade were younger. However, in all cases they largely overlapped.

272

273 *Evolution of reproductive character states*

Based on our original observations and a literature survey, mainly from taxonomic
studies, information on the above mentioned eight characters related to reproduction
was available for the majority of the described species and is summarized in Table S3.
Consensus on structural homologization in zorapteran genitalia was not evident, and
researchers used different terminologies based on varying interpretations in the
literature. A reliable assessment of homologies is still pending, a point also emphasized

in Boudinot's (2018) first comprehensive synthesis of insect male genitalia. As this
turned out as too ambiguous for characters (3) and (6), they were not scored for
terminals outside of Zoraptera.

283The maximum likelihood reconstruction was performed to estimate evolutionary histories of the eight features (Figs. 5 and 6). Hyper-elongation of the intromittent organ 284occurred at least twice, possibly even three times (Fig. 5A). Since clade 2a includes 285many species with unknown character states, the independent occurrence of the spiral in 286287clades 2a and 2b is not conclusive. An asymmetric configuration of the genitalia is a 288commonly observed feature in Polyneoptera (Huber et al., 2007), but a symmetrical 289condition is considered as ancestral for the group (Helm et al., 2011; Boudinot, 2018). 290The ancestral state of Zoraptera was likely symmetric according to our estimate (Fig. 2915B). The asymmetric state was likely acquired in the ancestor of clade 1.

292The last common ancestor of Zoraptera had likely acquired a mating hook, or at 293least a small mating hook was present in the common ancestor of clades 2 + 3. Its 294enlargement and modifications occurred independently in several lineages (Fig. 5C). 295Modifications of the marginal area of the subgenital plate are known in some species that form the monophyletic subunit Z. shannoni (NT) + Z. asymmetristernum (AF) + Z. 296sp. 1 (AF) of clade 1 (Fig. 5D). It is likely that a bifurcated margin has evolved in the 297common ancestor, with subsequent transformation of the subgenital plate in Z. 298asymmetristernum. 299

300 The presence or absence of a basal plate in the zorapteran ground-plan remains equivocal (Fig. 6E), as the identity of the basal plate observed in species of clades 2 and 301 3 is not confirmed yet. However, it is clearly shown that the character states separate 302 clades 1 from 2 + 3. This implies that this character was either lost or completely 303 304 modified in clade 1, or alternatively newly developed in clade 2 + 3. The high diversity among species is usually visible in caudal view of the abdomen (Fig. 7). Easily visible 305 306 differences among species are the presence or absence of protuberances of tergites 9-12, 307 and also different sizes of these structures. The homology of these protuberances was 308 completely unclear, and the evolutionary history was reconstructed based on data only acquired from Zoraptera. Varying conditions of these surface structures were found in 309 310 different clades, and it seems that repeated acquisitions and losses occurred in Zoraptera 311(Fig. 6F).

The lack of any records of males does not necessarily mean that the concerned 312313 species are parthenogenetic. However, it is confirmed that females of Z. brasiliensis (NT, c2c) and Z. gurneyi (NT) can reproduce parthenogenetically (Silvestri, 1947; 314 Choe, 1997). Our results must be considered as preliminary. However, it appears that 315species with unknown males are not closely related, suggesting possible independent 316 losses (Fig. 6G), with parthenogenesis evolving several times independently in 317 Zoraptera. Courtship feeding through a hairy patch on the vertex is known in Z. barberi 318 (NT, c3) (Choe, 1995). The setal patches are known from several additional species 319 320 (Table S3). Although the presence of a gland is not confirmed, we mapped the 321externally visible character state on the phylogeny. The ancestral state was likely absent, and it appears likely that acquisitions occurred repeatedly (Fig. 6H). 322

323

324 **Discussion**

325 The present study confirms the monophyly of Zoraptera by means of formal

326 phylogenetic analyses based on a broad sampling of zorapteran species, as previously

327 shown by Yoshizawa & Johnson (2005). Traditionally, the following features including reductions were considered as potential autapomorphies of the order Zoraptera: (1) 328 distinct dimorphism (apterous and alate morphs), (2) strongly simplified wing venation 329 and a capability of dropping the wings, (3) two-segmented tarsi without adhesive 330 331 structures, and (4) correlations of presence/absence of compound eyes, ocelli, and distinct pigmentation (Beutel and Gorb, 2001; Beutel et al., 2014; Mashimo et al., 332 333 2014c). Holocentric chromosomes reported from Z. hubbardi (Nearctic: NA) (Kuznetsova et al., 2002) could also be another autapomorphy of Zoraptera. Comparing 334 335 with the reconstructed ground dwelling ancestor of Polyneoptera (Wipfler et al., 2019), which intuitively resembles a grasshopper, distinct miniaturization and partial structural 336 simplification must have occurred in the common ancestor of Zoraptera, possibly due to 337 the habitat specialization, a preference for subcortical spaces (under bark) of fallen trees 338 where spatial size is extremely limited. Our molecular phylogenetic approach revealed 339 the further evolutionary history of Zoraptera. 340

341

342 Phylogeny, Dating & Biogeography

The results of our analyses of molecular data suggest that extant Zoraptera form three major clades. The early splits presumably occurred in the early Permian (Fig. 3) or possibly the Carboniferous period (Fig. S5), when the continents were united as Pangaea, or at least a connection existed between the supercontinents Gondwana and Laurasia (Smith *et al.*, 2004). The heterogeneous distribution ranges found in clades 1 and 2 may be mainly due to their old origin and subsequent vicariance between the contemporary continents.

350 Most species of clade 1, i.e., Z. hubbardi: (Nearctic: NA), Z. impolitus 351(Indomalaysia: IM), Z. shannoni (Neotropic: NT), Z. sp.1 (Afrotropic: AF), and Z. asymmetristernum (AF), presumably originated before the continents rifted around 80-352100 Mya (Seton et al., 2012). The split of Z. hubbardi (NA) and Z. impolitus (IM) 353 occurred in the early Jurassic, when Laurasia still existed (Seton et al., 2012). The rest 354of clade 1 diverged in the late Cretaceous, and the ancestral distribution was estimated 355 to be Afrotropic + Neotropic, which corresponds to Gondwana (Seton et al., 2012). The 356 357 break-up of Pangaea probably took place in the Jurassic and Cretaceous (100 - 160)358 Mya: Seton *et al.*, 2012), and this may explain the split of the two lineages of clade 1. The split of Z. shannoni (NT) and Z. asymmetristernum (AF) (85 Mya) is possibly also 359 360 a result of vicariance. Although the contemporary Neotropical and Afrotropical regions had probably rifted around 100 Mya (Seton et al., 2012), the estimated divergence age 361 contains an estimation error. However, it is also possible that the two species arose in 362 the Afrotropical region and Z. shannoni dispersed by drifting through the South Atlantic 363 Ocean, and indeed the divergence age estimated by a BEAST analysis was relatively 364 young (24 MYA). 365

366 The split between clades 2 and 3 was estimated around 236 Mya, and clade 2 diverged around 183 Mya. The first split likely occurred in the regions corresponding to 367 the contemporary Neotropical region. This happened before the separation of 368 369 Gondwana and Laurasia (Smith et al., 2004; Seton et al., 2012). Therefore, it is 370 conceivable that the ancestral species was distributed in the corresponding southern part of Pangaea. Clade 2 includes three major lineages (c2a, c2b, and c2c), and clade 2b 371372comprises solely of Indomalaysian and Australasian species. This lineage arose 373 presumably 161 Mya and diverged 138 Mya. During this period, it is assumed that the 374Indian subcontinent + Australasia started to rift from Gondwana, and Australasia started 375 to separate from the Indian subcontinent 120 Mya (Seton et al., 2012). The time of the zorapteran radiation and continental breakup is an estimation and prone to errors. Our 376 estimations did not always suggest that speciation and lineage splits occurred before the 377 estimated continental breakup. However, considering the above-mentioned 378 379 comprehensive information, the species distribution can be explained by vicariance 380 rather than by dispersal. Consequently, it can be assumed that the speciation mainly 381 occurred on individual continents. The only exception among the studied species is Z. mexicanus (Nearctic: NA, c2a), whose origin was dated as 30 Mya. The formation of 382 383 the Panama-Costa Rica Arc is estimated around 60 - 90 Mya (different hypotheses are discussed in Seton et al., 2012). This suggests that Z. mexicanus (NA) is derived from 384the South American lineage, which invaded into the Central America after the formation 385 386 of the Arc.

387 The early Permian origin of the major zorapteran lineages explains the enormous disparity of the mating behaviour (Choe, 1994, 1995; Dallai et al., 2013) as well as the 388 impressive variation in the genitalia and sperm morphology among species (Dallai et 389 al., 2011, 2012, 2014a, b). The recently observed external sperm transfer of Z. impolitus 390 (IM, c1) (Dallai *et al.*, 2013) was the first report for a pterygote insects. The exceptional 391 392divergence of characters linked to reproduction stands in stark contrast to a far-reaching 393 uniformity in the general body morphology, which is preserved since the late Palaeozoic for reasons not yet understood. Similar phenomena did not evolve in other groups with 394 395 an origin in the same period, for instance in the presumptive sister taxon Dermaptera. 396 Sperm morphology can be useful for estimation of phylogenetic relationships in some cases (Gottardo et al., 2016). Dallai et al. (2014a, b) proposed a hypothesis for sperm 397 398 evolution in Zoraptera suggesting that (i) those species used in Dallai *et al.* (2011, 2012, 399 2014a, b) arose before the fragmentation of Gondwana in the mid Cretaceous period (the time was estimated due to available fossil records, e.g., Poinar Jr, 1988; Engel & 400 401 Grimaldi, 2002; Kaddumi, 2005), (ii) that Z. caudelli (IM, c2b), Z. magnicaudelli (IM, c2b), Z. huxleyi (NT, c2c), and Z. weidneri (NT, c2c) form a monophyletic unit, and (iii) 402 403 that Z. shannoni (NT, c1), Z. hubbardi (NT, c1), and Z. impolitus (IM, c1) definitely 404 belong to different lineages. Mashimo et al. (2015) also found a possible 405 synapomorphic feature of eggs of Z. impolitus (IM, c1) and Z. hubbardi (NA, c1). These 406 interpretations are congruent with our molecular phylogeny and corroborate our 407 evolutionary hypotheses.

408

409 Classification

All extant species of Zoraptera are now classified under the single genus Zorotypus. The 410 ancient origin, genetic divergence, and the unusual diversity of genitalia and sperm 411 arguably suggest a division into several supraspecific subunits. As mentioned in the 412introduction, Kukalová-Peck & Peck (1993) established six genera based on the wing 413 venation and biogeographic distribution (Old v.s. New World). However, only one Old 414 415World zorapteran was included in their study, and phylogenetic relationships among the 416 studied species was not reconstructed with a formal approach (Kukalová-Peck & Peck, 1993). In addition to this, Chao & Chen (2000) established another Old World genus 417418 from Taiwan due to an unusual appearance. The taxonomic treatments of Kukalová-Peck & Peck (1993) and Chao & Chen (2000) did not meet the criteria for the erection 419 420of supraspecific taxa outlined by Komarek & Beutel (2006), especially the claim that all 421supraspecific units (not only the newly erected one) should be monophyletic. Our results also clearly reject the idea that the biogeographic distribution of Zoraptera is 422

423useful for the classification of the order. Nevertheless, the concept of Kukalová-Peck & Peck (1993) appears at least partly justified. Four of the six included species were also 424analyzed in our study, i.e. Z. barberi (NT, c3), Z. brasiliensis (NT, c2c), Z. caudelli 425 (IM, c2b), and Z. hubbardi (NT, c1), each of them designated as type species of a 426 427separate genus in Kukalová-Peck & Peck (1993). These species were recovered each in 428different lineages in our analyses, and clade 1 including Z. hubbardi (NT, c1) showed 429specific trends of character state evolution as discussed below in detail. Clade 1 features asymmetric genitalia, without a hyper-elongated intromittent organ and without a basal 430 431plate. The asymmetric condition of this subunit is apparently an autapomorphy, and the remaining species are also monophyletic. Therefore, we consider it is a potential option 432to resurrect one of the genera proposed by Kukalová-Peck & Peck (1993). 433

434For a further taxonomic step, the position of the type species of the genus 435Zorotypus, i.e., Z. guineensis (AF, not included here) would have to be clarified. The original description of Silvestri (1913) is relatively concise, but we cannot extract 436 sufficient information from it. Dallai et al. (2014b) re-evaluated Silvestri's study and 437 the original histological samples. They confirmed that males lack an elongated 438 439 intromittent organ. Although it is not explicitly mentioned, the figures show neither 440 asymmetric genital sclerites found in species of clade 1, nor any basal plate-like 441 structure typical of species of clade 2 + 3. Furthermore, Dallai *et al.* (2014b) discussed that the male reproductive system (documented with histological sections) displays 442443 features likely similar to conditions found in Z. magnicaudelli (IM, c2b), Z. caudelli (IM, c2b) and Z. huxleyi (NT, c2c), rather than in Z. hubbardi (NA, c1) and Z. impolitus 444 (IM, c1). However, there are also features resembling those of species of clade 1. For 445instance, features of the hind femur of Z. guineensis are very similar to that found in Z. 446 447 shannoni (NT, c1) (see Silvestri, 1913; Gurney, 1938), similarly the hairy area on the vertex. Based on the evidence at hand Z. guineensis (AF) could belong to any clade 448 449recognized in our study. Therefore, we refrain from further taxonomic steps in our 450study.

451

452 Morphological evolution

453Our analyses suggest independent origins of hyper-elongated intromittent organs, and 454that these derived states originated from symmetric genitalia. From a morphological 455point of view, this is also supported by obvious differences between the straight 456 elongated intromittent organ of Z. barberi (NT, c3) (Gurney, 1938) and the spiralshaped elongated one found in many species of Zoraptera (Table S3). However, 457considering the very specific and complex anatomy of the male genital apparatus of Z. 458*caudelli* (IM, c2b), studied in detail by Matsumura *et al.* (2014), it appears unlikely that 459the type with a complex, spiral-shaped element has evolved several times 460 independently. The entire apparatus is exceptionally complicated, with structures of 461 462 unclear homology (e.g., Z. hubbardi (NA, c1)) (Hünefeld, 2007). Moreover, it is highly 463 unlikely that complex structures with very specific and complicated configurations have 464 repeatedly evolved in the same way in different species. The ambiguity of the scenario 465is increased by species of clades 2a and 2b with males not known yet. Recently Rafael et al. (2017) reported a gynandromorph of Z. brasiliensis (NT, c2c), whose males were 466 previously unknown, containing both male and female characteristics. They discussed 467 468 possible thelytokous parthenogenesis, with unfertilized eggs yielding females but not 469 males. As another example, Z. gurnevi produces males, but parthenogenetically reproducing populations also occur (Choe, 1997). As Choe (2018) stated in a recent 470

review, divergent mating systems are exhibited even between sympatric species.
Therefore, it is still debatable whether the spiral was present or absent in the ground
plan of clade 2a + 2b. Additional lab and field-based observations of reproductive
modes from different populations are necessary as pointed out by Rafael *et al.* (2017).

Asymmetric genitalia appear to have evolved in clade 1. The homology of the 475476 sclerites composing this type of genitalia is not clarified yet. However, using the 477available literature (Table S3) we identified 14 out 28 species with an asymmetric 478genital apparatus. In the present study we treated asymmetric genitalia as one category, 479 even though structural differences were reported between Z. hubbardi (NA, c1) and Z. 480 shannoni (NT, c1) (illustrated in Gurney, 1938). Detailed morphological data on male genitalia including musculature and related membranes are available for only two 481 482species, Z. hubbardi and Z. caudelli (Hünefeld, 2007; Matsumura et al., 2014). 483 Although zorapterans are rather small, technical problems caused by size reduction play a minor role in state-of-the-art insect anatomy if at all (Friedrich et al., 2014). New 484 485detailed anatomical studies will likely help to clarify homology issues, and in a second step to unveil the evolution of the genital structures. This also applies to symmetric 486 genitalia, not only to clarify the origin of the elongated intromittent organs, but also the 487488 homology of the basal plate. This issue is related to the challenging interpretation of the 489 tergite numbering in Zoraptera, with distinctly different interpretations suggested by various authors, as shown in columns B and F of the Table S3. Mashimo et al. (2014a, 490 491 b) elegantly established the tergite numbering for Z. caudelli (IM, c2b). Therefore, this 492issue should be relatively easy to solve by carefully comparing abdominal segments for 493representative species.

494 Structural diversity as typically seen in caudal view of the abdomen has seeningly 495evolved through repeated development, retrogress, or loss of the mating hook and 496 protuberances on tergites 9-12. Presence of the mating hook is estimated as a possible 497 plesiomorphic state in our analyses. Although its function is not yet known, it may 498 indeed work as a hook during copulation. Except for the external sperm transfer of Z. 499 *impolitus* (IM, c1), the known mating posture is that males are coupled to a female 500through the genitalia and lay upside down (Z. hubbardi: NA, c1, Gurney, 1938; Z. barberi: NT, c3, Choe, 1995; Z. gurnery: NT, not included, Choe, 1994; Z. huxleyi & Z. 501weidneri: NT, c2c, JAR, JTC, YM pers. obs.; Z. caudelli: IM, c2b, Mashimo et al., 5022011; Z. magnicaudelli: IM, c2b, Dallai et al., 2013). Any clasping structure or hook 503would probably be helpful for this type of mating posture. Therefore, it is surprising that 504505Z. impolitus has one of the most developed mating hooks (Mashimo et al., 2013), although they externally attach sperm to females (Dallai et al., 2013). The mating hooks 506 507 might have an additional function, for example opening the female genitalia forcefully to deposit a spermatophore in the female genital tract. This needs verification by 508detailed observations of intertwining male and female genitalia. In addition, 509characteristic mating behaviour is also reported in Apachyus chartaceus (Dermaptera: 510Apachyidae) (Shimizu & Machida, 2011), it may prove worthwhile to compare their 511512genital coupling with that of zorapterans.

A function of the hairy patch on the male vertex in *Z. barberi* (NT, c3) is secreting nutritious fluid for the females as a nuptial gift (Choe, 1995). Superficially similar structures were observed in some studied species, and also in five out of 25 species with information available in the literature (Table S3). Studies using histological sections of the head of the relevant species are necessary to clarify the presence or absence of gland tissue to confirm its function in the other species. 519 The knowledge on Zoraptera has increased rapidly in the last decade. However, for 520 further understanding the evolution of the group additional investigations are necessary. 521 Future studies should have a main focus on the detailed morphology of genital organs, 522 interactions of the male and female genitalia, mating behavior of each species, and 523 sperm morphology of representative species from additional early split clades, also

- 524 including the type species Z. guineensis.
- 525
- 526 **Data accessibility.** All supporting data are available as electronic supplementary 527 materials.
- 528 Authors' contributions. Y.M., R.G.B., K.Y. & J.A.R., J.T.C. conceptualized
- 529 independently, J.A.R, J.T.C., Y.M. and K.Y. collected samples, Y.M., I.Y. and K.Y.
- 530 performed molecular experiments. K.Y. analyzed molecular data, Y.M. and K.Y.
- analyzed evolutionary histories, and all authors interpreted the results. Y.M. and K.Y.
- 532 wrote the draft and R.G.B., J.A.R., S.P.L., J.T.C. and I.Y. revised it. All authors
- 533 contributed to and approved the final draft of the manuscript
- 534 **Competing interests.** We declare no competing interests.
- Funding. We express our gratitude for financial support from different institutions: 535grants of the German Research Foundation (DFG grant no. MA 7400/1-1) and the Japan 536Society of the Promotion of Science (postdoctoral fellowship, grants no. no. 15J03484) 537 538to Y.M.; support for K.Y. from the Japan Society of the Promotion of Science (24570093 and 15H04409) for collecting trips to Mexico and the U.S.A. and for chemical 539consumables and staff. Additional financial support for came from Conselho Nacional de 540Desenvolvimento Científico e Tecnológico (CNPq): Protax grant 457.423/2015-5; 541542Universal MCTI/CNPq, grant 405.630/2016-6; Bolsa PQ, grants 300305/2007-9 and 300997/2016-7 to J.A.R.; PhD fellowships to J.T.C. (grant 140983/2013-9 and 543152131/2016-7) and to S.P.L. (grant 141371/2019-6). We also acknowledge support from 544 Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM), Protax, grant 545062.00645/2017). 546
- 547

Acknowledgements. We thank T. Komatsu (Kyushu Univ., Japan), T. Kanao (Kyoto 548Univ., Japan) and N. Ogawa (Hokkaido Univ., Japan) for providing us specimens from 549550Cameroon, Costa Rica, and French Guinea, respectively. Y. Mashimo (Fukushima Univ., Japan), R. Machida (Tsukuba Univ., Japan), R. Dallai (Siena Univ., Italy) and M. 551Gottardo (Göttingen, Univ., Germany) donated a Z. impolitus sample, which is 552gratefully acknowledged. Y.M. thanks Y. Mashimo for sharing many zorapteran 553studies, T. Büscher (Kiel Univ., Germany) for sharing information on Phasmatodea, and 554S.N. Gorb (Kiel Univ., Germany) for his generous encouragements and accesses to 555microscopes in his laboratory for our study. We also thank T. Komatsu and T. Kanao 556for photos taken in the field, and G. Brehm (FSU Jena, Germany), F.F. Xavier 557(I.N.P.A., Brazil), M. Maruyama (Kyushi Univ., Japan), L. Njoroge (National Museum 558of Kenya, Kenya), and K. Futami (Nagasaki Univ., Japan) for help and support during 559560field trips.

 $\frac{561}{562}$

563	
564	Fig. 1. Zorapteran species. A, Z. sp. from Costa Rica; B, Z. asymmetristernum from Kenya; C-
565	F, Z. caudelli from Malaysia. Photographs coutesy of T. Kanao (A) and T. Komatsu (B-F).
566	
567	Fig. 2. Distribution pattern of the species used in our molecular phylogeny. Detailed location of
568	Brazilian samples shown in the inserted map.
569	
570	Fig. 3. Constrained maxmum likelihood tree estimated by IQ-TREE. Non polyneoptera orders
571	were omited here. Asterisks on nodes indicate that they were constrained. Major clades in
572	Zoraptera highlighted with colored rectangles (see the text for details).
573	
574	Fig. 4. Ancestral range reconstruction shown in a time-calibrated phylogeny of Zoraptera based on
575	Dispersal-Extinction-Cladogenesis (DEC) model. Topology based on ML analysis. Pie charts on
576	each node indicate the likelihood of the estimated ancestral area. Detailed statistics of the estimated
577	ancestral distribution is available in FS9 Fig. S5
578	
579	Fig. 5 Maximum likelihood ancestral state reconstructions of selected traits with a special focus
580	on reproductive characters of Zorantera
581	on reproductive characters of Zoraptera.
582	Fig. 6 (continued) Ancestral state reconstructions based on most likelihood method of selected
583	traits with a special focus on reproductive characters of Zoraptera
594	traits with a special focus on reproductive characters of Zoraptera.
004 EQE	Fig 7 Marphalagiant diversity of the obdemon in could view. A. Zevetuwe hubbandi D. Z
909 500	Fig. 7. Morphological diversity of the abdomentili caudal view. A, <i>Zorotypus nuobarat</i> , B, Z.
586	sp. 1. Cameroon Y K2; C, Z. <i>mexcanus</i> ; D, Z. <i>weianeri</i> Brazii; E, Z. sp. 6 Ecuador all. 1000-
587	1200 m YK10, possibly Z. hamiltoni; F, Z. huxleyi Ecuador; G, Z. cervicornis; H, Z. caudalii; I,
588	Z. sp. 2 Vietnam alt. 1900 m YK15; J, Z. novobritannicus. Scale bars: 200 μm.
589 590	
5 91	Electronic supplements
592	
593	ES1 Table S1. A list of species included in our molecular phylogeny analyses. BYUC:
594 595	of Amazonian Research, Brazil: YK PC: Y. Matsumura private collection at the Kiel Univ
596	Germany.
597	
598	ES2 new Table S2. Metadata of the used specimens.
599 600	ES3 Fig. S1 Unconstrained maximum likelihood tree estimated by IO-TREE Major clades in
601	Zoraptera highlighted with colored rectangles (see the text for details).

ES4 Fig. S2. Constrained Bayesian tree. The phylogenetic relationships among the

602

603 polyneopteran orders was constrained following Misof et al. (2014) and Wipfler et al. (2019). 604 605 ES5 Fig. S3. Unconstrained Bayesian tree. Two nodes enclosed with dashed lines were not 606 resolved into dichotomies. 607 608 ES6 Table S4. A list of characters used in the study and known characters states from extant 609 species. Species included in the current study highlighted with red. 610 ES7. Nexus formatted combined file of molecular data matrix (four genes) used in this study, 611 612 obtained ML and Bayesian trees, character matrix and a maximum likelihood tree used for 613 the character evolution analyses. Characters: (1) presence of elongated intromittent organ, 614 (2) symmetry of genitalia, (3) presence of basal plate, (4) presence and size of mating hook, 615 (5) recorded occurrence (or absence) of males, (6) presence and size of protuberances on 616 tergites 10-12, (7) subgenital plate, and (8) presence of hairy patch on vertex. For each 617 character state, we used the following coding: (1) unknown: ?, elongated (type 1: straight): 1, elongated (type 2: spiral-shaped): 2, absent: 0, polymorphism (elongated: non categorized + 618 absent): 3, (2) unknown: ?, symmetrical: 1, asymmetric: 0, polymorphism: 2, (3) 619 620 unknown: ?, present: 1, absent: 0, (4) unknown:?, small: 1, relatively long: 2, two elongate mating hooks: 3, absent: 0, polymorphism: 4, (5) unknown: ?, males known: 1, males 621 unknown: 0, polymorphism: 2, (6) unknown: ?, unmodified setae: 1, thick setae: 2, spines: 0, 622 (7) unknown: ?, no modification: 0, bifurcated: 1, depression: 2, processes: 3, polymorphism 623 624 (non-categorized protuberances + absent) : 4, (8) unknown: ?, present: 1, absent: 0. 625 626 627 ES8. Fig. S4 A time-calibrated phylogeny of Zoraptera estimated by BEAST analysis. 628 629 ES9. Fig. S5. Ancestral range reconstruction shown in a time-calibrated phylogeny of Zoraptera 630 based on Dispersal-Extinction-Cladogenesis (DEC) model, topology based on ML analysis. Pie 631 charts on each node indicate the likelihood of the estimated ancestral area. Detailed statistics of 632 the estimated ancestral distribution is listed. The main graphic is congruent with Fig. 4. 633 LITERATURE CITED 634 Beutel, R.G., & Gorb S.N. (2001) Ultrastructure of attachment specializations of hexapods 635 (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. Journal of 636 Zoological Systematics and Evolutionary Research 39 (4), 177–207. 637 Beutel, R.G., Friedrich, F., Ge, S.-Q., & Yang, X.-K. (2014) Insect Morphology and Phylogeny. 638 Walter de Gruyter GmbH & Co. KG, Berlin and Boston. 639 Beutel, R.G., Yavorskaya, M.I., Mashimo, Y., Fukui, M., & Meusemann, K. (2017) The 640 phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Proceedings of 641 the Arthropodan Embryological Society of Japan, 51, 1–15. 642 Bolívar y Pieltain, C. (1940) Estudio de un Nuevo Zoráptero de México. Anales de la Escuela 643 Nacional de Ciencias Biologicas, 1, 515–523. Bolivar Bolivar y Pieltain, C., & Coronado-G. L. (1963) Estudio de un nuevo Zorotvpus 644 645 proveniente de la Región Amazónica Peruana (Ins., Zoraptera). Ciencia (Mexico), 22, 93-646 100, pl. 4.

647	Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H. et al. (2014) BEAST2: a software
648	platform for Bayesian evolutionary analysis. <i>PLoS Computational Biology</i> 10 , e1003537.
649	Boudinot, B.E. (2018) A general theory of genital homologies for the Hexapoda (Pancrustacea)
650	derived from skeletomuscular correspondences, with emphasis on the Endopterygota.
651	Arthropod Structure & Development, 47, 563–613.
652	Chao, R.F., & Chen, C.S. (2000) Formosozoros newi, a new genus and species of Zoraptera
653	(Insecta) from Taiwan. Pan-Pacific Entomologist, 76, 24–27.
654	Chen, X., & Su, G. (2019) A new species of Zorotypus (Insecta, Zoraptera, Zorotypidae) and
655	the earliest known suspicious mating behavior of Zorapterans from the mid-cretaceous
656	amber of northern Myanmar. Journal of Zoological Systematics and Evolutionary
657	Research, (Early View).
658	Choe, J.C. (1989) Zorotypus gurneyi, new species, from Panama and redescription of Z. barberi
659	Gurney (Zoraptera: Zorotypidae). Annals of the Entomological Society of America, 82,
660	149–155.
661	Choe, J.C. (1994) Sexual selection and mating system in Zorotypus gurneyi Choe (Insecta:
662	Zoraptera) I. Dominance hierarchy and mating success. Behavioral Ecology and
663	<i>Sociobiology</i> , 34 , 87–93.
664	Choe, J.C. (1995) Courtship feeding and repeated mating in Zorotypus barberi (Insecta:
665	Zoraptera). Animal Behavior, 49, 1511–1520.
666	Choe, J.C. (1997) The evolution of mating systems in the Zoraptera: mating variations and
667	sexual conflicts. The evolution of mating systems in insects and arachnids. (ed. by J.C.
668	Choe and B.J. Crespi), pp. 130–145. Cambridge University Press, Cambridge.
669	Choe, J.C. (2018). Biodiversity of Zoraptera and their little - known biology. Insect
670	Biodiversity: Science and Society, Volume 2. (ed. by R.G. Foottit and P.H. Adler), pp.
671	199–217. Wiley-Blackwell, New Jersey, USA.
672	Dallai, R., Gottardo, M., & Beutel, R.G. (2016) Structure and evolution of insect sperm: new
673	interpretations in the age of phylogenomics. Annual Review of Entomology, 61, 1-23.
674	Dallai, R., Gottardo, M., Mercati, D., Machida, R., Mashimo, Y., Matsumura, Y., & Beutel,
675	R.G. (2013) Divergent mating patterns and a unique mode of external sperm transfer in
676	Zoraptera: an enigmatic group of pterygote insects. Naturwissenschaften, 100, 581-594.
677	Dallai, R., Gottardo, M., Mercati, D., Machida, R., Mashimo, Y., Matsumura, Y., & Beutel,
678	R.G. (2014a) Giant spermatozoa and a huge spermatheca: a case of coevolution of male
679	and female reproductive organs in the ground louse Zorotypus impolitus (Insecta,
680	Zoraptera). Arthropod Structure & Development, 43, 135–151.
681	Dallai, R., Gottardo, M., Mercati, D., Machida, R., Mashimo, Y., Matsumura, Y., Rafael, J.A.,
682	& Beutel, R.G. (2014b) Comparative morphology of spermatozoa and reproductive
683	systems of zorapteran species from different world regions (Insecta, Zoraptera).
684	Arthropod Structure & Development, 43, 371–383.
685	Dallai, R., Gottardo, M., Mercati, D., Rafael, J.A., Machida, R., Mashimo, Y., Matsumura, Y.,
686	& Beutel, R.G. (2014) The intermediate sperm type and genitalia of Zorotypus shannoni
687	Gurney: evidence supporting infraordinal lineages in Zoraptera (Insecta).
688	<i>Zoomorphology</i> , 134 , 79–91.
689	Dallai, R., Mercati, D., Gottardo, M., Dossey, A.T., Machida, R., Mashimo, Y., & Beutel, R.G.
690	(2012) The male and female reproductive systems of Zorotypus hubbardi Caudell, 1918
691	(Zoraptera). Arthropod Structure & Development, 41, 337–359.

692 693	Dallai, R., Mercati, D., Gottardo, M., Machida, R., Mashimo, Y., & Beutel, R.G. (2011) The male reproductive system of <i>Zorotypus caudelli</i> Karny (Zoraptera): Sperm structure and
694	spermiogenesis. Arthropod Structure & Development, 40, 531–547.
695	Engel, M.S. (2000) A new <i>Zorotypus</i> from Peru, with notes on related neotropical species
696	(Zoraptera: Zorotypidae). Journal of the Kansas Entomological Society, 73 , 11–20.
697	Engel, M.S. (2003) Phylogeny of the Zoraptera. <i>Entomologische Abhandlungen</i> , 61(2) , 147–
698	148.
699	Engel, M.S., & Grimaldi, D.A. (2002) The first Mesozoic Zoraptera (Insecta). American
700	Museum Novitates, 3362 , 1–20.
701	Friedrich, F. & Beutel, R.G. 2008a. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new
702	nomenclature for the musculature of Neoptera. Arthropod Structure and Development, 37,
703	29–54.
704	Friedrich, F., Matsumura, Y., Pohl, H., Bai, M., Hörnschemeyer, T., & Beutel, R.G. (2014)
705	Insect morphology in the age of phylogenomics: innovative techniques and its future role
706	in systematics. Entomological Science, 17(1), 1–24.
707	Gurney, A.B. (1938) A synopsis of the order Zoraptera, with notes on the biology of Zorotypus
708	hubbardi Caudelli. Proceedings of the Entomological Society of Washington, 40, 57–87.
709	Gurney, A.B. (1939) A new species of Zoraptera from Fiji. <i>Bishop Museum</i> , 15 , 161–165.
710	Helm, C., Treulieb, S., Werler, K., Bradler, S., & Klass, K.D. (2011) The male genitalia of
711	Oxvartes lamellatus-phasmatodeans do have complex phallic organs (Insecta:
712	Phasmatodea). Zoologischer Anzeiger. 250(3) , 223–245.
713	Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., & Vinh, L.S. (2018) UFBoot2:
714	Improving the Ultrafast Bootstrap Approximation. <i>Molecular Biology and Evolution</i> ,
715	35(2) , 518–522.
716	Huber, B.A., Sinclair, B.J., & Schmitt, M. (2007) The evolution of asymmetric genitalia in
717	spiders and insects. <i>Biological Reviews</i> , 82, 647–698.
718	Hünefeld, F. (2007) The genital morphology of Zorotypus hubbardi Caudell, 1918 (Insecta:
719	Zoraptera: Zorotypidae). Zoomorphology, 126, 135–151.
720	Hwang, FS. (1974) Zorotypus sinensis, a new species from China. Acta Entomologica Sinica,
721	17, 423–427.
722	Hwang, FS. (1976) A new species of Zoraptera. Acta Entomol Sinica, 19, 225-227.
723	Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T., & Su, ZH. (2011) Phylogenetic relationships
724	among insect orders based on three nuclear protein-coding gene sequences. Molecular
725	Phylogenetics and Evolution, 58(2), 169–180.
726	Karny, H.H. (1932) Psocoptera. Insects of Samoa and other Samoan Terrestrial Arthropoda.
727	Part VII. Other orders of insects. 4, 117-129. British Museum (Natural History): London.
728	Katoh, K., & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7:
729	improvements in performance and usability. Molecular Biology and Evolution, 30(4),
730	772–780.
731	Kjer, K.M. (2004) Aligned 18S and insect phylogeny. Systematic Biology, 53(3), 506-514.
732	Kjer, K.M., Simon, C., Yavorskaya, M., & Beutel, R.G. (2016) Progress, pitfalls and parallel
733	universes: a history of insect phylogenetics. Journal of the Royal Society Interface,
734	13(121) , 20160363.

735	Klass, KD., Picker, M.D., Damgaard, J., van Noort, S., & Tojo, K. (2003) The taxonomy,
736	genitalic morphology, and phylogenetic relationships of Southern African
737	Mantophasmatodea (Insecta). Entomologische Abhandlungen, 61(1), 3–67.
738	Kodandaramaiah, U. (2010) Use of dispersal–vicariance analysis in biogeography – a critique.
739	Journal of Biogeography, 37(1) , 3–11.
740	Kočárek, P., Wahab, R.A., & Abdul Kahar, S.R. (2017) Zorotypus asymmetricus sp. nov. from
741	Brunei Darussalam, Borneo (Insecta: Zoraptera). Zootaxa, 4286, 285–290.
742	Komarek, A., & Beutel, R.G. (2006) Problems in taxonomy and suggestions for a standardized
743	description of new insect taxa. Entomological Problems, 36(2), 55-70.
744	Kukalová-Peck, J., & Peck, S.B. (1993) Zoraptera wing structures: evidence for new genera and
745	relationship with the blattoid orders (Insecta: Blattoneoptera). Systematic Entomology, 18,
746	333–359.
747	Kuznetsova, V.G., Nokkala, S., & Shcherbakov, D.E. (2002) Karvotype, reproductive organs,
748	and pattern of gametogenesis in <i>Zorotypus hubbardi</i> Caudell (Insecta: Zoraptera,
749	Zorotypidae), with discussion on relationships of the order. <i>Canadian Journal of Zoology</i> .
750	80 (6), 1047–1054.
751	Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., & Calcott, B. (2017) PartitionFinder 2:
752	New methods for selecting partitioned models of evolution for molecular and
753	morphological phylogenetic analyses. <i>Molecular Biology and Evolution</i> , 34 , 772–773.
754	Maddison, W.P., & Maddison, D.R. (2018) Mesquite: a modular system for evolutionary
755	analysis. Version 3.51 http://www.mesquiteproject.org
756	Mashimo, Y., Machida, R., Dallai, R., Gottardo, M., Mercati, D., & Beutel, R.G. (2011) Egg
757	structure of Zorotvpus caudelli Karny (Insecta, Zoraptera, Zorotvpidae). Tissue & Cell,
758	43 . 230–237.
759	Mashimo, Y., Yoshizawa, K., Engel, M.S., Ghani, I.A., Dallai, R., Beutel, R.G., & Machida, R.
760	(2013) Zorotvpus in Peninsular Malavsia (Zoraptera: Zorotvpidae), with the description
761	of three new species. Zootaxa, 3717 , 498–514.
762	Mashimo, Y., Beutel, R.G., Dallai, R., Lee, C.Y., & Machida, R. (2014a) Embryonic
763	development of Zoraptera with special reference to external morphology, and its
764	phylogenetic implications (Insecta), <i>Journal of Morphology</i> , 275 , 295–312.
765	Mashimo, Y., Beutel, R.G., Dallai, R., Lee, C.Y., & Machida, R. (2014b) Postembryonic
766	development of the ground louse <i>Zorotypus caudelli</i> Karny (Insecta: Zoraptera:
767	Zorotypidae). Arthropod Systematics & Phylogeny, 72, 55–71.
768	Mashimo, Y., Matsumura, Y., Machida, R., Dallai, R., Gottardo, M., Yoshizawa, K., Friedrich,
769	F., Wipfler, B., & Beutel, R.G. (2014c) 100 years Zoraptera—a phantom in insect
770	evolution and the history of its investigation. <i>Insect Systematics & Evolution</i> , 45, 371–
771	393.
772	Mashimo, Y., Beutel, R.G., Dallai, R., Gottardo, M., Lee, C.Y., & Machida, R. (2015) The
773	morphology of the eggs of three species of Zoraptera (Insecta). Arthropod Structure &
774	<i>Development</i> , 44 , 656–666.
775	Mashimo, Y., Matsumura, Y., Beutel, R.G., Nioroge, L., & Machida, R. (2018) A remarkable
776	new species of Zoraptera. Zorotypus asymmetristernum sp. n., from Kenva (Insecta.
777	Zoraptera, Zorotypidae). Zootaxa. 4388. 407–416.
778	Matschiner, M., Musilová, Z., Barth, J. M. I., Starostová, Z., Salzburger, W., Steel M &
779	Bouckaert, R.R. (2017). Bayesian phylogenetic estimation of clade ages support trans-
780	Atlantic dispersal of cichlid fishes. Systematic Biology 66, 3–22.

781	Matsumura, Y., Yoshizawa, K., Machida, R., Mashimo, Y., Dallai, R., Gottardo, M., Kleinteich,
782	T., Michels, J., Gorb, S.N., & Beutel, R.G. (2014) Two intromittent organs in Zorotypus
783	caudelli (Insecta, Zoraptera): the paradoxical coexistence of an extremely long tube and a
784	large spermatophore. Biological Journal of the Linnean Society, 112(1), 40-54.
785	Matsumura, Y., Wipfler, B., Pohl, H., Dallai, R., Machida, R., Mashimo, Y., Câmara, J.T.,
786	Rafael, J.A., & Beutel, R.G. (2015) Cephalic anatomy of Zorotypus weidneri New, 1978:
787	new evidence for a placement of Zoraptera. Arthropod Systematics & Phylogeny, 73, 85-
788	105.
789	Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware,
790	J., Flouri, T., Beutel, R.G., Niehuis, O., Petersen, M., Izquierdo-Carrasco, F., Wappler,
791	T., Rust, J., Aberer, A.J., Aspock, U., Aspock, H., Bartel, D., Blanke, A., Berger, S.,
792	Bohm, A., Buckley, T.R., Calcott, B., Chen, J., Friedrich, F., Fukui, M., Fujita, M.,
793	Greve, C., Grobe, P., Gu, S., Huang, Y., Jermiin, L.S., Kawahara, A.Y., Krogmann, L.,
794	Kubiak, M., Lanfear, R., Letsch, H., Li, Y., Li, Z., Li, J., Lu, H., Machida, R., Mashimo,
795	Y., Kapli, P., McKenna, D.D., Meng, G., Nakagaki, Y., Navarrete-Heredia, J.L., Ott, M,
796	Ou, Y., Pass, G., Podsiadlowski, L., Pohl, H., von Reumont B.M., Schutte K., Sekiya, K.,
797	Shimizu, S., Slipinski, A., Stamatakis, A., Song, W., Su, X., Szucsich, N.U., Tan, M.,
798	Tan, X., Tang, M., Tang, J., Timelthaler, G., Tomizuka, S., Trautwein, M., Tong, X.,
799	Uchifune, T., Walzl, M.G., Wiegmann, B.M., Wilbrandt, J., Wipfler, B., Wong, T.K.,
800	Wu, Q., Wu, G., Xie, Y., Yang, S., Yang, Q., Yeates, D.K., Yoshizawa, K., Zhang, Q.,
801	Zhang, R., Zhang, W., Zhang, Y., Zhao, J., Zhou, C., Zhou, L., Ziesmann, T., Zou, S.,
802	Xu, X., Yang, H., Wang, J., Kjer, K.M., Zhou, X. (2014) Phylogenomics resolves the
803	timing and pattern of insect evolution. Science, 346, 763–767.
804	New, T.R. (1978) Notes on neotropical Zoraptera, with descriptions of two new species.
805	Systematic Entomology, 3 , 361–370.
806	New, T.R. (1995) The order Zoraptera (Insecta) from Christmas Island, Indian Ocean.
807	Invertebrate Systematics, 9(2), 243–246.
808	New, T.R. (2000) Zoraptera (Insecta) in east Malaysia: notes on Zorotypus caudelli Karny.
809	Oriental Insects, 34, 77–82.
810	Nguyen, LT., Schmidt, H.A., von Haeseler, A., & Minh, B.Q. (2015) IQ-TREE: a fast and
811	effective stochastic algorithm for estimating maximum-likelihood phylogenies.
812	Molecular Biology and Evolution, 32(1) , 268–274.
813	Paulian, R. (1949) Découverte de l'ordre des Zoraptères à Madagascar et description d'une
814	nouvelle espèce. Mémoires de l'Institut Scientifique de Madagascar (A), 3, 77–80.
815	Paulian, R. (1951) Découverte de l'ordre des Zoraptères a l'île Maurice. Zorotypus vinsoni, n.
816	sp. La Naturaliste Malgache, 3 , 33–35.
817	Poinar Jr, G.O. (1988) Zorotypus palaeus, new species, a fossil Zoraptera (Insecta) in
818	Dominican amber. Journal of the New York Entomological Society, 253–259.
819	Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and
820	<i>Evolution</i> , 25 (7), 1253–1256.
821	Rafael, J. A., & Engel, M.S. (2006) A new species of Zorotypus from Central Amazonia, Brazil
822	(Zoraptera: Zorotypidae). American Museum Novitates, 3528, 1-11.
823	Rafael, J.A., Godoi, F.S.P., & Engel, M.S. (2008) A new species Zorotypus from Eastern
824	Amazonia, Brazil (Zoraptera: Zorotypidae). Transactions of the Kansas Academy of
825	Science, 111, 193–202.

826	Rafael, J.A., Marques, D.W.A., & Engel, M.S. (2017) The first gynandromorph of a zorapteran
827	and potential thelytokous parthenogenesis in a population of Zorotypus brasiliensis
828	Silvestri (Zoraptera: Zorotypidae). Revista Brasileira de Entomologia, 61(4), 318-322.
829	Ree, R.H., & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution
830	by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4-14.
831	Reis, M. dos, Álverez-Carretero, S. & Yang, Z. (2017) MCMCTree tutorials. Online material
832	available from http://abacus.gene.ucl.ac.uk/software/MCMCtree.Tutorials.pdf (accessed
833	August 23, 2019).
834	Ronquist, F. (1997) Dispersal-vicariance analysis: a new approach to the quantification of
835	historical biogeography. Systematic Biology, 46(1), 195-203.
836	Ronquist, F., & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under
837	mixed models. <i>Bioinformatics</i> , 19(12) , 1572–1574.
838	van Ryn-Tournel, J. (1971) Presence de l'ordre des Zorapthres au Congo et description de
839	Zorotypus congensis sp. n. Revue de Zoologie et de Botanique Africaines, 83, 100–110.
840	Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis,
841	M., Turner, M., Maus, S., & Chandler, M. (2012) Global continental and ocean basin
842	reconstructions since 200Ma. Earth-Science Reviews, 113, 212-270.
843	Silvestri, F. (1913) Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di
844	Zoologia Generale e Agraria della R. Scuola Superiore d'Agricoltura in Portici, 7, 193-
845	209.
846	Silvestri, F. (1947) Descrizione di due specie neotropicali di Zorotypus (Insecta, Zoraptela).
847	Bollettino del LabOlatOlio di Entolliologia Agraria di Portici, 7, 1–12.
848	Shetlar, D.J. (1978) Biological observations on Zorotypus hubbardi Caudell (Zoraptera).
849	Entomological News, 89, 217–223.
850	Shimizu, S., & Machida, R. (2011) Notes on mating and oviposition of a primitive
851	representative of the higher Forficulina, Apachyus chartaceus (de Haan) (Insecta:
852	Dermaptera: Apachyidae). Arthropod Systematics & Phylogeny, 69 (2), 75-81.
853	Smith, A.G., Smith, D.G., & Funnell, B.M. (2004) Atlas of Mesozoic and Cenozoic coastlines.
854	Cambridge University Press.
855	Terry, M.D., & Whiting, M.F. (2012) Zorotypus novobritannicus n. sp., the first species of the
856	order Zoraptera (Zorotypidae) from the Australasian Ecozone. Zootaxa, 3260, 53-61.
857	Tong, K.J., Duchene, S., Ho, S.Y.W., & Lo, N. (2015) Comment on "Phylogenomics resolves
858	the timing and pattern of insect evolution." Science, 349(6247), 487-487.
859	Tuxen, S.L. (1970) Taxonomist's glossary of genitalia in insects (second revised and enlarged
860	edition). Munksgaard, Copenhagen, Denmark.
861	Wang, J., Li, H., & Cai, W. (2016) Zorotypus weiweii (Zoraptera: Zorotypidae), a new species
862	of angel insects, from Sabah, East Malaysia. Zootaxa, 4162, 550-558.
863	Wipfler, B., & Pass, G. (2014) Antennal heart morphology supports relationship of Zoraptera
864	with polyneopteran insects. Systematic Entomology, 39, 800-805.
865	Wipfler, B., Letsch, H., Frandsen, P.B., Kapli, P., Mayer, C., Bartel, D., Buckley, T.R., Donath,
866	A., Edgerly-Rooks, J.S., Fujita, M., Liu, S., Machida, R., Mashimo, Y., Misof, B.,
867	Niehuis, O., Peters, R.S., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S.,
868	Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X., & Simon, S. (2019) Evolutionary history
869	of Polyneoptera and its implications for our understanding of early winged insects.
870	Proceedings of the National Academy of Sciences of USA, 116, 3024–3029.

- Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*, 24(8), 1586–1591.
- Yin, Z.W., & Li, L.Z. (2017) *Zorotypus huangi* sp. nov. (Zoraptera: Zorotypidae) from Yunnan,
 southern China. *Zootaxa*, 4300(2), 287–294.
- 875 Yin, Z. W., Li, L.Z., & Wu, C. (2015) New and little known species of Zorotypus Silvestri
- 876 (Zoraptera: Zorotypidae) from China. *Zootaxa*, **4007**, 557–566.

- 877 Yoshizawa, K. (2011). Monophyletic Polyneoptera recovered by wing base structure. *Systematic Entomology*, **36(3)**, 377–394.
- 878 Yoshizawa, K., & Johnson, K.P. (2005) Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. *Molecular*

879 *Phylogenetics and Evolution*, **37(2)**, 572–580.

Yoshizawa, K., & Johnson, K.P. (2008) Molecular systematics of the barklouse family Psocidae (Insecta: Psocodea: "Psocoptera") and implications
 for morphological and behavioral evolution. *Molecular Phylogenetics and Evolution*, 46(2), 547–559.

Yu, Y., Harris, A.J., Blair, C., & He, X. (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. *Molecular Phylogenetics and Evolution*, 87, 46–49.

884 Zompro, O. (2005) Inter-and intra-ordinal relationships of the Mantophasmatodea, with comments on the phylogeny of polyneopteran orders

- 885 (Insecta: Polyneoptera). *Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg*, **89**, 85–116.
- 886
- 887
- Table 1. A list of used calibration fossils, including ages and min/max bounds.

Fossil taxon	Calibrationed groups	Age (MYA)		
Pronemoura angustithorax	Plecoptera	161.0 - 160.5		
Sorellembia estherae	Embioptera	99.9		
Valditermes brennenae	Isoptera	136.4 – 130.0		

889

Fig. 1. Zorapteran species. A, Z. sp. from Costa Rica; B, Z. asymmetristernum from Kenya; C-F, Z. caudelli from Malaysia. Photographs coutesy of T. Kanao (A) and T. Komatsu (B-F).

209x225mm (300 x 300 DPI)

Fig. 2. Distribution pattern of species used in molecular phylogeny. Detailed location of Brazilian samples shown in the inserted map.

294x205mm (300 x 300 DPI)

Fig. 3. Constrained maxmum likelihood tree estimated by IQ-TREE. Non polyneoptera oders were omited here. Asterisks on nodes indicate that they were constrained. Major clades in Zoraptera highlighted with colored rectangles (see the text for details).

270x246mm (300 x 300 DPI)

Fig. 4. Ancestral range reconstruction shown in a time-calibrated phylogeny of Zoraptera based on Dispersal-Extinction-Cladogenesis (DEC) model. Topology based on ML analysis. Pie charts on each node indicate the likelihood of the estimated ancestral area. Detailed statistics of the estimated ancestral distribution is available in ES9 Fig. S5.

207x242mm (300 x 300 DPI)

Fig. 5. Maximum likelihood ancestral state reconstructions of selected traits with a special focus on reproductive characters of Zoraptera.

201x292mm (300 x 300 DPI)

Fig. 6 (continued). Ancestral state reconstructions based on most likelihood method of selected traits with a special focus on reproductive characters of Zoraptera.

195x238mm (300 x 300 DPI)

Fig. 7. Morphological diversity of the abdomen in caudal view. A, Zorotypus hubbardi; B, Z. sp. 1. Cameroon YK2; C, Z. mexcanus; D, Z. weidneri Brazil; E, Z. sp. 6 Ecuador alt. 1000-1200 m YK10, possibly Z. hamiltoni; F, Z. huxleyi Ecuador; G, Z. cervicornis; H, Z. caudalli; I, Z. sp. 2 Vietnam alt. 1900 m YK15; J, Z. novobritannicus. Scale bars: 200 µm.

209x238mm (300 x 300 DPI)

Order	Family	Species	ID	Collected locality	Voucher specimens locality	128	НЗ	168	185
Zoraptera	Zorotypidae	Z. hubbardi	YK1	Florida, USA	YK PC	LC471587	-	LC476731	LC477087
		Z. sp. 1	YK16-2	Cameroon	YK PC	LC471608	-	LC476755	LC477108
		Z. impolitus	YK16-3	Malaysia	YK PC	LC471588	LC477112	LC476732	LC477088
		Z. shannoni	YK16-4	Amazonas, Brazil	ҮК РС	LC471589	-	LC476733	LC477089
		Z. magnicaudelli	YK16-5	Malaysia	YK PC	LC471595	LC477119	LC476740	LC477096
		Z. weidneri	YK16-7	Amazonas, Brazil	YK PC	LC471600	LC477124	LC476744	LC477101
		Z. sp. 5	YK16-8	Ecuador alt. 2157 m	YK PC	LC471590	LC477113	LC476734	LC477090
		Z. sp. 4	YK16-9	Ecuador alt. 1000 m	ҮК РС	LC471593	LC477116	LC476737	LC477093
		Z. sp. 6	YK16-10	Ecuador alt. 1000-1200 m	ҮК РС	LC471591	LC477114	LC476735	LC477091
		Z. huxleyi	YK16-11	Ecuador alt. 1000-1200 m	ҮК РС	LC471604	LC477129	LC476749	LC477105
		Z. huxleyi	YK16-12	Ecuador alt. 1000-1200 m	ҮК РС	LC471605	LC477130	LC476750	-
		Z. cervicornis	YK16-13	Malaysia	YK PC	LC471598	LC477122	LC476743	LC477099
		Z. caudelli	YK16-14	Malaysia	YK PC	LC471596	LC477120	LC476741	LC477097
		Z. sp. 2	YK16-15	Vietnam alt. 1900 m	YK PC	LC471597	LC477121	LC476742	LC477098
		Z. novobritannicus	YK16-16	East new Britain Province, Papua New Guinea	BYUC	LC471599	LC477123	-	LC477100
		Z. weidneri	YK16-17	Roraima, Brazil	INPA	LC471601	LC477125	LC476745	LC477102
		Z. weidneri	YK16-18	Ceará, Brazil	INPA	-	LC477126	LC476746	-

Table S1. A list of species included in our molecular phylogeny analyses. BYUC: Arthropod Collection, Brigham Young University, Provo, UT, USA; INPA: National Institute of Amazonian Research, Brazil; YK PC: Y. Matsumura private collection at the Kiel Univ., Germany

		Z. huxleyi	YK16-20	Madre de Dios, Peru	INPA	LC471606	LC477131	LC476751	LC477106
		Z. huxleyi	YK16-21	Quince Mil, Peru	INPA	LC471607	LC477132	LC476752	LC477107
		Z. juninensis	YK16-22	Cusco, Peru	INPA	LC471592	LC477115	LC476736	LC477092
		Z. barberi	YK16-23	Amazonas, Brazil	INPA	-	-	LC476757	LC477110
		Z. barberi	YK16-24	Amazonas, Brazil	INPA	-	-	-	LC477111
		Z. manni	YK16-25	Amazonas, Brazil	INPA	-	LC477117	LC476738	LC477094
		Z. cf. manni	YK16-26	Alagoas, Brazil	INPA	-		LC476754	
		Z. brasiliensis	YK16-29	Paraná, Brazil	INPA	LC471603	LC477128	LC476748	LC477104
		Z. mexcanus	YM16-30	Mexico	YK PC		LC477133	LC476753	
		Z. sp. 3	YM505	Costa Rica	YK PC	LC471594	LC477118	LC476739	LC477095
		Z. weidneri	YM FG	French Guiana	YK PC	LC471602	LC477127	LC476747	LC477103
		Z. asymmetristernum	YM KN	Kenya	YK PC	-	-	LC476756	LC477109
Blattodea	Blaberidae	Gromphadorhina portentosa	-	-	-	AY125216.1	EF623280.1, Z97610.1	EF623123.1, Z97626.1	AY491145.1, Z97592.1
	Cryptocercidae	Cryptocercus punctulatus	-	-	-	AY521698.1	U17779.1	U17780.1	DQ874119.1
Dermaptera	Chelisochidae	Chelisoches morio	-	-	-	AY125220.1	-	-	AY121133.1
	Pygidicranidae	Tagalina sp.	-	-	-	AY521704.1	-	-	AY521838.1
Embioptera	Embiidae	Biguembia multivenosa	-	-	-	AY521705.1	-	JQ907139.1	JQ907196.1
	Notoligotomidae	Notoligotoma hardyi	-	-	-	EU157030.1	-	EU157038.1	JQ907200.1
Grylloblattode a	Grylloblattidae	Grylloblatta campodeiformis	-	-	-	DQ457398.1, AY125225.1	DQ457227.1	DQ457263.1	DQ457299.1
Isoptera	Rhinotermitidae	Reticulitermes tibialis	-	-	-	-	AY168222.1	FJ226413.1, FJ226412.1, FJ226411.1	AF423782.1
				l	l			l	ļ

Page 33	3 of 47
---------	---------

	Termopsidae	Hodotermopsis	-	-	-	AB006580.1	AY 521856.1	AF262575.1	AY521856.1
		japonica							
Mantodea	Mantidae	Tenodera aridifolia	-	-	-	GU064799.1	FJ805974.1	AY491097.1,	FJ806336.1
								GU064715.1	
	Empusidae	Gonovlus		_	_	AY521711 1	EF383152 1	EF3833121	AY521860 1
	Empusidae	gongyladas				111021,11.1	LI 505152.1	21000012.1	
		gongyioues				437201210.1		D04550(5.1	DO 457202 1
Mantophasmat	Mantophasmatid	Sclerophasma	-	-	-	AY521/12.1	-	DQ457265.1	DQ457302.1
odea	ae	paresisensis							
	Mantophasmatid	Tyrannophasma	-	-	-	AY521713.1	DQ457230.1	DQ457266.1	AY521863.1
	ae	gladiator							
Orthoptera	Tetrigidae	Paratettix	-	-	-	-	AY338640.1	-	Z97574.1
		cucullatus							
	Haglidae	Cyphoderris	-	-	-	AY521722.1,	Z93279.2	Z93317.2	AF514553.1
		monstrosa				KF571077.1			
Plecontera	Nemouridae	Malenka californica	-	-	-	AY338642.1	EF623342.1	EF623182.1	AY338724.1
1 iccoprei u	Teeniontervaidee	Oamontariy			_	AV521725 1	EF623432 1	EF623266 1	AV521879.1
	raemopterygiuae	Jemopieryx				A1521725.1	EF025452.1	EF023200.1	AI 521079.1
		vanauzeei							
Phasmatodea	Bacillidae	Heteropteryx	-	-	-	AY125241.1	KJ024476.1	KJ024429.1	AY121157.1
		dilatata							
	Phasmatidae	Lamponius guerini	-	-	-	AY125261.1	KJ024473.1	KJ024422.1	AY121178.1
Hemiptera	Pentatomoidea	Sastragala esakii	-	-	-	LC099126.1	LC099337.1	LC099179.1	LC099231.1
	Acanthosomatida	Ditomotarsus	-	-	-	LC099154.1	LC099365.1	LC099206.1	LC099259.1
	e	hyadesi							
Psocodea	Prionoglarididae	Speleketor irwini	-	-	-	-	DQ104774.1	DQ104747.1	DQ104799.1
	Psocidae	Trichadenotecnum	_	-	-	LC051951.1	LC052168.1	LC052008.1	LC052067.1
		sexpunctatum							
Odonata	Eniophlebiidae	Enionhlehia	_	_	-	EU477631	EU055518	EU477631	EU055226
Outhinti	Epiophiconduc	superstes				2017/001	20000010	2017/001	10000220
F I	D (11	Supersies				13/740(40	13/740710	13/740774	4.54(1051
Ephemeropter	Baetidae	Centroptilum	-	-	-	AY /49649	AY/49/10	AY/49//4	AF461251
a		luteolum							
	Leptohyphidae	Allenhyphes flinti	-	-	-	AY749677	AY749732	AY749807	AY749880
Zygentoma	Lepismatidae	Thermobia	-	-	-	AY639935	-	AY639935	AF370790
		domestica							

	Lepidotrichidae	Tricholepidion	-	-	-	AY191994	AF110863	AY191994	AF370789
		gertschi							
Archaeognatha	Machilidae	Machilis sp.	-	-	-	-	AY521695	-	AY521826

Table S2. Metadata of the used specimens.

A list of species included in our molecular phylogeny analyses. BYUC: Arthropod Collection, Brigham Young University, Provo, UT, USA; INPA: National Institute of Amazonian Research, Brazil; SEHU: Systematic entomology department of the Hokkaido University; YK PC: Y. Matsumura private collection at the Kiel Univ., Germany

Species	ID	Collected locality	Collected persons	Voucher specimens locality
Z. hubbardi	YK1	USA, Florida, Highlands Hammock state park, 27°35'N, 81°01'W, 07.x.2004	K. Yoshizawa	YK PC
Z. sp. 1	YK16-2	Cameroon, South-west province, Nyasoso, Mt. Kupe, 4°49'N, 9°43'E,	T. Komatsu	YK PC
		16.v.2015		
Z. impolitus	YK16-3	Malaysia, Selangor, Ul Gombak (elevation ca. 200–400 m)	Y. Mashimo & R. Machida	YK PC
Z. shannoni	YK16-4	Brazil, Manaus, Reserva Ducke, am010, km24, 02°45'S-59°51'W,	J.T. Câmara, F.F. Xavier & Y. Matsumura	YK PC
		27.i.2014		
Z. magnicaudelli	YK16-5	Malaysia, Pahang, Gunung Brinchang, 4°35'N 101°23'E, 11.iii.2015	Y. Matsumura & M. Maruyama	YK PC
Z. weidneri	YK16-7	Brazil, Amazonas, ZF-2, alojam. 02°38'S, 60°09'W, 24.i.2014	J.A. Rafael, J.T. Câmara, Y. Matsumura	УК РС
Z. sp. 5	YK16-8	Ecuador, Zamora-Chinchipe, Arcoiris, Montane rainforest, lower slope, alt.	Y. Matsumura	YK PC
		2157 m, 03°59'S, 79°05'W, 12.ii.2013		
Z. sp. 4	YK16-9	Ecuador, Parque Nacional Podocarpus rainforest, Bombuscaro area, alt. 1025	Y. Matsumura	ҮК РС
		m, 04°06'S, 78°09'W, 03.ii.2013		
Z. sp. 6	YK16-10	Ecuador, Zamora-Chinchipe, Capalonga lodge reserve rainforest, alt. 1000-	Y. Matsumura	YK PC
		1200 m, 04°05'S, 78°57'W, 10.ii.2013		
Z. huxleyi	YK16-11	Ecuador, Zamora-Chinchipe, Capalonga lodge reserve rainforest, alt. 1000-	Y. Matsumura	YK PC
		1200 m, 04°05'S, 78°57'W, 10.ii.2013		
Z. huxleyi	YK16-12	Ecuador, Zamora-Chinchipe, Capalonga lodge reserve rainforest, alt. 1000-	Y. Matsumura	YK PC
		1200 m, 04°05'S, 78°57'W, 10.ii.2013		
Z. cervicornis	YK16-13	Malaysia, Pahang, Endau, 2°38'N 103°39'E 9.vii.2003	K. Yoshizawa	YK PC
Z. caudelli	YK16-14	Malaysia, Negeri Selangor, Ulu Gombacl (Uni. Malaya field studies centre),	Y. Matsumura	YK PC
		alt. 220 m, 3°17'N 101°46'E, 10-18.iii.2015		
<i>Z</i> . sp. 2	YK16-15	Vietnam, Lam Dong Province, Mt. Lang Biang, alt. 1850 m, 12°02'N 108°26'E, 3.vi.2002	S. Nomura	YK PC
Z. novobritannicus	YK16-16	East New Britain Province, Kerevat, 4° 22'S, 152°02'E, 23.vii.2008	M. Whiting et al. (Terry and Whiting, 2012	BYUC
			Zootaxa 3260: 53-61)	

Z. weidneri	YK16-17	Brazil, Roraima, Caracaraí, Parque Nacional Serra da Mocidade, 600 m.a.;	F.F. Xavier, R. Boldrini & P. Barroso	INPA
		01°36'N 61°54'W, 15-26.i.2016		
Z. weidneri	YK16-18	Brazil, Ceará, Ubajara, Parque Nacional de Ubajara, 03°50'25"S	J.A. Rafael & J.T. Câmara	INPA
		40°53'53"W, 23.iv.2012, tronco, 840m		
Z. huxleyi	YK16-20	Peru, Madre de Dios, Mazuko, 12°57'14"S 70°1'16"W, 21.viii.2012, tronco	J.A. Rafael	INPA
		caído		
Z. huxleyi	YK16-21	Peru, Cusco, Quincemil, Central Hidrelétrica, 13°17'03"S 70°46'53"W,	J.A. Rafael	INPA
		26.viii.2012, tronco caído		
Z. juninensis	YK16-22	Peru, Cusco, Quincemille, Rio Areza, 1000 m, 13°21'18"S 70°53'22"W,	J.A. Rafael	INPA
		22.viii.2012		
Z. barberi	YK16-23	Brazil, Amazonas, Castanho Careiro, Panelão, 03°51'20"S 60°24'58"W, 11-	J.A. Rafael, J.T. Câmara & F.F. Xavier	INPA
		13.xii.2013		
Z. barberi	YK16-24	Brazil, Amazonas, Guajará, Ramal do Gama, Igarapé Eder, 07°31'26"S	F.F. Xavier F°	INPA
		72°40'40"W, 07-18.xi.2006		
Z. manni	YK16-25	Brazil, Amazonas, Benjamin Constant, BR 307, km 5, Sítio Ágno,	F.F. Xavier	INPA
		04°23'35.6"S 70°01'59.7"W, 08-10.iv.2014		
Z. cf. manni	YK16-26	Brazil, Alagoas, Ibateguara, Reserva da Usina Serra Grande, 08°59'58"S	J.A. Rafael & F.F. Xavier	INPA
		35°51'34"W, 29.v.2007		
Z. brasiliensis	YK16-29	Brazil, Paraná, Serra do Mar, Estrada do Castelhanos, 25°50'52"S	J.A.Rafael	INPA
		48°56'47"W, 04.vii.2006, tronco caído		
Z. mexicanus	YM16-30	Mexico, 10 km east of Bachil R173, CHIS, 17°01'N, 92°46'E, 7.iii.2013	K. Yoshizawa	YK PC
Z. sp. 3	YM505	Costa Rica, Heredia, Sarapipui, La Selva, 10°25'N 84°00'W, 11.xi.2015	T. Kanao	SEHU
Z. weidneri	YM FG	French Guiana, Guyana, Cayenne, Roura (Amazone nature lodge), alt. 300m,	N. Ogawa	YK PC
		04°32'N, 52°12'W, 06-18.x.2015		
Ζ.	YM KN	Kenya, Kakamega, Kakamega national park, 00°14'N, 34°52'E, 29.v	Y. Matsumura	YK PC
asymmetristernum		2.vi.2016		

272x308mm (300 x 300 DPI)

253x303mm (300 x 300 DPI)

265x306mm (300 x 300 DPI)

	species name	A: Existence of an elongated	B: Symmetric or asymmetric	C: Existence and size of a	D: modification of subgenital
					place
1	Zorotypus amazonensis Rafael & Engel, 2006	absent	asymmetry	small one on T10	margin produced medially
2	Zorotypus asymmetricus Kočárek, 2017	absent	asymmetry	relatively short ones on T10 and T11	no modification
3	Zorotypus asymmetristernum Mashimo, 2018	absent	asymmetry	relatively short ones on T10 and T11	depression
4	Zorotypus barberi Gurney, 1938	exist, type 1 straight	symmetry	small one	no modification
5	Zorotypus brasiliensis Silvestri, 1947	-	-	-	-
6	Zorotypus buxtoni Karny, 1932	-	-	-	-
7	Zorotypus caudelli Karny, 1932	exist, type 2, spiral	symmetry	small one (Mashimo et al 2013)	no modification (Mashimo et al. 2013)
8	Zorotypus caxiuana Rafael et al., 2008	absent	asymmetry	relatively long	margin produced medially
9	Zorotypus cervicornis Mashimo et al., 2013	exist, type 2, spiral	symmetry	small one on T11	no modification
10	Zorotypus ceylonicus Silvestri,1913	?	?	?	?
11	Zorotypus congensis van Ryn-Tournel, 1971	?	?	?	?
12	Zorotypus cramptoni Gurney, 1938	exist, type 2, spiral	symmetry	small one	no modification
13	Zorotypus delamarei Paulian, 1949	absent	asymmetry	probably absent	probably no modification
14	Zorotypus guineensis Silvestri, 1913	absent	?	?	?
15	Zorotypus gurneyi Choe, 1989	exist, type 2, spiral	symmetry	small one	no modification
16	Zorotypus hainanensis Yin & Li, 2015	exist, type 2, spiral	symmetry	small one	no modification
17	Zorotypus hamiltoni New, 1978	exist, type 2, spiral	symmetry	small one	no modification
18	Zorotypus huangi Yin & Li, 2017	absent	asymmetry	relatively long ones on T10 and T11	no modification
19	Zorotypus hubbardi Caudell, 1918	absent	asymmetry (Hünefeld 2007)	small ones T8 to 10 (Gurney 1938, Hünefeld 2007)	no modification
20	Z <i>orotypus huxleyi</i> Bolivar y Pieltain & Coronado, 1963	absent (Dallai et al. 2014)	symmetry	small one on T11	no modification
21	Zorotypus impolitus Mashimo et al., 2013	absent	asymmetry	relatively long ones on T10 and T11	no modification
22	Zorotypus javanicus Silvestri, 1913	-	-	-	-
23	Zorotypus juninensis Engel, 2000	?	?	probably absent	no modification
24	Zorotypus lawrencei New, 1995	-	-	-	-
25	Zorotypus leleupi Weidner, 1967	-	-	-	-

	species nome	A: Existence of an elongated	B: Symmetric or asymmetric	C: Existence and size of a	D: modification of subgenital
	species name	intromittent organ	genitalia	mating hook	plate
26	Zorotypus longicercatus Caudell, 1927	-	-	-	-
27	Zorotypus magnicaudelli Mashimo et al., 2013	exist, type 2, spiral	symmetry	small one on T11	no modification
28	Zorotypus manni Caudell, 1923	-	-	-	-
29	Zorotypus medoensis Hwang, 1976	absent	asymmetry	scoop shaped projection on T10	no modification
30	Zorotypus mexicanus Bolivar y Pieltain, 1940	exist, type 2, spiral	symmetry	small one	no modification
31	Zorotypus neotropicus Silvestri, 1916	-	-	-	-
32	Zorotypus newi (Chao & Chen, 2000)	-	-	-	-
33	Zorotypus novobritannicus Terry & Whiting, 2012	absent	symmetry	small one on T11	no modification
34	Zorotypus philippinensis Gurney, 1938	-	-	-	-
35	Zorotypus sechellensis Zampro, 2005	not described	?	exist on 10th, probably small	probably no modification
36	Zorotypus shannoni Gurney, 1938	absent	asymmetry	relativelly big	bifulcated
37	Zorotypus silvestrii Karny, 1927	-	-	-	-
38	Zorotypus sinensis Hwang, 1974	absent	asymmetry	scoop shaped projection on T10	no modification
39	Zorotypus snyderi Caudell, 1920	exist, type 2, spiral	symmetry	?	broad medially located depression
40	Zorotypus swezeyi Caudell, 1922	-	-	-	-
41	Zorotypus vinsoni Paulian, 1951	absent	asymmetry	probably absent	probably no modification
42	Zorotypus weidneri New,1978	absent	symmetry	big	no modification
43	Zorotypus weiweii Wang et al., 2016	absent	asymmetry	relatively long ones on T10 and T11	no modification
44	Zorotypus zimmermani Gurney, 1939	yes type 3 looped dorso- ventrally	symmetry	small	no modification
45	Zorotypus sp. 1 Cameroon	absent	asymmetry	absent	bifulcated
46	Zorotypus sp. 2 Vietnum	exist, type 2, spiral	symmetry	small one on T11	no modification
47	Zorotypus sp. 3 Costa Rica	-	-	-	-
48 Zorotypus sp. 4 Ecuafor alt 1000-1200 m		-	-	-	-
49	Zorotypus sp. 5 Ecuador alt. 2157 m	-	-	-	-
50	Zorotypus sp. 6 Ecuafor alt 1000-1200 m		probably Z. hamiltoni like indiv	idual (see the method in the text)	

	species name	E: Basal plate existence	F: Existence and size of protuberances on T9-12	G: Males known or not	H: Existence of hair patches on vertex
1	Zorotypus amazonensis Rafael & Engel, 2006	absent	thickened, rather oblique setae on T9	males known	longitudinal paramedian setae
2	Zorotypus asymmetricus Kočárek, 2017	absent (However Kočárek et al. 2017 described "spatula-like basal plate present beneath aedeagus")	just setae	males known	absent
3	Zorotypus asymmetristernum Mashimo, 2018	absent	erected setea on T10	males known	exist
4	Zorotypus barberi Gurney, 1938	exist	paired messal processes on T9	males known	exist (its function is proved by Choe, 1995)
5	Zorotypus brasiliensis Silvestri, 1947	-	-	only female are known (new 1978 and Rafael et al 2006, 2008)	-
6	Zorotypus buxtoni Karny, 1932	-	-	sex is not identified	-
7	Zorotypus caudelli Karny, 1932	exist	just setae	males known	absent
8	Zorotypus caxiuana Rafael et al., 2008	absent	thickened setae on T10	males known	exist
9	Zorotypus cervicornis Mashimo et al., 2013	exist	just setae	males known	absent
10	Zorotypus ceylonicus Silvestri,1913	?	?	?	?
11	Zorotypus congensis Ryn-Tournel, 1971	?	?	?	?
12	Zorotypus cramptoni Gurney, 1938	exist	just setae	males known	absent
13	Zorotypus delamarei Paulian, 1949	?	probably just setae	males known	absent
14	Zorotypus guineensis Silvestri, 1913	?	?	males known	?
15	Zorotypus gurneyi Choe, 1989	exist	dark-colored setae on T9	males known	absent
16	Zorotypus hainanensis Yin & Li, 2015	exist	just setae	males known	absent
17	Zorotypus hamiltoni New, 1978	exist	just setae	males known	absent
18	Zorotypus huangi Yin & Li, 2017	absent	just setae	males known	absent
19	Zorotypus hubbardi Caudell, 1918	absent (Hünefeld 2007)	just setae	males known	absent
20	Z <i>orotypus huxleyi</i> Bolivar y Pieltain & Coronado, 1963	exist (we confirmed it)	projections on T11 (?), but according to New (1978) they are on T12 and variations in the number.	males known	exist
21	Zorotypus impolitus Mashimo et al., 2013	absent	just setae	males known	exist
22	Zorotypus javanicus Silvestri, 1913	-	-	only females are known (new 1978)	-
23	Zorotypus juninensis Engel, 2000	?	probably just setae	males known	absent
24	Zorotypus lawrencei New, 1995	-	-	only females are known, but New (2000) mentioned it is very similar to Z. caudelli	-
25	Zorotypus leleupi Weidner, 1967	-	-	only females are known (new 1978)	-

	species name	E: Basal plate existence	F: Existence and size of protuberances on T9-12	G: Males known or not	H: Existence of hair patches on vertex
26	Zorotypus longicercatus Caudell, 1927	-	-	onlly nymphs are known (new 1978)	-
27	Zorotypus magnicaudelli Mashimo et al., 2013	exist	just setae	males known	absent
28	Zorotypus manni Caudell, 1923	-	-	only females are known (new 1978)	-
29	Zorotypus medoensis Hwang, 1976	absent	just setae	males known	absent
30	Zorotypus mexicanus Bolivar y Pieltain, 1940	exist	dark-colored setae	males known	absent
31	Zorotypus neotropicus Silvestri, 1916	-	-	only females are known (new 1978)	-
32	Zorotypus newi (Chao & Chen, 2000)	-	-	only females are known	-
33	Zorotypus novobritannicus Terry & Whiting, 2012	possibly exist from the Figs 14- 15 in the original paper	just setae	males known	absent
34	Zorotypus philippinensis Gurney, 1938	-	-	only females are known (new 1978)	-
35	Zorotypus sechellensis Zampro, 2005	?	?	males known	absent
36	Zorotypus shannoni Gurney, 1938	absent (New 1978 had explicitly mentioned not defined basal plate)	just setae	males known	absent
37	Zorotypus silvestrii Karny, 1927	-	-	The sex is not identified	-
38	Zorotypus sinensis Hwang, 1974	absent	just setae	males known	absent
39	Zorotypus snyderi Caudell, 1920	exist	just setae	males known	
40	Zorotypus swezeyi Caudell, 1922	-	-	only females are known (new 1978)	-
41	Zorotypus vinsoni Paulian, 1951	?	probably just setae	males known	
42	Zorotypus weidneri New,1978	exist (but New 1978 mentioned the genitalia are similar to Z. vinsoni and Z. delamarei)	spines on T10	males known	absent (Beutel and Weide 2005; Matsumura et al. 2015)
43	Zorotypus weiweii Wang et al., 2016	absent	just setae	males known	exist
44	Zorotypus zimmermani Gurney, 1939	exist	just setae	males known	absent
45	Zorotypus sp. 1 Cameroon	absent	spines	a male collected	exist
46	Zorotypus sp. 2 Vietnum	exist	small spines arranged as a ring	males collected	absent
47	Zorotypus sp. 3 Costa Rica	-	-	only females collected	-
48	Zorotypus sp. 4 Ecuafor alt 1000-1200 m	-		only a nymph collected	-
49	Zorotypus sp. 5 Ecuador alt. 2157 m	-	-	only a nymph collected	-
50	Zorotypus sp. 6 Ecuafor alt 1000-1200 m		probably Z. hamiltoni like indiv	idual (see the method in the text)	

The above listed information were obtained mainly from the original description papers listed below. But in some cases newly describing papers were available and we used those new information, i.e. New (1978) and Rafael et al. (2008) for *Z. brasiliensis*, New (2000) and Mashimo et al. (2013) for *Z. caudelli*, Paulian (1951) for *Z. delamarei*, Dallai et al. (2014) for *Z. guineensis*, Gurney (1938) and Hünefeld (2007) for *Z. hubbardi*, Dallai et al. (2014) and New (1978) for *Z. huxleyi*, Gurney (1938) for *Z. snyderi*.

Bolívar y Pieltain, C. 1940. Estudio de un Nuevo Zoráptero de México. Anales de la Escuela Nacional de Ciencias Biologicas 1: 515–523.

Bolivar y Pieltain, C., & L. Coronado-G. 1963. Estudio de un nuevo Zorotypus proveniente de la Región Amazónica Peruana (Ins., Zoraptera). Ciencia (Mexico) 22: 93–100, pl. 4.

Chao, R. F., and C. S. Chen. 2000. Formosozoros newi, a new genus and species of Zoraptera (Insecta) from Taiwan. Pan-Pacific Entomologist 76: 24-27.

Choe, J. C. 1989. Zorotypus gurneyi, new species, from Panama and redescription of Z. barberi Gurney (Zoraptera: Zorotypidae). Annals of the Entomological Society of America 82: 149–155.

Dallai, R., M. Gottardo, D. Mercati, R. Machida, Y. Mashimo, Y. Matsumura, J. A. Rafael, and R. G. Beutel. 2014. Comparative morphology of spermatozoa and reproductive systems of zorapteran species from different world regions (Insecta, Zoraptera). Arthropod Structure & Development 43: 371–383. doi:10.1016/j.asd.2014.03.001

Engel, M. S. (2000). A new Zorotypus from Peru, with notes on related neotropical species (Zoraptera: Zorotypidae). Journal of the Kansas Entomological Society 11-20.

Gurney, A. B. 1938. A synopsis of the order Zoraptera, with notes on the biology of *Zorotypus hubbardi* Caudell. Proceedings of the Entomological Society of Washington 40: 57–87.

Gurney, A. B. 1939. A new species of Zoraptera from Fiji. Occasional Papers of Bernice P. Bishop Museum Honolulu, Hawaii 15: 161–165. Hünefeld, F. 2007. The genital morphology of *Zorotypus hubbardi* Caudell, 1918 (Insecta: Zoraptera: Zorotypidae). Zoomorphology 126: 135–151. doi:10.1007/s00435-007-0033-5.

Hwang, F.-S. 1974. Zorotypus sinensis, a new species from China. Acta Entomologica Sinica 17: 423-427.

Hwang, F.-S. 1976. A new species of Zoraptera. Acta Entomol Sinica 19: 225–227.

Karny, H. H. 1932. Psocoptera. Insects of Samoa and other Samoan Terrestrial Arthropoda. Part VII. Other orders of insects. 4, 117–129. British Museum (Natural History): London.

Kočárek, P. E. T. R., Wahab, R. A., & Abdul Kahar, S. R. 2017. Zorotypus asymmetricus sp. nov. from Brunei Darussalam, Borneo (Insecta: Zoraptera). Zootaxa 4286(2): 285–290.

Mashimo, Y., Yoshizawa, K., Engel, M. S., Ghani, I. A., Dallai, R., Beutel, R. G., & Machida, R. 2013. *Zorotypus* in Peninsular Malaysia (Zoraptera: Zorotypidae), with the description of three new species. Zootaxa 3717(4): 498–514.

Mashimo, Y., Matsumura, Y, Beutel, R. G., Njoroge, L., & Machida, R. 2018. A remarkable new species of Zoraptera, *Zorotypus asymmetristernum* sp. n., from Kenya (Insecta, Zoraptera, Zorotypidae). Zootaxa 4388(3): 407–416.

New, T. R. 1978. Notes on Neotropical Zoraptera, with descriptions of two new species. Systematic Entomology 3(4): 361-370.

New, T. R. 1995. The order Zoraptera (Insecta) from Christmas Island, Indian Ocean. Invertebrate Systematics 9(2): 243–246.

New, T. R. 2000. Zoraptera (Insecta) in east Malaysia: notes on Zorotypus caudelli Karny. Oriental Insects 34(1): 77-82.

- Paulian, R. 1949. Découverte de l'ordre des Zorapthres ii Madagascar et description d'une nouvelle esphce. Memoires de l'Inst- itut Scientifique de Madagascar (A) 3: 77-80.
- Paulian, R. 1951. Découverte de l'ordre des Zoraptbres à l'ile Maurice. Zorotypus vinsoni, n. sp. Naturaliste Malgache 3: 33-35.
- Rafael, J. A., & Engel, M. S. 2006. A new species of *Zorotypus* from central Amazonia, Brazil (Zoraptera: Zorotypidae). American Museum Novitates 3528: 1–11.
- Rafael, J. A., Godoi, F. S., & Engel, M. S. 2008. A new species of *Zorotypus* from eastern Amazonia, Brazil (Zoraptera: Zorotypidae). Transactions of the Kansas Academy of Science, 111(3), 193–203.
- van Ryn-Tournel, J. 1971. Presence de l'ordre des Zorapthres au Congo et description de Zorotypus congensis sp. n. Revue de Zoologie et de Botanique Africaines 83: 100–110.
- Silvestri, F. 1913. Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di Zoologia Generale e Agraria della R. Scuola Superiore d'Agricoltura in Portici 7: 193–209.
- Terry, M. D., and M. F. Whiting. 2012. *Zorotypus novobritannicus* n. sp., the first species of the order Zoraptera (Zorotypidae) from the Australasian Ecozone. Zootaxa 3260: 53-61.
- Wang, J., H. Li, and W. Cai. 2016. Zorotypus weiweii (Zoraptera: Zorotypidae), a new species of angel insects, from Sabah, East Malaysia. Zootaxa 4162: 550–558. doi:10.11646/zootaxa.4162.3.8.
- Yin, Z. W., and L. Z. Li. 2017. Zorotypus huangi sp. nov. (Zoraptera: Zorotypidae) from Yunnan, southern China. Zootaxa 4300: 287. doi:10.11646/zootaxa.4300.2.10.
- Yin, Z. W., L. Z. Li, and C. Wu. 2015. New and little known species of *Zorotypus* Silvestri (Zoraptera: Zorotypidae) from China. Zootaxa. 4007: 557–566. doi:10.11646/zootaxa.4007.4.6.
- Zompro, O. 2005. Inter-and intra-ordinal relationships of the Mantophasmatodea, with comments on the phylogeny of polyneopteran orders (Insecta: Polyneoptera). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 89, 85–116.

202x193mm (300 x 300 DPI)

202x295mm (300 x 300 DPI)