

Biological Journal of the Linnean Society, 2011, ••, ••-••. With 10 figures

Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement

GONZALO GIRIBET¹*, PRASHANT P. SHARMA¹, LIGIA R. BENAVIDES², SARAH L. BOYER³, RONALD M. CLOUSE^{1,4}, BENJAMIN L. DE BIVORT^{1,5}, DIMITAR DIMITROV⁶, GISELE Y. KAWAUCHI¹, JEROME MURIENNE^{1,7} and PETER J. SCHWENDINGER⁸

¹Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
²Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA
³Biology Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA
⁴Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
⁵Rowland Institute at Harvard, Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02142, USA
⁶Center for Macroecology, Evolution and Climate, Zoological Museum, University of Copenhagen, Department of Entomology, Universitetsparken 15, DK-2100, Copenhagen, Denmark
⁷UMR 7205 CNRS, Département Systématique et Évolution, CP 50, Muséum national d'Histoire naturelle, 45, rue Buffon, 75005 Paris, France
⁸Muséum d'histoire naturelle, Département des Arthropodes et d'Entomologie I, 1, Route de Malagnou, Case Postale 6434, CH-1211 Genève 6, Switzerland

Received 27 May 2011; revised 8 July 2011; accepted for publication 8 July 2011

We investigate the phylogeny, biogeography, time of origin and diversification, ancestral area reconstruction and large-scale distributional patterns of an ancient group of arachnids, the harvestman suborder Cyphophthalmi. Analysis of molecular and morphological data allow us to propose a new classification system for the group; Pettalidae constitutes the infraorder Scopulophthalmi new clade, sister group to all other families, which are divided into the infraorders Sternophthalmi new clade and Boreophthalmi new clade. Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae; Boreophthalmi includes Stylocellidae and Sironidae, the latter family of questionable monophyly. The internal resolution of each family is discussed and traced back to its geological time origin, as well as to its original landmass, using methods for estimating divergence times and ancestral area reconstruction. The origin of Cyphophthalmi can be traced back to the Carboniferous, whereas the diversification time of most families ranges between the Carboniferous and the Jurassic, with the exception of Troglosironidae, whose current diversity originates in the Cretaceous/Tertiary. Ancestral area reconstruction is ambiguous in most cases. Sternophthalmi is traced back to an ancestral land mass that contained New Caledonia and West Africa in the Permian, whereas the ancestral landmass for Neogoveidae included the south-eastern USA and West Africa, dating back to the Triassic. For Pettalidae, most results include South Africa, or a combination of South Africa with the Australian plate of New Zealand or Sri Lanka, as the most likely ancestral landmass, back in the Jurassic. Stylocellidae is reconstructed to the Thai-Malay Penisula during the Jurassic. Combination of the molecular and morphological data results in a hypothesis for all the cyphophthalmid genera, although the limited data available for some taxa represented only in the morphological partition negatively affects the phylogenetic reconstruction by decreasing nodal support in most clades. However, it resolves

^{*}Corresponding author. E-mail: ggiribet@oeb.harvard.edu

the position of many monotypic genera not available for molecular analysis, such as *Iberosiro*, *Odontosiro*, *Speleosiro*, *Managotria* or *Marwe*, although it does not place *Shearogovea* or *Ankaratra* within any existing family. The biogeographical data show a strong correlation between relatedness and formerly adjacent landmasses, and oceanic dispersal does not need to be postulated to explain disjunct distributions, especially when considering the time of divergence. The data also allow testing of the hypotheses of the supposed total submersion of New Zealand and New Caledonia, clearly falsifying submersion of the former, although the data cannot reject the latter. © 2011 The Linnean Society of London, *Biological Journal of the Linnean Society*, 2011, ••, ••-••.

ADDITIONAL KEYWORDS: biogeography – distribution modelling – Gondwana – Laurasia – MAXENT – New Caledonia – New Zealand – Pangea.

INTRODUCTION

The harvestman suborder Cyphophthalmi (Fig. 1) constitutes an ancient lineage of arachnids and was probably one of the earliest inhabitants of terrestrial ecosystems. Currently distributed on all continental landmasses (with the exception of Antarctica) and on most large islands of continental origin, the group is considered to have been in close association to these landmasses since its origins (Juberthie & Massoud, 1976; Boyer et al., 2007b). The fact that deep genetic divergences in cytochrome c oxidase subunit I (COI) have been reported within one species (Boyer, Baker & Giribet, 2007a), and are suspected for many others (R. Clouse & P. Sharma, unpubl. data), corroborates the observations that individuals may live a long time (Juberthie, 1960b) and do not disperse far during the course of life history. These, together with the old history of the group [a Burmese amber specimen probably belonging to Stylocellidae is known from the Early Cretaceous (Poinar, 2008) and the origins of the group has been estimated to have taken place during the Devonian or Carboniferous using molecular dating techniques (Giribet et al., 2010)] have resulted in a broad use of Cyphophthalmi for biogeographical inferences and zoogeographical discussions (Rambla, 1974; Juberthie & Massoud, 1976; Boyer, Karaman &

Giribet, 2005; Boyer & Giribet, 2007; Clouse & Giribet, 2007; Giribet & Kury, 2007; Boyer *et al.*, 2007b; Boyer & Giribet, 2009; Clouse, de Bivort & Giribet, 2009; Karaman, 2009; Murienne & Giribet, 2009; Sharma & Giribet, 2009a; Clouse & Giribet, 2010; de Bivort & Giribet, 2010; Murienne, Karaman & Giribet, 2010b; Clouse *et al.*, 2011). These include some recent and more general debates on the total submersion of large fragment islands such as New Caledonia and New Zealand (Sharma & Giribet, 2010).

However, to use a system for biogeographical inferences, a sound systematic hypothesis of the group is required. The taxonomy of Cyphophthalmi has benefitted from the contributions of many studies, especially the synthetic work of Hansen & Sørensen (1904), who produced the first and still best monograph on the group, and established the first classification system of the suborder Cyphophthalmi with one family, Sironidae, and two subfamilies, Stylocellini (including the genera Stylocellus Westwood, 1874, Ogovia Hansen & Sørensen, 1904, which was preoccupied and became Ogovea Roewer, 1923, and Miopsalis Thorell, 1890) and Sironini (including Pettalus Thorell, 1876, Purcellia Hansen & Sørensen, 1904, Siro Latreille, 1796, and Parasiro Hansen & Sørensen, 1904). Another major contributor was

Figure 1. Habitus. A, Karripurcellia harveyi (Pettalidae) from Warren National Park, Western Australia, July 2004. B, *Pettalus thwaitesi* (Pettalidae) from Peradeniya Botanical Gardens, Central Province, Sri Lanka, October 2007. C, *Rakaia pauli* (Pettalidae) from Kelcey's bush, near Waimate, North Island, New Zealand, February 2008. D, *Aoraki longitarsa* (Pettalidae) from Governor's bush, Mt Cook, South Island, New Zealand, January 2006. E, male *Pettalus thwaitesi* (Pettalidae) from Peradeniya Botanical Gardens, Central Province, Sri Lanka, June 2004. F, *Ogovea cameroonensis* (Ogoveidae) from Ototomo Forest, Central province, Cameroon, June 2009. G, *Parogovia* sp. (Neogoveidae) from Mt. Koupé, South-West Province, Cameroon, June 2009. H, two species of *Parogovia* from Campo Reserve, Littoral Province, Cameroon, June 2009; upper left, adult specimen of *Parogovia* n. sp.; lower right, juvenile specimen of *Parogovia* cf. sironoides. I, juvenile specimen of *Paramiopsalis ramulosus* (Sironidae) from Mt. Takao, Tokyo Prefecture, Honshu, Japan, April 2005. M, juvenile specimen of *Leptopsalis* sp. (Stylocellidae) from Bantimurung-Bulusaraung N.P., Sulawesi Selatan, Indonesia, June 2006. N, female *Leptopsalis* sp. (Stylocellidae) from Bantimurung-Bulusaraung N.P., Sulawesi Selatan, Indonesia, June 2006.

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, ••, ••-••

Juberthie, who described and monographed many genera (e.g. Juberthie, 1956, 1958, 1960a, 1961, 1962, 1969, 1970a, b; Juberthie & Muñoz-Cuevas, 1970; Juberthie, 1979) in addition to his contributions to the biology of the group; the regional work of Forster (1948, 1952) in New Zealand, that of Lawrence (1931, 1933, 1939, 1963) in South Africa, that of Rambla (Rambla & Fontarnau, 1984, 1986; Rambla, 1991, 1994) in the Iberian Peninsula and southeast Asia, to mention just a few of them. More recently, Shear has contributed with descriptions of numerous species in almost all cyphophthalmid families (Shear, 1977, 1979a, b, 1985, 1993a, b, c; Shear & Gruber, 1996). He also proposed the bases of modern cyphophthalmid systematics in a seminal first cladistic analysis of the group (Shear, 1980), with five families, three of which were new, and two infraorders, equivalent to Hansen and Sørensen's subfamilies (Table 1). A sixth family, Troglosironidae, was also proposed a few years later (Shear, 1993b).

Two decades after Shear's classification system appeared. Giribet (2000) compiled all the cyphophthalmid literature to date, recognizing 113 species in 26 genera. A subsequent analysis including representatives of most genera and based on a numerical cladistic analysis of 32 morphological characters (Giribet & Boyer, 2002) recognized most of the families erected by Shear (1980) but also challenged some of his systematic propositions because the root of the tree, based on a limited molecular data set also published in the same study, was placed between stylocellids and the rest (rendering Tropicophthalmi paraphyletic) or between pettalids and the rest (rendering Temperophthalmi paraphyletic). Shear (1993b) had also proposed the new family Troglosironidae as sister to (Pettalidae + Sironidae) and this result was refuted by Giribet & Boyer (2002), who found it nested within an unresolved Neogoveidae. After some minor familial reassignments – Huitaca Shear, 1979 was removed from Ogoveidae (Giribet & Prieto, 2003)

Table 1. Classification system of Shear (1980, 1993)

Suborder Cyphophthalmi
Infraorder Tropicophthalmi Shear, 1980
Superfamily Stylocelloidea Hansen & Sørensen, 1904
Family Stylocellidae Hansen & Sørensen, 1904
Superfamily Ogoveoidea Shear, 1980
Family Ogoveidae Shear, 1980
Family Neogoveidae Shear, 1980
Infraorder Temperophthalmi Shear, 1980
Superfamily Sironoidea Simon, 1879
Family Sironidae Simon, 1879
Family Pettalidae Shear, 1980
Family Troglosironidae Shear, 1993

and subsequently included in Neogoveidae (Giribet, 2007b); *Fangensis* Rambla, 1994 was transferred from Sironidae to Stylocellidae (Schwendinger & Giribet, 2005); *Metasiro* was transferred from Sironidae to Neogoveidae (Giribet, 2007b); *Meghalaya* Giribet, Sharma & Bastawade, 2007 was included in Stylocellidae (Clouse *et al.*, 2009); and *Shearogovea mexasca* (Shear, 1977) was excluded from Neogoveidae (Benavides & Giribet, 2007; Giribet, 2011) – the families are currently considered to be stable.

Recent phylogenetic analyses based on nucleotide sequence data have resolved the relationship among some of these families, providing strong support for a relationship of Troglosironidae and Neogoveidae (Boyer et al., 2007b; Boyer & Giribet, 2009; Sharma & Giribet, 2009a; Giribet et al., 2010), a result also obtained in a recent analysis of morphometric characters (de Bivort, Clouse & Giribet, 2010). Monophyly of Pettalidae is well supported both by discrete and continuous morphological characters (Giribet & Bover, 2002; Giribet, 2003a; Bover & Giribet, 2007; de Bivort et al., 2010; de Bivort & Giribet, 2010), as well as a diversity of molecular analyses (Boyer & Giribet, 2007, 2009; Boyer et al., 2007b; Giribet et al., 2010). Stylocellidae is also well supported based on morphology (Giribet & Boyer, 2002; Clouse et al., 2009) and molecules (Schwendinger & Giribet, 2005; Clouse & Giribet, 2007; Boyer et al., 2007b; Clouse et al., 2009; Clouse & Giribet, 2010; Giribet et al., 2010). However, monophyly of Sironidae, especially the membership of the Mediterranean genus Parasiro and the Japanese Suzukielus Juberthie, 1970, remains controversial, both based on morphology (Giribet & Boyer, 2002; de Bivort & Giribet, 2004; de Bivort et al., 2010), as well as on molecular analyses (Boyer et al., 2005; Boyer & Giribet, 2007; Giribet et al., 2010).

In addition to the uncertainty about the monophyly of Sironidae, which we approach here by including an expanded taxon sampling in problematic genera previously represented by a single species (Parasiro), we include a much larger diversity of Neogoveidae, both from the Neotropics (29 species versus six used in Boyer et al., 2007b; including data on the new Brazilian genus Canga DaSilva, Pinto-da-Rocha & Giribet, 2010) and from the Afrotropics (12 terminals versus seven used in Boyer et al., 2007b). Most importantly, we include the first molecular data on the family Ogoveidae, from specimens collected in Cameroon in 2009. In total, we provide novel sequence data for 34 species (of a total of 162 molecular terminals), include 27 genera and a family previously unsampled, and include new landmasses (Mindanao, the eastern Neotropics, the westernmost distribution of the Afrotropics) not considered in previous phylogenetic analyses. The present study also provides the first total evidence analysis of molecules and

morphology for the whole suborder Cyphophthalmi and new data on the timing of diversification and cladogenesis of the group, aiming to revisit interesting biogeographical topics. Finally, we provide an estimate of the ancestral area for each lineage and present the first habitat suitability and distributional patterns analysis for this dispersal-limited, yet globally-distributed group of arthropods. Studying macroecological patterns in Cyphophthalmi is complicated as a result of the scarce occurrence data for most species. Thus, species-level assessment of largescale distributional patterns and their primary ecological and evolutionary drivers is difficult. Recently, theoretical and practical arguments for the utility of modelling distributional patterns or even ecological niche characteristics above the species level have been proposed (Heino & Soininen, 2007; Hadly, Spaeth & Li, 2009; Diniz, De Marco & Hawkins, 2010). Despite some obvious limitations (Diniz et al., 2010), this approach may be very useful to evaluate patterns in groups with limited distributional data such as insects and other arthropods including Cyphophthalmi.

MATERIAL AND METHODS

SPECIMENS

Most specimens used in the molecular part of this study (Fig. 2) were collected by one or more of the authors through direct sifting of leaf litter and transferred to approximately 95% ethanol for molecular and morphological study. Museum specimens have also been used for the morphological studies. A detailed discussion of the specimen collecting effort is provided in the Supporting information (Appendix S1).

The study includes the first molecular data for the family Ogoveidae (Ogovea cameroonensis Giribet & Prieto, 2003) and includes additional sampling within all other families, building upon previous studies on the phylogenies of Pettalidae (Boyer & Giribet, 2007; Boyer et al., 2007b). Stylocellidae (Clouse et al., 2009; Clouse & Giribet, 2010; Clouse et al., 2011), Troglosironidae (Sharma & Giribet, 2009a), and Sironidae (Bover et al., 2005; Giribet & Shear, 2010; Murienne et al., 2010b). However, data for Neogoveidae were restricted to a single previous study (Boyer et al., 2007b), and the family was poorly sampled. For the African diversity, we are now able to add data on another described species, Parogovia gabonica (Juberthie, 1969), from near its type locality (Ipassa Reserve, Makokou, Gabon). We also add new data on two new species from Mount Koupé and the Campo reserve, in Cameroon, and an additional specimen of Parogovia cf. sironoides also from the Campo reserve in Cameroon. The third African species, Parogovia pabsgarnoni Legg, 1990, is known only from its type locality in Sierra Leone, resulting in a large biogeographical gap from the known distribution of species in the Gulf of Guinea, and differs morphologically from the other species in the genus in many key characters, showing very different spermatopositor

Figure 2. Distribution map of the sampled specimens for the molecular study (Table 2). Pettalidae are represented in red, Troglosironidae in purple, Ogoveidae in cyan, Neogoveidae in green, Sironidae in orange, and Stylocellidae in navy blue.

from the species in the Gulf of Guinea (Legg & Pabs-Garnon, 1989; Legg, 1990). A possible close relative to this species is included here, based on data from a female collected in Ivory Coast. The South American sampling has also been enriched considerably. The monotypic genus *Huitaca* is now represented by data from seven species all from Colombia, including the nominal Huitaca ventralis Shear, 1979. Metagovea is now represented by 13 specimens in 12 putative new species, including one from Guyana. These include the Colombian species identified as Neogovea in our previous studies, although they appear to be related to Metagovea. A large biogeographical gap in our previous studies was the easternmost distribution of the genus Neogovea (type species Neogovea immsi Hinton, 1938, from Amapá, Brazil). We now include putative representatives of this clade based on specimens collected in French Guiana and Guyana, including specimens from the recently described N. virginie Jocqué & Jocqué, 2011. With the exception of one specimen from Guyana clustering with Metagovea, these specimens group with the unidentified juvenile from Venezuela used in Boyer et al. (2007b) and with a species from the 'Tepuis' in Colombia, which we reassign here to the genus Brasilogovea Martens, 1969, previously considered a synonym of Neogovea (Shear, 1980; Giribet, 2000). Finally, we were able to include data on the monotypic genus Canga based on a specimen from its type locality (DaSilva et al., 2010). However, large areas of the Neotropics with known specimens of Neogoveidae remain unsampled in our molecular phylogeny, and they should be included in future studies (Benavides & Giribet, 2007: fig. 1).

MOLECULAR DATA

DNA extraction, amplification, and sequencing were performed as described in several of our previous studies on molecular systematics of Cyphophthalmi using the same markers (Schwendinger & Giribet, 2005; Boyer et al., 2007b; Boyer & Giribet, 2009; Sharma & Giribet, 2009a; Clouse & Giribet, 2010). We used the five markers as in these previous studies, including the nuclear ribosomal 18S and 28S rRNA, the nuclear protein-encoding histone H3, the mitochondrial ribosomal 16S rRNA, and the mitochondrial protein-encoding COI genes. For outgroups, we used seven noncyphophthalmid Opiliones from the suborders Eupnoi, Dyspnoi, and Laniatores (Table 2). Published sequence data from these studies and the novel data presented here are deposited in GenBank and are shown in Table 2.

All sequence files for each gene were prepared with MacGDE (Linton, 2005). 18S rRNA sequence data were divided into six fragments and it was available

for 170 terminals. The 28S rRNA fragment was divided into ten regions and was available for 169 terminals. 16S rRNA was divided into eight fragments and was available for 127 terminals. All the ribosomal genes were submitted to direct optimization or to multiple sequence alignment for homology assignment. The 143 COI sequences, unlike in many other organisms, show clade-specific considerable sequence length variation, and hence the gene was divided into seven fragments and analyzed under dynamic homology (Wheeler, 2005) or submitted to multiple sequence alignment. The histone H3 data were available for 108 terminals and were treated as prealigned in all analyses because they show no length variation.

MORPHOLOGICAL DATA MATRIX

A morphological matrix of 62 characters was compiled for 161 taxa based in part on our previous studies (Giribet & Boyer, 2002; Giribet, 2003a; de Bivort & Giribet, 2004; Boyer & Giribet, 2007; de Bivort & Giribet, 2010), direct observation of specimens, mostly through scanning electron microscopy, and complemented by some new literature sources (Karaman, 2009). All 19 multistate characters were unordered. Spermatogenesis in Cyphophthalmi is a promising source of phylogenetic characters, as recently outlined by Alberti, Giribet & Gutjahr (2009; see also Juberthie & Manier, 1976; Juberthie, Manier & Boissin, 1976; Juberthie & Manier, 1978; Alberti, 1995, 2005), although taxon sampling is still sparse and these characters were not considered in this data set (G. Alberti & G. Giribet, unpubl. data). We did not have access to specimens of a few species that were included in the data matrix based entirely on literature sources. These have missing data for several characters, especially those observed through scanning electron microscopy, such as the prosomal sternal characters. These species include Ankaratra franzi Shear & Gruber, 1996, Manangotria taolanaro Shear & Gruber, 1996, and Odontosiro lusitanicus Juberthie, 1961. Similarly, several Cyphophthalmus Joseph, 1868 species, included in our molecular matrix, were not scored for several morphological characters because males were never available for examination, and their published descriptions do not include scanning electron micrographs of the relevant characters and their descriptions and illustrations are inadequate for scoring those features. Finally, a few species scored in the matrix are not known for one gender, and therefore the corresponding scorings are missing. The total number of missing cells was thus 1798 (17% of cells). In the present study, we were not able to use morphometrics, as we have done in previous studies (Clouse, 2010; de Bivort et al., 2010; de

			2					
	Voucher	Locality	Coordinates	18S rRNA	28S rRNA	16S rRNA	COI	H3
FAMILY PETTALIDAE								
Aoraki calcarobtusa westlandica	DNA101129	New Zealand	-41.78387, 172.36903	EU673626	DQ518038	DQ518070	EU673667	EU673703
Aoraki crypta	DNA101289	New Zealand	-37.53404, 175.74140	DQ518000	DQ518043	DQ518068	DQ518120	DQ518156
Aoraki denticulata denticulata	DNA100955	New Zealand	-42.09283, 171.34096	EU673618	EU673654	EU673584	DQ992309	EU673698
Aoraki denticulata major	DNA100959	New Zealand	-43.03408, 171.76464	EU673620	EU673656	EU673585	DQ992203	EU673700
Aoraki granulosa	DNA101841	New Zealand	-39.93478, 175.64046	DQ517999	DQ518039	DQ518071	I	I
Aoraki healyi	DNA100940	New Zealand	-41.08673, 174.13826	DQ518002	DQ518042	DQ518067	DQ518122	DQ518160
Aoraki inerma	DNA100966	New Zealand	-38.79686, 177.12472	EU673622	EU673658	I	I	EU673702
Aoraki longitarsa	DNA101806	New Zealand	-43.73666, 170.09222	EU673613	EU673652	I	DQ992313	EU673695
Aoraki cf. tumidata	DOC094	New Zealand	$-39.667, 175.637^{*}$	EU673614	I	I	DQ992318	I
Aoraki sp.	DNA101126	New Zealand	-41.08708, 174.13709	EU673624	EU673659	I	DQ992319	I
Austropurcellia arcticosa	DNA100951	Queensland, Australia	-16.16610, 145.41560	DQ517984	DQ518023	I	DQ518111	DQ518147
Austropurcellia daviesae	DNA100947	Queensland, Australia	-17.24560, 145.64207	DQ517985	DQ518024	I	DQ518112	DQ518148
Austropurcellia forsteri	DNA100945	Queensland, Australia	-16.06151, 145.46217	DQ517983	DQ518022	DQ518064	DQ518110	DQ518146
Austropurcellia scoparia	DNA100946	Queensland, Australia	-16.59458, 145.27927	DQ517982	DQ518021	DQ518065	DQ518108	EU673678
Chileogovea oedipus	DNA100413	Chile	-41.50833, -72.61666	DQ133721	DQ133733	DQ518055	DQ133745	I
Chileogovea sp.	DNA100490	Chile	$-39.66666, -73.28333^{*}$	DQ133722	DQ133734	DQ518054	DQ133746	EU673672
Karripurcellia harveyi	DNA101303	Western Australia	-34.49500, 115.97527	DQ517980	DQ518019	DQ518062	DQ518106	DQ518143
Neopurcellia salmoni	DNA100939	New Zealand	-44.10780, 169.35527	DQ517998	EU673650	DQ518066	DQ825638	EU673694
Parapurcellia monticola	DNA100386	South Africa	-29.05347, 29.38516	DQ518973	DQ518009	1	DQ518098	DQ518135
Parapurcellia silvicola	DNA100385	South Africa	-28.74421, 31.13763	AY639494	DQ518008	DQ518053	AY639582	DQ518136
Pettalus thwaitesi	DNA101223	Sri Lanka	7.27251, 80.59333	EU673592	EU673633	EU673569	EU673666	EU673677
Pettalus sp.	DNA101282	Sri Lanka	7.38483, 80.81696	DQ825537	EU673632	I	DQ825636	EU673676
Pettalus sp.	DNA101283	Sri Lanka	7.38483, 80.81696	DQ517974	DQ518016	DQ518056	DQ518100	DQ518137
Pettalus sp.	DNA101285	Sri Lanka	6.92517, 80.81949	DQ517976	DQ518017	DQ518058	DQ518102	DQ518139
Pettalus sp.	DNA101286	Sri Lanka	6.92517, 80.81949	DQ517977	DQ518013	DQ518059	DQ518103	D0518140
Pettalus sp.	DNA101287	Sri Lanka	6.82359.80.84996	DQ517978	DQ518014	DQ518060	DQ518104	DQ518141
Pettalus sp.	DNA101288	Sri Lanka	6.55551, 80.37030	DQ517979	D@518015	DQ518061	DQ518105	D0518142
Purcellia illustrans	DNA100387	South Africa	-33.98294, 18.42464	EU673589	EU673629	DQ518052	EU673665	EU673673
Rakaia antipodiana	DNA100957	New Zealand	-43.25145, 171.36761	DQ517988	DQ518031	DQ518072	DQ518115	DQ518151
Rakaia dorothea	DNA100943	New Zealand	-41.28163, 174.90961	DQ517990	DQ518033	DQ518077	DQ992331	,
Rakaia florensis	DNA101295	New Zealand	-40.83258, 172.96896	DQ517986	DQ518025	DQ518083	DQ518113	DQ518149
Rakaia lindsavi	DNA101128	New Zealand	-46.89327, 168.10398	DQ517995	DQ518027	DQ518081	DQ518118	DQ518154
Rakaia macra	DNA101808	New Zealand	-45.92000, 170.02805	EU673596	EU673636	EU673571	EU673668	, I
Rakaia magna australis	DNA100962	New Zealand	-42.33225, 172.17126	EU673601	EU673640	EU673575	DQ992333	EU673684
Rakaia media	DNA101292	New Zealand	-39.93478, 175.64046	DQ517996	DQ518030	DQ518074	DQ518125	DQ518157
Rakaia minutissima	DNA101291	New Zealand	-39.41641, 175.21858	DQ517987	DQ518026	DQ518082	DQ518114	DQ518150
Rakaia pauli	DNA100968	New Zealand	-44.70073, 170.96557	DQ517992	DQ518032	DQ518073	EU673670	DQ518161
Rakaia solitaria	DNA101294	New Zealand	-41.46852, 175.44885	DQ517997	DQ518029	DQ518075	DQ518119	DQ518155
Rakaia sorenseni sorenseni	DNA100969	New Zealand	-46.10967, 167.69034	DQ517993	DQ518036	DQ518079	DQ518116	DQ518153
Rakaia sorenseni digitata	DNA100970	New Zealand	-46.58177, 169.20901	DQ517989	DQ518035	DQ518078	DQ518123	DQ518162
Rakaia stewartiensis	DNA100944	New Zealand	-46.89327, 168.10398	DQ517994	DQ518028	DQ518080	DQ518117	I
Rakaia uniloca	DNA101812	New Zealand	-41.22083, 173.43944	EU673599	EU673638	I	EU673671	I
Rakaia sp.	DNA101297	New Zealand	-40.97595, 175.11747	EU673608	EU673647	EU673579	DQ992344	EU673691
Rakaia sp.	DNA101807	New Zealand	-45.90166, 169.46277	EU673606	EU673645	I	I	EU673689
Rakaia sp.	DNA100958	New Zealand	-43.80869, 173.02144	EU673597	EU673637	EU673573	DQ992349	EU673681
Rakaia sp.	DNA101293	New Zealand	-40.85181, 174.93233	EU673610	EU673649	EU673581	DQ992322	EU673693
<i>Rakaia</i> sp.	DNA100954	New Zealand	-41.15757, 175.02168	EU673603	EU673642	EU673576	DQ992348	EU673686

Table 2. Specimen and collection data with GenBank accession numbers

	Voucher	Locality	Coordinates	18S rRNA	28S rRNA	16S rRNA	COI	H3
FAMILY SIRONIDAE Cyphophthalmus corfuanus Cyphophthalmus duricorius Cyphophthalmus ere Cyphophthalmus etc. gjorgjevici	DNA102111 DNA102111 DNA100487 DNA100499 DNA100498	Greece Slovenia Serbia Macedonia	39.61056, 20.33944 46.01667, 14.66667 43.83333, 20.05 41.96667, 21.35	FJ946390 AY639461 AY639461 AY639462 AY639464	FJ946415 DQ513120 DQ825593 DQ825583	FJ946364 AY639526 AY639527 AY639527	FJ946438 AY639556 AY639557 AY639557	- - AY639444
Cyphophthalmus gordani Cyphophthalmus hlavaci Cyphophthalmus markoi Cyphophthalmus martensi Cyphophthalmus minutus	DNA100495 DNA102099 DNA100497 DNA100494 DNA100493 DNA100493	Montenegro Croatia Macedonia Montenegro Montenegro	42.45, 19.26667 43.41344, 16.91244 41.41667, 22.26667 42.4, 18.76667 42.65, 18.66667	AY639467 FJ946384 AY639469 AY639471 AY639471	DQ825592 FJ946409 AY639504 DQ825589 DQ825589	AY639532 FJ946358 AY639534 AY639536 AY639536 AY639536	– FJ946433 AY639561 AY639563 AY639563	AY639446 - AY639447 AY639449 AY639449 AY639450
Cyphophthalmus ognjenovici Cyphophthalmus rumijae Cyphophthalmus serbicus Cyphophthalmus teyrovskyi Cyphophthalmus trebinjanus	DNA101039 DNA100492 DNA102098 DNA102098 DNA101038	Bosnia & Herzegovina Montenegro Montenegro Bosnia &	43.01667, 18.51667 42.16667, 19.33333 43.27917, 22.06389 42.23333, 19.06667 42.23333, 19.16667	AY639475 AY639477 FJ946383 AY639482 AY639483	DQ825594 DQ825588 FJ946408 DQ513118 DQ513119	- AY639539 FJ946357 AY639544 -	AY639567 AY639569 FJ946432 AY639571 AY639572	AY639451 AY639453 - AY639454 -
Cyphophthalmus zetae Paramiopsalis eduardoi Paramiopsalis ramulosus Daramionsalis ramulosus	DNA100907 DNA101878 DNA101459 DNA100459	Herzegovina Montenegro Spain Spain Doverneal	42.93333, 18.5 43.41718, -8.06356 42.31580, -8.48697 41.5604, -8.14097	AY639485 EU638284 AY639489	AY639515 EU638287 DQ513121	AY639546 EU638281 AY639550 JF03550	AY639574 EU638288 DQ825641 IF788380	AY639456 JF786415 -
rarantopsalis vanuuosus Parantopsalis sp. Parasiro coiffaiti Parasiro coiffaiti Parasiro minor Siro acaroides Siro calaveras Siro calaveras Siro calaveras Siro calaveras Siro tamiakensis Siro rubens Siro shasta	DNA104535 DNA104624 DNA104535 DNA1013835 DNA101488 DNA101614 DNA101613 DNA101611 DNA101611 DNA101611 DNA101613 DNA101613 DNA101613 DNA101622	rorugau Spain Spain Sardinia, Italy Oregon, USA Washington, USA Maryland, USA Idaho, USA Idaho, USA France California, USA	41.06944, -0.14027 43.31968, -6.87282 42.15251, 1.98039 40.43047, 9.00948 44.5833, -123.5166* 46.99221, -121.84641 38.27744, -120.30543 39.4833, -79.4333 47.74646, -116.710207 46.86777, -117.15777 44.08338, 3.58140 41.06367, -122.36645	JF934950 JF934957 AY918872 JF934958 AY639490 DQ513146 AY639491 DQ513147 JF993495 AY428818 AY428818 DQ513149	Jr934991 Jr934991 DQ513122 JF934992 DQ513128 DQ513128 DQ513128 DQ513134 JF934993 JF934993 DQ825584 DQ513134* JF934993 DQ513136*	JF935022 JF935024 AY918877 JF935025 AY639551 - - -	JF 7 803059 JF 7 86390 JF 7 86390 JF 7 86391 JF 7 86391 DQ 825643 DQ 513112 - DQ 513115 - DQ 513111 -	JF786416 AY918882 - - - -
Siro valleorum Suzukielus sauteri Suzukielus sauteri FAMLY OGOVEIDAE Ogovea cameroonensis	DNA100461 DNA101543 DNA101550 DNA101550	Italy Japan Japan Cameroon	45.9833, 9.8666* 35.63440, 139.24122 34.83333, 138.93166 3.64621, 11.29079	AY639492 DQ513138 DQ825541 JF934960	DQ513123 DQ513116 DQ825583 JF934994	AY639552 DQ518086 DQ825615 JF935026	AY639580 DQ513108 DQ825640 JF786392	AY639457.1 DQ518166 DQ825520 JF786417
FAMILY TROGLOSIRONIDAE Troglosiro calleni Troglosiro juberthiei Troglosiro longifossa Troglosiro nunqua Troglosiro unqua Troglosiro urbanus Troglosiro uilsoni	DNA100345 DNA100344 DNA100867 DNA100867 DNA101580 DNA100577 DNA100577 DNA100277 DNA102324	New Caledonia New Caledonia New Caledonia New Caledonia New Caledonia New Caledonia New Caledonia	-21.1833, 165.3059 -22.0500, 166.4667 -22.3527, 166.9736 -21.6000, 165.7167 -21.7500, 166.1500 -22.1945, 166.5017 -22.1770, 166.5106	AY639497 DQ825540 DQ518089 EU887101 DQ518088 EU887101 EU887102 EU887102	DQ825580 EU887121 DQ825582 EU887116 EU887116 EU887116 EU887119 EU887119	AY639555 EU887077 DQ518084 EU887074 EU887074 EU887073 EU887073 EU887073	AY639584 EU887047 DQ825639 EU887043 DQ518128 DQ518128 EU887040 EU887040	DQ518164 - DQ518165 - JF786340 - JF786340

8 G. GIRIBET ET AL.

Table 2. Continued

Table 2. Continued								
FAMILY STYLOCELLIDAE								
Fangensis insulanus	DNA100388, DNA101063	Thailand	7.885, 98.43694	GQ488337	DQ825551	I	GQ488181	I
Fangensis spelaeus Leptopsalis lydekkeri	DNA100669 DNA101064	Thailand New Guinea, T-1	14.29972, 98.98306 -2.71667, 134.5*	DQ133712 DQ133717	DQ825554 GQ488439	GQ488195 -	AY639583 GQ488153	AY639460 -
Leptopsalis novaguinea	DNA101510	Indonesia New Guinea,	-0.8333, 134.0333*	GQ488322	GQ488451	GQ488230	I	I
Lantonealie en	DNA101514	Indonesia Borneo Melaveia	1 76667 110 31667	G0488317	G0488435	DD895611	G0488178	G0488114
Leptopsalis sp.	DNA101932	Java, Indonesia	-6.79833, 107.01583	GQ488264	GQ488382	GQ488206	GQ488144	GQ488121
Leptopsalis sp.	DNA101944,	Java, Indonesia	-6.75694, 106.52333	GQ488267	GQ488385	GQ488226	GQ488146	GQ488123
Leptopsalis sp.	DNA101093,	Thailand	$6.67, 101.15^*$	GQ488283	GQ488402	GQ488221	GQ488137	I
<i>Lentonsalis</i> su	DNA100496 DNA101483	Malavsia	4 39694 102 43056	DQ825532	GQ488454	DQ825610	G0488182	G0488128
Leptopsatis sp. Leptopsalis sp.	DNA101489	Malaysia	3.71639, 101.73861	DQ518095	GQ488456	DQ518087	GQ488184	-
Leptopsalis sp.	DNA101930	Java, Indonesia	-6.74, 107.01278	GQ488262	GQ488380	GQ488204	,	GQ488119
Leptopsalis sp.	DNA101937	Sulawesi, Indonesia	1.49028, 125.15278	GQ488298	GQ488422	GQ488211	GQ488167	GQ488132
Leptopsalis sp.	DNA101938	Sulawesi, Indonesia	-5.0425, 119.73556	GQ488299	GQ488359	GQ488212	GQ488168	GQ488133
Leptopsatis sp. Leptopsalis sp.	DNA102033.	Sumatra, Indonesia	-0.10303, 100.06917 0.34611, 100.06917	GQ488307	GQ488428	- -	GQ488170	- -
	DNA102048	~	~	2	•		2	
<i>Leptopsalis</i> sp.	DNA102039	Sumatra, Indonesia	-0.94583, 100.54361	GQ488250	GQ488433	GQ488190	GQ488175	ļ
Leptopsalis sp.	DNA102042	Sumatra, Indonesia	3.22111, 98.49722	GQ488314	GQ488434	GQ488213	GQ488176	GQ488136
Leptopsalis sp.	DNA 102061	Sumatra, Indonesia	-0.47722, 100.35389 0 76667 00 11900	GQ488312	GQ488432	-	GQ488174	GQ488130
Leptopsutts sp. Meghalaya sp.	DNA101094.	Thailand	7.88528. 98.43722	UQ4200210 DQ825534	GQ488352	- -	GQ488158	- GQ488127
· J 0	DNA101500				2			
Meghalaya sp.	DNA101494, DNA101506,	Thailand	9.91806, 98.94278	DQ825530	GQ488398	I	DQ825632	I
	DNA101765							
Meghalaya sp.	DNA101767	Thailand	6.97, 100.10*	GQ488276	GQ488390	I	GQ488154	
Meghalaya sp. Meghalaya sp.	DNA102051 DNA103249	India China	25.50778, 90.23167 27 68833 08 27778	GQ488261 G0488233	GQ488379 G0488377	- G0488919	1 1	GQ488118 GQ488117
Tregrand ap.	DNA103243,			COTOCE DO		or the second se		TTOOLDO
	DNA103244							
Meghalaya sp.	DNA103251	Thailand	9.76667, 98.41389	GQ488280	GQ488396	GQ488196	I	I
Meghalaya sp. Minnedie en	DNA103265 DNA101519	Thailand Borneo, Indonesia	14.25, 101.98* 0.64 117.00*	GQ488239 DO895596	GQ488392 GO488436	- CO488998	- CO488180	- CO488115
Miopsalis sp.	DNA103259	Borneo, Malaysia	$5.81, 116.24^{*}$	GQ488260	GQ488375	GQ488193	GQ488142	GQ488116
Miopsalis sp.	DNA101468,	Borneo, Indonesia	$0.64, 117.09^{*}$	GQ488328	GQ488444	I	, I	, I
Mioneedie en	DNA101950	Romao Indonasia	1 06667 117 83333*	DO895597 1	DOR95564		GO488179	DO895508 1
Miopsalis sp.	DNA102032,	Sumatra, Indonesia	-0.10583, 100.66389	GQ488305	GQ488425	I		
	DNA102053, DNA102058							
Miopsalis sp.	DNA103249	Borneo, Malaysia	$6.01, 116.53^*$	GQ488252	GQ488367	GQ488194	GQ488139	I
Miopsalis sp.	DNA103254	Borneo, Malaysia	1.75833, 110.32972 6 40 105 00*	GQ488257 HOE00060	GQ488371 110 50 2 6 0	I	- -	
with provide the spin spin spin spin spin spin spin spin	106401ANU	Philippines	0.40, 120.03°	00006662011	800080AU	I	010066090	т госееди
FAMILY NEOGOVEIDAE								
<i>Brasılogovea</i> sp. ' <i>Brasilogovea</i> ' sp. Tobogan	DNA100869	Colombia Venezuela	0.17972, -72.62333 5.65000, -67.63333	JF934963 DQ825545	JF935011 DQ825600	JF935028 DQ825617	JF'/86414 -	JF″/8643U -

EVOLUTIONARY AND BIOGEOGRAPHICAL HISTORY OF ARACHNIDS 9

Table 2. Continued								
	Voucher	Locality	Coordinates	18S rRNA	28S rRNA	16S rRNA	COI	H3
Canga renatae	DNA105680	Brazil	-6.41055, -50.32319	JF934964	JF934997	JF935029	JF786395	JF786420
Huitaca ventralis	DNA101674	Colombia	7.41667, -72.43333	JF934980	JF935014	I	JF786399	I
Huitaca sp.	DNA101683	Colombia	3.55833, -76.58278	JF934979	JF935016	-	JF786396	JF786421
Huttaca sp. Huitaca sp.	DNA101407	Colombia	5.77956 -75.45377 5.09956 -75.40594	UQ518090 .IF934977	UQ820090 .IF935015	UQ018000 .IF935032	UQ518129 .IF786397	DQ518167
Huitaca sp.	DNA102150	Colombia	3.55833, -76.58278	JF934981	JF935012	JF935033		JF786423
Huitaca sp.	DNA104646	Colombia	3.55833, -76.58278	JF934982	JF935017	JF935030	I	I
Huitaca sp.	DNA101671	Colombia	7.41667, -72.43333	JF934978	JF935013	JF935031	JF786398	JF786424
Metagovea sp.	DNA101680	Colombia	5.09542, -75.39075	JF934972	JF934999	JF935036	JF786400	I
Metagovea sp.	DNA104647	Colombia	3.55833, -76.58278	JF934988	JF935003	JF935037	I	I
Metagovea sp.	DNA104648	Colombia	3.55833, -76.58278	JF934989	JF935004	JF935038	I	I
Metagovea sp.	DNA101408	Colombia	-4.04495, -69.98979	DQ825543	DQ825598	DQ825618	1	DQ825514
Metagovea sp.	DNA101410	Colombia	1.28500, -78.07367	DQ518091	DQ825597	JF935034	GQ912860	DQ518168
Metagovea sp.	DNA101654	Colombia	$1.25, -78.25^{*}$	JF934970	JF935000	JF935035	JF786401	JF786425
Metagovea sp.	DNA102151	Colombia	5.48583, -76.01667	JF934971	JF935001	I	JF786402	I
Metagovea sp.	DNA101685	Colombia	3.56889, -76.58861	JF934973	JF934998	I	JF786403	I
Metagovea sp.	DNA101670	Colombia	1.61639, -76.10417	JF934984-5	JF935002	I	I	I
Metagovea sp.	DNA101409	Colombia	1.28500, -78.07367	DQ825544	DQ825599	DQ825619	DQ825646	JF786426
Metagovea sp.	DNA101642	Colombia	3.55833, -76.58278	JF934986	JF935006	JF935042	I	I
Metagovea sp.	DNA101686	Colombia	3.56889, -76.58861	JF934987	JF935005	I	JF786404	I
Metagovea sp.	DNA105826	Guyana	1.33655, -58.96510	JF934983	JF935010	JF935041	JF786408	I
Metasiro americanus	DNA101532	Florida, USA	30.56489, -84.95163	DQ825542	DQ825595	DQ825616	DQ825645	DQ825513
Metasiro americanus	DNA105644	South Carolina, USA	35.06231, -82.795	JF934961	JF934995	I	JF786393	JF786418
Metasiro americanus	DNA105645	South Carolina, USA	32.18923, -81.08	JF934962	JF934996	JF935027	JF786394	JF786419
Neogovea virginie	DNA104823	French Guiana	4.19511, -52.14936	JF934974	JF935007	I	JF786405	I
Neogovea virginie	DNA105824	French Guiana	4.08813, -52.67520	JF934975	JF935008	JF935039	JF786406	I
Neogovea sp.	DNA105825	Guyana	1.38803, -58.94632	JF934976	JF935009	JF935040	JF786407	I
Parogovia gabonica	DNA104620	Gabon	0.50448, 12.79525	JF934969	JF935019	JF935047	JF786411	I
Parogovia sironoides	DNA101059	Bioko, Equatorial	3.72570, 8.83828	DQ518092	DQ825606	DQ518051	DQ518131	DQ518169
		Guinea						
Parogovia sironoides	DNA101061	Bioko, Equatorial	3.70284, 8.87520	DQ825550	DQ825607	JF935043	DQ825650	DQ825519
		Guinea						
Parogovia cl. sironoides	DNA100462	Equatorial Guinea	2.18305, 9.80305	AY639493	DQ825603		I	AY639459
Parogovia cf. sironoides	DNA101053	Equatorial Guinea	1.65815, 10.31143	DQ825548	DQ825604	DQ825623	1	DQ825517
Parogovia cf. sironoides	DNA101056	Equatorial Guinea	1.44858, 9.78086	DQ825549	DQ825605	DQ825624	DQ825650	DQ825518
Parogovia ct. sıronoides	DNA104619	Cameroon	2.74108, 9.88181	JF934967	JF935022	JF935045	JF786409	JF786428
Parogouta sp.	DNA101052	Equatorial Guinea	1.65815, 10.31143	DQ825546	DQ825601	DQ825620	DQ825648	DQ825515
Parogouta sp.	7.90T0TVIC	Equatorial Guinea	2.13119, 9.87187	DQ825547	DQ825602	DQ825621	- -	DQ825516
Parogouta sp.	DINA104616	Cameroon	4.80084, 9.00320 a 71108 - 0.88181	JF934900	JF939UZI	JF930044	JF / 80410	JF 180421
Parogovia sp.	DINA104018	Lumer Const	Z./4100, 9.00101 E 09999 7 9E000*	JF934900	JF 933020 TE095010	JF 933040 TE095040	JF / 80412	JF / 20429
Farogovia sp.	T / 90/TANIC	Ivory Coast	0.83333, -1.30000"	JF 934900	STUGSETL	JF930048	JF / 20413	I
OUTGROUPS								
Protolophus singularis	DNA101033	California, USA		EF028095	EF028096	EF108581	EF108586	EF108592
Megalopsalis sp.	DNA100783	SI, New Zealand		EF108573	EF108576	EF108582	EF108587	EF108593
Hesperonemastoma modestum	DNA100312	Oregon, USA		AF124942	EF108577	EF108583	EF108588	EF108594
Dendrolasma parvulum	DNA100318	Japan		EF108574	EF108578	EF108584	EF108589	
Equitius doriae	DNA100607	Australia		U37003	EF108579		EF108590	EF108595
Sandokan malayanus	DNA100321	Malaysıa		G/.GS01.47	EF'108580	CSCS01.47	166801.43	EF 108596
Activity of a contraction of the								
ASTETISKS IDUICATE approxIIDATE COULUI	nates.							

Bivort & Giribet, 2010), as a result of the larger number of specimens based on literature sources and the lack of scanning electron micrographs of several species.

When selecting the morphological terminals, we attempted to maximize overlapping with the molecular matrix and also attempted to include the type species of each genus, with a few exceptions. All monotypic genera were also included, irrespective of whether molecular data were available or not. Monotypic genera not represented by molecular data are Ankaratra Shear & Gruber, 1996, Iberosiro de Bivort & Giribet, 2004, Manangotria Shear & Gruber, 1996, Marwe Shear, 1985, Odontosiro Juberthie, 1961, Speleosiro Lawrence, 1931, and Stylocellus. Similarly, Shearogovea mexasca, now not considered as a member of Neogoveidae or Neogovea (Benavides & Giribet, 2007; Giribet, 2011), is not represented by molecular data but was included in the combined analysis.

When a species was represented by multiple molecular terminals, the morphological data matrix was replicated so all molecular terminals were represented by the same morphological codings. This applies to the three populations of *Metasiro americanus* (Davis, 1933), the two specimens of *Parogovia sironoides* Hansen, 1921 and four specimens of *P.* cf. *sironoides*, the two specimens of *Metagovea* sp. (DNA104648 and DNA104647), two specimens of *Neogovea virginie*, and two specimens of *Suzukielus sauteri* (Roewer, 1916).

The annotated morphological data matrix has been deposited in Morphobank (morphobank.org) with accession number P199 (http://morphobank.org/permalink/?P199).

PHYLOGENETIC ANALYSIS: DYNAMIC HOMOLOGY UNDER PARSIMONY

Parsimony analysis under direct optimization (Wheeler, 1996) used the software POY, version 4.1.2 (Varón, Sy Vinh & Wheeler, 2010) on six processors on a Quad-Core Intel Xeon 3 GHz Mac Pro or on 40 processors in the Odyssey cluster at Harvard University FAS Research computing facility. Timed searches (multiple Wagner trees followed by SPR + TBR + ratchet and tree fusing) of 6-12 h each were run for the combined analyses of all molecules under six analytical parameter sets (see below). Two additional rounds of sensitivity analysis tree fusing (SATF) (Giribet, 2007a), taking all input trees from the previous round of analyses, were conducted for the combined analysis of molecules under the multiple parameter sets evaluated. These were also 6-h timed searches, and the results of these were plotted to check for stability in the results. Once a parameter set stabilized and the optimal result was found multiple times, we stopped that inquiry but continued with additional rounds of searches for those parameter sets that continued improving or that found the optimal solution only once. The results of these analyses are shown in Table 3.

Because a broad parameter space has already been explored in detail in earlier studies (Bover et al., 2007b), we restricted the dynamic homology analyses to six parameter sets, named 111, 121, 211, 221, 3221, and 3211. Parameter set 3221 (indel opening cost = 3; indel extension cost = 1; transversions = transitions = 2) has been favoured in many analyses and has been justified philosophically as the best way of analyzing data under direct optimization (De Laet, 2010). In addition, we explored a parameter set, named 3211, where transversions and transitions receive different costs (indel opening cost = 3; indel extension cost = 1; transversion cost = 2; transition cost = 1), extending the idea of mixed-parameter sets of Sharma et al. (2011). Four other parameter sets 111, 121, 211, and 221, optimal in the analyses of Boyer et al. (2007b) and aiming to limit the difference between indel costs and transformation costs (Spagna & Alvarez-Padilla, 2008), were explored. To calculate the wILD (Wheeler, 1995; Sharma et al., 2011) each individual partition, or the combination of the two nuclear ribosomal RNA partitions, were run with a

Table 3. Search strategy and tree length stabilization after subsequent rounds of sensitivity analysis tree fusing (TFN) for each parameter set

	TF4	TF5	TF6	TF7	TF8	TF9
111	27101	27074	27074	_	_	_
121	41849	41773	41773	_	_	_
211	28975	28944	28940	28940	_	_
221	45211	45179	45131	45118	45115	45115
3221	55982	55744	55729	55729	_	_
3211	43121	42874	42854	42854	-	_

111 and 121 stabilized after five rounds of tree fusing; 221 stabilized after eight rounds of tree fusing

Table 4. Tree lengths for different data partitions (rib, nuclear ribosomal genes; coi, cytochrome c oxidase subunit I; 16s, 16S rRNA; h3, histone H3; mol, all molecular partitions) analyzed and incongruence length differences (ILD) between the data sets

	rib	coi	16s	h3	Mol	wILD
111	5852	12315	6857	1449	27074	0.02220
121	8846	18664	11350	1974	41773	0.02248
211	6659	12502	7692	1449	28940	0.02205
221	10312	18890	12897	1974	45115	0.02310
3211	9268	18810	11861	1967	42851	0.02205
3221	12212	24996	14397	2898	55713	0.02172

Parameter set 3221 (in italics) minimizes the ILD value.

similar search strategy as described above with a 2-h timed search. The resulting wILD values are shown in Table 4.

A jackknife resampling analysis (Farris *et al.*, 1996) with 1000 replicates and a probability of deletion of each character of 0.36 was applied to assess nodal support. Because resampling techniques may be meaningless under dynamic homology, different strategies can be applied. Dynamic characters can be converted to a static set, although this tends to inflate support values because it is based on the implied alignment that favours the topology. Instead, we resample characters that were static a priori (morphology and prealigned protein-encoding genes), as well as fragments of the dynamic characters by both using the number of fragments (eight fragments for 16S rRNA, six fragments for 18S rRNA, and ten fragments for 28S rRNA). as well as the command auto_sequence_partition, which evaluates each predetermined fragment. If a long region appears to have no indels, then the fragment is broken inside that region.

PHYLOGENETIC ANALYSIS: PROBABILISTIC APPROACHES

Maximum likelihood (ML) analyses were conducted on static alignments, which were inferred as follows. Sequences of ribosomal genes were aligned using MUSCLE, version 3.6 (Edgar, 2004) with default parameters. and subsequently treated with GBLOCKS, version 0.91b (Castresana, 2000) to cull positions of ambiguous homology. For these genes, indels were permitted within blocks. Sequences of the protein-encoding genes COI and histone H3 were aligned using MUSCLE, version 3.6 with default parameters as well, although alignments were confirmed using protein sequence translations before treatment with GBLOCKS, and no gaps were permitted within blocks (COI has length variation, so these regions were excluded in GBLOCKS). The size of data matrices for each gene before and subsequent to treatment with GBLOCKS is provided in the Appendix (Table A1).

ML analysis was conducted using RaxML, version 7.2.7 (Stamatakis, 2006) on 40 CPUs of a cluster at Harvard University, FAS Research Computing (http:// rc.fas.harvard.edu/faq/odyssey). For the maximum likelihood searches, a unique GTR model of sequence evolution with corrections for a discrete gamma distribution (GTR + Γ) was specified for each data partition, and 500 independent searches were conducted. Nodal support was estimated via the rapid bootstrap algorithm (1000 replicates) using the GTR-CAT model (Stamatakis, Hoover & Rougemont, 2008), through the CIPRES, version 3, gateway, using the Abe Dell Intel 64 Linux teragrid cluster housed at the National Center for Supercomuting Applications (University of Illinois). Bootstrap resampling frequencies were thereafter mapped onto the optimal tree from the independent searches.

ESTIMATION OF DIVERGENCE TIMES

Ages of clades were inferred using BEAST, version 1.6.1 (Drummond et al., 2006; Drummond & Rambaut, 2007). We assigned the best fitting models (a GTR model of sequence evolution with corrections for a discrete gamma distribution and a proportion of invariant sites, $GTR + \Gamma + I$) selected by MODELTEST, version 3.7 (Posada & Crandall, 1998; Posada, 2005) to each partition. Protein-encoding genes were partitioned into two sets by codon positions, separating third codon positions from the set of first and second positions. An uncorrelated lognormal clock model was inferred for each partition, and a Yule speciation process was assumed for the tree prior. We selected the uncorrelated lognormal model because its accuracy is comparable to an uncorrelated exponential model, although it has narrower 95% highest posterior density (HPD) intervals. Additionally, the

variance of the uncorrelated lognormal model can better accommodate data that are already clock-like (Drummond *et al.*, 2006). Priors were sequentially optimized in a series of iterative test runs (data not shown). Markov chains were run for 50 000 000 generations, sampling every 1000 generations. Convergence diagnostics were assessed using TRACER, version 1.5 (Rambaut & Drummond, 2007).

Fossil taxa were used to calibrate divergence times. We constrained the age of Eupnoi to 410 Mya using the Devonian harvestman *Eophalangium sheari* [Dunlop *et al.* 2004 [Dunlop *et al.*, 2003; 2004 (for 2003)]; a normal distribution with a standard deviation of 5 Myr was applied to this node to account for uncertainty in estimation of fossil age. Dyspnoi were constrained using a normal distribution with a mean of 300 Mya and a standard deviation of 10 Myr, on the basis of the Carboniferous fossils *Eotrogulus fayoli* Thevenin, 1901 and *Nemastomoides elaveris* Thevenin, 1901 (Dunlop, 2007).

We explored constraining the family Stylocellidae using the Early Cretaceous Burmese amber fossil *Palaeosiro burmanicum* Poinar, 2008 (Poinar, 2008)¹. We used a gamma distribution with shape parameters (α , β) = (8, 14), and an offset of 105 Myr for the diversification of Stylocellidae; such a prior distribution establishes a floor in the age of stylocellids (105 Mya), at the same time enabling estimates of diversification as early as the Late Permian, in accordance with previous estimates (Boyer *et al.*, 2007b; Clouse & Giribet, 2010). However, because the inclusion of this last constraint did not affect the age estimate of Stylocellidae, we ultimately did not include it in the analysis.

ANCESTRAL AREA RECONSTRUCTION

Likelihood analysis of ancestral area reconstruction was conducted using the software LAGRANGE (Ree *et al.*, 2005; Ree & Smith, 2008). We divided the dated tree from BEAST analysis into three parts for analytical tractability: (1) the Pettalidae subtree; (2) the (Troglosironidae + Ogoveidae + Neogoveidae) subtree; and (3) the (Sironidae + Stylocellidae) subtree. For each subtree, we implemented stratified dispersal constraint matrices for multiple spans of time for the relevant areas inhabited by the constituent taxa of each subtree. Geological events used to delimit the

¹Palaeosiro burmanicum Poinar, 2008 was placed within Sironidae in the original description based on the lack of a sternal apophysis with gland pores and dentition on the tarsal claw of leg II, although these only rule out placement within Troglosironidae and Neogoveidae. Moreover, the shape and position of the ozophores, the presence of eyes, the carina of the anal plate (similar to some *Fangensis* Schwendinger & Giribet, 2005), and the collecting locality of the fossil, are all consistent with an early diverging lineage of Stylocellidae. time spans are *sensu* Sanmartín & Ronquist (2004) and Hall (2002). The maximum number of areas in ancestral ranges was held at two (this convention reflects empirical observations of Cyphophthalmi species, the majority of which are narrowly distributed endemics), and dispersal constraints were set to 1.0 (if landmasses were connected), 0.1 (if landmasses were disjunct) or 0 (if landmasses did not exist). Areas and geological intervals for each subtree are indicated in the Appendix Table A2 (the Python scripts specifying dispersal constraint matrices are available upon request from the authors).

HABITAT SUITABILITY AND DISTRIBUTION MODELLING

To generate predictions of habitat suitability and potential lineage distributions, habitat suitability models (HSMs) of the major lineages of Cyphophthalmi were reconstructed using the 19 bioclimatic variables of Hijmans et al. (2005: http://www.worldclim.org/). These variables provide a summary of the monthly temperature and precipitation worldwide. These variables are well documented and are widely used in studies relaying on niche and distribution modelling (Evans et al., 2009; Smith & Donoghue, 2010). By contrast to the raw temperature and precipitation data, they do provide biologically relevant information. We have used all 19 variables at 10 arc minutes resolution. In addition, analyses with a subset of the environmental variables representing only the most important variables were performed (thus reducing the dimensionality of the analyses and the risk of over fitting) and the results obtained were compared. To evaluate the variables significance, we used jackknife (as implemented in MAXENT).

HSMs were built using the maximum entropy algorithm implemented in MAXENT, version 3.3.3a (Phillips, Anderson & Schapire, 2006; Phillips & Dudik, 2008). Maximum entropy has shown a high performance score in comparison with other methods (Araujo & Rahbek, 2006) and also allows working with fewer data points (Pearson *et al.*, 2007). The total number of unique localities with occurrence observations used for the modelling of habitat suitability was: Pettalidae, N = 107; Sironidae, N = 60; Stylocellidae, N = 127; and Sternophthalmi, N = 90. To evaluate the performance of the model, crossvalidation as implemented in MAXENT (ten replicates) was used in all runs.

To test the sensitivity of the results to the modelling algorithm, we have run the same set of analysis using the simpler BIOCLIM (Nix, 1986) profile method as implemented in openModeller, version 1.1.0 (de Souza Muñoz *et al.*, 2011). Climatic envelopes' extent and distribution were modelled world**Figure 3.** Phylogenetic tree based on the parsimony direct optimization analysis of molecular data under parameter set 3221 (55 713 weighted steps). Clade colours correspond to those in Fig. 2. Navajo rugs indicate monophyly (black) or non-monophyly (white) of a given node under the parameter set specified in the legend. Numbers above nodes indicate jackknife support values.

wide to compare the actual linage distributions with the distribution of potentially suitable climates.

The software package ENMTools, version 1.3 (Warren, Glor & Turelli, 2010) was used to access climatic envelopes' differentiation. ENMTools implements the *I*. Schoener's *D* and relative rank metrics to compare models predictions (Schoener, 1968; Warren, Glor & Turelli, 2008). The three indices measure similarity of predicted habitat suitability distributions and range from 0, indicating no overlap, to 1, indicating complete overlap. In addition, habitat suitability score differences were evaluated by comparing the similarity indices (models overlap) for the models built from the actual occurrences of the two species to a null distribution generated by nonparametric resampling. Comparisons were performed using the niche identity test (Warren et al., 2008) implemented in ENMTools.

RESULTS

Analysis of the combined molecular data matrix under selected parameter sets for direct optimization resulted in topologies that agree on several basic aspects of cyphophthalmid phylogeny, including monophyly of the suborder, a sister group relationship of Pettalidae to all other families, and a clade containing all members of the families Troglosironidae, Ogoveidae, and Neogoveidae. All parameter sets also resulted in very similar wILD numbers, with 3221 being slightly favoured above all others (wILD = 0.02172; the worst parameter set being 121, with $_{\rm W}$ ILD = 0.02248). Stabilization of parameter set 3221 occurred after nine rounds of tree fusing. The optimal tree, along with the Navajo rugs (Giribet, 2003b) for the familial monophyly and relationships, is presented in Figure 3. A clade containing the families Sironidae and Stylocellidae is also found under most analytical conditions (Fig. 3).

Monophyly of Pettalidae, Troglosironidae, Stylocellidae, and Ogoveoidea (= Ogoveidae + Neogoveidae) is supported under every analyzed parameter set, as are many internal clades within the families Stylocellidae, Sironidae, and Neogoveidae. However, Sironidae is not monophyletic under any parameter set when combining all data (Sironidae is monophyletic when nuclear ribosomal genes are analyzed alone). In this case, a clade containing the genera *Siro, Paramiopsalis*, and *Cyphophthalmus* is stable to parameter variation, although *Parasiro* and Suzukielus often appear at the base of Stylocellidae, or as sister to a clade including the families Stylocellidae, Troglosironidae, Ogoveidae, and Neogoveidae (parameter set 3211). The North American Siro and the European Siro form reciprocally monophyletic groups and this clade is sister to Paramiopsalis + Cyphophthalmus. In the case of Neogoveidae, most parameter sets find *Metasiro* to be the sister genus to all other neogoveids but, under parameter sets 111 and 211, Ogovea appears as sister to the African genus Parogovia, both forming the sister clade to Metasiro. These are the only parameter sets that find monophyly of the South American neogoveids, with Canga as sister genus to all other South American genera. All other parameter sets instead support monophyly of Neogoveidae, Metasiro as the sister genus to all other species, the Brazilian genus Canga as sister to the African genus Parogovia, and the stable relationship of ((Brasilogovea, Neogovea) (Huitaca, Metagovea)). Relationships of Stylocellidae are well resolved, as: (Fangensis (Meghalaya (Miopsalis, Leptopsalis))). Although all pettalid genera are supported, their relationships remain unstable to parameter set variation, and stable are only the sister group relationships of Purcellia to Chileogovea Roewer, 1961 and of Karripurcellia Giribet, 2003 to Pettalus. Two genera appear as candidate sister groups to all other pettalids, the South African genus Parapurcellia Rosas Costa, 1950 or the north-eastern Australian endemic Austropurcellia Juberthie, 1988. Jackknife support values for the pettalid generic relationships are, for the most part, below 50%.

The maximum likelihood analysis resulted in a tree topology with $\ln L = -103563.078879$. The likelihood tree topology (Fig. 4) is largely comparable to results from parsimony analyses but notably recovers a monophyletic Sironidae (i.e. including the genera Parasiro and Suzukielus), albeit with low nodal support (BS = 44%). As in the direct optimization optimal tree, Parapurcellia is sister to all other pettalid genera, and Purcellia + Chileogovea form a supported clade (66% bootstrap support; BS), whereas Karripurcellia and Pettalus form a clade without significant nodal support. No other generic relationships find high support. Troglosironidae is sister to Ogoveoidea (84% BS), and the structure of Neogoveidae is almost identical to that of the optimal direct optimization tree, with the exception that Brasilogovea is here monophyletic (the sequences for one terminal

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, ••, ••-••

Figure 4. Single most likely tree ($\ln L = -103\ 563.078879$) for the combined molecular data set aligned using MUSCLE and subsequently trimmed with GBLOCKS and analyzed in RAxML under GTR + Γ . Clade colours correspond to those in Fig. 2. Bootstrap support values are represented above each node; asterisks indicate 100% bootstrap value.

are based on a juvenile specimen, so the assignment to this genus is tentative). Within Sironidae, *Parasiro* is sister to all other genera, followed by *Suzukielus*, although bootstrap support for these basal nodes is low, as is the clade including the remaining sironid genera. In this case, there is also reciprocal monophyly of the European and North American *Siro*, and these form the sister group of *Paramiopsalis* + *Cyphophthalmus*. Structure of the genera within Stylocellidae matches that of the direct optimization analyses.

The run of BEAST reached stationarity after 10 000 000 generations; 20 000 000 generations were discarded as burn-in. The tree topology recovered by BEAST (Fig. 5) is almost identical to that of the parsimony analysis under the parameter set 3221, with *Parasiro* and *Suzukielus* forming a paraphyletic grade at the base of Stylocellidae, although posterior probabilities for the corresponding nodes are low (0.788 and 0.880, respectively). In all other aspects, it also resembles the topology of the maximum likelihood analysis, especially in the internal relationships among the pettalid genera.

The diversification of Cyphophthalmi is estimated at approximately 332 Mya (95% HPD: 297-362 Mya). Diversification times for the described families of Cyphophthalmi are estimated as: Neogoveidae, 236 Mya (95% HPD: 208-266 Mya); Pettalidae, 183 Mya (95% HPD: 148–218 Mya); Sironidae (excluding Parasiro and Suzukielus), 278 Mya (95%) HPD: 243-311 Mya); Stylocellidae, 167 Mya (95% HPD: 140-195 Mya); and Troglosironidae, 57 Mya (95% HPD: 40-73 Mya). Ogoveidae, represented by a single exemplar, diverged from Neogoveidae 261 Mya (95% HPD: 231-292 Mya), and Troglosironidae diverged from Ogoveoidea 279 Mya (95% HPD: 248-311 Mya). These results largely corroborate previous estimates of divergence times (Boyer et al., 2007b; Giribet et al., 2010), with the exception of Stylocellidae, the diversification of which is recovered as younger than previously reported (Clouse & Giribet, 2010). Although some species represented by multiple terminals are young (e.g. Suzukielus sauteri, Neogovea virginie, Parogovia sironoides), Metasiro americanus is an old species, perhaps reflecting the existence of cryptic species along its range.

All probabilistic approaches recognize a clade of *trans*-Tasman Cyphophthalmi (the Australian and New Zealand genera), although none of these land-masses or their constituent terranes appears mono-phyletic (Fig. 6). The ancestral area reconstruction of this clade is ambiguous, with the highest probability for an origin in the Australian plate of New Zealand. The ancestral area of the family shows more ambiguity, the three most likely scenarios being a mixed South Africa/New Zealand Australian plate

(P = 0.291), South African (P = 0.207) or mixed South Africa/Sri Lankan (P = 0.194). The ancestral area reconstruction of the clade including the three families with sternal opisthosomal gland openings (Fig. 7) is mostly West African/New Caledonian (P = 0.787), with the ogoveoid families being most likely West African (P = 0.662) or mixed between West Africa and the south-eastern USA (P = 0.206), the latter being once connected to West Africa. A South American (Amazonian) origin of the family Neogoveidae receives little support.

Combined analysis of molecules and morphology

The position of morphology-only taxa was unstable in the first rounds of analyses, which (for example) did not group the two Ogovea species, one represented by morphology only, whereas the other one was represented by molecules and morphology, despite being almost identical for the morphological data matrix. This appears to be a problem of the Wagner addition. as designed in most phylogenetic software, and was resolved by fusing a jackknife tree and a first tree obtained during a normal search, as described above. The resulting trees of each subsequent analysis were then fused to the previous pool of trees until results (topology and tree length) stabilized. The combined analysis of molecules and morphology in POY required eight rounds of tree fusing until stabilizing in a tree length of 56 984 weighted steps and finding three trees differing only in the position of some of the morphology-only taxa (Fig. 9).

The overall topology is very similar to those of the analyses with molecular data only, with a few exceptions, and lowered jackknife support values. Pettalidae is monophyletic (63%), and includes both *Speleosiro* and *Manangotria* from the morphologyonly taxa. *Speleosiro* appears as sister to *Purcellia* and *Managotria* is sister to *Karripurcellia*, although these relationships, as with most other intergeneric pettalid relationships, receive low support. *Ankaratra* does not appear within Pettalidae and, instead, is basal to the clade containing Sironidae and Stylocellidae.

Troglosironidae appears as sister to Ogoveoidea, although this tree differs from all previous trees in that Neogoveidae is paraphyletic with respect to *Ogovea*, which is sister to *Parogovia*, constituting an African clade, sister to all the American species, with *Canga* as the sister group to *Metasiro*, and this clade being sister to the remaining neogoveids [56% jackknife frequency (JF)]. The type species and morphology-only species of *Neogovea* and *Brasilogovea* appear in a clade, although there is little correspondence between the complete taxa and those

Figure 5. Evolutionary time-tree of Cyphophthalmi inferred from BEAST analysis of all molecular data. Clade colours correspond to those in Fig. 2. Coloured bars indicate 95% highest posterior density (HPD) intervals for nodes of interest. Number on nodes indicate posterior probabilities; asterisks indicate posterior probability of 1.00.

Figure 6. Ancestral range reconstructions for Pettalidae inferred by Lagrange analysis, using stratified models. Coloured squares at terminals indicate ranges occupied by sampled species. Coloured squares on nodes indicate ranges reconstructed for hypothetical ancestors. Numbers on nodes indicate relative probability of ranges reconstructed.

represented by morphology only (i.e. *Neogovea* and *Brasilogovea* are not reciprocally monophyletic).

Ankaratra and Shearogovea form a grade at the base of the Sironidae - Stylocellidae clade, with Sironidae paraphyletic, as in the prior POY and BEAST analyses. Marwe and Iberosiro form a clade with Paramiopsalis, and Odontosiro forms a clade with Parasiro. Stylocellidae is monophyletic (63% JF), including the morphology-only species Stylocellus sumatranus Westwood, 1874, Meghalaya annandalei Giribet, Sharma & Bastawade, 2007, Miopsalis pulicaria Thorell, 1890, and Leptopsalis beccarii Thorell, 1882–1883. Stylocellus sumatranus, the type species of Stylocellus, appears nested within the molecular Meghalaya clade; Meghalaya annandalei, the type species of Meghalaya, appears unresolved at the base of the molecular Leptopsalis clade; Miopsalis pulicaria and Leptopsalis beccarii, the type species of their respective genera, appear nested deep within the clade *Leptopsalis*. Although the stylocellid results make little sense, this may be a result of the lack of discrete characters useful for resolving their phylogenetic relationships (see below).

A NEW CLASSIFICATION SYSTEM FOR CYPHOPHTHALMI

Based on the results reported above, we provide a new classification system for Cyphophthalmi, introducing three new infraorders: Scopulophthalmi **new clade**, Sternophthalmi **new clade**, and Boreophthalmi **new clade** (Table 6). Scopulophthalmi is diagnosed as Pettalidae, and the name refers to the presence of a scopula in the anal region of the male in many pettalid species. Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae, with its etymology referring to the presence of an exocrine gland opening in the opisthosomal

Figure 7. Ancestral range reconstructions for Sternophthalmi (Troglosironidae, Ogoveidae, Neogoveidae) inferred by Lagrange analysis, using stratified models. Coloured squares at terminals indicate ranges occupied by sampled species. Coloured squares on nodes indicate ranges reconstructed for hypothetical ancestors. Numbers on nodes indicate relative probability of ranges reconstructed.

sternal region of males in all troglosironids, all ogoveids, and most neogoveids, as opposed to the other three families where the opisthosomal exocrine glands, when present, open in the posterior tergites. We maintain Shear's superfamily Ogoveoidea, and restrict Sironoidea to the family Sironidae and Stylocelloidea to the family Stylocellidae, although we do not introduce other superfamilies because they would each contain a single family. Boreophthalmi includes the families Stylocellidae and Sironidae, which subsequent to Hansen & Sørensen's (1904), had been considered the representatives of the two main cyphophthalmid clades (Shear, 1980). The term refers to the mostly northern hemisphere distribution of these two families, although the origin of Stylocellidae can be probably traced to northern Gondwana (Clouse & Giribet, 2010). Sternophthalmi is sister group to Boreophthalmi.

The following taxa are thus abandoned as a result of being non-monophyletic according to our phylogenetic results: Infraorder Tropicophthalmi Shear, 1980 and Infraorder Temperophthalmi Shear, 1980. Shear's infraorders do not reflect the phylogenetic relationships obtained here, as suggested in previous studies (Giribet & Boyer, 2002; Boyer *et al.*, 2007b; Giribet *et al.*, 2010).

DISTRIBUTION MODELLING AND HABITAT SUITABILITY OVERLAP

Habitat suitability models predicted by both the MAXENT and BIOCLIM methods were highly congruent and therefore we present only results from MAXENT (Fig. 10) because it was found to outperform other modelling algorithms (Elith et al., 2006). Model predictions were significantly distinct from random and area under the curve (AUC) values were high or moderately high (in the range 0.84-0.99) in all runs independently of the modelling algorithm and the set of variables used to build the model. For the analyses with a reduced number of variables, we kept all variables that had jackknife regularized training gain greater than one. As expected, when correlation among variables is present, using a lower number of variables does not change significantly the AUC values but reduces over-fitting; hence, the resulting models find broader areas with suitable conditions. These are, however, congruent with results from models built with all BIOCLIM variables and differences are generally associated with areas where habitat suitability is low (Fig. 10).

The variables with highest average relative contribution to the MAXENT habitat suitability model for

Figure 8. Ancestral range reconstructions for *Boreophthalmi* (*Sironidae*, *Stylocellidae*) inferred by Lagrange analysis, using stratified models. Coloured squares at terminals indicate ranges occupied by sampled species. Coloured squares on nodes indicate ranges reconstructed for hypothetical ancestors. Numbers on nodes indicate relative probability of ranges reconstructed.

Pettalidae were isothermality (33.8%), precipitation of the driest month (22.8%) and annual mean temperature (9.2%). Jackknife tests of variable importance indicate that temperature seasonality had the highest gain in isolation. Mean diurnal temperature range decreased the gain the most when omitted, suggesting that it contained the most information not present in the other variables. For Sironidae, the precipitation of the coldest quarter (40.0%), mean temperature of the coldest quarter (16.3%), and annual mean temperature were the variables with highest contribution. Mean temperature of the coldest quarter had the highest gain in isolation, and annual precipitation decreased the gain the most

Figure 9. Combined analysis of morphology and molecules. Strict consensus of three optimal trees based on the parsimony direct optimization analysis under parameter set 3221 (56 984 weighted steps). Clade colours correspond to those in Fig. 2; taxa in red are represented by morphology only. Numbers above nodes indicate jackknife support values.

Clade	Relative rank	Ι	D
Pettalidae versus Sironidae	0.727**	0.392	0.187
Pettalidae versus Stylocellidae	$0.826^{*} \ (P = 0.015)$	0.525	0.234
Pettalidae versus Sternophthalmi	0.832**	0.638	0.329
Sironidae versus Stylocellidae	0.666**	0.126	0.038
Sironidae versus Sternophthalmi	0.768**	0.292	0.114
Stylocellidae versus Sternophthalmi	0.836 (<i>P</i> = 0.133)	0.819	0.554

Table 5. Habitat suitability overlap statistics based onthe MAXENT analysis with all bioclim variables

Relative rank significance calculated using ENM tools identity test results. *0.01 < P < 0.05, **P < 0.01. I, the *I* statistic (Warren *et al.*, 2008); D, Schoener's *D* (Schoener, 1968).

when omitted. The variables with highest contribution for Stylocellidae were temperature seasonality (42.9%), annual precipitation (26.3%), and precipitation of the warmest quarter (11.8%). Annual precipitation had the highest gain in isolation, and precipitation of the warmest quarter decreased the gain the most when omitted. For the clade Sternophthalmi, the variables with the highest contribution were annual precipitation (33.8%), precipitation of the driest quarter (24.1%), and isothermality (13.9%). Temperature annual range had the highest gain in isolation and also reduced gain the most when omitted.

Results of the identity test for the MAXENT models based on all variables are shown in Table 5. Results from the analysis using the Bioclim algorithm are congruent (not shown). The identity test shows that, when considering relative ranks, the calculated habitat suitability scores for most of the groups are significantly distinct except for Stylocellidae versus Sternophthalmi, the two tropical clades. Habitat suitability identity cannot be rejected either for Pettalidae versus Stylocellidae at the 0.01% significance level. The higher values for *I* and *D* in those two cases also show that there is significant overlap of the suitable habitat of these clades. Pettalidae versus Sternophthalmi shows also high values of I and D but identity tests reject the null hypothesis of habitat suitability identity.

DISCUSSION

The present data, of worldwide scope, and spanning the geological scale from the Palaeozoic to the **Table 6.** Classification system for Cyphophthalmi, usingestablished family and superfamily names

Suborder Cyphophthalmi
Infraorder Scopulophthalmi new clade
Family Pettalidae Shear, 1980
Infraorder Sternophthalmi new clade
Family Troglosironidae Shear, 1993
Superfamily Ogoveoidea Shear, 1980
Family Ogoveidae Shear, 1980
Family Neogoveidae Shear, 1980
Infraorder Boreophthalmi new clade
Superfamily Stylocelloidea Hansen & Sørensen,
1904 new composition
Family Stylocellidae Hansen & Sørensen, 1904
Superfamily Sironoidea Simon, 1879 new
composition
Family Sironidae Simon, 1879

present, allow us to study a group of soil arthropods to a level of detail rarely seen in biogeographical and phylogenetic studies. Taxonomic representation in the molecular data includes species from all nonmonotypic genera and several monotypic genera; all genera are represented in the morphological data set. Geographical coverage includes all known world regions where Cyphophthalmi have been reported, with the exception of Mexico (a few specimens from two caves; Shear, 1977, 1980), Madagascar (four specimens known in total for two species; Shear & Gruber, 1996), Kenya (five specimens known from a single cave; Shear, 1985), and the Philippine island of Palawan (a single adult specimen known; Shear, 1993c).

Our phylogenetic results provide the basis for a new classification of the suborder Cyphophthalmi. The results also set the geological time framework for the origin and diversification of each family and the evolution of the niche preference in selected families or suprafamilial clades. This allows testing specific biogeographical hypotheses, such as the supposed total submersion of New Caledonia (Murienne *et al.*, 2005) or New Zealand (Goldberg, Trewick & Paterson, 2008), or the reconstruction of the ancestral areas of each cyphophthalmid lineage.

DIRECT OPTIMIZATION ANALYSIS

To a lesser degree than for static homology, dynamic homology searches are difficult to evaluate in terms of optimality. In the present study, we used a strategy of SATF with multiple rounds of analyses to decide when to stop the searches, and saw that searches of 6-12 h run on a desktop computer stabilized after five to ten rounds, depending on the parameter set. The stability of the results is used here as a criterion for reporting results, in the same fashion that driven searches and similar techniques have been applied to the computational problem of tree searching (Giribet, 2007a; Goloboff, Farris & Nixon, 2008).

In previous studies of cyphophthalmid and harvestmen data, analyses based on direct optimization have vielded results sometimes differing from those of analyses based on static homology (Boyer et al., 2007b; Giribet et al., 2010). However, this is not the case in the present study, where taxon sampling and geographical representation have been thoroughly optimized. One major difference remains, the monophyly of Sironidae (see below), although some of the static homology analyses (Fig. 5) are congruent with the direct optimization tree (Fig. 3), whereas the maximum likelihood tree (Fig. 4) differs from the Bayesian estimate (Fig. 5). Another major difference (but, again, among analyses, and not necessarily the result of differences between dynamic and static notions of homology) is the internal resolution of the pettalid genera (see below).

SYSTEMATICS

The monophyly of Cyphophthalmi has been well supported in all morphological analyses (Giribet & Boyer, 2002), as well as from the earliest molecular analyses using just a few sequences in the families Sironidae and Stylocellidae (Giribet et al., 1999; Shultz & Regier, 2001; Giribet et al., 2002), a few representatives of the suborder (Giribet & Boyer, 2002) or, more recently, in several much denser analyses (Bover et al., 2007b; Giribet et al., 2010). Our new data add corroboration to this well-delimited taxon, with the familial inter-relationships and their internal structure being the real focus of the study, although, in the combined analysis including taxa with morphological data only, support for the monophyly of Cyphophthalmi decreases to 61%, probably as a result of some effects of the missing data (see below). Among these, Stylocellidae, Troglosironidae, Pettalidae, and Neogoveidae are monophyletic in most of our analyses (but see discussion on Neogoveidae), Ogoveidae is represented by a single specimen in the molecular analyses, and Sironidae remains contentious, especially with respect to the placement of the two genera Suzukielus and Parasiro.

One of the outstanding issues in cyphophthalmid phylogenetics has been the placement of the root, which was suggested to occur: (1) between Stylocellidae and the remaining families; (2) between Pettalidae and the remaining families; or (3) between a clade containing *Suzukielus* and Pettalidae and the remaining families (Giribet & Boyer, 2002), based on the molecular rooting of a morphological tree, because most cyphophthalmid morphological characters are inapplicable or meaningless outside the suborder. Subsequent analyses found alternative resolutions placing the root between Pettalidae and the rest or between Stylocellidae and the rest (Boyer et al., 2007b), depending on the analysis and optimality criterion employed. Different studies have assumed either one of these alternative rootings until a recent broader Opiliones study found the root between Pettalidae and the rest (Sternophthalmi + Boreophthalmi), this time without distinction among optimality criteria or method of analysis (Giribet et al., 2010). This latter result is further corroborated in the present study. This position of Pettalidae as sister group to all other cyphophthalmid families falsifies the two infraorders introduced by Shear (1980). which should be abandoned, and allows for a much clearer reconstruction of the cyphophthalmid ancestor, which must have had laterally positioned simple ocelli (Alberti, Lipke & Giribet, 2008), a lamelliform adenostyle in the male fourth tarsus, and opisthosomal exocrine glands opening in the anal region in the male.

Internal resolution of Pettalidae does not differ considerably from the source studies of this pettalid data set (Boyer & Giribet, 2007, 2009) and, as in these studies, South Africa, New Zealand and Australia are not monophyletic. Diversification of the family started 183 Mya, and therefore paralogy of some of its landmasses is easily explained by cladogenesis prior to the split of Gondwana into its current continents. Nonetheless, relationships within Pettalidae remain unstable or poorly supported and important African diversity is missing from the molecular sampling, both from South Africa (de Bivort & Giribet, 2010) and Madagascar (Shear & Gruber, 1996), although the combined analyses with morphology place Speleosiro as sister group to Purcellia (64% JF) (Giribet, 2003a; de Bivort et al., 2010; de Bivort & Giribet, 2010), and Manangotria as sister group to Karripurcellia, although with low nodal support.

Results within Pettalidae are congruent among methods of analysis in the monophyly of each genus, although their relationships remain contentious. A *trans*-Tasman clade is found, albeit with low support, in the probabilistic analyses but not in the direct optimization analysis. Similarly, the most-basal position of *Parapurcellia* is not universally accepted. Other relationships discussed above are poorly supported, with the exception of a *Chileogovea + Purcellia* clade. Whether the deficient sampling in South Africa (whose genera appear to have influence at the base of the tree) or perhaps lineage extinction during the cooling of Antarctica are responsible for the lack of resolution in the pettalid relationships, remains untested.

The present study introduces the first genetic data for the monogeneric family Ogoveidae, which clearly forms part of the previously established Troglosironidae-Neogoveidae clade (Bover et al., 2007b; Sharma & Giribet, 2009a), now named Sternophthalmi. Ogoveidae forms a clade with Neogoveidae in all analyses, corroborating Shear's superfamily Ogoveoidea, although not his infraorder Tropicophthalmi, because Stylocellidae are unrelated to Ogoveoidea. Ogoveoidea is thus a Pantropical clade of probable African origin, although its original diversification dates back to 261 Mya. Some analyses (two suboptimal parameter sets under direct optimization) place Ogoveidae as ingroup Neogoveidae, although most analyses support monophyly of Neogoveidae. This is also found in the combined analysis with morphology, where Ogovea and Parogovia form a clade of African Ogoveoidea, although support for this clade is low. The latter clade is sister to a clade of American neogoveids. However, because of the unique morphology of ogoveids (Juberthie, 1969; Giribet & Prieto, 2003), and monophyly of Neogoveidae in most analyses, the family Ogoveidae is maintained as valid (after rediagnosis from Giribet & Prieto, 2003). Shear (1980) included the genus Huitaca in this family, although, earlier, he had postulated a sister group relationship of Huitaca and Metagovea (Shear, 1979a), as shown in our analyses.

Neogoveidae began its own diversification soon after (236 Mya), long before the opening of the Atlantic Ocean, as illustrated by the amphi-Atlantic clade relating the Eastern Brazilian genus Canga with the African Parogovia (specimens from Cameroon, Gabon, and Equatorial Guinea), or the sister group relationships of the North American genus Metasiro to the Amazonian/West African clade. The specimen from Ivory Coast, probably related to P. pabsgarnoni, constitutes a new genus that will be described elsewhere. Other than Canga, the South American species form a well supported clade that we currently assign to four genera: Brasilogovea, which we resurrect here, includes species from Amazonia and the 'Tepuis' region of Colombia; Neogovea, represented by two species from Guyana and French Guiana; Huitaca, still endemic to Colombia, including a large number of undescribed species; and Metagovea, including not only most specimens from the Andean region, but also some Amazon specimens from Leticia and a specimen from Guyana, with the latter being sister to all other Metagovea and possibly constituting another new genus (L. Benavides & G. Giribet, unpubl. data). This species is clearly unrelated to the genus Neogovea, occurring in this part of the Neotropics, and it is characterized by a conspicuous opisthosomal middorsal longitudinal sulcus; an adenostyle ending in a brush of setae and located at the base or towards the centre of the dorsal side of tarsus IV; absence of opisthosomal exocrine glands; and a spermatopositor complex with a crown-shaped structure at the tip, with additional perpendicular projections (L. Benavides & G. Giribet, unpubl. data). Our Metagovea clade includes specimens that we previously placed in the genera Metagovea and Neogovea (Bover et al., 2007b; Giribet et al., 2010) because they differ considerably in their anatomy. Further subdivision of Metagovea may be warranted, although not until specimens from the Manaus area (Brazil) are available for molecular study. Nonetheless, relationships among the four genera are well established, with Brasilogovea + Neogovea being the sister group to a clade including Huitaca and Metagovea, and the latter genus generally divided among small species, or 'typical' Metagovea and larger species more similar to Neogovea. The large sampling within the superfamily, including all the currently recognized genera, and new data for many mostly undescribed species and genera not represented in previous studies, allows us to provide a more comprehensive understanding of this Pantropical group. The addition of morphological data of the types of the genera Neogovea and Brasilogovea did not fully resolve this clade, although this is considered to be a result of the poor preservation of these specimens (missing the ventral opisthosomal region) that does not allow examination of key characters such as the sternum or the opisthosomal exocrine glands.

The sister group of Ogoveoidea is without doubt the New Caledonia endemic genus *Troglosiro*, and both separated approximately 279 Mya at a time when New Caledonia was geographically located at the eastern margin of Gondwana. Diversification of Troglosironidae is, however, much more recent (57 Mya) and the error associated with this date does not allow for an unambiguous interpretation of the postulated total submersion of the island (Grandcolas *et al.*, 2008; Murienne *et al.*, 2008; Murienne, 2009). The analyses recognize a group with sternal opisthosomal depressions associated with the sternal exocrine glands of the males, *sensu* Sharma & Giribet (2009a).

Stylocellidae have gone from being the most poorlyknown group to arguably the most stable and best understood phylogenetically. The results of the present study corroborate those from the recent studies mostly by R. Clouse (Clouse & Giribet, 2007; Clouse *et al.*, 2009; Clouse, 2010; Clouse & Giribet, 2010; Clouse *et al.*, 2011), from which all the data included here were derived; see also Schwendinger & Giribet (2005). *Fangensis*, a clade with its origins in the terrane that today constitutes the Thai-Malay peninsula, is sister to all other stylocellids, which diversified towards the north in the genus *Meghalaya* and towards the south in the genera *Miopsalis* and Leptopsalis, the former mostly found on Borneo, although giving rise to species in the Philippines and Sumatra, and the latter radiating rapidly as Sumatra, Java, and Sulawesi became accessible, and also extending to New Guinea. The family diversified 167 Mya and includes the only reported cases of possible transoceanic dispersal in Cyphophthalmi (Clouse & Giribet, 2007; see also Clouse et al., 2011). Morphological analysis of discrete character data also support earlier studies excluding the nominal genus Stylocellus from any of the four genera adopted here, with Stylocellus remaining monotypic (Clouse et al., 2009). However, the addition of the type species of the genera Leptopsalis, Meghalava, Miopsalis, and Stylocellus, not available for molecular analysis, does not result in a well-resolved taxonomy. The problem, however, lies in the nature of the data because the type of Stylocellus, an old, pinned, deformed specimen, is difficult to position based on discretecharacters only (Clouse et al., 2009), whereas the type of *Miopsalis* is a female and thus misses most discrete characters coded for other specimens, and was not available to be included in the morphometric analyses of Clouse et al. (2009). Leptopsalis is, however, well placed within its supposed molecular clade. although the type of *Meghalaya* does not find good support.

Sironidae monophyly has been disputed in previous analyses based on morphology and molecules, where two genera, Parasiro and Suzukielus, often do not cluster with the remaining sironids (in the genera Siro, Cyphophthalmus, Paramiopsalis, and Iberosiro) (Giribet & Boyer, 2002; de Bivort & Giribet, 2004; Boyer et al., 2007b; Giribet et al., 2010). Odontosiro, never included in a molecular analysis, is sister to *Parasiro* outside of the typical sironids. The Kenyan Marwe has been placed within sironids in some analyses based on morphological data (de Bivort & Giribet, 2004), as also shown here, and appears related to Paramiopsalis and Iberosiro. Sironids found their monophyly, however, in a recent morphological analysis of continuous characters (de Bivort et al., 2010) and in the maximum likelihood analysis of Giribet et al. (2010), as does the maximum likelihood analysis of the present data set, albeit with bootstrap support below 50%. Monophyly of Sironidae is also found in the analysis of the nuclear ribosomal data under direct optimization, suggesting that the nonmonophyly of the family may be an artefact introduced most probably by their unusual COI evolution (Boyer et al., 2005). However, the membership in Sironidae of the genera Iberosiro, Odontosiro, or even Marwe remains untested with molecular data and future sampling effort in the north-western Iberian Peninsula and in Kenya should focus on these highly controversial genera.

MORPHOLOGICAL DATA

It is well known that combined analyses of molecules and morphology are fundamental for understanding the systematics of groups that include many taxa for which molecular data cannot be obtained (Eernisse & Kluge, 1993; Nixon & Carpenter, 1996). A typical example of the latter case is provided by fossil taxa (Giribet, 2010; Murienne, Edgecombe & Giribet, 2010a; Pyron, 2011). When dealing with such taxa, missing data can become a concern, although it has been shown, both with simulation and with empirical results, that missing data in and of themselves are not always problematic; instead, it is information content in the data at hand what really matters (Wiens, 2003; Goloboff *et al.*, 2009; Hejnol *et al.*, 2009; Wiens, 2009).

The fossil record of Cyphophthalmi is scarce (Dunlop & Giribet, 2003; Poinar, 2008; Dunlop & Mitov, 2011), and it does not add important diversity that can be coded into an explicit data matrix. However, the problem of missing data is of great importance in Cyphophthalmi as a result of the group's almost global but highly localized distribution, making collecting an arduous task. For these reasons, many species are known only from old museum material, from a single male, or even from only females or juveniles, making it impossible to include them in the molecular matrix or presenting considerable amounts of missing data in our morphological matrix. To mention just a few examples, the type species of the genera *Miopsalis* and *Ogovea* are known only from female individuals (Thorell, 1890-1891; Hansen & Sørensen, 1904); the second species in the genus Pettalus, Pettalus brevicauda Pocock 1897, was based on a juvenile specimen (Giribet, 2008); Stylocellus sumatranus, currently the only species in the genus, is based on a deformed specimen in very poor condition (Clouse et al., 2009); and several monotypic genera have never been examined under a scanning electron microscope: Ankaratra, Manangotria, Marwe, and Odontosiro.

When trying to maximize the diversity represented in the present study, we included all currently recognized genera in our morphological matrix, although some of the species representing these genera are missing important characters. Despite this problem, we followed earlier recommendations into a combined analysis in POY under the optimal parameter set and submitted it to a jackknife analysis. The resulting tree was not too different from that of an early analysis of all cyphophthalmid genera (Giribet & Boyer, 2002) with respect to the lack of resolution for many clades, which is otherwise well supported by the molecular data sets. Notable results are the placement of *Managotria taolanaro* within Pettalidae (63% jackknife support), the monophyly of Stylocellidae (including the types of the genera Leptopsalis, Meghalaya, Miopsalis, and Stylocellus, despite the lack of molecular data; 63% jackknife support) or the monophyly of the Neotropical Neogoveidae (excepting Canga), including the types and morphology-only species of Neogovea [N. immsi, Neogovea kartabo (Davis, 1937)], Neogovea kamakusa Shear, 1977), and Brasilogovea microphaga Martens, 1969 (56% jackknife support). The inclusion of Parogovia pabsgar*noni* affects the monophyly of the African neogoveids, as Parogovia sp. DNA105671 does not form a clade with the other Parogovia (54% jackknife support). However, the instability of species such as Shearogovea mexasca and Ankaratra franzi affects the monophyly of groups that are otherwise robust to molecular analysis such as Sternophthalmi + Boreophthalmi, Sternophthalmi, Ogoveoidea, Neogoveidae or Boreophthalmi.

The current results combining morphology with molecules lowered overall support for the tree. This is an unfortunate result because simulations have shown that the accuracy in the phylogenetic placement of fossils often improves or stays the same when using molecular data and that only in a few cases accuracy was significantly decreased (Wiens, 2009). The problem here may be related to the low numbers of discrete morphological characters available for these Opiliones, often limited to variation among groups of species; hence, the recent use of continuous characters in some analyses of the group (Clouse et al., 2009; de Bivort et al., 2010; de Bivort & Giribet, 2010). Some characters show low levels of homoplasy, greatly structuring the data (some of these characters were the basis for older classification systems) but many of our wild taxa show 'unexpected' states in these characters. Character 7 is notable in this respect. The coxae of the walking legs of Cyphophthalmi show different degrees of fusion, with coxae III and IV of each side always fused and coxae I remaining moveable. Coxa II can be free (state 0) or fused to coxae III and IV; among the former are most members of the families Pettalidae, Troglosironidae, and Sironidae (except for the genera Paramiopsalis and Iberosiro); among the latter are the members of the families Ogoveidae, Stylocellidae, and Neogoveidae (except for Canga and Metasiro). It is therefore not unexpected that this character defined the major groups Sironoidea and Stylocelloidea sensu Hansen & Sørensen (1904), and that a genus such as Metasiro was considered a member of Sironidae in previous studies, nor that these genera are among the most unstable ones when morphology is used. The presence/absence of eyes (character 1), ozophore type (character 2), and spiracle shape (character 49) are characters with relatively low levels also of homoplasy, which have played an important role in cyphophthalmid systematics, and, again, it is not unexpeced that the taxa that present odd character states become unstable.

BIOGEOGRAPHICAL PATTERNS IN CONTINENTS

Cyphophthalmi have been shown to present a high correlation of their systematic position and landmass affinity (Juberthie & Massoud, 1976; Shear, 1980; Giribet, 2000), to show strong genetic structure across short distances (Boyer et al., 2007a), and have been used as models to study vicariance biogeography (Giribet, 2003a; Boyer et al., 2005; Boyer & Giribet, 2007; Giribet & Kury, 2007; Boyer et al., 2007b; Boyer & Giribet, 2009; Clouse et al., 2009; Sharma & Giribet, 2009a; Clouse, 2010; Clouse & Giribet, 2010; de Bivort & Giribet, 2010; Murienne et al., 2010b; Clouse et al., 2011). This study corroborates earlier findings that suggest a temperate Gondwanan clade (Pettalidae; Fig. 6), a Pantropical clade (Sternophthalmi; Fig. 7), one clade originating in the Thai-Malay Peninsula (Stylocellidae; Fig. 8), and two or more Laurasian clades whose ancestral area is difficult to reconstruct with high probability but that includes the Iberian Peninsula, North America, and Western Europe (Sironidae; Fig. 8). The origin of all these clades is ancient, preceding the fragmentation of Pangea and therefore suggesting that many cladogenetic events were older than the vicariant events that followed. This has important biogeographical implications with respect to using vicariant events as calibration points because the mismatch between the two events could be very large (Kodandaramaiah, 2011).

Most biogeographical patterns observed, in conjunction with a well-dated phylogenetic hypothesis and a reconstruction of the ancestral landmasses for each clade, allow a thorough explanation of each clade. The ancestral area reconstruction of the family Pettalidae (Fig. 6) involves several cladogenetic events at the genus-level because each genus is currently recognized to be restricted to a single landmass or to adjacent terranes (Boyer & Giribet, 2007). Although resolution among the genera finds low support, most analyses suggest the South African genus Parapurcellia to be the sister group to all other genera, and place the other South African genus, Purcellia, in that clade, lending support to South Africa as one of the possible centres of origin of the family. A relationship between South Africa (Purcellia) and South America (Chileogovea) is found in most analyses, as is also found in the members of the peripatopsid Onychophora, with similar distribution and habitat requirements as pettalids (Allwood et al., 2010). It is also notable that the two Australian genera Austro-

Figure 10. MAXENT models of habitat suitability. Left column with all bioclim variables, right column with variables with jackknife regularized training gain greater than one. Warmer (red-yellow) colours represent more suitable habitats. Maps in miniature represent actual presence observations. A, *Pettalidae*; B, *Sironidae*; C, *Stylocellidae*; D, *Sternophthalmi* (*Troglosironidae* + *Ogoveidae* + *Neogoveidae*).

purcellia (Queensland) and *Karripurcellia* (Western Australia) never form a clade, supporting earlier views about using microareas in biogeographical studies of small soil organisms (Giribet & Edgecombe, 2006). A relationship of Sri Lanka–Australia–New Zealand is found in several analyses.

The biogeographical patterns of Sternophthalmi (Fig. 7) are easily reconstructed, with two ancestral lineages occurring in the Neotropics (*Canga* is sister to the African *Parogovia* clade), two ancestral lineages in Africa (*Ogovea* and *Parogovia*), and one lineage in North America (*Metasiro*), which separated from the remaining neogoveids during the Triassic. Although older analyses suggested a relationship of *Metasiro* to *Parogovia*, this was based on analyses

without several neogoveid lineages and without ogoveids, and the current results are very stable. The sister group relationship of Ogoveoidea to the New Caledonian endemic genus *Troglosiro* has been found in previous studies and it is discussed in more detail below. No paralogy is needed in this tree when considering the timing of the diversification events, as the separation of the Neotropics from the Afrotropics is dated at 95 Mya (Raven & Axelrod, 1972; Sanmartín, 2002).

Stylocellid biogeography and their ancestral areas have been discussed recently (Clouse & Giribet, 2010) and our results corroborate this earlier analysis. The Thai-Malay Peninsula is reconstructed as the ancestral terrane for the family with subsequent expansions to the Eastern Himalayas during the Cretaceous/Tertiary boundary, and radiations into the Borneo/Philippine plate and into the Indo-Malay Archipelago during the Cretaceous. Several lineages may have returned to the Thai-Malay Peninsula or moved between islands around the Cretaceous/ Tertiary boundary during a period in which southeast Asia was subjected to drastic changes and the Indo-Malay Archipelago variously connected (Hall, 2002; Ali & Aitchison, 2008).

Reconstruction of the biogeographical history of Sironidae remains hindered by the instability of the relationships of Suzukielus and Parasiro; the former endemic to Japan and the latter found in the Iberian and Mediterranean plates. Parasiro has its origins in the Jurassic/Cretaceous of the Iberian Peninsula, where cyphophthalmids are so far restricted to areas with Paleozoic rocks (Murienne & Giribet, 2009). The main sironid clade includes three genera found in North America (Siro), Western Europe (Siro), the Iberian Peninsula (Paramiopsalis), and the Balkan region and Eastern Europe (Cyphophthalmus). Siro shows reciprocal monophyly of the two landmasses, the lineages separating during the Triassic, a result not supported in a recent analysis of the North American diversity (Giribet & Shear, 2010). The sistergroup relationship of the Iberian/Balkan clade has been discussed thoroughly in recent studies (Boyer et al., 2005; Murienne et al., 2010b), which have also illustrated a correlation between an evolutionary explosion and the coming into contact of ancestral landmasses in the Mediterranean region (Murienne et al., 2010b). From a geological point of view, the Balkan Peninsula, supporting the explosive evolution of Cyphophthalmus, includes the margin of both Eurasia (the Moesian microplate) and Gondwana (the Adria microplate), as well as remnants of the Tethys and related marginal seas (made up of oceanic crust) (Karamata, 2006). The Adria microplate is the largest lithospheric fragment in the Central Mediterranean region. It was connected to Iberia in the west and to north-west Africa in the south (Wortmann et al., 2001) until the Middle-Late Triassic episodes of rifting and breakup (Channell, D'Argenio & Horváth, 1979; Pamic, Gusic & Jelaska, 1998), around the cladogenesis time for the split between Paramiopsalis and Cyphophthalmus. For most of the time, the Adria microplate was in a shallow-water environment (Scheibner & Speijer, 2008) in which the Southern Tethyan Megaplatform formed before disintegrating into several carbonate platforms in the Early Jurassic (Vlahovic et al., 2005), before the diversification of Cyphophthalmus during the Jurassic/Cretaceous, when cycles of land submergence and emergence have been recorded in some carbonate platforms (Vlahovic et al., 2005; Márton et al., 2008). The ancestral area of the family is however difficult to infer, perhaps, amongst other factors, as a result of the large number of terranes that existed around the Tethys.

BIOGEOGRAPHY IN CONTINENTAL ISLANDS: THE CASES OF NEW CALEDONIA AND NEW ZEALAND

Cyphophthalmi are present in most islands of continental origin (fragment islands sensu Gillespie & Roderick, 2002), including Sri Lanka (Pocock, 1897; Sharma & Giribet, 2006; Giribet, 2008; Sharma, Karunarathna & Giribet, 2009), Chiloé (Roewer, 1961; Juberthie & Muñoz-Cuevas, 1970; Shear, 1993a), Corsica and Sardinia (Simon, 1872; Juberthie, 1958), Honshu (Roewer, 1916; Juberthie, 1970b; Suzuki & Ohrui, 1972; Giribet, Tsurusaki & Boyer, 2006), and the Indo-Malay archipelago (Westwood, 1874; Thorell, 1882-1883; Pocock, 1897; Hansen & Sørensen, 1904; Shear, 1979b; Rambla, 1991; Shear, 1993c; Giribet, 2002; Schwendinger & Giribet, 2005; Clouse & Giribet, 2007; Clouse et al., 2009; Clouse & Giribet, 2010), and, in all these cases, their presence in these islands is best explained as a result of vicariance. Similarly, New Caledonia and New Zealand host a considerable diversity of Cyphophthalmi, although their presence in these islands as a result of one or more vicariant evens has been recently disputed.

New Caledonia currently has 13 described species in the genus Troglosiro, the only genus in the family Troglosironidae (Juberthie, 1979; Shear, 1993b; Sharma & Giribet, 2005, 2009a; Sharma & Giribet, 2009b) considered to be endemic to the Grande Terre and unambiguously recovered as the sister group to the Equatorial Ogoveoidea from Equatorial West Africa and the Equatorial Neotropical belt. Geological data on the origins of the New Caledonian biodiversity argue in favour of a series of submersions during the Palaeocene and Eocene (Paris, Andreieff & Coudray, 1979; Aitchison et al., 1998; Pelletier, 2006), which has been used to support a total submersion of the island, re-emerging 37 Mya (Murienne et al., 2005; Grandcolas et al., 2008; Murienne et al., 2008). Indeed, molecular dating analyses of several New Caledonian clades has supported diversification processes post-dating the critical date of 37 Mya (Murienne et al., 2005; Page et al., 2005; Murienne et al., 2008; Espeland & Johanson, 2010; Murienne, Edgecombe & Giribet, 2011), which has led some studies to suggest that the entirety of the New Caledonian terrestrial biota must have arrived to the islands via dispersal and that no trace of ancient vicariance is left. One notable exception may be the family Troglosironidae, whose diversification has been dated at 28-49 Mya by Boyer et al. (2007b) and 52-102 Mya by Giribet et al. (2010), although these studies used few

troglosironid samples. Refined analyses here suggest a Late Cretaceous-Early Tertiary diversification of the family (57 Mya), predating the supposed re-emergence of New Caledonia, although the error associated with this date does not allow unambiguous distinction of the hypothesis owing to the temporal proximity of the re-emergence of the island (37 Mya) and the floor of the diversification age estimate (95% HPD: 40-73 Mya). The ancestral area reconstruction for the split between Troglosironidae and Ogoveoidea is supported as a contiguous landmass containing West Africa and New Caledonia, deep in the Permian, indicating that the range of the clade was much broader than it currently is (Figs 5, 7), and that massive extinctions may have occurred during the period comprised between 279-57 Mya. However, relict taxa (and Troglosironidae certainly is such an example) and the problem of extinction, especially in the absence of a fossil record, are mysteries that are difficult to address in biogeography (Crisp, Trewick & Cook, 2011). This is indeed a unique case, where Troglosironidae constitute a special lineage in this respect.

Another possibility is a *trans*-Pacific dispersal, again during the 279-57 Mya period, a phenomenon also observed in at least two other opilionid lineages (e.g. the families Zalmoxidae and Samoidae; Sharma & Giribet, 2011). However, dispersals in the Cenozoic are possible to reconstruct unambiguously in Zalmoxidae and Samoidae insofar as lineages in one part of the Pacific form a grade with respect to a clade in another part of the Pacific. In both these cases, Neotropical lineages form the paraphyletic grade with respect to Pacific island lineages, rendering the ancestral area reconstruction for the origin of these radiations as Neotropical. By contrast, Troglosironidae and the clade (Ogoveidae + Neogoveidae) form reciprocally monophyletic groups that diverged 279 Mya, which is inconsistent with recent dispersal. Moreover, the Permian origin of Troglosironidae also suggests that any putative dispersal event had to have occurred sometime between 279–57 Mya, a hypothesis that is difficult to test. As stated previously, we submit that the biogeographical history of Troglosironidae is inherently difficult to reconstruct as a result of the relictual nature of this lineage (Sharma & Giribet, 2009a).

A similar case has been proposed for New Zealand, which includes 29 species in three pettalid genera (Aoraki, Neopurcellia, and Rakaia) (Forster, 1948, 1952; Boyer & Giribet, 2003, 2007) found in two geological terranes (the Australian plate and the Pacific plate) (Boyer & Giribet, 2009). New Zealand's geology and biota reflect a dynamic history of ancient Gondwanan origin, long-term isolation from other continental landmasses, marine inundating during the Oligocene, glaciation during the Pleistocene, and evolutionary radiations that have produced a spectacular proportion of endemic species (Gibbs, 2006). Studies have focused on New Zealand's biogeography with particular vigour over the past two decades because molecular systematics has provided new tools with which to approach evolutionary questions. Molecular systematists have addressed topics such as the number and location of Pleistocene refugia (Marske et al., 2009; Buckley, Marske & Attanayake, 2010), the Alpine Fault Hypothesis (Heads & Craw, 2004), and, most contentiously, a vicariance versus dispersal-based origin of New Zealand's terrestrial biota (Trewick, Paterson & Campbell, 2007; Phillips et al., 2010). Although studies have long recognized that land area was drastically reduced (i.e. to less than 15% of its current size) during the marine incursions of the Oligocene (Cooper & Cooper, 1995), more recently Waters & Craw (2006) have suggested that there is no strong evidence for continuously emergent land throughout the period (Landis et al., 2008). Trewick et al. (2007) and Wallis & Trewick (2009) asserted that the preponderance of biogeographical evidence favours a scenario of complete submergence during the Oligocene, and some studies have gone further, suggesting that the entire terrestrial biota arrived via dispersal during the last 22 Myr (Landis et al., 2008), and that it is therefore more like that of an oceanic archipelago than a continent (Goldberg et al., 2008). Few have questioned this new trend in New Zealand biogeography (Knapp et al., 2007: Edgecombe & Giribet, 2008: Bover & Giribet, 2009; Allwood et al., 2010; Giribet & Boyer, 2010).

The evolutionary history of the New Zealand cyphophthalmid genera (Aoraki, Rakaia, and Neopurcellia) has long been of interest as part of the evaluation of a hypothesis proposing total submersion of New Zealand in the Oligocene (Waters & Craw, 2006; Trewick et al., 2007; Goldberg et al., 2008; Landis et al., 2008; Wallis & Trewick, 2009; Giribet & Boyer, 2010; Phillips et al., 2010). The persistence of these lineages through the Oligocene bottleneck was considered to represent evidence of incomplete submersion of this landmass (Boyer & Giribet, 2007, 2009), although this hypothesis was not previously accompanied by molecular dating. Consequently, the ages of diversification of these lineages have been open to interpretation as very young (e.g. approximately 5 Mya; Goldberg et al., 2008). Moreover, Crisp et al. (2011) suggested that an important criterion for evidence of vicariance events is diversification time coincident with the timing of the geological event that precipitated the vicariance; in this case, the rifting of Zealandia from the Australian plate approximately 85 Mya, although cladogenesis could be expected to be

much older than the vicariant event in taxa with low vagility and small distribution ranges.

The present study, utilizing a robust methodology for simultaneous estimation of tree topology and clade divergence times (sensu Crisp et al., 2011), and calibrated using fossil taxa exclusively (Kodandaramaiah, 2011), obtains the following diversification times for the New Zealand endemic genera Rakaia and Aoraki: 91 Mya (95% HPD: 72-108 Mya) and 90 Mya (95% HPD: 75-108 Mya), respectively. These diversification age estimates coincide with the rifting of Zealandia in the Late Cretaceous. We present evidence, therefore, based upon tree topology and clade divergence times, of the persistence of multiple lineages through the Oligocene. In addition, the present study reconstructs the origin of the genus Aoraki to the Australian plate during the Cretaceous and that of the genus Rakaia to a composite terrane in the Pacific and Australian plate also in the middle of the Cretaceous, although, later on, our study clearly assigns a clade to each terrane (Figs 5, 6). Unfortunately, the generic relationships are highly unstable across methods and parameter sets and further speculation about the relationships of the Australian and New Zealand genera awaits further data. We submit that these data falsify the hypothesis of complete submersion of New Zealand during the Oligocene Drowning. Recent and forthcoming studies of other invertebrate lineages (Allwood et al., 2010; Giribet & Boyer, 2010; Murienne et al., 2010a; Marshall, 2011) are anticipated to corroborate this conclusion.

HABITAT SUITABILITY MODELS

One common characteristic of all models that we present here is the larger suitable habitat than the area actually occupied by the four clades of interest. This constitutes further evidence for the old cladogenesis and low dispersal abilities of Cyphophthalmi because many areas of suitable habitat have never been in contact with a landmass occupied by the clade of interest. This pattern also corroborates the hypothesis that tectonic movements and vicariance events have defined distributions and driven diversification in this group of soil arthropods. Mysteries remain because certain temperate clades have migrated to warmer climates (e.g. Pettalus in Sri Lanka or Austropurcellia in Queensland, Australia), whereas others may not have been able to adapt to changing climates. This suggests that, in several lineages, processes of niche evolution might have taken place. However, the lack of detailed occurrence observations for many species does not currently allow studying the niche evolution in Cyphophthalmi in greater detail.

CONCLUDING REMARKS

Cyphophthalmi constitute an ancient lineage of Opiliones distributed in temperate to tropical rainforests worldwide but restricted for the most part to continents and islands of continental origin, representing an ideal group of organisms for studying vicariance biogeography. Both phylogenetic patterns derived from molecular and morphological data and molecular dating using Opiliones fossils as calibration points corroborate the old age of the group and of its constituent clades. Ancestral area reconstruction further corroborates our biogeographical predictions by requiring only minimal switches between landmasses, most of them through contiguous land, therefore showing that the actual distribution is much more restricted than the potential distribution defined by the modelled habitat suitability for the different familial/suprafamilial clades. The data also permit tests of more general biogeographical hypotheses, such as the total submersion of New Caledonia and New Zealand and, at least in the former case, contradict a scenario of complete inundation. The present study provides refinement not only of the phylogenetic relationships and taxonomy of the group, but also its evolutionary and biogeographical history.

ACKNOWLEDGEMENTS

This work is the result of more than a decade of intense research on Cyphophthalmi and many individuals and institutions have contributed to it. First and foremost, this work has been possible in large part as a result of grants from the National Science Foundation (DEB-0236871 to G.G., DEB-0508789 to S.B. and G.G., and DEB-0205982 to M. Sharkey) and to numerous Putnam Expeditions Grants from the Museum of Comparative Zoology to collect in Australia, Cameroon, Gabon, Indonesia, New Zealand, South Africa, and Sri Lanka. J.M. was supported by a Marie Curie International Outgoing Fellowship (grant 221099) within the 7th European Community Framework Program. Many colleagues have assisted us in the field, and they are acknowledged in our previous papers. We want to emphasize, however, the help of Carlos Prieto for work in Equatorial Guinea, Indika Karunarathna for work in Sri Lanka, Cahyo Rahmadi for work in Indonesia, Nobuo Tsurusaki for work in Japan, Phil Sirvid and Ricardo Palma for work in New Zealand, Hervé Jourdan for work in New Caledonia, Nono Legrand for work in Cameroon, and many other colleagues who provided samples, especially Louis Deharverg for south-east Asian samples, Mike Sharkey for his Colombian samples, Rudy Jocqué for samples from Ivory Coast and

Guyana, Eduardo Mateos for Spanish samples, and Ricardo Pinto-da-Rocha for Brazilian samples. Greg Edgecombe, Salvador Carranza, and Michele Nishiguchi accompanied us on many collecting trips. We are also indebted to many museums and curators for their long-term loans that made this research possible, especially Lorenzo Prendini and Norman Platnick from the American Museum of Natural History, New York, NY; Charles Griswold from the California Academy of Sciences, San Francisco, CA; Petra Sierwald from the Field Museum, Chicago, IL; Jan Beccaloni from The Natural History Museum, London; Arturo Muñoz Cuevas from the Muséum national d'Histoire naturelle, Paris; Phil Sirvid from Te Papa Tongarewa, Wellington; Jonathan Coddington from the US National Museum (Smithsonian Institution), Washington, DC; Nikolaj Scharff from the Zoological Museum, Natural History Museum of Denmark, Copenhagen; and Jason Dunlop from the Zoologischen Museums, Berlin. Finally, Laura Leibensperger has assisted with specimen loans during all these years. The editor John A. Allen, an anonymous reviewer, and Gustavo Hormiga provided comments that helped to improve upon an earlier version of this manuscript.

REFERENCES

- Aitchison JC, Ireland TR, Clarke GL, Cluzel D, Davis AM, Meffre S. 1998. Regional implifications of U/Pb SHRIMP age constraints on the tectonic evolution of New Caledonia. *Tectonophysics* 299: 333–343.
- Alberti G. 1995. Comparative spermatology of Chelicerata: review and perspective. In: Jamieson BGM, Ausió J, Justine J-L, eds. Advances in spermatozoal phylogeny and taxonomy. Mémoires du Muséum National d'Histoire Naturelle 166: 203–230.
- Alberti G. 2005. Double spermatogenesis in Chelicerata. Journal of Morphology 266: 281–297.
- Alberti G, Giribet G, Gutjahr M. 2009. Ultrastructure of spermatozoa of different species of Neogoveidae, Sironidae, and Stylocellidae (Cyphophthalmi: Opiliones). Contributions to Natural History – Scientific papers from the Natural History Museum Bern 12: 53–69.
- Alberti G, Lipke E, Giribet G. 2008. On the ultrastructure and identity of the eyes of Cyphophthalmi based on a study of *Stylocellus* sp. (Opiliones, Stylocellidae). *Journal of Arachnology* 36: 379–387.
- Ali JR, Aitchison JC. 2008. Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). *Earth-Science Reviews* 88: 145– 166.
- Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR, Buckley TR. 2010. Support for vicariant origins of the New Zealand Onychophora. *Journal of Biogeography* 37: 669– 681.

- Araujo MB, Rahbek C. 2006. How does climate change affect biodiversity? Science 313: 1396–1397.
- **Benavides LR, Giribet G. 2007.** An illustrated catalogue of the South American species of the cyphophthalmid family Neogoveidae (Arthropoda, Opiliones, Cyphophthalmi) with a report on 37 undescribed species. *Zootaxa* **1509:** 1–15.
- de Bivort B, Clouse RM, Giribet G. 2010. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research 48: 294–309.
- de Bivort B, Giribet G. 2010. A systematic revision of the South African Pettalidae (Arachnida : Opiliones : Cyphophthalmi) based on a combined analysis of discrete and continuous morphological characters with the description of seven new species. *Invertebrate Systematics* 24: 371– 406.
- **de Bivort BL, Giribet G. 2004.** A new genus of cyphophthalmid from the Iberian Peninsula with a phylogenetic analysis of the Sironidae (Arachnida : Opiliones : Cyphophthalmi) and a SEM database of external morphology. *Invertebrate Systematics* **18:** 7–52.
- Boyer SL, Baker JM, Giribet G. 2007a. Deep genetic divergences in *Aoraki denticulata* (Arachnida, Opiliones, Cyphophthalmi): a widespread 'mite harvestman' defies DNA taxonomy. *Molecular Ecology* 16: 4999–5016.
- Boyer SL, Clouse RM, Benavides LR, Sharma P, Schwendinger PJ, Karunarathna I, Giribet G. 2007b. Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. *Journal of Biogeography* 34: 2070–2085.
- Boyer SL, Giribet G. 2003. A new Rakaia species (Opiliones, Cyphophthalmi, Pettalidae) from Otago, New Zealand. Zootaxa 133: 1–14.
- **Boyer SL, Giribet G. 2007.** A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. *Cladistics: The International Journal of the Willi Hennig Society* **23**: 337–361.
- Boyer SL, Giribet G. 2009. Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). Journal of Biogeography 36: 1084– 1099.
- **Boyer SL, Karaman I, Giribet G. 2005.** The genus *Cyphophthalmus* (Arachnida, Opiliones, Cyphophthalmi) in Europe: a phylogenetic approach to Balkan Peninsula biogeography. *Molecular Phylogenetics and Evolution* **36**: 554–567.
- Buckley TR, Marske K, Attanayake D. 2010. Phylogeography and ecological niche modelling of the New Zealand stick insect *Clitarchus hookeri* (White) support survival in multiple coastal refugia. *Journal of Biogeography* 37: 682– 695.
- Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution* 17: 540–552.

- Channell JET, D'Argenio B, Horváth F. 1979. Adria, the African Promontory, in Mesozoic Mediterranean Paleogeography. *Earth Science Reviews* 15: 213–292.
- **Clouse RM. 2010.** Molecular and morphometric phylogenetics and biogeography of a Southeast Asian arachnid family (Opiliones, Cyphophthalmi, Stylocellidae). PhD Thesis, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge.
- Clouse RM, de Bivort BL, Giribet G. 2009. A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones : Cyphophthalmi) – a combined analysis using morphometric and molecular data. *Invertebrate Systematics* 23: 515–529.
- Clouse RM, General DM, Diesmos AC, Giribet G. 2011. An old lineage of Cyphophthalmi (Opiliones) discovered on Mindanao highlights the need for biogeographical research in the Philippines. *Journal of Arachnology* 39: 147–153.
- Clouse RM, Giribet G. 2007. Across Lydekker's Line first report of mite harvestmen (Opiliones : Cyphophthalmi : Stylocellidae) from New Guinea. *Invertebrate Systematics* 21: 207–227.
- **Clouse RM, Giribet G. 2010.** When Thailand was an island the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. *Journal of Biogeography* **37:** 1114–1130.
- Cooper A, Cooper RA. 1995. The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proceedings of the Royal Society of London Series B, Biological Sciences 261: 293–302.
- Crisp MD, Trewick SA, Cook LG. 2011. Hypothesis testing in biogeography. *Trends in Ecology & Evolution* 26: 66–72.
- DaSilva MB, Pinto-da-Rocha R, Giribet G. 2010. Canga renatae, a new genus and species of Cyphophthalmi from Brazilian Amazon caves (Opiliones: Neogoveidae). Zootaxa 2508: 45–55.
- **De Laet J. 2010.** A problem in POY tree searches (and its work-around) when some sequences are observed to be absent in some terminals. *Cladistics: The International Journal of the Willi Hennig Society* **26:** 453–455.
- Diniz JAF, De Marco P, Hawkins BA. 2010. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. *Insect Conservation and Diver*sity 3: 172–179.
- Drummond AJ, Ho SY, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. *PLoS Biology* 4: e88.
- Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
- Dunlop JA. 2007. Paleontology. In: Pinto-da-Rocha R, Machado G, Giribet G, eds. *Harvestmen: the biology of Opiliones*. Cambridge, MA: Harvard University Press, 247– 265.
- **Dunlop JA, Anderson LI, Kerp H, Hass H. 2003.** Preserved organs of Devonian harvestmen. *Nature* **425**: 916.

- **Dunlop JA, Anderson LI, Kerp H, Hass H. 2004.** for 2003). A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. *Transactions* of the Royal Society of Edinburgh: Earth Sciences **94:** 341– 354.
- Dunlop JA, Giribet G. 2003. The first fossil cyphophthalmid (Arachnida: Opiliones), from Bitterfeld amber, Germany. Journal of Arachnology 31: 371–378.
- **Dunlop JA, Mitov PG. 2011.** The first fossil cyphophthalmid harvestman from Baltic amber. *Arachnologische Mitteilungen* **40:** 47–54.
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32: 1792–1797.
- Edgecombe GD, Giribet G. 2008. A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda : Chilopoda) corroborated by molecular evidence. *Invertebrate Systematics* 22: 1–15.
- Eernisse DJ, Kluge AG. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. *Molecular Biology and Evolution* 10: 1170–1195.
- Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermannm NE. 2006. Novel methods improve prediction of species' distributions from occurrence data. *Ecography* 29: 129–151.
- Espeland M, Johanson KA. 2010. The effect of environmental diversification on species diversification in New Caledonian caddisflies (Insecta: Trichoptera: Hydropsychidae). *Journal of Biogeography* 37: 879–890.
- Evans ME, Smith SA, Flynn RS, Donoghue MJ. 2009. Climate, niche evolution, and diversification of the 'birdcage' evening primroses (*Oenothera*, sections *Anogra* and *Kleinia*). *American Naturalist* **173**: 225–240.
- Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG. 1996. Parsimony jackknifing outperforms neighborjoining. Cladistics: The International Journal of the Willi Hennig Society 12: 99–124.
- Forster RR. 1948. The sub-order Cyphophthalmi Simon in New Zealand. Dominion Museum Records in Entomology 1: 79–119.
- Forster RR. 1952. Supplement to the sub-order Cyphophthalmi. Dominion Museum Records in Entomology 1: 179– 211.
- Gibbs G. 2006. Ghosts of Gondwana. The history of life in New Zealand. Nelson: Craig Potton Publishing.
- Gillespie RG, Roderick GK. 2002. Arthropods on islands: colonization, speciation, and conservation. *Annual Review of Entomology* 47: 595–632.
- Giribet G. 2000. Catalogue of the Cyphophthalmi of the World (Arachnida, Opiliones). *Revista Ibérica de Arac*nología 2: 49–76.
- Giribet G. 2002. Stylocellus ramblae, a new stylocellid

(Opiliones, Cyphophthalmi) from Singapore, with a discussion of the family Stylocellidae. *Journal of Arachnology* **30**: 1–9.

- Giribet G. 2003a. *Karripurcellia*, a new pettalid genus (Arachnida : Opiliones : Cyphophthalmi) from Western Australia, with a cladistic analysis of the family Pettalidae. *Invertebrate Systematics* 17: 387–406.
- **Giribet G. 2003b.** Stability in phylogenetic formulations and its relationship to nodal support. *Systematic Biology* **52**: 554–564.
- Giribet G. 2007a. Efficient tree searches with available algorithms. *Evolutionary Bioinformatics* 3: 1–16.
- Giribet G. 2007b. Neogoveidae Shear, 1980. In: Pinto-da-Rocha R, Machado G, Giribet G, eds. *Harvestmen: the biology of Opiliones*. Cambridge, MA: Harvard University Press, 95–97.
- Giribet G. 2008. On the identity of *Pettalus cimiciformis* and *P. brevicauda* (Opiliones, Pettalidae) from Sri Lanka. *Journal of Arachnology* 36: 199–201.
- Giribet G. 2010. A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. *Acta Zoologica (Stockholm)* **91:** 11–19.
- Giribet G. 2011. Shearogovea, a new genus of Cyphophthalmi (Arachnida, Opiliones) of uncertain position from Oaxacan caves, Mexico. Breviora 528: 1–7.
- Giribet G, Boyer SL. 2002. A cladistic analysis of the cyphophthalmid genera (Opiliones, Cyphophthalmi). Journal of Arachnology 30: 110–128.
- Giribet G, Boyer SL. 2010. 'Moa's Ark' or 'Goodbye Gondwana': is the origin of New Zealand's terrestrial invertebrate fauna ancient, recent, or both? *Invertebrate Systematics* 24: 1–8.
- Giribet G, Edgecombe GD. 2006. The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede *Paralamyctes* (Chilopoda, Lithobiomorpha, Henicopidae). *Biological Journal of the Linnean Society* 89: 65–78.
- Giribet G, Edgecombe GD, Wheeler WC, Babbitt C. 2002. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. *Cladistics: The International Journal of the Willi Hennig Society* 18: 5–70.
- Giribet G, Kury AB. 2007. Phylogeny and biogeography. In: Pinto-da-Rocha R, Machado G, Giribet G, eds. *Harvestmen:* the biology of Opiliones. Cambridge, MA: Harvard University Press, 62–87.
- Giribet G, Prieto CE. 2003. A new Afrotropical Ogovea (Opiliones, Cyphophthalmi) from Cameroon, with a discussion on the taxonomic characters in the family Ogoveidae. Zootaxa 329: 1–18.
- Giribet G, Rambla M, Carranza S, Baguñà J, Riutort M, Ribera C. 1999. Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. *Molecular Phylogenetics and Evolution* 11: 296– 307.
- Giribet G, Shear WA. 2010. The genus *Siro* Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America

with a phylogenetic analysis based on molecular data and the description of four new species. *Bulletin of the Museum* of Comparative Zoology **160:** 1–33.

- Giribet G, Tsurusaki N, Boyer SL. 2006. Confirmation of the type locality and the distributional range of *Suzukielus sauteri* (Opiliones, Cyphophthalmi) in Japan. *Acta Arachnologica* 55: 87–90.
- Giribet G, Vogt L, Pérez González A, Sharma P, Kury AB. 2010. A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. *Cladistics: The International Journal of the Willi Hennig Society* 26: 408– 437.
- Goldberg J, Trewick SA, Paterson AM. 2008. Evolution of New Zealand's terrestrial fauna: a review of molecular evidence. *Philosophical Transactions of the Royal Society of London Series B, Biological Sciences* 363: 3319– 3334.
- Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Källersjö M, Farris JS. 2009. Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics: The International Journal of the Willi Hennig Society 25: 211–230.
- Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. *Cladistics: The Interna*tional Journal of the Willi Hennig Society 24: 774–786.
- Grandcolas P, Murienne J, Robillard T, DeSutter-Grandcolas L, Jourdan H, Guilbert E. 2008. New Caledonia: a very old Darwinian island? *Philosophical Transactions of the Royal Society of London Series B, Biological Sciences* 363: 3309–3317.
- Hadly EA, Spaeth PA, Li C. 2009. Niche conservatism above the species level. Proceedings of the National Academy of Sciences of the United States of America 106: 19707–19714.
- Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. *Journal of Asian Earth Sciences* 20: 353–431.
- Hansen HJ, Sørensen W. 1904. On two orders of Arachnida: Opiliones, especially the suborder Cyphophthalmi, and Ricinulei, namely the family Cryptostemmatoidae. Cambridge: Cambridge University Press.
- Heads M, Craw R. 2004. The Alpine Fault biogeographic hypothesis revisited. *Cladistics: The International Journal* of the Willi Hennig Society 20: 184–190.
- Heino J, Soininen J. 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? *Biological Conservation* 137: 78–89.
- Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW,
 Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler
 WC, Martindale MQ, Giribet G, Dunn CW. 2009. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society of London Series B, Biological Sciences 276: 4261–4270.
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for

global land areas. International Journal of Climatology 25: 1965–1978.

- Juberthie C. 1956. Une nouvelle espèce d'Opilions Sironidae de France et d'Espagne: Parasiro coiffaiti n. sp. Bulletin du Muséum National d'Histoire Naturelle, 2e série 28: 394–400.
- Juberthie C. 1958. Révision du genre Parasiro (Opilions, Sironidae) et descriptions de Parasiro minor n. sp. Bulletin du Muséum National d'Histoire Naturelle, 2e série 30: 159– 166.
- Juberthie C. 1960a. Contribution a l'étude des opilions cyphophthalmes: description de *Metasiro* gen. n. *Bulletin du Muséum National d'Histoire Naturelle, 2e série* 32: 235– 241.
- Juberthie C. 1960b. Sur la biologie d'un opilion endogé, Siro rubens Latr. (Cyphophthalmes). Comptes rendus des séances de L'Académie des Sciences 251: 1674–1676.
- Juberthie C. 1961. Étude des opilions cyphophthalmes (arachnides) du Portugal: description d'Odontosiro lusitanicus g. n., sp. n. Bulletin du Muséum National d'Histoire Naturelle, 2e série 33: 512–519.
- Juberthie C. 1962. Étude des opilions cyphophthalmes Stylocellinae du Portugal. Description de Paramiopsalis ramulosus gen. n., sp. n. Bulletin du Muséum National d'Histoire Naturelle, 2e série 34: 267–275.
- Juberthie C. 1969. Sur les opilions cyphophthalmes Stylocellinae du Gabon. *Biologia Gabonica* 5: 79–92.
- Juberthie C. 1970a. Les genres d'opilions Sironinae (Cyphophthalmes). Bulletin du Muséum National d'Histoire Naturelle, 2e série 41: 1371–1390.
- Juberthie C. 1970b. Sur Suzukielus sauteri (Roewer, 1916) opilion cyphophthalme du Japon. Revue d'Écologie et de Biologie du Sol 7: 563-569.
- Juberthie C. 1979. Un cyphophthalme nouveau d'une grotte de Nouvelle-Caledonie: *Troglosiro aelleni* n. gen., n. sp. (Opilion, Sironinae). *Revue suisse de Zoologie* 86: 221–231.
- Juberthie C, Manier JF. 1976. Les grands traits de la spermiogenese chez les opilions Comptes Rendus de la Troisième Réunion des Arachnologistes d'Expression Française. Station biologique des Eyzies. Les Eyzies: Académie de Paris, 74–82.
- Juberthie C, Manier JF. 1978. Étude ultratructurale comparée de la spermiogenèse des opilions et son intérêt phylétique. Symposium of the Zoological Society of London 42: 407–416.
- Juberthie C, Manier JF, Boissin L. 1976. Étude ultrastructurale de la double espermiogenèse chez l'opilion cyphophthalme Siro rubens Latreille. Journal de Microscopie et de Biologie Cellulaire 25: 137–148.
- Juberthie C, Massoud Z. 1976. Biogéographie, taxonomie et morphologie ultrastructurale des opilions cyphophthalmes. *Revue d'Écologie et de Biologie du Sol* 13: 219–231.
- Juberthie C, Muñoz-Cuevas A. 1970. Revision [sic] de *Chileogovea oedipus* Roewer (Opiliones: Cyphophthalmi: Sironinae). *Senckenbergiana biologica* 51: 109–118.
- Karaman IM. 2009. The taxonomical status and diversity of Balkan sironids (Opiliones, Cyphophthalmi) with descriptions of twelve new species. Zoological Journal of the Linnean Society 156: 260–318.

- Karamata S. 2006. The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwanan and Eurasian units. In: Robertson AHF, Mountrakis D, eds. *Tectonic development of the Eastern Mediterranean region*. London: Geological Society, 155–178.
- Knapp M, Mudaliar R, Havell D, Wagstaff SJ, Lockhart PJ. 2007. The drowning of New Zealand and the problem of Agathis. Systematic Biology 56: 862–870.
- Kodandaramaiah U. 2011. Tectonic calibrations in molecular dating. *Current Zoology* 57: 116–124.
- Landis CA, Campbell HJ, Begg JG, Mildenhall DC, Paterson AM, Trewick SA. 2008. The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. *Geological Magazine* 145: 173–197.
- Lawrence RF. 1931. The harvest-spiders (Opiliones) of South Africa. Annals of the South African Museum 29: 341–508.
- Lawrence RF. 1933. The harvest-spiders (Opiliones) of Natal. Annals of the Natal Museum 7: 211–241.
- Lawrence RF. 1939. A contribution to the opilionid fauna of Natal and Zululand. Annals of the Natal Museum 9: 225– 243.
- Lawrence RF. 1963. The Opiliones of the Transvaal. Annals of the Transvaal Museum 24: 275–304.
- Legg G. 1990. Parogovia pabsgarnoni, sp. n. (Arachnida, Opiliones, Cyphophthalmi) from Sierra Leone, with notes on other African species of Parogovia. Bulletin of the British Arachnological Society 8: 113–121.
- Legg G, Pabs-Garnon EB. 1989. The life history of a tropical forest cyphophthalmid from Sierra Leone (Arachnida, Opiliones). In: Haupt J, ed. Xi europäisches arachnologisches colloquium. Berlin: Technische Universität Berlin, 222–230.
- Linton EW. 2005. MacGDE: Genetic Data Environment for MacOS X, Version 2.0. Available at: http://www.msu.edu/ ~lintone/macgde/
- Marshall BA. 2011. A new species of Latia Gray, 1850 (Gastropoda: Pulmonata: Hygrophila: Chilinoidea: Latiidae) from Miocene Palaeo-lake Manuherikia, southern New Zealand, and biogeographic implications. Molluscan Research 31: 47–52.
- Marske KA, Leschen RAB, Barker GM, Buckley TR. 2009. Phylogeography and ecological niche modelling implicate coastal refugia and trans-alpine dispersal of a New Zealand fungus beetle. *Molecular Ecology* 18: 5126–5142.
- Márton E, Cosovic V, Moro A, Zvocak S. 2008. The motion of Adria during the Late Jurassic and Cretaceous: new paleomagnetic results from stable Istria. *Tectonophysics* **454:** 44–53.
- **Murienne J. 2009.** Testing biodiversity hypotheses in New Caledonia using phylogenetics. *Journal of Biogeography* **36:** 1433–1434.
- Murienne J, Edgecombe GD, Giribet G. 2010a. Including secondary structure, fossils and molecular dating in the centipede tree of life. *Molecular Phylogenetics and Evolution* 57: 301–313.

- Murienne J, Edgecombe GD, Giribet G. 2011. Comparative phylogeography of the centipedes *Cryptops pictus* and *C. niuensis* in New Caledonia, Fiji and Vanuatu. *Organisms Diversity & Evolution* 11: 61–74.
- Murienne J, Giribet G. 2009. The Iberian Peninsula: ancient history of a hot spot of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi: Sironidae) diversity. Zoological Journal of the Linnean Society 156: 785–800.
- Murienne J, Grandcolas P, Piulachs MD, Bellés X, D'Haese C, Legendre F, Pellens R, Guilbert E. 2005. Evolution of a shaky piece of Gondwana: is local endemism recent in New Caledonia? *Cladistics: The International Journal of the Willi Hennig Society* 21: 2–7.
- Murienne J, Karaman I, Giribet G. 2010b. Explosive evolution of an ancient group of Cyphophthalmi (Arachnida: Opiliones) in the Balkan Peninsula. *Journal of Biogeography* 37: 90–102.
- Murienne J, Pellens R, Budinoff R, Wheeler WC, Grandcolas P. 2008. Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypotheses of diversification. Cladistics: The International Journal of the Willi Hennig Society 24: 802–812.
- Nix HA. 1986. A biogeographic analysis of Australian elapid snakes. In: Longmore R, ed. Australian flora and fauna series number 7. Atlas of elapid snakes of Australia. Canberra: Australian Government Publishing Service, 4–15.
- Nixon KC, Carpenter JM. 1996. On simultaneous analysis. Cladistics: The International Journal of the Willi Hennig Society 12: 221–241.
- Page TJ, Baker AM, Cook BD, Hughes JM. 2005. Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the genus *Paratya* (Atyidae). *Journal of Biogeography* 32: 581–593.
- Pamic J, Gusic I, Jelaska V. 1998. Geodynamic evolution of the Central Dinarides. *Tectonophysics* 297: 251–268.
- Paris JP, Andreieff P, Coudray J. 1979. Sur l'âge Eocène supérieur de la mise en place de la nappe ophiolitique de Nouvelle-Calédonie. Comptes rendus de l'Académie des sciences, série B 288: 1659–1661.
- Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102–117.
- Pelletier B. 2006. Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In: Payri C, Richer de Forges B, eds. *Compendium* of marine species from New Caledonia. Doc. Sci. Tech. IRD. IRD, II 7, 17–30.
- Phillips MJ, Gibb GC, Crimp EA, Penny D. 2010. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Systematic Biology 59: 90–107.
- Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. *Ecological Modelling* 190: 231–259.
- Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography* 31: 161–175.

- **Pocock RI. 1897.** Descriptions of some new Oriental Opiliones recently received by the British Museum. *Annals and Magazine of Natural History, series 6* **19:** 283–292.
- Poinar G. 2008. Palaeosiro burmanicum n. gen., n. sp., a fossil Cyphophthalmi (Arachnida: Opiliones: Sironidae) in Early Cretaceous Burmese amber. In: Makarov SE, Dimitrijevic RN, eds. Advances in arachnology and developmental biology. Papers dedicated to Prof. Dr. Bozidar Curcic. Vienna, Belgrade, Sofia: Faculty of Life Sciences, University of Vienna, and Serbian Academy of Sciences and Arts, 267–274.
- **Posada D. 2005.** *Modeltest*, Version 3.7. Available at: http://darwin.uvigo.es
- Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. *Bioinformatics (Oxford, England)* 14: 817–818.
- Pyron RA. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60: 466–481.
- Rambaut A, Drummond AJ. 2007. Tracer, Version 1.5. Available at: http://beast.bio.ed.ac.uk/Tracer
- Rambla M. 1974. Consideraciones sobre la biogeografía de los Opiliones de la Península Ibérica. *Miscellanea Alcobé* Special volume: 45–56.
- Rambla M. 1991. A new Stylocellus from some caves of Borneo, Malaysia (Opiliones, Cyphophthalmi, Stylocellidae). Mémoires de Biospéologie 18: 227–232.
- Rambla M. 1994. Un nouveau Cyphophthalme du sud-est asiatique, Fangensis leclerci n. gen. n. sp. (Opiliones, Sironidae). Mémoires de Biospéologie 21: 109–114.
- Rambla M, Fontarnau R. 1984. Les Opilions Cyphophthalmes (Arachnida) de la faune ibérique: I. Sur Paramiopsalis ramulosus Juberthie, 1962. Revue Arachnologique 5: 145–152.
- Rambla M, Fontarnau R. 1986. Les Opilions Cyphophthalmes (Arachnida) de la faune ibérique: III. Sur Odontosiro lusitanicus Juberthie, 1961. Mémoirs de la Société royale belge d'Entomologie 33: 171–178.
- Raven PH, Axelrod DI. 1972. Plate tectonics and Australasian paleobiogeography. Science 176: 1379–1386.
- Ree RH, Moore BR, Webb CO, Donoghue MJ. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. *Evolution* **59**: 2299–2311.
- Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. *Systematic Biology* 57: 4–14.
- Roewer CF. 1916. 7 neue Opilioniden des Zoolog. Museums in Berlin. Archiv f
 ür Naturgeschichte 81: 6–13.
- Roewer CF. 1961. Opiliones aus Süd-Chile. Senckenbergiana biologica 42: 99–105.
- Sanmartín I. 2002. A paleogeographic history of the Southern Hemisphere. Uppsala: Uppsala University.
- Sanmartín I, Ronquist F. 2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53: 216–243.
- Scheibner C, Speijer RP. 2008. Late Paleocene-early Eocene Tethyan carbonate platform evolution – a response

to long- and short-term paleoclimatic change. *Earth Science Reviews* **90:** 71–102.

- Schoener TW. 1968. The *Anolis* lizards of Bimini: resource partitioning in a complex fauna. *Ecology* 49: 704–726.
- Schwendinger PJ, Giribet G. 2005. The systematics of the south-east Asian genus *Fangensis* Rambla (Opiliones : Cyphophthalmi : Stylocellidae). *Invertebrate Systematics* 19: 297–323.
- Sharma P, Giribet G. 2005. A new *Troglosiro* species (Opiliones, Cyphophthalmi, Troglosironidae) from New Caledonia. *Zootaxa* 1053: 47–60.
- Sharma P, Giribet G. 2006. A new Pettalus species (Opiliones, Cyphophthalmi, Pettalidae) from Sri Lanka with a discussion on the evolution of eyes in Cyphophthalmi. Journal of Arachnology 34: 331-341.
- Sharma P, Giribet G. 2009a. A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi). *Cladistics: The International Journal of the Willi Hennig Society* 25: 279–294.
- Sharma P, Karunarathna I, Giribet G. 2009. On the endemic Sri Lankan genus *Pettalus* (Opiliones, Cyphophthalmi, Pettalidae) with the description of a new species and a discussion on the magnitude of its diversity. *Journal of Arachnology* 37: 60–67.
- Sharma PP, Giribet G. 2009b. The family Troglosironidae (Opiliones: Cyphophthalmi) of New Caledonia Zoologia Neocaledonica 7. Biodiversity Studies in New Caledonia. Paris: 196, 83–123.
- Sharma PP, Giribet G. 2011. The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). *Invertebrate Systematics* 25: 106–142.
- Sharma PP, Vahtera V, Kawauchi GY, Giribet G. 2011. Running wILD: the case for exploring mixed parameter sets in sensitivity analysis. *Cladistics: The International Journal of the Willi Hennig Society* 27: 538–549.
- Shear WA. 1977. The opilionid genus Neogovea Hinton, with a description of the first troglobitic cyphophthalmid from the western hemisphere (Opiliones, Cyphophthalmi). Journal of Arachnology 3: 165-175.
- Shear WA. 1979a. Huitaca ventralis, n. gen., n. sp., with a description of a gland complex new to cyphophthalmids (Opiliones, Cyphophthalmi). Journal of Arachnology 7: 237– 243.
- Shear WA. 1979b. Stylocellus sedgwicki n.sp., from Penang Island, Malaysia (Opiliones, Cyphophthalmida, Stylocellidae). Bulletin of the British Arachnological Society 4: 356– 360.
- Shear WA. 1980. A review of the Cyphophthalmi of the United States and Mexico, with a proposed reclassification of the suborder (Arachnida, Opiliones). *American Museum Novitates* 2705: 1–34.
- Shear WA. 1985. Marwe coarctata, a remarkable new cyphophthalmid from a limestone cave in Kenya (Arachnida, Opiliones). American Museum Novitates 2830: 1–6.
- Shear WA. 1993a. The genus Chileogovea (Opiliones,

Cyphophthalmi, Petallidae [sic]). Journal of Arachnology **21:** 73–78.

- Shear WA. 1993b. The genus *Troglosiro* and the new family Troglosironidae (Opiliones, Cyphophthalmi). *Journal of Arachnology* 21: 81–90.
- Shear WA. 1993c. New species in the opilionid genus Stylocellus from Malaysia, Indonesia and the Philippines (Opiliones, Cyphophthalmi, Stylocellidae). Bulletin of the British Arachnological Society 9: 174–188.
- Shear WA, Gruber J. 1996. Cyphophthalmid opilionids new to Madagascar: two new genera (Opiliones, Cyphophthalmi, ?Pettalidae). Bulletin of the British Arachnological Society 10: 181–186.
- Shultz JW, Regier JC. 2001. Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear proteinencoding genes supports monophyly of Palpatores. *Journal* of Arachnology 29: 189–200.
- Simon E. 1872. Notice sur les Arachnides cavernicoles et hypogés. Annales de la Société entomologique de France, 5e série 2: 215–244.
- Smith SA, Donoghue MJ. 2010. Combining historical biogeography with niche modeling in the *Caprifolium* clade of *Lonicera* (Caprifoliaceae, Dipsacales). *Systematic Biology* 59: 322–341.
- de Souza Muñoz ME, De Giovanni R, Ferreira de Siqueira M, Sutton T, Brewer P, Scachetti Pereira R, Llange Canhos DA, Perez Canhos V. 2011. openModeller: a generic approach to species' potential distribution modelling. *Geoinformatica* 15: 111–135.
- Spagna JC, Álvarez-Padilla F. 2008. Finding an upper limit for gap costs in direct optimization parsimony. *Cladistics: The International Journal of the Willi Hennig Society* 24: 787–801.
- Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics (Oxford, England)* 22: 2688– 2690.
- Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758–771.
- Suzuki S, Ohrui M. 1972. Opiliones of the Izu Peninsula, Central Japan. Acta Arachnologica 24: 41–50. [In Japanese.
- Thorell T. 1882–1883. Descrizione di alcuni Aracnidi inferiori dell'Arcipelago Malese. Annali del Museo civico di Storia naturale di Genova 18: 21–69.
- Thorell T. 1890–1891. Aracnidi di Pinang raccolti nel 1889 dai Sig.ri L. Loria e L. Fea. Annali del Museo civico di Storia naturale di Genova (Ser. 2a) 10: 269–383.
- Trewick SA, Paterson AM, Campbell HJ. 2007. Hello New Zealand. Journal of Biogeography 34: 1-6.
- Varón A, Sy Vinh L, Wheeler WC. 2010. POY version 4: phylogenetic analysis using dynamic homologies. *Cladistics: The International Journal of the Willi Hennig Society* 26: 72–85.
- Vlahovic I, Tisljar J, Velic I, Maticec D. 2005. Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. *Palaeogeography Palaeoclimatology Palaeoecology* 220: 333–360.

- Wallis GP, Trewick SA. 2009. New Zealand phylogeography: evolution on a small continent. *Molecular Ecology* 18: 3548– 3580.
- Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. *Evolution* **62**: 2868–2883.
- Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. *Ecography* 33: 607–611.
- Waters JM, Craw D. 2006. Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55: 351–356.
- Westwood JO. 1874. Thesaurus entomologicus oxoniensis; or, illustrations of new, rare, and interesting insects, for the most part contained in the collections presented to the University of Oxford by the Rev. F.W. Hope . . . with forty plates from drawings by the author. Oxford: Clarendon Press.

- Wheeler WC. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. *Systematic Biology* 44: 321–331.
- Wheeler WC. 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? *Cladistics: The International Journal of the Willi Hennig Society* 12: 1–9.
- Wheeler WC. 2005. Alignment, dynamic homology, and optimization. In: Albert VA, ed. *Parsimony, phylogeny, and genomics*. Oxford: Oxford University Press, 71–80.
- Wiens JJ. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528–538.
- Wiens JJ. 2009. Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Systematic Biology 58: 87–99.
- Wortmann UG, Weissert H, Funk H, Hauck J. 2001. Alpine plate kinematics revisited: the Adria problem. *Tectonics* 20: 134–147.

SUPPORTING INFORMATION

Additional Supporting information may be found in the online version of this article:

Appendix S1. Specimen sampling. Detailed accounts of specimens and collecting data.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Data partition	Number of positions after treatment with MUSCLE	Number of positions after treatment with GBLOCKS
16S rRNA	598	403
18S rRNA	1769	1769
28S rRNA	2267	2016
COI	820	657
Histone H3	327	327

APPENDIX

Table A1. Size of data matrices for each gene before and subsequent to treatment with GBLOCKS

Table A2. Lagrange analyses.

Subtree: Pettalidae

- Areas:
- (a) South Africa
- (b) Chile
- (c) Eastern Australia
- (d) Western Australia
- (e) New Zealand, Australian plate
- (f) New Zealand, Pacific plate
- (g) Sri Lanka
- Geological intervals:
- (1) 0–35 Ma (disconnection of all landmasses)
- (2) 35-60 Ma (fragmentation of transantarctic connections between Australian plate and temperate South America)
- (3) 60-75 Ma (disconnection of Australia and Zealandia)
- (4) 75–110 Ma (disconnection of South America and West Africa)
- (5) 110–120 Ma (Sri Lanka + Madagascar + India separated from Africa)
- (6) 120-167 Ma (East Gondwana separated from West Gondwana)
- (7) 167–184 Ma (connection of all landmasses)

Subtree: Sternophthalmi

- Areas:
- (a) Southeast USA
- (b) Amazonia
- (c) Tropical West Africa
- (d) New Caledonia
- Geological intervals:
- (1) 0–35 Ma (disconnection of all three landmasses)
- (2) 35–45 Ma (submersion of New Caledonia)
- (3) 45–60 Ma (New Caledonia emergent and disconnected)
- (4) 60–75 Ma (submersion of New Caledonia)
- (5) 75–110 Ma (transantarctic connections between the Australian plate and temperate South America; disconnection of South America and West Africa)
- (6) 110–206 Ma (connection of all landmasses)

Subtree: Boreophthalmi

Areas:

- (a) Thai-Malay Peninsula
- (b) Eastern Himalayas
- (c) Borneo
- (d) Indo-Malay Archipelago
- (e) North America
- (f) Western Europe
- (g) Mediterranean
- (h) Balkans
- (i) Iberia
- (j) Japan

Geological intervals

0-35 Ma (separation of Mediterranean plate from Western Europe; separation of Japan from Eurasia; connection of Iberia to Eurasia) 35-45 Ma (separation of Borneo and Indo-Malay Archipelago from Eurasia)

- 45-60 Ma (Balkans connected to Western Europe; Iberia connected to Mediterranean plate, Balkans and Japan)
- 60-75 Ma (Iberia separated from Mediterranean plate, Balkans and Japan; North America separated from Western Europe; emergence of Indo-Malay Archipelago)
- 75-110 Ma (Mediterranean plate separated from North America; Iberia connected to western Laurasia; Balkans separated from North America and Western Europe)
- 110-120 Ma (Iberia disconnected from other landmasses; Western Europe, Mediterranean plate and North America separated from Eastern Laurasia; emergence of Borneo; Indo-Malay Archipelago nonexistent)
- 120–180 Ma (Iberia disconnected from other landmasses; Western Europe, Mediterranean plate and North America separated from Eastern Laurasia; Borneo and Indo-Malay Archipelago nonexistent)

180–250 Ma (Thai-Malay Peninsula disconnected from other landmasses; Eastern Himalayas disconnected from North America, Western Europe and Iberia; Borneo and Indo-Malay Archipelago nonexistent)

250-296 Ma (Borneo and Indo-Malay Archipelago nonexistent; other landmasses connected)