

# Biological Assessment of

# **Mosaic Fertilizer, LLC – Bartow Chemical Complex**

Polk County
NPDES #FL0001589

Sampled April 21, 2008

October 2008

# Biology Section Bureau of Laboratories Division of Environmental Assessment and Restoration

Quality Manual No. 870346G

NELAC Certification No. E31780

# Florida Department of Environmental Protection Fifth Year Inspection Summary

Discharger: Mosaic Fertilizer, LLC – Bartow Chemical Complex

Physical Address: 3200 Highway 60 West, Bartow, FL

County: Polk

NPDES Number: FL0001589

Permit Expiration: February 16, 2009

# Toxics Sampling Inspection (XSI)

Date Sampled: April 21, 2008

Results: Bromacil and hexazinone were detected in EFF-001 at levels above the minimum detection limit (MDL) but below the practical quantitation limit (PQL). There is no Class III Water Quality Criterion for either of these compounds. Iron detected in EFF-002 (1050 μg/L) was in violation of Class III Water Quality Criteria (62-302.530(38) and the facility's permit limit. Iron was also detected in EFF-001 and at both the Control and Test Sites at levels that met Class III Water Quality Criteria and permit limits. Aluminum was detected at the Test Site, but there is no Water Quality Criterion for aluminum. Other metals detected in EFF-001, EFF-002 and the Control and Test Sites were in compliance with Class III Water Quality Criteria and/or permit limits. Radium<sup>226</sup> + Radium<sup>228</sup> (PCI/L) in EFF-002 complied with facility permit limits.

# Compliance Biomonitoring Inspection (CBI)

Date Sampled: April 21, 2008

Results: Neither effluent sample was acutely toxic to the fish, Cyprinella leedsi, or to the water flea, Ceriodaphnia

dubia, during the 48-hour acute bioassays.

# Water Quality Inspection (WQI)

Date Sampled: April 21, 2008

Results: Nutrient levels in EFF-001 may be contributing to elevated nutrient levels at the Test Site when compared to the Control Site. However, there appears to be an additional source of nutrient input at the Test Site which is elevating the ortho-phosphorus (9.6 mg/L) and total phosphate (10 mg/L) levels as much as 10 times the levels in EFF-001 (1.1 and 1.4 mg/L OP and TP, respectively). Nutrient levels in EFF-002 were also elevated, but that effluent does not directly affect the Test Site in Skinned Sapling Creek. Dissolved oxygen (D.O.), pH, and temperature at the Control and Test Sites complied with Class III Water Quality Criteria, but D.O. could not be measured in the effluents due to equipment malfunction. Temperature, pH, total suspended solids (TSS), fluoride, and sulfate in EFF-001 and temperature and pH of EFF-002 complied with facility permit limits and Class III Water Quality Criteria. Although the high conductivity of EFF-001 (698 µmhos/cm) contributed to the elevated conductivity of the Test Site

(744 μmhos/cm), this does not constitute a violation of Class III Water Quality Criteria (62-302.530(22) F.A.C.) since it did not exceed 1275 μmhos/cm. Stormwater runoff in the area and groundwater seepage from a neighboring gypsum stack may also be contributing to the elevated conductivity at the Test Site. AGP values of both effluents and of the Control and Test Sites exceeded the 5.0 mg dry wt/L "problem threshold". The AGP value of the Test Site (125.0 mg dry wt/L) was more than ten times higher than the AGP value of the Control Site (11.7 mg dry wt/L) and almost three times higher than the AGP value of EFF-001 (45.9 mg dry wt/L), which again indicates an additional source of nutrient input at the Test Site other than the effluent.

# Impact Bioassessment Inspection (IBI)

Date Sampled: April 21, 2008

Results: Differences in the periphyton and phytoplankton communities, with the exception of phytoplankton algal density, could not be exclusively attributed to the facility discharge because of the evidence that there are other sources of nutrient input in the area. Phytoplankton algal density at the Test Site was more than 100 times that of the Control Site, reflecting the higher nutrients at that site. Habitat assessment scores from the reconnaissance trip on March 6, 2008 placed the Control Site in the "Optimal" category (138) and the Test Site in the "Suboptimal" category (112). Quantitative measures of benthic macroinvertebrate assemblages from Hester-Dendy samplers indicated a violation of the Class III Water Quality Biological Integrity Criterion (62-302.530(10) F.A.C.) at the Test Site when compared to the Control Site. The Test Site Shannon-Weaver Diversity was 1.87 while the Control Site Shannon-Weaver Diversity was 4.07. Qualitative measures of benthic macroinvertebrate assemblages from dipnet samples also showed degradation at the Test Site when compared to the Control Site. The Control Site Stream Condition Index (SCI) score of 70A placed it in Category 1, the highest category; while the Test Site SCI score (36A) placed it on the low end of Category 2. The Test Site SCI samples contained no ephemeropteran taxa, no long-lived taxa, and no sensitive taxa, all of which indicate healthier conditions. The Test Site SCI samples also contained a much larger percentage of very tolerant taxa (oligochaetes and some dipterans) than the Control Site.

Biological assessments are prepared by FDEP staff to provide information for review of NPDES permit renewal applications. Biological assessments, in conjunction with other information concerning the subject facility and its receiving-water body, are used to determine appropriate permit conditions

### Introduction

The Mosaic Fertilizer, LLC - Bartow Chemical Complex is located in Polk County, Florida (Appendix A). This facility is a phosphate chemical fertilizer manufacturing facility with phosphogypsum stacks. Activities at this plant include the production of sulfuric acid, phosphoric acid, fluorosilicic acid, ammoniated phosphate and micronutrient added fertilizers (see Facility Summary in Appendix B). Phosphogypsum is produced as a byproduct of the phosphoric acid production and is disposed of by stacking in the South Phosphogypsum Stack (approximately 575 acres) located on the south side of Highway 60 (see map Appendix A). When it is necessary to discharge process water, treatment occurs by two-stage liming and acidulation. Spray aeration is used for ammonia removal. Outfall D-001 discharges excess non-contact process wastewater and stormwater to Skinned Sapling Creek (Class III Fresh waters) and essentially forms the headwaters of this stream. Outfall D-002 discharges treated process wastewater and stormwater to an unnamed collection ditch that flows into the Mosaic Fertilizer, LLC Noralyn Mine water recirculation system from where it can be released to the Peace River (Class III Fresh waters) through any one of several outfalls.

The facility has the potential for ground water discharges. Therefore, a Ground Water Monitoring Plan (GWMP), extended Horizontal Zone of Discharge, and Vertical Zones of Discharge have been approved for this site to address potential impacts to the underlying aquifer systems. Ground water monitoring conditions authorized under Consent Order No. 90-1541 are part of the facility's permit and include installation of soilbentonite cut-off walls designed to contain off-site migration of contaminants. The facility is also in the process of getting a Reverse Osmosis treatment system.

Surface Water Quality Criteria and facility permit limits are listed in Table 1.

According to the facility's monthly discharge monitoring reports, the plant has had no violations of permit limits in the past year (Appendix B).

### **Methods**

The purpose of this investigation was to determine the potential effects of the facility's effluent on the biota of the receiving waters. Chemical and biological comparisons were made between a Control Site (located in Little Fishhawk Creek approximately 15 miles from the discharge) and a Test Site (located in Skinned Sapling Creek approximately 2 miles downstream of the discharge). Since the headwaters of Skinned Sapling Creek are essentially formed by the discharge from D-001 and stormwater runoff, it was not possible to find a Control Site upstream from the discharge. A Test Site closer to the outfall could not be found because the upper portions of Skinned Sapling Creek were inaccessible due to overgrown vegetation and alligators. As a result, the Test Site is also under the potential influence of stormwater runoff during rainfall events from a sulfuric acid plant area and occasional runoff from a nutrient enriched lake in the area as well as groundwater seepage from the Mulberry Gypsum Stack to the north of this site (personal communication, Jacki Champion). Seepage from the Mulberry Gypsum stack was documented in a Contamination Assessment Report ("Contamination Assessment in Area outside existing Cut-off Wall", December, 1999) prepared by Ardaman & Associates, Inc. for Mulberry Phosphates, Inc. and submitted to FDEP. A slurry wall was installed to prevent the seepage, but it has not functioned as intended. The lake is locally known as South Pool, and is most likely an old mine cut. Detailed methods and their relationship to Florida Administrative Code are given in Appendix C.

All field and laboratory biological methods followed Biology Section Standard Operating Procedures (SOPs, see http://www.floridadep.org/labs/qa/2002sops.htm for details) and met FDEP quality assurance/quality control standards (see <a href="http://www.floridadep.org/labs/qa/index.htm">http://www.floridadep.org/labs/qa/index.htm</a>).

The following were involved in this investigation: Jacki Champion and Scott Rose (FDEP Phosphate Management, Bureau of Mining and Minerals Regulation), and FDEP Central Laboratory in Tallahassee. See Appendix D for the chain of custody form (sample submittal form). The report was reviewed by District representatives and the Point Source Studies Review Committee (Jennifer Paris, Nancy Ross, and Michael Tanski).

### **Results and Discussion**

• Specific chemical results are reported in Tables 1 and 2, and a complete list of chemical analytes can be reviewed in Appendix E. Bromacil and hexazinone were detected in EFF-001 at levels above the minimum detection limit (MDL) but below the practical quantitation limit (PQL). There is no Class III Water Quality Criterion for either substance. Iron detected in EFF-002 (1050 µg/L) was in violation of Class III Water Quality Criteria (62-302.530(38) F.A.C.) and the facility's permit limit. Iron was also detected in EFF-001 and at both the Control and Test Sites at levels that complied with facility permit limits and/or Class III Water Quality Criteria (62-302.530 F.A.C). Aluminum was detected at the Test Site, but there is no Water Quality Criterion for aluminum. Arsenic, nickel, and selenium were detected in EFF-002 at levels that complied with Class III Water Quality Criteria and/or facility permit limits. Cadmium detected at the Control Site and arsenic, cadmium, and nickel detected at the Test Site were detected at levels that complied with Class III Water Quality Criteria. All other metals detected in EFF-001,

Table 1. Effluent limits, Class III Freshwater Criteria and chemical, microbiological and toxicological data.

| Mosaic Fertilizer, LLC - Bartow Chemical Plant | Class III<br>Criteria | Effluent<br>Limits<br>EFF-001 | EFF-001     | Effluent<br>Limits<br>EFF-002 | EFF-002  | Control Site | Test Site |
|------------------------------------------------|-----------------------|-------------------------------|-------------|-------------------------------|----------|--------------|-----------|
| Organic Constituents (µg/L)                    |                       |                               |             |                               |          |              |           |
| Bromacil                                       | -                     | -                             | 0.21 I      | -                             | -        | -            | -         |
| Hexazinone                                     | -                     | -                             | 0.33 I      | -                             | _        | -            | -         |
| Nutrients (mg/L)                               | •                     | •                             |             | •                             |          |              | •         |
| Ortho-phosphate                                | -                     | Report                        | 1.1         | Report                        | 3.5      | 0.37         | 9.6       |
| Total Phosphorus                               | -                     | ≤ 20.0 s                      | 1.4         | ≤ 20.0 s                      | 4.1      | 0.44         | 10        |
| Total Ammonia                                  | -                     | -                             | 0.9         | -                             | 0.3      | 0.017 I      | 0.54      |
| Un-ionized Ammonia                             | ≤ 0.02 s              | -                             | ≤ 0.02 c    | ≤ 0.02 s                      | ≤ 0.02 c | ≤ 0.02 c     | ≤ 0.02 c  |
| Nitrate and Nitrite                            | -                     | -                             | 0.099       | -                             | 2.5      | 0.12         | 0.99      |
| Total Kjeldahl Nitrogen                        | -                     | -                             | 2.4         | -                             | 0.89     | 0.31         | 2         |
| Organic Nitrogen                               | -                     | -                             | 1.5 c       | -                             | 0.59 c   | 0.293 c      | 1.46 c    |
| Total Nitrogen                                 | -                     | Report                        | 2.499 c     | Report                        | 3.39 c   | 0.43 c       | 2.99 c    |
| General Physical and Chemical Parameters       | -                     |                               |             |                               |          |              | -         |
| Habitat Assessment                             | -                     | -                             | -           | -                             | -        | 138          | 112       |
| Dissolved Oxygen (mg/L)                        | ≥ 5.0                 | ≥ 5.0                         | _ ^         | ≥ 5.0                         | _ ^      | 8.7          | 5.8       |
| pH (SU)                                        | 6.0 - 8.5             | 6.0 - 8.5                     | 7.0         | 6.0 - 8.5                     | 6.7      | 7.4          | 6.4       |
| Conductivity (µmhos/cm)                        | ≤ 1,275               | ≤ 1,275                       | 698         | ≤ 1,275 *                     | 1033     | 217          | 744       |
| Temperature (°C)                               | -                     | Report                        | 23.8        | Report                        | 23.1     | 19.7         | 20.5      |
| Salinity                                       | -                     | -                             | ≤ 0.35 c    | -                             | ≤ 0.53 c | ≤ 0.12 c     | ≤ 0.40 c  |
| Sample Depth (m)                               | -                     | -                             | 0           | -                             | 0        | 0.2          | 0.2       |
| Total Residual Chlorine (mg/L)                 | ≤ 0.01                | -                             | 0           | -                             | 0        | 0            | 0         |
| Chlorophyll a (µg/L) - Corrected               | -                     | -                             | 66          | -                             | 4.5      | 0.7 I        | 44        |
| Phaeophytin (µg/L)                             | -                     | -                             | 6.6         | -                             | 2.0      | 0.68 I       | 20        |
| Total Suspended Solids (mg/L)                  | -                     | 150 s                         | 12 I        | -                             | 6 I      | 1            | -         |
| Total Dissolved Solids (mg/L)                  | =                     | -                             | 446 A       | -                             | 689      | 1            | -         |
| Turbidity (NTU)                                | < 29 t                | Report                        | ı           | -                             | -        | 1.6          | 11        |
| CBOD, 5 day (mg/L), N - inhibited              | =                     | -                             | 3.5         | -                             | 0.3 I    | -            | -         |
| Oils and Greases (mg/L)                        | ≤ 5.0                 | -                             | 2.8 I       | -                             | 1.7 U    | 1            | -         |
| Chloride (mg/L)                                | -                     | -                             | 20          | -                             | 23       | -            | -         |
| Cyanide (µg/L)                                 | ≤ 5.2                 | -                             | -           | -                             | -        | -            | -         |
| Fluoride (mg/L)                                | ≤ 10.0                | ≤ 10.0                        | 1.2         | ≤ 10.0                        | 2.5      | 0.29         | 3.4       |
| Sodium (mg/L)                                  | -                     | -                             | 47.3        | Report                        | 125      | 14.6         | 60.7 A    |
| Sulfate (mg/L)                                 | -                     | Report                        | 210         | Report                        | 410      | 11           | 280       |
| Alpha, Total (pCi/L)                           | ≤ 15                  | -                             | 1.3 U       | ≤ 15                          | 1.8      | -            | -         |
| Alpha-Counting Error (pCi/L)                   | -                     | -                             | 0.8         | -                             | 1.2      | -            | -         |
| Radium 226 (pCi/L)                             | -                     | -                             | 0.5 €       | -                             | 1 €      | -            | -         |
| Radium 226-Counting Error (pCi/L)              | -                     | -                             | 0.1         | -                             | 0.2      | -            | -         |
| Radium 228 (pCi/L)                             | -                     | -                             | 0.9 U       | -                             | 0.8 €    | -            | -         |
| Radium 228-Counting Error (pCi/L)              | -                     | -                             | 0.6         | -                             | 0.6      | -            | -         |
| Radium 226 + 228 (pCi/L)                       | ≤ 5                   | -                             | 0.5 c€      | ≤ 5                           | 1.8 c€   | -            | -         |
| Flow (MGD)                                     | -                     | Report                        | 0.32        | Report                        | 1.32     | -            | -         |
| Hardness (mg CaCO <sub>3</sub> )               | -                     |                               | 261.34 c    | Report                        | 254.06 c | 71.90 c      | 255.09 с  |
| Toxicity (48-hour acute screening bioassay     | , percent mor         | ality in 100                  | % effluent) |                               |          |              |           |
| Bioassay - Water flea (Ceriodaphnia dubia)     |                       | ≤ 20                          | 0           | ≤ 20                          | 0        | -            | -         |
| Bioassay - Fish (Cyprinella leedsi)            | -                     | ≤ 20                          | 0           | ≤ 20                          | 0        | -            | -         |
|                                                |                       |                               |             |                               |          |              | •         |

### Value exceeds the Class III Water Quality Criteria or permit limits

- ^ Dissolved oxygen not measured due to loss of membrane on probe.
- € Analyte detected in sample and in equipment blank.
- \* Limit when not discharging process water. Conductivity limit is ≤ 6000 μmhos/cm when discharging process water.
- c Value is calculated
- s Single sample
- t Shall not exceed 29 NTUs above background
- A Value reported is the mean of two or more determinations
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
- U Material analyzed for but not detected; value reported is the method detection limit

EFF-002, the Control Site or the Test Site were detected at levels above the MDL but below the PQL, which complied with facility permit limits and/or Class III Water Quality Criteria. Radium<sup>226</sup> + Radium<sup>228</sup> (PCI/L) in EFF-002 complied with facility permit limits.

• Dissolved oxygen (D.O.), pH, and temperature at the Control and Test

Sites complied with Class III Water Quality Criteria. D.O. could not be measured in either of the effluents due to equipment malfunction. Temperature, pH, total suspended solids (TSS), fluoride, and sulfate in EFF-001 and temperature and pH of EFF-002 complied with facility permit limits and Class III Water Quality Criteria (Table 1, 62-302.530 F.A.C). Although the high conduc-

tivity of EFF-001 (698  $\mu$ mhos/cm) contributed to the elevated conductivity of the Test Site (744  $\mu$ mhos/cm), this does not constitute a violation of the Class III Water Quality Criterion (62-302.530(22) F.A.C.) since it did not exceed 1275  $\mu$ mhos/cm. There may also be other inputs from surrounding mining operations that contribute to the elevated conductivity at the Test Site.

Table 2. Effluent limits, Class III Freshwater Criteria and metals data. Class III Criteria based on hardness are presented individually for each site based on hardness at that site.

| Mosaid Fertilizer, LLC -<br>Bartow Chemical Plant | EFF-001<br>Class III<br>Criteria | EFF-001<br>Limits | EFF-001 | EFF-002 Class<br>III Criteria | EFF-002<br>Limits | EFF-002 | Control Site<br>Class III<br>Criteria | Control Site | Test Site<br>Class III<br>Criteria | Test Site |
|---------------------------------------------------|----------------------------------|-------------------|---------|-------------------------------|-------------------|---------|---------------------------------------|--------------|------------------------------------|-----------|
| Metals (µg/L unless other                         | erwise noted                     | d)                |         |                               |                   |         |                                       |              |                                    |           |
| Aluminum                                          | -                                | -                 | 60 U    | -                             | -                 | 90 I    | -                                     | 94 I         | -                                  | 540 A     |
| Arsenic                                           | ≤ 50                             | -                 | 1.7 I   | ≤ 50                          | ≤ 50              | 3.2     | ≤ 50                                  | 0.52 I       | ≤ 50                               | 2.9 A     |
| Cadmium                                           | ≤ 0.6 b                          | -                 | 0.02 U  | ≤ 0.54 b                      | ≤ 0.54 b          | 0.02 U  | ≤ 0.21 b                              | 0.11         | ≤ 0.54 b                           | 0.15 A    |
| Calcium (mg/L)                                    | -                                | -                 | 66.4    | -                             | -                 | 62      | -                                     | 18.9         | -                                  | 70 A      |
| Chromium III                                      | ≤ 189.3 b                        | -                 | 1 U     | ≤ 184.95 b                    | ≤ 184.95 b        | 1.2 I   | ≤ 65.78 b                             | 1 U          | ≤ 185.56 b                         | 2.3 I     |
| Chromium VI                                       | -                                | -                 | -       | ≤ 11                          | ≤ 11              | -       | -                                     | -            | -                                  | -         |
| Copper                                            | ≤ 21.2 b                         | -                 | 0.5 U   | ≤ 20.69 b                     | ≤ 20.69 b         | 0.5 U   | ≤ 7.04 b                              | 1.2 l*       | ≤ 20.77 b                          | 0.63 I*   |
| Iron                                              | ≤ 1,000                          | -                 | 480     | ≤ 1,000                       | ≤ 1,000           | 1050    | ≤ 1,000                               | 360          | ≤ 1,000                            | 680 A     |
| Lead                                              | ≤ 10.8 b                         | -                 | 0.2 U   | ≤ 10.43 b                     | ≤ 10.43 b         | 0.2 U   | ≤ 2.09 b                              | 0.2 U        | ≤ 10.48 b                          | 0.78 I    |
| Magnesium (mg/L)                                  | -                                | -                 | 23.2    | -                             | -                 | 24.1    | -                                     | 6            | -                                  | 19.5 A    |
| Nickel                                            | ≤ 117.6 b                        | -                 | 0.35 I  | ≤ 114.80 b                    | -                 | 3.65    | ≤ 39.46 b                             | 0.43 I       | ≤ 115.19 b                         | 6.24 A    |
| Selenium                                          | ≤ 5.0                            | -                 | 0.59 I  | ≤ 5.0                         | -                 | 2.9     | ≤ 5.0                                 | 0.5 U        | ≤ 5.0                              | 0.51 I    |
| Silver                                            | ≤ 0.07                           | -                 | 0.025 U | ≤ 0.07                        | ≤ 0.07            | 0.025 U | ≤ 0.07                                | 0.025 U      | ≤ 0.07                             | 0.025 U   |
| Zinc                                              | ≤ 270.4 b                        | -                 | 5 U     | ≤ 264.01 b                    | -                 | 5 U     | ≤ 90.60 b                             | 5 U          | ≤ 264.92 b                         | 5 U       |

- Analyte was detected in both sample and equipment blank.
- b Value is calculated based on hardness.
- A Value reported is the mean of two or more determinations
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
- U Material analyzed for but not detected: value reported is the method detection limit
  - Neither effluent sample was acutely toxic to the fish, Cyprinella leedsi, or to the water flea, Ceriodaphnia dubia, during 48-hour acute screening bioassays (See Table 1 for percent mortality, Appendix F for bioassay bench sheets, and Appendix G for supporting standard reference toxicant data). Although the 48-hour acute screening toxicity test does not reflect the required permit conditions, passing test results provide confidence that the required permit conditions would likely be met.
  - Elevated nutrient levels in EFF-001 appeared to be contributing to elevated nutrient levels at the Test Site when compared to the Control Site. However, the Test Site was also
- under the influence of groundwater seepage from the Mulberry Gypsum Stack to the north. Ortho-phosphate (9.6 mg/L) and total phosphorus (10 mg/L) levels at the Test Site were as much as 10 times the levels in EFF-001 (1.1 and 1.4 mg/L OP and TP, respectively). Other nutrient levels (TKN, total nitrogen, and total ammonia) were similar at the Test Site to those in EFF-001 and were much higher than levels at the Control Site. Nutrient levels in EFF-002 were also elevated, but that effluent does not directly affect the Test Site in Skinned Sapling Creek.
- measure of nutrients available for

• Algal growth potential (AGP) is a algal growth (Miller et al. 1978).

Table 3. Measured and predicted algal growth potential (AGP; mg dry weight/L) for total soluble inorganic nitrogen (TSIN) and total nitrogen (TN) limitation of the freshwater species Pseudokirchneriella subcapitata and ratios of nitrogen to phosphorus.

| Mosaic Fertilizer | r, LLC - Ba   | rtow ( | Chemical      | Plan         | t    |              |                 |      |                        |                    |
|-------------------|---------------|--------|---------------|--------------|------|--------------|-----------------|------|------------------------|--------------------|
| Location          | AGP<br>(measu |        | Predi<br>(TSI | cted<br>N) ± |      | Predi<br>(TN | icted<br>I) ± 2 |      | Inorganic<br>N:P ratio | Total<br>N:P ratio |
| Outfall 001       | 45.9          |        | 38.0          | ±            | 7.6  | 95.0         | ±               | 19.0 | 0.9                    | 1.8                |
| Outfall 002       | 200.0         |        | 106.4         | ±            | 21.3 | 128.8        | ±               | 25.8 | 0.8                    | 0.8                |
| Control Site      | 11.7          | Α      | 5.2           | ±            | 1.0  | 16.3         | ±               | 3.3  | 0.4                    | 1.0                |
| Test Site         | 125.0         |        | 58.1          | ±            | 11.6 | 113.6        | ±               | 22.7 | 0.2                    | 0.3                |

A - Value reported is the mean of two or more determinations

Raschke and Shultz (1987) found that AGP above 5.0 mg dry weight/L represents a "problem" threshold for fresh receiving waters, implying nutrient enrichment. EFF-001 AGP was 45.9 mg dry weight/L, and EFF-002 AGP was 200.0 mg dry wt/L (Table 3). The AGP values at the Little Fishhawk Creek Control Site and Skinned Sapling Creek Test Site were 11.7 A and 125.0 mg dry weight/L, respectively. All AGP values were above the "problem" threshold. This is further evidence of the nutrient enrichment related to the Mosaic Fertilizer discharge in this portion of Skinned Sapling Creek as well as the other sources of nutrient input in the area (i.e. stormwater runoff and groundwater seepage). The analytical chemistry suggests that the effluent is nitrogen-limited. There was no evidence of growth inhibition in AGP data (Table 2).

• Chlorophyll-a was detected in water samples of both effluents (66 and 4.5 µg/L in EFF-001 and EFF-002, respectively) and from the Control  $(0.7 \text{ I} \mu\text{g/L})$  and Test Sites  $(44 \mu\text{g/L})$ , Table 1). The elevated chlorophyll-a in EFF-001 and at the Test Site are further evidence of nutrient enrichment from the Mosaic Fertilizer

Table 4a. Periphyton Composition - Qualitative.

| Mosaic Fertilizer, LLC - Bartow Chemical Plant | Control Site          | Test Site            |
|------------------------------------------------|-----------------------|----------------------|
| Number of Wet Taxa                             | 6                     | 17                   |
| Number of Wet Algal Units Identified           | 300                   | 303                  |
| Percent Dominant Wet Taxon                     | 77.7                  | 23.3                 |
| Dominant Wet Taxon Name                        | Jaaginema sp.         | Carteria cordiformis |
|                                                | (Blue-green)          | (Green)              |
| Was sample dominated by diatoms?               | yes                   | yes                  |
| Number of Diatom Taxa                          | 62                    | 51                   |
| Number of Diatom Valves Identified             | 510                   | 500                  |
| Percent Dominant Diatom Taxon                  | 10.0                  | 12.0                 |
| Dominant Diatom Taxon Name                     | Cocconeis fluviatilis | Cyclotella atomus    |
| Percentage Composition for Wet Algae           |                       |                      |
| Blue-green algae                               | 42.7                  | 3.0                  |
| Green algae                                    | 0.7                   | 14.2                 |
| Diatoms                                        | 56.7                  | 80.2                 |
| Cryptophytes                                   | 0.0                   | 0.3                  |
| Euglenophytes                                  | 0.0                   | 1.0                  |
| Pyrrophytes                                    | 0.0                   | 1.3                  |

**Table 4b. Phytoplankton Composition** 

| Mosaic Fertilizer, LLC - Bartow<br>Chemical Plant | Control Site  | Test Site               |
|---------------------------------------------------|---------------|-------------------------|
| Number of Wet Taxa                                | 16            | 34                      |
| Number of Wet Algal Units Identified              | 117 *         | 301                     |
| Algal density (number/mL)                         | 168           | 17930                   |
| Percent Dominant Wet Taxon                        | 35.0          | 35.0                    |
| Dominant Wet Taxon Name                           | Jaaginema sp. | Chlamydomonas sp.       |
|                                                   | (Blue-green)  | (Green)                 |
| Number of Diatom Taxa                             | 58            | 33                      |
| Number of Diatom Valves Identified                | 501           | 501                     |
| Percent Dominant Diatom Taxon                     | 22.6          | 20.6                    |
| Dominant Diatom Taxon Name                        | Navicula sp.  | Cyclotella meneghiniana |
| Percentage Composition for Wet Al                 | gae           |                         |
| Blue-green algae                                  | 39.3          | 21.6                    |
| Green algae                                       | 23.2          | 59.8                    |
| Diatoms                                           | 32.7          | 6.6                     |
| Chrysophytes                                      | 0.0           | 3.3                     |
| Cryptophytes                                      | 0.0           | 2.0                     |
| Euglenophytes                                     | 4.8           | 1.0                     |
| Pyrrophytes                                       | 0.0           | 4.3                     |
| Other                                             | 0.0           | 1.4                     |

<sup>\*</sup>Per counting rules in SOP AB-05, counting was stopped before 300 units were encountered

- mining operations in this portion of Skinned Sapling Creek and groundwater influence from the Mulberry Gypsum Stack to the north.
- Although the periphyton communities at both the Control and Test Sites were dominated by diatoms, the Control Site had a lower percentage of diatoms (56.7%) than the Test Site
- (80.2%), and the remaining community at the Control Site was mostly blue-green algae (42.7%). The remainder of the periphyton community at the Test Site consisted of green algae (14.2%), blue-green algae (3.0%) and cryptophytes, euglenophytes and dinoflagellates (2.6%) (Table 4a, Appendix H-1).

- The phytoplankton communities at the Control and Test Sites were considerably different with the Control Site community being almost equally composed of blue-green algae and diatoms (39.3% and 32.7%, respectively) with a slightly smaller percentage of green algae (23.2%). The remainder of the community consisted of euglenophytes. In contrast, the Test Site had very few diatoms (6.6%) and was dominated by green algae (59.8%) with some blue-green algae (21.6%) and small contributions from other groups such as chrysophytes (3.3%), cryptophytes (2.0%), euglenophytes (1.0%), and dinoflagellates (4.3%). Phytoplankton algal density at the Test Site was more than 100 times that of the control Site. (Table 4b, Appendix I-1). Although this is most likely related to the elevated nutrients at the Test Site and additional nutrient input from groundwater seepage from the Mulberry Gypsum Stack, it may also be affected by the open canopy cover at the Test Site compared to a more shaded canopy cover at the Control Site. Therefore, differences in phytoplankton communities cannot be exclusively attributed to the Mosaic Fertilizer, LLC - Bartow Chemical Plant discharge.
- Habitat assessment scores from the reconnaissance trip on March 6, 2008 were 138 (Optimal) at the Control Site and 112 (Suboptimal) at the Test Site (Table 1, data sheets in Appendix H). While the Test Site had more diverse substrate than the Control Site, that habitat was not abundant and it was subject to smothering by moving sediments. The Control Site had more available habitat and more deep pools, which indicates natural conditions without scouring and habitat smothering.
- Quantitative measures of benthic macroinvertebrate assemblages from Hester-Dendy samplers showed much higher diversity at the Control Site compared to the Test Site (Table 5,

Table 5. Macroinvertebrate Hester-Dendy Samples - Quantitative.

| Mosaic Fertilizer, LLC - Bartow<br>Chemical Plant | Control Site                       | Test Site                              |
|---------------------------------------------------|------------------------------------|----------------------------------------|
| Summary Statistics                                |                                    |                                        |
| Shannon-Weaver Diversity                          | 4.07 *                             | 1.87                                   |
| Number of Taxa                                    | 32                                 | 40                                     |
| Florida Index                                     | 20                                 | 24                                     |
| Number of EPT Taxa                                | 5                                  | 3                                      |
| Percent Dominant Taxon                            | 19.6                               | 71.7                                   |
| Dominant Taxon Name                               | Polypedilum<br>flavum<br>(Diptera) | Cheumatopsyche<br>sp.<br>(Trichoptera) |
| Total Number of Individuals (counted)             | 231                                | 4,746                                  |
| Total Number of Individuals (#/m²)                | 613                                | 12,556                                 |
| Community Composition: Percent of                 |                                    | .=,000                                 |
| Amphipoda                                         | 0.4                                | 2.7                                    |
| Bivalvia                                          | 0.4                                | 0.0                                    |
| Coleoptera                                        | 5.2                                | 0.3                                    |
| Diptera                                           | 69.2                               | 23.6                                   |
| Ephemeroptera                                     | 9.1                                | 0.1                                    |
| Gastropoda                                        | 0.0                                | 0.7                                    |
| Isopoda                                           | 6.9                                | 0.0                                    |
| Odonata                                           | 0.9                                | 0.2                                    |
| Oligochaeta                                       | 1.7                                | 0.2                                    |
| Plecoptera                                        | 0.0                                | 0.0                                    |
| Trichoptera                                       | 6.1                                | 72.2                                   |
| Other                                             | 0.0                                | 0.1                                    |
| Functional Feeding Groups: Percent of             |                                    |                                        |
| Browser-Grazers                                   | 3.5                                | 0.0                                    |
| Burrowing Deposit Feeders                         | 1.7                                | 0.2                                    |
| Predators                                         | 13.0                               | 6.9                                    |
| Scavengers                                        | 3.5                                | 0.1                                    |
| Scrapers                                          | 7.2                                | 0.8                                    |
| Shredders                                         | 18.6                               | 4.1                                    |
| Surface Deposit Feeders                           | 41.5                               | 8.7                                    |
| Suspension Feeders                                | 11.1                               | 79.4                                   |

<sup>\* -</sup> Shannon Weaver Diversity scores calculated on samples with < 300 individuals have the potential for negative bias (lower diversity scores compared to sites with more individuals).

Appendix J-1 & J-2). Although Shannon-Weaver Diversity may be underestimated at the Control Site due to the low number of organisms recovered there (<300 individuals), the diversity is still more than 75% greater at the Control Site (4.07) than at the Test Site (1.87) which is a violation of Class III Water Quality Criterion (62-302.530(10) F.A.C.). The Test Site was heavily dominated by the trichopteran, *Cheu*-

- *matopsyche* sp. (72.2%), which is most likely a result of the high nutrients at that site.
- Qualitative measures of benthic macroinvertebrate assemblages from dipnet samples are summarized in Table 6 and in Appendices J-1 and J-2. The Control Site SCI score of 70A placed it in Category 1 while the Test Site SCI score of 36A placed it at the low end of Category 2.

As was seen in the Hester-Dendy samples, the Test Site community was dominated by the trichopteran, *Cheumatopsyche* sp. In contrast to the Control Site, the Test Site SCI samples contained no ephemeroptera taxa, no long-lived taxa, and no sensitive taxa. The Test Site also had more very tolerant individuals (14.7% and 14.5% in replicate 1 and replicate 2, respectively) than the Control Site (0.7% and 0.0% in replicate 1 and replicate 2, respectively).

# Summary

While DMR data from the last year showed no violations, data from this inspection indicate exceedance of iron in EFF-002 by this facility which is a violation of Class III Water Quality Criterion (62-302.530(38) F.A.C.) and facility permit limits. Although Shannon-Weaver Diversity may be underestimated at the Control Site due to the low number of organisms recovered there (<300 individuals), the diversity was still more than 75% greater at the Control Site (4.07) than at the Test Site (1.87) which is a violation of Class III Water Quality Criterion (62-302.530(10) F.A.C.). In addition, elevated nutrients in EFF-001 and nutrient inputs from groundwater seepage from the Mulberry Gypsum Stack to the north appear to be adversely affecting the biota in this portion of Skinned Sapling Creek. Although there is potential for stormwater runoff during rain events from a sulfuric acid plant area and a nutrient enriched lake in the area, the facility is currently working on a clean-up plan for the lake and is attempting to decrease discharges from the lake. Reevaluation of monitoring frequency for iron in EFF-002 may be warranted.

# **Literature Cited**

Barbour, M. T. and J. B. Stribling. 1994. A technique for assessing stream habitat structure. In: Proceedings of

**Table 6. Macroinvertebrate Dipnet Samples - Qualitative.** 

| Mosaic Fertilizer, LLC - Bartow Chemical  |                |                |                |                |
|-------------------------------------------|----------------|----------------|----------------|----------------|
| Plant                                     | Contr          | ol Site        | Test           | Site           |
| Summary Statistics                        |                |                |                |                |
| Stream Condition Index 2007 (value)       | 70             | Δ              | 36             | Δ              |
| Stream Condition Index 2007 (value) *     |                | gory 1         |                | gory 2         |
| Stream Condition Index Metrics            | Rep 1          | Rep 2          | Rep 1          | Rep 2          |
| Number of Total Taxa                      | 26             | 23             | 21             | 21             |
| Number of Ephemeroptera Taxa              | 3              | 4              | 0              | 0              |
| Number of Trichoptera Taxa                | 4              | 3              | 1              | 2              |
| Number of Clinger Taxa                    | 5              | 5              | 2              | 2              |
| Number of Long-lived Taxa                 | 2              | 2              | 0              | 0              |
| Number of Sensitive Taxa                  | 4              | 5              | 0              | 0              |
| Percent of Dominant Taxon                 | 20.0           | 31.5           | 44.0           | 35.5           |
| Percent Suspension Feeders and Filterers  | 46.6           | 34.2           | 66.0           | 65.8           |
| Percent of Tanytarsini Individuals        | 8.3            | 4.7            | 17.3           | 25.7           |
| Percent of Very Tolerant Individuals      | 0.7            | 0.0            | 14.7           | 14.5           |
| Total Number of Individuals               | 145            | 149            | 150            | 152            |
| Community Composition: Percent of total   |                |                |                |                |
| Dominant Taxon Name                       | Microcylloepus | Microcylloepus | Cheumatopsyche | Cheumatopsyche |
| Dominant raxon Name                       | pusillus       | pusillus       | sp.            | sp.            |
|                                           | Coleoptera     | Coleoptera     | Trichoptera    | Trichoptera    |
| Acariformes                               | 0.7            | 0.0            | 0.0            | 0.0            |
| Amphipoda                                 | 0.7            | 2.0            | 6.0            | 7.2            |
| Bivalvia                                  | 6.9            | 2.0            | 4.7            | 4.6            |
| Coleoptera                                | 21.4           | 36.2           | 3.3            | 2.6            |
| Decapoda                                  | 0.7            | 1.3            | 0.0            | 0.0            |
| Diptera                                   | 29.7           | 25.5           | 30.7           | 38.8           |
| Ephemeroptera                             | 4.8            | 4.0            | 0.0            | 0.0            |
| Gastropoda                                | 0.0            | 0.7            | 2.0            | 0.0            |
| Isopoda                                   | 9.7            | 10.1           | 0.0            | 0.0            |
| Odonata                                   | 4.1            | 2.0            | 2.0            | 1.3            |
| Oligochaeta                               | 0.7            | 0.7            | 7.3            | 9.2            |
| Plecoptera                                | 0.0            | 0.0            | 0.0            | 0.0            |
| Trichoptera                               | 20.0           | 15.4           | 44.0           | 36.2           |
| Other                                     | 0.6            | 0.1            | 0              | 0.1            |
| Functional Feeding Groups: Percent of tot |                |                |                |                |
| Browser-Grazers                           | 4.8            | 5.0            | 0.0            | 0.0            |
| Burrowing Deposit Feeders                 | 0.7            | 0.7            | 7.3            | 9.2            |
| Piercers                                  | 0.0            | 0.0            | 0.0            | 0.7            |
| Predators                                 | 5.9            | 4.4            | 5.7            | 3.3            |
| Scavengers                                | 5.2            | 5.7            | 0.0            | 0.0            |
| Scrapers                                  | 15.9           | 22.2           | 1.3            | 0.3            |
| Shredders                                 | 3.8            | 4.0            | 9.3            | 9.5            |
| Surface Deposit Feeders                   | 17.2           | 23.8           | 10.3           | 11.2           |
| Suspension Feeders                        | 46.6           | 34.2           | 66.0           | 65.8           |

A - Value reported is the mean of two determinations

<sup>\*</sup> SCI\_2007 categories from Table LT 7200-2 of Draft DEP-SOP-002/01 as referenced in Draft Quality Assurance Rule (62-160 F.A.C.), September 17, 2007: Values  $0 \le 34$  are Category III; Values 35 < 67 are Category II; Values  $68 \le 100$  are Category I

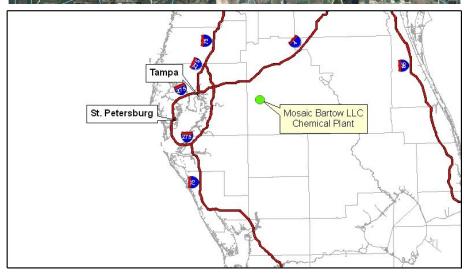
- Riparian Ecosystems in the Humid United States: Functions and Values. U. S. Dept. Agriculture. 15-18 March 1993, Atlanta, Ga. 22 pp.
- Beck, W. M. Jr. 1954. Studies in stream pollution biology 1. A simplified ecological classification of organisms. Quart. J. Fla. Acad. Sci. 17(4): 211-227.
- Fore, L. 2004. Development and Testing of Biomonitoring Tools for Macroinvertebrates in Florida Streams.
- Fore, L. et. al. 2007. Development and Testing of Biomonitoring Tools for Macroinvertebrates in Florida Streams.
- Karr, J.R. & E.W. Chu. 1998. Restoring life in running waters: Better biological monitoring. Island Press. Covelo, California. 200 p.
- Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.
- Miller, W. E., T. E. Maloney, and J. C. Greene. 1978. The *Selenastrum capricornutum* Printz algal assay bottle test. EPA-600/9-78-018. U. S. EPA, Cincinnati, Ohio. 126 p.
- Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. U. S. EPA, Office of Water Regulations and Standards, Washington D.C., EPA 440-4-89-001.
- Raschke, R. L. and D. A. Schultz. 1987.

  The use of the algal growth potential test for data assessment. J. Wat. Poll. Cont. Fed. 59(4): 222-227.
- Ross, L. T. 1990. Methods for aquatic biology. Florida Department of Environmental Regulation Technical Series 10(1): 1-47.
- Sokal, R. R. and F. J. Rohlf. 1995. Biometry, Third edition. W. H. Freeman and Company, New York.

- Stevenson, R. J. and L. L. Bahls. 1999.

  Periphyton protocols. Pp. 6.1-6.22
  in: Rapid bioassessment protocols
  for use in wadeable streams and
  rivers. 2<sup>nd</sup> edition. By: M. T. Barbour,
  J. Gerritsen, B. D. Snyder and J. B.
  Stribling. EPA 841-B-99-002. U. S.
  Environmental Protection Agency,
  Office of Water, Washington, D. C.
- Stevenson, R. J. and J. P. Smol. 2003. Use of algae in environmental assessments, pp. 775-803, in: Freshwater algae of North America, edited by J. D. Wehr and R. G. Sheath, Academic Press, San Diego. 918 pp.
- Wallace, J. B., J. W. Grubaugh and M. R. Whiles. 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecol. Appl. 6(1): 140-151.
- USEPA. 2000. Nutrient Criteria Technical Guidance Manual – River and Streams. EPA-822-B-00-002.
- USEPA 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. 5<sup>th</sup> Edition. EPA-821-R-02-012.

# **Appendices**


- Appendix A. Map of facility
- Appendix B. Facility summary and DMR data
- Appendix C. Explanation of measurements
- Appendix D. Chain of Custody form
- Appendix E. Chemical analyses of effluent and receiving water.
- Appendix F. Additional physical, chemical, toxicological and/or microbiological data
- Appendix G. Standard Reference Toxicant test data
- Appendix H. Habitat Assessment field sheets
- Appendix I1. Periphyton Wet Algae: Taxa list and number of individuals counted
- Appendix I2. Periphyton Diatoms: Taxa list and number of individuals counted
- Appendix J1. Phytoplankton Wet Algae: Taxa list and algal density (number of individuals per mL)
- Appendix J2. Phytoplankton Diatoms: Taxa list and number of individuals counted
- Appendix K1. Hester-Dendy multi-plate samplers: Taxa list and macroinvertebrate density (average number of individuals per m<sup>2</sup>)
- Appendix K2. Hester-Dendy multi-plate samplers: Taxa list and macroinvertebrate density (average number of individuals per m²)
- Appendix L1. Dipnet samples: Taxa list and number of macroinvertebrates counted (collapsed)
- Appendix L2. Dipnet samples: Taxa list and number of macroinvertebrates counted

# Appendix A

# **Maps of Facility**







# Appendix B

# Facility Summary and DMR data

|                                                                                                                                | Guilline  | iry and DMR data                                |                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|------------------------------------------------------------------------------------------|
| Facility Name (as it appears on permit): Bartow Chemical Complex                                                               | : Mosaic  | Fertilizer, L.L.C                               | Former Names: Cargill Fertilizer, Inc Bartow Chemical Complex and W.R. Grace Inc.        |
| Physical Address:                                                                                                              |           | S Permit No.:                                   | Prepared By: Jacki Champion                                                              |
| 3200 Highway 60 West                                                                                                           | FL000     |                                                 |                                                                                          |
| Bartow, FL                                                                                                                     | Expira    | <b>ntion Date:</b> 2/16/09                      |                                                                                          |
| County: Polk                                                                                                                   |           | et: FDEP BMR-<br>nate Management                | Facility Type: Phosphate Chemical fertilizer manufacturing facility; Phosphogypsum stack |
| <b>Function of Facility:</b> Produces sulfuric ac micronutrient added fertilizers                                              | cid, phos | phoric acid, fluorosilici                       | c acid, ammoniated phosphates and                                                        |
| Sampling Location (actual permit designates) EFF-001 and EFF-002                                                               | nation o  | f permitted sampling <b>J</b>                   | point):                                                                                  |
| <b>Description of permitted outfall:</b> Description of permitted outfall:                                                     | 001-5 fc  | oot rectangular sharp o                         | crested weir, D-002-6 foot rectangular                                                   |
| Description of treatment process (if mul<br>When it is necessary to discharge process<br>aeration is used for ammonia removal. |           |                                                 |                                                                                          |
| Receiving Waters: D-001 discharges to S                                                                                        | kinned    | Classification (indica                          | te whether fresh or marine): Class III                                                   |
| Sapling Creek, a tributary of the North Pro                                                                                    | ong       | Freshwaters                                     |                                                                                          |
| Alafia River, and D-002 discharges into the                                                                                    | ie        |                                                 |                                                                                          |
| Noralyn Mine system and eventually enter                                                                                       | s the     |                                                 |                                                                                          |
| Peace River                                                                                                                    |           |                                                 |                                                                                          |
| <b>Temperature (C):</b> 23.83 (001), 23.05 (00)                                                                                | 2)        | Design Flow: na                                 |                                                                                          |
| <b>pH (SU):</b> 7.03 (001), 6.65 (002)                                                                                         |           | <b>Mean Flow (for prev</b> 0.17 mgd (001), 1.23 | <b>rious 12 months):</b> 4/07-3/08: mgd (002)                                            |
| <b>Conductivity (umhos/cm):</b> 698 (001), 1, (002)                                                                            | 033       | Flow During Survey                              | : 0.32 MGD (001), 1.32 MGD (002)                                                         |
| Method of Chlorination na                                                                                                      |           | Method of Dechlorin                             | ation na                                                                                 |
| <b>Dissolved Oxygen (mg/L):</b> unavailable du loss of membrane on probe                                                       | ue to     | Total Residual Chlor                            | rine (mg/L) (after disinfection):na                                                      |
| Discharge is: Continuous X Interm                                                                                              | nittent   | Seasonal X Rainfa                               | ll Dependent Other                                                                       |
| <b>Toxicity Test Requirements (routine and</b> See Below                                                                       |           |                                                 | _                                                                                        |
| Administrative or Consent Orders: A co                                                                                         | onsent or | der exists for a groundy                        | vater monitoring plan.                                                                   |
| Facility Mixing Zone Details: None                                                                                             |           |                                                 |                                                                                          |
|                                                                                                                                |           |                                                 |                                                                                          |
| List permit violations (DMR data) and pnone                                                                                    | plant up  | sets that occurred at t                         | he plant within the last year:                                                           |
| Describe previous impact bioassessment<br>Previous samples collected at the Outfall I                                          |           | · <u>-</u>                                      |                                                                                          |

Discuss MOR trends to prior data; is trend improving or declining:

List Effluent Limits (include additional sheets as necessary):

1. During the period beginning on the issuance date and lasting through the expiration date of this permit, the permittee is authorized to discharge excess non-contact process wastewater, cooling tower blow down, and stormwater from Outfall D-001 (Attachment B). The discharge shall not exceed the effluent limitations and shall be monitored and limited by the permittee as specified below. The sample shall be taken at the point nearest the discharge prior to mixing with the receiving water body.

|                                               | Dis              | charge Limita      | ntions                  | Monite                  | oring Requirem       | ents            |
|-----------------------------------------------|------------------|--------------------|-------------------------|-------------------------|----------------------|-----------------|
| Parameters (units)                            | Daily<br>Minimum | Monthly<br>Average | Daily<br>Maximum        | Monitoring<br>Frequency | Sample Type          | Sample<br>Point |
| Flow (MGD)                                    | N/A              | Report             | Report                  | Continuous              | Recorder             | EFF-001         |
| pH (SU)                                       | 6.0              | Report             | 8.5                     | Weekly                  | Grab                 | EFF-001         |
| Solids, Total Suspended (MG/L)                | N/A              | 50.0               | 150.0                   | Monthly                 | Grab                 | EFF-001         |
| Temperature (C), Water (DEG.C)                | N/A              | Report             | Report                  | Weekly                  | Grab                 | EFF-001         |
| Oxygen, Dissolved (DO) (MG/L)                 | 5.0              | Report             | NA                      | Weekly                  | Grab<br>(See I.A.8.) | EFF-001         |
| Specific Conductance (UMHOS/CM)               | N/A              | Report             | 1275<br>(See I.A.12.)   | Monthly                 | Grab                 | EFF-001         |
| Nitrogen, Total (as N) (MG/L)                 | N/A              | Report             | Report                  | Weekly                  | Grab                 | EFF-001         |
| Nitrogen, Total (as N) (LBS/DAY)              | N/A              | Report             | Report<br>(See I.A.3.)  | Weekly                  | Calculation          | EFF-001         |
| Phosphorus, Total (as P) (MG/L)               | N/A              | 15.0               | 20.0                    | Weekly                  | Grab                 | EFF-001         |
| Phosphorus, Total (as P) (LBS/DAY)            | N/A              | Report             | Report<br>(See I.A.3.)  | Weekly                  | Calculation          | EFF-001         |
| Phosphate, Ortho (as PO <sub>4</sub> ) (MG/L) | N/A              | Report             | Report                  | Weekly                  | Grab                 | EFF-001         |
| Fluoride, Total (as F) (MG/L)                 | N/A              | Report             | 10.0                    | Weekly                  | Grab                 | EFF-001         |
| Sulfate, Total (MG/L)                         | N/A              | Report             | Report                  | Monthly                 | Grab                 | EFF-001         |
| Turbidity (NTU)                               | N/A              | N/A                | Report<br>(See I.A.10.) | Monthly                 | Grab                 | EFF-001         |
| Whole Effluent Toxicity – Acute               | See Per          | mit Conditio       | on I.A.20.              |                         |                      | EFF-001         |

4. During the period beginning on the issuance date and lasting through the expiration date of this permit, the permittee is authorized to discharge treated process wastewater and stormwater from Outfall D-002 (Attachment B). Such discharge shall be limited and monitored by the permittee as specified below. The sample shall be taken at the point nearest the discharge prior to mixing with the receiving water body.

|                                | Dis              | charge Limita      | tions                  | Monito                  | oring Requiren | nents           |
|--------------------------------|------------------|--------------------|------------------------|-------------------------|----------------|-----------------|
| Parameters (units)             | Daily<br>Minimum | Monthly<br>Average | Daily<br>Maximum       | Monitoring<br>Frequency | Sample<br>Type | Sample<br>Point |
| Flow (MGD)                     | N/A              | Report             | Report                 | Continuou<br>s          | Grab           | EFF-002         |
| pH (SU)                        | 6.0              | Report             | 8.5                    | Weekly                  | Grab           | EFF-002         |
| Temperature (C), Water (DEG.C) | N/A              | Report             | Report                 | Weekly                  | Grab           | EFF-002         |
| Oxygen, Dissolved (DO) (MG/L)  | 5.0              | N/A                | Report<br>(See I.A.8.) | Weekly                  | Grab           | EFF-002         |

| A                                                             | NT/A    | D 4           | 0.02                    | *** 11  | Calculatio      | EEE 002 |
|---------------------------------------------------------------|---------|---------------|-------------------------|---------|-----------------|---------|
| Ammonia, Unionized (MG/L)                                     | N/A     | Report        | (See I.A.11.)           | Weekly  | n               | EFF-002 |
| Nitrogen, Ammonia, Total (as NH <sub>3</sub> )<br>(MG/L)      | N/A     | Report        | Report                  | Weekly  | Grab            | EFF-002 |
| Nitrogen, Total (as N) (MG/L)                                 | N/A     | Report        | Report                  | Weekly  | Grab            | EFF-002 |
| Nitrogen, Total (as N) (LBS/DAY)                              | N/A     | Report        | Report                  | Weekly  | Calculatio<br>n | EFF-002 |
| Phosphorus, Total (as P) (MG/L)                               | N/A     | 15.0          | 20.0                    | Weekly  | Grab            | EFF-002 |
| Phosphorus, Total (as P) (LBS/DAY)                            | N/A     | Report        | Report                  | Weekly  | Calculatio<br>n | EFF-002 |
| Phosphate, Ortho (as PO <sub>4</sub> ) (MG/L)                 | N/A     | Report        | Report                  | Weekly  | Grab            | EFF-002 |
| Sulfate, Total (MG/L)                                         | N/A     | N/A           | Report                  | Monthly | Grab            | EFF-002 |
| Specific Conductance (UMHOS/CM)                               | N/A     | Report        | 1275<br>(See I.A.12.)   | Weekly  | Grab            | EFF-002 |
| Fluoride, Total (as F) (MG/L)                                 | N/A     | Report        | 10.0                    | Weekly  | Grab            | EFF-002 |
| Sodium, Total Recoverable (MG/L)                              | N/A     | N/A           | Report                  | Monthly | Grab            | EFF-002 |
| Hardness, Total (as CaCO <sub>3</sub> ) (MG/L) *              | N/A     | N/A           | Report                  | Monthly | Grab            | EFF-002 |
| Alpha, Gross Particle Activity (PCI/L)                        | N/A     | N/A           | 15<br>(See I.A.19.)     | Monthly | Grab            | EFF-002 |
| Radon <sup>222</sup> , Total (PCI/L)                          | N/A     | N/A           | Report (See I.A.19.)    | Monthly | Grab            | EFF-002 |
| Uranium, Total (PCI/L)                                        | N/A     | N/A           | Report<br>(See I.A.19.) | Monthly | Grab            | EFF-002 |
| Radium <sup>226</sup> + Radium <sup>228</sup> , Total (PCI/L) | N/A     | N/A           | 5.0<br>(See I.A.19.)    | Monthly | Grab            | EFF-002 |
| Arsenic, Total Recoverable (UG/L) $^{*}$                      | N/A     | N/A           | 50                      | Monthly | Grab            | EFF-002 |
| Cadmium, Total Recoverable (UG/L) *                           | N/A     | N/A           | (See I.A.9)             | Monthly | Grab            | EFF-002 |
| Chromium, Hexavalent Total<br>Recoverable (UG/L) **           | N/A     | N/A           | 11                      | Monthly | Grab            | EFF-002 |
| Lead, Total Recoverable (UG/L) *                              | N/A     | N/A           | (See I.A.9)             | Monthly | Grab            | EFF-002 |
| Mercury, Total Recoverable (UG/L) *                           | N/A     | N/A           | 0.012                   | Monthly | Grab            | EFF-002 |
| Silver, Total Recoverable (UG/L) *                            | N/A     | N/A           | 0.07                    | Monthly | Grab            | EFF-002 |
| Copper, Total Recoverable (UG/L) *                            | N/A     | N/A           | (See I.A.9)             | Monthly | Grab            | EFF-002 |
| Iron, Total Recoverable (MG/L) *                              | N/A     | N/A           | 1.0                     | Monthly | Grab            | EFF-002 |
| Whole Effluent Toxicity – Acute                               | See Per | mit Condition | on I.A.20.              |         |                 | EFF-002 |

<sup>\*</sup> Sampling and analyses of these metals shall be required only when discharging process (treated) wastewater. EPA Method 1631 shall be utilized for the analysis of mercury. After twelve monthly samples are collected and analyzed and if the contaminant levels are significantly less than State water quality standards (Rule 62-302, F.A.C.), the permittee may submit a proposal to the Department to decrease the sampling frequency from monthly to quarterly.

The permittee shall initiate the series of tests described below beginning during the first discharge event or within 60 days following the effective date of this permit, whichever occurs later and twice per year thereafter to evaluate whole effluent toxicity of the discharge from Outfalls D-001 and D-002. All test species, procedures and quality assurance criteria used shall be in accordance with Methods for Measuring Acute

<sup>\*\*</sup> Sampling and analysis for Hexavalent Chromium shall be conducted for the first twelve monthly samples, and if the levels are significantly less than the State water quality standard (Rule 62-302, F.A.C.) the permittee may submit a proposal to the Department to discontinue this parameter from future analyses.

- 5. Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, EPA821-R-02-012, or the most current edition. The control water and dilution water used will be moderately hard water as described in EPA821-R-02-012, Table 6, or the most current edition. A standard reference toxicant (SRT) quality assurance (QA) acute toxicity test shall be conducted concurrently or no greater than 30 days before the date of the "routine" test, with each species used in the toxicity tests. The results of all toxicity tests shall be submitted with the discharge monitoring report (DMR). Any deviation of the bioassay procedures outlined herein shall be submitted in writing to the Department for review and approval prior to use.
  - a. (1) The permittee shall conduct 96-hour acute static renewal toxicity tests using the daphnid, <u>Ceriodaphnia dubia</u>, and the bannerfin shiner, <u>Cyprinella leedsi</u>. All tests will be conducted on a one grab sample.
    - (2) If control mortality exceeds 10% for either species in any test, the test for that species (including the control) shall be repeated. A test will be considered valid only if control mortality does not exceed 10% for either species.
  - b. (1) The toxicity tests specified above shall be conducted twice per year in December, January or February and July, August or September. These tests are referred to as "routine" tests. Upon the completion of six valid tests, which demonstrate that no unacceptable toxicity (as defined in d.1.) has been identified, the permittee may petition the Department for a reduction in monitoring frequency.
    - (2) Results from "routine" tests shall be reported according to EPA821-R-02-012, Section 12, Report Preparation (or the most current edition), and shall be submitted to the Department at the address listed in Condition I.A.3. below:
    - (3) Results from "routine" tests shall be reported on the Discharge Monitoring Report (DMR) as follows:
      - If greater than 50% mortality occurs for the test species, "<100" (less than 100% effluent) should be entered on the DMR for that test species.
      - ii. If 50% or less mortality occurs for the test species, ">100" (greater than 100% effluent) should be entered on the DMR for that test species.
      - iii. For each of the additional tests required, the calculated LC50 value should be entered on the DMR for that test species.
  - c. All "routine" tests shall be conducted using a control (0% effluent) and a test concentration of 100% final effluent.
  - d. (1) If unacceptable acute toxicity (greater than 20% mortality in 100% effluent of either test species in any grab sample test) is found in a "routine" test, the permittee shall conduct three additional tests on each species indicating unacceptable toxicity. Results for each additional test will include the determination of LC50 values with 95% confidence limits.
    - (2) The first additional test shall be conducted using a control (0% effluent) and a minimum of five dilutions: 100%, 50%, 25%, 12.5% and 6.25% effluent. The dilution series may be modified in the second and third test to more accurately identify the toxicity, such that at least two dilutions above and two dilutions below the target toxicity and a control (0% effluent) are run.
    - (3) For each additional test, the sample collection requirements and the test acceptability criteria specified in section a. above must be met for the test to be considered valid. The first test shall begin within two weeks of the end of the "routine" tests, and shall be conducted weekly thereafter until three additional, valid tests are completed. The additional tests will be used to determine if the toxicity found in the "routine" test is still present.
- (4) Results from additional tests shall be submitted in a single report prepared according to EPA821-R-02-012, Section 12, or the most current edition and submitted within 45 days of completion of the third

additional, valid test. Upon completion of the third additional test, the permittee will meet with the Department within 30 days of the report submittal to identify any corrective actions necessary to remedy the unacceptable acute toxicity.

# Appendix C

# **Explanation of Measurements**

# (1) Quality Assurance and Quality Control

FDEP's quality assurance requirements for analytical laboratories and field activities are codified in Chapter 62-160, F.A.C., Quality Assurance (QA Rule) and in internal Standard Operating Procedures (FDEP SOPs). Methods for all analyses are on file at the FDEP Central Laboratory in Tallahassee and may be viewed on the web at <a href="http://www.floridadep.org/labs/sop/index.htm">http://www.floridadep.org/labs/sop/index.htm</a> and/or <a href="http://www.floridadep.org/labs/ga/index.htm">http://www.floridadep.org/labs/sop/index.htm</a> and/or <a href="http://www.floridadep.org/labs/ga/index.htm">http://www.floridadep.org/labs/ga/index.htm</a> .

# (2) Chemical Analyses of the Effluent

The effluent was analyzed for nutrients, metals, organic constituents (base, neutral, and acid extractables) and pesticides following FDEP SOPs. A list of the analytes tested for, results, data qualifiers, the minimum detection limit and the practical quantitation limit are given in Appendix E. The results from these analyses were compared with Water Quality Criteria (62-302 F.A.C.) and facility permit limits (Tables 1 and 2, Appendix B). Exceedances of Water Quality Criteria may be violations of specific provisions of Chapter 62-302 (F.A.C.) and/or facility permit limits.

# (3) Toxicity Bioassays

Acute screening toxicity bioassays were performed on the effluent sample using the water flea, *Ceriodaphnia dubia*, and the fish, *Cyprinella leedsi* following FDEP SOPs TA07\_01 and TA07\_02. Failure of toxicity testing may constitute a violation of 62-302.520(20), 62-302.530(61) and/or facility permit limits. Standard reference toxicant (SRT) tests are conducted monthly to ensure quality in toxicity testing.

# (4) Bacteriological Testing

The effluent and water from control and test sites were analyzed for the presence and concentration of total and fecal coliform bacteria following FDEP SOPs MB1\_0 and MB1\_1. High levels of fecal or total coliform bacteria may constitute violation of 62-302.530(6), 62-302.530(7) and/or facility permit limits.

### (5) Habitat Assessment

Habitat assessment is used to evaluate the physical structure and extent of disturbance in a waterbody. Eight aspects are ranked, with 20 possible points for each aspect (QA Rule SOP FT 3100). The Habitat Assessment score includes types and amounts of benthic substrates, water velocity, amount of sand or silt accumulation, extent of artificial channelization, bank stability, and riparian zone width and vegetation type. All scores are summed to yield an overall Habitat Assessment score. Habitat Assessment score ranges from 11-160 and overall habitat quality is assigned to one of four categories: Optimal (120-160 points), Suboptimal (80-119 points), Marginal (40-79 points), and Poor (11-39 points).

# (6) Algal Growth Potential (AGP)

The effluent and water from control and test sites are autoclaved, filtered  $(0.45\mu m)$ , inoculated with the unicellular green alga, *Pseudokirchneriella subcapitata* (formerly *Selenastrum capricornutum*, USEPA 2002), and incubated for 14 days (FDEP SOP TA08\_05). The algal growth potential (AGP) value is the peak growth of the alga within that 14-day period, recorded as mg dry weight/L. Raschke and Shultz (1987) found that an AGP above 5.0 mg dry weight/L represents a "problem" threshold for fresh receiving waters, implying nutrient enrichment. High AGP values may constitute one line of evidence for violation of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C. and/or 62-302.530(47)(b) F.A.C..

The concentration of nutrients in a water sample may be used to calculate the expected yield of AGP under the assumption that other required nutrients (e.g. silicon, micronutrients) are present in excess (Miller *et al.* 1978). The expected amount of production is calculated as 38 times the total soluble inorganic nitrogen (nitrate and nitrite plus ammonia) under nitrogen limitation or 430 times the ortho-phosphate (OP) concentration under phosphorus limitation with an error of  $\pm$  20%. When the ratio of nitrogen to phosphorus (N: P) is less than 10:1, nitrogen limitation of algal production is likely. When the N: P ratio is 20:1 or greater, phosphorus limitation is

likely (USEPA 2000). For ratios in-between, co-limitation may occur. Production of lower biomass than expected may be evidence of growth inhibition related to toxic compounds present in the water sample tested and may be a violation of 62-302.530(61) F.A.C..

# (7) Algal Phytoplankton and Periphyton Assemblages

**Methods**: Qualitative periphyton were sampled at both control and test sites by taking subsamples of algae from natural substrates throughout the sample reach (QA Rule FS7220). Phytoplankton were sampled using a 1 L grab sample (QA Rule SOP FS7100). Periphyton were subsampled and identified to the lowest practical level, usually species (FDEP SOPs AB03, AB03\_1 and AB05). Wet taxa and diatoms are identified separately. In the wet taxa analysis, soft algae are identified to the lowest practical level, and diatoms are identified only to order level (diatom). In the diatom analysis, diatoms are identified to the lowest practical level.

**Chlorophyll a Content:** Chlorophyll a content is measured in phytoplankton samples to estimate algal biomass (FDEP SOP BB05). High algal biomass implies nutrient stress (Stevenson and Bahls 1999) and may be a violation of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C. and/or 62-302.530(47)(b) F.A.C..

**Algal Density**: Algal density is estimated as number of natural units/ml for phytoplankton samples. Although algal density of a single site is highly variable and depends on a number of factors, comparison of algal density at a control site to algal density at a related test site gives a partial comparison of algal biomass at the two sites (Stevenson and Smol 2003).

**Taxa richness**: Taxa richness is the number of distinct algal taxa present in a sample. Extreme nutrient enrichment tends to reduce the number of different types of algae present in a sample because a few tolerant taxa tend to reproduce rapidly and constitute the majority of the cells present. However, moderate nutrient enrichment of nutrient poor waters may sometimes be correlated with increased algal taxa richness (Stevenson and Bahls 1999) as the algal community begins to respond to the increased input of nutrients.

**Community Composition**: Shifts in relative proportions of major groups of algae downstream of a point source, compared to upstream, control conditions, may indicate negative effects of a discharge (Stevenson and Bahls 1999) and may constitute violations of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C., 62-302.530(47)(b) F.A.C. and/or 62-302.530(61) F.A.C.

### (8) Benthic Macroinvertebrate Assemblages

**Methods:** Benthic macroinvertebrates were collected using two methods. Quantitative samples were collected from Hester-Dendy multi-plate samplers incubated for 28 days (QA Rule SOP FS7430). Qualitative collections are made using 20 dipnet sweeps (QA Rule SOP FS7420). Benthic macroinvertebrates were sorted and identified to the lowest practical taxonomic level, usually species (FDEP SOP IZ06).

**Taxa richness**: Taxa richness is the number of distinct macroinvertebrate taxa present in a sample. Stress, habitat destruction and pollution tend to reduce the number of different types of organisms present (Karr and Chu 1998). Decreases in taxa richness related to a facility's effluent may constitute violations of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C., 62-302.530(47)(b) F.A.C. and/or 62-302.530(61) F.A.C.

**Percent Contribution of Dominant Taxon:** Percent contribution of the dominant taxon is calculated by dividing the number of individuals in the most abundant taxa by the total number of individuals counted. Percent contribution of the dominant taxon tends to increase with increasing perturbation (Plafkin *et al.*, 1989). Increases in the percent contribution of the dominant taxon related to a facility's effluent may constitute violations of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C. and/or 62-302.530(47)(b) F.A.C..

**Shannon-Weaver Diversity Index**: This index is specified in the Florida Administrative Code 62-302 as a measure of biological integrity. Low diversity scores are undesirable. Where diversity is low, only a few taxa are abundant as compared to an area where many taxa are present in equitable abundance among taxa (Magurran 1988). A difference of 25% in Shannon-Weaver diversity between results from Hester-Dendy multiplate samplers incubated for 28 days at test and control sites constitutes a violation of 62-302.530(10) F.A.C..

**Community Composition**: Shifts in proportions of major groups of organisms downstream of a point source, compared to upstream, control conditions, may indicate negative effects of a discharge (Karr and Chu 1998). Shifts in community composition related to a facility's effluent may constitute violations of 62-302.530(46) F.A.C., 62-302.530(47)(a) F.A.C., 62-302.530(47)(b) F.A.C. and/or 62-302.530(61) F.A.C..

**Functional Feeding Groups**: Environmental degradation may differentially affect groups of invertebrates based on how the group feeds (e.g. predators, deposit feeders, etc.). In Florida, pollution may be responsible for reducing the numbers of filter feeders and shredders (Fore et al, 2007). Changes in the proportions of functional feeding groups related to a facility's effluent may constitute violations of 62-302.530(46) F.A.C., 62-302.530(47)(b) F.A.C. and/or 62-302.530(61) F.A.C..

The Stream Condition Index (SCI): The SCI is a composite macroinvertebrate metric developed for Florida (Fore et al, 2007). This Index was revised in 2007 using data from qualitative dipnet samples. The SCI now assigns points to ten parameters; depending on how closely each parameter approaches an expected value (QA Rule SOP LT 7200). Points are assigned according to in which bioregion (Panhandle, Northeast, or Peninsula) the sampling location exists -and summed to yield a final SCI score (range 0-100). Included in the calculation of SCI are taxa richness, number of Ephemeroptera taxa, number of Trichoptera taxa, percent contribution of the dominant taxon, number of sensitive taxa, number of clinger taxa, number of long-lived taxa, percent contribution of Tanytarsini, percent contribution of very tolerant, and the percent contribution of suspension and filter feeders. Scores are broken into three categories (I, II, and III). SCI 2007 categories are from Table LT 7200-2 of Draft DEP-SOP-002/01 as referenced in Draft Quality Assurance Rule (62-160 F.A.C.), September 17, 2007. A decrease in ordinal SCI score from the Control to the Test site may be evidence of degradation related to a facility's effluent. An SCI score in Category I, if it is shown to be related to a facility's effluent, may constitute violations of 62-302.530(47) F.A.C., 62-302.530(48)(b) F.A.C. and/or 62-302.530(62) F.A.C..

# (9) Statistical Comparisons

Statistical comparisons of the proportions of taxa, major groups or feeding groups were made using 95% confidence intervals on proportions. A 95% confidence interval is the range of values above and below a given proportion that has a 95% chance of containing the true proportion (Sokal and Rohlf 1995). If the 95% confidence intervals for two proportions do not overlap, then the proportion of X in sample 1 is significantly different from the proportion of X in sample 2 at p<0.05. A "p<0.05" level of significance means that there is less than a 5% chance that the true proportions in the two samples are the same. All comparisons that are labeled as significant in the text have a probability <0.05 that the proportions are the same.

# Appendix D

# **Chain of Custody**

| sanb                                       | Request Number: RQ-2008-04-21-44                                                                                          | Central Labo       | Central Laboratory Sample Submittal Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bmittal Form                     | -                                           |                                                                                                    |                              |                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| aic re                                     | Mosaic Fertilizer, L.C dartow Chemical Plans. Requester                                                                   | Jennifer Paris     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field                            | Report Prepar                               | Field Report Prepared By: Jack' Champion                                                           | Champic                      | 8                    |
| Customer: B<br>Project ID: F<br>PMAS: 1143 | SMR-TAMPA Sam                                                                                                             | Jochi Chan<br>FDEP | collected By: Sochi Champion Scott Rose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                              | end Final Rep                               | Send Final Report To Vishwas Sathe                                                                 |                              |                      |
| Lab ID *                                   | Field Dutant Contour                                                                                                      |                    | Comp Collection (begin) X Grab Date Tot Res Chorine (mg/L) Diss O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time C<br>Diss Oxygen (mg/L)     | astern                                      | Collection (errol) Date 4/21 05 Time 13:15 Central Storet Station Number                           | 63                           | Bottle<br>Group(s)** |
|                                            | Matrix (Include type e.g. Salt, Fresh, etc Temp (C) Cresh (JOZLA Latitude o Latitude                                      | 65 PHT, 03         | Sample Depth   m (GRS   Salinty (PPTh)   NPDES N Comments   CALCAR   Salinty (PPTh)   NPDES N COMMENTS   CALCAR   CALCAR | 698<br>dog.mev                   | Salinity (PPTh)                             | Salinity (PPTh)  Sep Conductance (umha/cm) PL 000 15/89/89/10/10/10/10/10/10/10/10/10/10/10/10/10/ | PL0001589                    | X                    |
| Lab ID *                                   | Location Mosaic Bartown<br>Field to Outfall Oot                                                                           |                    | Comp Callection (begin)  X Grab Date Tot Res Chlorine (mg/L) Dits O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (begin) Time Oliss Oxygen (mg/L) | Eastern Co<br>Central Da                    | Central Date   21   OS Time   20                                                                   | entral                       | Bottle<br>Group(s)** |
| 44                                         | Matrix (Include type e.g. Saft, Fresh, etc Temp(Cb.) Fresh Woods( Latifude o Longitude o                                  | 50.TH C.           | Comments Bloassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -01                              | Salinity (PP<br>DISP Conduct<br>TRST Sample | Th)<br>ance (umbolom)                                                                              | NPDES Number<br>FL0001589    |                      |
| Lab ID *                                   | Field ID Cuttoll Co.                                                                                                      |                    | Comp Collection (begin)  Grab Date Tot Res Chlorine (mg/L) Dies O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46 75                            | Eastern Co<br>Central Da                    | Central Date 4 30 C Time 1.1.                                                                      | Central                      | Bottle<br>Group(s)** |
| MAR                                        | Fres                                                                                                                      | 55 PH 6, 65        | Comments Chicaclved Oay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1033<br>ved Oa, m                | Salinty (PPTh)                              | ance (umho/cm)                                                                                     | NPDES Number<br>FLACOSISBS   | 1                    |
| Cab ID •                                   | Feed ID Outstand CO3. Maring Include type e.g. Sall, Fresh, etc. Temp (c).                                                | 五                  | Comp Collection (begin)  X Grab Date Tot Res Chlorine (mg/L) Diss O. Sample Depth   m   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Diss Oxygen (mg/L)          | Sentral                                     | Time                                                                                               | 1-1                          | Bottle<br>Group(s)** |
|                                            | Longitude                                                                                                                 | 9.                 | Comments Bicassay Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Say Test                         |                                             | ance (umho/cm)                                                                                     | Valley 22-13 11 toy (53) 150 |                      |
| Classe Hease                               | Shaded Areas for Lab use offy.  * Shaded Areas for Lab use offy.  * Please see reverse side for Bottle Group information. | Referenced By      | DaleyTime Relinque Co. L. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ished By:                        |                                             | Received By:                                                                                       | Page 1 of 4                  | me<br>of 4           |

| Reques<br>Mosaic Fee         | Request Number: RQ-2008-04-21-44 Meanic Fertilizer 11C - Bartow Chemical Plant                                        | Central Laboratory Sample Submittal Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Form                                                                                                                              |                                     |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                              | Requester Jennifer Paris                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Report Prepared By: JOOLL                                                                                                   | S. Champion                         |
| Customer: E<br>Project ID: F | SMR-TAMPA Collected By                                                                                                | Jodi Champion Scott Rose<br>F DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Send Final Report To Vishwas Sathe                                                                                                | <u>w</u>                            |
| LabiD                        | Location Skinned Sapling Creek Field 10 Test 5/te Matrix (Include type e.g. Salt Fresh, etc Temp 89,54 pH Fresh Worth | Sample Depth TK m Test Comments Time Comments Chlorine (mg/L) Des Oxogen (mg/L) Comments Comm | Eastern Colection (end)  Central Date-1 (N. Time 10.1) Shoret Statish Number  Sp Conductance (umholom)  KSp Conductance (umholom) | O.; Central Groups)**  NPDES Number |
| Lab ID *                     | Sapling Creek                                                                                                         | School Control of Cont | en (mg/L)                                                                                                                         | D.J Dentral Group(s)**              |
|                              | - 0                                                                                                                   | Comments HO #7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conductance (umho/cm)                                                                                                             |                                     |
| Lab ID *                     | Location Steinned Sopling Credic<br>Finition Test Site                                                                | Comp Collection (begin) Grab Date 3 au OB Time Tot Res Chlorine (mg/L) Diss Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Central Date U.GN OS Time O.:                                                                                                     | O. / Central Groupis)***            |
|                              | Matrix (Include type e.g. Salt, Fresh, etc Tamp (C) 54 PH 6.39 Latitude 0 Longitude 0                                 | Sample Depth   m   14L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Salinity (PPTh)                                                                                                                   | NPDES Number                        |
| Lab ID *                     | Location Sicinary Sapting Creeks<br>Field to Test Site                                                                | Comp Collection (begin) Carab Date 2 AH O'S Time of Tot Res Chlorine (mg/L) Diss Oxygen (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Central Date (3) OS Time 0.                                                                                                       | Or ( Central Group(s)**             |
|                              | Matrix (Include type e.g. Salt, Frash, etc Temp (5)54 PH (6.34) Fresh Innects Longtude a "                            | Sample Dapth   m   14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp Conductance (umho/cm)                                                                                                          | NPDES Number                        |
| Relinguished By,             | Shipping Method Reported By:                                                                                          | Date/Time Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time Received By:                                                                                                            | Date/Time                           |
| · Shaded                     | Lab use only.                                                                                                         | 54.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   | Page 1 of 4                         |

| Request<br>Moseic Fart                          | Request Number: RQ-2008-04-21-44                                                                                                                                       | Central Labo          | Central Laboratory Sample Submittal Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Dispersion of the second                        | Requester:                                                                                                                                                             | ster. Jennifer Paris  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Report Prepared By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Medy Jacki Champion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTON                    |
| Customer: BMR<br>Project ID: FYI5<br>PMAS: 1143 | Customer: BMR-TAMPA Collected By: Project ID: FYI5 Sampling Agency.                                                                                                    | Tolki (               | Chavingiton   Scott Rosc send Final Report to Vishwas Sathe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Send Final Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ort To Vishwas Sathe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| Lab IO *                                        | Freid ID Control Site Matrix (Include type e.g. Salt, Fresh, elc Temp (C) Latitude Latitude                                                                            | Creek                 | Sample Depth Order (mg/L) Diss Oxygen (mg/L) Sample Depth Orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | entral Salin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sstem Collection (end) entral Date 4 (34) CP Time 4, 15 Central Storet Station Number  Salinity (PPTh)  NPDES Number  (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and Grouplsy-            |
| Lab ID                                          | Field ID Control Site Matrix (Include type e.g. Salt, Fresh, etc Temp (C) Fresh Include by Lattrude                                                                    | Greek<br>18:73 PH7,40 | Comp Collection (begin)  Grab Date 334 (900 mine)  Tot Res Chlorine (mg/L) Diss Oxygen (mg/L)  Sample Depth Pm  Sample Depth Pm  Comments HD 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | astern and self                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Satern Collection (end) Sentral Date H (2) (06 Time H, 1) Central Storet Station Number Storet (PPTh) NPDES Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottle at Groupis)"      |
| Lab ID ↑                                        | Location Little Fishhow's Creek Field ID Control Sirte Matrix (Include type e.g. Salt, Fresh. etc Temp40) 73 Exests Invertes Latitude  Latitude  Latitude  Longtude  O | Creck 49773 PH 7490   | Comments HO # A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Salin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entral Date (1 0) (28 Time (1 ) Central Station Number Salinity (PPTh) Number Spatial (mitholom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bottle                   |
| Cab ID*                                         | Field ID Control Street, etc. Temp (C) Matrix (Include type e.g. Sat., Fresh, etc. Temp (C) Latitude a Longitude                                                       | K Creek               | Comments HDH Sample Commen | Central Do Central Do Central Do Strongto, Str | Central Date 4(2A) (SS Time 4:1) Central Date 4(2A) (SS Time 4:1) Central Storet Station Number   Storet Station Number   Series (untholon)   NPDES Number   Series (untholon)   Series (u | Bottle<br>Group(s)**     |
| Relinquished By.                                | Relinquished By: Date/Time Shoping Method:                                                                                                                             | Received By:          | Date/Time Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received By: Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data/Time<br>Page 1 of 4 |

| Customer: BMR-TAMPA                        | Mocain Eastitree 11 C - Bodon Chamical Diant |                                | اد          | entral Lab     | Central Laboratory Sample Submittal Form | uple Sub             | mittal Fo                                 | III                |                                                          |              |                      |
|--------------------------------------------|----------------------------------------------|--------------------------------|-------------|----------------|------------------------------------------|----------------------|-------------------------------------------|--------------------|----------------------------------------------------------|--------------|----------------------|
| Customer: BMR-TAMPA<br>Project ID: FYI5    |                                              | Requester                      | Jenni       | Jennifer Paris |                                          |                      | Fie                                       | eld Report Pre     | Field Report Prepared By Jack's Champion                 | Champior     |                      |
| PMAS: 1143                                 | Samplin                                      | Collected By: Sampling Agency: | BIL         | FDEP FDEP      | Nampion 5                                | Sooth R              | Rese                                      | Send Final F       | Send Final Report To Vishwas Sathe                       | sathe        |                      |
| Lab ID* Location Mosauc<br>Field ID Stanks | Bartow                                       | 3                              |             |                | Comp Collectio                           | -                    | (begin) E<br>Time C<br>Diss Oxygen (mg/L) | Eastern<br>Central | Collection (end) Date 4 31 OS Time Storet Station Number | 1035 Eastern | Bottle<br>Group(s)** |
| Matrix (Include type e.g. Salt, Fresh      | iali, Fresh,                                 | etc Temp (C)                   | 1           | Ha.            | Sample Depth                             | E#                   |                                           | Salin              | Salinity (PPTh)<br>Sp Conductance (untho/cm)             | NPDES Number | 2                    |
| Lattude a '                                |                                              | Longtude                       | 0           |                | Comments                                 | Comments (3) CANICS  | 15                                        |                    |                                                          |              |                      |
| Lab ID * Location                          |                                              |                                |             |                | Comp                                     | Collection (begin)   | begin)                                    | Eastern            | Calection (end) Date Time                                | Eastern      | Bottle<br>Group(s)** |
| Field ID                                   |                                              |                                |             |                | Tot Res Chlorine (mg/L)                  |                      | Diss Oxygen (mg/L)                        | mg/L)              | Station Nu                                               |              |                      |
| Matrix (Include type e.g. Salt, Fresh      | Salt, Fresh, etc.                            | etc Temp (C)                   |             | Æ              | Sample Depth                             | E #                  |                                           | Salln              | Salinity (PPTh)<br>So Conductance (umholom)              | NPDES Number |                      |
| Labbade n '                                |                                              | Longtude                       | 0           |                | Comments                                 |                      |                                           |                    |                                                          |              |                      |
| Lab ID * Location                          |                                              |                                |             |                | Comp                                     | Collection (begin)   | egin)                                     | Eastern            | Collection (end)                                         | Eastern      | Bottle<br>Group(s)** |
| Field ID                                   |                                              |                                |             |                | Tot Res Chlorine (mg/L)                  |                      | Diss Oxygen (mg/L)                        |                    | t Station Nu                                             |              |                      |
| Matrix (Include type e.g. Salt, Fresh      |                                              | etc Temp (C)                   | Q.          | H              | Sample Depth                             | E #                  |                                           | Salin              | Salinity (PPTh)<br>Sa Conductance (umhoicm)              | NPDES Number |                      |
| Latitude o '                               |                                              | Longitude                      | 0           |                | Comments                                 |                      |                                           |                    |                                                          |              |                      |
| Lab ID * Location                          |                                              |                                |             |                | Comp                                     | Collection (begin)   | regin)                                    | Eastern            | Colection (end)                                          | Eastern      | Bottle<br>Group(s)** |
| FieldTD                                    |                                              |                                |             |                | Tot Res Chlorine (mg/L)                  | 3                    | Diss Oxygen (mg/L)                        |                    | Storet Station Number                                    |              |                      |
| Matrix (Include type e.g. Salt, Fresh      |                                              | etc Temp (C)                   | 44.         | Hd             | Sample Depth III                         | E                    |                                           | E Sa E             | Salinity (PPTh)<br>So Conductance (umiho/cm)             | NPDES Number |                      |
| Latitude o                                 |                                              | Longitude                      | 0           | *              | Comments                                 |                      |                                           |                    |                                                          |              |                      |
| Relinquished By Date-Time                  | Shipping Method.                             |                                | Received By | EQ.            | Date/Time                                | Relinquished By:     | hed By:                                   | Date/Time          | Received By.                                             | Date/Time    | eus                  |
| for Lab use only.                          | Ocem<br>e Group Information                  |                                | /           | ก              | CB2BC last revised October 1, 2003       | 8. 65 Adober 1, 2003 |                                           |                    |                                                          | Page 1 of 4  | 514                  |

Appendix E

Chemical analysis of effluent and receiving water

| Date_Sampled    | Field_Sample_ID | SCH_Group                  | Component                               | Result  | Units      | MDL   | PQL  |
|-----------------|-----------------|----------------------------|-----------------------------------------|---------|------------|-------|------|
| 4/21/2008 12:15 | OUT FALL 001    | AGP/LN                     | Algal Growth Potential                  | 45.9    | mg DryWt/L | 0.3   | 0.9  |
| 4/21/2008 12:15 | OUT FALL 001    | Chlorophyll/Grain Size/BOD | Phaeophytin-a                           | 6.6     | ug/L       | 0.48  | 1.4  |
| 4/21/2008 12:15 | OUT FALL 001    | Chlorophyll/Grain Size/BOD | Biochemical Oxygen Demand-5 Day,N-Inhib | 3.5     | mg/L       | 0.2   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Chlorophyll/Grain Size/BOD | Chlorophyll-a, Corrected                | 66      | ug/L       | 1.1   | 3.4  |
| 4/21/2008 12:15 | OUT FALL 001    | Microbiology               | Total Coliforms-Membrane Filter         |         | #/100 mL   |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                   | Fecal Coliforms-Membrane Filter         |         | #/100 mL   |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Toxicology                 | Bioassay-Acute-Screen-FW-Fish, LC50     | 100 L   | LC50       |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Toxicology                 | Bioassay-Acute-Screen-FW-C.dubia, LC50  | 100 L   | LC50       |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Zinc                                    | 5.0 U   | ug/L       | 5     | 20   |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Silver                                  | 0.025 U | ug/L       | 0.025 | 0.1  |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Magnesium                               | 23.2    | mg/L       | 0.04  | 0.16 |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Calcium                                 | 66.4    | mg/L       | 0.075 | 0.3  |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Selenium                                | 0.59 I  | ug/L       | 0.5   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Copper                                  | 0.50 U  | ug/L       | 0.5   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Cadmium                                 | 0.020 U | ug/L       | 0.02  | 0.08 |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Arsenic                                 | 1.7 I   | ug/L       | 0.5   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Nickel                                  | 0.35 I  | ug/L       | 0.25  | 1    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Lead                                    | 0.20 U  | ug/L       | 0.2   | 8.0  |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Chromium                                | 1.0 U   | ug/L       | 1     | 4    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Sodium                                  | 47.3    | mg/L       | 0.5   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Aluminum                                | 60 U    | ug/L       | 60    | 240  |
| 4/21/2008 12:15 | OUT FALL 001    | Metals                     | Iron                                    | 480     | ug/L       | 30    | 120  |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | TDS                                     | 446 A   | mg/L       | 15    | 60   |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Fluoride                                | 1.2     | mg F/L     | 0.05  | 0.1  |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | TSS                                     | 12 I    | mg/L       | 4     | 16   |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Kjeldahl Nitrogen                       | 2.4     | mg N/L     | 0.08  | 0.2  |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Chloride                                | 20      | mg CI/L    | 0.4   | 2    |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Ammonia-N                               | 0.9     | mg N/L     | 0.01  | 0.02 |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Sulfate                                 | 210     | mg SO4/L   | 2     | 5    |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | O-Phosphate-P                           | 1.1     | mg P/L     | 0.04  | 0.1  |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | Total-P                                 | 1.4     | mg P/L     | 0.04  | 0.12 |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                  | NO2NO3-N                                | 0.099   | mg N/L     | 0.004 | 0.01 |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                   | Radium 228-Counting Error               | 0.6     | pCi/L      |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                   | Radium 228                              | 0.9 U   | pCi/L      |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                   | Oil and Grease                          | 2.8 I   | mg/L       | 1.7   | 5    |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                   | Radium 226                              | 0.5     | pCi/L      |       |      |

| Date_Sampled    | Field_Sample_ID | SCH_Group                   | Component                  | Result  | Units | MDL   | PQL  |
|-----------------|-----------------|-----------------------------|----------------------------|---------|-------|-------|------|
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                    | Alpha, Total               | 1.3 U   | pCi/L |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                    | Radium 226-Counting Error  | 0.1     | pCi/L |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Overflow                    | Alpha-Counting Error       | 0.8     | pCi/L |       |      |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Hexazinone                 | 0.33 l  | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Parathion Methyl           | 0.096 U | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Ethoprop                   | 0.096 U | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Bromacil                   | 0.21 l  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Chlorpyrifos Methyl        | 0.096 U | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Fenamiphos                 | 0.19 U  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Metribuzin                 | 0.096 U | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Simazine                   | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Metolachlor                | 0.48 U  | ug/L  | 0.48  | 1.9  |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Chlorpyrifos Ethyl         | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Butylate                   | 0.19 U  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Ametryn                    | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Atrazine                   | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Prometryn                  | 0.14 U  | ug/L  | 0.14  | 0.56 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Parathion Ethyl            | 0.14 U  | ug/L  | 0.14  | 0.56 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Malathion                  | 0.14 U  | ug/L  | 0.14  | 0.56 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Ethion                     | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Naled                      | 0.77 U  | ug/L  | 0.77  | 3.1  |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Fonofos                    | 0.096 U | ug/L  | 0.096 | 0.38 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Azinphos Methyl            | 0.19 U  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Alachlor                   | 0.58 U  | ug/L  | 0.58  | 2.3  |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Diazinon                   | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Metalaxyl                  | 0.24 U  | ug/L  | 0.24  | 0.96 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Phorate                    | 0.048 U | ug/L  | 0.048 | 0.19 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Mevinphos                  | 0.19 U  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 12:15 | OUT FALL 001    | Pesticides                  | Norflurazon                | 0.14 U  | ug/L  | 0.14  | 0.56 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4,4'-DDE                   | 1.4 U   | ug/L  | 1.4   | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Endosulfan II              | 3.8 U   | ug/L  | 3.8   | 15   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Fluorene                   | 0.96 U  | ug/L  | 0.96  | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,4-Dinitrophenol          | 14 U    | ug/L  | 14    | 58   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4,4'-DDD                   | 1.4 U   | ug/L  | 1.4   | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4-Chloro-3-methylphenol    | 0.96 U  | ug/L  | 0.96  | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4-Nitrophenol              | 14 U    | ug/L  | 14    | 58   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Acenaphthylene             | 0.96 U  | ug/L  | 0.96  | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzo(b)fluoranthene       | 0.96 U  | ug/L  | 0.96  | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Bis(2-ethylhexyl)phthalate | 14 U    | ug/L  | 14    | 58   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Hexachloroethane           | 2.9 U   | ug/L  | 2.9   | 12   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Nitrobenzene               | 1.9 U   | ug/L  | 1.9   | 7.7  |

| Date_Sampled    | Field_Sample_ID | SCH_Group                   | Component                   | Result  | Units | MDL  | PQL |
|-----------------|-----------------|-----------------------------|-----------------------------|---------|-------|------|-----|
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Phenol                      | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | delta-BHC                   | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 1,2,4-Trichlorobenzene      | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,4-Dimethylphenol          | 9.6 U   | ug/L  | 9.6  | 38  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Acenaphthene                | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Aldrin                      | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Anthracene                  | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzo(a)anthracene          | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Di-n-butyl phthalate        | 4.8 U   | ug/L  | 4.8  | 19  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Endrin aldehyde             | 3.8 UJ  | ug/L  | 3.8  | 15  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Hexachlorocyclopentadiene   | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | N-Nitrosodi-n-propylamine   | 1.9 U   | ug/L  | 1.9  | 7.7 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Phenanthrene                | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | alpha-BHC                   | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,4-Dinitrotoluene          | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2-Chlorophenol              | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzidine                   | 96 U    | ug/L  | 96   | 380 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzo(a)pyrene              | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzo(g,h,i)perylene        | 0.96 UJ | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Butyl benzyl phthalate      | 4.8 U   | ug/L  | 4.8  | 19  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Chrysene                    | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Di-n-octyl phthalate        | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Dieldrin                    | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Endosulfan sulfate          | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Isophorone                  | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Naphthalene                 | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Pentachlorophenol           | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,4-Dichlorophenol          | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,6-Dinitrotoluene          | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2-Chloronaphthalene         | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4-Chlorophenyl phenyl ether | 1.9 U   | ug/L  | 1.9  | 7.7 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Bis(2-chloroethyl)ether     | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Hexachlorobenzene           | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Hexachlorobutadiene         | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Indeno(1,2,3-cd)pyrene      | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | gamma-BHC                   | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2,4,6-Trichlorophenol       | 0.96 U  | ug/L  | 0.96 | 3.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 3,3'-Dichlorobenzidine      | 38 UJ   | ug/L  | 38   | 150 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4,4'-DDT                    | 1.4 U   | ug/L  | 1.4  | 5.8 |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Bis(2-chloroisopropyl)ether | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Dibenzo(a,h)anthracene      | 0.96 U  | ug/L  | 0.96 | 3.8 |

| Date_Sampled    | Field_Sample_ID | SCH_Group                   | Component                                | Result   | Units      | MDL  | PQL  |
|-----------------|-----------------|-----------------------------|------------------------------------------|----------|------------|------|------|
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Endrin                                   | 1.4 U    | ug/L       | 1.4  | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Heptachlor                               | 1.4 U    | ug/L       | 1.4  | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 4-Bromophenyl phenyl ether               | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Bis(2-chloroethoxy)methane               | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Endosulfan I                             | 3.8 U    | ug/L       | 3.8  | 15   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Fluoranthene                             | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Pyrene                                   | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2-Methyl-4,6-dinitrophenol               | 2.9 U    | ug/L       | 2.9  | 12   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | 2-Nitrophenol                            | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Benzo(k)fluoranthene                     | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Diethyl phthalate                        | 0.96 U   | ug/L       | 0.96 | 3.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Dimethyl phthalate                       | 9.6 U    | ug/L       | 9.6  | 38   |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | Heptachlor epoxide                       | 1.4 U    | ug/L       | 1.4  | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | N-Nitrosodimethylamine                   | 1.9 U    | ug/L       | 1.9  | 7.7  |
| 4/21/2008 12:15 | OUT FALL 001    | Priority Organic Pollutants | beta-BHC                                 | 1.4 U    | ug/L       | 1.4  | 5.8  |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | рН                                       | 7.03     | -          |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Temperature                              | 23.83    | С          |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Sample Depth                             |          | m          |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Specific Conductance                     | 698      | umhos/cm   |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Salinity                                 |          | PPTh       |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Total Residual Chlorine                  |          | mg/L       |      |      |
| 4/21/2008 12:15 | OUT FALL 001    | Nutrients                   | Dissolved Oxygen                         |          | mg/L       |      |      |
| 4/21/2008 13:15 | OUT FALL 002    | AGP/LN                      | Algal Growth Potential                   | 200      | mg DryWt/L | 0.3  | 0.9  |
| 4/21/2008 13:15 | OUT FALL 002    | Chlorophyll/Grain Size/BOD  | Phaeophytin-a                            | 2        | ug/L       | 0.24 | 0.71 |
| 4/21/2008 13:15 | OUT FALL 002    | Chlorophyll/Grain Size/BOD  | Chlorophyll-a, Corrected                 | 4.5      | ug/L       | 0.55 | 1.7  |
| 4/21/2008 13:15 | OUT FALL 002    | Chlorophyll/Grain Size/BOD  | Biochemical Oxygen Demand-5 Day, N-Inhib | 0.30 I   | mg/L       | 0.2  | 2    |
| 4/21/2008 13:15 | OUT FALL 002    | Microbiology                | Total Coliforms-Membrane Filter          |          | #/100 mL   |      |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow                    | Fecal Coliforms-Membrane Filter          |          | #/100 mL   |      |      |
| 4/21/2008 13:15 | OUT FALL 002    | Toxicology                  | Bioassay-Acute-Screen-FW-Fish, LC50      | 100 L    | LC50       |      |      |
| 4/21/2008 13:15 | OUT FALL 002    | Toxicology                  | Bioassay-Acute-Screen-FW-C.dubia, LC50   | 100 L    | LC50       |      |      |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Magnesium                                | 24.1     | mg/L       | 0.04 | 0.16 |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Zinc                                     | 5.0 U    | ug/L       | 5    | 20   |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Cadmium                                  | 0.020 U  | ug/L       | 0.02 | 0.08 |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Copper                                   | 0.50 U   | ug/L       | 0.5  | 2    |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Selenium                                 | 2.9      | ug/L       | 0.5  | 2    |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Arsenic                                  | 3.2      | ug/L       | 0.5  | 2    |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Nickel                                   | 3.65     | ug/L       | 0.25 | 1    |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Iron                                     | 1.05E+03 | ug/L       | 30   | 120  |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Chromium                                 | 1.2 I    | ug/L       | 1    | 4    |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Lead                                     | 0.20 U   | ug/L       | 0.2  | 8.0  |
| 4/21/2008 13:15 | OUT FALL 002    | Metals                      | Sodium                                   | 125      | mg/L       | 0.5  | 2    |

| Date_Sampled    | Field_Sample_ID | SCH_Group  | Component                 | Result  | Units    | MDL   | PQL  |
|-----------------|-----------------|------------|---------------------------|---------|----------|-------|------|
| 4/21/2008 13:15 | OUT FALL 002    | Metals     | Silver                    | 0.025 U | ug/L     | 0.025 | 0.1  |
| 4/21/2008 13:15 | OUT FALL 002    | Metals     | Aluminum                  | 90 I    | ug/L     | 60    | 240  |
| 4/21/2008 13:15 | OUT FALL 002    | Metals     | Calcium                   | 62      | mg/L     | 0.075 | 0.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | TDS                       | 689     | mg/L     | 15    | 60   |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Total-P                   | 4.1     | mg P/L   | 0.1   | 0.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | NO2NO3-N                  | 2.5     | mg N/L   | 0.04  | 0.1  |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | TSS                       | 6 I     | mg/L     | 4     | 16   |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Chloride                  | 23      | mg CI/L  | 2     | 10   |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | O-Phosphate-P             | 3.5     | mg P/L   | 0.08  | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Kjeldahl Nitrogen         | 0.89    | mg N/L   | 0.08  | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Ammonia-N                 | 0.3     | mg N/L   | 0.01  | 0.02 |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Sulfate                   | 410     | mg SO4/L | 2     | 5    |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients  | Fluoride                  | 2.5     | mg F/L   | 0.05  | 0.1  |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Radium 226                | 1       | pČi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Oil and Grease            | 1.7 U   | mg/L     | 1.7   | 5    |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Radium 226-Counting Error | 0.2     | pČi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Alpha, Total              | 1.8     | pCi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Radium 228                | 8.0     | pCi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Alpha-Counting Error      | 1.2     | pCi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Overflow   | Radium 228-Counting Error | 0.6     | pCi/L    |       |      |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Ethion                    | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Ethoprop                  | 0.097 U | ug/L     | 0.097 | 0.39 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Phorate                   | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Diazinon                  | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Bromacil                  | 0.19 U  | ug/L     | 0.19  | 0.76 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Fenamiphos                | 0.19 U  | ug/L     | 0.19  | 0.76 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Hexazinone                | 0.097 U | ug/L     | 0.097 | 0.39 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Metalaxyl                 | 0.24 U  | ug/L     | 0.24  | 0.96 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Ametryn                   | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Azinphos Methyl           | 0.19 U  | ug/L     | 0.19  | 0.76 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Metribuzin                | 0.097 U | ug/L     | 0.097 | 0.39 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Simazine                  | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Malathion                 | 0.15 U  | ug/L     | 0.15  | 0.6  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Metolachlor               | 0.49 U  | ug/L     | 0.49  | 2    |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Mevinphos                 | 0.19 U  | ug/L     | 0.19  | 0.76 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Parathion Methyl          | 0.097 U | ug/L     | 0.097 | 0.39 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Norflurazon               | 0.15 U  | ug/L     | 0.15  | 0.6  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Prometryn                 | 0.15 U  | ug/L     | 0.15  | 0.6  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Atrazine                  | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Chlorpyrifos Ethyl        | 0.049 U | ug/L     | 0.049 | 0.2  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides | Chlorpyrifos Methyl       | 0.097 U | ug/L     | 0.097 | 0.39 |

| Date_Sampled    | Field_Sample_ID | SCH_Group                   | Component                   | Result  | Units | MDL   | PQL  |
|-----------------|-----------------|-----------------------------|-----------------------------|---------|-------|-------|------|
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides                  | Fonofos                     | 0.097 U | ug/L  | 0.097 | 0.39 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides                  | Alachlor                    | 0.58 U  | ug/L  | 0.58  | 2.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides                  | Butylate                    | 0.19 U  | ug/L  | 0.19  | 0.76 |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides                  | Naled                       | 0.78 U  | ug/L  | 0.78  | 3.1  |
| 4/21/2008 13:15 | OUT FALL 002    | Pesticides                  | Parathion Ethyl             | 0.15 U  | ug/L  | 0.15  | 0.6  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Bis(2-ethylhexyl)phthalate  | 16 U    | ug/L  | 16    | 65   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Hexachlorobutadiene         | 3.3 U   | ug/L  | 3.3   | 13   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Hexachloroethane            | 3.3 U   | ug/L  | 3.3   | 13   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Pyrene                      | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 1,2,4-Trichlorobenzene      | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4,4'-DDD                    | 1.6 U   | ug/L  | 1.6   | 6.5  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4,4'-DDT                    | 1.6 U   | ug/L  | 1.6   | 6.5  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzo(a)anthracene          | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzo(k)fluoranthene        | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Chrysene                    | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Di-n-octyl phthalate        | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Indeno(1,2,3-cd)pyrene      | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | N-Nitrosodi-n-propylamine   | 2.2 U   | ug/L  | 2.2   | 8.7  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Naphthalene                 | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | beta-BHC                    | 1.6 U   | ug/L  | 1.6   | 6.5  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Acenaphthylene              | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzo(b)fluoranthene        | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Bis(2-chloroethoxy)methane  | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Bis(2-chloroethyl)ether     | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Dieldrin                    | 1.6 U   | ug/L  | 1.6   | 6.5  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Dimethyl phthalate          | 11 U    | ug/L  | 11    | 43   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,6-Dinitrotoluene          | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2-Methyl-4,6-dinitrophenol  | 3.3 U   | ug/L  | 3.3   | 13   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4-Chloro-3-methylphenol     | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Endosulfan I                | 4.3 U   | ug/L  | 4.3   | 17   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Endrin                      | 1.6 U   | ug/L  | 1.6   | 6.5  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Fluoranthene                | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Fluorene                    | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | N-Nitrosodimethylamine      | 2.2 U   | ug/L  | 2.2   | 8.7  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Pentachlorophenol           | 3.3 U   | ug/L  | 3.3   | 13   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,4-Dichlorophenol          | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,4-Dimethylphenol          | 11 U    | ug/L  | 11    | 43   |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2-Chloronaphthalene         | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 3,3'-Dichlorobenzidine      | 43 UJ   | ug/L  | 43    | 170  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4-Bromophenyl phenyl ether  | 1.1 U   | ug/L  | 1.1   | 4.3  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4-Chlorophenyl phenyl ether | 2.2 U   | ug/L  | 2.2   | 8.7  |

| Date_Sampled    | Field_Sample_ID | SCH_Group                   | Component                   | Result | Units      | MDL  | PQL |
|-----------------|-----------------|-----------------------------|-----------------------------|--------|------------|------|-----|
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Aldrin                      | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Bis(2-chloroisopropyl)ether | 3.3 U  | ug/L       | 3.3  | 13  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Endosulfan sulfate          | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Endrin aldehyde             | 4.3 UJ | ug/L       | 4.3  | 17  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Hexachlorobenzene           | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Phenanthrene                | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | alpha-BHC                   | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | delta-BHC                   | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Acenaphthene                | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Anthracene                  | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzidine                   | 110 U  | ug/L       | 110  | 430 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Butyl benzyl phthalate      | 5.4 U  | ug/L       | 5.4  | 22  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Heptachlor                  | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Heptachlor epoxide          | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Isophorone                  | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Nitrobenzene                | 2.2 U  | ug/L       | 2.2  | 8.7 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,4,6-Trichlorophenol       | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2-Nitrophenol               | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4-Nitrophenol               | 16 U   | ug/L       | 16   | 65  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Diethyl phthalate           | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Endosulfan II               | 4.3 U  | ug/L       | 4.3  | 17  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Hexachlorocyclopentadiene   | 3.3 U  | ug/L       | 3.3  | 13  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Phenol                      | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,4-Dinitrophenol           | 16 U   | ug/L       | 16   | 65  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2-Chlorophenol              | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 4,4'-DDE                    | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Di-n-butyl phthalate        | 5.4 U  | ug/L       | 5.4  | 22  |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Dibenzo(a,h)anthracene      | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | gamma-BHC                   | 1.6 U  | ug/L       | 1.6  | 6.5 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | 2,4-Dinitrotoluene          | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzo(a)pyrene              | 1.1 U  | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Priority Organic Pollutants | Benzo(g,h,i)perylene        | 1.1 UJ | ug/L       | 1.1  | 4.3 |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Total Residual Chlorine     |        | mg/L       |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Temperature                 | 23.05  | C          |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Sample Depth                |        | m          |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Specific Conductance        | 1033   | umhos/cm   |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | рН                          | 6.65   |            |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Salinity                    |        | PPTh       |      |     |
| 4/21/2008 13:15 | OUT FALL 002    | Nutrients                   | Dissolved Oxygen            |        | mg/L       |      |     |
| 4/21/2008 16:15 | CONTROL SITE    | AGP/LN                      | Algal Growth Potential      | 11.7 A | mg DryWt/L | 0.3  | 0.9 |
| 4/21/2008 16:15 | CONTROL SITE    | Chlorophyll/Grain Size/BOD  | Chlorophyll-a, Corrected    | 0.70 l | ug/L       | 0.55 | 1.7 |

| Date_Sampled    | Field_Sample_ID | SCH_Group                  | Component                | Result | Units      | MDL   | PQL  |
|-----------------|-----------------|----------------------------|--------------------------|--------|------------|-------|------|
| 4/21/2008 16:15 | CONTROL SITE    | Chlorophyll/Grain Size/BOD | Phaeophytin-a            | 0.68 I | ug/L       | 0.24  | 0.71 |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Sodium                   | 14.6   | mg/L       | 0.5   | 2    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Calcium                  | 18.9   | mg/L       | 0.075 | 0.3  |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Selenium                 | 0.50 U | ug/L       | 0.5   | 2    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Chromium                 | 1.0 U  | ug/L       | 1     | 4    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Iron                     | 360    | ug/L       | 30    | 120  |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Aluminum                 | 94 I   | ug/L       | 60    | 240  |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Nickel                   | 0.43 I | ug/L       | 0.25  | 1    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Arsenic                  | 0.52 I | ug/L       | 0.5   | 2    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Copper                   | 1.2 I  | ug/L       | 0.5   | 2    |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Silver                   | 0.025  | U ug/L     | 0.025 | 0.1  |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Magnesium                | 6      | mg/L       | 0.04  | 0.16 |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Lead                     | 0.20 U | ug/L       | 0.2   | 0.8  |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Cadmium                  | 0.11   | ug/L       | 0.02  | 0.08 |
| 4/21/2008 16:15 | CONTROL SITE    | Metals                     | Zinc                     | 5.0 U  | ug/L       | 5     | 20   |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Total-P                  | 0.44   | mg P/L     | 0.02  | 0.06 |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | NO2NO3-N                 | 0.12   | mg N/L     | 0.004 | 0.01 |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Ammonia-N                | 0.017  | mg N/L     | 0.01  | 0.02 |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Sulfate                  | 11     | mg SO4/L   | 0.2   | 0.5  |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Turbidity                | 1.6    | NTU        | 0.1   | 0.1  |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Kjeldahl Nitrogen        | 0.31   | mg N/L     | 0.08  | 0.2  |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | O-Phosphate-P            | 0.37   | mg P/L     | 0.016 | 0.04 |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Fluoride                 | 0.29   | mg F/L     | 0.05  | 0.1  |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Total Residual Chlorine  |        | mg/L       |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Specific Conductance     | 217    | umhos/cm   |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Salinity                 |        | PPTh       |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Sample Depth             | 0.2    | m          |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Dissolved Oxygen         |        | mg/L       |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | Temperature              | 19.73  | C          |       |      |
| 4/21/2008 16:15 | CONTROL SITE    | Nutrients                  | рН                       | 7.4    |            |       |      |
| 4/21/2008 10:15 | TEST SITE       | AGP/LN                     | Algal Growth Potential   | 125    | mg DryWt/L | 0.3   | 0.9  |
| 4/21/2008 10:15 | TEST SITE       | Chlorophyll/Grain Size/BOD | Phaeophytin-a            | 20     | ug/L       | 0.24  | 0.71 |
| 4/21/2008 10:15 | TEST SITE       | Chlorophyll/Grain Size/BOD | Chlorophyll-a, Corrected | 44     | ug/L       | 0.55  | 1.7  |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Magnesium                | 19.5 A | mg/L       | 0.04  | 0.16 |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Zinc                     | 5.0 U  | ug/L       | 5     | 20   |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Sodium                   | 60.7 A | mg/L       | 0.5   | 2    |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Nickel                   | 6.24 A |            | 0.25  | 1    |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Cadmium                  | 0.15 A | ug/L       | 0.02  | 0.08 |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Iron                     | 680 A  | ug/L       | 30    | 120  |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Arsenic                  | 2.9 A  | ug/L       | 0.5   | 2    |
| 4/21/2008 10:15 | TEST SITE       | Metals                     | Lead                     | 0.781  | ug/L       | 0.2   | 8.0  |

| Date_Sampled    | Field_Sample_ID        | SCH_Group | Component               | Result   | Units    | MDL   | PQL  |
|-----------------|------------------------|-----------|-------------------------|----------|----------|-------|------|
| 4/21/2008 10:15 | TEST SITE              | Metals    | Aluminum                | 540 A    | ug/L     | 60    | 240  |
| 4/21/2008 10:15 | TEST SITE              | Metals    | Selenium                | 0.51 I   | ug/L     | 0.5   | 2    |
| 4/21/2008 10:15 | TEST SITE              | Metals    | Copper                  | 0.63 l   | ug/L     | 0.5   | 2    |
| 4/21/2008 10:15 | TEST SITE              | Metals    | Silver                  | 0.025 U  | ug/L     | 0.025 | 0.1  |
| 4/21/2008 10:15 | TEST SITE              | Metals    | Chromium                | 2.3 I    | ug/L     | 1     | 4    |
| 4/21/2008 10:15 | TEST SITE              | Metals    | Calcium                 | 70.0 A   | mg/L     | 0.075 | 0.3  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Total-P                 | 10       | mg P/L   | 0.4   | 1.2  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | NO2NO3-N                | 0.99     | mg N/L   | 0.04  | 0.1  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | O-Phosphate-P           | 9.6      | mg P/L   | 0.32  | 0.8  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Fluoride                | 3.4      | mg F/L   | 0.05  | 0.1  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Ammonia-N               | 0.54     | mg N/L   | 0.01  | 0.02 |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Turbidity               | 11       | NŤU      | 0.1   | 0.1  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Kjeldahl Nitrogen       | 2        | mg N/L   | 0.08  | 0.2  |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Sulfate                 | 280      | mg SO4/L | 2     | 5    |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | pH                      | 6.39     | •        |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Specific Conductance    | 744      | umhos/cm |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Dissolved Oxygen        |          | mg/L     |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Total Residual Chlorine |          | mg/L     |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Salinity                |          | PPTh     |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Sample Depth            | 0.2      | m        |       |      |
| 4/21/2008 10:15 | TEST SITE              | Nutrients | Temperature             | 20.54    | С        |       |      |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Lead                    | 0.20 U   | ug/L     | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Nickel                  | 0.25 U   | ug/L     | 0.25  | 1    |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Copper                  | 0.63 I   | ug/L     | 0.5   | 2    |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Magnesium               | 0.040 U  | mg/L     | 0.04  | 0.16 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Aluminum                | 60 U     | ug/L     | 60    | 240  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Chromium                | 1.0 U    | ug/L     | 1     | 4    |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Silver                  | 0.025 U  | ug/L     | 0.025 | 0.1  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Selenium                | 0.50 U   | ug/L     | 0.5   | 2    |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Arsenic                 | 0.50 U   | ug/L     | 0.5   | 2    |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Metals    | Zinc                    | 5.0 U    | ug/L     | 5     | 20   |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Calcium                 | 0.075 U  | mg/L     | 0.075 | 0.3  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Cadmium                 | 0.020 U  | ug/L     | 0.02  | 0.08 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Sodium                  | 0.50 U   | mg/L     | 0.5   | 2    |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Metals    | Iron                    | 30 U     | ug/L     | 30    | 120  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients | Fluoride                | 0.050 U  | mg F/L   | 0.05  | 0.1  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients | Chloride                | 0.20 U   | mg CI/L  | 0.2   | 1    |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients | Ammonia-N               | 0.010 UY | mg N/L   | 0.01  | 0.02 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients | Sulfate                 | 0.20 U   | mg SO4/L | 0.2   | 0.5  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients | Kjeldahl Nitrogen       | 0.080 UY | mg N/L   | 0.08  | 0.2  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients | O-Phosphate-P           |          | mg P/L   |       |      |

| Date_Sampled    | Field_Sample_ID        | SCH_Group                   | Component                 | Result   | Units  | MDL   | PQL  |
|-----------------|------------------------|-----------------------------|---------------------------|----------|--------|-------|------|
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients                   | Total-P                   | 0.020 UY | mg P/L | 0.02  | 0.06 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Nutrients                   | NO2NO3-N                  | 0.004 UY | mg N/L | 0.004 | 0.01 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Radium 226-Counting Error | 0.1      | pČi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Alpha, Total              | 0.7 U    | pCi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Radium 228-Counting Error | 0.6      | pCi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Radium 226                | 0.1      | pCi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Radium 228                | 0.9      | pCi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Oil and Grease            | 1.7 U    | mg/L   | 1.7   | 5    |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Overflow                    | Alpha-Counting Error      | 0.4      | pČi/L  |       |      |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Fenamiphos                | 0.20 U   | ug/L   | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Parathion Methyl          | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Metolachlor               | 0.49 U   | ug/L   | 0.49  | 2    |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Hexazinone                | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Atrazine                  | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Azinphos Methyl           | 0.20 U   | ug/L   | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Butylate                  | 0.20 U   | ug/L   | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Chlorpyrifos Ethyl        | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Ethoprop                  | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Fonofos                   | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Mevinphos                 | 0.20 U   | ug/L   | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Diazinon                  | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Alachlor                  | 0.59 U   | ug/L   | 0.59  | 2.4  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Naled                     | 0.78 U   | ug/L   | 0.78  | 3.1  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Bromacil                  | 0.20 U   | ug/L   | 0.2   | 8.0  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Chlorpyrifos Methyl       | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Phorate                   | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Simazine                  | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Norflurazon               | 0.15 U   | ug/L   | 0.15  | 0.6  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Metribuzin                | 0.098 U  | ug/L   | 0.098 | 0.39 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Ethion                    | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Ametryn                   | 0.049 U  | ug/L   | 0.049 | 0.2  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Malathion                 | 0.15 U   | ug/L   | 0.15  | 0.6  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Parathion Ethyl           | 0.15 U   | ug/L   | 0.15  | 0.6  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Prometryn                 | 0.15 U   | ug/L   | 0.15  | 0.6  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Pesticides                  | Metalaxyl                 | 0.25 U   | ug/L   | 0.25  | 1    |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,4-Dichlorophenol        | 0.97 U   | ug/L   | 0.97  | 3.9  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,4-Dinitrophenol         | 15 U     | ug/L   | 15    | 58   |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Benzo(k)fluoranthene      | 0.97 U   | ug/L   | 0.97  | 3.9  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Endosulfan I              | 3.9 U    | ug/L   | 3.9   | 16   |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Heptachlor                | 1.5 U    | ug/L   | 1.5   | 5.8  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | N-Nitrosodi-n-propylamine | 1.9 U    | ug/L   | 1.9   | 7.8  |

| Date_Sampled    | Field_Sample_ID        | SCH_Group                   | Component                   | Result  | Units | MDL  | PQL |
|-----------------|------------------------|-----------------------------|-----------------------------|---------|-------|------|-----|
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Naphthalene                 | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | gamma-BHC                   | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,4-Dinitrotoluene          | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 3,3'-Dichlorobenzidine      | 39 UJ   | ug/L  | 39   | 160 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 4-Bromophenyl phenyl ether  | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 4-Nitrophenol               | 15 U    | ug/L  | 15   | 58  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Endrin aldehyde             | 3.9 UJ  | ug/L  | 3.9  | 16  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Fluoranthene                | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Hexachlorobutadiene         | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Hexachlorocyclopentadiene   | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Pentachlorophenol           | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Phenol                      | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Pyrene                      | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | beta-BHC                    | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,4,6-Trichlorophenol       | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2-Chloronaphthalene         | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2-Chlorophenol              | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Benzidine                   | 97 U    | ug/L  | 97   | 390 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Bis(2-chloroethoxy)methane  | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Bis(2-chloroisopropyl)ether | 2.9 U   | ug/L  | 2.9  | 12  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Butyl benzyl phthalate      | 4.9 U   | ug/L  | 4.9  | 19  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Dieldrin                    | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Fluorene                    | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Indeno(1,2,3-cd)pyrene      | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | N-Nitrosodimethylamine      | 1.9 U   | ug/L  | 1.9  | 7.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 1,2,4-Trichlorobenzene      | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,4-Dimethylphenol          | 9.7 U   | ug/L  | 9.7  | 39  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Acenaphthylene              | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Endosulfan II               | 3.9 U   | ug/L  | 3.9  | 16  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 4-Chloro-3-methylphenol     | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Aldrin                      | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Bis(2-chloroethyl)ether     | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Dimethyl phthalate          | 9.7 U   | ug/L  | 9.7  | 39  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Nitrobenzene                | 1.9 U   | ug/L  | 1.9  | 7.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | alpha-BHC                   | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2,6-Dinitrotoluene          | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 2-Nitrophenol               | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 4,4'-DDD                    | 1.5 U   | ug/L  | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Anthracene                  | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Benzo(a)pyrene              | 0.97 U  | ug/L  | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Benzo(g,h,i)perylene        | 0.97 UJ | ug/L  | 0.97 | 3.9 |

| Date_Sampled    | Field_Sample_ID        | SCH_Group                   | Component                   | Result | Units    | MDL  | PQL |
|-----------------|------------------------|-----------------------------|-----------------------------|--------|----------|------|-----|
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Bis(2-ethylhexyl)phthalate  | 15 U   | ug/L     | 15   | 58  |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Chrysene                    | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Di-n-octyl phthalate        | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | Hexachlorobenzene           | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | delta-BHC                   | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | <b>EQUIPMENT BLANK</b> | Priority Organic Pollutants | 4-Chlorophenyl phenyl ether | 1.9 U  | ug/L     | 1.9  | 7.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Dibenzo(a,h)anthracene      | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Diethyl phthalate           | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Endrin                      | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Hexachloroethane            | 2.9 U  | ug/L     | 2.9  | 12  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | 2-Methyl-4,6-dinitrophenol  | 2.9 U  | ug/L     | 2.9  | 12  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | 4,4'-DDE                    | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | 4,4'-DDT                    | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Acenaphthene                | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Benzo(a)anthracene          | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Benzo(b)fluoranthene        | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Di-n-butyl phthalate        | 4.9 U  | ug/L     | 4.9  | 19  |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Endosulfan sulfate          | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Heptachlor epoxide          | 1.5 U  | ug/L     | 1.5  | 5.8 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Isophorone                  | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Priority Organic Pollutants | Phenanthrene                | 0.97 U | ug/L     | 0.97 | 3.9 |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Salinity                    |        | PPTh     |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Sample Depth                |        | m        |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Dissolved Oxygen            |        | mg/L     |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | рН                          |        |          |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Temperature                 |        | С        |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Total Residual Chlorine     |        | mg/L     |      |     |
| 4/21/2008 11:35 | EQUIPMENT BLANK        | Nutrients                   | Specific Conductance        |        | umhos/cm |      |     |

### Appendix F

### Additional physical, chemical, toxicological and microbiological results

# FDEP Biology Laboratory - Acute Screen Bioassay Bench Sheets

Time: 12:15

Test 1 LCSO = >100%; mortality = 0% ms Time: 12:15 Sample Collection: Date: 4.21.08 Hold Time Start: Date: 4.21.08 Comments: Data Entry Verification: 79 4.30.09 LIMS Sample #: 1096/198 Mossic Fodizing L. L.C. Buttow Chimical Con J. instructions (for below); Circle appropriate wording. If yes is circled, complete blanks. POLK Contact District: Jack, Champion / BAR Tanpa County: Address: 3200 Highway 60 West UMS Job # TIH-2008-4-13-19-0 NPDES Permit #: FL 000 1589 Lims Data Entry: 4-30-0 8 INF City: Bartow

Incubator # 2 min 26.4 max 26.7 mean 26.6 Test 2 LC50 = > 100% prontality = 10% 9/0/8 Light Intensity: 50 - 100 ft. candles Photoperiod: 16 light 8 dark Incubator # min. Temperature Range °C:

min. 243 max 35,3 mean 29,3 Room B246

Holding Time: <36 Hours (63) No (Composite-end of collection; grab-when collected; 4 in 24 - time last sample collected)

Water Quality Parameters

Marshall Faincheth

Ames Barish

Investigators' Signatures

Locate Culy

Temperature: Shipped <5°C (Yeg) No. Hand Delivered: Cooling (received 'C < collected 'C) (Leg No "A 435.-C) Hoding Time: <56 House Yea 1.- (No. 10-10) Hoding Time: <56 Hoding Time:

bubbles/min

Duration: minutes Rate: Salts Hypersaline brine Hypersaline brine

Initial DO: mg/L Final DO: mg/L

Final Salinity. Final Salinity:

Initial Salinity: Initial Salinity:

Salinity adjusted (Test 1): yes (© Salinity adjusted (Test 2): yes (Ø

Dechlorination: yes 🙆

Drops mL Final pH:

N HCI N

NaOH

Initial pH:

PH adjustment: yes 🙆

Aeration: yes 6

Initial sample handling:

Final TRC:

mL of 0.025N Sodium Thiosulfate per liter of sample.

Test 2 validation: Test 2: SOP TA 07\_02 Control survival ≥80%: (65 No Temperature Range ≤3°C: (65 No

Temperature Range <3°C: (Fes) No

Control survival ≥90%: (Yes) No

Static Static Renewal / Flow-through

Test Type: (Screen)

Test Duration: (48) 96 Hours.

Test 1 validation:

Test 1: SOP TA 07\_01

Verified by V 1,4 9/12/05 MA AF BA B R 3 Measured 200 MF ģ 6 YSI //Mettle Method HACH HACH HACH DENVER Original Sample mt measu 0,434 40,03 348 Other: Salt Water ASW NSW Test 2 N/A Salt Water ASW NSW Test 1 NA Moderately 40.01 20.03 N/A 7 143 I 20% DMW Total Ammonia (mg/L as N): 20,03 N/A V Field Total Residual Cl<sub>2</sub> (mg/L): Alkalinity (mg/L as CaCO<sub>3</sub>): Hardness (mg/L as CaCO<sub>3</sub>): Lab Total Residual Cl<sub>2</sub> (mg/L): Salinity (ppth):



Page 000036

| Ctrl B B B S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  | 5-08/224 hours |            | 2001                     | Test Ended    | l: Date 4 24 | / 08Time:_ | 1110    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------------|------------|--------------------------|---------------|--------------|------------|---------|
| Concentration   Replicate   Chamber #   O hr   24 hr   48 hr BR   48 hr AR   72 hr   96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |                | Diluent/ B | atch: <u>&lt;0/&gt;/</u> | וואנט ן נין-ן | 7-08         |            |         |
| Concentration Replicate Chamber # 0 hr 24 hr 48 hr BR 48 hr AR 72 hr 96  A A 5 5 5 B 3 5 5 D D D 5 5 5 D D D 5 5 5 D D D 5 5 5 D D D 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ood/Batch: 101   | Fact Disable     | Artemia Ohr    | 24hr       | 48hr_                    | 72hr          | Artemia l    | _ot#       | <u></u> |
| Concentration Replicate Chamber # 0 hr 24 hr 48 hr BR 48 hr AR 72 hr 96  A A 5 5 5  C C C 5 5 5 5  D D D 5 5 5  A A 5 5 5 5  D D D 5 5 5 5  D D D 5 5 5 5  D D D 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | againg. Fuor to  | rest) Phor to Re | enewai Daliy   |            |                          |               |              |            |         |
| Ct <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 5 7            |                  |                |            |                          | Test          | Hour         |            |         |
| 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Concentration    |                  |                |            |                          |               | 48 hr AR     | 72 hr      | 96      |
| 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                  |                |            |                          | 5             |              |            | 1       |
| D D S S S S   D D D S S S S S   D D D S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ctrl             |                  | B              | _ 5        |                          | 5             |              |            |         |
| loe % B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 2579             | 100            |            |                          | 5             |              |            |         |
| ded/Verified by: MF/ & Checked by: (2) & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ We Checked by: (2) Ra. (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                |                  |                | _5_        | 0.41 (0.4)               | 5             |              |            |         |
| D D S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100%             | <u>B</u>         | B              | _5         |                          |               |              |            |         |
| ded/Verified by: MF / Sea. Checked by:  Chec |                  | D                |                | -5         | 5                        | S             |              |            |         |
| ded/Verified by: MF/ She Checked by:  Checke |                  | D                | IJ             | 5          | _5                       | 5             |              |            |         |
| ded/Verified by: MF / iss. Checked by: Ga. Ra. Ga.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                |                  |                |            |                          |               |              | [4         |         |
| ded/Verified by: MF/ 36% Checked by:  Checke | -                |                  |                |            |                          |               |              | 1          |         |
| ded/Verified by: MF/ W Checked by: Bh Bh Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                |            | -                        |               |              |            |         |
| ded/Verified by: MF/ kb Checked by: Bb Bb Bb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: Bh BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: Bh BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: Gh BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF / W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                | H          |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: Bh BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                |            |                          |               |              |            |         |
| ded/Verified by: MF/ W Checked by: G BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                  |                |            |                          |               |              |            |         |
| ded/verified by: In F/ BA BA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | do da la la la   |                  |                |            |                          |               |              |            |         |
| missing d = dead BR/AR = Before/After Renewal Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | missing d = da-d | F M              | Checked by:    | G)         | BA                       | BA            |              |            |         |

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

PAGE

OOOOO V V2.1 11/01/2005

### FDEP Biology Laboratory - Bioassay Survival Bench Sheet

| LIMS Sample #: 1096143 Test #: 2/2            | SOP#:TA 07_02_      | Test Started: Date 4,338 Time: 1360  |
|-----------------------------------------------|---------------------|--------------------------------------|
| Organism/Batch/Age: Clerdyi/4.22.08/12days    |                     | Test Ended: Date 4. 24.03 Time: //oo |
| Chamber/Test Volume: 1000   500 ml            | Diluent/ Batch: Wel |                                      |
| Food/Batch: YCT P.sub Artemia 0hr_            | 69-03 24hr — 48hr   |                                      |
| Feeding: Prior to Test Prior to Renewal Daily |                     |                                      |

| ES 0.000 D 0.00    |                | 50                             |           |          |              | Hour     |       |       |
|--------------------|----------------|--------------------------------|-----------|----------|--------------|----------|-------|-------|
| Concentration      | Replicate      | Chamber #                      | 0 hr      | 24 hr    | 48 hr BR     | 48 hr AR | 72 hr | 96 hr |
|                    | A 8900         | B9                             | 5         | 2        | . 5          |          |       |       |
| ctrl               | В              | B/0                            | 5         | 5        | 5            |          |       |       |
|                    | ۷              | Bil                            | 5         | ,5       | 5            |          |       |       |
|                    | D              | B/2                            | 55        | 5        | 5            |          |       |       |
|                    | 14             | B/3                            |           | 5        | 5            |          |       |       |
| 100%               | В              | BH                             | 5555      | 5        | 5            |          |       |       |
| 10070              | C              | B/5                            | S         | 5        |              | - 7      |       |       |
|                    | 0              | 8/6                            | 5         | 5        | 5            |          |       |       |
|                    |                |                                |           |          |              |          | W     |       |
|                    |                |                                |           |          |              |          | 4     |       |
| Ì                  |                |                                |           |          | 1            |          | 7.1   |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
| l l                |                |                                |           |          | <del> </del> |          |       |       |
| F                  |                |                                |           |          | -            |          |       |       |
| -                  |                |                                |           |          |              |          |       | -     |
|                    |                |                                |           |          |              |          |       |       |
| <del> </del>       |                |                                |           |          |              |          |       |       |
| +                  |                |                                |           |          |              |          |       |       |
| +                  |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
| -                  |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
| -                  |                |                                | Y)        |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       | -     |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
|                    |                |                                |           |          |              |          |       |       |
| aded/Verified by:_ | DDIDA          | Checked by:                    | D         | JP       | OC           |          |       |       |
| missing d = dead   | BR/AR = Before | After Renewal                  |           | Comments |              |          |       |       |
| st Results:        | enort I CEO as | >100%, =100%, c<br>LC50: _ > I | 40001     |          |              |          |       |       |
| coming reads. It   | eport Loso as  | 2/100%, = 100%, 0              | or <100%. |          |              |          |       |       |

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

PAGE V 2.1 11/01/2005

000038

# FDEP Biology Laboratory - Bioassay Parameter Bench Sheet

LIMS Sample #: 1096198

Test #: 1 of 2

TEST SOP #: TA07 07

Test Species: Ceriodaphnia dubia Cyprinella leedsi Pimephales promelas Americamysis bahia Menidia beryllina Other.

| Concentration            |         | >       | 48 Hr.                                                    | 48 Hr.     |             |           | Concent      |
|--------------------------|---------|---------|-----------------------------------------------------------|------------|-------------|-----------|--------------|
| てと                       | į       | 1874    | before                                                    | after      | 72 Hr 96 Hr | 46<br>H   | 8            |
| Replicate                | ξ       | X       |                                                           |            |             |           | Replicate    |
| pH (S.U.)                | 17.8    | 1,2     |                                                           |            |             |           | pH (S.U.)    |
| Temperature °C           | 24,0    | 24.7    |                                                           |            |             |           | Temperature  |
| Dissolved Oxygen mg/L    | 1,5     | 1'2     |                                                           |            |             |           | Dissolved O. |
| Conductivity umhos mmhos | 179     | 981     |                                                           |            |             |           | Conductivity |
| (initials) Measured by:  | BA      | RA      |                                                           |            |             |           | (initials) M |
| (initials) Recorded by:  | BA      | 34      |                                                           |            |             |           | (initials) R |
| Comments: 未              | Recorde | 4 6 how | * Peccoded 46 hours p 24 hour spaces. me for 1619 4-25-08 | our Sports | mt for      | BA 4-25-0 | Comments:    |

| Concentration           |      |        | 48 Hr.            | 48 Hr.           |        |        |
|-------------------------|------|--------|-------------------|------------------|--------|--------|
| 9,00)                   | 0 H. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |
| Replicate               | М    | V      | A                 |                  |        |        |
| рн (S.U.)               | 712  |        | 2,2               |                  |        |        |
| Temperature °C          | 24.1 |        | 24.3              |                  |        |        |
| Dissolved Oxygen mg/L   | 1.9  |        | 1.7               |                  |        |        |
| Conductivity amhos      | 889  |        | 712               |                  |        |        |
| (initials) Measured by: | BA   |        | GA                |                  |        |        |
| (initials) Recorded by: | VB   |        | BA                |                  |        |        |

| Concentration            | 0 Hr. | 24 Hr. | 48 Hr.<br>before<br>renewal | 48 Hr.<br>after<br>renewal | 72 Hr. | 96 Hr. |
|--------------------------|-------|--------|-----------------------------|----------------------------|--------|--------|
| Replicate                |       |        |                             |                            |        |        |
| pH (S.U.)                |       |        |                             |                            |        |        |
| Temperature °C           |       |        |                             |                            |        |        |
| Dissolved Oxygen mg/L    |       | 7.     |                             |                            |        |        |
| Conductivity µmhos mmhos |       |        |                             |                            |        |        |
| (initials) Measured by:  |       |        |                             |                            |        |        |
| (initials) Recorded by:  |       |        |                             |                            |        |        |

| Concentration            |       |        | 48 Hr.            | 48 Hr.           |        |        |
|--------------------------|-------|--------|-------------------|------------------|--------|--------|
|                          | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |
| Replicate                |       |        |                   |                  |        |        |
| рн (S.U.)                |       |        |                   |                  |        |        |
| Temperature °C           |       |        |                   |                  |        |        |
| Dissolved Oxygen mg/L    |       |        |                   |                  |        |        |
| Conductivity µmhos mmhos |       |        |                   |                  |        |        |
| (initials) Measured by:  |       | 2      |                   |                  |        |        |
| (initials) Recorded by:  |       |        |                   |                  |        |        |
|                          |       |        |                   |                  |        |        |

Comments 00039

V 2.0 2/24/04

# FDEP Biology Laboratory - Bioassay Parameter Bench Sheet

1096198 LIMS Sample #:

TEST SOP #: TA07

Test #: 2\_ of

Test #: 2 of 2
Test Species: Ceriodaphnia dubia (Cyprinella leeds) Pimephales promelas
Americamysis bahia Menidia beryllina Other:



| Concentration                 |       |        | 48 Hr.            | 48 Hr.           |        |        | Con      |
|-------------------------------|-------|--------|-------------------|------------------|--------|--------|----------|
| C+-)                          | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |          |
| Replicate                     | И     | В      | V                 |                  |        |        | Replical |
| рН (S.U.)                     | 7.8   | 8,7    | 8.3               |                  |        |        | pH (S.U  |
| Temperature °C                | 74.4  | 1,7%   | 24.4              |                  |        |        | Temper   |
| Dissolved Oxygen mg/L         | 2.6   | 6.7    | 6.7               |                  |        |        | Dissolve |
| Conductivity (mmhos)<br>mmhos | 276   | 298    | 340               |                  |        |        | Conduc   |
| (initials) Measured by:       | R     | 30     | J.                |                  |        |        | (initia  |
| (initials) Recorded by:       | F     | ĸ      | ſω                |                  |        |        | (initia  |
| Comments:                     |       |        |                   |                  |        |        | Commer   |

| Concentration              |       |        | 48 Hr.            | 48 Hr.           |               |        |
|----------------------------|-------|--------|-------------------|------------------|---------------|--------|
| 100%                       | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. 96 Hr. | 96 Hr. |
| Replicate                  | #     | B      | V                 |                  |               |        |
| pH (S.U.)                  | 7.2   | 82     | 8.0               |                  |               |        |
| Temperature °C             | 135.1 | 24.0   | 74.9              |                  |               |        |
| Dissolved Oxygen mg/L 6. 3 | 6.3   | 1'9    | 9.9               |                  |               |        |
| Conductivity (pmhos)       | 289   | 507    | 0.01              |                  |               |        |
| (initials) Measured by:    | Q.C.  | 33     | (i)               |                  |               |        |
| (initials) Recorded by:    | 25    | CC     | (c                |                  |               |        |
|                            |       |        |                   |                  |               |        |

|   | ì |   | į |  |
|---|---|---|---|--|
|   |   |   |   |  |
|   | 1 |   |   |  |
|   | 1 | Ē |   |  |
| h | , | Ç | ζ |  |
|   | ١ | ۰ | • |  |

| Concentration            | 0 H. | 0 Hr. 24 Hr. | 48 Hr.<br>before<br>renewal | 48 Hr.<br>after<br>renewal | 72 Hr. | 96 Hr. |
|--------------------------|------|--------------|-----------------------------|----------------------------|--------|--------|
| Replicate                |      |              |                             |                            |        |        |
| pH (S.U.)                |      |              |                             |                            |        |        |
| Temperature °C           |      |              |                             |                            |        |        |
| Dissolved Oxygen mg/L    |      |              |                             |                            |        |        |
| Conductivity µmhos mmhos |      |              |                             |                            |        |        |
| (initials) Measured by:  |      |              |                             |                            |        |        |
| (initials) Recorded by:  |      |              |                             |                            |        |        |

| Concentration           |   |       | 48 Hr. | 48 Hr.            |       |       |
|-------------------------|---|-------|--------|-------------------|-------|-------|
|                         | į | 24 Hr | before | after 72 Hr 96 Hr | 72 Hr | 96 Hr |
|                         |   |       |        |                   |       |       |
| Replicate               |   |       |        |                   |       |       |
| pH (S.U.)               |   |       |        |                   |       |       |
| (::::)                  |   |       |        |                   |       |       |
| Temperature °C          |   |       |        |                   |       |       |
|                         |   |       |        |                   |       |       |
| Dissolved Oxygen mg/L   |   |       |        |                   |       |       |
| Conductivity µmhos      |   |       |        |                   |       |       |
| mmhos                   |   |       |        |                   |       |       |
| (initials) Measured by: |   |       |        |                   |       |       |
| (initials) Recorded by: |   |       |        |                   |       |       |

Comments:

Page

# FDEP Biology Laboratory - Acute Screen Bioassay Bench Sheets

|                                                                                                                                                                     | Low the Corp by                                                                       |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|
| Facility: Mosaic Fortilizer, L.L. C Ratiow Chen                                                                                                                     | - Ratiow Chemple 2                                                                    | Sample Collection: Date: 1,21.08 Time: 13,15   |
| Address: 3200 Highway 60 west                                                                                                                                       | Jest                                                                                  | Hold Time Start: Date: 421/08 Time: 13/5       |
| City: Bartow Co                                                                                                                                                     | County: POLK                                                                          |                                                |
| Contact/District: Jack, champion / BMK Tampa                                                                                                                        | / BUR Touga                                                                           |                                                |
| NPDES Permit #: FL 3001589                                                                                                                                          |                                                                                       | Comments:                                      |
| LIMS Job # 714-2008-4-12-19-02                                                                                                                                      | LIMS Sample #: 1094199                                                                | 135 - 1 C C - 1 100% montal, 4 5 0% mF5/5/68   |
| Lims Data Entry, 4-30-05 m.j.                                                                                                                                       | Data Entry Verification; 39 935-05                                                    | 1651 2 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
| Instructions (for below): Circle appropriate wording. If yes is circled, complete blanks.  Test Type: Screen?  Static Renewal / Flow-through  Control survival ≥90% | s is circled, complete blanks.  Tost 1: SOP TA 07_ Cd / Control survival ≥90%: Yes No |                                                |
| Test Duration: (48) 96 Hours.                                                                                                                                       | Temperature Range ≤3°C: Yes. No                                                       |                                                |
|                                                                                                                                                                     |                                                                                       |                                                |

|                                   |                          | Light Intensity: 50 - 100 ft. candies | Photoperiod: 16 light 8 dark                                   | Tomperature Range 'C;                   | Incubator # 2 mln, 26-1 max 26, 7 mean 46-16                                  | Incubator# min max mean | Room B246 min 413 max 4313 mean 4313                                   |                                                                                                    |  |
|-----------------------------------|--------------------------|---------------------------------------|----------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| No                                | Drops ml. Final pH:      | tion: minutes Rate: - bubbles/min     | Salts Hypersaline brine                                        | Salts Hypersaline brine                 | Final TRC:                                                                    |                         | ed.C) @ No                                                             | d; 4 in 24 - time last sample collected)                                                           |  |
| g: Temperature Range ≤3°C: Yes No | Initial pH; NaOH N HC! N | Initial DC                            | yes (initial Sallnity: Final Sallnity: Salts Hypersaline brine | yes @ Initial Salinity. Final Salinity: | Sechlorination: yes (6) ml. of 0.025N Sodium Thiosulfate per liter of sample. |                         | 6°C (G) No Hand Delivered: Cooling (received °C < collected °C) (G) No | s 'Ch. No (Composite-end of collection; grab-when collected; 4 in 24 - time last sample collected) |  |
| Initial sample handling:          | PH adjustment: yes       | Aeration: yes @                       | Salinity adjusted (Test 1); yes (9)                            | Salinity adjusted (Test 2); yes 69      | Dechlorination: yes 69                                                        | Sample Validation:      | Temperature: Shipped 56°C ( No                                         | Holding Time; <36 Hours Co. No (C                                                                  |  |

Test 2 validation: Test 2: SOP TA 07\_CX\_Control survival ≥90%: Yes No

Temperature Range ≤3°C: Yes No

| gators' Signatures | Water Quality Parameters                 | 20% DMW |        | Moderately Salt Water Salt Water<br>fard Water Asw NSW Asw NSW<br>Well Water Test 1 Test 2 | Salt Water<br>ASW NSW<br>Test 2 | Other | Original<br>Sample | Method        | Measured | Verified by |
|--------------------|------------------------------------------|---------|--------|--------------------------------------------------------------------------------------------|---------------------------------|-------|--------------------|---------------|----------|-------------|
| Amba Dancid.       | Field Total Residual Cl., (mg/L):        | N/A     | N/A    | N/A                                                                                        | N/A                             |       | tox                | markered      | 1        | かん          |
| A FEST             | I ab Total Residual Cl. (mg/L):          | 40.03   | 43c3   |                                                                                            |                                 |       | 4003               | HACH          | 5        | BA          |
|                    | Alkalinity (mg/L as CaCO <sub>3</sub> ): | 28      | 8H     |                                                                                            |                                 |       | 27                 | HACH          | 94       | 6           |
| 100                | Hardness (mo/l as CaCO <sub>3</sub> ):   | 88      | 141    |                                                                                            |                                 |       | 247                | HACH          | 34       | d.p         |
| 17 6 11            | Total Ammonia (mg/l as N)                | V       | 40.017 |                                                                                            |                                 |       | 0,169              | DENVER        | JW.      | В           |
| 1000               | Salinity (poth):                         | 7       | 1747   |                                                                                            |                                 |       | (7)                | YSI (Mettler) | દ        | MF          |

000041 Page

**ссединесобы** 



### FDEP Biology Laboratory - Bioassay Survival Bench Sheet

| LIMS Sample #: 1096199             | Test #: 1/2 SOP#:TA 07 01 | Test Started: Date 4.23.48 Time: 133 0 |
|------------------------------------|---------------------------|----------------------------------------|
| Organism/Batch/Age: cdbx/1.        | 5-08/c24 hours            | Test Ended: Date 424 68 Time: 11:15    |
| Chamber/Test Volume: 30 /          |                           |                                        |
| Food/Batch: YCT7-2607P.sub/3       | los Artemia Ohr 24hr 48hr | 72hr Artemla Lot#                      |
| Feeding: Prior to Test Prior to Re | newal Daily               |                                        |

|                     |           |                                |        |                 |          | Hour     |       |         |
|---------------------|-----------|--------------------------------|--------|-----------------|----------|----------|-------|---------|
| Concentration       | Replicate | Chamber #                      | 0 hr   | 24 hr           | 48 hr BR | 48 hr AR | 72 hr | 96 hr   |
| L                   | A         | A                              | 5      | 5               | 5        |          |       |         |
| 21.1                | В         | В                              | 5      | 555             | 5 5      |          |       |         |
| Ctrl                | 4         | C .                            | 5      | 5               | .5       |          |       |         |
|                     | D         | D                              | 5      | 5               | -5       |          |       |         |
|                     | A         | A                              | 3      | 5               | ·5<br>·5 |          |       |         |
| 100%                | В         | В                              | 5      | 5               |          |          |       |         |
|                     | (         | L                              | 5      | 5               | .5       |          |       |         |
|                     | 9         | D                              | 5<br>5 | ,5'             | 5        |          |       |         |
|                     |           |                                |        |                 |          |          |       | C . 100 |
|                     |           |                                |        |                 |          |          |       |         |
| [                   |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
| ::                  |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
| h                   |           |                                |        |                 |          |          |       |         |
| -                   |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
| -                   |           | <b> </b>                       |        | <del> </del>    |          |          |       |         |
| H                   |           |                                |        |                 |          |          |       |         |
| -                   |           |                                |        | -               |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
| -                   |           |                                |        |                 |          |          |       |         |
| -                   |           |                                |        | -               |          |          |       |         |
| }-                  |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
|                     |           |                                |        |                 |          |          |       |         |
| -                   |           |                                |        |                 |          |          |       |         |
| L                   |           |                                |        |                 |          |          |       |         |
| 10 - 20 - 20 - 20   |           |                                |        |                 |          |          |       |         |
| aded/Verified by:_/ | MEI BX    | Checked by:<br>e/After Renewal | BA     | BA-<br>Comments | BA       |          |       |         |

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

PAGE

V 2.1 11/01/2005

000042

### FDEP Biology Laboratory - Bioassay Survival Bench Sheet

| LIMS Sample #:                            | 1096199                 | Test #: 2/2<br>12.08/12Jays | _ SOP#:TA      | 07_02      | Test Starte | d: Date <u> 4,</u> 22.<br>J: Date_ 4,24 | 7 Time:            | 1215   |
|-------------------------------------------|-------------------------|-----------------------------|----------------|------------|-------------|-----------------------------------------|--------------------|--------|
| Chamber/Test V                            | Age. <u>5//269/7 //</u> | Sas -1                      | Dilinet/ De    | tab. 1/-// | 1 4 A       | 1. Date tri                             | Time.              | 100    |
|                                           |                         |                             |                |            |             |                                         | 22426              | 200-0  |
| Food/Batch: YC                            | P.sub_                  | Artemia 0hr                 | 69-03 24nr     | 48nr_      | /2hr        | Artemia l                               | .ot# <u>.25753</u> | 5925gR |
| eeding: Prior to                          | Test Prior to Re        | enewai Daliy                |                |            |             |                                         |                    |        |
| and the same                              | -F 100 D                | est v es                    |                |            |             | Hour                                    |                    |        |
| Concentration                             | Replicate               | Chamber #                   | 0 hr           | 24 hr      | 48 hr BR    | 48 hr AR                                | 72 hr              | 96 hr  |
|                                           | 4                       | B17                         | 5              | 5          | 5           |                                         |                    |        |
| Ctrl                                      | В                       | B18                         | 5              | 5          | 5           |                                         |                    |        |
| 5.5.17                                    | c                       | Big                         | 5              | 5          | 5           |                                         |                    |        |
|                                           | 0                       | B20                         | 5              | 5          | 5           |                                         |                    |        |
|                                           | 14                      | 821                         | S              | 5          | 5           |                                         |                    |        |
| 100%                                      | 8                       | B22                         | <u>\$</u><br>5 | 5          | 5           |                                         |                    |        |
| 10070                                     | C                       | B23                         |                | 5          | 5           | 7                                       |                    |        |
|                                           | D                       | B24                         | 5              | 5          | 5           |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         | , n.               | 4-17   |
|                                           |                         |                             |                |            |             |                                         | T¥                 |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    | 14     |
|                                           |                         |                             |                |            |             |                                         |                    |        |
| -                                         |                         |                             |                |            |             |                                         |                    |        |
| 1                                         |                         |                             |                |            |             |                                         |                    | - 11V  |
|                                           |                         |                             |                |            | -           | 1                                       |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
| 1                                         |                         |                             |                | -          |             | 1                                       |                    |        |
| 1                                         |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            | +           |                                         |                    |        |
|                                           |                         |                             | <b> </b>       | -          | 1           | -                                       |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
| ^                                         |                         | -                           |                | -          |             |                                         |                    |        |
|                                           |                         | <b> </b>                    |                |            |             |                                         |                    |        |
|                                           |                         |                             |                |            |             |                                         |                    |        |
| andad0/151                                | TD 1 M                  | 01 11                       |                |            |             |                                         |                    |        |
| .oaded/Verified by:<br>n = missing d = de |                         | Checked by:                 | 3              | Comments   | (رو ا       |                                         |                    |        |
| Test Results:                             | 20 DIVAL - DEIOI        | GAREI Renewal               |                | Comments   | M.S.        |                                         |                    |        |
| Screening Tests:                          |                         |                             |                |            |             |                                         |                    |        |
| % mortality in 100%                       | sample: O'              | /v LC50: >                  | 10000          |            |             |                                         |                    |        |

Substitue highest test concentration used if other than 100% (example: Ocean outfall tested at 30% concentration).

PAGE V 2.1 11/01/2005

000043

# FDEP Biology Laboratory - Bioassay Parameter Bench Sheet

6619601 LIMS Sample #:

/ of 2 Test #:

TEST SOP #: TA07\_ O/

C7+1 = 1021/201

Test Species: Ceriodaphnia dubia Cyprinella leedsi Pimephales promelas

Americamysis bahia Menidia beryllina Other:

| Concentration           |       |        | 48 Hr.            | 48 Hr.           |        |        | Concentration              |       |        |
|-------------------------|-------|--------|-------------------|------------------|--------|--------|----------------------------|-------|--------|
| 142                     | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. | 06001                      | 0 Hr. | 24 Hr. |
| Replicate               | ×     |        | X                 |                  |        |        | Replicate                  | M     | j      |
| pH (S.U.)               | 1.8   |        | 7.9               |                  |        |        | pH (S.U.)                  | 7.3   |        |
| Temperature °C          | SH.10 |        | 1. 45             |                  |        |        | Temperature "C             | 01/12 |        |
| Dissolved Oxygen mg/L   | 5'L   |        | ٤12               |                  |        |        | Dissolved Oxygen mg/L      | 1.9   |        |
| Conductivity minos      | 7/1   |        | 061               |                  |        |        | Conductivity printos mmhos | 289   |        |
| (initials) Measured by: | E     |        | VV                |                  |        |        | (initials) Measured by:    | 0.8   |        |
| (initials) Recorded by: | 88    |        | AS.               |                  |        |        | (initials) Recorded by:    | 8     |        |
| Comments:               |       |        |                   |                  |        |        | Comments:                  |       |        |
|                         |       |        |                   |                  |        |        |                            |       |        |

| Concentration            |       |        | 48 Hr.            | 48 Hr.           |        |        |
|--------------------------|-------|--------|-------------------|------------------|--------|--------|
| 100%                     | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |
| Replicate                | M     |        | A                 |                  |        |        |
| pH (S.U.)                | 7.3   |        | 1'8               |                  |        |        |
| Temperature "C           | 24.0  |        | 24.2              |                  |        |        |
| Dissolved Oxygen mg/L 6. | 1.9   |        | 7.1               |                  |        |        |
| Conductivity pmhos       | 289   |        | 589               |                  |        |        |
| (initials) Measured by:  | 99    |        | BB                |                  |        |        |
| (initials) Recorded by:  | €     |        | 45                |                  |        |        |

| 12 |  |
|----|--|
| 33 |  |
| =  |  |
| B  |  |
| =  |  |
| ⊨  |  |
| =  |  |

| Concentration            |       |        | 48 Hr.            | 48 Hr.           |        |        | ŏ      |
|--------------------------|-------|--------|-------------------|------------------|--------|--------|--------|
|                          | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |        |
| Replicate                |       |        |                   | E                |        |        | Replic |
| pH (S.U.)                |       |        |                   |                  |        |        | pH (S. |
| Temperature °C           |       |        |                   |                  |        |        | Тетр   |
| Dissolved Oxygen mg/L    |       |        |                   |                  |        |        | Disso  |
| Conductivity µmhos mmhos |       |        |                   |                  |        |        | Condu  |
| (initials) Measured by:  |       |        |                   | 7.               |        |        | (ini   |
| (initials) Recorded by:  |       |        |                   |                  |        |        | (iii)  |
| Comments:                |       |        |                   |                  |        |        | Comm   |

| Concentration            |      |        | 48 Hr.            | 48 Hr.           |        |        |
|--------------------------|------|--------|-------------------|------------------|--------|--------|
|                          | 0 片. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. |
| Replicate                |      |        |                   |                  |        |        |
| pH (S.U.)                |      |        |                   |                  |        |        |
| Temperature °C           |      |        |                   |                  |        |        |
| Dissolved Oxygen mg/L    |      |        |                   |                  |        |        |
| Conductivity µmhos mmhos |      |        |                   |                  |        |        |
| (initials) Measured by:  |      |        |                   |                  |        |        |
| (initials) Recorded by:  |      |        |                   |                  |        |        |
|                          |      |        |                   |                  |        |        |

ments: 000044

Page

LIMS Sample #:

TEST SOP #: TA07

Test #: 2 of 2
Test Species: Ceriodaphnia dubia Cyprinella leeds/ Primephales promala
Americamysis bahia Menidia beryllina Other.

| Concentration           |       |        | 48 Hr.            | 48 Hr.           |        |        | Conc      |
|-------------------------|-------|--------|-------------------|------------------|--------|--------|-----------|
| ctr                     | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. | 96 Hr. | -         |
| Replicate               | 4     | ત્     | J                 |                  |        |        | Replicate |
| рн (s.U.)               | 29    | 8,2    | 8.3               |                  |        |        | pH (S.U.  |
| Temperature °C          | 1,46  | 24,2   | Fire              |                  |        |        | Tempera   |
| Dissolved Oxygen mg/L   | 2.6   | 9.9    | 9.9               |                  |        |        | Dissolve  |
| Conductivity amhos      | bLE   | 296    | 18€               |                  |        |        | Conduct   |
| (initials) Measured by: | R     | 30     | 100               |                  |        |        | (initial  |
| (initials) Recorded by: | 33    | 20     | Å                 |                  |        |        | (initial  |
| Comments:               |       |        |                   |                  |        |        | Commen    |

| Poo P   O Hr. 24 Hr. Replicate |      |                  |        |        |
|--------------------------------|------|------------------|--------|--------|
| A<br>6.9                       | 3    | after<br>renewal | 72 Hr. | 96 Hr. |
| ٩٠٥                            | ď    |                  |        |        |
|                                | 2.6  |                  |        |        |
| Temperature °C 34.8 24.7       | 242  |                  |        |        |
| Dissolved Oxygen mg/L 6.3 6.2  | 6,7  |                  |        |        |
| Conductivity (umhos) 1020 1032 | 9501 |                  |        |        |
| (initials) Measured by: 50     | 329  |                  |        |        |
| (initials) Recorded by: 35     | ŒC.  |                  |        |        |

| : | á |
|---|---|
| ÷ | 3 |
| 5 | 7 |
| ì | = |
| ţ | Ξ |
| t | Ξ |

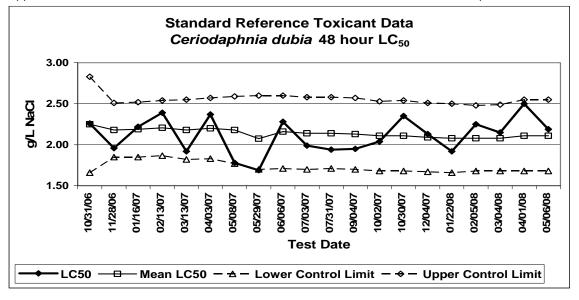
| Concentration            |       |        | 48 Hr.            | 48 Hr.                         |        |        | Concen       |
|--------------------------|-------|--------|-------------------|--------------------------------|--------|--------|--------------|
|                          | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal 72 Hr. 96 Hr. | 72 Hr. | 96 Hr. |              |
| Replicate                |       |        |                   |                                |        |        | Replicate    |
| pH (S.U.)                |       |        |                   |                                |        |        | pH (S.U.)    |
| Temperature °C           |       |        |                   |                                |        |        | Temperatur   |
| Dissolved Oxygen mg/L    |       |        |                   |                                |        |        | Dissolved C  |
| Conductivity µmhos mmhos |       |        |                   |                                |        |        | Conductivity |
| (initials) Measured by:  |       |        |                   |                                |        |        | (initials) N |
| (initials) Recorded by:  |       |        |                   |                                |        |        | (initials)   |
| Comments:                |       |        |                   |                                |        |        | Comments:    |

| Concentration            |       |        | 48 Hr.            | 48 Hr.           |               |        |
|--------------------------|-------|--------|-------------------|------------------|---------------|--------|
|                          | 0 Hr. | 24 Hr. | before<br>renewal | after<br>renewal | 72 Hr. 96 Hr. | 96 Hr. |
| Replicate                |       |        |                   |                  |               |        |
| pH (S.U.)                |       |        |                   |                  |               |        |
| Temperature °C           |       |        |                   |                  |               |        |
| Dissolved Oxygen mg/L    |       | 9)     |                   |                  |               |        |
| Conductivity µmhos mmhos |       |        |                   |                  |               |        |
| (initials) Measured by:  |       |        |                   |                  |               |        |
| (initials) Recorded by:  |       |        |                   |                  |               |        |
|                          |       |        |                   |                  |               |        |

Page 000045

### Appendix G

### **Standard Reference Toxicant data**


### Florida Department of Environmental Protection Bureau of Laboratories

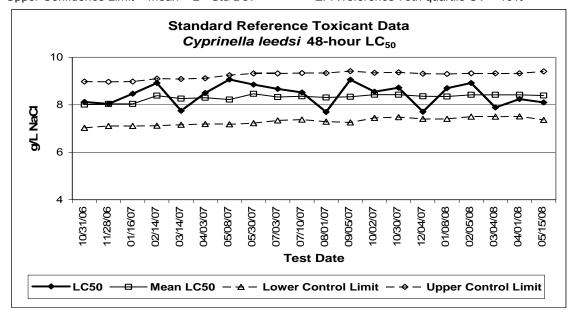
Standard Reference Toxicant (SRT) Test Data - 48-hour Acute Toxicity Ceriodaphnia dubia (water flea) - Sodium Chloride (NaCl)

| <u>Date</u> | LC50 | Mean LC50 | Std Dev | Lower Control Limit | Upper Control Limit |
|-------------|------|-----------|---------|---------------------|---------------------|
| 10/31/06    | 2.26 | 2.25      | 0.29    | 1.66                | 2.83                |
| 11/28/06    | 1.96 | 2.18      | 0.17    | 1.85                | 2.51                |
| 01/16/07    | 2.22 | 2.19      | 0.17    | 1.85                | 2.52                |
| 02/13/07    | 2.39 | 2.21      | 0.17    | 1.87                | 2.54                |
| 03/13/07    | 1.92 | 2.18      | 0.18    | 1.82                | 2.55                |
| 04/03/07    | 2.37 | 2.20      | 0.18    | 1.83                | 2.57                |
| 05/08/07    | 1.78 | 2.18      | 0.21    | 1.77                | 2.59                |
| 05/29/07    | 1.69 | 2.07      | 0.23    | 1.70                | 2.60                |
| 06/06/07    | 2.28 | 2.16      | 0.22    | 1.71                | 2.60                |
| 07/03/07    | 1.99 | 2.14      | 0.22    | 1.70                | 2.58                |
| 07/31/07    | 1.94 | 2.14      | 0.22    | 1.71                | 2.58                |
| 09/04/07    | 1.95 | 2.13      | 0.22    | 1.70                | 2.57                |
| 10/02/07    | 2.04 | 2.11      | 0.21    | 1.68                | 2.53                |
| 10/30/07    | 2.35 | 2.11      | 0.21    | 1.68                | 2.54                |
| 12/04/07    | 2.13 | 2.09      | 0.20    | 1.67                | 2.51                |
| 01/22/08    | 1.92 | 2.08      | 0.20    | 1.66                | 2.50                |
| 02/05/08    | 2.25 | 2.08      | 0.20    | 1.68                | 2.48                |
| 03/04/08    | 2.15 | 2.08      | 0.20    | 1.68                | 2.49                |
| 04/01/08    | 2.50 | 2.11      | 0.22    | 1.68                | 2.55                |
| 05/06/08    | 2.19 | 2.11      | 0.22    | 1.68                | 2.55                |

Means are of the last 20 SRT tests. Lower Control Limit = mean - 2 \* Std Dev Upper Control Limit = mean + 2 \* Std Dev

CV = 10.30 EPA reference 75th quartile CV = 29%




### Florida Department of Environmental Protection Bureau of Laboratories

Standard Reference Toxicant (SRT) Test Data - 48-hour Acute Toxicity *Cyprinella leedsi* (bannerfin shiner) - Sodium Chloride (NaCl)

| <u>Date</u><br>10/31/06 | <u>LC50</u><br>8.12 | Mean LC50<br>8.01 | Std Dev<br>0.49 | Lower Control Limit<br>7.03 | Upper Control Limit<br>8.98 |
|-------------------------|---------------------|-------------------|-----------------|-----------------------------|-----------------------------|
| 11/28/06                | 8.04                | 8.04              | 0.46            | 7.11                        | 8.97                        |
| 01/16/07                | 8.47                | 8.04              | 0.23            | 7.11                        | 8.98                        |
| 02/14/07                | 8.92                | 8.39              | 0.40            | 7.12                        | 9.10                        |
| 03/14/07                | 7.75                | 8.26              | 0.45            | 7.16                        | 9.09                        |
| 04/03/07                | 8.50                | 8.30              | 0.41            | 7.19                        | 9.12                        |
| 05/08/07                | 9.07                | 8.22              | 0.52            | 7.18                        | 9.25                        |
| 05/30/07                | 8.85                | 8.47              | 0.47            | 7.23                        | 9.32                        |
| 07/03/07                | 8.67                | 8.33              | 0.50            | 7.34                        | 9.32                        |
| 07/10/07                | 8.52                | 8.36              | 0.49            | 7.38                        | 9.34                        |
| 08/01/07                | 7.7                 | 8.31              | 0.51            | 7.29                        | 9.34                        |
| 09/05/07                | 9.06                | 8.34              | 0.54            | 7.26                        | 9.42                        |
| 10/02/07                | 8.55                | 8.43              | 0.47            | 7.45                        | 9.35                        |
| 10/30/07                | 8.72                | 8.43              | 0.47            | 7.48                        | 9.37                        |
| 12/04/07                | 7.71                | 8.36              | 0.47            | 7.41                        | 9.31                        |
| 01/08/08                | 8.7                 | 8.35              | 0.47            | 7.41                        | 9.30                        |
| 02/05/08                | 8.92                | 8.42              | 0.46            | 7.50                        | 9.33                        |
| 03/04/08                | 7.89                | 8.42              | 0.46            | 7.50                        | 9.33                        |
| 04/01/08                | 8.24                | 8.42              | 0.45            | 7.51                        | 9.33                        |
| 05/15/08                | 8.1                 | 8.39              | 0.51            | 7.36                        | 9.41                        |

Means are of the last 20 SRT tests. Lower Confidence Limit = mean - 2 \* Std Dev Upper Confidence Limit = mean + 2 \* Std Dev

CV = 6.12 EPA reference 75th quartile CV = 19%



|                   |                  |                                                   |                   | FDE                                                  | P Biol                                                           | ogy La                    | aborat             | ory -                                            | Acute                                            | SRT E                     | lench        | Sheet              |                              |                     |                                           |                   | 1           |
|-------------------|------------------|---------------------------------------------------|-------------------|------------------------------------------------------|------------------------------------------------------------------|---------------------------|--------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|--------------|--------------------|------------------------------|---------------------|-------------------------------------------|-------------------|-------------|
| est Organ         | ism:             | Americamy<br>Method 20<br>Ceriodephi<br>Method 20 | 07,0<br>nia dubia | Met<br>Cyprin                                        | lia beryll<br>thod 2006<br>tella leed<br>hod 2000                | si Pime                   | Method 10          | 0.1 EPA-<br>iromelas                             | 800-R-99-l<br>Other: _                           |                           | _            |                    | Mei<br>Test Type<br>Test Pag | a: 4                | m EPA-<br>18 hour no<br>6 hour re<br>of 2 | on-rene<br>enewal |             |
| lluent/ Ba        | tch #:<br>Batch# | Dmw                                               | 14.1.             | 08                                                   | ,                                                                | 8                         | Test Be<br>Test En |                                                  | p: Date:_<br>Date:_                              | 4.1.08                    | _            | Time: 13           | 115                          |                     |                                           |                   |             |
|                   |                  | rameters                                          | 4.1.              | B -                                                  | Initials                                                         |                           | Organis            | sm Bato                                          | h #/ Age                                         | e: 12-                    | 07/<2        | Hhrs               |                              |                     |                                           |                   |             |
|                   |                  | Cl <sub>2</sub> (mg/L):                           |                   | Method<br>Hach                                       | ブウ                                                               |                           | Feeding            | : Prior                                          | to test / P                                      | rior to re                | newal Dr     | Daily              |                              |                     |                                           |                   |             |
|                   |                  | s CaCO <sub>3</sub> ):                            |                   | Hach                                                 | BA                                                               |                           | Food:              | 1                                                | (FOY                                             | Psubce                    | noitata      | Artem              | ia: Lot#                     |                     | _                                         |                   |             |
| lardness (        | mg.L a           | s CaCO <sub>3</sub> ):                            | 81                | Hach                                                 | BA                                                               |                           | Food B             | atch: _                                          | 7-26-0                                           | Z _ 1-3                   | 31-08        | 0hi                | 2                            | 4hr                 | 48hr                                      | 72hr_             | _           |
| otal Amm          |                  | ng/L as N):                                       |                   | Denver                                               | 156                                                              |                           |                    |                                                  | 30_r                                             |                           | Danie        |                    |                              |                     |                                           | www.mile.com      |             |
|                   | Sali             | inity (ppth):                                     | <                 | Mettler                                              | BA                                                               | 5                         | rest vo            | iume: _                                          | 20_ ml                                           | L per rep                 | ilicate      |                    |                              |                     |                                           | correct           |             |
| Conc.             | ľ                | 1                                                 | Nu                | ımber Li                                             | ve                                                               |                           | pH (SU)            |                                                  | Temp                                             | erature                   | (°C)         | D.                 | O. (mg/                      | L) .                |                                           | cm (mm            |             |
| (a)D              |                  | Chamber                                           | 0 hr              | 24 hr                                                | 48 hr                                                            | 0 hr                      | 24 hr              | 48 hr                                            | 0 hr                                             | 24 hr                     | 48 hr        | 0 hr               | 24 hr                        | 48 hr               | 0 hr                                      | 24 hr             | 48 hr       |
| /L mg/L           | Rep.             | #                                                 | 4 <del>8 hr</del> | 7 <del>2 tır</del>                                   | -95 hr                                                           | -48 ttr                   | -72 hr             | _96-hr-                                          | -48 m                                            | 7 <del>2 hr</del>         | 98 tir       | 4 <del>8 tr</del>  | 72.hr-                       | - <del>98 h</del> r | 4 <del>8 hr</del>                         | 7 <del>2 hr</del> | 96-hr-      |
|                   | Α                | A                                                 | Ś                 | 5                                                    | 5                                                                | 7.9                       |                    | 8,0                                              | 24.0                                             |                           | 24,0         | 7,8                |                              | 7,0                 | 0.172                                     |                   | 0.183       |
| Control           | В                | 3                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
| MINIO             | С                | ć                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
|                   | D                | D                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
|                   | Α                | A                                                 | Ъ                 | 5                                                    | 5                                                                | 8.0                       |                    | 7,9                                              | 240                                              |                           | 240          | 7,8                |                              | 7.1                 | 291                                       |                   | 3.07        |
| 4                 | В                | B                                                 | 3                 | 5                                                    | 5                                                                | 37:2<br>-                 |                    | 3                                                |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
| .5                | С                | · (.                                              | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
|                   | D                | 0                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
|                   | Α                | A                                                 | 5                 | 5                                                    | 5                                                                | 8.1                       |                    | 7,4                                              | 240                                              |                           | 24.0         | 7,5                |                              | 710                 | 388                                       |                   | 4.02        |
| 2                 | В                | B                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
| 0                 | С                | C                                                 | 5                 | 25                                                   | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
| ly .              | D                | D                                                 | 5                 | 5                                                    | 5                                                                |                           |                    |                                                  |                                                  |                           |              |                    |                              | ,                   |                                           |                   |             |
|                   | Α                | A                                                 | 5                 | 5                                                    | 230                                                              | 8.1                       |                    | 79                                               | 24.1                                             |                           | 240          | 7. 7               |                              | 6.9                 | 4.71                                      |                   | 4.93        |
| 1 6               | В                | B                                                 | 5                 | 5                                                    | 320                                                              |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   |             |
| 2.5               | С                | (                                                 | 5                 | 5                                                    | 3-0                                                              |                           |                    |                                                  |                                                  |                           |              |                    |                              |                     |                                           |                   | $\vdash$    |
|                   | D                | D                                                 | 5                 | 410                                                  | 310                                                              |                           |                    |                                                  | 1                                                |                           |              |                    |                              | 1                   |                                           |                   |             |
|                   | Α                | 2                                                 | _5_               | 320                                                  |                                                                  | 81                        |                    | 79                                               | 24.1                                             |                           | 24.0         | 7.6                |                              | 6.0                 | 5.51                                      | -                 | 5,7         |
| 3.0               | В                | B.                                                | _5_               | 410                                                  | 0.10                                                             |                           | -                  |                                                  |                                                  |                           | -            |                    | -                            | -                   |                                           |                   |             |
| ).                | С                | 6                                                 | 5                 | 320                                                  | 0.40                                                             |                           | -                  |                                                  | -                                                |                           | -            | -                  | -                            |                     | -                                         | -                 |             |
|                   | D                | - <del>D</del>                                    | 2                 | 950                                                  |                                                                  | ~ .                       | ~ -                |                                                  | 2013                                             | 211 -                     | *            | 7                  | 7 -7                         |                     | 705                                       | 7 10              | -           |
|                   | A                | 1-B                                               | 5                 | 0 50                                                 |                                                                  | 8.1                       | 8,0                | -                                                | 24.2                                             | 240                       | -            | 7. (               | 7.7                          |                     | 7.25                                      | 7,19              | -           |
| 6.1               | В                | 13                                                | 2                 | OSD                                                  |                                                                  | -                         | -                  | +                                                |                                                  |                           | -            |                    | -                            | -                   | -                                         | -                 |             |
|                   | D                | 5                                                 | 7                 | 050                                                  | -                                                                | -                         | -                  |                                                  |                                                  |                           | -            | -                  |                              | -                   | -                                         |                   | -           |
|                   | A                | 1)                                                | -                 | 0,,                                                  |                                                                  | -                         |                    | -                                                | -                                                |                           | -            |                    | +                            | +                   |                                           |                   |             |
|                   | В                |                                                   | -                 | -                                                    | +                                                                | +                         | -                  | -                                                |                                                  | -                         | <del> </del> | <del> </del>       |                              |                     |                                           | -                 | -           |
|                   | c                |                                                   |                   |                                                      | -                                                                | +                         | -                  | <del>                                     </del> | -                                                | -                         | 1            | 1                  |                              |                     |                                           | -                 | -           |
|                   | D                | -                                                 |                   | _                                                    | _                                                                |                           |                    | +                                                | <del>                                     </del> |                           |              | 1                  | 1                            | 1                   |                                           | -                 | 1           |
| Loss              | _                | easured by                                        | CA                | BA                                                   | CA                                                               | BA                        | BA                 | BA                                               | BP                                               | BA                        | SA           | 30                 | BA                           | BA                  | - 32                                      | BA                | BA          |
| LUdi              |                  | ecorded by                                        | 0 -               | BA                                                   | BA                                                               | BA                        | BA                 | 39                                               | 30                                               | BA                        | BA           | 30                 | BA                           | BA                  | 30                                        | 34                |             |
| vestigator<br>W J |                  | Danie<br>Fandat                                   | <u>[</u>          | Concent<br>Loading<br>Light Int<br>Photope<br>Temper | trations p<br>verified t<br>ensity: 50<br>arlod: 16<br>ature Rar | 1-100 Ft. c<br>hours Ligh | andles             |                                                  | 64                                               | Comm                      | ents:        |                    |                              | ř                   |                                           |                   |             |
| SUL               | a C              | Worf                                              | ē.                | Incuba                                               |                                                                  | min                       | max                | mean                                             | 0                                                | Statist<br>48/96<br>95% C | hour LC      | so: 2<br>e Interva | . 5                          | 2,39                |                                           | hod: Spea         | rman-Karber |
|                   |                  |                                                   |                   |                                                      |                                                                  |                           |                    | PAG                                              | 1                                                |                           |              |                    |                              |                     |                                           | sed 08/24         | 06 SP       |

### FDEP Biology Laboratory - Acute SRT Bench Sheet

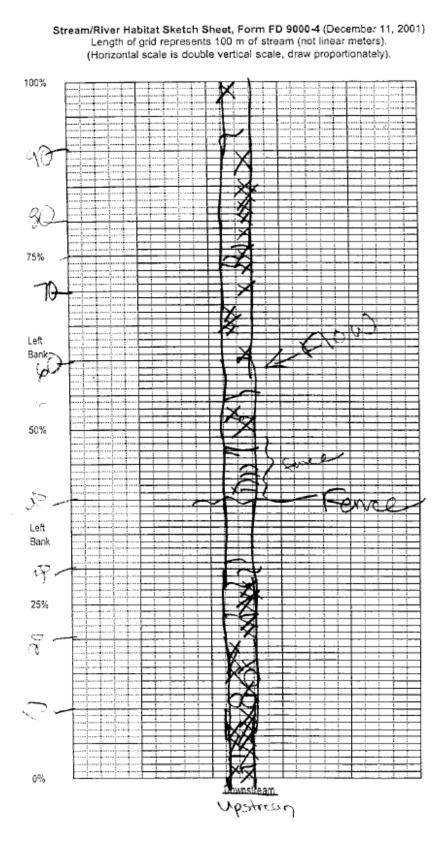
| 155 |     | Ţ. |   |
|-----|-----|----|---|
| 101 | Bi  |    |   |
| 100 | 925 |    | Ŧ |

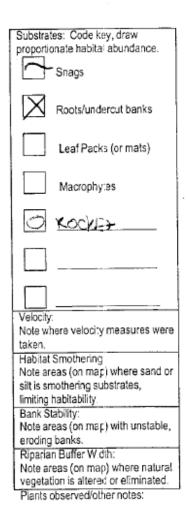
| Diluent/ Ba<br>Toxicant/ I           | 3atch:            | #: <u>New 1</u>                                                               | 1_41     | <u>,08</u>                        |                                                        |                            |                       |          | g: Date:<br>Date: |                   |                |        |       |               |                |          |   |
|--------------------------------------|-------------------|-------------------------------------------------------------------------------|----------|-----------------------------------|--------------------------------------------------------|----------------------------|-----------------------|----------|-------------------|-------------------|----------------|--------|-------|---------------|----------------|----------|---|
| Alkalinity                           | sidual<br>(mg/L a | Cl <sub>2</sub> (mg/L):<br>as CaCO <sub>3</sub> ):<br>as CaCO <sub>3</sub> ): | 90       | Hach<br>Hach<br>Hach              | BA<br>BA                                               | 1 .                        | Feedin                | g: Prior | to test / F       | Prior to re       | enewal /       | Daily  |       | #<br>24hr     | 48hr           | 72hr_    |   |
| HAVE BEEN BOOK TO THE REAL PROPERTY. | onia (r           | ng/L as N):<br>inity (ppth):                                                  |          | Denver<br>Mettler                 | MF<br>BA                                               | i                          | Chamb                 | er size: | 30<br>20 m        | mL                |                |        |       |               | Ur             | ncorrect | t |
| Conc.                                | Rep.              | Chamber                                                                       | -0 hr    | umber LI<br>-24 hr                | ve<br><del>48 hr</del>                                 | O fir                      | pH (SU)               | -48 m    | Tem;              | perature<br>24 hr | (°C)<br>48 hr⊃ | -0 tir | 24 hr | /L)<br>-≠81π- | 12.            | -24 Hr   | _ |
| µg/L mg/L                            | A                 | #<br>A                                                                        | 48 hr    | 72 hr                             | 96 hr                                                  | 48 hr                      | 72 hr                 | 96 hr    | 48 hr<br>24 2     | 72 hr             | 96 hr          | 48 hr  | 72 hr | 98 hr         | 48 hr<br>0.17S | 72 hr    |   |
| Control                              | B<br>C            | B                                                                             | 55       | 5                                 | 5                                                      |                            |                       |          | v                 | 功                 |                |        |       |               |                | 20189    | - |
|                                      | D<br>A            | D<br>A                                                                        | 5        | S<br>5                            | 5                                                      | 8.1                        |                       | 8.0      | 246               |                   | 24.1           | 7,9    |       | 7,6           | 2 186          | •        |   |
| 1.5                                  | С                 | B                                                                             | 15 15    | <u>5</u>                          | 910                                                    |                            |                       |          |                   |                   | 0              |        |       |               |                |          |   |
|                                      | A                 | D<br>A<br>G                                                                   | 5 5      | 5                                 | 2                                                      | 8.                         |                       | 8.1      | 24.1              |                   | 24,1           | 7.7    |       | 7,6           | 3.78           |          |   |
| 2.0                                  | C<br>D            | C 2                                                                           | 17 17 17 | 41D<br>5                          | 5 4 5                                                  |                            |                       |          |                   |                   |                |        |       |               |                |          |   |
|                                      | A<br>B            | B                                                                             | 2        | 2                                 | 2                                                      | 8.1                        |                       | €1       | 24.8              |                   | 24,1           | 7, 7   |       | 7,6           | 457            |          | - |
| 2.5                                  | C                 | c D                                                                           | 3        | 210                               | 020                                                    |                            |                       |          |                   |                   |                |        |       |               |                |          |   |
| 3.0                                  | A<br>B            | B                                                                             | 1 1      | 2                                 |                                                        | ~                          |                       | 1        | 1                 |                   | _              | -      |       | ,             |                |          |   |
|                                      | D                 | D                                                                             | 5        | ,                                 | ~                                                      |                            |                       | ~        | _                 |                   |                | -      |       |               |                |          |   |
| 4.0                                  | B<br>C            | B                                                                             | 1 1      | -                                 | 7                                                      |                            |                       | 10.00    |                   |                   | Ĺ              |        |       |               |                |          |   |
|                                      | D                 | D                                                                             | _        |                                   | 22                                                     |                            |                       |          |                   |                   |                |        |       |               |                |          | _ |
|                                      | В                 |                                                                               |          |                                   |                                                        |                            |                       |          |                   |                   |                |        |       |               |                |          | _ |
| Load                                 | D<br>ed/ma        | easured by:                                                                   | BA       | 3A                                | ינפ                                                    | BA                         |                       | 3)       | 6A                |                   | 39             | 314    |       | 3)            | ·ea            |          |   |
| Investigators  Duck  Manual          | s' Signa          |                                                                               | BA<br>Z  | Light Inte<br>Photoper<br>Tempera | verified by<br>ensity: 50-<br>rlod: 16 h<br>eture Rang | -100 Ft. ca<br>lours Light | indles<br>t / 8 hours | 6        | 3A                | Comme             | a <sub>D</sub> | SA     |       | 300           | BA             |          |   |



|                          |         |                                                   |                    | FDE                                     | P Biol                                                | logy L                                                           | abora                      | tory -               | Acute               | SRT E            | Bench           | Sheet     |                   |       |                                         |                     |             |
|--------------------------|---------|---------------------------------------------------|--------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|----------------------------|----------------------|---------------------|------------------|-----------------|-----------|-------------------|-------|-----------------------------------------|---------------------|-------------|
| est Organ                | Ism:    | Americamy<br>Method 20<br>Ceriodaphi<br>Method 20 | 007.0<br>nia dubii | Me<br>Cyprii                            | thod 2006                                             | 3.0<br>Isi Pim                                                   |                            | 00.1 EPA<br>promelas | -600-R-99<br>Other: |                  |                 |           | Fest Typ          | e:    | om EPA<br>48 hour r<br>6 hour r<br>of 2 | non-rene<br>renewal |             |
| iluent/ Ba<br>oxicant/ E |         | Weil Hai                                          | 13,3               |                                         |                                                       |                                                                  | Test Be<br>Test Er         | eginning<br>ading:   | g: Date:_<br>Date:_ | 4,1.0            | 8               | Time: //  | 500               |       |                                         |                     | 120         |
| Jator Oua                | lity Pa | rameters                                          | Diluent            | Method                                  | Initials                                              |                                                                  | Organi                     | sm Bate              | ch #/ Ag            | e: 4,1,          | 03113           | La5_      |                   |       |                                         |                     |             |
|                          |         | Cl <sub>2</sub> (mg/L):                           |                    | Hach                                    | 20                                                    |                                                                  |                            | g: Prior             | to test / F         | rior to re       | newal)/ [       | Daily     |                   | est   | sia nanen                               |                     |             |
|                          |         | s CaCO <sub>3</sub> ):                            |                    | Hach                                    | BA                                                    |                                                                  | Food:                      |                      | YCT                 | P.subca          | pitata          | Artem     | ila: Lot #        | 651-5 | 36-90                                   | N-701               |             |
| The second second        | -       | s CaCO <sub>3</sub> ):<br>ng/L as N):             |                    | Hach<br>Denver                          | Aa                                                    |                                                                  |                            |                      | 1000                |                  |                 | 0n        | 21 - 2            | anr   | _48hr_57                                |                     |             |
| TOTAL ATTITU             |         | nity (ppth):                                      | CONTRACTOR A       | Mettier                                 | 7P                                                    |                                                                  |                            |                      | 500 m               |                  | licate          |           |                   |       | Ui                                      | ncorrect            | od          |
|                          |         |                                                   |                    |                                         |                                                       |                                                                  |                            |                      |                     |                  | -               | 120       |                   |       |                                         | nductiv             |             |
| Conc.                    | _       | r                                                 |                    | umber Li                                | 48 hP                                                 | <0 hr                                                            | pH (SU)<br>24 hr           |                      | Temp                | erature<br>24 hr | (°C)<br>_48-hr> | Ohr Ohr   | .O. (mg/<br>24 hr | 48 hp |                                         | /cm mm              |             |
| (D)                      | Rep.    | Chamber<br>#                                      | -40 ta             | 24.hr<br>72.hr                          | 96.hr                                                 | -48 hr                                                           | 72 hr                      | 98 hr                | 48 hr               | 72 hr            | -96 hr          | _48-hr    | -72 lu            | 96 m  |                                         | 72 hr               | 96 hr       |
| µg/L mg/L                | Α       | BI                                                | 10                 | 10                                      | 10                                                    | 80                                                               |                            | 82                   | 240                 | 1.00             | 247             | 7.7       | 3.50              | 7,2   | 0.273                                   | 7211                | 0482        |
|                          | В       | B2                                                | 10                 | 10                                      | 10                                                    | U                                                                | 8,2                        | VIC                  |                     | 243              |                 | -7.7.     | 7.1               |       |                                         | 0275                |             |
| Control                  | С       |                                                   | 1                  | 15                                      |                                                       |                                                                  |                            |                      |                     |                  |                 |           |                   |       |                                         |                     |             |
|                          | D       |                                                   |                    |                                         |                                                       |                                                                  |                            |                      |                     |                  |                 | - 11      |                   |       |                                         |                     |             |
|                          | A.      | B3                                                | 10                 | 10                                      | 10                                                    | 8.0                                                              |                            | 3.1                  | 24.0                |                  | 24.7            | 76        |                   | 6.9   | 11.6                                    |                     | 11.5        |
| 6                        | В       | B4                                                | 10                 | 10                                      | 10                                                    |                                                                  | 8,1                        |                      |                     | 74.4             |                 |           | 7.0               |       |                                         | 11.5                |             |
|                          | С       |                                                   |                    |                                         |                                                       |                                                                  |                            | -                    |                     |                  |                 |           |                   |       | -                                       |                     |             |
|                          | D       | ne                                                | In                 | 10                                      | IP                                                    | 9.0                                                              |                            | 8,1                  | 201.0               |                  | 24.7            | 7.6       |                   | 6.8   | 13,5                                    |                     | 13.3        |
| 7                        | A<br>B  | B5<br>B6                                          | 10                 | 10                                      | 910                                                   | 8.0                                                              | 8.0                        | 811                  | 24,0                | 24.6             | 201             | 4.6       | 6.5               | 0.0   | 13,5                                    | 13.2                | 13.3        |
| l                        | c       | 100                                               | 10                 | 10                                      | 7                                                     | -                                                                | 0.0                        |                      |                     | o pie            |                 |           | W.,               |       |                                         | 13,2                |             |
|                          | D       |                                                   | _                  |                                         | <u> </u>                                              |                                                                  |                            | -                    |                     |                  |                 |           |                   |       |                                         |                     |             |
|                          | А       | B7                                                | 10                 | 730                                     | 7                                                     | 8,0                                                              |                            | 8,1                  | 2410                |                  | 29.9            | 7.6       |                   | 6.6   | 15.5                                    |                     | 15.8        |
| 8                        | В       | 38                                                | 10                 | 640                                     | 6                                                     |                                                                  | 8.0                        |                      |                     | 24.4             |                 |           | 6.4               |       |                                         | 15.0                |             |
| 0                        | С       |                                                   |                    |                                         |                                                       |                                                                  |                            |                      | L                   |                  |                 |           |                   |       |                                         |                     |             |
|                          | D       |                                                   | 10                 |                                         |                                                       | 2.0                                                              |                            |                      | -                   |                  | COLL            | ~         | -                 |       |                                         |                     |             |
|                          | A       | 35                                                | 10                 | 370                                     | 3                                                     | 8,0                                                              | 0.0                        | 811                  | 240                 | 2                | 346             | 7.6       | 1.0               | 6.6   | 16.8                                    | 20 .5               | 16.7        |
| 9                        | В       | 810                                               | 10                 | 190                                     | 11                                                    | -                                                                | 8,0                        | -                    | -                   | 241              | -               | -         | 6.5               | -     |                                         | 16.4                |             |
| <b>*</b> 11              | D       | -                                                 |                    | -                                       | -                                                     | -                                                                | -                          |                      | -                   | -                |                 | -         | <del> </del>      | 1-    |                                         |                     |             |
|                          | A       | BII                                               | 10                 | 0/00                                    | -                                                     | 7,9                                                              | 1                          | +                    | 24.0                |                  | 1               | 76        |                   | _     | 18.7                                    |                     |             |
| 10                       | В       | 312                                               | 10                 | 0100                                    | -                                                     | 1"                                                               | 8.0                        |                      | 1                   | 245              | -               |           | 64                |       | 1                                       | 18.3                |             |
|                          | С       |                                                   |                    |                                         |                                                       |                                                                  |                            |                      |                     |                  |                 |           |                   |       |                                         |                     |             |
|                          | D       |                                                   |                    |                                         |                                                       |                                                                  |                            |                      |                     |                  |                 |           |                   | -     | -                                       | -                   |             |
|                          | A       |                                                   | -                  | -                                       | -                                                     |                                                                  | -                          | -                    |                     |                  | -               |           |                   | -     | -                                       | -                   |             |
|                          | В       | ļ                                                 | -                  | -                                       | -                                                     | -                                                                | -                          | -                    | -                   | -                |                 | -         | -                 | -     | +-                                      |                     | -           |
|                          | D       |                                                   | -                  | -                                       | -                                                     | +                                                                | -                          | -                    | +                   |                  |                 | 1         |                   | -     | -                                       |                     |             |
| Lone                     | , 1190  | easured by                                        | BA                 | ථා                                      | 西                                                     | 50                                                               | נוב.                       | ۵۵                   | Jà                  | 776              | ग               | 51        | 25                | 30    | .29                                     | 7                   | qe          |
| LUB                      |         | ecorded by                                        |                    | 20                                      | -30                                                   | 700                                                              | 30                         | 20                   | 25                  | 20               | 20              | 20        | 79                | 20)   | -29                                     | 30                  | 720         |
| mauh                     |         | Daniel<br>Daniel<br>Taxilot                       | <u>-</u>           | Loading<br>Light in<br>Photop<br>Temper | verified to<br>tensity: 50<br>erlod: 16<br>rature Rar | repared b<br>by: (1) Ft of<br>hours Light<br>nge *C;<br>min 26.1 | -<br>andles<br>nt / 8 hour | rs dark              | 64                  | Comm             | ents:           |           |                   |       | . B                                     | 1 1                 |             |
| LOUL                     | a C     | wry                                               | ė                  | Incub                                   | ator#                                                 | min<br>n. <u><b>846</b></u> m                                    | max.                       | mean                 | .0                  | 95% C            | hour LC         | e Interva | 2 4<br>1: lower_  | 1,15  | upper_%                                 |                     | rman-Karber |
|                          |         |                                                   |                    |                                         |                                                       |                                                                  |                            | PAG                  | E                   | n                | INN!            | 75        |                   |       | re                                      | vised 08/24         | /06 SP      |

| 357575   |      |  |
|----------|------|--|
| F 50     | 200  |  |
| 191153   |      |  |
| 18000    |      |  |
| YELD THE | 2000 |  |
| 15000045 |      |  |


| Test Organ                 | nism:        | American<br>Method 2                             |        | ia Men                                               |                        | llina Hy                                                             | abora<br>valella az<br>Method | -                   |           |                   | Bench   | Shee              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ethod fr                        | om EPA<br>48 hour  |            |           |
|----------------------------|--------------|--------------------------------------------------|--------|------------------------------------------------------|------------------------|----------------------------------------------------------------------|-------------------------------|---------------------|-----------|-------------------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|------------|-----------|
|                            |              | Method 2                                         | 002.0  |                                                      | nella lee<br>thod 3000 |                                                                      | nephales<br>Method 2          | 0.000               |           |                   |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge 2                            | 6 hour<br>_ of _ 2 |            |           |
| Diluent/ Ba<br>Toxicant/ I | 3atchi       | #: <u>Nui</u>                                    | _/33   | 108                                                  | in <sup>2</sup>        | a i pi                                                               | Test E                        | eginnin<br>nding:   | Date:     | 4.50              | d       | Time:_/           | 1500<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                    |            |           |
|                            | sidual       | Cl <sub>2</sub> (mg/L):                          | 43     | Hach                                                 | ⊅ე                     | TALGO<br>= 2003                                                      | 'Feedin                       |                     | to test / | Prior to re       | enewal  | Daily             | i de la constanta de la consta | . (                             | 74                 |            |           |
| Alkalinity                 |              | s CaCO <sub>3</sub> ):<br>s CaCO <sub>3</sub> ): |        | Hach<br>Hach                                         | BA<br>BA               |                                                                      |                               | Batch: _            |           | P.subc            | apitata |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>4 651-5</u><br>24hr <u>-</u> |                    | ∞272hr     |           |
| Total Amm                  |              | ng/L as N):<br>nity (ppth):                      |        | Denver<br>Mettler                                    | 1.11                   |                                                                      |                               | oer size:<br>olume: |           |                   | olicate |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1 10               | ncorrec    | a d       |
|                            | 1            | ту (рри).                                        |        |                                                      |                        |                                                                      |                               |                     |           | =/fe= 1/          |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Co                 | nductly    | lty       |
| Gonc.                      |              | Chamber                                          |        | umber L                                              | ive<br>48 tu           | O.hr                                                                 | pH (SU                        | )<br>               | Tem       | perature<br>24 hr | (°C)    | -03hc             | .O. (mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L)                              | µmhos              | /cm (mr    | hos/cm    |
| µg/L mg/L                  | Rep.         | #                                                | (AB hr | 72 hr                                                | 96 hp                  | 48 hr                                                                |                               | 96 hr               | (48 hr    | 72 hr             | 96 hc   | Ø8.hr             | 72 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96 hr                           | <48 hr             | 72 hr      | 96 hr     |
|                            | Α            | TY                                               | 10     | 10                                                   | 10                     | 81                                                                   |                               | 8.0                 | 240       | j.                | 24.5    | 76                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.8                             | 0.271              |            | 0283      |
| Control                    | C            | B2_                                              | 10     | 10                                                   | 10                     |                                                                      | 8.0                           |                     |           | 250               |         |                   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    | 0.295      |           |
|                            | D            |                                                  |        |                                                      | 10                     | 0.0                                                                  |                               | 0.0                 |           |                   |         | 7,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            |           |
|                            | B            | <u>83</u>                                        | 10     | 10                                                   | 10                     | 80                                                                   | 79                            | 8.0                 | 240       | 24.7              | 24.6    | 26                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4                             | 11.3               | 11.6       | 11.4      |
| 6                          | С            |                                                  | 70     |                                                      | 10                     |                                                                      | 4-1                           |                     |           | 2417              |         |                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    | 17.6       |           |
|                            | D            |                                                  |        |                                                      | 10                     | 0.0                                                                  |                               | 0.5                 |           |                   |         | _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 19. O              |            |           |
|                            | В            | B5<br>BL                                         | 10     | 10                                                   | 10                     | 80                                                                   | 7,9                           | 8.0                 | مهد       | 248               | 24.8    | 74                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3                             | 1113/E             | 13,2       | 13.3      |
| 7                          | С            | - PC                                             |        | 7                                                    | 7                      |                                                                      | 4                             |                     |           | 7913              |         |                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    | 15,7       |           |
| λ.                         | D            | B7                                               | 7      | 7                                                    | 7                      | 80                                                                   |                               | 29                  | 7H,0      |                   | 24,4    | 7,3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2                             | 14.3               |            | 15.0      |
|                            | В            | 03                                               | 6      | 6                                                    | 6                      |                                                                      | 7.9                           |                     |           | 24.6              |         |                   | 5,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.,-                            |                    | 15,1       |           |
| 8                          | С            |                                                  |        | - 1                                                  |                        |                                                                      | -                             | -                   |           | -                 |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            |           |
|                            | A            | B1                                               | 3      | 3                                                    | 3                      | 80                                                                   |                               | 8.0                 | 210       |                   | 24.9    | 7,3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0                             | 16.4               |            | 166       |
|                            | В            | B/0                                              | 1      | i_i_                                                 | 1                      |                                                                      | 7.9                           |                     |           | 24.6              |         |                   | 5,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                    | 14.7       |           |
| 9                          | D            |                                                  |        |                                                      |                        |                                                                      | -                             |                     | -         |                   |         |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                               |                    |            |           |
|                            | A            | Bil                                              | _      | ~                                                    | -                      | -                                                                    | 1                             | _                   | -         | -                 | _       | -                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                               |                    |            | _         |
| 10                         | В            | BIZ                                              | _      | -                                                    | `                      |                                                                      |                               |                     |           | _                 |         |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                    | -          |           |
|                            | C            |                                                  |        |                                                      |                        |                                                                      |                               |                     |           |                   |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            |           |
|                            | D A          |                                                  | -      |                                                      | -                      | -                                                                    | -                             | -                   | -         | -                 | -       | <del> </del>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |                    | -          | -         |
|                            | В            |                                                  |        |                                                      |                        | -                                                                    |                               | -                   |           |                   |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            |           |
|                            | С            |                                                  |        |                                                      |                        |                                                                      |                               |                     |           |                   |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            |           |
| Land                       | D od / m     |                                                  | -      |                                                      | B                      | J                                                                    | -                             | -                   | -         | -                 | 70      | 7                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                    |            | -         |
| LOAG                       |              | ecorded by                                       |        | -20                                                  | 9                      | 79                                                                   | 79                            | 35                  | 20        | 20                | 70      | 2)                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J)                              | (D)                | あつか        | SIL       |
| Buch Mars                  | amer<br>full | Daniel<br>Fazicle                                | ZK -   | Light Into<br>Photope<br>Tempera<br>Incuba<br>Incuba | ature Ran<br>tor#r     | y: M Ft. c<br>-100 Ft. c<br>nours Ligh<br>ge *C:<br>min. <b>24-/</b> | andles it / 8 hours max.264   | mean 2 (            |           | Comm              | cs:     | 81                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jac                             | Medi               | nod: Spear | mán-Karbi |
| REVIEWER                   | tal          | wy                                               | le     | Room                                                 | 8246 min               | <b>346</b> m                                                         | ax 25.5                       | mean <u>25.</u>     |           | 48/96             | hour LC | so:<br>e Interval | 24<br>: lower_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.17                           | ipper_8            | <u>,55</u> |           |


### Appendix H

### **Habitat Assessment Field Sheets**

## DEP-SOP-001/01: Form FD 9000-3 (December 11, 2001) PHYSICAL/CHEMICAL CHARACTERIZATION FIELD SHEET

| SUBMITTING AGENCY CODE: _    |                             | STORET STATION         | NUMBER: D        | ATE (MIDM): TII    | VE   RECEIVING BO      | DY OF        |
|------------------------------|-----------------------------|------------------------|------------------|--------------------|------------------------|--------------|
| SUBMITTING AGENCY NAME:      |                             | 1                      |                  | 1. *               | WATER A                | africa       |
|                              |                             | 1 :                    | 1                | G 80 2 6           | Oppor River            | 21100        |
| REMARKS:                     | COUNTY:                     | LOCATION:              |                  | FI                 | E) D ID(NAME:          |              |
| ~15 miles from               | Marie L.                    | Little Fia             | Whank Cre        | وامر ارز           | putrol for W           | ossic .      |
| Outfall                      | +Hillsboray                 | M (0) Finh             | awk Blod         |                    | Bartow U-0             |              |
| RIPARIAN ZONE/STREAM FE      | ATLIDES                     | 1 3 110111             | DIAC             |                    | ON 18(2) 2 . C.        |              |
| PREDOMINANT LAND-USE IN WAT  |                             | ative percent in each  |                  |                    |                        | <del></del>  |
|                              |                             |                        |                  |                    |                        |              |
| F.OREST/NATURAL   SILVICULTU | IRE FIELD/PASTURE           | AGRICULTURAL           | RESIDENTIAL      | COMMERCIAL         | INDUSTRIAL OTH         | ER (SPECIFY) |
|                              |                             | 1. [                   |                  | יון ווי            |                        |              |
|                              | لـــا الــ                  |                        |                  | لــــا الـ         |                        |              |
| LOCAL WATERSHED BROSION (    | check box): Non             |                        | Oliveta Contract | Madanda            | lane lane              |              |
|                              |                             |                        | Slight           | Moderate L         | Heavy L                |              |
| LOCAL WATERSHED NPS POLL     | TION (check box); No        | evidence .             | Slight           | Moderate potenti   | al X C Sprignes so     | urces U      |
| WIDTH OF RIPARIAN VEGETATION | V (m) List 8                | MAP DOMINANT           | TYPICAL WIDTH    | (M) DEPTH (M)/VEL  | OCITY (M/SEC) TRANSECT |              |
| On least buffered side:      |                             | TATION ON BACK         | 4 /              | ,,                 |                        | m wide l     |
| Annual Commission of         |                             |                        |                  |                    |                        |              |
| ARTIFICIALLY CHANNELIZED AT  | . severe some recovery r    | nostly recovered       | 0.5              | m/s O.S            | m/s                    | 5 m/s        |
| ARTIFICIALLY IMPOUNDED       |                             | more sinuous           |                  |                    | -                      |              |
|                              |                             |                        |                  |                    |                        |              |
| li                           | 7                           | - '17                  | 1 .              |                    |                        |              |
| HIGH WATER MARK              | 1 0.9                       | = 11.9                 |                  |                    |                        |              |
| fm shorts owner              | water level) (present depth | in and the shown hands | 0.6 md           | eep O.             | m deep 3. 6            | mdeep        |
|                              |                             |                        |                  |                    | 150                    |              |
| CANOPY COVER % : OPEN:       | LIGHTLY SHA                 | DED (11-45%): 🔀        | . MODERATE       | LY SHADED (46-80%) | E LX HEAVILYS          | HADED:       |
| SENT/SUBSTRATE               |                             |                        |                  |                    | 100                    |              |
| SEDIMON ODORS: NORMAL:       | SEWAGE:                     | PÉTROLEUM:             | · CHEMICAL:      | ANAEROBIC: -       | OTHER:                 |              |
| SEDIMENT OILS: ABSENT:       |                             | MODERATE: L            | PROFUSE:         |                    |                        |              |
| SEDIMENT DEPOSITION: SLUDGE: |                             |                        | SALT SMOTHERING: |                    | ATE OTHER:             |              |
| 8                            |                             | GHT SEVERE             |                  | TIGHT SEVER        |                        |              |
| SUBSTRATE TYPE               |                             | TMES METHO             | D SUBSTRAT       | ETYPES %           | # TIMES                | METHOD       |
| Wh Danier (0)                |                             | IPLED                  | -                | COVER              | AGE SAMPLED.           |              |
| WOODY DEBRIS (SNAGS)         | 13 /                        | 111                    | SAND             | - 5                | 1 47                   |              |
| LEAF PACKS OF MATS           |                             |                        | MUD/MUCK         | 7Silt              |                        |              |
| AQUATIC VEGETATION           | 2\ 11                       | W &                    | OTHER:           |                    |                        | 1            |
| ROCK OR SHELL RUBBLE         |                             | # 12                   | OTHER:           |                    |                        |              |
| UNDERCUT BANKS/ROOTS         | 30 11                       | 11                     |                  |                    | HABITATS FOUNDIN 100   | M SECTION    |
| I WATER OHALLY . I .         | PTH TEMP. (°C):             | PH (SU): D.0           |                  | D (UMHOKM)         |                        | SECCHL (M.): |
| V                            | A): EMP.( C).               | 1.1                    | OR               | SALINITY (PPT):    |                        |              |
| TOP                          | .1                          | -7 -37 S               | <del></del>      | 710                |                        | -{           |
| MID-DEPTH O                  | 4 1870                      | 7.28                   | 9.65             | 140                |                        | 4            |
| BOTTOM                       | Our appear                  | Cru ozozo              |                  | L_                 |                        | 1            |
| SYSTEM TYPE: STREAM, 1       |                             | 6TH ORDER              | Laves 🗖          | Marie anno 🗀       | F                      | . п          |
|                              |                             | DER OR GREATER         | LAKE:            | WETLAND:           |                        | <u> </u>     |
| WATER ODORS (CHECK BOX       |                             |                        | ETROLEUM:        |                    | OTHER: 🗆               |              |
| WATER SURFACE OILS (CHE      | CK BOX): None: 2            | SHEEN:                 | GLOBS:           | Suck:              | -                      |              |
| CLARITY (CHECK BOX):         |                             | GHTLY TURBID:          | Tursic:          | OPAQUE:            | 4                      |              |
| COLOR (CHECK BOX):           |                             | REEN (ALGAE):          | CLEAR:           | OTHER:             |                        |              |
| WEATHER CONDITIONS/NO        | TES;                        |                        | ABUNDANCE.       |                    | RARS COMMON            | ABUNDANT     |
| 70/5-700                     | almark of the               |                        | PERIPHYTON       |                    | <b>X</b>               |              |
|                              | St                          |                        | FISH             |                    |                        |              |
| toward.                      | N. J. F.                    |                        |                  | ROPHYTES 2         |                        |              |
|                              |                             |                        | ROWSULFUR        | BACTERIA D         |                        |              |
| SAMPLING TEAM:               | 1 T.                        | 1.5% 375               | SIGNATUR         | E/                 |                        | DATE:        |
| 1 20xcm                      | hampion >                   | - Posc                 | .                | ك لدارا موجل       | harmen                 | 3/6/3        |
|                              |                             |                        |                  | 4                  |                        |              |

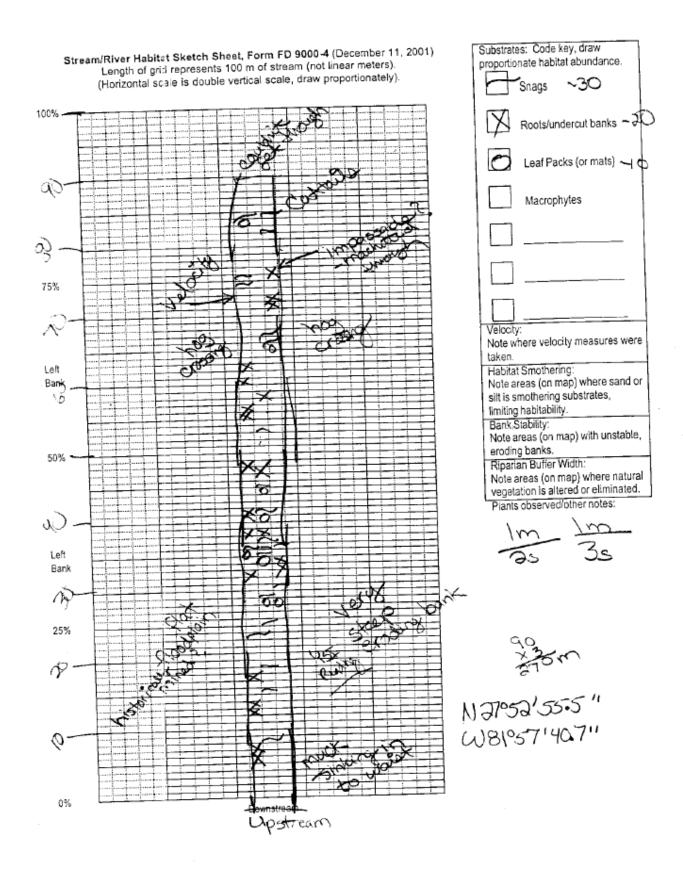




1m -

N37°51'11.8" W82° 131 27.7"

### DEP-SOP-001/01: Form FD 9000-5 (December 11, 2001)


### STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL PROTECTION STREAM/RIVER HABITAT ASSESSMENT FIELD SHEET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | .TED:                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|
| SUBMITTING AGENCY CODE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STORET                                                      | STATION NUMBER: DATE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | ATERC .                                                   |
| SUBMITTING AGENCY NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             | 1360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                                                           |
| REMARKS TOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INTY: LOCATION: 1 . 14:                                     | e Fishlank Chack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FIELD IDINAME: COC                                           | 419 20                                                    |
| Charles of the Control of the Contro | Usbroad @Fish                                               | and the state of t | Mossic Br                                                    | 1-100-C web.                                              |
| - Bourge of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TISMOSAI CONTRACTOR                                         | nawk Blad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.036.0                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O-time!                                                     | Suboptimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marginal                                                     | Poor                                                      |
| Habitat Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optimal<br>Four or more productive                          | Three productive habitats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | One or less productive                                    |
| Name and Debitions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | present. Adequate habitat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | amount I are than decirable                                  | habitat Lack of habitat is                                |
| Primary Habitat<br>Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | roots/undercut banks, aquatic                               | Some substrates may be new                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | habitat, frequently disturbed or                             | obvious, substrates unstable                              |
| Ownpariens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vegetation, leaf packs (partially                           | fall (fresh leaves or snags)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | removed                                                      | or smothered                                              |
| Substrate \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | decayed), rock]                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                           |
| Diversity 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | ا بنامنامین و ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100076                                                       | 5 4 3 2 1                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 19 18 17 16                                              | 15 14 13 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (10)9876                                                     | Less than 5% productive                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greater than 30% productive                                 | 16% to 30% productive habitat,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6% to 15% productive habitat                                 | Less than 5% productive                                   |
| Substrate 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | habitat present at site                                     | by aerial extent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | ELGIDONG.1                                                |
| Availability 🔼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 19 18 17 16                                              | 15 14 13 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-9 8 7 6                                                   | 5 4 3 2 1                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | Max. observed at typical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. observed at typical                                     | Max, observed at typical                                  |
| Water Velocity 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max. observed at typical<br>transect: > 0.25 m/sec, But < 1 | transect: 0.1 to 0.25 m/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | transect: 0.05 to 0.1 m/sec                                  | transect; <0.05 m/sec; or                                 |
| Water Velocity 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m/sec                                                       | Balloon, C.1 D C.23 Haddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aminote visit in income                                      | spate occurring: > 1 m/sec                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | © 19 18 17 16                                               | 15 14 13 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 9 8 7 6                                                   | 5 4 3 2 1                                                 |
| Habitat 🔿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Less than 20% of habitats                                   | 20% -50% of habitals affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Smothering of 50% -80% of the                                | Smothering of >80% of<br>habitats with sand or silt, as   |
| Smothering Smothering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | affected by sand or silt                                    | by sand or silt accumulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | habitats with sand or silt, pools shallow, frequent sediment | severe problem, pools absent                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | accumulation Cook                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | movement                                                     | Severe biopions' bosse assess                             |
| Primary Score 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 19 18 17 16                                              | 15 14 13 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 9 8 7 6                                                   | 5 4 3 2 1                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No artificial channelization or .                           | May have been channelized in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Channelized, somewhat -                                      | Artificially channelized, box -                           |
| Secondary Habitat<br>Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dredging. Stream with normal,                               | the past (>20 yrs), but mostly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | recovered, but > 80% of area                                 | cut banks, straight, instream                             |
| Composiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sinuous pattern                                             | recovered, fairly good sinuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | affected                                                     | habitat highly altered                                    |
| Artificial (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                            |                                                           |
| Channelization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (20)19 18 17,16                                             | 15 14 13 12 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 9 8 7 6                                                   | 5 4 3 2 1 .                                               |
| Bank Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stable. No evidence of erosion                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moderately unstable. Moderate                                | Unstable, Many (60% -80%                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or bank failure. Little potential                           | or small areas of erosion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | areas of erosion, high erosion                               | raw, eroded areas. Obvious<br>bank sloughing.             |
| Right Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for future problems.                                        | mostly healed over.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | potential during floods                                      | bank sloughing.                                           |
| Left Bank: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 9                                                        | 8 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        | 5 2                                                       |
| Riparian Buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Width of native vegetation                                  | Width of native vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Width of native vegetation 6 to                              | Less than 6 m of native                                   |
| Zone Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (least buffered side) greater                               | (least buffered side) 12 to 18 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | buffer zone due to intensive                              |
| 1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | than 18 m                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dose to system                                               | human activities                                          |
| Right Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 10 9                                                      | 8 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 4                                                          | 3 2 1                                                     |
| Leit pank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ンレッ・                                                        | 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 7                                                          |                                                           |
| Riparian Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Over 80% of riparian surfaces                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                           |
| Vegetation Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | consist of native plants,                                   | vegetated, and/or one class of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vegetated, and/or one or two                                 | tank surfaces are vegetate<br>e and/or poor plant communi |
| Tomas IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | including trees, understory shrubs, or non-woody            | plants normally expected for<br>the sunlight & habitat condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | expected classes of plants an<br>not represented. Patches of | (e.g. grass monoculture of                                |
| Right Bank 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | macrophytes. Normal,                                        | is not represented. Some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bare soil or dosely cropped                                  | exotics) present. Vegetat                                 |
| Lau Daviv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | expected plant community for                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vegetation, disruption obviou                                | s. removed to stubble height                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | given sunlight & habitat                                    | evident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | 2 inches or less                                          |
| Secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conditions                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 3 2 1                                                     |
| Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 9                                                        | 8 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 5 4                                                        | 3 2 1                                                     |

ANALYSIS DATE: 3 608 ANALYSIT JULIU Champion SIGNATURE: Champion Champion

# DEP-SOP-001/01: Form FD 9000-3 (December 11, 2001) PHYSICAL/CHEMICAL CHARACTERIZATION FIELD SHEET

| SUBMITTING AGENCY<br>SUBMITTING AGENCY       | Y CODE:       |                   |                    | STOR      | ET STATION      | NUMBE             | R: DATE (N                    | VD/Y): TIME    |                    | BODY OF          |
|----------------------------------------------|---------------|-------------------|--------------------|-----------|-----------------|-------------------|-------------------------------|----------------|--------------------|------------------|
|                                              | TOWNE.        |                   |                    |           |                 |                   | 3/                            | 1 .            | WATER A            | asia             |
| REMARKS:                                     |               | Cour              | NTY:               | LOCA      | TION:           |                   | 196                           | EIC            | SHSINIANA          | 164              |
| ì.                                           |               | P                 | slk                |           |                 |                   | rg-Barto                      | T W            | of other than      | OSEANCE REPORTED |
| RIPARIAN ZONE/ST                             | REAM EEA      |                   | 2110               | 1.00      | ortonuc         | am                | 201                           |                | (0×001-            | ·                |
| PREDOMINANT LAND-U                           | JSE IN WATER  | RSHED             | (specify rela      | tive nero | ant in each     |                   | di em                         |                |                    |                  |
|                                              | SILVICULTURE  |                   | D/PASTURE          | Acou      | ULTURAL         | category          | ): Preupod                    | transmy 4      |                    | V-               |
|                                              |               |                   | SI ASTORE          |           | JOLIUKAL        | RESIDE            | INTIAL COI                    | MERCIAL        | NOUSTRIAL C        | Preusy           |
| LOCAL WATERSHED E                            | ROSION (che   | ck box):          | None               | +         |                 | light             |                               |                | <del>Chacaka</del> | - Mind           |
| LOCAL WATERSHED N                            |               |                   |                    | _         |                 |                   |                               | Moderate V     | Heavy [            | ١ ١              |
|                                              |               |                   |                    |           |                 | light             |                               | rate potential | _ `                |                  |
| WIDTH OF RIPARIAN VE<br>On least buffered si | de: 🥱         | 0                 | LIST & M<br>VEGETA | TION ON E |                 | TYPICA            | L WIDTH (M) DES               | TH (M)/VELOCIT | Y (M/SEC) TRANSE   | 5 m wide         |
| ARTIFICIALLY CHANNELS                        | ZED Kno       |                   |                    | _ 🖽       | -               |                   |                               |                |                    |                  |
| ARTIFICIALLY IMPOUND                         | ED yes        | evere some        | recovery mos       | re sinuou |                 |                   | m/s                           | 0.5            | m/s                | ).33 m/s         |
| HIGH WATER MARY                              | 0.            | + [               | (n)                | = []      | $\sim$          |                   | -                             |                |                    |                  |
|                                              |               | كا                | νÔ                 | L         | 20              | LQ.               | m deep                        | 0.2 md         | 200                | the dead         |
| CANOPY COVER % :                             | Open IN       |                   |                    |           | ove bed)        |                   |                               |                | eebl C             | m deep           |
|                                              |               | Ligi              | HTLY SHADED        | 11-45%    | 6): <b>IX</b> ( | Mod               | ERATELY SHADEO                | (46-80%):      | HEAVILY            | SHADED;          |
| SEDIMENT/SUBS<br>SEDIMENT ODORS: N           |               |                   |                    |           |                 |                   |                               |                |                    |                  |
| SEDIMENT OILS: A                             | CRMAL:        | S EWAGE<br>SLIGHT | . 1                | PETROLE   |                 | Снямю             |                               | EROBIC:        | OTHER:             |                  |
| SEDIMENT DEPOSITION:                         | SLUDGE: 1     | SAND SMOTH        | ÉRING: NONE        | MODERA    |                 | PROFU<br>LT SMOTH |                               |                |                    |                  |
|                                              |               |                   | SLIGHT             | SEVER     | NE_             | L+ SMUTH          | ERING: NONE<br>SUGHT          | MODERATE O     | THER:              |                  |
| SUBSTRATE TYPE                               | co            | %<br>VERAGE       | # TIMES            |           | METHOD          | SUB               | STRATE TYPES                  | %              | # TIMES            | 1                |
| WOODY DEBRIS (SNA!                           | GS)           | C                 | SAMPLE<br>//Lt     |           | 5.00            | -                 |                               | COVERAGE       | SAMPLED            | METHOD           |
| LEAF PACKS OF MATS                           |               | 3                 | 14                 | -         | 3 80            | SAND              | MUCK/SILT                     |                | 14                 |                  |
| AQUATIC VEGETATION                           |               |                   |                    | -         | 5 3/ -          | OTHE              |                               | 1.5            |                    | -                |
| ROCK OR SHELL RUBE                           |               |                   |                    |           | 33              | OTHE              |                               |                |                    | <del> </del>     |
| UNDERCUT BANKS/RO                            |               | 0                 | 111                |           |                 |                   |                               | T CH OF HABITA | TS FOUNDIN 10C M   | SECTION          |
| WATER QUALITY                                | DEPTH<br>(M): | Темя.             | (°C): PF           | (SU):     | D.O. (MG        | 20.15             | Сопа. (имнож                  | 4) .           |                    |                  |
| TOP                                          | Livi).        | _                 |                    |           |                 |                   | OR SALINITY (PP               | 0:             |                    | SECCHI (M):      |
| MID-DEPTH                                    | 0.3           | 31                | 10 6               | .64       | 5.78            | <u>Σ</u>          | 518                           |                | <u> </u>           |                  |
| Воттом                                       |               |                   |                    |           | 10-12           | -                 | -510_                         |                | <del></del>        | ·                |
| SYSTEM TYPE: STREET                          | W: 707-2-EU   | RDER              | 514 - 674 O        | ROER      |                 |                   |                               |                |                    |                  |
| WATER COORS (CHEC                            | K BUX)-       | Manuri            | 7™ ORDER C         |           |                 | KE:               | WETLAND                       | ☐ ESTUA        | RY: 🗆 OTHER [      | <b></b>          |
| WATER SURFACE OILS                           |               | NORMAL:           | -X                 | EWAGE:    |                 | м: 🔲              | CHEMICAL;                     | OTHER:         |                    |                  |
| CLARITY (CHECK BOX)                          | - JOHNSON BOX | CLEAR:            |                    | SHEEN: [  |                 | es:               | Suck: (                       |                |                    |                  |
| COLOR (CHECK BOX):                           |               | TANNIC:           | Sughtly            | TURBID: L |                 | SID: 🔲            |                               |                |                    |                  |
| WEATHER CONDITION                            | S/NOTES       | MANNEC. E         | GREEN (A           | ALGAET L  |                 | AR: X             | OTHER:                        |                |                    |                  |
| VIV                                          | er.           |                   |                    |           |                 | BUNDAN<br>ERIPHYT |                               | NT RARE        | COMMON A           | BUNDANT          |
| MAN CO                                       | (N)           |                   | 1                  |           | F               | ISH               | . 🗂                           |                | <b>₩</b>           |                  |
| SAMPLING TEAM:                               |               |                   |                    |           | la la           | CON/SULF          | ACROPHYTES 🔲<br>UR BACTERIA 🔀 | · 答            |                    |                  |
| T 1 1 01                                     | angkr         | 150               | HR.                | 556       |                 | IGNATI            |                               | 11.0.          |                    | DATE:            |
|                                              |               | .40.              |                    |           | ٩.٠١٥           |                   | KW. N.                        | <u> </u>       | 44.                |                  |
|                                              | ONH           | عالم              | $V_{I}$            | Su. S     | · · · · · · /   | 1                 |                               |                |                    |                  |



### DEP-SOP-001/01: Form FD 9000-5 (December 11, 2001)

### STATE OF FLORIDA, DEPARTMENT OF ENVIRONMENTAL PROTECTION STREAM/RIVER HABITAT ASSESSMENT FIELD SHEET

|                                                                | STREAMIR                                                                                                                                                                         | VER HABITAT ASSESSMENT FI                                                                                                       | ELD SHEET                                                                                                                                                                                          |                                                                                                                         |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| SUBMITTING AGENCY CODE;<br>SUBMITTING AGENCY NAME;             |                                                                                                                                                                                  | RET STATION NUMBER: DATE &                                                                                                      |                                                                                                                                                                                                    | WATER<br>ia 2 jer                                                                                                       |
|                                                                | POLK LOCATION:SK                                                                                                                                                                 | inned Sopling Creek<br>cam 001                                                                                                  | FIELD IDINAME: TO<br>Mosaic Po                                                                                                                                                                     | of 51-004                                                                                                               |
| Habitat Parameter                                              | Optimal                                                                                                                                                                          | Suboptimal                                                                                                                      | Marginal                                                                                                                                                                                           |                                                                                                                         |
| Primary Habitat Components Substrate Diversity                 | Four or more productive<br>habitats present (snags, tree<br>roots/undercut banks, aquatic<br>vegetation, leaf packs (partial)<br>decayed), rock)                                 | Three productive habitats<br>present. Adequate habitat.<br>Some substrates may be new                                           | Two productive habitats<br>present. Less than desirable<br>habitat, frequently disturbed or<br>removed                                                                                             | Poor One or less productive habitet. Lack of habitet is obvixus, substrates unstable or strothered                      |
|                                                                | 20 19 18 17 16                                                                                                                                                                   | (15)14 13 12 11                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                         | 54321                                                                                                                   |
| Substrate 12                                                   | Greater than 30% productive<br>habitat present at site                                                                                                                           | 16% to 30% productive habitat,<br>by aerial extent                                                                              | 6% to 15% productive habitat                                                                                                                                                                       | Less than 5% productive<br>hab lat                                                                                      |
|                                                                | 20 19 18 17 16                                                                                                                                                                   |                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                         | 5 4 3 2 1                                                                                                               |
| Water Velocity 17                                              | Max. observed at typical<br>transect: > 0.25 m/sec. But <<br>m/sec O.5_33                                                                                                        | Max observed at typical<br>transect 0.1 to 0.25 m/sec                                                                           | Max. observed at typical<br>transect: 0.05 to 0.1 m/sec                                                                                                                                            | Max: observed at typical<br>transect: <0.05 m/sec; or<br>spate occurring; > 1 m/sec                                     |
| 15.16.                                                         | 20 19 18 17 16                                                                                                                                                                   |                                                                                                                                 | 10 9 8 7 6                                                                                                                                                                                         | 5.4321                                                                                                                  |
| Habitat<br>Smothering                                          | Less than 20% of habitats<br>affected by sand or silt<br>accumulation                                                                                                            | 20% -50% of habitats affected<br>by sand or silt accumulation                                                                   | Smothering of 50% -80% of the<br>habitats with sand or sit, pools<br>shallow) frequent sediment<br>movement                                                                                        | S mothering of >80% of<br>habitats with sand or silt, as<br>severe problem, pools absen                                 |
| Primary Score 500                                              | 20 19 18 17 16                                                                                                                                                                   | 10 11 10 12 1                                                                                                                   | 10 9 8 7 6                                                                                                                                                                                         | 5 4 3 2 1                                                                                                               |
| Secondary Habitat<br>Components<br>Artificial                  | No artificial channelization or<br>dredging. Stream with norma<br>sinuous pattern                                                                                                | recovered, fairly good sinuous                                                                                                  | Channelized, somewhat recovered, but > 80% of area affected                                                                                                                                        | Artificially channelized, box-<br>out banks, straight, instream<br>habital highly altered                               |
| Channelization                                                 | 20 19 18 17 1                                                                                                                                                                    | 15 14 13 12 11                                                                                                                  | 10 9 8 7 6                                                                                                                                                                                         | 5 4 3 2 1                                                                                                               |
| Right Bank Left Bank                                           | Stable. No evidence of erosi<br>or bank failure. Little potentii<br>for future problems.<br>10 9                                                                                 | or small areas of erosion,<br>mostly healed over.<br>8 7 6                                                                      | Moderately unstable. Moderate<br>areas of erosion, high erosion<br>potential during floods.<br>5 4                                                                                                 | Unstable, Many (60% -80%) rav, eroded areas. Obvious talk sloughing. 3 2 1                                              |
| Riparian Buffer<br>Zone Width<br>Right Bank                    | Width of native vegetation<br>(least buffered side) greater<br>than 18 m                                                                                                         | Width of native vegetation<br>(least buffered side) 12 to 18 m                                                                  | Width of native vegetation 6 to<br>12 m. human activities still<br>close to system                                                                                                                 | Less than 6 m of native<br>buffer zone due to intensive<br>human activities                                             |
| Left Bank                                                      | 10 9                                                                                                                                                                             | 8 7 6                                                                                                                           | 5 4                                                                                                                                                                                                | 3 2 1                                                                                                                   |
| Riparlan Zone<br>Vegetation Quality<br>Right Bank<br>Left Bank | Over 80% of riparian surface consist of native plants, including trees, understory shrubs, or non-woody macrophytes. Normal, expected plant community figiven surlight & habitat | vegetated, and/or one class of<br>plants normally expected for<br>the sunlight & habitat conditions<br>is not represented. Some | 25% to 50% of riparian zone is<br>vegetated, and/or one or two<br>expected classes of plants are<br>not represented. Patches of<br>bare soil or closely cropped<br>vegetation, disruption obvious. | bank surfaces are vegetated<br>and/or poor plant communit<br>(e.g. grass monoculture or<br>exotics) present. Vegetation |

|                     | <b>.</b>               | '          |
|---------------------|------------------------|------------|
| ANALYSIS DATE: 3608 | AMILYST: Sadu Champion | SIGNATURE: |
|                     |                        |            |

### Appendix H-1

Wet algal taxa list and number counted for qualitative natural periphyton collections made from Mosaic Fertilizer, LLC – Bartow Chemical Plant on 4/21/2008.

|                          | Control Site | Test Site |
|--------------------------|--------------|-----------|
|                          |              |           |
| Bacillariophyta          |              |           |
| Bacillariophyta          | 170          | 243       |
| Chlorophycota            |              |           |
| Chlorophyceae            |              |           |
| Chlorococcales           |              |           |
| Actinastrum hantzschii   | -            | 3         |
| Ankistrodesmus falcatus  | -            | 8         |
| Chlorella sp.            | 1            | 1         |
| Scenedesmus bijuga       | -            | 1         |
| Scenedesmus quadricauda  | -            | 7         |
| Selenastrum sp.          | -            | 4         |
| Volvocales               |              |           |
| Carteria sp.             | -            | 1         |
| Carteria cordiformis     | -            | 14        |
| Chlamydomonas sp.        | -            | 4         |
| Zygnematales             |              |           |
| Staurastrum sp.          | 1            | _         |
| Cryptophycophyta         |              |           |
| Cryptophyceae            |              |           |
| Cryptomonadales          |              |           |
| Cryptomonas sp.          | -            | 1         |
| Cyanophycota             |              |           |
| Cyanophyceae             |              |           |
| Chroococcales            |              |           |
| Aphanocapsa sp.          | -            | 1         |
| Merismopedia warmingiana | -            | 4         |
| Oscillatoriales          |              |           |
| Jaaginema sp.            | 101          | _         |
| Planktolyngbya sp.       | 19           | 1         |
| Planktothrix sp.         | 3            | _         |
| Planktothrix isothrix    | <u>-</u>     | 2         |
| Pseudanabaena sp.        | _            | 1         |
| Schizothrix calcicola    | 5            | ·<br>-    |
| Euglenophycota           | · ·          |           |
| Euglenophyceae           |              |           |
| Euglenales               |              |           |
| Trachelomonas sp.        | _            | 3         |
| Pyrrophycophyta          |              | J         |
| Dinophyceae              |              |           |
| Peridiniales             |              |           |
| Glenodinium sp.          | _            | 4         |
| Olenoumum sp.            | -            | 7         |

### Appendix H-2

Diatom taxa list and number of valves counted for qualitative natural periphyton collections made from Mosaic Fertilizer, LLC – Bartow Chemical Plant discharge on 4/21/2008.

|                                 | Control Site | Test Site |
|---------------------------------|--------------|-----------|
|                                 |              |           |
| Bacillariophyceae               |              |           |
| Achnanthales                    |              |           |
| Achnanthaceae                   |              |           |
| Achnanthes sp.                  | 14           | 16        |
| Achnanthes clevei               | 10           | -         |
| Achnanthes exigua               | 24           | 53        |
| Achnanthes hungarica            | -            | 4         |
| Achnanthes lanceolata           | 13           | -         |
| Achnanthes lanceolata apiculata | 13           | -         |
| Achnanthes rupestoides          | 29           | -         |
| Planothidium sp.                | 1            | -         |
| Planothidium delicatulum        | 6            | 1         |
| Achnanthidiaceae                |              |           |
| Achnanthidium minutissimum      | 1            | -         |
| Undetermined Achnanthidiaceae   | 2            | 4         |
| Cocconeidaceae                  |              |           |
| Cocconeis fluviatilis           | 51           | 6         |
| Cocconeis neodiminuta           | 2            | -         |
| Cocconeis placentula            | 10           | -         |
| Bacillariales                   |              |           |
| Bacillariaceae                  |              |           |
| Bacillaria paxillifer           | -            | 2         |
| Nitzschia sp.                   | 24           | 35        |
| Nitzschia acicularis            | 1            | -         |
| Nitzschia amphibia              | -            | 5         |
| Nitzschia clausii               | -            | 1         |
| Nitzschia frustulum             | -            | 1         |
| Nitzschia liebethruthii         | -            | 1         |
| Nitzschia linearis              | 1            | -         |
| Nitzschia lorenziana            | -            | 1         |
| Nitzschia nana                  | -            | 7         |
| Nitzschia palea                 | -            | 21        |
| Nitzschia subacicularis         | -            | 1         |
| Cymbellales                     |              |           |
| Cymbellaceae                    |              |           |
| Cymbella sp.                    | -            | 6         |
| Encyonema minutum               | -            | 1         |
| Encyonopsis cesatii             | 1            | -         |
| Undetermined Cymbellaceae       | 4            | -         |
| Gomphonemataceae                |              |           |
| Gomphonema sp.                  | 22           | 5         |
| Gomphonema gracile              | -            | 1         |
| Gomphonema parvulum             | -            | 2         |

### **Appendix H-2 (continued)**

|                            | Control Site | Test Site |
|----------------------------|--------------|-----------|
| Eunotiales                 |              |           |
| Eunotiaceae                |              |           |
| Eunotia sp.                | 40           | 23        |
| Eunotia bilunaris          | -            | 1         |
| Eunotia camelus            | -            | 2         |
| Eunotia formica            | 1            | 3         |
| Eunotia incisa             | 1            | 1         |
| Naviculales                |              |           |
| Amphipleuraceae            |              |           |
| Frustulia sp.              | -            | 1         |
| Frustulia vulgaris         | 1            | _         |
| Diadesmidaceae             |              |           |
| Diadesmis confervacea      | 1            | 43        |
| Diadesmis contenta         | 5            | _         |
| Luticola mutica            | 1            | 1         |
| Diploneidaceae             |              |           |
| Diploneis pseudovalis      | 5            | _         |
| Naviculaceae               |              |           |
| Geissleria decussis        | 1            | _         |
| Hippodonta sp.             | 6            | 2         |
| Hippodonta capitata        | 8            | _         |
| Hippodonta hungarica       | 2            | 1         |
| Navicula sp.               | 40           | 13        |
| Navicula constans          | 6            | 1         |
| Navicula cryptocephala     | 9            | _         |
| Navicula elginensis        | 3            | _         |
| Navicula exigua            | 1            | _         |
| Navicula germainii         | 5            | _         |
| Navicula longicephala      | 1            | _         |
| Navicula minima            | 2            | 1         |
| Navicula pseudoscutiformis | 1            | _         |
| Navicula radiosa           | 13           | _         |
| Navicula schroeteri        | 4            | _         |
| Navicula seminulum         | 4            | 1         |
| Navicula symmetrica        | 3            | _         |
| Sellaphora pupula          | 5            | _         |
| Undetermined Naviculaceae  | 24           | 24        |
| Pinnulariaceae             |              |           |
| Caloneis bacillum          | -            | 1         |
| Pinnularia sp.             | 5            | 8         |
| Pleurosigmataceae          | -            | _         |
| <i>Gyrosigma</i> sp.       | 1            | _         |
| Stauroneidaceae            |              |           |
| Craticula sp.              | _            | 1         |
| Stauroneis sp.             | 2            | _         |
| Stauroneis phoenicenteron  | 1            | _         |
| Stauroneis smithii         | -            | 1         |
| Rhopalodiales              |              |           |
| Rhopalodiaceae             |              |           |
| Rhopalodia sp.             | 1            | 2         |
| r t                        | •            | _         |

### **Appendix H-2 (continued)**

|                             | <b>Control Site</b> | Test Site |
|-----------------------------|---------------------|-----------|
| Surirellales                |                     |           |
| Surirellaceae               |                     |           |
| Surirella sp.               | 1                   | 1         |
| Thalassiophysales           |                     |           |
| Catenulaceae                |                     |           |
| Amphora sp.                 | 3                   | -         |
| Coscinodiscophyceae         |                     |           |
| Aulacoseirales              |                     |           |
| Aulacoseiraceae             |                     |           |
| Aulacoseira sp.             | 10                  | 5         |
| Biddulphiales               |                     |           |
| Biddulphiaceae              |                     |           |
| Terpsinoe musica            | 27                  | -         |
| Melosirales                 |                     |           |
| Melosiraceae                |                     |           |
| Melosira sp.                | 18                  | -         |
| Thalassiosirales            |                     |           |
| Stephanodiscaceae           |                     |           |
| Cyclostephanos invisitatus  | -                   | 27        |
| Cyclotella sp.              | -                   | 43        |
| Cyclotella atomus           | -                   | 60        |
| Cyclotella meneghiniana     | 4                   | 41        |
| Cyclotella pseudostelligera | 8                   | -         |
| Fragilariophyceae           |                     |           |
| Fragilariales               |                     |           |
| Fragilariaceae              |                     |           |
| Fragilaria capucina         | 1                   | -         |
| Opephora sp.                | -                   | 1         |
| Staurosira elliptica        | -                   | 13        |
| Staurosirella pinnata       | 1                   | -         |
| Synedra acus radians        | -                   | 1         |
| Synedra parasitica          | 1                   | 3         |
| Undetermined Fragilariaceae | 4                   | -         |
|                             |                     |           |

### Appendix I-1

Wet algal taxa list and density (number/mL) for phytoplankton collected from Mosaic Fertilizer, LLC – Bartow Chemical Plant on 4/21/2008.

|                            | Control Site #counted | Test Site<br># counted |
|----------------------------|-----------------------|------------------------|
| Bacillariophyta            |                       |                        |
| Bacillariophyta            | 37                    | 20                     |
| Chlorophycota              |                       |                        |
| Chlorophyceae              |                       |                        |
| Chlorococcales             |                       |                        |
| Actinastrum sp.            | -                     | 3                      |
| Ankistrodesmus sp.         | 1                     | -                      |
| Ankistrodesmus falcatus    | -                     | 15                     |
| Chlorella sp.              | 9                     | 14                     |
| Chlorococcum sp.           | -                     | 3                      |
| Coelastrum microporum      | -                     | 1                      |
| Crucigenia rectangularis   | -                     | 1                      |
| Crucigenia tetrapedia      | 1                     | 1                      |
| Nannochloris sp.           | 5                     | -                      |
| Oocystis sp.               | -                     | 1                      |
| Pediastrum duplex          | -                     | 2                      |
| Scenedesmus sp.            | -                     | 5                      |
| Scenedesmus arcuatus       | -                     | 10                     |
| Scenedesmus bicaudatus     | -                     | 4                      |
| Scenedesmus bijuga         | -                     | 1                      |
| Scenedesmus dimorphus      | -                     | 1                      |
| Scenedesmus quadricauda    | 1                     | 7                      |
| Schroederia setigera       | -                     | 1                      |
| Selenastrum sp.            | 6                     | 9                      |
| Undetermined Chlorophyceae | 4                     | -                      |
| Klebsormidiales            |                       |                        |
| Elakatothrix viridis       | -                     | 1                      |
| Volvocales                 |                       |                        |
| Chlamydomonas sp.          | 1                     | 99                     |
| Eudorina elegans           | -                     | 1                      |
| Chrysophyta                |                       |                        |
| Chrysophyceae              |                       |                        |
| Ochromonadales             |                       |                        |
| Synura sp.                 | -                     | 10                     |
| Cryptophycophyta           |                       |                        |
| Cryptophyceae              |                       |                        |
| Cryptomonadales            |                       |                        |
| Cryptomonas sp.            | -                     | 6                      |
| Cyanophycota               |                       |                        |
| Cyanophyceae               |                       |                        |
| Chroococcales              |                       |                        |
| Aphanocapsa sp.            | _                     | 20                     |
| Cyanobium plancticum       | 1                     | -                      |
|                            |                       |                        |

### Appendix I-1 (continued)

|                                | Control Site #counted |    |
|--------------------------------|-----------------------|----|
| Merismopedia warmingiana       | -                     | 5  |
| Rhabdogloea sp.                | -                     | 33 |
| Synechocystis sp.              | 7                     | -  |
| Nostocales                     |                       |    |
| Cylindrospermopsis raciborskii | -                     | 1  |
| Oscillatoriales                |                       |    |
| Geitlerinema sp.               | 2                     | -  |
| <i>Jaaginema</i> sp.           | 28                    | -  |
| Planktolyngbya sp.             | 7                     | -  |
| Planktothrix sp.               | 1                     | 5  |
| Romeria sp.                    | -                     | 1  |
| Euglenophycota                 |                       |    |
| Euglenophyceae                 |                       |    |
| Euglenales                     |                       |    |
| Euglena sp.                    | -                     | 1  |
| Lepocinclis sp.                | 1                     | 1  |
| Trachelomonas sp.              | 5                     | 1  |
| Prasinophyta                   |                       |    |
| Prasinophyceae                 |                       |    |
| Pyramimonadales                |                       |    |
| Nephroselmis sp.               | -                     | 4  |
| Pyrrophycophyta                |                       |    |
| Dinophyceae                    |                       |    |
| Peridiniales                   |                       |    |
| Glenodinium sp.                | -                     | 11 |
| Peridinium sp.                 | -                     | 2  |

### Appendix I-2

Diatom taxa list and number counted for phytoplankton collected from Mosaic Fertilizer, LLC – Bartow Chemical Plant on 4/21/2008.

### **Control Site Test Site**

| Bacillariophyceae               |    |    |
|---------------------------------|----|----|
| Achnanthales                    |    |    |
| Achnanthaceae                   |    |    |
| Achnanthes sp.                  | 32 | 27 |
| Achnanthes clevei               | 4  | -  |
| Achnanthes exigua               | 31 | 35 |
| Achnanthes hungarica            | -  | 3  |
| Achnanthes lanceolata           | 24 | 3  |
| Achnanthes lanceolata apiculata | 15 | -  |
| Achnanthes rupestoides          | 12 | -  |
| Planothidium sp.                | 10 | 1  |
| Planothidium delicatulum        | 14 | -  |
| Achnanthidiaceae                |    |    |
| Achnanthidium minutissimum      | 2  | 1  |
| Undetermined Achnanthidiaceae   | 2  | -  |
| Cocconeidaceae                  |    |    |
| Cocconeis sp.                   | 1  | -  |
| Cocconeis fluviatilis           | 12 | 1  |
| Cocconeis placentula            | 1  | -  |
| Bacillariales                   |    |    |
| Bacillariaceae                  |    |    |
| Bacillaria paxillifer           | 1  | -  |
| Nitzschia sp.                   | 17 | 35 |
| Nitzschia amphibia              | -  | 3  |
| Nitzschia clausii               | 2  | -  |
| Nitzschia linearis              | -  | 1  |
| Nitzschia nana                  | -  | 2  |
| Nitzschia palea                 | 7  | 8  |
| Nitzschia reversa               | 1  | -  |
| Tryblionella sp.                | 1  | -  |
| Cymbellales                     |    |    |
| Gomphonemataceae                |    |    |
| Gomphonema sp.                  | 5  | -  |
| Eunotiales                      |    |    |
| Eunotiaceae                     |    |    |
| Eunotia sp.                     | 2  | 3  |
| Eunotia incisa                  | 1  | _  |
| Naviculales                     |    |    |
| Amphipleuraceae                 |    |    |
| Frustulia sp.                   | -  | 1  |
| Frustulia saxonica              | 1  | _  |
|                                 | -  |    |

### Appendix I-2 (continued)

|                            | Control Site | Test Site |
|----------------------------|--------------|-----------|
| Diadesmidaceae             |              |           |
| Diadesmis confervacea      | 2            | 17        |
| Diadesmis contenta         | 18           | -         |
| Luticola sp.               | -            | 2         |
| Diploneis sp.              | 4            | -         |
| Diploneis pseudovalis      | 10           | -         |
| Naviculaceae               |              |           |
| Fallacia pygmaea           | 1            | -         |
| Geissleria sp.             | 6            | -         |
| Hippodonta capitata        | 24           | -         |
| Hippodonta hungarica       | 2            | 1         |
| Hippodonta sp.             | 21           | -         |
| Navicula cocconeiformis    | 4            | -         |
| Navicula constans          | 10           | -         |
| Navicula cryptocephala     | 1            | 2         |
| Navicula elginensis        | 3            | -         |
| Navicula germainii         | 4            | -         |
| Navicula minima            | 6            | 7         |
| Navicula porifera          | 4            | -         |
| Navicula seminulum         | 2            | 11        |
| <i>Navicula</i> sp.        | 113          | 17        |
| Undetermined Naviculaceae  | 1            | -         |
| Neidiaceae                 |              |           |
| <i>Neidium</i> sp.         | 2            | -         |
| Pinnulariaceae             |              |           |
| Pinnularia sp.             | 12           | 12        |
| Sellaphoraceae             |              |           |
| Sellaphora sp.             | 1            | -         |
| Sellaphora pupula          | 3            | 2         |
| Stauroneidaceae            |              |           |
| Craticula sp.              | 9            | 1         |
| Stauroneis phoenicenteron  | 1            | -         |
| Surirellales               |              |           |
| Surirellaceae              |              |           |
| Surirella sp.              | -            | 1         |
| Thalassiophysales          |              |           |
| Catenulaceae               |              |           |
| Amphora sp.                | 4            | -         |
| Coscinodiscophyceae        |              |           |
| Aulacoseirales             |              |           |
| Aulacoseiraceae            |              |           |
| Aulacoseira sp.            | 2            | -         |
| Thalassiosirales           |              |           |
| Stephanodiscaceae          |              |           |
| Cyclostephanos invisitatus | 1            | 31        |
| Cyclotella sp.             | 1            | 73        |
| Cyclotella atomus          | 1            | 63        |
|                            |              |           |

### Appendix I-2 (continued)

|                             | Control Site | Test Site |
|-----------------------------|--------------|-----------|
| Cyclotella meneghiniana     | 7            | 103       |
| Cyclotella pseudostelligera | 15           | 1         |
| Fragilariophyceae           |              |           |
| Fragilariales               |              |           |
| Fragilariaceae              |              |           |
| Fragilaria capucina         | 1            | -         |
| Staurosira elliptica        | 1            | 17        |
| Staurosirella pinnata       | -            | 6         |
| Undetermined Fragilariaceae | 6            | 10        |

### **Appendix J-1**

Benthic macroinvertebrates collapsed taxa list and density (average number of individuals/m<sup>2</sup> rounded to the nearest individual, n = 3 samples) from Hester-Dendy artificial substrates incubated for 28 days upstream and downstream of the Mosaic Fertilizer, LLC – Bartow Chemical Plant and collected on 4/21/2008. See SOP LT 7100 sect. 4.2.1 for method on collapsing taxa.

|            |                             | <b>Control Site</b> | <b>Test Site</b> |
|------------|-----------------------------|---------------------|------------------|
| Annelida   |                             |                     |                  |
|            | ota                         |                     |                  |
| Oligocha   | lotaxida                    |                     |                  |
| Παρ        | Dero digitata complex       |                     | 12               |
|            | Limnodrilus hoffmeisteri    | 0                   | 12               |
|            |                             | 8<br>3              | -                |
|            | Slavina appendiculata       | 3                   | -                |
| Arthropodo | Stephensoniana trivandrana  | -                   | 6                |
| Arthropoda |                             |                     |                  |
| Crustace   |                             |                     |                  |
| Isop       |                             | 2                   | 244              |
|            | Caecidotea sp.              | 3                   | 344              |
|            | Hyalella azteca             | 37                  | -                |
| lacada     | Lirceus sp.                 | 5                   | -                |
| Insecta    |                             |                     |                  |
| Cole       | eoptera                     |                     | 40               |
|            | Dineutus sp.                | -                   | 13               |
|            | Dubiraphia vittata          | 5                   | 11               |
|            | Microcylloepus pusillus     | 21                  | 5                |
|            | Prionocyphon sp.            | -                   | 5                |
| D: (       | Stenelmis sp.               | 5                   | -                |
| Dipt       |                             | 0.4                 |                  |
|            | Ablabesmyia mallochi        | 81                  | -                |
|            | Ablabesmyia rhamphe grp.    | -                   | 80               |
|            | Chironomus sp.              | -                   | 8                |
|            | Cladotanytarsus cf. daviesi | 12                  | -                |
|            | Corynoneura sp.             | 9                   | -                |
|            | Cricotopus bicinctus        | -                   | 19               |
|            | Dicrotendipes modestus      | -                   | 11               |
|            | Glyptotendipes sp.          | -                   | 11               |
|            | Hemerodromia sp.            | 13                  | 3                |
|            | Labrundinia pilosella       | -                   | 50               |
|            | Larsia decolorata           | -                   | 8                |
|            | Nanocladius sp.             | -                   | 80               |
|            | Parachironomus carinatus    | -                   | 118              |
|            | Paratanytarsus sp.          | -                   | 8                |
|            | Pentaneura inconspicua      | 6                   | 662              |
|            | Polypedilum beckae          | -                   | 264              |
|            | Polypedilum fallax          | 64                  | -                |
|            | Polypedilum flavum          | 120                 | 495              |
|            | Polypedilum illinoense grp. | -                   | 140              |
|            | Polypedilum scalaenum grp.  | 35                  | -                |
|            | Rheocricotopus robacki      | 3                   | -                |

### **Appendix J-1 (continued)**

|                      |                       | <b>Control Site</b> |       |
|----------------------|-----------------------|---------------------|-------|
|                      | nytarsus exiguus grp. | 29                  | 854   |
|                      | nytarsus pellucidus   | -                   | 38    |
|                      | hironomus sp.         | -                   | 8     |
|                      | hironomus sp.         | 3                   | -     |
|                      | rsus sp. A Epler      | 12                  | -     |
|                      | rsus sp. C Epler      | 23                  | -     |
| Tanyta               | rsus sp. L Epler      | 3                   | -     |
| Tanyta               | rsus sp. U Epler      | 3                   | -     |
| Thiene               | manniella sp.         | 6                   | -     |
| Thiene               | manniella xena        | -                   | 22    |
| Tribelos             | s fuscicornis         | 3                   | 80    |
| Ephemerop            | otera                 |                     |       |
|                      | nna pygmaea           | 11                  | -     |
| Caenis               | sp.                   | -                   | 8     |
| Maccaf               | fertium exiguum       | 39                  | -     |
| Stenac               | -                     | 6                   | -     |
| Megalopter           | a                     |                     |       |
| Coryda               | lus cornutus          | -                   | 5     |
| Odonata              |                       |                     |       |
| <i>Argia</i> s       | p.                    | 5                   | -     |
| _                    | ımipennis             | -                   | 7     |
| Argia s              |                       | -                   | 7     |
| Enallag              | ıma coecum            | -                   | 13    |
| Macron               | •                     | -                   | 3     |
| Trichoptera          |                       |                     |       |
| Cernoti              |                       | 21                  | -     |
| Cheum                | atopsyche sp.         | 16                  | 8,999 |
| Cyrnell              | us fraternus          | -                   | 62    |
| Mollusca<br>Bivalvia |                       |                     |       |
|                      | rmined Sphaeriidae    | 3                   | 3     |
| Gastropoda           | minea opnacinaac      | O                   | J     |
| Laevap               | ex so                 | _                   | 47    |
| Physa                | 3                     | _                   | 26    |
| -                    | lia wetherbyi         | _                   | 9     |
| -                    | horus platyrachis     | _                   | 12    |
| r yrgop              | nordo piatyraoriio    |                     | 14    |

### Appendix J-2

Benthic macroinvertebrates taxa list and counts (number of individuals counted) collected from Hester-Dendy artificial substrates (n= 3 samples) incubated upstream and downstream of the Mosaic Fertilizer, LLC – Bartow Chemical Plant for 28 days and collected on 4/21/2008.

|                             | Control Site | Test Site |
|-----------------------------|--------------|-----------|
| Annelida                    |              |           |
| Oligochaeta                 |              |           |
| Dero digitata complex       | -            | 2         |
| Limnodrilus hoffmeisteri    | 1            | -         |
| Slavina appendiculata       | <u>-</u>     | 4         |
| Stephensoniana trivandrana  | 1            | _         |
| Undeteremined Naididae      | -            | 1         |
| Undetermined Tubificidae    | 2            | _         |
| Arthropoda                  |              |           |
| Crustacea                   |              |           |
| Amphipoda                   |              |           |
| Hyalella azteca             | 1            | 130       |
| Isopoda                     |              |           |
| Caecidotea sp.              | 14           | -         |
| Lirceus sp.                 | 2            | -         |
| Insecta                     |              |           |
| Coleoptera                  |              |           |
| Dineutus sp.                | -            | 5         |
| Dubiraphia vittata          | 2            | 4         |
| Microcylloepus pusillus     | 8            | 2         |
| Prionocyphon sp.            | -            | 2         |
| Stenelmis sp.               | 2            | -         |
| Diptera                     |              |           |
| Ablabesmyia mallochi        | 28           | -         |
| Ablabesmyia rhamphe grp.    | -            | 29        |
| Chironomus sp.              | 13           | 42        |
| Cladotanytarsus cf. daviesi | -            | 3         |
| Corynoneura sp.             | 4            | -         |
| Cricotopus bicinctus        | 3            | -         |
| Dicrotendipes modestus      | -            | 7         |
| Glyptotendipes sp.          | -            | 4         |
| Hemerodromia sp.            | -            | 4         |
| Labrundinia pilosella       | 5            | 1         |
| Larsia decolorata           | -            | 18        |
| Nanocladius sp.             | -            | 3         |
| Parachironomus carinatus    | -            | 29        |
| Parachironomus sp.          | -            | 8         |
| Paratanytarsus sp.          | -            | 35        |
| Pentaneura inconspicua      | -            | 3         |
| Polypedilum beckae          | 2            | 241       |
| Polypedilum fallax          | 1            | -         |
| Polypedilum flavum          | -            | 96        |
| Polypedilum illinoense grp. | 22           | -         |

### Appendix J-2 (continued)

|                                                         | <b>Control Site</b> | Test Site |
|---------------------------------------------------------|---------------------|-----------|
| Polypedilum scalaenum grp.                              | 41                  | 180       |
| Polypedilum sp.                                         | -                   | 51        |
| Rheocricotopus robacki                                  | 12                  | -         |
| Rheotanytarsus exiguus grp.                             | 1                   | _         |
| Rheotanytarsus pellucidus                               | 10                  | 311       |
| Stenochironomus sp.                                     | -                   | 14        |
| Stictochironomus sp.                                    | _                   | 3         |
| Tanytarsus sp. A Epler                                  | 1                   | -         |
| Tanytarsus sp. C Epler                                  | 4                   | _         |
| Tanytarsus sp. L Epler                                  | 8                   | _         |
| Tanytarsus sp. U Epler                                  | 1                   | _         |
| Thienemanniella sp.                                     | 1                   | _         |
| Thienemanniella xena                                    | 2                   | 4         |
| Tribelos fuscicornis                                    | <u>-</u>            | 4         |
| Undeteremined Chironomidae                              | 1                   | 29        |
| Ephemeroptera                                           | '                   | 20        |
| Acerpenna pygmaea                                       | 4                   | _         |
| Caenis sp.                                              | ·<br>-              | 3         |
| Maccaffertium exiguum                                   | 3                   | -         |
| Maccaffertium sp.                                       | 7                   | _         |
| Stenacron sp.                                           | 5                   | _         |
| Undetermined Heptageniidae                              | 2                   | _         |
| Megaloptera                                             | -                   |           |
| Corydalus cornutus                                      | _                   | 2         |
| Odonata                                                 |                     | _         |
| Argia fumipennis                                        | 2                   | 3         |
| Argia sedula                                            | <u>-</u>            | 1         |
| Argia sp.                                               | _                   | 1         |
| Enallagma coecum                                        | _                   | 4         |
| Enallagma sp.                                           | _                   | 1         |
| Macromia sp.                                            | _                   | 1         |
| Trichoptera                                             |                     | •         |
| Cernotina sp.                                           | 8                   | _         |
| Cheumatopsyche sp.                                      | 6                   | 2,763     |
| Cyrnellus fraternus                                     | U                   | 2,703     |
| Undetermined Hydropsychidae                             | -                   | 576       |
| Undetermined Trightopsychidae  Undetermined Trichoptera | _                   | 63        |
| Mollusca                                                | -                   | 03        |
| Bivalvia                                                |                     |           |
| Undetermined Sphaeriidae                                | 1                   | 1         |
| Gastropoda                                              | ·                   | •         |
| Laevapex sp.                                            |                     | 9         |
|                                                         | -                   | 7         |
| Notogillia wetherbyi<br>Physa sp.                       | -                   | 9         |
| Priysa sp.<br>Pyrgophorus platyrachis                   | -                   | 3         |
| Undetermined Ancylidae                                  | -                   | 3         |
| Undetermined Gastropoda                                 | -                   | 4         |
| ondetermined Gastropoda                                 | -                   | 7         |
|                                                         |                     |           |

### Appendix K-1

Qualitative benthic macroinvertebrate collapsed taxa list and number of individuals counted from 20-discrete-dipnet sweeps conducted upstream and downstream of Mosaic Fertilizer, LLC – Bartow Chemical Plant on 4/21/2008. See SOP LT 7100 sect. 4.2.1 for method on collapsing taxa.

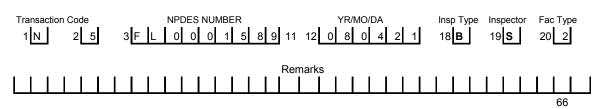
|                            | Control Site<br>Rep 1 | Control Site<br>Rep 2 | Test Site<br>Rep 1 | Test Site<br>Rep 2 |
|----------------------------|-----------------------|-----------------------|--------------------|--------------------|
| Annelida                   |                       |                       |                    |                    |
| Oligochaeta                |                       |                       |                    |                    |
| Haplotaxida                |                       |                       |                    |                    |
| Aulodrilus pigueti         | -                     | -                     | 1                  | -                  |
| Bratislavia unidentata     | -                     | -                     | 1                  | 4                  |
| Dero digitata complex      | -                     | -                     | 7                  | 3                  |
| Nais communis complex      | -                     | -                     | 2                  | 3                  |
| Slavina appendiculata      | -                     | -                     | -                  | 2                  |
| Undetermined Tubificidae   | -                     | -                     | -                  | 2                  |
| Lumbriculida               |                       |                       |                    |                    |
| Eclipidrilus palustris     | -                     | 1                     | -                  | -                  |
| Undetermined Lumbriculidae | 1                     | -                     | -                  | -                  |
| Arthropoda                 |                       |                       |                    |                    |
| Arachnida                  |                       |                       |                    |                    |
| Acariformes                |                       |                       |                    |                    |
| <i>Limnesia</i> sp.        | 1                     | -                     | -                  | -                  |
| Crustacea                  |                       |                       |                    |                    |
| Amphipoda                  |                       |                       |                    |                    |
| Hyalella azteca            | 1                     | 3                     | 9                  | 11                 |
| Decapoda                   |                       |                       |                    |                    |
| Undetermined Cambaridae    | 1                     | 2                     | -                  | -                  |
| Isopoda                    |                       |                       |                    |                    |
| Caecidotea sp.             | 14                    | 15                    | -                  | -                  |
| Insecta                    |                       |                       |                    |                    |
| Coleoptera                 |                       |                       |                    |                    |
| Dubiraphia vittata         | 2                     | 6                     | 2                  | 1                  |
| Microcylloepus pusillus    | -                     | -                     | -                  | 1                  |
| Ora/scirtes sp.            | 29                    | 47                    | -                  | -                  |
| Stenelmis sp.              | -                     | -                     | 3                  | -                  |
| Undetermined Hydrophilidae | -                     | -                     | -                  | 2                  |
| Undetermined Scirtidae     | -                     | 1                     | -                  | -                  |
| Diptera                    |                       |                       |                    |                    |
| Ablabesmyia mallochi       | -                     | 1                     | -                  | -                  |
| Corynoneura sp.            | -                     | -                     | -                  | 1                  |
| Cricotopus bicinctus       | -                     | -                     | 2                  | -                  |
| Hemerodromia sp.           | -                     | 2                     | -                  | -                  |
| Labrundinia pilosella      | -                     | -                     | 2                  | -                  |
| Nanocladius sp.            | -                     | -                     | 1                  | 1                  |
| Parachironomus carinatus   | _                     | _                     | 1                  | _                  |
| Parachironomus frequens    | -                     | -                     | -                  | 1                  |
| Parachironomus sp.         | -                     | _                     | _                  | 2                  |
| Paracladopelma nereis      | 2                     | _                     | _                  | _                  |
| Pentaneura inconspicua     | 1                     | -                     | 3                  | 1                  |
|                            |                       |                       | *                  |                    |

### Appendix K-1 (continued)

|                             | Control Site<br>Rep 1 | Control Site<br>Rep 2 | Test Site<br>Rep 1 | Test Site<br>Rep 2 |
|-----------------------------|-----------------------|-----------------------|--------------------|--------------------|
| Polypedilum flavum          | 5                     | 5                     | 3                  | 2                  |
| Polypedilum illinoense grp. | -                     | -                     | 7                  | 12                 |
| Rheotanytarsus exiguus grp. | 11                    | 7                     | 26                 | 39                 |
| Simulium sp.                | 22                    | 22                    | -                  | _                  |
| Stenochironomus sp.         | 1                     | -                     | 1                  | -                  |
| Tanytarsus sp. C Epler      | 1                     | -                     | -                  | -                  |
| Xenochironomus xenolabis    | -                     | 1                     | -                  | -                  |
| Ephemeroptera               |                       |                       |                    |                    |
| Baetis intercalaris         | 2                     | 1                     | -                  | -                  |
| Caenis sp.                  | 1                     | 1                     | -                  | -                  |
| Pseudocloeon sp.            | -                     | 1                     | -                  | -                  |
| Undetermined Heptageniidae  | 4                     | 3                     | -                  | -                  |
| Lepidoptera                 |                       |                       |                    |                    |
| Parapoynx sp.               | 1                     | -                     | -                  | -                  |
| Odonata                     |                       |                       |                    |                    |
| <i>Argia</i> sp.            | 5                     | 3                     | -                  | 2                  |
| Enallagma coecum            | -                     | -                     | 3                  | -                  |
| Undetermined Libellulidae   | 1                     | -                     | -                  | -                  |
| Trichoptera                 |                       |                       |                    |                    |
| Cheumatopsyche sp.          | 23                    | 19                    | 66                 | 54                 |
| Chimarra sp.                | 1                     | _                     | -                  | -                  |
| Neotrichia sp.              | 4                     | 2                     | -                  | -                  |
| Orthotrichia sp.            | -                     | _                     | -                  | 1                  |
| Triaenodes sp.              | 1                     | 2                     | -                  | -                  |
| Mollusca                    |                       |                       |                    |                    |
| Bivalvia                    |                       |                       |                    |                    |
| Corbicula fluminea          | 9                     | 3                     | -                  | -                  |
| Undetermined Sphaeriidae    | 1                     | -                     | 7                  | 7                  |
| Gastropoda                  |                       |                       |                    |                    |
| Undetermined Ancylidae      | -                     | 1                     | 1                  | -                  |
| Undetermined Hydrobiidae    | -                     | -                     | 2                  | -                  |
|                             |                       |                       |                    |                    |

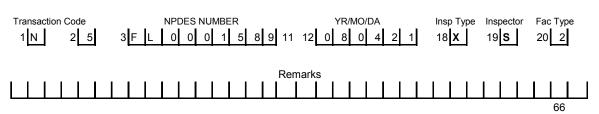
### Appendix K-2

Qualitative benthic macroinvertebrate taxa list and number of individuals counted from 20-discrete-dipnet sweeps conducted upstream and downstream of Mosaic Fertilizer, LLC – Bartow Chemical Plant on 4/21/2008.


|                            | Control Site<br>Rep 1 | Control Site<br>Rep 2 | Test Site<br>Rep 1 | Test Site<br>Rep 2 |
|----------------------------|-----------------------|-----------------------|--------------------|--------------------|
| Annelida                   | -                     | •                     | -                  | -                  |
| Oligochaeta                |                       |                       |                    |                    |
| Aulodrilus pigueti         | -                     | -                     | 1                  | -                  |
| Bratislavia unidentata     | _                     | -                     | 1                  | 4                  |
| Dero digitata complex      | _                     | -                     | 7                  | 3                  |
| Nais communis complex      | _                     | -                     | 2                  | 3                  |
| Slavina appendiculata      | _                     | -                     | -                  | 2                  |
| Undetermined Tubificidae   | _                     | -                     | -                  | 2                  |
| Lumbriculida               |                       |                       |                    |                    |
| Eclipidrilus palustris     | -                     | 1                     | -                  | -                  |
| Undetermined Lumbriculidae | 1                     | -                     | -                  | -                  |
| Arthropoda                 |                       |                       |                    |                    |
| Arachnida                  |                       |                       |                    |                    |
| Acariformes                |                       |                       |                    |                    |
| Limnesia sp.               | 1                     | -                     | -                  | -                  |
| Crustacea                  |                       |                       |                    |                    |
| Amphipoda                  |                       |                       |                    |                    |
| Hyalella azteca            | 1                     | 3                     | 9                  | 11                 |
| Decapoda                   |                       |                       |                    |                    |
| Undetermined Cambaridae    | 1                     | 2                     | _                  | -                  |
| Isopoda                    |                       |                       |                    |                    |
| Caecidotea sp.             | 14                    | 15                    | _                  | -                  |
| Insecta                    |                       |                       |                    |                    |
| Coleoptera                 |                       |                       |                    |                    |
| Dubiraphia vittata         | 2                     | 6                     | 2                  | 1                  |
| Microcylloepus pusillus    | _                     | -                     | _                  | 1                  |
| Ora/scirtes sp.            | 29                    | 47                    | _                  | -                  |
| Stenelmis sp.              | _                     | -                     | 2                  | -                  |
| Undetermined Hydrophilidae | _                     | -                     | 1                  | 2                  |
| Undetermined Scirtidae     | _                     | 1                     | _                  | -                  |
| Diptera                    |                       |                       |                    |                    |
| Ablabesmyia mallochi       | -                     | 1                     | -                  | -                  |
| Corynoneura sp.            | _                     | 3                     | 3                  | 3                  |
| Cricotopus bicinctus       | _                     | -                     | _                  | 1                  |
| Hemerodromia sp.           | _                     | -                     | 2                  | -                  |
| Labrundinia pilosella      | _                     | 2                     | _                  | -                  |
| Nanocladius sp.            | -                     | -                     | 2                  | -                  |
| Parachironomus sp.         | -                     | -                     | 1                  | 1                  |
| Parachironomus carinatus   | -                     | -                     | 1                  | -                  |
| Parachironomus frequens    | -                     | -                     | _                  | 1                  |
| Paracladopelma nereis      | -                     | -                     | -                  | 2                  |
| Pentaneura inconspicua     | 2                     | -                     | -                  | -                  |

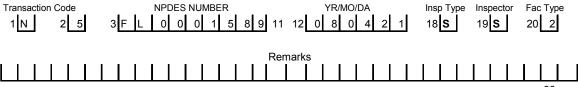
### Appendix K-2 (continued)

|                                  | Control Site<br>Rep 1 | Control Site<br>Rep 2 | Test Site<br>Rep 1 | Test Site<br>Rep 2 |
|----------------------------------|-----------------------|-----------------------|--------------------|--------------------|
| Polypedilum flavum               | 1                     | -                     | 3                  | 1                  |
| Polypedilum illinoense grp.      | 5                     | 4                     | 3                  | 2                  |
| Rheotanytarsus exiguus grp.      | -                     | -                     | 7                  | 11                 |
| Simulium sp.                     | 11                    | 5                     | 23                 | 37                 |
| Stenochironomus sp.              | 22                    | 22                    | -                  | -                  |
| Tanytarsus sp. C Epler           | 1                     | -                     | 1                  | -                  |
| Xenochironomus xenolabis         | -                     | 1                     | -                  | -                  |
| Undetermined Chironomidae        | 1                     | -                     | -                  | -                  |
| Ephemeroptera                    |                       |                       |                    |                    |
| Baetis intercalaris              | 2                     | 1                     | -                  | -                  |
| Caenis sp.                       | 1                     | 1                     | -                  | -                  |
| Pseudocloeon sp.                 | 1                     | 1                     | -                  | -                  |
| Undetermined Baetidae            | -                     | 1                     | -                  | -                  |
| Undetermined Heptageniidae       | 3                     | 2                     | -                  | -                  |
| Lepidoptera                      |                       |                       |                    |                    |
| Parapoynx sp.                    | 1                     | -                     | -                  | -                  |
| Odonata                          |                       |                       |                    |                    |
| <i>Argia</i> sp.                 | 3                     | 3                     | -                  | 1                  |
| Enallagma coecum                 | 2                     | -                     | 2                  | 1                  |
| Undetermined Coenagrionidae      | -                     | -                     | 1                  | -                  |
| Undetermined Libellulidae        | 1                     | -                     | -                  | -                  |
| Trichoptera                      |                       |                       |                    |                    |
| Cheumatopsyche sp.               | 21                    | 19                    | 62                 | 42                 |
| Chimarra sp.                     | 1                     | -                     | -                  | -                  |
| Neotrichia sp.                   | -                     | -                     | 2                  | 12                 |
| Orthotrichia sp.                 | 4                     | 2                     | -                  | -                  |
| Triaenodes sp.                   | -                     | -                     | -                  | 1                  |
| Undetermined Trichoptera         | 1                     | 2                     | -                  | -                  |
| Undetermined Hydropsychidae      | 2                     | -                     | 2                  | -                  |
| Mollusca                         |                       |                       |                    |                    |
| Bivalvia                         |                       |                       |                    |                    |
| Undetermined Bivalvia            | 1                     | 2                     | -                  | 3                  |
| Corbicula fluminea               | 8                     | 1                     | -                  | -                  |
| Undetermined Sphaeriidae(mollusc | 1                     | -                     | 7                  | 4                  |
| Gastropoda                       |                       |                       |                    |                    |
| Undetermined Ancylidae           | -                     | 1                     | 1                  | -                  |
| Undetermined Hydrobiidae         | -                     | -                     | 2                  | -                  |
| · ·                              |                       |                       |                    |                    |


## The Bioassay of the Mosaic Fertilizer, LLC - Bartow Chemical Plant effluent sampled on April 21, 2008, NPDES #FL0001589

Fill Out This Section For All Surface Water Discharger Inspections(CEI, CSI, CBI, PAI, XSI-RI Optional)




# The Priority Pollutants Analysis for Bioassay of the Mosaic Fertilizer, LLC - Bartow Chemical Plant effluent sampled on April 21, 2008, NPDES #FL0001589

Fill Out This Section For All Surface Water Discharger Inspections(CEI, CSI, CBI, PAI, XSI-RI Optional)



# Biological Analyses of the Mosaic Fertilizer, LLC - Bartow Chemical Plant effluent sampled on April 21, 2008, NPDES #FL0001589

Fill Out This Section For All Surface Water Discharger Inspections(CEI, CSI, CBI, PAI, XSI-RI Optional)



66