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Preface

During the last two decades the following volumes containing the proceedings
of the Israel Seminar in Geometric Aspects of Functional Analysis appeared

1983-1984 Published privately by Tel Aviv University
1985-1986 Springer Lecture Notes, Vol. 1267
1986-1987 Springer Lecture Notes, Vol. 1317
1987-1988 Springer Lecture Notes, Vol. 1376
1989-1990 Springer Lecture Notes, Vol. 1469
1992-1994 Operator Theory: Advances and Applications, Vol. 77, Birkhauser
1994-1996 MSRI Publications, Vol. 34, Cambridge University Press
1996-2000 Springer Lecture Notes, Vol. 1745.

Of these, the first six were edited by Lindenstrauss and Milman, the sev-
enth by Ball and Milman and the last by the two of us.

As in the previous volumes, the current one reflects general trends of
the Theory. The connection between Probability and Convexity continues to
broaden and deepen and a number of papers of this collection reflect this fact.
There is a renewed interest (and hope for solution) in the old and fascinating
slicing problem (also known as the hyperplane conjecture). Several papers in
this volume revolve around this conjecture as well as around some related
topics as the distribution of functionals, regarded as random variables on
a convex set equipped with its normalized Lebesgue measure. Some other
papers deal with more traditional aspects of the Theory like the concentration
phenomenon. Finally, the volume contains a long paper on approximating
convex sets by randomly chosen polytopes which also contains a deep study
of floating bodies, an important subject in Classical Convexity Theory.

All the papers here are original research papers and were subject to the
usual standards of refereeing.

As in previous proceedings of the GAFA Seminar, we also list here all
the talks given in the seminar as well as talks in related workshops and
conferences. We believe this gives a sense of the main directions of research
in our area.

We are grateful to Ms. Diana Yellin for taking excellent care of the type-
setting aspects of this volume.

Vitali Milman
Gideon Schechtman
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A Note on Simultaneous Polar and Cartesian
Decomposition

F. Barthe1�, M. Csörnyei2�� and A. Naor3� � �

1 CNRS-Université de Marne-la-Vallée, Equipe d’analyse et de Mathématiques
appliquées, Cité Descartes, Champs-sur-Marne, 77454, Marne-la-Vallée,
Cedex 2, France barthe@math.univ-mlv.fr

2 Department of Mathematics, University College London, Gower Street, London,
WC1E 6BT, United Kingdom mari@math.ucl.ac.uk

3 Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
naor@math.huji.ac.il

Summary. We study measures on R
n which are product measures for the usual

Cartesian product structure of R
n as well as for the polar decomposition of R

n

induced by a convex body. For finite atomic measures and for absolutely continuous
measures with density dµ/dx = e−V (x), where V is locally integrable, a complete
characterization is presented.

1 Introduction

A subset K ⊂ R
n is called a star-shaped body if it is star-shaped with respect

to the origin, compact, has non-empty interior, and for every x �= 0 there is
a unique r > 0 such that x/r ∈ ∂K. We denote this r by ‖x‖K (‖ · ‖K is
the Minkowski functional of K). Note that ‖x‖K is automatically continuous
(if xn tends to x �= 0, then for every subsequence xnk such that ‖xnk‖K
converges to r, the compactness ensures that x/r ∈ ∂K, so that r = ‖x‖K by
the uniqueness assumption). Any star-shaped body K ⊂ R

n induces a polar
product structure on R

n \ {0} through the identification

x �→
(

‖x‖K , x

‖x‖K

)
.

In this note we study the measures on R
n, n ≥ 2 which are product measures

with respect to the Cartesian coordinates, and the above polar decomposition.
In measure theoretic formulation, we will be interested in the measures

µ on R
n which are product measures with respect to the product structures

� Partially supported by EPSRC grant 64 GR/R37210.
�� Supported by the Hungarian National Foundation for Scientific Research, grant

# F029768.
��� Supported in part by the Binational Science Foundation Israel-USA, the Clore

Foundation and the EU grant HPMT-CT-2000-00037. This work is part of a
Ph.D. thesis being prepared under the supervision of Professor Joram Linden-
strauss.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 1–19, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 F. Barthe et al.

R
n = R × · · · × R = R

+ · ∂K. Here × is the usual Cartesian product and
for R ⊂ R

+, Ω ∈ ∂K, the polar product is by definition R · Ω = {rω; r ∈
R and ω ∈ Ω}. We adopt similar notation for product measures: ⊗ will be
used for Cartesian-product measures and 	 for polar-product measures. With
this notation, we say that µ has a simultaneous product decomposition with
respect to K if there are measures µ1, . . . µn on R such that µ = µ1⊗· · ·⊗µn,
and there is a measure τ on R

+ and a measure ν on ∂K such that µ = τ 	 ν
(in what follows, all measures are Borel). Notation like Ak or

∏
iAi always

refers to the Cartesian product.
For probability measures one can formulate the notion of simultaneous

product decomposition as follows. A measure µ on R
n has a simultane-

ous product decomposition with respect to K if and only if there are in-
dependent real valued random variables X1, . . . , Xn such that if we denote
X = (X1, . . . , Xn) then µ(A) = P (X ∈ A) and X/‖X‖K is independent of
‖X‖K .

The standard Gaussian measure on R
n is obviously a Cartesian product.

A consequence of its rotation invariance is that it is also a polar-product
measure for the usual polar structure induced by the Euclidean ball. Many
characterizations of the Gaussian distribution have been obtained so far. The
motivations for such characterizations arise from several directions. Maxwell
proved that the Gaussian measure is the only rotation invariant product
probability measure on R

3, and deduced that this is the distribution of the
velocities of gas particles. The classical Cramer and Bernstein characteriza-
tions of the Gaussian measure, as well as the numerous related results that
appeared in the literature arose from various probabilistic and statistical mo-
tivations. We refer to the book [Br] and the references therein for a detailed
account. The more modern characterization due to Carlen [C] arose from the
need to characterize the equality case in a certain functional inequality.

To explain the motivation for the present paper, we begin by noting that
the Gaussian density is in fact one member of a wider family of measures
with simultaneous product decomposition, involving bodies other than the
Euclidean ball. They will be easily introduced after setting notation. The
cone measure on the boundary of K, denoted by µK is defined as:

µK(A) = vol
(
[0, 1] ·A).

This measure is natural when studying the polar decomposition of the
Lebesgue measure with respect to K, i.e. for every integrable f : R

n → R,
one has ∫

Rn

f(x) dx =
∫ +∞

0
nrn−1

∫
∂K

f(rω) dµK(ω)dr.

For the particular case K = Bnp = {x ∈ R
n; ‖x‖p ≤ 1}, where ‖x‖p =

(
∑n
i=1 |xi|p)1/p, a fundamental result of Schechtman and Zinn [SZ1] (see also

Rachev and Rüschendorff [RR]), gives a concrete representation of µK :
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Theorem 1. Let g be a random variable with density e−|t|p/(2Γ (1 + 1/p)),
t ∈ R. If g1, ..., gn are i.i.d. copies of g, set:

S =

(
n∑
i=1

|gi|p
)1/p

,

and consider the random vector:

Z =
(g1
S
, ...,

gn
S

)
∈ R

n.

Then the random vector Z is independent of S. Moreover, for every measur-
able A ⊂ ∂Bnp we have:

µBnp (A)
vol(Bnp )

= P (Z ∈ A) .

The independence of Z and S, that is the simultaneous product decom-
position, turns out to be very useful for probabilistic as well as geometric
purposes ([SZ2],[NR],[N],[BN]). One might hope that such a statement holds
true for other norms and other densities. The aim of this note is to show
that the �np norm is in fact characterized by this property, although we will
show that such an independence result holds for other measures. Section 2 is
devoted to absolutely continuous measures. Section 3 presents a classification
for finite atomic measures, when K is convex. As the reader will see there are
more examples. Some of them, however, are not interesting and we will dis-
card them by suitable assumptions. For example: a constant random variable
is independent of any other. This observation allows us to produce several
measures with simultaneous product decomposition. Any random variable X
with values in the half-line {x; x1 > 0} works. Its law is clearly a Cartesian
product measure, and X/‖X‖K is constant regardless of K, so it is indepen-
dent of ‖X‖K . Similarly, if X has independent components and takes values
in only one sphere r∂K it has a simultaneous product decomposition.

Let λ and λ0 denote the Lebesgue measure and the counting measure on
R
n, respectively. For any (not necessarily finite) measure µ on R

n with a
simultaneous product decomposition with respect to a star-shaped body K,
µ = µ1 ⊗ · · · ⊗ µn = τ 	 ν and a function f : R

n → R, we say that f has
a simultaneous product decomposition with respect to µ and K, if there are
some functions fj ∈ L1(µj), g ∈ L1(ν) and h ∈ L1(τ) such that

f(x) =
n∏
i=1

fi(xi) = g

(
x

‖x‖K

)
· h(‖x‖K)

µ almost everywhere. It is immediate to see that for any countable set S ⊂ R
n

an atomic measure f1Sdλ0 has a simultaneous product decomposition with
respect to K if and only if f has a simultaneous product decomposition with



4 F. Barthe et al.

respect to λ0 and K. Analogously (see Lemma 2 below), an absolutely con-
tinuous measure fdλ has a simultaneous product decomposition with respect
to K if and only if its density function f has a simultaneous product decom-
position with respect to λ and K. From this it is immediate to see that if
f1dλ and f2dλ (resp. f1dλ0 and f2dλ0) have simultaneous product decom-
positions with respect to K and f1f2 ∈ L1(λ) then f1f2dλ (resp. f1f2dλ0)
has a simultaneous product decomposition with respect to K. Similarly, if
fdλ (resp. fdλ0) has a simultaneous product decomposition with respect
to K and fα ∈ L1(λ) (resp. fα ∈ L1(λ0)) then fαdλ (resp. fαdλ0) has a
simultaneous product decomposition with respect to K.

If K is not assumed to be convex, many different examples may be pro-
duced: take two sets of positive numbers {x1, . . . , xN} and {y1, . . . , yN} and
consider µ1 =

∑
δxi and µ2 =

∑
δyi . If one assumes that the numbers yi/xj

are all different then the measure µ1 ⊗ µ2 is supported on points (xj , yi) all
having different directions. So there are several origin-star-shaped bodies K
such that µ1 ⊗ µ2 is supported on the boundary of K. For such K’s, µ1 ⊗ µ2
admits a polar decomposition.

Finally, if µ has simultaneous product decomposition, and ε1, . . . , εn ∈
{−1, 1} then the restriction of µ to {x; xiεi > 0} still has this property.
This remark allows us to restrict the study to the positive orthant (0,+∞)n

(and one has to glue pieces together at the end). For some positive numbers
a1, a2, . . . , an let T = Ta1,...,an : (0,+∞)n → (0,+∞)n denote the linear
bijection (x1, . . . , xn) �→ (x1/a1, . . . , xn/an). If µ is supported in the positive
orthant and it has a simultaneous product decomposition with respect to K,
then µ ◦ T has a simultaneous product decomposition with respect to T (K).
We will show that if µ is an absolutely continuous measure with density of
the form e−V (x) where V is locally integrable, and if µ has a simultaneous
product decomposition with respect to a star-shaped body K, then there
are some positive numbers a1, . . . , an and there is a p > 0 such that K ∩
(0,∞)n = T (Bnp ∩ (0,∞)n). We will also show that if an atomic measure
has a simultaneous product decomposition with respect to a convex body
K, and it is not supported on a sphere rK for some r > 0, then for some
a1, a2, . . . , an we have K ∩ (0,∞)n = T (Bn∞ ∩ (0,∞)n).

2 Absolutely Continuous Measures

As in the classical characterizations of the Gaussian measure, the assumption
that the measure is absolutely continuous reduces the characterization prob-
lem to a solution of a functional equation which holds almost everywhere
(with respect to the Lebesgue measure). Unless we add some smoothness
assumptions on the densities, the next step is to apply a smoothing proce-
dure. Of course, after “guessing” the family of solutions of the equations, we
must come up with a smoothing procedure which sends each member of this
family to another member of the family. The classical Cramer and Bernstein
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characterizations use Fourier transform techniques (see [Br]), while Carlen
[C] applies the heat semi-group. The particular form of the equation we will
derive will force us to use yet another smoothing procedure.

When µ is absolutely continuous the following (easy) characterization
holds:

Lemma 2. Assume that µ is an absolutely continuous measure on R
n. Then

it has a simultaneous product decomposition with respect to K if and only if
there are locally integrable non-negative functions f1, . . . , fn defined on R, g
defined on ∂K (locally integrable with respect to µK) and h on (0,∞) such
that

dµ

dx
(x) =

n∏
i=1

fi(xi) = g

(
x

‖x‖K

)
· h(‖x‖K),

is Lebesgue almost everywhere.

Proof. Assume that µ has a simultaneous product decomposition with respect
to K. In the above notation, write µ = µ1 ⊗ · · · ⊗ µn = τ 	 ν. For every
measurable B ⊂ ∂K:

ν(B) = µ(R+ ·B) =
∫
R+·B

dµ

dx
(x)dx

=
∫
B

(∫ ∞

0
n · rn−1 dµ

dx
(rω)dr

)
dµK(ω).

Similarly, for every measurable A ⊂ R
+

τ(A) = µ(A · ∂K) =
∫
A

n ·
(∫

∂K

dµ

dx
(rω)dµK(ω)

)
dr.

This shows that both τ and ν are absolutely continuous. Similarly µ1, . . . ,µn
are absolutely continuous.

Now, for every measurable A ⊂ R
+, B ⊂ ∂K, C1, . . . Cn ⊂ R:

µ(A ·B) = τ(A)ν(B) =
∫ ∞

0

∫
∂K

dτ

dr
(r) · dν

dµK
(ω)drdµK(ω)

=
∫
A·B

1
n · ‖x‖n−1

K

· dτ
dr

(‖x‖K) · dν

dµK

(
x

‖x‖K

)
dx,

and

µ(C1 × . . .× Cn) =
∫
C1×...×Cn

n∏
i=1

dµi
dxi

(xi)dx.

Since the product Borel σ-algebras on R
+ · ∂K and R × . . . × R (n times)

coincide, this shows that:

dµ

dx
(x) =

n∏
i=1

dµi
dxi

(xi) =
1

n · ‖x‖n−1
K

· dτ
dr

(‖x‖K) · dν

dµK

(
x

‖x‖K

)
,

is Lebesgue almost everywhere. The reverse implication is even simpler. ��
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Fix some p > 0, b1, . . . bn > −1 and a1, . . . an > 0. Let X1, . . . , Xn be
independent random variables, such that the density of Xi is:

pa
(bi+1)/p
i

2Γ
(
bi+1
p

) · |t|bie−ai|t|p .

Note that:
n∏
i=1

|xi|bie−ai|xi|p =

=

(
n∑
i=1

ai|xi|p
) 1
p

∑n
i=1 bi

· e− ∑n
i=1 ai|xi|p

n∏
i=1


 |xi|(∑n

j=1 aj |xj |p
)1/p



bi

.

Hence, if we denoteX = (X1, . . . , Xn) then by Lemma 2,X/ (
∑n
i=1 ai|Xi|p)1/p

and (
∑n
i=1 ai|Xi|p)1/p are independent. Moreover, if b1 = . . . = bn = 0 and

a1 = . . . = an = 1 then it follows from the proof of Lemma 2 that X/‖X‖p
generates the cone measure on the sphere of �np . We have therefore obtained
a generalization of Theorem 1.

The main goal of this section is to prove that the above densities are the
only way to obtain a measure with a simultaneous product decomposition
with respect to a star-shaped body K ⊂ R

n (and that K must then be
a weighted �np ball). In solving the functional equation of Lemma 2 we will
require a smoothing procedure. Clearly, we require a way to smooth a function
such that a function of the form c|t|be−a|t|p is transformed to a function
of the same form. Let ψ : R → R be locally integrable. For any infinitely
differentiable ρ : (0,∞) → [0,∞) which is compactly supported in (0,∞)
define:

(ρ � ψ)(x) =
∫ ∞

0
ρ(t)ψ

(
x

t

)
dt =

∫ ∞

0
xρ(sx)ψ

(
1
s

)
ds.

It is easy to verify that ρ�ψ is infinitely differentiable on (−∞, 0)∪(0,∞). Fix
some ε < 1/2 and let ρε : (0,∞) → [0, 1/(2ε)] be any infinitely differentiable
function such that ρε(t) = 1/(2ε) when |t − 1| ≤ ε and ρε(t) = 0 when
|t− 1| > ε+ ε2. Now, for x > 0 (and similarly when x < 0):∣∣∣∣(ρε � ψ)(x) − 1

2xε

∫ x/(1−ε−ε2)

x/(1+ε+ε2)
ψ(u)du

∣∣∣∣ =

=
1
x

∫ x/(1−ε−ε2)

x/(1+ε+ε2)

∣∣∣∣ 1
2ε

−
(x
u

)2
ρε

(x
u

)∣∣∣∣ |ψ(u)|du ≤

≤ 1
x

∫ x/(1−ε)

x/(1+ε)
|ψ(u)|du+

1
2εx

[∫ x/(1+ε)

x/(1+ε+ε2)
|ψ(u)|du+

∫ x/(1−ε−ε2)

x/(1−ε)
|ψ(u)|du

]
,
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which, by the Lebesgue density theorem, implies that limε→0 ρ�ψ = ψ almost
everywhere. Since, limε→0

∫∞
0 ρε(t)dt = 1, the same holds for βε = ρε/

∫∞
0 ρε.

Since for every function of the form f(t) = c|t|be−a|t|p , the function
exp(ρε � (log f)) has the same form, and the above smoothing procedure
allows us to prove our main result. In what follows ε(x) ∈ {−1, 1} denotes
the sign of x (any convention for the sign of zero will do).

Theorem 3. Let K ⊂ R
n be a star-shaped body. Assume that µ is an abso-

lutely continuous probability measure on R
n which has a simultaneous product

decomposition with respect to K. Assume in addition that log(dµdx ) is locally
integrable. Then there is some p > 0 and there are b1, . . . , bn > −1 and
r, a1(1), a1(−1), c1(1), c1(−1) . . . , an(1), an(−1), cn(1), cn(−1) > 0 such that:

K =

{
x ∈ R

n;
n∑
i=1

ai(ε(xi))|xi|p ≤ r

}
,

and

dµ(x) =
n∏
i=1

ci(ε(xi))|xi|bie−ai(ε(xi))|xi|p dxi.

Conversely, for K and µ as above, µ has a simultaneous product decomposi-
tion with respect to K.

We will require the following elementary lemma:

Lemma 4. Fix α, α′ > 0. Let f : (0,∞) → R be a continuous function such
that for every x > 0,

f(αx) = 2f(x) and f(α′x) =
3
2
f(x).

Then for every x > 0, f(x) = f(1)x
log 2
logα (if α = 1, f(x) = 0 for all x).

Proof. We may assume that f is not identically zero. Then α �= α′ and
α, α′ �= 1. Consider the set

P =
{
β > 0; there is cβ > 0 s.t. f(βx) = cβf(x), for all x > 0

}
.

It is a multiplicative subgroup of (0,∞). By classical results, P is either
dense in (0,∞) or discrete. Assume first that it is dense. Fix some x0 such
that f(x0) �= 0. For any β ∈ P , cβ = f(βx0)/f(x0). By continuity of f and
by the density of P it follows that for every x, β > 0 one has

f(βx) =
f(βx0)
f(x0)

f(x).

So, if for some β, f(βx0) = 0 then f is identically zero. Therefore, f does not
vanish. We can choose x0 = 1 and setting g = f/f(1), we have that for every
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x, y > 0, g(xy) = g(x)g(y). It is well known that the continuity of g ensures
that it is a power function.

To finish, let us note that P cannot be discrete. Indeed, if P is discrete,
since it contains α and α′ �= α, it is of the form {Th; h ∈ Z} for some positive
T �= 1. So there are k, k′ ∈ Z \ {0} such that α = T k and α′ = T k

′
. Our

hypothesis is that for all x > 0

2f(x) = f(αx) = f(T kx) = ckT f(x),
3
2
f(x) = f(α′x) = f(T k

′
x) = ck

′
T f(x).

For an x such that f(x) �= 0 we get 2 = ckT and 3
2 = ck

′
T . It follows that

3k = 2k+k
′
. This is impossible because k �= 0. ��

Proof of Theorem 3. Using the notation and the result of Lemma 2,

dµ

dx
(x) =

n∏
i=1

fi(xi) = g

(
x

‖x‖K

)
· h(‖x‖K).

For i = 1, . . . , n denote Fi = log fi. Denote also G = log g and H = log h. Let
ϕ : R

n → R be a compactly supported continuous function. For every t > 0:

n∑
i=1

∫
Rn

ϕ(tx)Fi(xi)dx =
∫

Rn

ϕ(tx)G
(

x

‖x‖K

)
dx+

∫
Rn

ϕ(tx)H (‖x‖K) dx.

Changing variables this translates to

n∑
i=1

∫
Rn

ϕ(y)Fi
(yi
t

)
dy =

∫
Rn

ϕ(y)G
(

y

‖y‖K

)
dy +

∫
Rn

ϕ(y)H
(‖y‖K

t

)
dy.

Fix some ε > 0. Multiplying by βε and integrating, we get,

n∑
i=1

∫
Rn

ϕ(y)(βε � Fi)(yi)dy

=
∫

Rn

ϕ(y)G
(

y

‖y‖K

)
dy +

∫
Rn

ϕ(y)(βε � H)(‖y‖K)dy.

Denote φi = βε � Fi and η = βε � H. By the above identity for almost every
y ∈ R

n:
n∑
i=1

φi(yi) = G

(
y

‖y‖K

)
+ η(‖y‖K).

Since φi and η are continuous on R \ {0}, we can change G on a set of
measure zero such that the latter identity holds for every y ∈ R

n with non-
zero coordinates.
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Fix some y ∈ R
n with non-zero coordinates. For every λ > 0, one has

n∑
i=1

φi(λyi) = G

(
y

‖y‖K

)
+ η(λ‖y‖K).

Since both sides of the equation are differentiable in λ, taking derivatives at
λ = 1 yields:

n∑
i=1

χi(yi) = ζ(‖y‖K), (1)

where for simplicity, we write χi(t) = tφ′
i(t) and ζ(t) = tη′(t). From this, we

shall deduce that ζ, χi are power functions. This can be proved by differentia-
tion along the boundary of K, under smoothness assumptions. Since we want
to deal with general star shaped bodies, we present now another reasoning.

Note that limt→0 χi(t) exists. Indeed since η is smooth on (0,∞) and ‖·‖K
is continuous, the above equation for yt =

∑
j �=i ej + tei gives

lim
t→0

χi(t) = ζ

(∥∥∥∑
j �=i

ej

∥∥∥
K

)
−
∑
j �=i

χi(1).

Similarly, ζ may be extended by continuity at 0. Hence, (1) holds on R
n.

Applying (1) to λei, gives

χi(λ) = ζ(|λ| · ‖ε(λ)ei‖K) + γi,

for some constant γi. Plugging this into (1) for yi ≥ 0 we obtain an equation
in ζ only:

n∑
i=1

ζ(yi‖ei‖K) + γi = ζ(‖y‖K).

Choosing y = λy1e1/‖e1‖K + λy2e2/‖e2‖K , with λ, y1, y2 > 0, we get

ζ(λy1) + ζ(λy2) +
n∑
i=1

γi + (n− 2)ζ(0) = ζ

(
λ
∥∥∥y1 e1

‖e1‖K + y2
e2

‖e2‖K
∥∥∥
K

)
.

Differentiating in λ at λ = 1 and setting f(t) = tζ ′(t), t > 0,

f(y1) + f(y2) = f

(∥∥∥y1 e1
‖e1‖K + y2

e2
‖e2‖K

∥∥∥
K

)
. (2)

For y1 = y2 = t > 0, we obtain 2f(t) = f(αt), with α = ‖ e1
‖e1‖K + e2

‖e2‖K ‖K .
Combining this relation with (2) gives

1
2
f(y1α) + f(y2) = f

(∥∥∥y1 e1
‖e1‖K + y2

e2
‖e2‖K

∥∥∥
K

)
.
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For y1 = t/α and y2 = t > 0 we get 3
2f(t) = f(tα′), with α′ = ‖ 1

α
e1

‖e1‖K +
e2

‖e2‖K ‖K . Lemma 4 ensures that f(t) = f(1)tp with p = log 2/ logα �= 0, and
with the convention that p = 0 if α = 1 (in this case f(1) = 0). It follows
that

ζ(t) = ζ ′(1)tp/p+ ζ(0)

if p �= 0 and ζ(t) = ζ(0) otherwise. Integrating again, we get an expression for
η = βε � log h. Letting ε tend to zero shows that there are constants a, b, c ∈ R

such that for a.e. t > 0, h(t) = ctbe−atp (this is valid even if p = 0).
Next we find an expression of the functions fi. We start with the relation

tφ′(t) = χi(t) = ζ
(|t| · ‖ε(t)ei‖K

)
+ γi = ai

(
ε(t)

)|t|p + bi,

for some constants ai(1), ai(−1), bi. Thus for t �= 0, φ′(t) = ai(ε(t))|t|p−1ε(t)+
bi/t. Integrating (with different constants on (−∞, 0) and on (0,∞)) and
taking the limit ε → 0 as before we arrive at fi(t) = ci(ε(t))|t|bie−ai|t|p , for
almost every t and for some constants ci(1), ci(−1). For fi to have a finite
integral, p has to be non-zero. Our initial equation reads as: for a.e. x,

n∏
i=1

ci
(
ε(xi)

)|xi|bie−ai|xi|p = c‖x‖bKe−a‖x‖pKg
(

x

‖x‖K

)
.

By continuity this holds on R
n \ {x;

∏n
i=1 xi = 0}. For such an x and λ > 0,

the equation becomes

n∏
i=1

ci
(
ε(xi)

)
λ

∑n
i=1 bie−λp ∑n

i=1 ai(ε(xi))|xi|p
n∏
i=1

ci|xi|bi

= cλb‖x‖bKe−aλp‖x‖pKg
(

x

‖x‖K

)
.

This clearly implies that a‖x‖pK =
∑n
i=1 ai(ε(xi))|xi|p. Since µ is a prob-

ability measure, necessarily a, ai(1), ai(−1) > 0 and bi > −1. Thus K is
determined. The boundedness of K forces p > 0. The proof is complete. ��

We now pass to the case of µ being an infinite measure. In this case,
every star-shaped body gives rise to a measure with a simultaneous product
decomposition. Indeed, for every b1, . . . , bn > −1 in R, and every star-shaped
body K, the measure dµ(x) =

∏n
i=1 |xi|bi dx admits such a decomposition,

due to the identity:

n∏
i=1

|xi|bi =
n∏
i=1

( |xi|
‖x‖K

)bi
· ‖x‖

∑n
i=1 bi

K .

We can however prove that the above example is the only additional case.
For simplicity we work with measures on (0,∞)n.
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Theorem 5. Let K ⊂ R
n be a star-shaped body. Assume that µ is an ab-

solutely continuous measure on (0,∞)n which has a simultaneous product
decomposition with respect to K. Assume in addition that log(dµdx ) is locally
integrable. Then one of the following assertions holds:
1) There are p, r > 0, b1, . . . , bn ∈ R, c ≥ 0 and a1, . . . , an �= 0 all having the
same sign such that:

K ∩ (0,∞)n =
{
x ∈ (0,∞)n;

n∑
i=1

|ai| · |xi|p ≤ r

}
,

and

dµ = c
n∏
i=1

(
xbii e

−aixpi 1{xi>0}dxi
)
.

2) K is arbitrary and there are b1, . . . , bn ∈ R and c > 0 such that

dµ = c

n∏
i=1

(
xbii 1{xi>0}dxi

)
.

Conversely if K and µ satisfy 1) or 2) then µ has a simultaneous product
decomposition with respect to K.

Proof. This result follows from the proof of Theorem 3. The writing is simpler
since we work on (0,∞)n. We present the modifications. If in the argument
p = 0, then fi(t) = cit

bi and we are done. If p �= 0 then the argument provides
a, a1, . . . , an such that whenever xi > 0

a‖x‖pK =
n∑
i=1

aix
p
i .

If a = 0 then ai = 0 for all i’s, fi(t) = cit
bi and there is no constraint on K.

If a �= 0 then the previous relation gives ai = a‖ei‖pK , so the ai’s are not zero
and have same sign. Since ‖x‖K =

(∑n
i=1

ai
a |xi|p

)1/p, the set K ∩ (0,∞)n is
a weighted �np -ball. By boundedness p > 0. As before fi(t) = cit

bie−aitp . This
ends the proof. ��

3 Atomic Measures

In this section we focus on finite atomic measures
∑
P∈S αP δP , where δP is

the Dirac measure at P and S ⊂ R
n is countable. For convenience, we write

µ(P ) for µ({P}). We also restrict ourselves to convex sets K. The following
result deals with measures which are not supported on a sphere. Measures
which concentrate on a sphere, when K is convex are much easier to classify
and we leave this to the reader (one of the µi’s has to be a Dirac mass).
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Theorem 6. Assume that K ⊂ R
n is convex, symmetric and contains the

origin in its interior, and that µ is a finite (and non-zero) atomic measure
on (0,∞)n, which admits a simultaneous polar and Cartesian decomposition
with respect to K: µ = µ1 ⊗ · · · ⊗ µn = τ 	 ν. Assume in addition that τ is
not a Dirac measure. Then the following assertions hold:
a) There are λ1, . . . , λn > 0 such that K ∩ [0,∞)n =

∏n
i=1[0, λi].

b) There are c, r, α1, . . . αn > 0, 0 < q < 1 and D =
∏n
i=1

{
rλiq

k; k ∈ N
}

such that :

µ(x) =
{
c
∏n
i=1 x

αi
i if x ∈ D

0 if x /∈ D

Conversely, if K and µ satisfy a) and b) then µ has a simultaneous product
decomposition with respect to K.

As a matter of illustration, we check that conditions a) and b) ensure
simultaneous Cartesian and polar product decompositions. Let x ∈ (0,∞)n.
Since the set D is a Cartesian product, it is clear that µ defined in b) is a
Cartesian-product measure. Next, write x = ρω with ρ > 0 and ω ∈ ∂K;
then

µ(x) = µ(ρω) = c ρ
∑n
i=1 αi

n∏
i=1

ωαii δD(ρω),

so we just need to check that D is a polar product set in order to show that
the latter is the product of a quantity depending only on ρ times a quantity
depending on ω. But this is easy: if x ∈ D then for each i, one has xi = rλiq

ki .
By a), ‖x‖K = r qmini ki ∈ T = {rqk; k ∈ N} and

x

‖x‖K =
(
λiq

ki−minj kj
)n
i=1 ∈ Ω =

{
(λiqhi)ni=1; hi ≥ 0 and

∏
i

hi = 0
}
.

This shows that D ⊂ T · Ω. The converse inclusion is easily checked. Hence
µ has a simultaneous product decomposition.

The rest of this section is devoted to the proof of the necessary condition
in Theorem 6. From now on we assume that µ and K satisfy the assumption of
the theorem. We begin with some notation. If λ is a measure on a measurable
space (Ω,Σ), let Mλ = {x ∈ Ω;λ(x) = supω∈Ω λ(ω)}. Clearly, if λ is a finite
measure then |Mλ| < ∞. We also put

M2
λ =

{
x ∈ Ω;λ(x) = sup

ω∈Ω\Mλ

λ(ω)
}
.

When λ is countably supported we define supp(λ) = {ω ∈ Ω;λ(ω) > 0}.

Returning to the setting of Theorem 6, we clearly have that supp(µ) =
supp(µ1)×· · ·×supp(µn) = supp(τ) ·supp(ν) and Mµ = Mµ1 ×· · ·×Mµn =
Mτ · Mν .

The next lemma will be used for a measure other than µ of the main
theorem. This is why the fact that τ in the product decomposition is not
Dirac is specifically stated as an hypothesis there.
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Lemma 7. Define the slope function s1(x) = x1
‖(x2,...,xn)‖2

. If τ is not a Dirac
measure, then s1 does not attain its minimum on supp(µ).

Proof. Assume that µ(x) > 0. Then µ1(x1), . . . µn(xn) > 0, ν(x/‖x‖K) > 0
and τ(‖x‖K) > 0. Since τ is not a Dirac measure, there is r > 0, r �= ‖x‖K
such that τ(r) > 0. Let y = r

‖x‖K x. Then µ(y) = τ(r)ν(x/‖x‖K) > 0, so that
for every i = 1, . . . , n, µi( r

‖x‖K xi) > 0. Therefore for

u =
(

r

‖x‖K x1, x2, . . . , xn

)
,

v =
(
x1,

r

‖x‖K x2,
r

‖x‖K x3, . . . ,
r

‖x‖K xn
)
,

µ(u) > 0 and µ(v) > 0. But s1(u) = r
‖x‖K s1(x), s1(v) = ‖x‖K

r s1(x) and either
r

‖x‖K < 1 or ‖x‖K
r < 1. ��

Corollary 8. Under the assumptions of Theorem 6, |supp(µ)| = ∞ and
|Mτ | = 1.

Proof. The first assertion is obvious, and the second assertion follows since
µ|Mµ

has a simultaneous product decomposition. Indeed µ|Mµ
also has a

finite support, and therefore s1 attains its minimum on it. It follows that the
radial measure τ |Mµ has to be a Dirac measure. ��

Put Mτ = {r}.

Lemma 9. supp(µ) ⊂ {x; ‖x‖K ≤ r}.
Proof. If supp(µ) �⊂ {x; ‖x‖K ≤ r} then since τ is a finite measure there is
R > r such that τ(R) > 0 is maximal on (r,∞). For every i = 1, . . . , n,
let Mi = max Mµi > 0. Now, x = (M1,M2, . . . ,Mn) ∈ Mµ, so that
‖x‖K = r. Put y = R

r x. Clearly µ(y) = τ(R)ν(x/‖x‖K) is maximal on
the set {x; ‖x‖K > r}. For every i = 1, . . . , n define

xi =
(
M1, . . . ,Mi−1,

R

r
Mi,Mi+1, . . . ,Mn

)
.

Note that for every j = 1, . . . , n, Mj = max Mµj <
R
rMj = yj so that

yj /∈ Mµj . It follows that for every i = 1, . . . , n, µ(xi) > µ(y), so that
‖xi‖K ≤ r. Now, using the convexity of K we have

r = ‖x‖K =
∥∥∥∥ 1
n− 1 + R

r

n∑
i=1

xi
∥∥∥∥
K

≤ 1
n− 1 + R

r

n∑
i=1

‖xi‖K ≤ nr

n− 1 + R
r

< r,

which is a contradiction. ��
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Since τ isn’t Dirac, there is some r′ ∈ M2
τ . By Lemma 9, r′ < r.

Lemma 10. For every i = 1, . . . , n, inf supp(µi) = 0.

Proof. As in Lemma 7, we will study the function:

si(x) =
xi

‖∑j �=i xjej‖2
.

Since Lemma 9 implies in particular that supp(µ) is bounded, our claim will
follow once we show that infx∈supp(µ) si(x) = 0. Let σi = infx∈supp(µ) si(x)
and assume that σi > 0. For every ε > 0 there is x ∈ supp(µ) such that
si(x) ≤ (1 + ε)σi. From the proof of Lemma 7 it follows that for every
ρ ∈ supp(τ) there are u, v ∈ supp(τ) such that si(u) = ρ

‖x‖K si(x) and

si(v) = ‖x‖K
ρ si(x). Hence, min{ ρ

‖x‖K ,
‖x‖K
ρ } ≥ 1

1+ε . If ‖x‖K = r take ρ = r′.
Otherwise, ‖x‖K ≤ r′, in which case take ρ = r. In both cases we get that
r ≤ (1 + ε)r′, which is a contradiction when ε is small enough. ��

In what follows we will continue to use the notation Mi = max Mµi , and
we will also put mi = min Mµi . Let x = (M1, . . . ,Mn), x′ = (m1, . . . ,mn).

Corollary 11. For every J ⊂ {1, . . . , n}:∥∥∥∥∑
i∈J

Miei

∥∥∥∥
K

≤ r.

Proof. By Lemma 10 for every ε > 0 and i = 1, . . . , n there is zi ∈ supp(µi)
with zi < ε. Now: ∑

i∈J
Miei +

∑
i/∈J

ziei ∈ supp(µ),

so that by Lemma 9 we get:∥∥∥∥∑
i∈J

Miei +
∑
i/∈J

ziei

∥∥∥∥
K

≤ r.

The result follows by taking ε → 0. ��
Corollary 12.

∏n
i=1[0,Mi] ⊂ rK.

Lemma 13. Let J be a non-empty subset of {1, . . . , n}. Then:∥∥∥∥∑
i∈J

Miei +
∑
i/∈J

r′

r
miei

∥∥∥∥
K

= r.
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Proof. Denote y = r′
r x

′. Since x′ ∈ Mµ, ‖x′‖K = r. Now, µ(y) = τ(r′)ν(x′/
‖x′‖K), and because r′ ∈ M2

τ and x′/‖x′‖K ∈ Mν we deduce that µ(y) is
maximal on the set {x; ‖x‖K �= r}. But since r′ < r, for any j = 1, . . . , n
one has yj = r′

r mj < mj = minMµj , so that yj /∈ Mµj . It follows that since
J �= ∅,

µ

(∑
i∈J

Miei+
∑
i/∈J

r′

r
miei

)
=
(∏
i∈J

µi(Mi)
)(∏

i/∈J
µi(yi)

)
>

n∏
i=1

µi(yi) = µ(y),

so that
∥∥∥∑i∈JMiei +

∑
i/∈J

r′
r miei

∥∥∥
K

= r. ��

We can now prove the first part of Theorem 6:

Proposition 14. K ∩ [0,∞)n =
∏n
i=1

[
0, Mi

r

]
.

Proof. We set Q =
∏n
i=1[0,Mi]. Let 1 ≤ i ≤ n. Since 0 < mir

′/r < Mi the
point

Pi = Miei +
∑
j �=i

r′

r
mjej

lies in the interior of the facet Q ∩ {x; xi = Mi} of Q. It is also a boundary
point of rK by Lemma 13. As guaranteed by Corollary 12, Q ⊂ rK, so that
any supporting hyperplane of rK at Pi is a supporting hyperplane of Q at
this point. Therefore at Pi the convex set rK admits {x; xi = Mi} as a
(unique) supporting hyperplane. It follows that rK ⊂ {x; xi ≤ Mi}. This is
true for every 1 ≤ i ≤ n and the proof is complete. ��

We now pass to the proof of the final assertion of Theorem 6. We have
proved that there are real numbers ti = r/Mi > 0, i = 1 . . . n such that for
every x ∈ [0,∞)n, ‖x‖K = max1≤i≤n tixi. Moreover for every x ∈ supp(µ),
‖x‖K ≤ r and µ(r/t1, . . . , r/tn) > 0. By replacing K with rK we may assume
that r = 1. Moreover, as we remarked in Section 1, for any a1, . . . , an > 0, µ
admits a simultaneous product decomposition if and only if µ◦Ta1,...,an admits
a simultaneous product decomposition. Therefore, by composing µ with a
suitable Ta1,...,an , we can assume that M1 = · · · = Mn = 1 and t1 = · · · =
tn = 1. In addition, by replacing the measures µ, µi, ν, τ by µ/µ(1, . . . , 1),
µi/µi(1), ν/ν(1, . . . , 1), τ/τ(1) we can assume that µ(1, . . . , 1) = µi(1) =
ν(1, . . . , 1) = τ(1) = 1.

Lemma 15. If p, q ∈ supp(τ) and q > p then p
q , pq ∈ supp(τ).

Proof. By the product property

0 < τ(p) = µ(p, . . . , p) =
n∏
i=1

µi(p),
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so that for every i = 1, . . . , n, p ∈ supp(µi). Similarly, q ∈ supp(µi). Hence,
since p < q:

0 < µ(p, q, . . . , q) = τ(q)ν
(
p

q
, 1, . . . , 1

)
,

so that ν(pq , 1, . . . , 1) > 0. Now, using again the fact that p < q we have:

µ1

(
p

q

)
= µ

(
p

q
, 1, . . . , 1

)
= ν

(
p

q
, 1, . . . , 1

)
> 0.

This shows that p
q ∈ supp(µ1). Similarly, for every i, p

q ∈ supp(µi). Hence,

0 <
n∏
i=1

µi

(
p

q

)
= µ

(
p

q
, . . . ,

p

q

)
= τ

(
p

q

)
.

This shows that p
q ∈ supp(τ). Now, since the remark preceding Lemma 15

implies that p ≤ 1,

µ1(pq)
n∏
i=2

µi(q) = µ(pq, q, . . . , q) = τ(q)ν(p, 1, . . . , 1)

= τ(q)µ(p, 1, . . . , 1) = τ(q)µ1(p) > 0.

Hence, pq ∈ supp(µ1). Similarly, for every i, pq ∈ supp(µi), so that:

0 < µ(pq, . . . , pq) = τ(pq),

which shows that pq ∈ supp(τ). ��
Lemma 16. For every i = 1, . . . , n, supp(µi) = supp(τ).

Proof. In the proof of Lemma 15 we have seen that supp(τ) ⊂ supp(µi). We
show the other inclusion. First, note that inf supp(τ) = 0. Indeed for every
ε > 0, Lemma 10 ensures the existence of xi ∈ supp(µi) such that xi < ε.
Now,

0 <
n∏
i=1

µi(xi) = τ
(

max
1≤i≤n

xi

)
ν

(
x

‖x‖K

)
.

So inf supp(τ) ≤ ε.
Take any p ∈ supp(µi). There is some q ∈ supp(τ) such that q < p. By

the proof of Lemma 15, for every j, q ∈ supp(µj); therefore:

0 < µi(p)
∏
j �=i

µj (q) = µ

(
pei +

∑
j �=i

qej

)
= τ(p)ν

(
ei +

∑
j �=i

q

p
ej

)
,

so that p ∈ supp(τ). ��
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Lemma 17. For every i = 1, . . . , n and for every p, q ∈ supp(µi),

µi (pq) = µi(p)µi(q).

Proof. Note that since p ∈ supp(τ), p ≤ 1. Hence, using the fact that q ∈
supp(µj) we have:

0 < µi(pq)
∏
j �=i

µj(q) = µ

(
pqei +

∑
j �=i

qej

)
= τ(q)ν

(
pei +

∑
j �=i

ej

)

= τ(q)µi(p) = µi(p)µ(q, . . . , q) = µi(p)µi(q)
∏
j �=i

µj(q).

��
Lemma 18. Assume that A ⊂ (0, 1], A �= {1}, A �= ∅, has the property that
xy and x/y are in A whenever x, y ∈ A and x ≤ y. Let f : A → (0,∞) be a
function such that if x, y ∈ A then f(xy) = f(x)f(y) and:∑

a∈A
f(a) < ∞.

Then there are α > 0 and 0 < q < 1 such that f(a) = aα and A = {qn}∞
n=0.

Proof. For any a ∈ A \ {1} and n ∈ N, an ∈ A and f(an) = f(a)n. Since∑∞
n=1 f(an) < ∞, f(a) < 1. Now, if a, b ∈ A \ {1} and an

bm < 1, an

bm ∈ A,
so that 1 > f

(
an

bm

)
= f(a)n

f(b)m . We have shown that for every n,m ∈ N and
a, b ∈ A \ {1}:

n

m
>

log b
log a

=⇒ n

m
>

log f(b)
log f(a)

.

Hence, log b
log a ≥ log f(b)

log f(a) for every a, b ∈ A \ {1}. By symmetry, there is α ∈ R

such that for every a ∈ A, log f(a)
log a = α. This proves the first assertion (α > 0

since f(a) < 1).
Put B = {− log a; a ∈ A}. Clearly:

a, b ∈ B =⇒ a+ b, |a− b| ∈ B.

Since f(a) = aα and
∑
a∈A f(a) < ∞, for every x > 0 there are only

finitely many a ∈ A with a ≥ x. In other words, for every x > 0 there are
only finitely many b ∈ B with b ≤ x. In particular, if we let p = inf B \ {0}
then p > 0 and p ∈ B. Now, for every n = 0, 1, 2, . . ., np ∈ B. We claim that
B = {0, p, 2p, 3p, . . .}. Indeed, if x ∈ B \ {0, p, 2p, 3p, . . .} then there is an
integer n such that 0 < |x− np| < p. But, |x− np| ∈ B, and this contradicts
the definition of p. Finally, for q = e−p, A = {1, q, q2, . . .}. ��
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Remark. All the assumptions in Lemma 18 are necessary. Apart from the
trivial examples such as A = (0, 1] and A = (0, 1] ∩ Q we would like to point
out the more interesting example A = {2n3m;m,n ∈ Z and 2n3m ≤ 1},
f(2n3m) = 2αm3βm where α and β are distinct real numbers (of course in
this case the condition

∑
a∈A f(a) < ∞ is not satisfied).

Proof of Theorem 6. Assertion a) is given by Proposition 14. To prove b)
fix some 1 ≤ i ≤ n and define: A = supp(µi). By Lemma 16 and Lemma
9, A = supp(τ) ⊂ (0, 1]. Additionally, Lemma 15 implies that if x, y ∈ A,
x ≤ y then xy, xy =∈ A. Clearly for every x ∈ A, µi(x) > 0 and since µi is
a finite measure,

∑
a∈A µi(a) < ∞. An application of Lemma 17 gives that

for every x, y ∈ A, µi(xy) = µi(x)µi(y). Now, Lemma 18 implies that there
are αi > 0 and 0 < q < 1 such that µi(a) = aαi and A = {qn}∞

n=0. So,
supp(τ) = {qk; k ∈ N} and by Lemma 16, one gets supp(µi) = {qk; k ∈ N}.
Moreover, µi(qk) = qkαi . This concludes the proof of the theorem. ��

4 Concluding Remarks

In this section we list some remarks and open problems that arise from the
results of the previous two sections.

1) There are examples when K is allowed to be unbounded (of course in this
case it is no longer a body). Indeed the “unit ball” of �np for non-positive p
gives such a decomposition with fi(t) = |t|bi exp(−|t|p).
2) Theorem 3 does not cover the case of the uniform measure on Bn∞ =
[−1, 1]n, which clearly has simultaneously the Cartesian and the polar decom-
position with respect to K = Bn∞. It is the natural limit case of the examples
with the densities exp(−|t|p). Under strong conditions on the density and its
support, results can be obtained which encompass measures supported on
the cube. It would be very nice to get rid of the conditions. It seems that
one of the necessary steps would be to understand the structure of sets in R

n

which are products with respect to the Cartesian structure and for the polar
structure generated by a convex set K. This is a problem of independent
interest.

3) The classification of simultaneous product measures, without additional
hypothesis, is a very challenging problem. Note that our results may be used.
Indeed if µ has simultaneous product decomposition, then its absolutely con-
tinuous part has it too. Similarly, if a singular measure has the property, then
its atomic part has it too, so Theorem 6 applies. The main obstacle seems to
be dealing with singular continuous measures.

Acknowledgement. Part of this work was carried out while the first and last-named
authors were visiting University College London. They are grateful to their UCL
hosts, Professors K. Ball and D. Preiss, for their invitation.
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Approximating a Norm by a Polynomial�

Alexander Barvinok

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109,
USA barvinok@umich.edu

Summary. We prove that for any norm ‖ ·‖ in the d-dimensional real vector space
V and for any odd n > 0 there is a non-negative polynomial p(x), x ∈ V of degree
2n such that

p
1
2n (x) ≤ ‖x‖ ≤

(
n+ d− 1

n

) 1
2n

p
1
2n (x).

Corollaries and polynomial approximations of the Minkowski functional of a convex
body are discussed.

1 Introduction and the Main Result

Our main motivation is the following general question. Let us fix a norm ‖ ·‖
in a finite-dimensional real vector space V (or, more generally, the Minkowski
functional of a convex body in V ). Given a point x ∈ V , how fast can one
compute or approximate ‖x‖? For example, various optimization problems
can be posed this way. As is well known (see, for example, Lecture 3 of [B]),
any norm in V can be approximated by an �2 norm in V within a factor of√

dimV . From the computational complexity point of view, an �2 norm of x
is just the square root of a positive definite quadratic form p in x and hence
can be computed “quickly”, that is, in time polynomial in dimV for any
x ∈ V given by its coordinates in some basis of V . Note that we do not count
the time required for “preprocessing” the norm to obtain the quadratic form
p, as we consider the norm fixed and not a part of the input. It turns out
that by employing higher degree forms p, we can improve the approximation:
for any c > 0, given an x ∈ V , one can approximate ‖x‖ within a factor of
c
√

dimV in time polynomial in dimV . This, and some other approximation
results follow easily from our main theorem.

Theorem 1.1. Let V be a d-dimensional real vector space and let ‖·‖ : V −→
R be a norm in V . For any odd integer n > 0 there exists a homogeneous
polynomial p : V −→ R of degree 2n such that p(x) ≥ 0 (in fact, p is the sum
of squares of homogeneous polynomials of degree n) and

p
1
2n (x) ≤ ‖x‖ ≤

(
n+ d− 1

n

) 1
2n

p
1
2n (x)

for all x ∈ V .
� This research was partially supported by NSF Grant DMS 9734138.
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We observe that the approximation factor
(
n+d−1
n

)1/2n
approaches 1 as long

as n/d −→ ∞, see also Section 2.2.
We prove Theorem 1.1 in Section 3. In Section 2, we discuss some corol-

laries of Theorem 1.1. In Section 4, we show how to extend Theorem 1.1 to
Minkowski functionals of arbitrary convex bodies.

1.1 Best Approximating Polynomials

Let us fix a norm ‖ · ‖ in a finite-dimensional vector space V and a positive
integer n. One can ask what is the smallest possible constant C = C

(‖ · ‖, n)
for which there exists a polynomial p of degree 2n such that

p
1
2n (x) ≤ ‖x‖ ≤ Cp

1
2n (x) for all x ∈ V. (1.1.1)

Moreover, what is the value of

C(d, n) = sup
‖·‖ is a norm in V

and dimV=d

C
(‖ · ‖, n).

Theorem 1.1 asserts that C(d, n) ≤ (
n+d−1
n

)1/2n
for odd n. It is not known

whether the equality holds except in the case of n = 1 when indeed C(d, 1) =√
d (see, for example, Lecture 3 of [B]). The following simple observation can

be useful to determine what a best approximating polynomial may look like.
Suppose that there is a set of finitely many non-negative polynomials pi

with deg pi = 2n which satisfy (1.1.1). Thus we have

pi(x) ≤ ‖x‖2n ≤ C2npi(x) for all x ∈ V and for every pi. (1.1.2)

Then any convex combination p of polynomials pi satisfies (1.1.2) and hence
(1.1.1). Suppose now that the normed space V possesses a compact group G
of linear isometries. If a polynomial p satisfies (1.1.1) then, for any g ∈ G,
the polynomial pg(x) = p(gx) satisfies (1.1.1) with the same constant C and
hence, by averaging over G, we can choose a G-invariant polynomial p which
satisfies (1.1.1). Hence if a norm ‖·‖ is invariant under the action of a compact
group, we can always choose an invariant best approximating polynomial.

2 Corollaries and Remarks

2.1 Approximation by Polynomials of a Fixed Degree

Let us fix an n in Theorem 1.1. Then, as d grows, the value of p1/2n(x)
approximates ‖ · ‖ within a factor of cn

√
d, where cn ≈ (n!)−1/2n ≈

√
e/n.

Since for any fixed n, computation of p(x) takes a dO(n) time, for any c > 0
we obtain a polynomial time algorithm to approximate ‖x‖ within a factor
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of c
√
d (again, we do not count the time required for preprocessing, that is,

to find the polynomial p).
One may wonder whether a significantly better approximation factor, for

example C(d, n) = O(d1/2n), can be achieved in Theorem 1.1 (that would
also agree with the

√
d bound in the classical case of n = 1). This, however,

does not seem to be the case as the following example shows. Let ‖ · ‖ be the
�1 norm in R

d, that is

‖x‖ =
d∑
i=1

|ξi| for x = (ξ1, . . . , ξd).

The norm ‖ · ‖ is invariant under signed permutations of the coordinates

(ξ1, . . . , ξd) 	−→ (±ξi1 , . . .± ξid)

and hence, as discussed in Section 1.1, we can choose an invariant best ap-
proximating polynomial p. Hence p is a symmetric polynomial in ξ21 , . . . , ξ

2
d.

In particular, for n = 3, we have

p(x) = αd

d∑
i=1

ξ6i + βd
∑

1≤i�=j≤d
ξ2i ξ

4
j + γd

∑
1≤i<j<k≤d

ξ2i ξ
2
j ξ

2
k

for some real αd, βd and γd. Since we must have 0 ≤ p(x) ≤ ‖x‖6, by
substituting x = (1, 0, . . . , 0), x = (1, 1, 0, . . . , 0) and x = (1, 1, 1, 0, . . . , 0)
we get

0 ≤ αd ≤ 1, 0 ≤ 2αd + 2βd ≤ 64 and 0 ≤ 3αd + 6βd + γd ≤ 729,
which implies that αd ≤ 1, βd ≤ 32 and γd ≤ 735.

Substituting x = (1, . . . , 1), we observe that ‖x‖ = d and that p(x) = O(d3).
Therefore, we must have C(d, 3) ≥ C(�1, 3) ≥ c

√
d for some absolute constant

c > 0.

2.2 Linear Growth of the Degree

If we allow n to grow linearly with d, we can get a constant factor approxi-
mation. Indeed, if we choose n = γd for some γ > 0 in Theorem 1.1, for large
d we have

C0(γ) =
(
n+ d− 1

n

) 1
2n

≈ exp
{

1
2

ln
γ + 1
γ

+
1

2γ
ln(γ + 1)

}
. (2.2.1)

Thus p1/2n(x) approximates ‖ · ‖ within a factor of C0(γ) depending on γ
alone. In particular, if γ −→ ∞, the approximation factor approaches 1. Since
for any fixed γ > 0, computation of p(x) takes 2O(d) time, for any constant
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c > 1 we can get an algorithm of 2O(d) complexity approximating the value
of ‖x‖ within a factor of c.

The anonymous referee noticed that a different constant factor approxi-
mation can be achieved via the following construction. Let V ∗ be the dual
space and let

B∗ =
{
f ∈ V ∗ : f(x) ≤ 1 for all x ∈ V such that ‖x‖ ≤ 1

}
be the unit ball of the dual norm in V ∗. As is known, (see, for example, Lemma
4.10 of [P]), for any 0 < δ < 1 one can choose a set N of |N | ≤ (1 + 2/δ)d

points in B∗ which form a δ-net (in the dual norm). Given an integer n, let
us define the polynomial p by

p(x) =
1

|N |
∑
f∈N

f2n(x).

Let us fix a γ > 0. It is not hard to show that if δ = δ(γ) is chosen in
the optimal way, as long as n = γd, the value of p1/2n(x) approximates ‖x‖
within a constant factor C1(γ). Interestingly, for γ −→ ∞, the asymptotics
of (2.2.1) and C1(γ) coincide:

C0(γ), C1(γ) = 1 +
ln γ
2γ
(
1 + o(1)

)
as γ −→ ∞.

However, for small γ, the bound C0(γ) of (2.2.1) is substantially better than
the one obtained for C1(γ) using this construction. We have

C0(γ) =
√
e/γ
(
1 + o(1)

)
for γ −→ 0 as opposed to

C1(γ) = 3
1
2γ

(
1+o(1)

)
for γ −→ 0.

2.3 Approximating by Other Computable Functions

It is possible that one can achieve a better approximation by employing a
wider class of computable functions. For example, the �1 norm which appears
to be resistant to polynomial approximations (cf. Section 2.1) is very easy
to compute. A natural candidate would be the class of functions which are
sums of p1/2n

i for different polynomials pi. In particular, the �1 norm itself is
a function of this type.

3 Proof of Theorem 1.1

Let B be the unit ball of ‖ · ‖, so

B =
{
x ∈ V : ‖x‖ ≤ 1

}
.
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Hence B is a convex compact set containing the origin in its interior and
symmetric about the origin.

Let V ∗ be the dual space of all linear functions f : V −→ R and let
B∗ ⊂ V ∗ be the polar of B:

B∗ =
{
f ∈ V ∗ : f(x) ≤ 1 for all x ∈ B

}
.

Hence B∗ is a convex compact set symmetric about the origin. Using the
standard duality argument, we can write

‖x‖ = max
f∈B∗

f(x). (3.1)

Let

W = V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸
n times

and W ∗ =
(
V ⊗n)∗ = V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸

n times

be the n-th tensor powers of V and V ∗ respectively.
For vectors x ∈ V and f ∈ V ∗ let

x⊗n = x⊗ . . .⊗ x︸ ︷︷ ︸
n times

and f⊗n = f ⊗ . . .⊗ f︸ ︷︷ ︸
n times

denote the n-th tensor power x⊗n ∈ W and f⊗n ∈ W ∗ respectively.
By (3.1), we can write

‖x‖n = max
f∈B∗

(
f(x)

)n = max
f∈B∗

f⊗n(x⊗n). (3.2)

Let D be the convex hull of f⊗n for f ∈ B∗:

D = conv
{
f⊗n : f ∈ B∗}.

Then D is a convex compact subset of W ∗, symmetric about the origin (we
use that n is odd). From (3.2) we can write

‖x‖n = max
f∈B∗

f⊗n(x⊗n) = max
g∈D

g(x⊗n). (3.3)

Let us estimate the dimension ofD. There is a natural action of the symmetric
group Sn in W ∗ which permutes the factors V ∗, so that

σ(f1 ⊗ . . .⊗ fn) = fσ−1(1) ⊗ . . .⊗ fσ−1(n).

Let Sym(W ∗) ⊂ W ∗ be the symmetric part of W ∗, that is, the invariant
subspace of that action. As is known, the dimension of Sym(W ∗) is that of
the space of homogeneous polynomials of degree n in d real variables (cf., for
example, Lecture 6 of [FH]). Next, we observe that f⊗n ∈ Sym(W ∗) for all
f ∈ V ∗ and, therefore,
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dimD ≤ dim Sym(W ∗) =
(
n+ d− 1

n

)
(3.4)

Let E be the John ellipsoid of D in the affine hull of D, that is the (unique)
ellipsoid of the maximum volume inscribed in D. As is known, (see, for ex-
ample, Lecture 3 of [B])

E ⊂ D ⊂ (√dimD
)
E.

Combining this with (3.3), we write

max
g∈E

g(x⊗n) ≤ ‖x‖n ≤ (√dimD
)

max
g∈E

g(x⊗n)

and, by (3.4),

max
g∈E

g(x⊗n) ≤ ‖x‖n ≤
(
n+ d− 1

n

) 1
2

max
g∈E

g(x⊗n). (3.5)

Let
q(x) = max

g∈E
g(x⊗n).

We claim that p(x) = q2(x) is a homogeneous polynomial in x of degree 2n.
Indeed, let us choose a basis e1, . . . , ed in V . Then W acquires the basis

ei1...in = ei1 ⊗ . . .⊗ ein for 1 ≤ i1, . . . , in ≤ d.

Geometrically, V and V ∗ are identified with R
d and W and W ∗ are identified

with R
dn . Let K ⊂ W ∗ be the Euclidean unit ball defined by the inequality

K =
{
h ∈ W ∗ :

∑
1≤i1,...,in≤d

h2(ei1...in) ≤ 1
}
.

Since E is an ellipsoid, there is a linear transformation T : W ∗ −→ W ∗ such
that T (K) = E. Let T ∗ : W −→ W be the conjugate linear transformation
and let y = T ∗(x⊗n). Hence the coordinates yi1...in of y with respect to the
basis

{
ei1...in

}
are polynomials in x of degree n. Then

q(x) = max
g∈E

g(x⊗n) = max
h∈K

T (h)
(
x⊗n) = max

h∈K
h
(
T ∗(x⊗n)

)
= max

h∈K
h(y) =

√ ∑
1≤i1,...,in≤d

y2
i1...in

.

Hence we conclude that p(x) = q2(x) is a homogeneous polynomial in x of
degree 2n, which is non-negative for all x ∈ V (moreover, p(x) is a sum of
squares). From (3.5), we conclude that

p
1
2n (x) ≤ ‖x‖ ≤

(
n+ d− 1

n

) 1
2n

p
1
2n (x),

as claimed.
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4 An Extension to Minkowski Functionals

There is a version of Theorem 1.1 for Minkowski functionals of convex bodies
which are not necessarily symmetric about the origin.

Theorem 4.1. Let V be a d-dimensional real vector space, let B ⊂ V be a
convex compact set containing the origin in its interior and let ‖x‖ = inf

{
λ >

0 : x ∈ λB
}

be its Minkowski functional. For any odd integer n > 0 there
exist a homogeneous polynomial p : V −→ R of degree 2n and a homogeneous
polynomial r : V −→ R of degree n such that p(x) ≥ 0 and

(
r(x) +

√
p(x)

) 1
n ≤ ‖x‖ ≤

(
r(x) +

(
n+ d− 1

n

)√
p(x)

) 1
n

for all x ∈ V .

Proof. The proof follows the proof of Theorem 1.1 with some modifications.
Up to (3.4) no essential changes are needed (note, however, that now we
have to use that n is odd in (3.2)). Then, since the set D is not necessarily
symmetric about the origin, we can only find an ellipsoid E (centered at the
origin) of W ∗ and a point w ∈ D, such that

E ⊂ D − w ⊂ (dimD)E,

see, for example, Lecture 3 of [B]. Then (3.5) transforms into

max
g∈E

g(x⊗n) ≤ ‖x‖n − w(x⊗n) ≤
(
n+ d− 1

n

)
max
g∈E

g(x⊗n).

Denoting

p(x) =
(

max
g∈E

g(x⊗n)
)2

and r(x) = w(x⊗n)

we proceed as in the proof of Theorem 1.1. �
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Concentration of Distributions of the
Weighted Sums with Bernoullian Coefficients�

S.G. Bobkov
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S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

Summary. For non-correlated random variables, we study a concentration prop-
erty of the distributions of the weighted sums with Bernoullian coefficients. The
obtained result is used to derive an “almost surely version” of the central limit
theorem.

Let X = (X1, . . . , Xn) be a vector of n random variables with finite second
moments such that, for all k, j,

EXkXj = δkj (1)

where δkj is Kronecker’s symbol. It is known that, for growing n, the distri-
bution functions

Fθ(x) = P

{
n∑
k=1

θkXk ≤ x

}
, x ∈ R,

of the weighted sums of (Xk), with coefficients θ = (θ1, . . . , θn) satisfying
θ21 + . . .+ θ2n = 1, form a family possessing a certain concentration property
with respect to the uniform measure σn−1 on the unit sphere Sn−1. Namely,
most of Fθ’s are close to the average distribution

F (x) =
∫
Sn−1

Fθ(x) dσn−1(θ)

in the sense that, for each δ > 0, there is an integer nδ such that if n ≥ nδ
one can select a set of coefficients Θ ⊂ Sn−1 of measure σn−1(Θ) ≥ 1 − δ
such that d(Fθ, F ) ≤ δ, for all θ ∈ Θ. This property was first observed by
V.N. Sudakov [S] who stated it for the Kantorovich–Rubinshtein distance
d(Fθ, F ) =

∫ +∞
−∞ |Fθ(x) − F (x)| dx, with a proof essentially relying on the

isoperimetric theorem on the sphere. A different approach to this result was
suggested by H. von Weizsäcker [W] (cf. also [D-F]). V.N. Sudakov also con-
sidered “Gaussian coefficients” in which case, as shown in [W], there is a
rather general infinite dimensional formulation. An important special situ-
ation where the random vector X is uniformly distributed over a centrally
symmetric convex body in Rn was recently studied, for the uniform distance
� Supported by an NSF grant and EPSRC Visiting Fellowship.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 27–36, 2003.
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supx |Fθ(x) − F (x)|, by M. Antilla, K. Ball, and I. Perissinaki [A-B-P], see
also [B] for refinements and extensions to log-concave distributions. One can
find there quantitative versions of Sudakov’s theorem, while in the general
case, the following statement proven in [B] holds true: under (1), for all δ > 0,

σn−1
{
L(Fθ, F ) ≥ δ

} ≤ 4n3/8 e−nδ4/8. (2)

Here L(Fθ, F ) stands for the Lévy distance defined as the minimum over all
δ ≥ 0 such that F (x−δ)−δ ≤ Fθ(x) ≤ F (x+δ)+δ, for all x ∈ R. As well as
the Kantorovich–Rubinshtein distance d, the metric L is responsible for the
weak convergence, and there is a simple relation d(Fθ, F ) ≤ 6L(Fθ, F )1/2 (so
one can give an appropriate estimate for d on the basis of (2)).

The aim of this note is to show that a property similar to (2) still holds
with respect to very small pieces of the sphere. As a basic example, we con-
sider coefficients of the special form θ = 1√

n
ε where ε = (ε1, . . . , εn) is an

arbitrary sequence of signs ±1. Thus, consider the weighted sums

Sε =
1√
n

n∑
k=1

εkXk

together with their distribution functions Fε(x) = P{Sε ≤ x} and the corre-
sponding average distribution

F (x) =
∫

{−1,1}n
Fε(x) dµn(ε) =

1
2n

∑
εk=±1

P
{
ε1X1 + . . .+ εnXn√

n
≤ x

}
.

(3)
Here and throughout, µn stands for the normalized counting measure on the
discrete cube {−1, 1}n. We prove:

Theorem 1. Under (1), for all δ > 0,

µn
{
ε : L(Fε, F ) ≥ δ

} ≤ Cn1/4 e−cnδ8 , (4)

where C and c are certain positive numerical constants.

Note that the condition (1) is invariant under rotations, i.e., it is fulfilled
for random vectors U(X) with an arbitrary linear unitary operator U in Rn.
Being applied to such vectors, the inequality (4) will involve the average
F = FU which of course depends on U . However, under mild integrability
assumptions on the distribution of X, all these FU (not just most of them)
turn out to be close to the one appearing in Sudakov’s theorem as the typical
distribution for the uniformly distributed (on the sphere) or suitably squeezed
Gaussian coefficients. In particular, one can give an analogue of (4) with a
certain distribution F not depending on the choice of the basis in Rn. On
the other hand, some additional natural assumptions lead to the following
version of the central limit theorem. We will denote by µ∞ the canonical
infinite product measure µ1 ⊗ µ1 ⊗ . . . on the product space {−1, 1}∞.
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Theorem 2. Let {Xn,k}nk=1 be an array of random variables satisfying (1)
for all n and such that in probability, as n → ∞,

a) max{|Xn,1|,...,|Xn,n|}√
n

→ 0,

b) X2
1,1+...+X

2
n,n

n → 1.

Then, for µ∞-almost all sequences {εk}k≥1 of signs,

1√
n

n∑
k=1

εkXn,k → N(0, 1), as n → ∞.

If we consider the sum 1√
n

∑n
k=1 εkXn,k with εk regarded as independent

Bernoullian random variables which are independent of all Xn,k, then the
above statement will become much weaker and will express just the prop-
erty that the average distribution F defined by (3) for the random vector
(X1,1, . . . , Xn,n) is close to N(0, 1) (here is actually a step referring to the
assumptions a) and b)). In addition to this property, we need to have a suf-
ficiently good closeness (in spaces of finite dimension) of most of Fε’s to F
and thus to the normal law.

Both the assumption a) and b) are important for the conclusion of The-
orem 2. Under a), the property b) is necessary. To see that a) cannot be
omitted, assume that the underlying probability space (Ω,P) is non-atomic
and take a partition An,1, . . . , An,n of Ω consisting of the sets of P-measure
1/n. Then, the array Xn,k =

√
n 1An,k , 1 ≤ k ≤ n, satisfies (1), and

max{|Xn,1|, . . . , |Xn,n|}√
n

= 1,
X2

1,1 + . . .+X2
n,n

n
= 1,

so, the property b) is fulfilled, while a) is not. On the other hand, for any
sign sequence (ε1, . . . , εn), the random variable 1√

n

∑n
k=1 εkXn,k takes only

the two values ±1, so it cannot be approximated by the standard normal
distribution. Note, however, that Theorem 1 still holds in this degenerate
case, with the µn-typical distribution F having two equal atoms at ±1.

It might be worthwhile also noting that in general it is not possible to
state Theorem 2 for any prescribed coefficients, say, for εk = 1 – similarly to
the case of independent variables, even if, for each n, {Xn,k} are bounded,
symmetrically distributed and pairwise independent. For example, start from
a sequence of independent Bernoullian random variables ξ1, . . . , ξd (with
P{ξk = ±1} = 1

2 ) and construct a double index sequence Xn,(k,j) = ξkξj ,
1 ≤ k < j ≤ d. The collection

{
Xn,(k,j)

}
, of cardinality n = d(d − 1)/2,

satisfies the basic correlation condition (1), and since |Xn,(k,j)| = 1, both the
assumption a) and b) are fulfilled. Nevertheless, in probability, as d → ∞,

1√
n

∑
1≤k<j≤d

Xn,(k,j) =
1

2
√
n

(
d∑
k=1

ξk

)2
− d

2
√
n

−→ ζ2 − 1√
2
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where ζ ∈ N(0, 1).
We turn to the proof of Theorem 1. To this task, we first study the

concentration property of the family {Fε} on the level of their characteristic
functions

fε(t) = E eitSε , t ∈ R.

Concentration of {fε} around its µn-mean

f(t) =
∫
fε(t) dµn(ε) =

∫ +∞

−∞
eitx dF (x)

can be then converted, with the help of standard facts from Fourier analysis,
into the concentration of distributions in the form (4). This route somewhat
different than that of [A-B-P] or [B] has apparently to be chosen in view of
a specific form of concentration on the discrete cube.

With every complex-valued function f on {−1, 1}n, we connect the length
of the discrete gradient |∇f | defined by

|∇f(ε)|2 =
n∑
k=1

∣∣∣∣f(ε) − f(sk(ε))
2

∣∣∣∣
2

, ε ∈ {−1, 1}n,

where sk(ε) is the neighbour of ε along kth coordinate, i.e., (sk(ε))j = εj for
j 
= k, and (sk(ε))k = −εk. Set ‖∇f‖∞ = maxε |∇f(ε)|.
Lemma 1. For every f such that ‖∇f‖∞ ≤ σ,

µn

{∣∣∣∣f −
∫
f dµn

∣∣∣∣ ≥ h

}
≤ 4e−h2/(4σ2), h > 0.

This Gaussian bound is standard. It can be obtained using the so-called
modified logarithmic Sobolev inequalities, see e.g. [B-G], [L]. In fact, for real-
valued f , a sharper estimate holds true,

µn

{∣∣∣∣f −
∫
f dµn

∣∣∣∣ ≥ h

}
≤ 2e−h2/(2σ2),

while in general the latter can be applied separately to the real and the
imaginary part of f to yield the inequality of Lemma 1.

Lemma 2. Under (1), for every t ∈ R,

‖∇fε(t)‖∞ ≤ |t| + t2√
n

.

Proof. Using the equality fε(t) − fsk(ε)(t) = E eitSε(1 − e−2it εkXk/
√
n ), we

may write
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|∇fε(t)| = sup

∣∣∣∣∣E eitSε
n∑
k=1

ak
1 − e−2it εkXk/

√
n

2

∣∣∣∣∣
≤ sup E

∣∣∣∣∣
n∑
k=1

ak
1 − e−2it εkXk/

√
n

2

∣∣∣∣∣ ,

where the supremum runs over all complex numbers a1, . . . , an such that
|a1|2 + . . .+ |an|2 = 1. Using the estimate |eiα − 1 − iα| ≤ 1

2 α
2 (α ∈ R) and

the assumption EX2
k = 1, we can continue to get

|∇fε(t)| ≤ |t|√
n

sup E

∣∣∣∣∣
n∑
k=1

akεkXk

∣∣∣∣∣+
t2

n
sup E

n∑
k=1

|ak|X2
k

=
|t|√
n

sup E

∣∣∣∣∣
n∑
k=1

akεkXk

∣∣∣∣∣+
t2√
n
.

It remains to note that, by Schwarz’ inequality and (1), (E |∑n
k=1 akεkXk |)2 ≤

E |∑n
k=1 akεkXk |2 = 1.

We also need the following observation due to H. Bohman [Bo].

Lemma 3. Given characteristic functions ϕ1 and ϕ2 of the distribution func-
tions F1 and F2, respectively, if |ϕ1(t)−ϕ2(t)| ≤ λ|t|, for all t ∈ R, then, for
all x ∈ R and a > 0,

F1(x− a) − 2λ
a

≤ F2(x) ≤ F1(x+ a) +
2λ
a
.

The particular case a =
√

2λ gives an important relation

1
2
L(F1, F2)2 ≤ sup

t>0

∣∣∣∣ϕ1(t) − ϕ2(t)
t

∣∣∣∣ . (5)

Proof of Theorem 1. Fix a number h > 0. For 0 < t ≤ 2
h , by Lemma 2,

‖∇fε(t)‖∞ ≤ t+t2√
n

≤ t√
n

(1+ 2
h ), so that, by Lemma 1 applied to the function

ε → fε(t), we get

µn

{
ε :
∣∣∣∣fε(t) − f(t)

t

∣∣∣∣ ≥ h

}
≤ 4e−nh4/4(h+2)2 . (6)

In the case t > 2
h , this inequality is immediate, since |fε(t)−f(t)| ≤ 2 < th, for

all ε. Thus, we have the estimate (6) for all t separately, but in order to apply
Lemma 3, we need a similar bound holding true for the supremum over all
t > 0. To this end, apply (6) to the points tr = rh2, r = 1, 2, . . . , N =

[ 2
h

]
+1,

to get
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µn

{
ε : max

1≤r≤N

∣∣∣∣fε(tr) − f(tr)
tr

∣∣∣∣ ≥ h

}
≤ 4Ne−nh4/4(h+2)2 . (7)

Since ESε = 0, ES2
ε = 1, we have |f ′

ε(t)| ≤ 1, f ′
ε(0) = 0, |f ′′

ε (t)| ≤ 1,
and similarly for f . Therefore, |fε(t) − f(t)| ≤ t2 ≤ th, for all ε, as soon
as 0 ≤ t ≤ h. In case h ≤ t ≤ 2

h , since tN ≥ 2
h , one can pick an index

r = 1, . . . , N − 1 such that tr < t ≤ tr+1. Assuming that | fε(tr)−f(tr)
tr

| < h,
and recalling that tr+1 − tr = h2, we may write

|fε(t) − f(t)| ≤ |fε(t) − fε(tr)| + |fε(tr) − f(tr)| + |f(tr) − f(t)|
< 2|t− tr| + trh ≤ 2h2 + trh < 3th.

Consequently, (7) implies

µn

{
sup
t>0

∣∣∣∣fε(t) − f(t)
t

∣∣∣∣ ≥ 3h
}

≤ 4Ne−nh4/4(h+2)2

≤ 4
(

2
h

+ 1
)
e−nh4/4(h+2)2 .

Therefore, by (5),

µn

{
1
2
L(Fε, F )2 ≥ 3h

}
≤ 4

(
2
h

+ 1
)
e−nh4/4(h+2)2 .

Replacing 6h with δ2 and noticing that only 0 < δ ≤ 1 should be taken
into consideration, one easily arrives at the estimate µn{L(Fε, F ) ≥ δ} ≤
C
δ2 e

−cnδ8 with some positive numerical constants C and c. On the other
hand, in the latter inequality, we may restrict ourselves to values δ > c1n

−1/8

which make the bound C
δ2 e

−cnδ8 less than 1, and then we arrive at the desired
inequality (4).

Theorem 1 has been proved, and we may state its immediate consequence:

Corollary 1. Under (1), for at least 2n−1 sequences ε = (ε1, . . . , εn) of signs,
L(Fε, F ) ≤ C( logn

n )1/8, where C is a universal constant.

Let us now turn to the second task: approximation of the µn-typical F by
more canonical distributions. Namely, denote by G the distribution function
of the random variable ζ |X|√

n
where ζ is a standard normal random variable

independent of the Euclidean norm |X| = (X2
1 + . . . + X2

n)1/2. Clearly, G
represents a mixture of a family of centered Gaussian measures on the line
and has characteristic function

g(t) = Ee−t2|X|2/(2n), t ∈ R, (8)

while F has characteristic function



Concentration of Distributions of Weighted Sums 33

f(t) = E
n∏
k=1

cos
(
tXk√
n

)
. (9)

In order to bound the Lévy distance L(F,G), the following general elementary
observation, not using the condition (1), can be applied.

Lemma 4. Assume E|X|2 ≤ n. For all α > 0 and |t| ≤ 1
2α ,

|f(t) − g(t)| ≤ 1
9
α2t4 + 2P

{
max{|X1|, . . . , |Xn|}√

n
> α

}
.

Proof. By Taylor’s expansion, in the interval |s| ≤ 1
2 , we have cos(s) =

e− s2
2 −u(s) with u satisfying 0 ≤ u(s) ≤ s4

9 . Therefore, provided that |Xk√
n
| ≤ α,

for all k ≤ n, and α|t| ≤ 1
2 ,

n∏
k=1

cos
(
tXk√
n

)
= exp

{
− t2|X|2

2n
−

n∑
k=1

u

(
tXk√
n

)}

with 0 ≤∑n
k=1 u( tXk√

n
) ≤ 1

9 maxk | tXk√
n

|2∑n
k=1 | tXk√

n
|2 ≤ α2t4

9
|X|2
n . So,

e− t2|X|2
2n ≥

n∏
k=1

cos
(
tXk√
n

)
≥ e− t2|X|2

2n −α2t4
9

|X|2
n .

Taking the expectations and using |∏n
k=1 cos( tXk√

n
) − e−t2|X|2/(2n)| ≤ 2 for

the complementary event max{|X1|,...,|Xn|}√
n

> α, we thus get

|f(t)−g(t)| ≤ 2P
{

max{|X1|, . . . , |Xn|}√
n

> α

}
+E e− t2|X|2

2n

(
1−e−α2t4

9
|X|2
n

)
.

The last term is bounded by E(1 − e−α2t4
9

|X|2
n ) ≤ 1 − e−α2t4

9
E|X|2
n ≤ α2t4

9
where we applied Jensen’s inequality together with the assumption E|X|2≤n.

Lemma 4 follows.

Via the inequality of Lemma 4, with mild integrability assumptions on
the distribution of X, one can study a rate of closeness of F and thus of Fε
to the distribution function G. One can start, for instance, with the moment
assumption

E|Xk|4 ≤ β, 1 ≤ k ≤ n, (10)

implying P{max{|X1|,...,|Xn|}√
n

> α} ≤ β
α4n , so that, by Lemma 4,

|f(t) − g(t)| ≤ 1
9
α2t4 +

2β
α4n

, as soon as |t| ≤ 1
2α
.

Minimizing the right-hand side over all α > 0, we obtain that
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|f(t) − g(t)| ≤ β1/3|t|16/3
3n1/3 , provided that |t| ≤ n1/4

24β1/2 .

Now apply Zolotarev’s estimate, [Z], [P], to get

L(F,G) ≤ 1
π

∫ T

0

∣∣∣∣f(t) − g(t)
t

∣∣∣∣ dt+ 2e
log T
T

(T > 1.3)

≤ β1/3 T 16/3

16π n1/3 + 2e
log T
T

, if 1.3 < T ≤ n1/4

24β1/2 .

Taking T = n1/19

β1/19 and using β ≥ 1, we will arrive at the estimate of the form

L(F,G) ≤ C
β1/19 + logn

n1/19 , n ≥ Cβ37/15,

up to some numerical constant C. Higher moments or exponential integra-
bility assumption improve this rate of convergence, but it seems, with the
above argument, the rate of Corollary 1 cannot be reached.

On the other hand, the closeness of G to the normal distribution func-
tion Φ requires some additional information concerning the rate of conver-
gence of X2

1+...+X2
n

n to 1. For example, the property Var(|X|2) ≤ O(n) guar-
antees a rate of the form L(G,Φ) = O(n−c) with a certain power c > 0.
Thus, together with the moment assumption (10), one arrives at the bound
L(F,Φ) = O(n−c).

Finally, let us note that G is determined via the distribution of the Eu-
clidean norm |X|, so it is stable under the choice of the basis in Rn. The
condition (10) is stated for the canonical basis in Rn, and the appropriate
basis free assumption may read as

sup
θ∈Sn−1

E |〈θ,X〉|p ≤ βp, p > 2. (11)

Then, at the expense of the rate of closeness, one may formulate an analogue
of Theorem 1 for the distribution G in the place of F and with respect to an
arbitrary basis in Rn. The inequality (11) includes many interesting classes
of distributions such as log-concave probability measures satisfying (1), for
example.

Proof of Theorem 2. Denote by fn and gn the characteristic functions defined
for the random vectors (Xn,1, . . . , Xn,n) according to formulas (9) and (8),
respectively. Also, according to (3), denote by F (n) the corresponding average
distribution functions.

In view of the assumption a), one can select a sequence αn ↓ 0 such that
P{max{|X1,1|,...,|Xn,n|}√

n
> αn} → 0, as n → ∞. Then, by Lemma 4, for all

t ∈ R, |fn(t) − gn(t)| → 0, as n → ∞. On the other hand, the condition b)
readily implies gn(t) → e−t2/2, so fn(t) → e−t2/2. Thus, L(F (n), Φ) → 0.
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Now, given an infinite sequence ε ∈ {−1, 1}∞, denote by Tn(ε) its projec-
tion (ε1, . . . , εn). It remains to show that L(FTn(ε), F

(n)) → 0, for µ∞-almost
all ε. Fix any small number p > 0, and take a sequence δn → 0+ such that

∞∑
n=1

Cn1/4 e−cnδ8n ≤ p,

where C and c are numerical constants from Theorem 1 (δn may depend
on p). Then the application of (4) yields

µ∞
{
ε : L(FTn(ε), F

(n)) > δn, for some n ≥ 1
}

≤
∞∑
n=1

µ∞
{
L(FTn(ε), F

(n)) > δn
}

=
∞∑
n=1

µn
{
ε=(ε1, . . . , εn) : L(Fε, F (n)) > δn

} ≤ p.

Therefore, L(FTn(ε), F
(n)) ≤ δn, for all n ≥ 1 and for all ε except for a set of

µ∞-measure at most p. That is,

µ∞

{
ε : sup

n≥1

(
L(FTn(ε), F

(n)) − δn

)
≤ 0
}

≥ 1 − p. (12)

But since δn → 0,

sup
n≥1

(
L(FTn(ε), F

(n)) − δn

)
≥ lim sup

n→∞

(
L(FTn(ε), F

(n)) − δn

)
= lim sup

n→∞
L(FTn(ε), F

(n)).

Consequently, (12) implies µ∞
{

lim supn→∞ L(FTn(ε), F
(n)) = 0

} ≥ 1 − p.
The probability on the left does not depend on p, and letting p → 0 finishes
the proof.
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Spectral Gap and Concentration for Some
Spherically Symmetric Probability Measures�

S.G. Bobkov

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St.
S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

Summary. We study the spectral gap and a related concentration property for a
family of spherically symmetric probability measures.

This note appeared in an attempt to answer the following question raised
by V. Bogachev: How do we effectively estimate the spectral gap for the
exponential measures µ on the Euclidean space Rn with densities of the
form dµ(x)

dx = ae−b|x| ?
By the spectral gap, we mean here the best constant λ1 = λ1(µ) in the

Poincaré-type inequality

λ1

∫
Rn

|u(x)|2 dµ(x) ≤
∫
Rn

|∇u(x)|2 dµ(x) (1)

with u being an arbitrary smooth (or, more generally, locally Lipschitz) func-
tion on Rn such that

∫
u(x) dµ(x) = 0. Although it is often known that

λ1 > 0, in many problems of analysis and probability, one needs to know how
the dimension n reflects on this constant. One important case, the canonical
Gaussian measure µ = γn, with density (2π)−n/2 e−|x|2/2, provides an exam-
ple with a dimension-free spectral gap λ1 = 1. This fact can already be used
to recover a dimension-free concentration phenomenon in Gauss space.

To unite both the Gaussian and the exponential cases, we consider a
spherically symmetric probability measure µ on Rn with density

dµ(x)
dx

= ρ(|x|), x ∈ Rn,

assuming that ρ = ρ(t) is an arbitrary log-concave function on (0,+∞), that
is, the function log ρ(t) is concave on its support interval. In order that µ be
log-concave itself (cf. [Bor2] for a general theory of log-concave measures), ρ
has also to be non-increasing in t > 0. However, this will not be required.

It is a matter of normalization, if we assume that µ satisfies∫
Rn

〈x, θ〉2 dµ(x) = |θ|2, for all θ ∈ Rn. (2)
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As usual, 〈·, ·〉 and | · | denote the scalar product and the Euclidean norm,
respectively. Since µ is symmetrically invariant, this normalization condition
may also be written as

∫
x2

1 dµ(x) = 1, or
∫ |x|2 dµ(x) = n. We prove:

Theorem 1. Under (2), the optimal value of λ1 in (1) satisfies 1
13 ≤ λ1 ≤ 1.

Returning to the exponential measure dµ(x) = a e−b|x|dx, b > 0, we thus
obtain that λ1 is of order b2/n.

Using Theorem 1 and applying Gromov–Milmans’s theorem on concen-
tration under Poincaré-type inequalities, one may conclude that all the con-
sidered measures share a dimension-free concentration phenomenon:

Theorem 2. Under (2), given a measurable set A in Rn of measure µ(A) ≥
1
2 , for all h > 0,

1 − µ(Ah) ≤ 2e−ch, (3)

where c is a certain positive universal constant.

Here, we use Ah = {x ∈ Rn : dist(A, x) < h} to denote an h-
neighborhood of A with respect to the Euclidean distance.

Note that, in polar coordinates, every spherically symmetric measure µ
with density ρ(|x|) represents a product measure, i.e., it may be viewed as the
distribution of ξθ, where θ is a random vector uniformly distributed over the
unit sphere Sn−1, and where ξ > 0 is an independent of θ random variable
with distribution function

µ{|x| ≤ t} = nωn

∫ t

0
sn−1ρ(s) ds, t > 0 (4)

(ωn is the volume of the unit ball in Rn). For example, one can take (Rn, µ)
for the underlying probability space and put ξ(x) = |x|, θ(x) = x

|x| . It is
a classical fact that λ1(Sn−1) = n − 1. To reach Theorems 1-2, our task
will be therefore to estimate λ1(ξ) from below and to see in particular that
the values of ξ are strongly concentrated around its mean Eξ which is of
order

√
n. When ρ is log-concave, the density q(t) = nωn t

n−1ρ(t) of ξ is
log-concave, as well. Of course, this observation is not yet enough to reach
the desired statements, since it “forgets” about an important factor tn−1. As
a first step, we will need the following one-dimensional:

Lemma 1. Given a positive integer n, if a random variable ξ > 0 has density
q(t) such that the function q(t)/tn−1 is log-concave on (0,+∞), then

Var(ξ) ≤ 1
n

(Eξ)2. (5)

As usual, Var(ξ) = Eξ2 − (Eξ)2 and Eξ denote the variance and the
expectation of a random variable ξ.
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For ξ(x) = |x| as above, with distribution given by (4), in view of the
normalization condition (2), we have Eξ2 = n, so the bound (5) yields a
dimension-free inequality

Var(ξ) ≤ 1. (6)

Lemma 1 represents a particular case of a theorem due to R.E. Barlow,
A.W. Marshall, and F. Proshan (cf. [B-M-P], p. 384, and [Bor1]) which states
the following: If a random variable η > 0 has a distribution with increasing
hazard rate (in particular, if η has a log-concave density), then its normalized
moments λa = 1

Γ (a+1) Eηa satisfy a reverse Lyapunov’s inequality

λb−ca λa−b
c ≤ λa−c

b , a ≥ b ≥ c ≥ 1, c integer. (7)

Indeed, putting a = n+ 1, b = n, c = n− 1 (n ≥ 2), we get

Eηn+1 Eηn−1 ≤
(

1 +
1
n

)
(Eηn)2. (8)

If the random variable ξ has density q(t) = tn−1p(t) with p log-concave on
(0,+∞), and η has density p(t)/

∫ +∞
0 p(t) dt, the above inequality becomes

Eξ2 ≤ (1 + 1
n ) (Eξ)2 which is exactly (5).

When n = 1, the latter is equivalent to the well-known Khinchine-type
inequality Eη2 ≤ 2 (Eη)2. More generally, one has

Eηa ≤ Γ (a+ 1) (Eη)a, a ≥ 1,

which is known to hold true in the class of all random variables η > 0 with
log-concave densities. This fact cannot formally be deduced from (7) because
of the assumption c ≥ 1. It was obtained in 1961 by S. Karlin, F. Proshan,
and R.E. Barlow [K-P-B] as an application of their study of the so-called
totally positive functions (similar to [B-M-P] – with techniques and ideas
going back to the work of I.J. Schoenberg [S]).

To make the proof of Theorem 1 more self-contained, we would like to
include a different argument leading to the inequality (7) for a related func-
tion:

Lemma 2. Given a log-concave random variable η > 0, the function λa =
1
aa Eηa is log-concave in a > 0. Equivalently, it satisfies (7), for all a ≥ b ≥
c > 0.

Again putting a = n + 1, b = n, c = n − 1, we obtain Eηn+1 Eηn−1 ≤
Cn(Eηn)2 with constant Cn = (n+1)n+1(n−1)n−1

n2n which is a little worse than
that of (8). On the other hand, one can easily see that Cn ≤ 1 + 1

n + 1
n3 , so,

we get, for example, the constant 2
n in Lemma 1 (and this leads to the lower

bound 1
25 in Theorem 1).

Finally, it might also be worthwhile to mention here the following inter-
esting immediate consequence of Lemmas 1-2. Given an integer d ≥ 1 and
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an arbitrary sequence of probability measures (µn)n≥d on Rn (from the class
we are considering), their projections to the coordinate subspace Rd must
converge, as n → ∞, to the standard Gaussian measure on Rd.

A second step to prove Theorem 1 is based on the following statement
([B1], Corollary 4.3):

Lemma 3. If a random variable ξ has distribution ν with log-concave density
on the real line, then

1
12 Var(ξ)

≤ λ1(ν) ≤ 1
Var(ξ)

.

Together with (6) for ξ(x) = |x|, we thus get

λ1(ν) ≥ 1
12
. (9)

Proof of Theorem 1. We may assume that n ≥ 2. As before, denote by ν
the distribution of the Euclidean norm ξ(x) = |x| under µ, and by σn−1
the normalized Lebesgue measure on the unit sphere Sn−1. To prove the
Poincaré-type inequality (1), take a smooth bounded function u on Rn and
consider another smooth bounded function v(r, θ) = u(rθ) on the product
space (0,+∞) × Rn. Under the product measure ν × σn−1, v has the same
distribution as u has under µ.

By (9), the measure ν satisfies the Poincaré-type inequality on the line,

Varν(g) ≤ 12
∫ +∞

0
|g′(r)|2dν(r),

where g = g(r) is an arbitrary absolutely continuous function on (0,+∞). In
particular, for g(r) = v(r, θ) with fixed θ ∈ Sn−1, we get

∫ +∞

0
v(r, θ)2 dν(r) ≤

(∫ +∞

0
v(r, θ) dν(r)

)2

+ 12
∫ +∞

0

∣∣∣∣∂v∂r
∣∣∣∣
2

dν(r).

Now, ∂v
∂r = 〈∇u(rθ), θ〉, so

∣∣∂v
∂r

∣∣ ≤ |∇u(rθ)|. Integrating the above inequality
over σn−1, we get∫

Rn

u(x)2 dµ(x) ≤
∫
Sn−1

w(θ)2 dσn−1(θ) + 12
∫
Rn

|∇u(x)|2 dµ(x), (10)

where w(θ) =
∫ +∞
0 v(r, θ) dν(r). For this function, which is well-defined and

smooth on the whole space Rn, the average over σn−1 is exactly the average
of u over µ. Hence, by the Poincaré inequality on the unit sphere,∫

Sn−1
w(θ)2 dσn−1(θ) ≤

(∫
Rn

u(x) dµ(x)
)2

+
1
n

∫
Sn−1

|∇w(θ)|2dσn−1(θ).

(11)
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(The classical Riemannian version of the Poincaré inequality is formulated
for the “inner” gradient ∇Sn−1w(θ) on the unit sphere which is the projection
of the usual gradient ∇w(θ) onto the subspace orthogonal to θ. In this case
the constant 1

n in (11) should be replaced with 1
n−1 .)

Since ∇w(θ)=
∫ +∞
0 r∇u(rθ) dν(r), we have |∇w(θ)|≤ ∫ +∞

0 r |∇u(rθ)| dν(r).
Hence, by the Cauchy–Bunyakovski inequality,

|∇w(θ)|2 ≤
∫ +∞

0
r2 dν(r)

∫ +∞

0
|∇u(rθ)|2 dν(r) = n

∫ +∞

0
|∇u(rθ)|2 dν(r),

where we used the normalization condition Eξ2 = n. Together with (10) and
(11), this estimate yields

∫
Rn

u(x)2 dµ(x) ≤
(∫

Rn

u(x) dµ(x)
)2

+ 13
∫
Rn

|∇u(x)|2 dµ(x),

that is, the Poincaré-type inequality (1) with the lower bound λ1 ≥ 1/13.
The upper bound is trivial and follows by testing (1) on linear functions.

This finishes the proof.

As already mentioned, the fact that (1) implies a concentration inequality,
namely,

1 − µ(Ah) ≤ Ce−c√λ1 h, h > 0, µ(A) ≥ 1
2
, (12)

where C and c are certain positive universal constants, was proved by M. Gro-
mov and V.D. Milman, see [G-M]. They formulated it in the setting of a
compact Riemannian manifold, but the assertion remains to hold in many
other settings, e.g., for an arbitrary metric space (see e.g. [A-S], [B-L], [L]).
The best possible constant in the exponent in (12) is c = 2 ([B2]), but this
is not important for the present formulation of Theorem 1.

Remark. We do not know how to adapt the argument in order to prove, for
all smooth u with µ-mean zero, a stronger inequality in comparison with (1),

c

∫
Rn

|u(x)| dµ(x) ≤
∫
Rn

|∇u(x)| dµ(x), (13)

called sometimes a Cheeger-type inequality. On the shifted indicator functions
u = 1A−µ(A), (13) turns into an equivalent isoperimetric inequality for the µ-
perimeter, µ+(A) ≥ 2c µ(A)(1−µ(A)). One deep conjecture ([K-L-S]) asserts
that, for some universal c > 0, this isoperimetric inequality holds true under
the isotropic condition (2) in the class of all log-concave measures µ. However,
the hypothesis remains open even in the weaker forms such as Poincaré and
concentration inequalities. And as we saw, already the particular case of
a symmetrically log-concave measure leads to a rather sophisticated one-
dimensional property such as Lemma 1.
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Proof of Lemma 2. Let p be the probability density of η on (0,+∞). We apply
the one-dimensional Prékopa–Leindler theorem (see [Pr1-2], [Le], or [Pi] for
a short proof): given t, s > 0 with t + s = 1 and non-negative measurable
functions u, v, w on (0,+∞) satisfying w(tx+ sy) ≥ ut(x)vs(y), for all x, y >
0, we have

∫ +∞

0
w(z) dz ≥

(∫ +∞

0
u(x) dx

)t(∫ +∞

0
v(y) dy

)s
. (14)

Let a > b > c > 0 and b = ta+ sc. Since

sup
tx+sy=z

xayc = atacsc
(

z

ta+ sc

)ta+sc
,

the inequality (14) applies to u(x) = (xa )ap(x), v(y) = (yc )cp(y), and w(z) =
( zb )bp(z). This is exactly what we need.

Remark. The multidimensional Prékopa–Leindler theorem yields a similar
statement: For any random vector (η1, . . . , ηn) in Rn

+ with log-concave dis-
tribution, the function ϕ(a1, . . . , an) = E ( η1a1

)a1 . . . ( ηnan )an is log-concave on
Rn

+.
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On the Central Limit Property of Convex
Bodies

S.G. Bobkov1� and A. Koldobsky2��
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St. S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

2 Department of Mathematics, Mathematical Sciences Building, University of
Missouri, Columbia, MO 65211, USA koldobsk@math.missouri.edu

Summary. For isotropic convex bodies K in Rn with isotropic constant LK , we
study the rate of convergence, as n goes to infinity, of the average volume of sections
of K to the Gaussian density on the line with variance L2

K .

Let K be an isotropic convex body in Rn, n ≥ 2, with volume one. By
the isotropy assumption we mean that the baricenter of K is at the origin,
and there exists a positive constant LK so that, for every unit vector θ,∫

K

〈x, θ〉2 dx = L2
K .

Introduce the function

fK(t) =
∫
Sn−1

voln−1
(
K ∩Hθ(t)

)
dσ(θ), t ∈ R,

expressing the average (n−1)-dimensional volume of sections of K by hyper-
planes Hθ(t) = {x ∈ Rn : 〈x, θ〉 = t} perpendicular to θ ∈ Sn−1 at distance
|t| from the origin (and where σ is the normalized uniform measure on the
unit sphere).

When the dimension n is large, the function fK is known to be very close
to the Gaussian density on the line with mean zero and variance L2

K . Being
general and informal, this hypothesis needs to be formalized and verified,
and precise statements may depend on certain additional properties of con-
vex bodies. For some special bodies K, several types of closeness of fK to
Gaussian densities were recently studied in [B-V], cf. also [K-L]. To treat the
general case, the following characteristic σ2

K associated with K turns out to
be crucial:

σ2
K =

Var(|X|2)
nL4

K

.

Here X is a random vector uniformly distributed over K, and Var(|X|2)
denotes the variance of |X|2. In particular, we have the following statement
which is proved in this note.
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Theorem 1. For all 0 < |t| ≤ c
√
n,∣∣∣∣fK(t) − 1√

2πLK
e−t2/(2L2

K)
∣∣∣∣ ≤ C

[
σKLK
t2

√
n

+
1
n

]
, (1)

where c and C are positive numerical constants.

Using Bourgain’s estimate LK ≤ c log(n)n1/4 ([Bou], cf. also [D], [P]) the
right-hand side of (1) can be bounded, up to a numerical constant, by

σK log n
t2n1/4 +

1
n
,

which is small for large n up to the factor σK . Let us look at the behavior of
this quantity in some canonical cases.

For the n-cube K = [− 1
2 ,

1
2 ]n, by the independence of coordinates, σ2

K =
4
5 .

For K’s the normalized �n1 balls,

σ2
K = 1 − 2(n+ 1)

(n+ 3)(n+ 4)
→ 1, as n → ∞.

Normalization condition refers to voln(K) = 1, but a slightly more general
definition σ2

K = nVar(|X|2)
(E|X|2)2 makes this quantity invariant under homotheties

and simplifies computations.
For K’s the normalized Euclidean balls,

σ2
K =

4
n+ 4

→ 0, as n → ∞.

Thus, σ2
K can be small and moreover, in the space of any fixed dimension,

the Euclidean balls provide the minimum (cf. Theorem 2 below).
The property that σ2

K is bounded by an absolute constant for all �np balls
simultaneously was recently observed by K. Ball and I. Perissinaki [B-P]
who showed for these bodies that the covariances cov(X2

i , X
2
j ) = EX2

iX
2
j −

EX2
i EX

2
j are non-positive. Since in general Var(|X|2) =

∑n
i=1 Var(X2

i ) +∑
i�=j cov(X2

i , X
2
j ), the above property together with the Khinchine-type in-

equality implies

Var(|X|2) ≤
n∑
i=1

Var(X2
i ) ≤

n∑
i=1

EX4
i ≤ CnL4

K .

The result was used in [A-B-P] to study the closeness of random distribu-
tion functions Fθ(t) = P{〈X, θ〉 ≤ t}, for most of θ on the sphere, to the
normal distribution function with variance L2

K . This randomized version of
the central limit theorem originates in the paper by V. N. Sudakov [S], cf.
also [D-F], [W]. The reader may find recent related results in [K-L], [Bob],
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[N-R], [B-H-V-V]. It has become clear since the work [S] that, in order to
get closeness to normality, the convexity assumption does not play a crucial
role, and one rather needs a dimension-free concentration of |X| around its
mean. Clearly, the strength of concentration can be measured in terms of the
variance of |X|2, for example.

Nevertheless, the question on whether or not the quantity σ2
K can be

bounded by a universal constant in the general convex isotropic case is
still open, although it represents a rather weak form of Kannan-Lovász-
Simonovits’ conjecture about Cheeger-type isoperimetric constants for con-
vex bodies [K-L-S]. For isotropic K, the latter may equivalently be expressed
as the property that, for any smooth function g on Rn, for some absolute
constant C, ∫

K

∣∣∣∣g(x) −
∫
K

g(x) dx
∣∣∣∣ dx ≤ CLK

∫
K

|∇g(x)| dx. (2)

By Cheeger’s theorem, the above implies a Poincaré-type inequality

∫
K

∣∣∣∣g(x) −
∫
K

g(x) dx
∣∣∣∣
2

dx ≤ 4(CLK)2
∫
K

|∇g(x)|2 dx

which for g(x) = |x|2 becomes Var(|X|2) ≤ 16nC2L4
K , that is, σ2

K ≤ 16C2.
To bound an optimal C in (2), R. Kannan, L. Lovász, and M. Simonovits

considered in particular the geometric characteristic

χ(K) =
∫
K

χK(x) dx

where χK(x) denotes the length of the longest interval lying in K with center
at x. By applying the localization lemma of [L-S], they proved that (2) holds
true with CLK = 2χ(K). Therefore, σKLK ≤ 8χ(K), and thus the right-
hand side of (1) can also be bounded, up to a constant, by

χ(K)
t2

√
n

+
1
n
.

To prove Theorem 1, we need the following formula which also appears
in [B-V, Lemma 1.2].

Lemma 1. For all t,

fK(t) =
Γ
(
n
2

)
√
π Γ

(
n−1

2

) ∫
K∩{|x|≥|t|}

1
|x|
(

1 − t2

|x|2
)n−3

2

dx.

For completeness, we prove it below (with a somewhat different argu-
ment).
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Proof. We may assume t ≥ 0. Denote by λθ,t the Lebesgue measure on Hθ(t).
Then

λt =
∫
Sn−1

λθ,t dσ(θ)

is a positive measure on Rn such that fK(t) = λt(K). This measure has
density that is invariant with respect to rotations, i.e.,

dλt
dx

= pt(|x|),

where pt is a function on [t,∞). To find the function pt, note first that, for
every r > t,

λt
(
B(0, r)

)
=
∫
B(0,r)

pt(|x|) dx = |Sn−1|
∫ r

t

pt(s)sn−1 ds,

where B(0, r) is the Euclidean ball with center at the origin and radius r,
and |Sn−1| = 2πn/2

Γ (n/2) is the surface area of the sphere Sn−1. On the other
hand, since the section of B(0, r) by the hyperplane Hθ(t) is the Euclidean
ball in Rn−1 of radius (r2 − t2)1/2, we have

λt
(
B(0, r)

)
=
∫
Sn−1

λθ,t
(
B(0, r)

)
dσ(θ) =

π(n−1)/2

Γ
(
1 + (n− 1)/2

) (r2 − t2)(n−1)/2.

Taking the derivatives by r, we see that for every r ≥ t,

n− 1
2

(r2 − t2)(n−1)/2 2r =
2π1/2 Γ

(
n−1

2

)
Γ
(
n
2

) pt(r)rn−1,

which implies

pt(r) =
Γ
(
n
2

)
√
π Γ

(
n−1

2

) (r2 − t2)(n−3)/2

rn−2 .

Since fK(t) = λt(K), the result follows.

Proof of Theorem 1. Let t > 0. By the Cauchy-Schwarz inequality,

∫
K

∣∣|x|2 − nL2
K

∣∣ dx ≤
(∫

K

∣∣|x|2 − nL2
K

∣∣2 dx)1/2

=
√
nσKL

2
K ,

so ∫
K

∣∣|x| − √
nLK

∣∣ dx =
∫
K

∣∣|x|2 − nL2
K

∣∣
|x| +

√
nLK

dx ≤ σKLK . (3)

By Stirling’s formula,

lim
n→∞

√
2π√
n

Γ (n/2)√
πΓ
(
(n− 1)/2

) = 1
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so that the constants cn = Γ (n/2)√
πΓ ((n−1)/2)) appearing in Lemma 1 are O(

√
n).

Now, on the interval [t,∞) consider the function

gn(z) =
1
z

(
1 − t2

z2

)(n−3)/2

.

Its derivative

g′
n(z) =

t2(n− 3)
z4

(
1 − t2

z2

)(n−5)/2

− 1
z2

(
1 − t2

z2

)(n−3)/2

represents the difference of two non-negative terms. Both of them are equal
to zero at t, tend to zero at infinity and each has one critical point, the first
at z = t

√
n− 1/2, and the second at z = t

√
n− 1/

√
2. Therefore,

max
z∈[t,∞)

|g′
n(z)| ≤ 16

t2(n− 1)
.

This implies that, for every x ∈ K, |x| ≥ t, if
√
nLK ≥ t, then

|gn(|x|) − gn(
√
nLK)| ≤ 16

t2(n− 1)

∣∣|x| − √
nLK

∣∣ ,
and by (3), ∫

Kt

|gn(|x|) − gn(
√
nLK)| dx ≤ 16σKLK

t2(n− 1)
, (4)

where Kt = K ∩ {|x| ≥ t}.
Now, writing

fK(t) = cn

∫
Kt

gn(|x|) dx

= cngn(
√
nLK)voln(Kt) + cn

∫
Kt

(
gn(|x|) − gn(

√
nLK)

)
dx

and applying (4), we see that, for all t ≤ √
nLK ,

|fK(t) − cngn(
√
nLK)voln(Kt)| ≤ CσKLK

t2
√
n

,

where C is a numerical constant. This gives

∣∣fK(t) − cngn(
√
nLK)

∣∣ ≤ cngn(
√
nLK)

(
1 − voln(Kt)

)
+
CσKLK
t2

√
n

. (5)

Recall that LK ≥ c, for some universal c > 0 (the worst situation is attained
at Euclidean balls, cf. eg. [Ba]). Therefore (5) is fulfilled under t ≤ c

√
n.

To further bound the first term on the right-hand side of (5), note that
gn(z) ≤ 1/z, so cngn(

√
nLK) ≤ C0, for some numerical C0. Also, if t ≤ c

√
n,
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1 − voln(Kt) ≤ voln
(
B(0, t)

)
= ωnt

n ≤
(
c0√
n

)n (
c
√
n
)n
< 2−n,

where ωn denotes the volume of the unit ball in Rn, and where c0c can be
made less than 1/2 by choosing a proper c. This also shows that the first
term in (5) will be dominated by the second one. Indeed, the inequality
C02−n ≤ CσKLK

t2
√
n

immediately follows from t ≤ c
√
n and the lower bound on

σK given in Theorem 2.
Thus, ∣∣fK(t) − cngn(

√
nLK)

∣∣ ≤ CσKLK
t2

√
n

,

and we are left with the task of comparing cngn(
√
nLK) with the Gaussian

density on the line. This is done in the following elementary

Lemma 2. If 0 ≤ t ≤ √
nLK , for some absolute C,∣∣∣∣∣ Γ

(
n
2

)
√
πΓ
(
n−1

2

)(1 − t2

nL2
K

)(n−3)/2 1√
nLK

− 1√
2πLK

e−t2/2L2
K

∣∣∣∣∣ ≤ C

n
.

Proof. Using the fact that LK is bounded from below, multiplying the above
inequality by

√
2πLK and replacing u = t2/(2L2

K), we are reduced to esti-
mating∣∣∣∣∣

√
2 Γ

(
n
2

)
√
n Γ

(
n−1

2

)(1− 2u
n

)n−3
2

− e−u
∣∣∣∣∣ ≤

∣∣∣∣∣e−u −
√

2 Γ
(
n
2

)
√
n Γ

(
n−1

2

)e−u
∣∣∣∣∣

+

√
2 Γ

(
n
2

)
√
n Γ

(
n−1

2

)
∣∣∣∣∣e−u −

(
1− 2u

n

)n−3
2

∣∣∣∣∣ .

In order to estimate the first summand, use the asymptotic formula for the
Γ -function, Γ (x) = xx−1e−x√2πx

(
1 + 1

12x +O( 1
x2 )
)
, as x → +∞, to get

√
2
n Γ

(
n
2

)
Γ
(
n−1

2

) =

(
n
2

)(n−3)/2
e−n/2 √

πn
(
1 + 1

6n +O( 1
n2 )
)

(
n−1

2

)(n−3)/2
e−(n−1)/2

√
π(n− 1)

(
1 + 1

6(n−1) +O( 1
n2 )
)

= e−1/2
(

n

n− 1

)n
2 −1(

1 +O

(
1
n2

))
.

Since, by Taylor, ( n
n−1 )

n
2 −1 = e(−

n
2 +1) log(1− 1

n ) = e1/2
(
1 +O

( 1
n

))
, the first

summand is O( 1
n ) uniformly over u ≥ 0.

To estimate the second summand, recall that 0 ≤ u ≤ n/2. The function

ψn(u) = e−u − (1 − 2u
n

)n−3
2 satisfies ψn(0) = 0, ψn(n/2) = e−n/2, and the
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point u0 ∈ [0, n/2] where ψ′
n(u0) = 0 (if it exists) satisfies

(
1 − 2u0

n

)n−5
2 =

n
n−3 e

−u0 (when n ≥ 4). Hence, ψn(u0) = 2u0−3
n−3 e−u0 = O( 1

n ), and thus
supu ψn(u) = O( 1

n ). This proves Lemma 2.

Remark. Returning to the inequality (1) of Theorem 1, it might be worthwhile
to note that, in the range |t| ≥ c

√
n, the function fK satisfies, for some

absolute C > 0, the estimate

fK(t) ≤ C

|t| e
−t2/(CnL2

K) ≤ C

c
√
n
,

and in this sense it does not need to be compared with the Gaussian dis-
tribution in this range. Indeed, it follows immediately from the equality in
Lemma 1 that

fK(t) ≤ C
√
n max
z≥|t|

gn(z) P{|X| ≥ |t|},

where X denotes a random vector uniformly distributed over K. When n ≥ 3,
in the interval z ≥ |t|, the function gn(z) = 1

z (1 − t2

z2 )(n−3)/2 attains its
maximum at the point z0 = |t|√n− 2 where it takes the value gn(z0) ≤

1
|t|√n−2 . Hence,

C
√
n max
z≥|t|

gn(z) ≤ C ′

|t| ≤ C ′

c
√
n
.

On the other hand, the probability P{|X| ≥ |t|} can be estimated with the
help of Alesker’s ψ2-estimate, [A],

Ee|X|2/(C′′nL2
K) ≤ 2.

We finish this note with a simple remark on the extremal property of the
Euclidean balls in the minimization problem for σ2

K .

Theorem 2. σ2
K ≥ 4

n+4 .

Proof. The distribution function F (r) = voln({x ∈ K : |x| ≤ r}) of the
random vector X uniformly distributed in K has density

F ′(r) = rn−1
∣∣∣∣Sn−1 ∩ 1

r
K

∣∣∣∣ = |Sn−1| rn−1σ

(
1
r
K

)
, r > 0.

We only use the property that q(r) = |Sn−1|σ( 1
rK) is non-increasing in

r > 0. Clearly, this function can also be assumed to be absolutely continuous
so that we can write

q(r) = n

∫ +∞

r

p(s)
sn

ds, r > 0,
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for some non-negative measurable function p on (0,+∞).
We have

1 =
∫ ∞

0
dF (r) =

∫ ∞

0
rn−1q(r) dr = n

∫∫
0<r<s

rn−1 p(s)
sn

drds =
∫ ∞

0
p(s) ds.

Hence, p represents a probability density of a positive random variable, say,
ξ. Similarly, for every α > −n,

E|X|α =
∫ ∞

0
rα+n−1q(r) dr =

n

n+ α

∫ ∞

0
sαp(s) ds =

n

n+ α
Eξα.

Therefore,

Var(|X|2) =
n

n+ 4
Eξ4 −

(
n

n+ 2
Eξ2

)2

=
4n

(n+ 4)(n+ 2)2
(Eξ2)2 +

n

n+ 4
Var(ξ2)

≥ 4n
(n+ 4)(n+ 2)2

(Eξ2)2.

One can conclude that

σ2
K = n

Var(|X|2)
(E|X|2)2

≥ n

4n
(n+4)(n+2)2 (Eξ2)2(

n
n+2 Eξ2

)2 =
4

n+ 4
.

Theorem 2 follows.
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1 Introduction

We consider here two asymptotic properties of finite dimensional convex bod-
ies which generate a norm with an unconditional basis. For definiteness, such
a basis is taken to be the canonical basis in Rn. Thus, assume we are given
a convex set K ⊂ Rn of volume voln(K) = 1 which, together with every
point x = (x1, . . . , xn), contains the parallepiped with the sides [−|xj |, |xj | ],
1 ≤ j ≤ n. In addition, K is supposed to be in isotropic position, which is
equivalent to the property that the integrals∫

K

x2
j dx = L2

K , 1 ≤ j ≤ n, (1.1)

do not depend on j.
The isotropic constant LK is known to satisfy c1 ≤ LK ≤ c2, for some

universal c1, c2 > 0. Hence, for the Euclidean norm |x| = (x2
1 + . . . + x2

n)1/2

we have
c1n ≤

∫
K

|x|2 dx ≤ c2n

and similarly, the average value of |x| over K is about
√
n.

Consider the linear functional

f(x) =
x1 + . . .+ xn√

n
.

By (1.1), its L2-norm over K is exactly ‖f‖2 = LK . As in the case of any
other linear functional, Lp-norms satisfy ‖f‖p ≤ Cp ‖f‖2 for every p ≥ 1 and
some absolute C. Up to a universal constant, this property can equivalently
be expressed as one inequality ‖f‖ψ1 ≤ C ‖f‖2 for the Orlicz norm corre-
sponding to the Young function ψ1(t) = e|t| − 1, t ∈ R. For the concrete
functional f introduced above, this can be sharpened in terms of the Young
function ψ2(t) = e|t|2 − 1.
� Supported in part by NSF grants.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 53–69, 2003.
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Theorem 1.1. ‖f‖ψ2 ≤ C, for some universal C.

The proof might require some information on the distribution of the Eu-
clidean norm of a point x over K. Indeed, if we observe x = (x1, . . . , xn) as a
random vector uniformly distributed in K, and if (ε1, . . . , εn) is an arbitrary
collection of signs, then (ε1x1, . . . , εnxn) has the same uniform distribution
(by the assumption that the canonical basis is unconditional). In particular,

f(x, ε) =
ε1x1 + . . .+ εnxn√

n

has the same distribution as f(x). But with respect to the symmetric
Bernoulli measure Pε on the discrete cube {−1, 1}n, there is a subgaussian
inequality

Pε

{|f(x, ε)| ≥ t
} ≤ 2 e−nt2/(2|x|2), t ≥ 0.

Taking the expectation over K, we arrive at

voln
{
x ∈ K : |f(x)| ≥ t

} ≤ 2
∫
K

e−nt2/(2|x|2) dx. (1.2)

This is how the distribution of the norm |x| can be involved in the study of
the distribution of f(x). The statement of Theorem 1.1 is equivalent to the
assertion that the tails of f admit a subgaussian bound

voln
{
x ∈ K : |f(x)| ≥ t

} ≤ Ce−ct2 .

Hence, it suffices to prove such a bound for the integral in (1.2) taken over a
sufficiently big part ofK. The function e−nt2/(2|x|2) under the integral sign has
the desired subgaussian behaviour on the part of K where |x|/√n ≤ const.
To control large deviations of |x|/√n, we prove:

Theorem 1.2. There exist universal t0 > 0 and c > 0 such that, for all
t ≥ t0,

voln

{
x ∈ K :

|x|√
n

≥ t

}
≤ e−c t√n. (1.3)

For the “normalized” �n1 -ball, this inequality was proved by G. Schechtman
and J. Zinn in [S-Z1], see also [S-Z2] for related results on deviations of the
Euclidean norm and other Lipschitz functions on the �np -balls.

Note that too large t may be ignored in (1.3), since we always have |x| ≤
Cn, for all x ∈ K (V.D. Milman, A. Pajor, [M-P]). Therefore, for t > C

√
n,

the left hand side is zero. For t ≤ C
√
n, the inequality implies

voln

{
x ∈ K :

|x|√
n

≥ t

}
≤ e−c t2/C ,

which means that the Lψ2(K)-norm of the Euclidean norm is bounded by its
L2-norm, up to a universal constant. Thus, Theorem 1.2 can also be viewed as
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a sharpening, for isotropic convex sets with an unconditional basis, of a result
of S. Alesker [A]. We do not know whether the unconditionality assumption
is important for the conclusion such as (1.3). On the other hand, Theorem
1.2 as well as Theorem 1.1 (under an extra condition on the support) can be
extended to all isotropic log-concave probability measures which are invariant
under transformations (x1, . . . , xn) → (±x1, . . . ,±xn), cf. Propositions 5.1
and 6.1 below.

Using Theorem 1.2, one may estimate the integral in (1.2) as follows:∫
K

e−n t2/(2|x|2) dx =
∫

|x|≤t0
√
n

+
∫

|x|≥t0
√
n

≤ e−t2/(2t20) + e−c t0
√
n

≤ 2 e−t2/(2t20)

provided that t ≤ constn1/4. Hence, we obtain the desired subgaussian bound
for relatively “small” t. To treat the values t ≥ constn1/4, one needs to involve
some other arguments which are discussed in section 6.

2 Preliminaries (the case of bodies)

Here we collect some useful, although basically known, facts about the sets
K with the canonical unconditional basis as in section 1. It is reasonable to
associate with K its normalized part in the positive octant Rn

+ = [0,+∞)n,

K+ = 2K ∩ Rn
+.

Thus, if x = (x1, . . . , xn) is viewed as a random vector uniformly distributed
in K, then the vector (2|x1|, . . . , 2|xn|) is uniformly distributed in K+.

The set K+ has the properties:

a) voln(K+) = 1;

b) for all x ∈ K+ and y ∈ Rn
+ with yj ≤ xj , 1 ≤ j ≤ n, we have y ∈ K+;

c)
∫
K+ x

2
j dx = 4L2

K , for all 1 ≤ j ≤ n.

Proposition 2.1. L2
K ≤ 1

2 .

Proof. With every point x = (x1, . . . , xn), the set K+ contains the par-
allepiped

∏n
j=1[0, xj ]. So

∏n
j=1 xj ≤ 1, for every x ∈ K. Since both the

sets K+ and V = {x ∈ Rn
+ :

∏n
j=1 xj ≥ 1} are convex and do not intersect

each other (excluding the points on the boundaries), there exists a separating
hyperplane. But any hyperplane touching the boundary of V has equation
λ1x1 + . . .+ λnxn = n with some λj > 0 such that

∏n
j=1 λj = 1. Therefore,

K+ ⊂ {
x ∈ Rn

+ : λ1x1+...+λnxn
n ≤ 1

}
, and so, by the geometric-arithmetic

inequality,
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1 ≥
∫
K+

λ1x1 + . . .+ λnxn
n

dx ≥
( n∏

j=1

∫
K+

xj dx

)1/n

.

By a Khinchine-type inequality,

∫
K+

xj dx ≥ 1√
2

(∫
K+

x2
j dx

)1/2

=
√

2LK , (2.1)

according to the property c). Thus, 1 ≥ √
2LK .

Remark 2.1. It is a well-known fact that, in the class of all measurable sets K
in Rn of volume one, the integral

∫
K

|x|2 dx is minimized for the normalized
Euclidean ball Bn with center at the origin. Therefore, for isotropic K, we
always have LK ≥ LBn which leads to the optimal dimension-free lower
bound

LK ≥ 1√
2πe

. (2.2)

More generally, in the class of all probability densities q on Rn attaining
maximum at the origin, the quantity q2(0)

∫ |x|2q(x) dx is minimized for the
indicator function of Bn. This property was observed by D. Hensley [H] who
assumed additionally that q is log-concave and symmetric, and later K. Ball
[Ba] gave a shorter argument not using log-concavity and symmetry. In the
one-dimensional case, the property reads as

q(0)
(∫

R
t2q(t) dt

)1/2

≥ 1
2
√

3
. (2.3)

Remark 2.2. The inequality (2.1) is a particular case of the following theorem
due to S. Karlin, F. Proschan, and R.E. Barlow [K-P-B]: Given a positive
random variable ξ with a log-concave density on (0,+∞), for all real s > 1

E ξs ≤ Γ (s+ 1) (E ξ)s.

Equality is achieved if and only if ξ has an exponential distribution, that is,
when Prob{ξ > t} = e−λt, t > 0, for some parameter λ > 0.

Proposition 2.2. For every hyperspace H in Rn,

voln−1(K ∩H) ≥ 1√
6
.

Moreover, if K is invariant under permutations of coordinates, then every
section Kj = K ∩ {xj = 0}, 1 ≤ j ≤ n, satisfies voln−1(Kj) ≥ 1.
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Proof. If H = {x ∈ Rn : 〈θ, x〉 = 0}, |θ| = 1, apply (2.3) to the density q(t)
of the linear function x → 〈θ, x〉 over K: then we get

voln−1(K ∩H)LK ≥ 1
2
√

3
.

This inequality holds true for any symmetric isotropic convex set K of volume
one. In our specific case, it remains to apply Proposition 2.1.

For the second statement, given a non-empty set π ⊂ {1, . . . , n}, denote
by K+

π the section of K by the (n − |π|)-dimensional subspace {x : xj =
0, for all j ∈ π}. Write the Steiner decomposition

voln
(
K+ + r[0, 1]n

)
=

n∑
k=0

ak(K+) rk, r > 0,

where ak =
∑

|π|=k voln−k(K+
π ) with the convention that a0 = voln(K+) = 1.

By the Brunn-Minkowski inequality, voln (K+ + r [0, 1]n) ≥ (1 + r)n, so the
coefficient a1(K+) in front of r should satisfy a1 ≥ n. That is,

n∑
j=1

voln−1(K+
j ) ≥ n,

where K+
j = K+ ∩ {xj = 0}. Since all these (n− 1)-dimensional volumes are

equal to each other, and voln−1(Kj) = voln−1(K+
j ), the conclusion follows.

Proposition 2.3. For all α1, . . . , αn ≥ 0,

voln{x ∈ K+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ e−c (α1+...+αn)

with c=1/
√

6. If K is invariant under permutations of coordinates, one may
take c=1.

Proof. The function u(α1, . . . , αn) = voln{x∈K+ : x1 ≥ α1, . . . , xn ≥ αn} is
log-concave on Rn

+, u(0) = 1, and

∂u(α)
∂αj

∣∣∣∣
α=0

= −voln−1(Kj) ≤ −c,

according to Proposition 2.2. These properties easily imply the desired in-
equality.

Actually, Proposition 2.3 can be sharpened by applying the Brunn-
Minkowski inequality in its full volume. The latter implies that the func-
tion u1/n is concave on K+ which is a slightly stronger property than just
log-concavity. Hence, with the same argument, we have the inequality

vol1/nn {x ∈ K+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ 1 − c (α1 + . . .+ αn)
n
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holding true for all (α1, . . . , αn) ∈ K+ with c= 1/
√

6. Since the right hand
side of this inequality must be non-negative, an immediate consequence of
such a refinement is:

Proposition 2.4. For all (x1, . . . , xn) ∈ K+,

x1 + . . .+ xn ≤
√

6n.

Equivalently, for all (x1, . . . , xn) ∈ K, |x1| + . . .+ |xn| ≤
√

6
2 n.

Thus, the normalized �1-ball in Rn is the largest set within the class of all
K’s which we consider (up to a universal enlarging factor). One may wonder
therefore whether or not it is true that the cube would be the smallest one.
The question turns out simple as one can see from the proof of the following:

Proposition 2.5. The set K contains the cube [− 1√
2
LK ,

1√
2
LK ]n which in

turn contains [− 1
2
√
πe
, 1

2
√
πe

]n.

Proof. The baricenter v = bar(K+) must belong to K+, so K+ contains
parallepiped

∏n
j=1[0, vj ] with vj =

∫
K+ xj dx. Hence the first statement im-

mediately follows from the Khinchine-type inequality (2.1). The second one
is based on the lower bound (2.2).

3 Log-Concave Measures

Here we extend Propositions 2.1–2.3 to log-concave measures. Let µ be a
probability measure on Rn with a log-concave density p(x), x ∈ Rn, such
that

a) p(0) = 1;

b) p(±x1, . . . ,±xn) does not depend on the choice of signs;

c)
∫
x2
j dµ(x) =

∫
x2
j p(x) dx = L2

µ does not depend on j = 1, . . . , n.

The case of the indicator density p(x) = 1K(x) reduces to the previous
section. As in the body case, we associate with µ its squeezed restriction µ+

to the positive octant Rn
+: this measure has density

p+(x) = p

(
1
2
x

)
, x ∈ Rn

+.

If x = (x1, . . . , xn) is distributed according to µ, then the vector (2|x1|, . . . ,
2|xn|) is distributed according to µ+. The function p+ is log-concave, is non-
increasing in each coordinate, and satisfies∫

Rn
+

x2
j dµ

+(x) = 4L2
µ, 1 ≤ j ≤ n.
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Proposition 3.1. Lµ ≤ C, for some absolute C.

Proof. Since p+ is non-increasing, for every x ∈ Rn
+,

1 ≥
∫ x1

0
. . .

∫ xn

0
p+(y) dy ≥ p+(x)

∫ x1

0
. . .

∫ xn

0
dy = p+(x)

n∏
j=1

xj .

Hence,

u(x) ≡ − log p+(x) ≥ log
n∏
j=1

xj ≡ v(x).

Note that u is convex, while v is a concave function. Therefore, there must
exist an affine function � such that u(x) ≥ �(x) ≥ v(x), for all x ∈ Rn

+. This
function can be chosen to be tangent to v at some point a = (a1, . . . , an)
with positive coordinates. That is, we may take

�(x) = v(a) +
〈∇v(a), x− a

〉
= log

n∏
j=1

aj +
n∑
j=1

xj − aj
aj

.

Setting λj = 1
aj

, the inequality u(x) ≥ �(x) becomes

p+(x) ≤ en
n∏
j=1

λj e
−λjxj , x ∈ Rn

+.

In particular, since p+(0) = 1, we have
∏n
j=1 λj ≥ e−n. Hence,

∫
Rn

+

n∏
j=1

xj p
+(x) dx ≤

∫
Rn

+

n∏
j=1

xj

(
en

n∏
j=1

λj e
−λjxj

)
dx = en

n∏
j=1

1
λj

≤ e2n.

On the other hand, with respect to µ+,∥∥∥∥
n∏
j=1

xj

∥∥∥∥
1

≥
∥∥∥∥

n∏
j=1

xj

∥∥∥∥
0

=
n∏
j=1

‖xj‖0 ≥ cn
n∏
j=1

‖xj‖2 = (2c)n Lnµ,

where we have used a Khinchine-type inequality ‖g‖0 = limp→0+ ‖g‖p ≥
c ‖g‖2 for linear functions g with respect to log-concave measures (which is
actually valid for any norm, cf. [L]). Proposition 3.1 follows with C = e2/(2c).

Proposition 3.2. For every hyperspace H in Rn,∫
H

p(x) dx ≥ 1
e
√

6
.

If p is invariant under permutations of coordinates, then
∫

{xj=0} p(x) dx ≥ 1
e ,

for every 1 ≤ j ≤ n.
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There is a way to prove this statement without appealing to Proposition
3.1. In turn, starting from Proposition 3.2, one can easily obtain Proposition
3.1 with C = e

√
3. Indeed, the reverse one-dimensional Hensley inequality

(for the class of all symmetric log-concave probability densities q on the line,
cf. [H], Lemma 4) asserts that

q(0)
(∫

R
t2 dx

)1/2

≤ 1√
2

(3.1)

(equality is achieved at q(t) = e−2|t|). If we take any hyperspace H = {x ∈
Rn : 〈θ, x〉 = 0}, |θ| = 1, and apply this inequality to the density q(t) of the
distribution of the linear function 〈θ, x〉 under the measure µ, then we arrive
exactly at ∫

H

p(x) dxLµ ≤ 1√
2
.

Hence, the lower bound
∫
H
p(x) dx ≥ 1/(e

√
6) would lead to Lµ ≤ e

√
3, while

in the case where µ is invariant under permutations of coordinates we would
similarly obtain the estimate Lµ ≤ e/

√
2.

Proposition 3.2 will be derived from a more general:

Lemma 3.1. For any log-concave probability density p on Rn such that
p(0) = 1 and p(±x1, . . . ,±xn) does not depend on the choice of signs,

n∏
j=1

∫
{xj=0}

p(x) dx ≥ e−n. (3.2)

It is interesting that the constant 1/e appearing on the right is asymp-
totically optimal. Indeed, for the density

p(x) = exp
{

− 2n!1/n max
j≤n

|xj |
}
,

for every j ≤ n, we have
∫

{xj=0} p(x) dx = n!1/n
n → 1

e , as n → ∞.

As in this example, when a density p is invariant under permutations of
coordinates, all (n− 1)-dimensional integrals

∫
{xj=0} p(x) dx coincide, so, by

(3.2), these integrals must be greater or equal to 1/e. In the general case,
we may only conclude that maxj

∫
{xj=0} p(x) dx ≥ 1/e. On the other hand,

the combination of the two Hensley’s inequalities (2.3) and (3.1) immediately
implies that, for any symmetric log-concave isotropic density p on Rn and for
any two hyperspaces H1, H2, we have

∫
H1
p(x) dx ≤ √

6
∫
H2
p(x) dx. Hence,

min
H

∫
H

p(x) dx ≥ 1√
6

max
j

∫
{xj=0}

p(x) dx ≥ 1
e
√

6
.

Thus, Lemma 3.1 implies Proposition 3.2.
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Proof of Lemma 3.1. Given a measurable set A in Rn, an inequality due to
L. H. Loomis and H. Whitney asserts ([L-W], [B-Z]) that

n∏
j=1

voln−1(Aj) ≥ voln(A)n−1,

where Aj is the projection of A to the hyperspace xj = 0. As a matter of fact,
being applied to A = K, the above yields yet another proof of the second
part of Proposition 2.2.

Loomis-Whitney’s inequality admits a certain functional formulation.
Namely, given a measurable function g ≥ 0 on Rn, not identically zero,
consider the family A(t) = {x : g(x) > t}, t > 0. Define on Rn−1 the func-
tions

gj(x1, . . . , xj−1, xj+1, . . . , xn) = sup
xj

gj(x1, . . . , xj−1, xj , xj+1, . . . , xn)

together with Aj(t) = {x : gj(x) > t}, t > 0. Then Aj(t) are projections of
A(t), so

voln
(
A(t)

)n−1 ≤
n∏
j=1

voln−1
(
Aj(t)

)
.

Put ϕj(t) = voln−1(Aj(t)), ϕ(t) = voln(A(t)). Raising the above to the power
1/n, integrating over t > 0 and applying Hölder’s inequality, we get

∫ +∞

0
ϕ(t)(n−1)/n dt ≤

∫ +∞

0

n∏
j=1

ϕj(t)1/n dt ≤
n∏
j=1

(∫ +∞

0
ϕj(t) dt

)1/n

=
( n∏

j=1

∫
Rn−1

gj(x) dx
)1/n

.

In order to bound from below the first integral, we use the property that ϕ(t)
is non-increasing in t > 0. For such functions, for all α ∈ (0, 1], there is a
simple inequality (cf. [B-Z])

(∫ +∞

0
ϕ(t)α dt

)1/α

≥
∫ +∞

0
ϕ(tα) dt.

But the right hand side is exactly
∫
Rn g(x)1/α dx, and for α = n−1

n , we thus
get

n∏
j=1

∫
Rn−1

gj(x) dx ≥
(∫

Rn

g(x)n/(n−1) dx

)n−1

.

This is the desired functional form yielding the original inequality on indicator
functions g = 1A. For g = p, the supremum in the definition of gj is attained
at xj = 0, and the functional inequality becomes
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n∏
j=1

∫
{xj=0}

p(x) dx ≥
(∫

Rn

p(x)n/(n−1) dx

)n−1

.

The right hand side can further be estimated using the log-concavity of p.
Namely, since p(0) = 1, for every t ∈ (0, 1) and x ∈ Rn, we have p(tx)1/t ≥
p(x). Integrating over x, we get

∫
Rn p(x)1/t dx ≥ tn which for t = n−1

n gives

∫
Rn

p(x)n/(n−1) dx ≥
(
n− 1
n

)n
, n ≥ 2.

It remains to note that
(
n−1
n

)n(n−1) ≥ e−n.

Lemma 3.1 follows. As a consequence, we get an analogue of Proposition
2.3:

Proposition 3.3. For all α1, . . . , αn ≥ 0,

µ+{x ∈ Rn
+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ e−c (α1+...+αn)

with c= 1
e
√

6
. If µ is invariant under permutations of coordinates, one may

take c = 1/e.

4 Decreasing Rearrangement

For any vector x = (x1, . . . , xn) in Rn, its coordinates can be written in the
decreasing order,

X1 ≥ X2 ≥ . . . ≥ Xn.

In particular, X1 = maxj xj , Xn = minj xj . When x is observed as a random
vector with uniform distribution in K+ or more generally with distribution
µ+, the distribution of the random vector (X1, . . . , Xn) can be studied on
the basis of Propositions 2.3 and 3.3, respectively. In particular, we have:

Proposition 4.1. For any α ≥ 0, 1 ≤ k ≤ n,

µ+{x ∈ Rn
+ : Xk ≥ α} ≤ Ckn e

−c kα,

where c > 0 is a numerical constant.

One may always take c = 1/(e
√

6 ) but the constant can be improved for
special situations. For example, c = 1/e, when µ+ is invariant under permu-
tations of coordinates, and moreover c = 1 when µ+ is uniform distribution
on K+ which is invariant under permutations of coordinates.

We denote by Ckn the usual combinatorial coefficients n!
k!(n−k)! .
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Proof. Since

{x ∈ Rn
+ : Xk ≥ α} = ∪n≥j1>...>jk≥1{x ∈ Rn

+ : xj1 ≥ α, . . . , xjk ≥ α},
we get

µ+{Xk ≥ α} ≤
∑

n≥j1>...>jk≥1

µ+{xj1 ≥ α, . . . , xjk ≥ α} ≤ Ckn e
−c kα,

where we applied Proposition 3.3 (or, respectively, Proposition 2.3) on the
last step.

The combinatorial argument easily extends to yield a more general:

Proposition 4.2. For any collection of indices 1 ≤ k1 < . . . < kr ≤ n, and
for all α1, . . . , αr ≥ 0,

µ+{Xk1 ≥ α1, . . . , Xkr ≥ αr} ≤ n! e−c (k1α1+(k2−k1)α2...+(kr−kr−1)αr)

k1!(k2 − k1)! . . . (kr − kr−1)!(n− kr)!
,

where c > 0 is a numerical constant.

Let us now illustrate one of the possible applications to large deviations,
say, for �1-norm ‖x‖1 =

∑n
k=1 |xk| under the measure µ. For all numbers

α1, . . . , αn ≥ 0,

µ

{
‖x‖1 ≥

n∑
k=1

αk

}
= µ+

{
n∑
k=1

xk ≥ 2
n∑
k=1

αk

}
= µ+

{
n∑
k=1

Xk ≥ 2
n∑
k=1

αk

}

≤
n∑
k=1

µ+{Xk ≥ 2αk} ≤
n∑
k=1

Ckn e
−2c k αk

where we applied Proposition 4.1 on the last step. Using Ckn ≤ (
ne
k

)k, we
thus get

µ

{
c ‖x‖1 ≥

n∑
k=1

αk

}
≤

n∑
k=1

e−k (2αk−log ne
k ).

Now, take αk = 1
2 log ne

k + t n
k(log n+1) which is almost an optimal choice.

Then,
∑n
k=1 αk ≤ n(1 + t), and we arrive at:

Proposition 4.3. For any t ≥ 0,

µ

{
c ‖x‖1

n
≥ 1 + t

}
≤ n exp

{
−2t

n

log n+ 1

}
.

The right hand side converges to zero for any fixed t > 0. In particular, for
large n, we have ‖x‖1 ≤ 2n/c with µ-probability almost one. In probabilistic
language, this means that the random variables ‖x‖1/n are stochastically
bounded as n → ∞. Since L1(µ)-norm of ‖x‖1/n is about 1, this property
cannot be deduced from the usual exponential bound for norms under log-
concave measures (cf. [Bo]).
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5 Euclidean Norm. Proof of Theorem 1.2

As in the proof of Proposition 4.3, for all α1, . . . , αn ≥ 0, we similarly obtain
that

µ

{
|x|2 ≥

n∑
k=1

α2
k

}
= µ+

{
n∑
k=1

X2
k ≥ 4

n∑
k=1

α2
k

}

≤
n∑
k=1

µ+{Xk ≥ 2αk} ≤
n∑
k=1

Ckn e
−2c k αk

where again we applied Proposition 4.1 on the last step. Using Ckn ≤ (nek )k,
we thus get

µ

{
c2 |x|2 ≥

n∑
k=1

α2
k

}
≤

n∑
k=1

e−k (2αk−log ne
k ).

Now, take αk = 1
2 log ne

k + t
√
n
k . Then,

∑n
k=1 α

2
k ≤ 4nt2, for all t ≥ 2, so

µ

{
c |x|√
n

≥ 2t
}

≤ n e−2t
√
n.

In a more compact form:

Proposition 5.1. For any t ≥ 4,

µ

{
x ∈ Rn :

c |x|√
n

≥ t

}
≤ e− 1

2 t
√
n.

As in Proposition 4.1, we may take c = 1/(e
√

6 ) in general, and c = 1/
√

6
in the body case. As explained in section 1, the above inequality implies:

Proposition 5.2. For every number C ≥ 56, in the interval 0 ≤ t ≤ Cn1/4,

µ

{
x ∈ Rn :

∣∣∣∣x1 + . . .+ xn√
n

∣∣∣∣ ≥ t

}
≤ 2 exp

{
− t2

8C4/3

}
.

Indeed, applying Proposition 5.1 with c = 1
7 <

1
e
√

6
, we get

µ

{
1√
n

∣∣∣∣
n∑
j=1

xj

∣∣∣∣ ≥ t

}
= µ⊗ Pε

{
1√
n

∣∣∣∣
n∑
j=1

εjxj

∣∣∣∣ ≥ t

}

≤
∫
e−nt2/(2|x|2) dµ(x) =

∫
|x|≤t0

√
n

+
∫

|x|≥t0
√
n

≤ e−t2/(2t20) + e− 1
14 t0

√
n,

for every t0 provided that ct0 ≥ 4, that is, t0 ≥ 28. By the assumption on t,
the last term is bounded by e−t0 t2/(14C2). It remains to take (the optimal)
t0 = (7C2)1/3.
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6 Theorem 1.1 for Log-Concave Measures

In order to involve the region t ≥ Cn1/4 in Proposition 5.2, an extra condition
on the measure µ is required. One important property distinguishing the case
where µ is the uniform distribution on K from the general measure case is
indicated in Proposition 2.4: for all x ∈ K,

|x1| + . . .+ |xn| ≤ An (6.1)

with A =
√

6/2. It is therefore natural to assume that the measure µ is
supported on a convex set satisfying (6.1) for some A = A(µ). In this case
Theorem 1.1 admits a corresponding extension:

Proposition 6.1. ‖f‖Lψ2 (µ) ≤ C
√
A(µ), where C is a numerical constant.

Note that in terms of the linear functional

f(x) =
x1 + . . .+ xn√

n

the quantity A(µ) is described as 1/
√
n ‖f‖L∞(µ). Thus, Proposition 6.1 re-

lates Lψ2-norm to L∞-norm of f via ‖f‖Lψ2 (µ) ≤ C/
√
n
√‖f‖L∞(µ). This

inequality is not linear in f which is due to the basic assumption p(0) = 1 on
the density p of µ. Without this condition, Proposition 6.1 can be formulated
as follows:

Corollary 6.1. Let µ be a probability measure on Rn with a log-concave
density p such that, for all x ∈ Rn, p(±x1, . . . ,±xn) does not depend on the
choice of signs, and

∫
Rn x

2
j p(x) dx does not depend on j = 1, . . . , n. Then,

for some universal C,

‖f‖2
Lψ2 (µ) ≤ C√

n
‖f‖L2(µ) ‖f‖L∞(µ).

Let us return to the original assumption p(0) = 1. Then A(µ) is always
separated from zero. Indeed, since the density p(x) is bounded by 1, we have

1 =
∫

|x1|+...+|xn|≤An
p(x) dx ≤ voln{x ∈ Rn : |x1| + . . .+ |xn| ≤ An}

=
(2An)n

n!
.

Hence, A ≥ n!1/n
2n ≥ 1

2e .

While the first applications are based upon Proposition 4.1, the proof of
Proposition 6.1 uses a more general Proposition 4.2. The estimate given in it
can be simplified as follows: using a general bound m! ≥ (me )m and the fact
that the function x → (

ne
x

)x increases in 0 < x ≤ n, we get
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n(n− 1) . . . (n− kr + 1)
k1!(k2 − k1)! . . . (kr − kr−1)!

≤
r∏
j=1

(
ne

kj − kj−1

)kj−kj−1

≤
r∏
j=1

(
ne

kj

)kj

with the convention that k0 = 0 on the middle step. Hence, for all α1, . . . , αr ≥
0,

µ+{Xk1 ≥ α1, . . . , Xkr ≥ αr} ≤
r∏
j=1

(ne
kj

)kj
e−c (k1α1+(k2−k1)α2...+(kr−kr−1)αr).

From now on, the indices kj will be assumed to be the powers of 2. Thus
let � = [log2 n] (the integer part), and let S be any non-empty subset of
{0, 1, . . . , �}. From the previous inequality, for any collection αk ≥ 0 indexed
by k ∈ S,

µ+ {X2k ≥ αk, for all k ∈ S} ≤
∏
k∈S

(ne
2k
)2k

exp
{

− c
∑
k∈S

2k−1αk

}
.

The choice αk = βk + 2
c log ne

2k leads to:

Lemma 6.1. For any non-empty subset S of {0, 1, . . . , �} and any collection
β = (βk)k∈S of non-negative numbers,

µ+
{
X2k ≥ βk +

2
c

log
ne

2k
, for all k ∈ S

}
≤ exp

{
− c

∑
k∈S

2k−1βk

}
.

As before, one may take c = 1/(e
√

6). In view of the assumption (6.1),
the measure µ+ is supported by

x1 + . . .+ xn ≤ 2An

so, only βk < 2An can be of interest in Lemma 6.1. Assume moreover that
each βk also represents a power of 2. The couples (S, β) with these properties
will be called blocks, and we say that a vector x ∈ Rn

+ is controlled by a
block (S, β) if

X2k ≥ βk +
2
c

log
ne

2k
, for all k ∈ S.

Lemma 6.2. The total number of blocks does not exceed, e2 log 2n log(2 log 4An).

Indeed, given a non-empty S ⊂ {0, 1, . . . , �}, the number of admissible
functions β on S is equal to [log2 2An]|S|. Hence, the number of all blocks is
equal to

∑
S

[log2 2An]|S| =
�+1∑
r=1

Cr�+1[log2 2An]r =
(
1 + [log2 2An]

)[log2 n]+1 − 1
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from which the desired bound easily follows.
Combining Lemma 6.1 with Lemma 6.2 and using c = 1/(e

√
6) > 1/7, we

thus obtain that

µ+
{
x ∈ Rn

+ : x is controlled by a block (S, β) with
∑
k∈S

2k−1βk ≥ 1
8
t
√
n

}

≤ e2 log 2n log(2 log 4An) e− 1
8·7 t

√
n. (6.2)

Lemma 6.3. Given t > 0, assume that a vector x ∈ Rn
+ is not controlled

by any block (S, β) with
∑
k∈S 2k−1βk ≥ 1

8 t
√
n. Then, with some absolute

constant B > 0,

Pε

{∣∣∣∣ε1x1 + . . .+ εnxn√
n

∣∣∣∣ ≥ t

}
≤ 2 e−t2/B .

Proof. It is also possible that x is not controlled by any block (S, β) at all:
by the very definition, this holds if and only if

X2k < 1 +
2
c

log
ne

2k
, for all 0 ≤ k ≤ �.

But then

|x|2 =
n∑
j=1

X2
j ≤

�∑
k=0

X2
2k 2k <

�∑
k=0

(
1 +

2
c

log
ne

2k

)2

2k ≤ Bn,

for some absolute constant B. Therefore, for all t > 0,

Pε

{∣∣∣∣ε1x1 + . . .+ εnxn√
n

∣∣∣∣ ≥ t

}
≤ 2 e−nt2/2|x|2 ≤ 2 e−t2/2B ,

and the statement follows.
In the other case, there is a maximal block controlling the given vector x.

Namely, introduce (the canonical) set

S =
{
k = 0, 1, . . . , � : X2k ≥ 1 +

2
c

log
ne

2k

}
,

and for each k ∈ S, denote by βk the maximal power of 2 not exceeding
X2k − 2

c log ne
2k . In particular,

βk ≤ X2k − 2
c

log
ne

2k
< 2βk, (6.3)

and, by the assumption of the lemma,

∑
k∈S

2k−1βk <
1
8
t
√
n. (6.4)
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Define a new vector (Yj)1≤j≤n approximating (Xj)1≤j≤n in a certain sense.
First put

αk =
(
X2k −

(
1 +

2
c

log
ne

2k
))+

, 0 ≤ k ≤ �,

so that αk = 0 outside S and 0 ≤ αk ≤ 2βk−1 < 2βk, for all k ∈ S, according
to (6.3). Let Yj = (Xj − αk)+, for 2k ≤ j < 2k+1 (0 ≤ k ≤ �). Then, clearly
0 ≤ Yj ≤ Xj ≤ Yj + αk, and by (6.4),

n∑
j=1

Xj − Yj ≤
�∑

k=0

2kαk =
∑
k∈S

2kαk ≤
∑
k∈S

2k+1βk <
1
2
t
√
n.

Hence,

Pε

{
1√
n

∣∣∣ n∑
j=1

εjxj

∣∣∣ ≥ t

}
= Pε

{
1√
n

∣∣∣ n∑
j=1

εjXj

∣∣∣ ≥ t

}

≤ Pε

{
1√
n

∣∣∣ n∑
j=1

εjYj

∣∣∣ ≥ t

2

}
.

It remains to observe that, for 2k ≤ j < 2k+1, we have Yj ≤ Y2k ≤ 1 +
2
c log ne

2k , so
∑n
j=1 Y

2
j ≤∑�

k=0

(
1 + 2

c log ne
2k
)2 2k ≤ Bn. Lemma 6.3 follows.

Proof of Proposition 6.1. We need to get a subgaussian bound of the form
µ{|f | ≥ t} ≤ c1 e

−c2t2/A, for some absolute c1, c2 > 0. By the assumption
(6.1) on the support of µ, we may assume t ≤ A

√
n.

Put C = (σA)3/4 with a positive universal constant σ to be determined
later on. Since necessarily A ≥ 1/(2e), we assume

(
σ
2e

)3/4 ≥ 56 so that to
apply Proposition 5.2 in the interval 0 ≤ t ≤ Cn1/4: it then gives

µ
{
x ∈ Rn : |f(x)| ≥ t

} ≤ 2e−t2/(8σA).

The right hand side is of the desired order both in t and A in that interval.
Now, let t ≥ Cn1/4. Define Ω0(t) to be the collection of all vectors x ∈

Rn
+ which are controlled by a block (S, β) with

∑
k∈S 2k−1βk ≥ 1

8 t
√
n. Let

Ω1(t) = Rn
+ \Ω0(t). In terms of f(x, ε) = ε1x1+...+εnxn√

n
, we may write

µ{|f | > t} = µ+ ⊗ Pε

{
(x, ε) : |f(x, ε)| > 2t

}
=
∫
Ω0

Pε

{|f(x, ε)| > 2t
}
dµ+(x) +

∫
Ω1

Pε

{|f(x, ε)| > 2t
}
dµ+(x).

The second integral does not exceed 2e−t2/B with some numerical B (Lemma
6.3). The first integral can be bounded, according to (6.2), by

µ+(Ω0(t)
) ≤ e− 1

56 t
√
n+∆n(A),
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where ∆n(A) = 2 log(2n) log(2 log(4An)). Thus, for the values Cn1/4 ≤ t ≤
A

√
n, it suffices to show that

e− 1
56 t

√
n+∆n(A) ≤ e−t2/(112A)

(note that if A
√
n < Cn1/4, we are done). Equivalently,

1
112A

t2 − 1
56
t
√
n+∆n(A) ≤ 0.

Since t ≤ A
√
n, the above is implied by ∆n(A) ≤ 1

112 t
√
n. In view of t ≥

Cn1/4 = (σA)3/4n1/4, the latter is equivalent to

∆n(A) ≤ 1
112

(σA)3/4n1/4.

Clearly, if σ is sufficiently large, the above inequality holds true for all A ≥ 1
2e

and n ≥ 1. Summarizing, we may write the following estimate for all t > 0:

µ{|f | > t} ≤ max
{

2e−t2/(8σA), 2e−t2/B + e−t2/(112A)}.
This gives the desired result.
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Random Lattice Schrödinger Operators with
Decaying Potential: Some Higher Dimensional
Phenomena

J. Bourgain

Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

Summary. We consider lattice Schrödinger operators on Z
d of the form Hω = ∆+

Vω where ∆ denotes the usual lattice Laplacian on Z
d and Vω is a random potential

Vω(n) = ωnvn. Here {ωn|n ∈ Z
d} are independent Bernoulli or normalized Gaussian

variables and (vn)n∈Zd is a sequence of weights satisfying a certain decay condition.
In what follows, we will focus on some results related to absolutely continuous
(ac)-spectra and proper extended states that, roughly speaking, distinguish d > 1
from d = 1 (but are unfortunately also far from satisfactory in this respect). There
will be two parts. The first part is a continuation of [Bo], thus d = 2. We show
that the results on ac spectrum and wave operators from [Bo], where we assumed
|vn| < C|n|−α, α > 1

2 , remain valid if (vn|n|ε) belongs to �3(Z2), for some ε > 0.
This fact is well-known to be false if d = 1.

The second part of the paper is closely related to [S]. We prove for d ≥ 5 and
letting Vω(n) = κωn|n|−α(α > 1

3 ) existence of (proper) extended states for Hω =
∆+ Ṽω, where Ṽω is a suitable renormalization of Vω (involving only deterministic
diagonal operators with decay at least |n|−2α). Since in 1D for α < 1

2 , ω a.s. all
extended states are in �2(Z), this is again a higher dimensional phenomenon. It is
likely that the method may be made to work for all α > 0. But even so, this is
again far from the complete picture since it is conjectured that Hω = ∆ + ωnδnn′

has a component of ac spectrum if d ≥ 3.

I On Random Schrödinger Operators on Z
2

1 Introduction

The present paper is a continuation of [Bo].
In [Bo] we considered spectral issues for lattice Schrödinger operators on

Z
2 of the form

Hω = ∆+ Vω (1.1)

where ∆ is the lattice Laplacian on Z
2, i.e.

∆(n, n′) = 1 if |n1 − n′
1| + |n2 − n′

2| = 1
= 0 otherwise

and Vω is a random potential

Vω(n) = ωnvn (1.2)

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 70–98, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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with {vn|n ∈ Z
2} ⊂ R+ satisfying a certain decay condition and where

{ωn|n ∈ Z
2} are independent Bernoulli or normalized Gaussians (this re-

strictive distribution hypothesis for the random variables - more specifically
the Lψ2-tail distribution - is of importance here).

The results obtained in [Bo] are the following

Theorem 1. Fix τ > 0 and denote I = {E ∈ [−4, 4]|τ < |E| < 4 − τ}.
Fix ρ > 1

2 and assume

sup
n

|vn| |n|ρ < κ = κ(τ, ρ). (1.3)

Let Hω be defined by (1.1), (1.2).
For κ sufficiently small and ω outside a set of small measure

(1) Hω has only a.c. spectrum on I
(2) Denoting E0(I) and E(I) the spectral projections for ∆ and H = Hω

resp., the wave operators W±(H,∆)E0(I),W±(∆,H)E(I) exist and es-
tablish unitary eigenvalue of ∆E0(I) and HE(I).

Theorem 2. Assume again ρ > 1
2 and instead of (1.3)

sup
n

|vn| |n|ρ < ∞.

Then, for almost all ω

(1) a.c. spectrum Hω ⊃ [−4, 4]
(2) The wave operators W±(H,∆)E0([−4, 4]) and generalized wave operators

W±(∆,H)E([−4, 4]) exist.

As shown in [Bo], Theorem 2 follows from Theorem 1 and the existence
of generalized wave operators W±(H,H + P ), whenever P is a finite rank
perturbation of the self-adjoint operator H (cf. [Ka]).

As mentioned, our aim in this paper is to focus on results that distinguish
the one-dimensional and higher dimensional setting. For d = 1, the spectral
theory of random Schrödinger operators has been extensively studied over the
past decades (relying heavily on the transfer matrix formalism - a method
not available in higher dimension). In particular, if we let for instance

Vω = ωn|n|−α

with {ωn|n ∈ Z} i.i.d. variables, uniformly distributed in [−1, 1], it is known
that, almost surely, Hω has pure point spectrum for 0 < α < 1

2 and a.c. spec-
trum for 1

2 < α (cf [Si], [K-L-S]). Also, Theorems 1 and 2 stated above hold
for d = 1 (replacing the interval [−4, 4] by [−2, 2] of course) with analogous
(slightly simpler) proofs and the crucial decay exponent 1

2 for the potential
remains the same. Our purpose here is to impose conditions on the poten-
tial that does depend on dimension. We consider again only the case d = 2.
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Compared with [Bo], the geometric properties (in particular curvature) of
the level sets of ∆̂ will play a more important role (if d > 2, there are ad-
ditional difficulties related to vanishing curvature in this respect which we
don’t intend to explore here).

Theorem 3. Assume
Vω(n) = ωn|n|−εvn (1.4)

where {ωn|n ∈ Z
2} are as in Theorems 1 and 2, ε > 0 is fixed and

‖v‖�3(Z2) < κ (1.5)

with κ = κ(τ, ε) > 0 small enough.
Then the statement of Theorem 1 holds.

Theorem 4. Replacing in Theorem 3 condition (1.5) by

‖v‖�3(Z2) < ∞ (1.6)

the conclusion of Theorem 2 holds.

2 Preliminaries

Recall that for f ∈ �2(Z2)

∆f(n) =
∫

T2
2(cos 2πξ1 + cos 2πξ2)f̂(ξ)e−2πin.ξdξ

where
f̂(ξ) = (Ff)(ξ) =

∑
n∈Z2

f(n)e2πin.ξ.

Hence the free resolvent R0(z) = (∆ − z)−1 is obtained by applying the
Fourier multiplier

1
m(ξ) − z

with
m(ξ) = 2(cos 2πξ1 + cos 2πξ2). (2.1)

Thus
R0(z) = F−1 1

m(ξ) − z
F .

Fixing τ > 0 and τ < |λ| < 4 − τ , the equation

m(ξ) = λ

represents a smooth curve Γλ with non-vanishing curvature. As in [Bo], de-
note σλ the arclength-measure of Γλ. Thus
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|σ̂λ(n)| < C(1 + |n|)− 1
2 . (2.2)

From the theory of Fourier transforms of measures supported by smooth
hyper-surfaces with non-vanishing curvature, we obtain therefore

Lemma 2.3 Let µ be a measure supported by Γλ such that µ � σλ and
dµ
dσλ

∈ L2(Γλ, dσλ). Then

‖µ̂‖�6(Z2) ≤ C

∥∥∥∥ dµdσλ
∥∥∥∥

2
. (2.4)

Remark. Lemma 2.3 is a standard fact from harmonic analysis (see [St]). Es-
timates (2.2), (2.4) are obviously dimension dependent and were not involved
in [Bo].

For the proof of Theorems 3 and 4, we proceed exactly as in [Bo]. Thus
the proof of Theorem 3 is perturbative and the main issue is to control the
Born-series expansion

R(z) = (H − z)−1 =
∑
s≥0

(−1)s
[
R0(z)V

]s
R0(z). (2.5)

To achieve this, we rely on the basic estimates stated as Lemmas 3.18 and
3.48 of [Bo]. Let us recall them.

Denote
V0 = V0X{0} and Vk = V X[2k−1≤|n|<2k]

the dyadic restrictions of V .
By C(δ) we denote a function in ξ-space satisfying a bound

|C(δ)(ξ)| < [|m(ξ) − λ| + δ
]−1/2 (0 < δ < 1) (2.6)

(here and in the sequel, λ always assumed to satisfy τ < |λ| < 4 − τ).
Lemma 3.18 from [Bo] is the following statement

Lemma 2.7 One has the operator norm estimate on �2(Z2)

∥∥C(δ2)
2 FV�F−1C

(δ1)
1

∥∥ < (κ2−�)c
(

log
1
δ1

+ log
1
δ2

)A
(2.8)

except for ω in a set of measure at most

exp
{

− (κ−12�)c
(

log
1
δ1

+ log
1
δ2

)}
(2.9)

(c, A > 0 are constants independent of δ1, δ2, �).

Denoting ρλ the restriction operator to Γλ, Lemma 3.48 in [Bo] states
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Lemma 2.10

∥∥ρλFV�F−1C(δ)
∥∥
L2
ξ→L2(Γλ,dσλ) < (κ2−�)c

(
log

1
δ

)A
(2.11)

except for ω in a set of measure at most

exp
{

− (κ−12�)c log
1
δ

}
. (2.12)

Summarizing in [Bo], Theorems 1 and 2 are derived from the estimates
(2.8)–(2.12) in Lemmas 2.7, 2.10. To prove Theorems 3 and 4, it will suffice
to establish these lemmas replacing the assumption (1.3) on V by (1.4), (1.5).

From assumption (2.6) on C(δ) and representation as average on the level
sets of m(ξ), the left side of (2.8), (2.11) is clearly captured by an estimate
on

‖ρλ2FV�F−1‖L2(Γλ1 ,dσλ1 )→L2(Γλ2 ,dσλ2 ) (2.13)

(with τ
2 < |λ1|, |λ2| < 4 − τ

2 ),
and it suffices to prove that for fixed λ1, λ2

Eω

[
(2.13)

]
< (κ2−�)c. (2.14)

Finally, also recall the entropy bound (1.13), (1.14) in [Bo], known as the
‘dual Sudakov inequality’ (due to [P-T]). As in [Bo], the following particular
setting is the one we need. Consider a linear operator S : R

d → �∞m and
denote for fixed t > 0 by N (t) the minimal number of balls in �∞m of radius t
needed to cover the set {Sx|x ∈ R

d, ‖x‖2 ≤ 1}. Then the following inequality
holds

log N (t) < C(logm)t−2‖S‖2
�2d→�∞m

(2.15)

where C is a universal constant, (see inequality (4.2) in [Bo]).

3 Proof of Theorems 3 and 4

Again, from the stability of the a.c. spectrum under finite rank perturbations,
it suffices to prove Theorem 3. From the discussion in the previous section,
the result will follow from (2.14). This inequality will be derived by combining
the argument from [Bo] (section 4) with Lemma 2.3.

We start by applying (2.15) considering the operator

S : L2(Γλ, dσλ) → �∞(Z2) : µ 	→ µ̂||n|∼2� . (3.1)

Thus in (2.15), m ∼ 4�. The domain may clearly be replaced by a finite
dimensional Hilbert space (notice that the estimate (2.15) does not depend
on d). Obviously



Random Lattice Schrödinger Operators 75

‖S‖L2(dσλ)→�∞(Z2) ≤ C (3.2)

and in fact, from (2.4)

‖S‖L2(dσλ)→�6(Z2) ≤ C. (3.3)

From (2.15), (3.2)
log N (t) < C�t−2. (3.4)

Recalling the definition of N (t) and taking also (3.3) into account, this means
that for each t > 0, there is a set Et ⊂ �∞|n|∼2� of vectors ξ with the following
properties

log |Et| < C�t−2 (3.5)

max
µ∈L2(Γλ)
‖ dµ
dσλ

‖2≤1

min
ξ∈Et

max
|n|∼2�

|µ̂(n) − ξn| < t (3.6)

max
ξ∈Et

‖ξ‖6 < C. (3.7)

Next, taking t of the form 2−r, r ∈ Z+, we may then obtain sets Fr ⊂
E2−r−1 − E2−r s.t

‖ξ‖∞ < 2−r+1 and ‖ξ‖6 < C for ξ ∈ Fr (3.8)

and for each µ ∈ L2(Γλ), ‖ dµ
dσλ

‖ ≤ 1, there is a representation

Sµ =
∑
r

ξ(r) for some ξ(r) ∈ Fr. (3.9)

We use here (3.6), (3.7).
Proceeding further as in [Bo], (2.13) equals

sup
∣∣∣∣ ∑

|n|∼2�
Vω(n)µ̂1(n)µ̂2(n)

∣∣∣∣ = sup 2−ε�
∣∣∣∣ ∑

|n|∼2�
ωnvnµ̂1(n)µ̂2(n)

∣∣∣∣ (3.10)

where the sup is taken over all pairs (µ1, µ2) ∈ L2(Γλ1)×L2(Γλ2), ‖ dµi
dσλi

‖2≤1.

Introducing the families F (i)
r (r ∈ Z+) for Γλi(i = 1, 2), decomposition

(3.9) and convexity reduces (3.10) to the following expression∣∣∣∣ ∑
|n|∼2�

ωnvnµ̂1(n)µ̂2(n)
∣∣∣∣ ≤ ∑

r1,r2∈Z+

max
ξ′∈F(1)

r1
ξ′′∈F(2)

r2

∣∣∣∣ ∑
|n|∼2�

ωnvnξ
′
nξ

′′
n

∣∣∣∣. (3.11)

Take ω-expectation of each of the terms. Since {ωn|n ∈ Z
2} are independent

Bernoulli or Gaussians, Dudley’s Lψ2-estimate applies. Thus
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Eω

[
max

F(1)
r1 ×F(2)

r2

∣∣∣∣ ∑
|n|∼2�

ωnvnξ
′
nξ

′′
n

∣∣∣∣
]

≤ C
(

log |F (1)
r1 | + log |F (2)

r2 |)1/2
{

max
F(1)
r1 ×F(2)

r2

[ ∑
|n|∼2�

|vn|2|ξ′
n|2|ξ′′

n|2
]1/2}

.

(3.12)

By (3.5) and construction, |Fr| ≤ |E2−r−1 | |E2−r |, hence

log |Fr| < C�4−r. (3.13)

By (3.8) and Hölder’s inequality, we get for ξ′ ∈ F (1)
r1 , ξ

′′ ∈ F (2)
r2( ∑

|n|∼2�
|vn|2|ξ′

n|2|ξ′′
n|2
)1/2

≤ ‖v‖3 ‖ξ′.ξ′′‖6 < C‖v‖3 min(2−r1 , 2−r2). (3.14)

Substitution of (3.13), (3.14) in (3.12) gives

C
√
�(2−r1 + 2−r2) min(2−r1 , 2−r2)‖v‖3 < C

√
�‖v‖3. (3.15)

Invoking also the obvious bound

max
F(1)
r1 ×F(2)

r2

∣∣∣∣ ∑
|n|∼2�

ωnvnξ
′
nξ

′′
n

∣∣∣∣ ≤ C2−r1−r2
∑

|n|∼2�
|ωn| |vn| (3.16)

we obtain that

Eω

[
(3.11)

] ≤ C
∑

r1,r2∈Z+

min
(√
�, 2−r1−r28�

)‖v‖3 ≤ C�5/2‖v‖3. (3.17)

Recalling (1.5), it follows from (3.17) that indeed

Eω

[
(3.10)

]
< C2−ε��κ (3.18)

which is the desired inequality (2.14).
This proves Theorem 3.

Remarks. (1) From deterministic point of view, the preceding shows that if
we fix ε, τ > 0 and consider a (non-random) potential V s.t.∥∥{|n|εVn|n ∈ Z

2}∥∥
3/2 < κ(τ, ε) (3.19)

then H = ∆+ V has a.c. spectrum in {E ∈ [−4, 4]|τ < |E| < 4 − τ}.
Thus, also, if ∥∥{|n|εVn|n ∈ Z

2}∥∥
3/2 < ∞ (3.20)

then [−4, 4] ⊂ ac− SpecH.
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Indeed, following the approach described above, it suffices to verify the
inequality

(2.13) = ‖ρλ2FV�F−1‖L2(Γλ1,dσλ1
)→L2(Γλ2 ,dσλ2 ) < Cκ2−ε�

which immediately follows from Lemma 2.3 and Hölder’s inequality.
Thus if µi ∈ L2(Γλi), ‖ dµi

dσλi
‖2 ≤ 1(i = 1, 2), we have

∑
|n|∼2�

|Vn| |µ̂1(n)| |µ̂2(n)| ≤ ‖V�‖ 3
2

‖µ̂1‖6 ‖µ̂2‖6 < Cκ2−ε�.

(2) In view of the Carleson-Sjölin theorem

‖µ̂‖p ≤ Cp

∥∥∥∥dµdσ
∥∥∥∥
p

for p > 4 and µ ∈ Lp(S1) (3.21)

(S1=unit circle), one may wonder if (2.13), (2.14) may not be obtained under
weaker assumption on V . Clearly, the condition

‖{|n|εvn}‖�4(Z2) < ∞ (3.22)

would be natural and optimal.
The validity of (2.13), (2.14) seems to require the stronger condition (1.4),

(1.6) however. This may easily be seen as follows. Clearly

‖ρFV�F−1‖2
L2(S1)→L2(S1)

= ‖ρFV 2
� F−1‖L2(S1)→L2(S1)

= sup
µi∈L2(S1),‖ dµidσ ‖2≤1

∣∣∣∣ ∑
|n|∼2�

V 2
n µ̂1(n)µ̂2(n)

∣∣∣∣. (3.23)

At this point, the randomness in the potential disappeared.
Denote N = 2� and let

dµ1

dσ
=
dµ2

dσ
= N1/4Xγ (3.24)

where γ denotes an arc in S1 of size 10−3N−1/2 say, centered at (1, 0)
Thus (3.24) gives the proper normalization in L2(S1).
Clearly

µ̂i(n) ∼ N−1/4 for n ∈ R = [−N,N ] × [−N1/2, N1/2]

(3.23) � N−1/2
∑
n∈R

V 2
n

forcing an �3(Z2)-bound on V .



78 J. Bourgain

........

........

........

........
........
.........
.........
.........
.........
..........
..........

...........
............

.............
...............

....................

...................

...............
.............
............
...........
..........
..........
.........
.........
.........
.........
........
........
........
........
.......

.....................

.....................

................................................................................................................................

S1

γ

In order to proceed under the weaker assumption (3.22), one would need
to eliminate the self-energy loops by a renormalization of Vω as Ṽω = Vω+W ,
with W the (non-random) potential

Wn = R0(E + io).
∫
Vω(n)2dω.

II Construction of Extended States for Lattice
Schrödinger Operators on Z

d (d ≥ 5) with Slowly
Decaying Random Potential

In what follows, we will construct for d ≥ 5 proper extended states for the
random lattice Schrödinger operator on Z

d

Hω = ∆+
(
κωn|n|−α + 0(κ2|n|−2α)

)
δnn′

for α > 1
3 . The term 0(κ2|n|−2α)δnn′ refers to a deterministic potential arising

from suitable renormalizations. Perturbation of the free Laplacian is done at
a specific energy, much in the spirit of [S].

The interest of the result lies in the fact that it exhibits a higher dimen-
sional phenomenon, since in 1D, for α < 1

2 , there are a.s. no proper extended
states. It is also likely that with additional work, the argument may be carried
through for all α > 0.

Note. The subsequent numbering only refers to Chapter II.

1 Green’s Function Estimate for Certain Deterministic
Perturbations

Redefine the Laplacian by subtracting 2d from the lattice Laplacian, i.e.
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−∆̂(ξ) = 2d− 2
( d∑
j=1

cos 2πξj

)
= +|ξ|2 + 0(|ξ|4). (1.1)

We first prove the following

Lemma 1.2. Let
H = ∆+ cMd+ dMc

where

(i) M is a convolution operator on Z
d with smooth Fourier-multiplier M̂(ξ)

s.t. M̂(ξ) is an even function of ξ1, . . . , ξd and

M̂(ξ) = |ξ|2 + 0(|ξ|4) (1.3)

(ii) c and d are diagonal operators given by real sequences (cn)n∈Zd , (dn)n∈Zd

|cn|, |dn| ≤ κ|n|−α (1.4)

|cn+ej − cn| � κ|n|−α−1

|dn+ej − dn| < κ|n|−α−1

(j = 1, . . . , d) (1.5)

where α > 0 and κ small (ej = jth unit vector of Z
d).

Then
|(H + io)−1(n, n′)| < C|n− n′|−(d−2). (1.6)

Proof. From (1.1), (1.3), we may write

M = ∆M1

where M1 is a convolution operator with

M̂1(ξ) = 1 +
0(|ξ|4)

|ξ|2 + 0(|ξ|4)
(1.7)

hence
∂(α)M̂1(ξ) ∈ L1

ξ for |α| < d+ 2. (1.8)

Thus
|M1(n, n′)| < C

1
|n− n′|d+2− . (1.9)

We are replacing next cMd+dMc by cdM+Mcd and evaluate the difference.
It follows from (1.5)∣∣[cMd+ dMc− (cdM +Mcd)](m,n)

∣∣
= |cmdn + dmcn − cmdm − cndn| |M(m,n)|
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= |cn − cm| |dn − dm| |Mm,n|

< Cκ2 |n−m|2
(|n| + |m|)2(|n| ∧ |m|)2α |M(m,n)|

� κ2 1
(|n| + |m|)2(|n| ∧ |m|)2α|n−m|d+1 . (1.10)

Thus

H = ∆+ cdM +Mcd+ P1

= (1 + cdM1)∆(1 +M1cd) − cdM1∆M1cd+ P1 (1.11)

where P1 satisfies (1.10).
The operator M1∆M1 = MM1 is again a convolution operator and clearly

M̂M1(ξ) = M̂(ξ)M̂1(ξ)

= M̂(ξ) +
0(|ξ|6)

|ξ|2 + 0(|ξ|4)
. (1.12)

Therefore
|(MM1)(n, n′)| < 1

|n− n′|d+4− . (1.13)

Repeating the preceding with M replaced by MM1 and c, d replaced by cd√
2

(hence α by 2α) we have again∣∣∣∣cdMM1cd− 1
2
c2d2MM1 − 1

2
MM1c

2d2
∣∣∣∣

� κ4 1
(|n| + |m|)2(|n| ∧ |m|)4α|n−m|d+1 (1.14)

and

(1.11) =
(

1 + cdM1 − 1
2
c2d2M2

1

)
∆

(
1 +M1cd− 1

2
M2

1 c
2d2
)

−1
2
c2d2M2

1∆M1cd− 1
2
cdM1∆M

2
1 c

2d2

+
1
4
c2d2M2

1∆M
2
1 c

2d2 + P2 (1.15)

with P2 satisfying (1.10).
Each of the operators M2

1∆M1,M
2
1∆M

2
1 will still satisfy (1.13) (in fact

an even stronger property) and we may repeat the construction.
After s steps, one obtains clearly an operator of the form(

1 + cdM1 − 1
2
c2d2M2

1 + · · ·
)
∆

(
1 +M1cd− 1

2
M2

1 c
2d2 + · · ·

)



Random Lattice Schrödinger Operators 81

+
∑[

(cd)kM̃(cd)k
′
+ (cd)k

′
M̃(cd)k

]
+ P (1.16)

where

k + k′ ≥ s (1.17)

M̃ are convolution operators satisfying

|M̃(n, n′)| < 1
|n− n′|d+4− (1.18)

and

|P (n, n′)| < κ2

(|n| + |n′|)2(|n| ∧ |n′|)2α|n− n′|d+1 . (1.19)

Thus, from (1.9)

∣∣[(cd)kM̃(cd)k
′]

(n, n′)
∣∣ � κ2s 1

|n|2kα|n′|2k′α|n− n′|d+3

� κ2s

(|n| ∧ |n′|)2αs|n− n′|d+3 . (1.20)

Letting s = s(α) be large enough, we may therefore get H in the form

H =
(

1 + cdM1 − 1
2
c2d2M2

1 + · · ·
)
∆

(
1 +M1cd− 1

2
M2

1 c
2d2 + · · ·

)
+P ′

(1.21)

where taking (1.19), (1.20) into account the matrix P ′ satisfies (assuming
α < 1

2 )

|P ′(n, n′)| < κ2

(|n| + |n′|)2+α|n− n′|d+ 1
2
. (1.22)

Also, by (1.9)

Q = cdM1 − 1
2
c2d2M2

1 + · · ·
satisfies in particular

|Q(n, n′)| < κ2

|n− n′|d+ 19
10

(1.23)

and 1 +Q is invertible by a Neumann series.
Thus

H = (1 +Q)∆(1 +Q∗) + P ′ = (1 +Q)(∆+ P ′′)(1 +Q∗) (1.24)

where
P ′′ = (1 +Q)−1P ′(1 +Q∗)−1. (1.25)

Hence, from (1.22), (1.23)
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|P ′′(n, n′)|
< Cκ2

∑
n1,n2∈Zd

1
|n− n1|d+ 19

10

1
|n1 − n2|d+ 1

2 (|n1| + |n2|)2+α
1

|n2 − n′|d+ 19
10

< cκ2 1
|n− n′|d+ 1

2 |n|1+α
2 |n′|1+α

2
. (1.26)

Replacing ∆ by ∆+ io, (1.24) implies

(H + io)−1 = (1 +Q∗)−1(∆+ io+ P ′′)−1(1 +Q)−1 (1.27)

where we expand further

(∆+ io+ P ′′)−1 =
(
1 + (∆+ io)−1P ′′)−1(∆+ io)−1

=
∑
s≥0

[
(∆+ io)−1P ′′]s(∆+ io)−1. (1.28)

Estimate in (1.28)∣∣∣[((∆+ io)−1P ′′)s(∆+ io)−1
]
(n, n′)

∣∣∣
≤ Cs

∑
n1,n2,...,n2s

1
|n− n1|d−2 |P ′′(n1, n2)| 1

|n2 − n3|d−2 |P ′′(n3, n4)|

· · · 1
|n2s − n′|d−2 . (1.29)

Write
1

|m−m′|d−2 < C
∑
n

1
|m− n|d−1|n−m′|d−1

and, from (1.26)

∑
n1,n2

1
|m− n1|d−1 |P ′′(n1, n2)| 1

|n2 −m′|d−1

≤ cκ2
∑
n1,n2

1
|m− n1|d−1|n1|1+α

2 |n1 − n2|d+ 1
2 |n2|1+α

2 |n2 −m′|d−1

< cκ2 1
|m−m′|d−1(|m| ∧ |m′|)1+α . (1.30)

Observe also that

∑
n

1
|m− n|d−1(|m| ∧ |n|)1+α|n−m′|d−1(|m′| ∧ |n|)1+α

<
C

|m−m′|d−1(|m| ∧ |m′|)1+α
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which shows that the estimate (1.30) is preserved under multiplication.
Returning to (1.29), it follows from (1.30) and the preceding that

(1.29) < Csκ2s
∑

m1,...,ms+1

1
|n−m1|d−1

(
1

|m1 −m2|d−1(|m1| ∧ |m2|)1+α
)

· · ·
(

1
|ms −ms+1|d−1(|ms| ∧ |ms+1|)1+α

)
1

|ms+1 − n′|d−1

< Csκ2s
∑

m1,ms+1

1
|n−m1|d−1

1
|m1 −ms+1|d−1(|m1| ∧ |ms+1|)1+α

1
|ms+1 − n′|d−1

< (Cκ2)s
1

|n− n′|d−2 . (1.31)

Consequently, summing over s, it follows from (1.28) that

|(∆+ io+ P ′′)−1(n, n′)| < 2
|n− n′|d−2 (1.32)

and from (1.27), (1.23), that

|(H + io)−1(n, n′)| < C
∑
n1,n2

1
|n− n1|d+ 19

10

1
|n1 − n2|d−2

1
|n2 − n′|d+ 19

10

<
C

|n− n′|d−2 .

This proves inequality (1.6).

Remarks.

(1) Smoothness condition on M̂ may be weakened to

∂(α)M̂(ξ) ∈ L1
ξ for |α| < d+ 4. (1.33)

(2) The proof of Lemma 1.2 shows that∣∣(H + io)−1(n, n′)
∣∣ < C|n− n′|−(d−2) (1.34)

whenever H has the form

H = ∆+A+ P

where A is a convex combination of operators cMd + dMc as described
in Lemma 1.2 and

|P (n, n′)| < κ

|n− n′|d+δ(|n| + |n′|)2+δ (1.35)

for some δ > 0 and κ = κ(δ).
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2 A Probabilistic Estimate

Let for simplicity the random variables (ωn)n∈Zd be Bernoulli.
Considering a s-tuple (n1, . . . , ns), we say that there is ‘cancellation’ if

ωn1 · · ·ωns = 1. (2.1)

Say that (n1, . . . , ns) is ‘admissible’ if for any segment 1 ≤ s1 < s2 ≤ s, the
sub-complex (ns1 , ns1+1, . . . , ns2) does not cancel.

Use the notation
∑(∗)
n1,...,ns

to indicate summation restricted to admissible
s-tuples.

The interest of this notion is clear from the following

Lemma 2.2. For s ≥ 2

∥∥∥∥
(∗)∑

n1,...,ns

ωn1 · · ·ωnsa(0)
n,n1

a(1)
n1n2

· · · a(s)
ns,n′

∥∥∥∥
L2
ω

≤ Cs

[ ∑
n1,...,ns

|a(0)
n,n1

· · · a(s)
ns,n′ |2

]1/2
. (2.3)

Proof. We may clearly assume a(j)
m,n ≥ 0.

Since in the
∑∗ summation no (n1, . . . , ns) cancels, there is some index

ns′ which is not repeated or repeated an odd number of times.
Specifying a subset I of {1, . . . , s} of odd size (at most 2s possibilities),

we consider now s-tuples of the form

(ν(1),m, ν(2),m, ν(3),m · · · )

where m ∈ Z
d appears on the I-places and ν(1), ν(2), . . . are admissible com-

plexes indexed by sub-intervals of {1, . . . , s} determined by I.
Thus, enlarging the

∑(∗)-sum, (which we may by the positivity assump-
tion), it follows that

∥∥∥∥
(∗)∑

n1,...,ns

ωn1 . . . ωnsa
(0)
n,n1

· · · a(s)
ns,n′

∥∥∥∥
L2
ω

≤
∑
I

∥∥∥∥∥
∑
m∈Zd

ωm

[ (∗)∑
ν(1)

||
(n1,...,ns1 )

ωn1 · · ·ωns1a(0)
n,n1

· · · a(s1)
ns1 ,m

]

[ (∗)∑
ν(2)

||
(ns1+2,...,ns2 )

ωns1+2 · · ·ωns2a(s1+1)
m,ns1+2

· · · a(s2)
ns2 ,m

]
· · ·
∥∥∥∥∥
L2
ω

(2.4)
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where, for fixed m,

m �∈ {n1, . . . , ns1 , ns1+2, . . . , ns2 , ns2+2, . . .}.
We used here that if (n1, . . . , ns) is admissible, then so is (ns1 , ns1+1, . . . , ns2)
for all 1 ≤ s1 ≤ s2 ≤ s.

Enlargement of the original sum
∑(∗) enables thus to get the product

structure in (2.4). The number of factors is at least 2.
Thus the preceding and a standard decoupling argument implies

(4) ≤
∑
I

[ ∑
m∈Zd

∥∥∥∥
[ (∗)∑
ν(1)

][ (∗)∑
ν(2)

]
· · ·
∥∥∥∥

2

L2
ω

]1/2

. (2.5)

Next, by Hölder’s inequality and moment-equivalence, we get

∑
I

[ ∑
m∈Zd

∥∥∥∥
(∗)∑
ν(1)

∥∥∥∥
2

L2
ω

∥∥∥∥
(∗)∑
ν(2)

∥∥∥∥
2

L2
ω

· · ·
]1/2

. (2.6)

Preceding by induction on s, we obtain thus

∑
I


 ∑
m∈Zd

[ ∑
n1,...,ns1

|a(0)
n,n1

· · · a(s1)
ns1 ,m

|2
]

[ ∑
ns1+2,··· ,ns2

|a(s1+1)
m,ns1+2

· · · a(s2)
ns2 ,m

|2
]

· · ·



1/2

< (2.3).

This proves Lemma 2.2.
Expressions considered in Lemma 2.1 appear when writing out matrix

elements of products (
A(0)VωA

(1)Vω · · ·A(s))(n, n′)

where the A(s′) are matrices and Vω a random potential

Vω(n) = ωnvn.

We use the notation
(A(0)VωA

(1)Vω · · ·A(s))(∗) (2.7)

to indicate that, when writing out the matrix product as a sum over multi-
indices, we do restrict the sum to the admissible multi indices.

Lemma 2.2 then implies that

Eω

[|(A(0)VωA
(1)Vω · · ·A(s))(∗)(n, n′)|]

< Cs

[ ∑
n1,···ns

|vn1 |2 · · · |vns |2 |A(0)(n, n1)|2 · · · |A(s)(ns, n′)|2
]1/2

. (2.8)
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3 Green’s Function Estimate

Returning to (1.1), let d ≥ 5 and denote G0 = (−∆)−1, i.e.

G0(n, n′) =
∫
e−2πi(n−n′).ξ

−∆̂(ξ)
dξ

=
∫

e−2πi(n−n′)ξ

|ξ|2 + 0(|ξ|4)
dξ

hence
|G0(n, n′)| < C

1
|n− n′|d−2 . (3.1)

Let

Vω(n) = ωnvn (ωnassumed Bernoulli) (3.2)

vn = κ|n|−α (3.2′)

where we assume
2
5
< α <

1
2
. (3.3)

(the argument will be developed further in §5 to cover α > 1
3 ).

Clearly

W2 =
∫
VωG0Vωdω (3.4)

is the diagonal operator

W2(n) = G0(0, 0)v2
n (3.4′)

(observe that G0(0, 0) is real).
Denote by W4 the operator

W4(n, n′) =

{
v2
nv

2
n′G0(n, n′)3 for n �= n′

0 otherwise
(3.5)

hence from (3.1), (3.2′)

|W4(n, n′)| < κ4

|n|2α|n′|2α|n− n′|3(d−2) . (3.6)

This operator arises from the 4-tuples

......................................................................................................................................................................................
..................

..............
............
...........
..........
..........
.........
.........
..........................................................................................................................................................................................................

..........................
.....................

...................
...........•n •n

′
•n •n

′
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Notice that
W4 = cMc+

(
K̂(0) −K(0)

)
c2 (3.7)

where

cn =
κ2

|n|2α = v2
n (3.8)

and M is the convolution operator with symbol

K̂ − K̂(0), K̂ = Ĝ0 ∗ Ĝ0 ∗ Ĝ0 (3.9)

which is an even and symmetric function in ξ1, . . . , ξd and satisfying

∂
(α)
ξ K̂ ∈ L1

ξ for |α| < 3(d− 2).

In order to meet the condition (1.33), we require thus 3(d − 2) ≥ d + 4,
i.e. d ≥ 5.

Since from the preceding

K̂(ξ) − K̂(0) = .|ξ|2 + 0(|ξ|4) (3.10)

the operator W = cMc clearly satisfies the conditions of Lemma 1.2.
Thus from (1.6)

|(−∆+W + io)−1(n, n′)| < C|n− n′|−(d−2). (3.11)

We renormalize Vω as
Ṽω = Vω +W2 − ρv4 (3.12)

denoting
σ = G0(0, 0) and ρ = 2σ3 − K̂(0).

Thus from (3.7)
W4 = W + (σ3 − ρ)v4.

Consider
H = −∆+ Ṽω (3.13)

with Green’s function G = G(z).
For notational simplicity, we also denote G(io) by G.
From the resolvent identity, we get

G = G0 −GṼ G0 = G0 −GV G0 −GW2G0 + ρGv4G0

and iterating (using the (∗)-notation for admissible complexes - cf. (2.7)) we
obtain

= G0 −G0V G0 +GṼ G0V G0 −GW2G0 + ρGv4G0

= G0 −G0V G0 +GV G0V G
(∗)
0 + ρGv4G0 +GW2G0V G0 − ρGv4G0V G0

∼∼∼∼∼∼∼∼∼∼∼∼
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= G0 −G0V G0 +G0V G0V G
(∗)
0 −GṼ (G0V G0V G0)∗

+ GW2G0V G0 + ρGv4G0 −ρGv4G0V G0
∼∼∼∼∼∼∼∼∼∼∼∼

= G0 −G0V G0 +G0V G0V G
(∗)
0 − (GV G0V G0V G0)∗ + σGW2V G0

− GW2(G0V G0V G0)∗ + ρGv4G0 − ρGv4G0V G0
∼∼∼∼∼∼∼∼∼∼∼∼

+ ρGv4(G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

= G0 −G0V G0 +G0V G0V G
(∗)
0 − (G0V G0V G0V G0)∗

+ GṼ (G0V G0V G0V G0)∗ + σG0W2V G0 − σGṼ G0W2V G0

− GW2(G0V G0V G0)∗ + ρGv4G0 − ρGv4G0V G0
∼∼∼∼∼∼∼∼∼∼∼∼

+ ρGv4(G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

= G0 −G0V G0 +G0V G0V G
(∗)
0 − (G0V G0V G0V G0)∗ + σG0W2V G0

+ (GV G0V G0V G0V G0)∗ − σGW2(V G0V G0)∗ − σ(GV G0W2V G0)∗

− σ3Gv4G0 +GW4G0 − σG(W2 − ρv4)G0W2V G0
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

+ G(W2 − ρv4)(G0V G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

+ ρGv4G0

− ρGv4G0V G0
∼∼∼∼∼∼∼∼∼∼∼∼

+ ρGv4(G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

G = G0 −G0V G0 + (G0V G0V G0)(∗) − (G0V G0V G0V G0)∗ + σG0W2V G0

+ (G0V G0V G0V G0V G0)∗ − σG0W2(V G0V G0)∗ − σ(G0V G0W2V G0)∗

(3.14)
− GṼ (G0V G0V G0V G0V G0)∗

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
+ σGṼ G0W2(V G0V G0)∗

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
+ σGṼ (G0V G0W2V G0)∗

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
(3.15)

+ GWG0 (3.16)
− σG(W2 − ρv4)G0W2V G0

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
+G(W2 − ρv4)(G0V G0V G0V G0)∗

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
− ρGv4G0V G0

∼∼∼∼∼∼∼∼∼∼∼∼
+ ρGv4(G0V G0V G0)∗

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
. (3.15)

(We use here the notation ∼∼ for contributions at least of order 5 in V –
these terms are not expanded further.)

The next step is to move (3.16) to the left member. We get G(1 −WG0).
Multiply then both sides on the right by (1 − WG0)−1 and observe that
G0(1 −WG0)−1 = (−∆−W )−1 ≡ G′

0, where, by (3.11)

|G′
0(n, n′)| < C|n− n′|−(d−2). (3.17)

This gives
G = A+GB (3.18)

with

A = G′
0 −G0V G

′
0 + (G0V G0V G

′
0)∗ − (G0V G0V G0V G

′
0)∗
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+ σG0W2V G
′
0 + (G0V G0V G0V G0V G

′
0)∗ − σ(G0W2V G0V G

′
0)∗

− σ(G0V G0W2V G
′
0)∗ (3.19)

and

B = − Ṽ
(
(G0V G0V G0V G0V G

′
0)∗ + σ(G0W2V G0V G

′
0)∗

+ σ(G0V G0W2V G
′
0)∗)

+ (W2 − ρv4)
[− σG0W2V G

′
0 + (G0V G0V G0V G

′
0)∗]

+ ρv4[−G0V G
′
0 + (G0V G0V G

′
0)∗]. (3.19′)

Apply inequality (2.8) to estimate the matrix elements of the (random) ma-
trices A,B given by (3.19), (3.19′). Clearly, with large probability

|A(n, n′)| < C|n− n′|−(d−2). (3.20)

We have indeed

Eω

[|(G0V G0V G0V G0V G
′
0)∗(n, n′)|2]1/2

�
[ ∑
n1,n2,n3,n4

1
|n− n1|2(d−2)

κ2

|n1|2d
1

|n1 − n2|2(d−2)

κ2

|n1|2α
1

|n2 − n3|2(d−2)

κ2

|n3|2α
1

|n3 − n4|2(d−2)

κ2

|n4|2α
1

|n4 − n′|2(d−2)

]1/2

< Cκ4 1
min(|n|4α, |n′|4α)

1
|n− n′|d−2 . (3.21)

Estimate (3.21) also holds for the matrices

(G0W2V G0V G
′
0)∗ and (G0V G0VW2G

′
0)∗.

Similarly

Eω

[|(G0W2V G
′
0)(n, n′)|] � 1

min(|n|3α, |n′|3α)|n− n′|d−2

Eω

[|(G0V G0V G0V G
′
0)∗(n, n′)|] � 1

min(|n|3α, |n′|3α)|n− n′|d−2 .

Consequently

Eω

[|B(n, n′)|] < C
κ5

min(|n|5α, |n′|5α)|n− n′|d−2 . (3.22)

Write from (3.18)
G = A(1 −B)−1 (3.23)

where, from (3.22) and the assumption



90 J. Bourgain

α >
5
2

1 −B may be inverted by a Neumann series

(1 −B)−1 = 1 −B′

with B′ satisfying (3.22).
Thus

G = A−AB′

with A satisfying (3.20) and

|(AB′)(n, n′)| <
∑
n1

1
|n− n1|d−2 min(|n′|5α, |n1|5α)|n1 − n′|d−2

� 1
|n′|5α|n− n′|d−4 +

1
|n− n′|d−2 .

Thus
|G(n, n′)| � 1

|n′|5α|n− n′|d−4 +
1

|n− n′|d−2

and by self-adjointness considerations, also

|G(n, n′)| � 1
|n|5α|n− n′|d−4 +

1
|n− n′|d−2 .

Therefore we get in conclusion the estimate

|G(n, n′)| < C

|n− n′|d−2 (3.24)

for the Green’s function G(0 + io) of H = −∆+ Ṽ .

4 Construction of an Extended State

Denote δ̂0 ∈ �∞(Zd) the vector with 1-coordinates thus

δ̂0(n) = 1 for all n ∈ Z
d. (4.1)

Thus
∆δ̂0 = 0 (4.2)

and δ̂0 is an extended state for the free Laplacian ∆.
In order to construct a (proper) extended state for H = −∆+ Ṽω we will

proceed in 2 steps.
First we construct an extended state for the operator −∆−W ≡ H ′

0 with
W introduced in (3.11).
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We use the construction described in §1, in particular (1.24), which does
apply to H ′

0 (see the discussion in §3)).
Thus

−H ′
0 = (1 +Q)(−∆+ P ′′)(1 +Q∗) (4.3)

where

|Q(n, n′)| � κ2

|n− n′|d+ 19
10

(4.4)

and

|P ′′(n, n′)| � κ2

|n− n′|d+ 1
2 |n|1+α

2 |n′|1+α
2

(4.5)

(in fact α replaced by 2α, which will be irrelevant); see (1.23), (1.26).
Writing formally

ζ = (1 +Q∗)−1(1 +G0P
′′)−1δ̂0 (4.6)

it follows from (4.2), (4.3) that

H ′
0ζ = 0.

We justify (4.6). We claim that ζ is a perturbation of δ̂0 in �∞(Zd). To see
this, it will suffice to show that

‖Q∗‖�∞(Zd)→�∞(Zd) < κ (4.7)

and
‖G0P

′′‖�∞(Zd)→�∞(Zd) < κ (4.8)

or equivalently

‖Q‖�1(Zd)→�1(Zd) < κ (4.7′)

‖(P ′′)∗G0‖�1→�1 < κ. (4.8′)

Assertion (4.7′) is obvious from (4.4).
To verify (4.8′), estimate for fixed n0∑

n

∣∣((P ′′)∗G0
)
(n, n0)

∣∣
≤ Cκ2

∑
n,n1

1
|n− n1|d+ 1

2 |n|1+α
2 |n1|1+α

2

1
|n1 − n0|d−2

< Cκ2
∑
n1

1
|n1|2+α

1
|n1 − n0|d−2 < Cκ2,

using (4.5).
Therefore

ζ = δ̂0 + o(1)
(
in �∞(Zd)

)
. (4.9)
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Next, we construct an extended state for

H = −∆+ Ṽ = H ′
0 +W + Ṽ

by defining
η = ζ −G(W + Ṽ )ζ. (4.10)

Again, we show that η is a perturbation of ζ in �∞(Zd) (with large probability
in ω).

Denoting as in §3 by G′
0 = (H ′

0)−1, the resolvent identity implies that

G = G′
0 −G(W + Ṽ )G′

0 (4.11)

hence, recalling (3.18).

−G(W + Ṽ ) = (G−G′
0)H ′

0

= (A−G′
0)H ′

0 +GBH ′
0. (4.12)

Recalling the definition (3.19), (3.19′) of A,B, it follows from (4.12) that

−G(W + Ṽ )ζ =
−G0V ζ + (G0V G0V )∗ζ − (G0V G0V G0V )∗ζ + σG0W2V ζ+

(G0V G0V G0V G0V )∗ζ − σ(G0W2V G0V )∗ζ − σ(G0V G0W2V )∗ζ
(4.13)

+GΘ (4.14)

with

Θ = Θω =

− Ṽ
(
(G0V G0V G0V G0V )∗ζ + σ(G0W2V G0V )∗ζ + σ(G0V G0W2V )∗ζ

)
(4.15)

+ (W2 − σW 2
2 )[−σG0W2V ζ + (G0V G0V G0V )∗ζ] − ρv4G0V ζ

+ ρv4(G0V G0V )∗ζ. (4.16)

The bounds on (4.13), (4.15), (4.16) are probabilistic in ω.
It is important here that ζ does not depend on ω. Thus

|(G0V ζ)(n)| =
∣∣∣∣∑
n′
G0(n, n′)vn′ωn′

∣∣∣∣
has expectation

< Cκ

[∑
n′

1
|n− n′|2(d−2) |n′|−2α

]1/2
< Cκ|n|−α. (4.17)
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The other terms in (4.13) satisfy similar (stronger) estimates. Again we ex-
ploit the ( )∗-restriction here. Thus with large probability,

(4.13) = o(1) in �∞(Zd)

(this is immediate from (4.17)).
Consider next (4.15). Here the estimates need to be done more carefully.
We have

Eω

∣∣((G0V G0V G0V G0V )∗ζ
)
(n)
∣∣

≤ Cκ4
( ∑
n1,n2,n3,n4

1
|n− n1|2(d−2)|n1|2α|n1 − n2|2(d−2)|n2|2α · · · |n4|2α

)1/2

< Cκ4|n|−4α (4.18)

and similarly for (G0W2V G0V )∗ζ, (G0V G0W2V )∗ζ. Thus, with large proba-
bility, we may ensure that the n-coordinate of (4.15) is bounded by

Cεκ
5|n|ε|n|−5α (4.19)

(for any ε > 0).
Similarly, the n-coordinate of (4.16) is bounded by

Cεκ
5|n|ε[|n|−2α|n|−3α + |n|−4α|n|−α]. (4.20)

Thus, from (4.19), (4.20) with large probability

|Θn| < κ|n|−5α+ for all n ∈ Z
d. (4.21)

Recalling that α > 5
2 and the bound (3.24) on the Green’s function G, we

conclude that (4.14) satisfies

|(GΘ)n| < Cκ

(∑
n1

1
|n− n1|d−2|n1|5α−

)
< Cκ

1
|n|5α−2−

hence
GΘ = o(1) in �∞(Zd).

From the preceding, (4.13), (4.14) = o(1) in �∞(Zd) which proves our claim
about η. This completes the proof of existence of a (proper) extended state for
H = −∆+ Ṽω = −∆+κωn|n|−α +κ2σ|n|−2α +κ4(K̂(0) − 2σ3)|n|−4α, α > 2

5
and κ small enough (with high probability in ω).

5 Relaxing the Condition on α

The purpose of previous analysis was to obtain (proper) extended states for
Hω = −∆ + Vω with random potential Vn = |n|−αωn, for some α < 1

2 . This
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exhibits thus a higher dimensional phenomenon, in the sense that for d = 1,
a.s., any extended state of Hω = −∆ + |n|−αωn, α < 1

2 , is in �2(Z). The
previous assumption α > 2

5 may be weakened by continuation of the pertur-
bative expansion (3.14)–(3.16) of the Green’s function G in higher powers of
V . It is reasonable to expect this type of argument to succeed for any fixed
α > 0 (with a number of resolvent iterations dependent on α). To achieve
this requires further renormalizations (cf. [S], §3) and taking care of certain
additional difficulties due to the presence of a potential. Notice that, from
the technical side, our approach differs from that in [S] in the sense that we
do not rely on the Feynman diagram machinery (but use the estimate from
§2 instead).

The technology developed here allows us easily to deal with smaller val-
ues of α by carrying out a few more steps. Again, only renormalization by
diagonal operators is required. There is one additional idea that will appear
in the next iteration. We assume now

1
3
< α <

1
2

for which we establish the estimate (3.24) on the Green’s function and the
existence of a proper extended state for Hω.

Consider the expansion (3.14)–(3.16) for G. The terms in (3.15) needs to
be developed up to order 6, which we mark again as ∼∼∼ .

Thus

− GṼ (G0V G0V G0V G0V G0)∗

= − GV (G0V G0V G0V G0V G0)∗ +G(W2 − ρv4)(G0V G0V G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

= − G(V G0V G0V G0V G0V G0)∗ −GW2(G0V G0V G0V G0)∗

+ σGW2(V G0V G0V G0)∗ + σGVW4G0

− GW4G0V G0 + σGW4V G0 +GVD4G0

+ G(W2 − ρv4)(G0V G0V G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

(5.1)

where D4 denotes the diagonal operator

Dn = (W4G0)(n, n) = V 2
n

[∑
n′
v2
n′G0(n− n′)4

]
(5.2)

hence

|D4(n)| < C
κ4

|n|4α . (5.2′)

Next

σGṼ G0W2(V G0V G0)∗

= σGV G0W2(V G0V G0)∗ − σG(W2 − ρv4)G0W2(V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼
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= σG(V G0W2V G0V G0)∗ + σ3Gv4G0V G0 − σ4Gv4V G0

− σG(W2 − ρv4)G0W2(V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

(5.3)

and

σGṼ (G0V G0W2V G0)∗

= σGV (G0V G0W2V G0)∗ − σG(W2 − ρv4)(G0V G0VW2G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

= σG(V G0V G0W2V G0)∗ + σGW2G0W2V G0 − σ4Gv4V G0

− σG(W2 − ρv4)(G0V G0VW2G0)∗. (5.4)

Substituting (5.1)–(5.4) in (3.14)–(3.16), it follows

G = G0 −G0V G0 + (G0V G0V G0)∗ − (G0V G0V G0V G0)∗ + σG0W2V G0

+ (G0V G0V G0V G0V G0)∗ − σG0W2(V G0V G0)∗−σ(G0V G0W2V G0)∗

− G(V G0V G0V G0V G0V G0)∗ + σGW2(V G0V G0V G0)∗

+ σG(V G0W2V G0V G0)∗ + σG(V G0V G0W2V G0)∗ + σGVW4G0

+ σGW4V G0 −G(W4 + ρv4 − σ3v4)G0V G0 − 2σ4Gv4V G0

+ GVDG0 + G(W2 − ρv4)(G0V G0V G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

− σG(W2 − ρv4)G0W2(V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

− σG(W2 − ρv4)(G0V G0W2V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

+ GWG0 + σρGv4G0W2V G0
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

+ ρGv4(G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

− ρGv4(G0V G0V G0V G0)∗
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

= A+GB +GWG0 −GWG0V G0 (5.5)

where

A = G0 −G0V G0 + (G0V G0V G0)∗ − (G0V G0V G0V G0)∗ + σG0W2V G0

+ (G0V G0V G0V G0V G0)∗ − σG0W2(V G0V G0)∗−σ(G0V G0W2V G0)∗

− G0(V G0V G0V G0V G0V G0)∗ + σG0W2(V G0V G0V G0)∗

+ σG0(V G0VW2G0V G0)∗ + σG0(V G0V G0W2V G0)∗ − 2σ4G0v
4V G0

+ σG0(VW4 +W4V )G0 +G0V D4G0 (5.6)

and

B = Ṽ G0(V G0V G0V G0V G0V G0)∗ − σṼ G0W2(V G0V G0V G0)∗

− σṼ (G0V G0VW2G0V G0)∗ − σṼ G0(V G0V G0VW2G0)∗

− σṼ G0(VW4 +W4V )G0 + 2σ4Ṽ G0v
4V G0 − Ṽ G0V DG0

+ (W2 − ρv4)
[
(G0V G0V G0V G0V G0)∗ − σG0W2(V G0V G0)∗

−σG0(V G0VW2G0)∗]
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+ ρv4[σG0W2V G0 + (G0V G0V G0)∗ − (G0V G0V G0V G0)∗]. (5.7)

Recall from §3 that
W = v2Mv2

where M is a convolution operator satisfying

|M(n, n′)| < C|n− n′|−3(d−2)

and
M̂(ξ) = ·|ξ|2 + 0(|ξ|4).

Hence, we may factorize
M = M1∆ (5.8)

with
|M1(n, n′)| < C|n− n′|−(d+2). (5.9)

Write then

Wn,n′ = v2
nM(n− n′)v2

n′ = v4
nM(n− n′) + v2

nM(n− n′)(v2
n′ − v2

n)

hence
W = v4M1∆+ P (5.10)

with

|P (n, n′)| < C
κ4

|n|2α
1

|n− n′|3(d−2)

∣∣∣∣ 1
|n′|2α − 1

|n|2α
∣∣∣∣

< Cκ4|n|−4α−1|n− n′|−2(d−2). (5.11)

From (5.9), (5.10), (5.11)

WG0 = v4M1 + PG0 (5.12)

satisfies

|(WG0)(n, n′)| < Cκ4(|n|−4α|n−n′|−(d+2)+|n|−(1+4α)|n−n′|−(d−2)). (5.13)

Write
WG0V G0 = v4M1V G0 + PG0V G0

GWG0V G0 = Gv4M1V G0 +GPG0V G0

= G0v
4M1V G0 −GṼ G0v

4M1V G0 +GPG0V G0. (5.14)

Rewrite (5.5) using (5.12), (5.14) as

G = A′ +GB′ (5.15)

with
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A′ = A−G0v
4M1V G0 (5.15′)

and

B′ = B + v4M1 + PG0 + Ṽ G0v
4M1V G0 − PG0V G0. (5.15′′)

We have

Eω

[|G0VωG0(n, n′)|] < Cκ
(|n|−α + |n′|−α)|n− n′|−(d−2)

and from (5.11)

Eω

[|PG0V G0(n, n′)|] < Cκ5
∑

|n|−(1+4α)|n− n1|−2(d−2)|n1 − n′|−(d−2)

< Cκ5|n|−(1+4α)|n− n′|−(d−2).

Also

Eω

[|(G0v
4M1VωG0)(n, n′)|]

< Cκ

(∑
n1

|(G0v
4M1)(n, n1)|2|n1|−2α|n1 − n′|−2(d−2)

) 1
2

< Cκ5
(∑

n1

|n− n1|−2(d−2)|n1|−10α|n1 − n′|−2(d−2)
) 1

2

< Cκ5(|n|−5α + |n′|−5α)|n− n′|−(d−2)

hence

Eω

[|(Ṽ G0v
4M1V G0)(n, n′)|] < Cκ6(|n|−6α + |n′|−6α)|n− n′|−(d−2).

Consequently
Eω

[|A′(n, n′)|] < C|n− n′|−(d−2) (5.16)

and

Eω

[|B′(n, n′)|] < Cκ6(|n|−6α + |n′|−6α)|n− n′|−(d−2)

+ κ4|n|−4α|n− n′|−(d+2) + κ5|n|−(1+4α)|n− n′|−(d−2)

< Cκ|n− n′|−(d+2) + κ(|n|−6α + |n′|−6α)|n− n′|−(d−2).

(5.17)

Thus (5.16), (5.17) correspond to the bounds (3.20), (3.22), except for the
first form in (5.17) which is harmless.

Rewriting (5.15) as
G = A′(1 −B′)−1

the assumption α > 1
3 and estimates (5.16), (5.17) permit then again to

establish the bound
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|G(n, n′)| < C|n− n′|−(d−2) (5.18)

(as in §3).
To construct the extended state η of H = −∆+Ṽ , proceed as in §4. Thus,

recalling the notation

H ′
0 = −∆+W, G′

0 = (H ′
0)−1

we rewrite (5.5) as

G = A(1 −WG0)−1 +GB(1 −WG0)−1 −GWG0V G0(1 −WG0)−1

= A(−∆)G′
0 +GB(−∆)G′

0 −GWG0V G
′
0

by (5.10)

= A(−∆)G′
0 +GB(−∆)G′

0 −Gv4M1V G
′
0 −GPG0V G

′
0

= A(−∆)G′
0−G0v

4M1V G
′
0+G

[
B(−∆)G′

0+Ṽ G0v
4M1V G

′
0−PG0V G

′
0
]
.

(5.19)

From (4.10), (4.11), the extended state η of H is given by

η = ζ + (G−G′
0)H ′

0ζ = δ̂0 + o(1) + (G−G′
0)H ′

0ζ in �∞(Zd).

By (5.19)

(G−G′
0)H ′

0ζ = (A−G0)(−∆)ζ −G0v
4M1V ζ

+ G
[
B(−∆) + Ṽ G0v

4M1V − PG0V
]
ζ

= o(1) in �∞(Zd).
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On Long-Time Behaviour of Solutions of
Linear Schrödinger Equations with Smooth
Time-Dependent Potential

J. Bourgain�

Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

In what follows, the spatial dimension d is assumed d ≥ 3. We consider
equations of the form

iut +∆u+ V (x, t)u = 0 (0.1)

where V is bounded and supt |V (t)| compactly supported (or with rapid decay
for |x| → ∞).

Further, appropriate smoothness assumptions on V will be made.
The issues considered here are

(i) Decay estimates for t → ∞
(ii) Given u(0) ∈ Hs(Rd), s > 0, the behaviour of

‖u(t)‖Hs for t → ∞.

The first part of the paper deals with small potentials (in fact, (i) is only
addressed in this context). Results in a similar spirit may have been obtained
earlier.

The second and main part of the paper addresses (ii) for large potentials.
It turns out that the situation is roughly analogous as in the case of periodic
boundary conditions (see [B1], [B2]).

More precisely, assuming V smooth (but, unlike in the case of periodic
bc, only smoothness in the x-variable is involved). Then

‖u(t)‖Hs ≤ Cε|t|ε ‖u(0)‖Hs for all ε > 0 (0.2)

and the |t|ε-factor cannot be removed.

1 Small Potentials

We prove the following

Proposition 1. Consider the equation

iut +∆u+ V (x, t)u = 0 (d ≥ 3) (1.0)

where V is a complex potential (we do not use self-adjointness here) satisfying
� This note is mainly motivated from discussions with I. Rodnianski and W. Schlag

and their forthcoming paper [R-S].

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 99–113, 2003.
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(1.1) sup
t

|V (t)| is compactly supported or with rapid decay for |x| → ∞
(1.2) sup

t
‖V (t)‖2 < γ small (depending on assumption (1.1) and (1.3))

(1.3) sup
t

‖V ‖∞ < C1.

Then

(1.4) Assuming moreover supt ‖V (·, t)‖Hs < γ for some s > d
2 − 1, the usual

L1 − L∞ decay estimate holds

‖u(t)‖∞ < C|t|− d
2 ‖u(0)‖1 (1.5)

(1.6) sup
t

‖u(t)‖2 ≤ C‖u(0)‖2

(1.7) Assume V smooth (with uniform bounds in time). Then, for all s ≥ 0

sup
t

‖u(t)‖Hs ≤ Cs‖u(0)‖Hs .

A. Denote ϕ = u(0).
It follows from (1.0) and Duhamel’s formula that

u(t) = eit∆ϕ+ i

∫ t

o

ei(t−τ)∆
[
u(τ)V (τ)

]
dτ

where
‖eit∆ϕ‖∞ < C|t|− d

2 ‖ϕ‖1.

Performing a Fourier decomposition in the x-variable, write

V = V0 +
∑
j≥1

Vj (1.8)

where
supp FxVj ⊂ B(0, 2j+2)\B(0, 2j)(∗). (1.9)

Estimate for t > 0∥∥∥∥
∫ t

0
ei(t−τ)∆

[
u(τ)V (τ)

]
dτ

∥∥∥∥
∞

≤
∑
j

∥∥∥∥
∫ t

0
ei(t−τ)∆

[
u(τ)Vj(τ)

]
dτ

∥∥∥∥
∞
.

Fix j and denote
δj = 2−j .

Write ∥∥∥∥
∫ t

0
ei(t−τ)∆[u(τ)Vj(τ)]dτ

∥∥∥∥
∞

(∗) Fx denotes ‘Fourier transform’ in the x-variable.
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≤
(∫ δj∧t

0
+
∫ t−δj

δj

+
∫ t

t−δj

)
‖ei(t−τ)∆[u(τ)Vj(τ)]‖∞dτ

= (1.10) + (1.11) + (1.12)

From the assumption (1.4)

‖Vj(t)‖2 ≤ 2−js‖V (t)‖Hs ≤ Cγ2−js (1.13)∥∥Fx[Vj(t)]∥∥1 ≤ C2j
d
2 ‖Vj(t)‖2 < Cγ2j(

d
2 −s). (1.14)

Recall also that ∣∣[eit∆(eiζ.xψ)
]
(x)
∣∣ =

∣∣(eit∆ψ)(x+ 2ζt)
∣∣.

Hence

‖eit∆(eiζ.xψ)‖∞ = ‖eit∆ψ‖∞
‖eit∆(vψ)‖∞ ≤ ‖v̂‖1 ‖eit∆ψ‖∞. (1.15)

From (1.14), (1.15)

(1.10) ≤ δj sup
0≤τ≤δj∧t

∥∥ei(t−τ)∆[u(τ)Vj(τ)
]∥∥

∞

< Cγ2j(
d
2 −s−1) sup

0≤τ≤δj∧t

∥∥ei(t−τ)∆u(τ)
∥∥

∞ (1.16)

(1.11) ≤ C

∫ t−δj

δj

|t− τ |− d
2 ‖u(τ)Vj(τ)‖1dτ. (1.17)

Since (1.1), we may ensure that Vj satisfies also

‖Vj(τ)‖1 < Cγ2−js. (1.18)

Hence

(1.17) ≤ Cγ2−js
∫ t−δj

δj

|t− τ |− d
2 ‖u(τ)‖∞dτ

≤ Cγ2−jsδ1− d
2

j t−
d
2 sup

0≤τ≤t

(
τ
d
2 ‖u(τ)‖∞

)
≤ Cγ2−j(s+1− d

2 )t−
d
2 sup

0≤τ≤t

(
τ
d
2 ‖u(τ)‖∞

)
. (1.19)

Again from (1.14), (1.15)

(1.12) ≤ δj sup
t−δj<τ<t

∥∥ei(t−τ)∆[u(τ)Vj(τ)
]∥∥

∞

< Cγ2j(
d
2 −s−1) sup

t−δj<τ≤t

∥∥ei(t−τ)∆u(τ)
∥∥

∞. (1.20)
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Collecting estimates (1.16), (1.19), (1.20), it follows

td/2‖u(t)‖∞ ≤ C‖ϕ‖1 + Csγ sup
o≤τ≤t

(
td/2‖ei(t−τ)∆u(τ)‖∞

)
+ Csγ sup

0≤τ≤t

(
τ
d
2 ‖u(τ)‖∞

)
. (1.21)

Consider the second term in (1.21). From Duhamel’s formula, we get also

|ei(t−τ)∆u(τ)| ≤ |eit∆ϕ| +
∣∣∣∣
∫ τ

0
ei(t−τ

′)∆[u(τ ′)V (τ ′)]dτ ′
∣∣∣∣

≤ |eit∆ϕ∣∣+
∫ t

0

∣∣ei(t−τ ′)∆[u(τ ′)V (τ ′)
]∣∣dτ ′

and the last term may be estimated as before.
Therefore, also

sup
0≤τ≤t

[
td/2‖ei(t−τ)∆u(τ)‖∞

] ≤ (1.21)

implying for γ small enough

sup
0≤τ≤t

td/2
∥∥ei(t−τ)∆u(τ)

∥∥
∞ ≤ C‖ϕ‖1. (1.22)

In particular (1.5) holds.

B. We will need the following

Lemma 2.1. For d ≥ 2 ∥∥eit∆ϕ∥∥
L2
tL

2
x,loc

≤ C‖ϕ‖2. (2.2)

Proof. From the local smoothing inequality∥∥D1/2
x eit∆ϕ

∥∥
L2
tL

2
x,loc

≤ C‖ϕ‖2. (2.3)

Thus it suffices to prove (2.2) for supp ϕ̂ ⊂ B(0, 1).
Write

eit∆ϕ(x) =
∫
ϕ̂(ξ)ei(x.ξ+t|ξ|

2)dξ ∼
∫ 1

0

[ ∫
Sd−1

ϕ̂(r.ζ)eirxζrd−1dζ

]
eitr

2
dr.

(2.4)
Make change of variable s = r2. We obtain∫ 1

0

[ ∫
Sd−1

· · ·
]
eits

1√
s
ds.
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Take L2
t -norm and apply Parseval. We get the bound

[ ∫ 1

0
| · · · |2 1

s
ds

]1/2
=
[ ∫ 1

0
| |2 1

r
dr

]1/2
. (2.5)

Estimate pointwise in x∣∣∣∣
∫
Sd−1

ϕ̂(rζ)eirx.ζrd−1dζ

∣∣∣∣ ≤
[ ∫

Sd−1
|ϕ̂(rζ)|dζ

]
rd−1

≤
[ ∫

Sd−1
|ϕ̂(rζ)|2dζ

]1/2
rd−1.

Hence

(2.5) ≤
[ ∫ 1

0

∫
Sd−1

|ϕ̂(rζ)|2.r2d−3dζdr

]1/2

≤
[ ∫ 1

0

∫
Sd−1

|ϕ̂(rζ)|2rd−1dρdζ

]1/2
(d ≥ 2)

= ‖ϕ̂‖2.

This proves Lemma 2.1.
We now prove (1.6) of Proposition 1.
Assume ϕ ∈ L2. From Duhamel’s formula and (2.2)

‖u‖L2
tL

2
x(loc )

≤ ‖eit∆ϕ‖L2
tL

2
x(loc )

+
{∫

dt

∣∣∣∣
∥∥∥∥
∫ t

0
ei(t−τ)∆

[
u(τ)V (τ)

]
dτ

∥∥∥∥
L2
x(loc )

∣∣∣∣
2}1/2

≤ C‖ϕ‖2 +
∥∥∥∥
∫ t−δ

0
ei(t−τ)∆

[
u(τ)V (τ)

]
dτ

∥∥∥∥
L2
tL

∞
x

+
∥∥∥∥
∫ t

t−δ
· · ·
∥∥∥∥
L2
tL

2
x

. (2.6)

Second term in (2.6) is bounded by∥∥∥∥
∫ t−δ

0
|t− τ |− d

2 ‖u(τ)V (τ)‖1dτ

∥∥∥∥
L2
t

≤ γ

∥∥∥∥
∫ t−δ

0
|t− τ |− d

2 ‖u(τ)‖L2
x,loc

dτ

∥∥∥∥
L2
t

(by (1.2))

≤ γ

∥∥∥∥
∫ ∞

0
(δ + |t− τ |)− d

2 ‖u(τ)‖L2
x,loc

dτ

∥∥∥∥
L2
t

< Cδγ‖u‖L2
tL

2
x,loc

(d ≥ 3). (2.7)

Third term in (2.6) is bounded by
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∫ t

t−δ
‖u(τ)V (τ)‖L2

x
dτ

∥∥∥∥
L2
t

≤ ‖V ‖∞

∥∥∥∥
∫ t

t−δ
‖u(τ)‖L2

loc
dτ

∥∥∥∥
L2
t

≤ C1δ‖u‖L2
tL

2
x,loc

. (2.8)

From (2.6), (2.7), (2.8), it follows that

‖u‖L2
tL

2
x,loc

≤ C‖ϕ‖2. (2.9)

Next, estimate

‖u(t)‖2 ≤ ‖ϕ‖2 +
∥∥∥∥
∫ t

0
ei(t−τ)∆[u(τ)V (τ)]dτ

∥∥∥∥
2

and second term using duality by∫ t

0

∫
|eiτ∆ψ|.|u(τ)| |V (τ)|dxdτ

≤ C1

∫ ∞

0
‖eiτ∆ψ‖L2

x,loc
‖u(τ)‖L2

x,loc
dτ (where ‖ψ‖2 = 1)

< CC1‖ψ‖2‖ϕ‖2 (by (2.2) and (2.9))
< C‖ϕ‖2.

This proves (1.6).

C. Assume V smooth (a more restricted assumption is easily derived from
what follows).

We prove (1.7) of Proposition 1.
Take s = 1 (the general case is similar).
Thus

iut +∆u+ V u = 0

implying
i(Dxu)t +∆(Dxu) + V Dxu+ (DxV )u = 0. (3.1)

Hence

i
·→
(̂
u
Du

)
+∆

(
u
Du

)
+
(
V 0
DV V

)(
u
Du

)
= 0. (3.2)

Since the proof of (1.6) extends to the vector valued case (and does not use
self-adjointness), (3.2) implies

‖u(t)‖2 + ‖Dxu(t)‖2 ≤ C
(‖u(0)‖2 + ‖Dxu(0)‖2

)
thus

‖u(t)‖H1 ≤ C‖u(0)‖H1 .

This proves Proposition 1.
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2 Large Smooth Potentials

We still assume d ≥ 3. The following statement establishes a growth estimate
for higher Sobolev norms.

Proposition 2. Consider the equation

iut +∆u+ V (x, t)u = 0

where V is real, bounded, and sup |V (t)| compactly supported (or with rapid
decay for |x| → ∞). (No smallness assumption).

Assume
sup
t

∥∥D(s′)
x V (t)

∥∥
∞ < Cs′ for all s′. (4.1)

Then
‖u(t)‖Hs ≤ Cε|t|ε ‖u(0)‖Hs for all ε > 0. (4.2)

Remark. No smoothness assumption in t is made; similar statement under
less restrictive assumptions than (4.1) result from the argument below.

Proof. Define
|||f ||| = inff=f1+f2

(‖f1‖2 + ‖f2‖∞
)
. (4.3)

Assume ϕ = u(0) ∈ H1.
We first make an estimate on |||Dxu(t)|||.
From Duhamel’s formula

|||Dxu(t)||| ≤ ‖eit∆Dxϕ‖2 +
∥∥∥∥
∫ t−A

0
ei(t−τ)∆Dx[u(τ)V (τ)]dτ

∥∥∥∥
∞

+
∥∥∥∥
∫ t

t−A
ei(t−τ)∆Dx[u(τ)V (τ)]dτ

∥∥∥∥
2

≤ ‖ϕ‖H1 + (4.4) + (4.5)

(4.4) ≤
∫ t−A

0
|t− τ |− d

2
[‖Dxu(τ)V (τ)‖1 + ‖u(τ) ·DxV (τ)‖1

]
dτ

≤
∫ t−A

0
|t− τ |− d

2
[
C‖Dxu(τ)‖L1

loc
+ C‖u(τ)‖2

]
dτ

� A1− d
2 sup
τ<t

|||Dxu(τ)||| + C‖ϕ‖2. (4.6)

To estimate (4.5), take ψ ∈ L2, ‖ψ‖2 = 1 and write

∫ t

t−A

∫ ∣∣D1/2
x [eiτ∆ψ]

∣∣ ∣∣D1/2
x

[
u(τ)V (τ)

]∣∣dxdτ
≤ A1/2

∥∥D1/2
x [eiτ∆ψ

]∥∥
L2
τL

2
x,loc

sup
τ∈[t−A,t]

∥∥D1/2
x

[
u(τ)V (τ)

]∥∥
2
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≤ CA1/2‖u(0)‖1/2
2

(‖u(0)‖2 + sup
τ<t

|||Dxu(τ)|||)1/2 (4.7)

(using (2.3) and interpolation).
Thus from (4.6), (4.7)

|||Dxu(t)||| ≤ ‖ϕ‖H1 + CA1/2‖ϕ‖2 + CA1− d
2 sup
τ<t

|||Dxu(τ)|||

+ CA1/2‖ϕ‖1/2
2

[
sup
τ<t

|||Dxu(τ)|||]1/2. (4.8)

This implies by appropriate choice of A that

sup
t

|||Dxu(t)||| ≤ C‖ϕ‖H1 . (4.9)

Similarly, one establishes that

sup
t

|||D(s)
x u(t)||| ≤ Cs‖ϕ‖Hs . (4.10)

Next, estimate

‖u(t)‖Hs ≤ ‖ϕ‖Hs +
∫ t

0

∥∥[u(τ)V (τ)
]∥∥
Hs
dτ

≤ ‖ϕ‖Hs + t sup
τ<t

‖u(τ)V (τ)‖Hs

≤ ‖ϕ‖Hs + tCs(V ) sup
t

s′≤s

|||D(s′)
x u(τ)|||

< Cs(V )t‖ϕ‖Hs (4.11)

by (4.10).
Thus the linear flow map St : Hs → Hs has a norm bounded by Cs(V ).t.

For s = 0, St is unitary.
By interpolation, we get for given s > 0 and s1 > s large

‖St‖Hs→Hs ≤ [Cs1(V )t
] s
s1 .

Hence, since V is assumed smooth

‖u(t)‖Hs ≤ Cε(V )tε‖ϕ‖Hs for all ε > 0.

This proves Proposition 2.

3 An Example

The factor T ε in (4.2) is necessary. To exhibit such growth phenomenon, we
need presence of bound states. Thus first consider −∆ + v(x) = H0 with a
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bound state ϕ and next certain time dependent perturbations H0 + εV (x, t).
Rather than defining H0 as above, let

H0 = −∆− P (5.0)

where P is a real and smooth Fourier multiplier s.t.

supp P̂ ⊂ B(0, 2) and P̂ (ξ) = |ξ|2 for |ξ| ≤ 1. (5.1)

Let then 0 ≤ ϕ ≤ 1 be a rapidly decaying function such that supp ϕ̂ ⊂ B(0, 1).
Thus from (5.0), (5.1)

H0ϕ = 0. (5.2)

This alternative construction will avoid certain technical difficulties, since the
spectral projections related to H0 are now simply Fourier multipliers.

Let d = 3.

(ii) Fix large time T . Let N be a large number and ξ0 = Ne1 ∈ R
3.

Let V = V (x, t) be real and satisfying supp FxV ⊂ B(ξ0, 1) ∪ B(−ξ0, 1)
(to be specified later).

Let 0 ≤ η ≤ 1 be a bumpfunction with rapid decay for |x| → ∞ such that

supp η̂ ⊂ B(0, 1) (5.3)

V η decays rapidly for |x| → ∞. (5.4)

Consider the linear Schrödinger equation

iut − (∆+ P )u+ εV ηu = 0 for 0 ≤ t ≤ T (5.5)

with datum
u(0) = ϕ.

Write
u = ϕ+ U

with U satisfying, by (5.2){
iUt − (∆+ P )U + εV ηϕ+ εV ηU = 0
U(0) = 0.

(5.6)

Denote Q a smooth Fourier multiplier such that

Q̂(ξ) = 0 if |ξ| < N

8
and Q̂(ξ) = 1 for |ξ| > N

4
(5.7)

|∂αQ̂| < CN−|α|. (5.8)

(iii) From Duhamel’s formula and (5.6)
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U(T ) = iε

∫ T

0
ei(T−τ)H0

[
V (τ)ηϕ+ V (τ)ηU(τ)

]
dτ. (5.9)

From the local smoothing inequality and (5.1), (5.4), (5.7)

ε

∥∥∥∥
∫ T

0
ei(T−τ)H0Q

[
V (τ)ηU(τ)

]
dτ

∥∥∥∥
L2

= ε

∥∥∥∥
∫ T

0
ei(T−τ)∆Q

[
V (τ)ηU(τ)

]
dτ

∥∥∥∥
L2

≤ εN−1/2
∥∥∥∥
∫ T

0
ei(T−τ)∆D1/2

x

[
ηV (τ)U(τ)

]∥∥∥∥
L2

≤ CεN−1/2T 1/2 sup
τ<T

‖U(τ)‖L2
loc
. (5.10)

We estimate supτ<T ‖U(τ)‖L2
loc

.
From (5.9)

‖QU(T )‖L2
loc

= ε

∥∥∥∥
∫ T

0
ei(T−τ)∆Q

[
V (τ)ηu(τ)

]
dτ

∥∥∥∥
L2

loc

≤ ε

{∫ T−1

0

∥∥ei(T−τ)∆Q
[
V (τ)ηu(τ)

]∥∥
∞dτ

+
∫ T

T−1

∥∥ei(T−τ)∆Q
[
V (τ)ηu(τ)

]∥∥
2dτ

}

≤ Cε

{∫ T−1

0
|T − τ |−3/2‖V (τ)ηu(τ)‖1dτ + sup

τ≤T
‖u(τ)‖2

}
≤ Cε sup

τ≤T
‖u(τ)‖2 < Cε. (5.11)

Also, since V (τ)ηϕ = Q[V (τ)ηϕ]

(I −Q)U(T ) = iε

∫ T

0
ei(T−τ)H0(I −Q)

[
V (τ)η

(
QU(τ)

)]
dτ

‖(I −Q)U(T )‖2 ≤ εT sup
τ≤T

∥∥V (τ)η
(
QU(τ)

)∥∥
2

≤ CεT sup
τ≤T

‖QU(τ)‖L2
loc

< Cε2T (5.12)

by (5.11).
Estimating ‖U(τ)‖L2

loc
≤ ‖QU(τ)‖L2

loc
+ ‖(I − Q)U(τ)‖2, (5.11), (5.12)

imply
sup
τ<T

‖U(τ)‖L2
loc
< C(ε+ ε2T ). (5.13)
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Substitution in (5.10) gives therefore

ε

∥∥∥∥
∫ T

0
ei(T−τ)H0Q

[
V (τ)ηU(τ)

]
dτ

∥∥∥∥
2
< Cε2N−1/2T 1/2(1 + εT ). (5.14)

Consider next∥∥∥∥
∫ T

0
ei(T−τ)H0

[
V (τ)ηϕ

]
dτ

∥∥∥∥
2

=
∥∥∥∥
∫ T

0
e−iτ∆[V (τ)ηϕ

]
dτ

∥∥∥∥
2
. (5.15)

Define

ϕ1(x) = eix.ξ0ϕ(x) (5.16)

ψ = ψω =
∑
j∈Z

1
2NT<j≤NT

ωje
−i jN∆ϕ1

where {ωj}j∈Z are independent Bernoulli variables. (5.17)

Write

∣∣(e−is∆ϕ1)(x)
∣∣ =

∣∣∣∣
∫
eix(ξ0+ξ)e−i|ξ0+ξ|2sϕ̂(ξ)dξ

∣∣∣∣
=
∣∣∣∣
∫

|ξ|<1
ei[(x−2sξ0)ξ−s|ξ|2]ϕ̂(ξ)dξ

∣∣∣∣. (5.18)

Since for |ξ| < 1 ∣∣∂ξ[(x− 2sξ0)ξ − s|ξ|2]∣∣ > |x− 2sξ0| − 2|s|

it follows that (for a large constant C)∣∣(e−is∆ϕ1)(x)
∣∣ � |x− 2sξ0|−C if |x− 2sξ0| > 10|s|. (5.19)

Define
V (x, t) = Re (eit∆ψ) or V (x, t) = Im (eit∆ψ). (5.20)

It follows from (5.17) that

Eω

[‖ψω‖2
] ∼ (NT )1/2‖ϕ1‖2

and we may thus assume

‖ψ‖2 < C(NT )1/2. (5.21)

Next ∣∣eit∆ψ(x)
∣∣ ≤ ∑

j∈Z

j∼NT

∣∣(ei(t− j
N )∆ϕ1)(x)

∣∣. (5.22)
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If |x| < 1
2

∣∣t− j
N

∣∣N , (5.19) implies that

∣∣(ei(t− j
N )∆ϕ1)(x)

∣∣ � |Nt− j|−C .

If |x| > 1
2 |t− j

N |N , then

|η(x)| < |Nt− j|−C .

Hence ∣∣(ei(t− j
N )∆ϕ1)η

∣∣ < (1 + |Nt− j|)−C(1 + |x|)−C . (5.23)

Thus from (5.20), (5.22), (5.23)

|V (x, t)η(x)| <
∑
j∈Z

(1 + |Nt− j|)−C(1 + |x|)−C < C(1 + |x|)−C . (5.24)

Returning to (5.15), we get by (5.21) and appropriate choice in (5.20)

(5.15) =
∥∥∥∥
∫ T

0
e−iτ∆[V (τ)ηϕ]dτ

∥∥∥∥
2

> c(NT )−1/2
∫ T

0

∫
|eiτ∆ψ|2ηϕ (5.25)

= c(NT )−1/2
∫ T

0

∫ ∣∣∣∣∑
j

ωje
i(τ− j

N )∆ϕ1

∣∣∣∣
2

ηϕ.

Averaging over ω, we get a lower bound

(NT )−1/2
∑
j∈Z

NT
2 <j<NT

∫ j+1
N

j
N

dτ

∫
dx|ei(τ− j

N )∆ϕ1|2ηϕ. (5.26)

It follows from (5.18) that for |τ − j
N | < 1

100N ,

∣∣(ei(τ− j
N )∆ϕ1

)∣∣ ≈ ∣∣∣∣ϕ
(

· +2
(
τ − j

N

)
ξ0

)∣∣∣∣ ≈ |ϕ| = ϕ.

Therefore clearly

(5.15), (5.25) > c(NT )−1/2NT
1

100N

∫
ηϕ3 > c

(
T

N

)1/2

. (5.27)

Collecting estimates (5.14), (5.27) it follows from (5.9) that

‖QU(T )‖2 > cε

(
T

N

)1/2

− Cε2
(
T

N

)1/2

(1 + εT ). (5.28)
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Choosing T ∼ ε−2, (5.28) implies

‖Qu(T )‖2 = ‖QU(T )‖2 > CN−1/2. (5.29)

Let s1 be an arbitrary large (fixed) exponent.
In order for εV η to satisfy a bound

ε‖V (τ)η‖Hs1 ∼ εNs1 < 1 (5.30)

take ε = N−s1 , hence we have

T ∼ N2s1

and, from (5.29), for s > 1
2

‖u(T )‖Hs > cT
2s−1
4s1 . (5.31)

The construction described above provides thus arbitrary smooth time-
dependent potentials εV (τ)η for which (5.5) admits a solution u, supp û(0) ⊂
B(0, 1) and satisfying (5.31) for some (fixed) large time T .

(iv) To obtain a “full counter-example”, we will glue constructions as per-
formed above on disjoint time intervals.

Thus define a potential

W (x, t) =
∞∑
r=1

εrχr(t)Vr(x, t)η(x) (5.32)

where χr are localizing to disjoint time intervals [Tr2 , Tr] (take χr smooth),

Tr increases rapidly, εr = T
−1/2
r , Nr = T

1
4r
r and Vr introduced as above.

Thus (letting s1 = r in the preceding), we may insure

∥∥∂(α)
x (εrVrη)

∥∥
L2
x

+
∥∥∂(β)

t (εrVrη)
∥∥
L2
x
< 2−r for |α|, β ≤ r.

Therefore, we get clearly ∀α, β

sup
x,t

∣∣∂(α)
x ∂

(β)
t W

∣∣ < Cαβ . (5.33)

Moreover supt |W (x, t)| decreases rapidly for |x| → ∞, cf. (5.24).
Fix r and consider the initial value problem on [2Tr−1, Tr]{

iut − (∆+ P )u+Wu = 0
u(t = 2Tr−1) = ϕ

or, equivalently
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iut − (∆+ P )u+ εrVrηu = 0
u
(
t = 1

2Tr
)

= ϕ.

Then we have by (5.31)

‖u(Tr)‖Hs > T
2s−1
10r
r . (5.34)

(Choose s > 1
2 a fixed exponent.)

Denote S(t, t′) the flow map associated to i∂t − (∆+ P ) +W .
Reformulating the preceding

‖S(0, Tr)S(0, 2Tr−1)−1ϕ‖Hs = ‖S(2Tr−1, Tr)ϕ‖Hs > T
2s−1
10r
r . (5.35)

Define
ϕ̃ =

∑
r≥2

σrT
− 2s−1

20r
r S(0, 2Tr−1)−1ϕ (5.36)

where σr = ±1 to be specified.
By crude estimate, we obtain for any s′ ≥ 0 that

‖ϕ̃‖Hs′ ≤
∑
r

T
− 2s−1

20r
r ‖S(0, 2Tr−1)−1ϕ‖Hs′ ≤

∑
T

− 2s−1
20r

r B(Tr−1, s
′) < Cs′ ,

for Tr chosen sufficiently rapidly increasing.
Also

‖S(0, Tr)ϕ̃‖Hs >
∥∥∥∥∑
r′<r

σr′T
− 2s−1

20r′
r′ S(0, Tr)S(0, 2Tr′−1)−1ϕ

+ σrT
− 2s−1

20r
r S(0, Tr)S(0, 2Tr−1)−1ϕ

∥∥∥∥
Hs

−
∑
r′>r

T
− 2s−1

20r′
r′ B(Tr′−1, s). (5.37)

We may, assuming σr′ , r′ < r, obtained, choose σr s.t. the first term in (5.37)

is at least T− 2s−1
20r

r (5.35) > T
2s−1
20r
r . Hence

‖S(0, Tr)ϕ̃‖Hs > T
2s−1
20r
r − 1.

The conclusion is therefore

Proposition 3. Let d = 3 and denote γ(t) any increasing function s.t.

lim
r→∞

log γ(t)
log t

= 0.

There is a linear Schrödinger equation IVP
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iut − (∆+ P )u+W (x, t)u = 0, u(0) = ϕ̃ ∈
⋂
s′
Hs′

with P as above, W real and

sup
x,t

|∂(α)
x ∂

(β)
t W | < Cαβ ∀α, β

sup
t

|W (t)| with fast decay for |x| → ∞

and such that for s > 1
2

lim
t→∞

‖u(t)‖Hs
γ(t)

= ∞.
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On the Isotropy-Constant Problem for
“PSI-2”-Bodies

J. Bourgain
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1 Introduction and Statement of the Result

Assume K is a convex symmetric body in R
n, VolnK ≡ Vn(K) = 1. Assume

further that K is in an isotropic position, i.e.∫
K

xixjdx = LKδij (1 ≤ i, j ≤ n).

It is known that LK is bounded from below by a universal constant and, at
this point, still an open problem whether LK admits a universal upperbound
(thus independent of K and the dimension n). This problem has several
geometric reformulations. To mention one (the “high-dimensional” version
of the Busemann–Petty problem): Does every convex symmetric body in
R
n, Vn(K) = 1, admit a co-dimension-one section K ∩ H (H-hyperplane)

satisfying
Vn−1(K ∩H) > c

with c > 0 a universal constant?
Presently, the best (general) upperbound for LK is

LK < Cn1/4(logn) (1.1)

obtained in [Bo]. The present note is a direct outgrowth of the argument in
[Bo]. A key ingredient in the proof of (1.1) is indeed inequalities of the form

‖〈x, ξ〉‖Lψ2 (K) ≤ A‖〈x, ξ〉‖L2(K) (1.2)

valid for all linear forms 〈·, ξ〉 considered as functions on K,Vn(K) = 1. Here
Lψq (K), ψq(t) = et

q − 1, refers to the usual Orlicz-spaces on K, dx. Recall
that in general, there is the weaker inequality

‖〈x, ξ〉‖Lψ1 (K) ≤ C‖〈x, ξ〉‖L2(K) (1.3)

with c an absolute constant (see [Bo], which contains also similar results for
polynomials of bounded degree).

Definition. We say that K is a “ψ2-body” if the linear forms restricted to
K satisfy (1.2) for some constant A.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 114–121, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Theorem.
LK < C(A). (1.4)

More precisely
LK < C.A. log(1 +A). (1.5)

Remark. According to a recent result of Barthe and Koldobsky [B-K], the
�qn-balls (2 ≤ q ≤ ∞), normalized in measure, are ψ2-bodies.

In the next section, we prove the Theorem. We will first prove (1.4) and
then, with some extra care, (1.5). The argument relies on probabilistic results,
such as Talagrand’s majorizing measure and its consequences for subgaussian
processes and also “standard” facts and methods from the “Geometry of
Banach Spaces” for which the reader is referred to [Pi].

Acknowledgement. The author is grateful to V. Milman and especially A. Gi-
annopoulos for comments.

2 Proof of the Theorem

Assume K,V (K) = 1, in an isomorphic position and satisfying (1.2) (invari-
ant under affine transformation). Denote LK by L and let C stand for various
constants.

(i) Assumption (1.2) implies the following fact.
Let ||| ||| be any norm on R

n and {gi|i = 1, . . . , n} independent normalized
Gaussians. Let {vi|i = 1, . . . , n} be arbitrary vectors in R

n. Then

1
A.L.

∫
K

∣∣∣∣
∣∣∣∣
∣∣∣∣
n∑
i=1

xivi

∣∣∣∣
∣∣∣∣
∣∣∣∣dx ≤ C

∫ ∣∣∣∣
∣∣∣∣
∣∣∣∣
n∑
i=1

gi(ω)vi

∣∣∣∣
∣∣∣∣
∣∣∣∣dω. (2.1)

Some comments about this inequality. Denote T = {t ∈ R
n| |||t|||∗ ≤ 1}, where

||| |||∗ is the norm dual to ||| |||. Consider the process

Xt(x) =
n∑
i=1

xi
A.L.

〈vi, t〉

satisfying, by (4.3) and the fact that K is in an isotropic position,

‖Xt −Xt′‖Lψ2 (K) ≤
∥∥∥∥

n∑
i=1

xi
L

〈vi, t− t′〉
∥∥∥∥
L2
K

=
( n∑
i=1

|〈vi, t− t′〉|2
)1/2

≡ d(t, t′).

(2.2)
Thus (2.2) means that (Xt) is subgaussian wrt the pseudo-metric d on T . We
then combine the majorizing measure theorems of Preston [Pr1],[Pr2] (see
also [Fe]) and Talagrand [T] to get
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K

sup
t∈T

|Xt| ≤ C

∫
sup
t∈T

|Yt| (2.3)

with Yt the Gaussian process

Yt(ω) =
n∑
i=1

gi(ω)〈vi, t〉

(see [L-T], Theorem 12.16). Clearly (2.1) is equivalent to (2.3).

(ii) We replace K by

K1 = K ∩ [|x| < C2L
√
n
]

(2.4)

where C2 is a sufficiently large constant (see also the remarks in the next
section).

In particular
VolK1 ≈ 1

and for |ξ| = 1∫
K1

|〈x, ξ〉|2dx ≥
∫
K

|〈x, ξ〉|2dx− ‖〈x, ξ〉‖2
L4(K)V (K\K1)1/2

≥ L2 − CL2V (K\K1)1/2 >
1
2
L2 (2.5)

(we do use here the equivalence of all moments for linear functionals on K−a
consequence of (1.3)).

Denote by ‖ ‖ the norm induced on R
n by K1 and ‖ ‖∗ its dual. Thus

from (2.4)

‖x‖ ≥ 1
C2L

√
n

|x|

‖x‖∗ ≤ C2L
√
n |x|. (2.6)

(iii) With the above notations, we prove the following fact

Lemma. Let E be a subspace of R
n, dimE > n

2 such that

‖x‖∗ ≥ ρL
√
n|x| for x ∈ E. (2.7)

Then, for 0 < δ < 1
2 , there is a subspace F of E satisfying

dimF > (1 − δ) dimE (2.8)

and

‖x‖∗ ≥ cδ2
(

log
1
ρ

)−1
L

A

√
n|x| for x ∈ F. (2.9)
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Proof. It follows from (2.6), (2.7) that the Euclidean distance

dE,‖ ‖∗ ≤ C2ρ
−1.

Thus, considering the �-ellipsoid of E, ‖ ‖∗, we obtain (cf. [Pi] for instance)

∫ ∥∥∥∥
m∑
i=1

λigi(ω)ei

∥∥∥∥
∗

�
(

log
C

ρ

)
m (2.10)

∫ ∥∥∥∥
m∑
i=1

λ−1
i gi(ω)ei

∥∥∥∥
(E,‖ ‖∗)∗

< C. (2.11)

Here m = dimE, (ei)1≤i≤m is an appropriate 0B in E and λ1 ≤ λ2 ≤ · · · ≤
λm.

We first exploit (2.11). Fix 0 < ε < 1. From the M∗-lower bound, there
is a subspace E1 of E,

dimE1 > (1 − ε)m (2.12)

such that

‖x‖∗ ≥ cε1/2
√
m

(∑
λ−2
i x2

i

)1/2

for x ∈ E1. (2.13)

Thus we use here the “M∗-result” (see again [Pi]) to a subspace of R
n, ‖ ‖∗.

Next, we use (2.10) together with (2.1) (which remains obviously true
with K replaced by K1). Thus, letting in (2.1) ||| ||| = ‖ ‖∗ and vi = λiei, it
follows that ∫

K1

∥∥∥∥
m∑
i=1

λi
xi
L
ei

∥∥∥∥
∗
dx �

(
log

C

ρ

)
Am

L

2

∑
λi <

∑
λi

(∫
K1

x2
i

L
dx

)
� (log

C

ρ

)
Am (2.14)

where we also use (2.5).
From (2.14), (2.13)

λ(1−ε)m � A
εL

(
log C

ρ

)

‖x‖∗ ≥ cLAε
3/2
(

log C
ρ

)−1√
n

(∑
i≤(1−ε)m x

2
i

)1/2

for x ∈ E1.

Restrict further x to the space E2 = E1 ∩ [ei|i ≤ (1 − ε)m)]. Then

dimE2 ≥ (1 − 2ε)m

and for x ∈ E2

‖x‖∗ ≥ cε3/2
(

log
1
ρ

)−1
L

A

√
n|x|. (2.15)
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Thus let ε ∼ δ, F = E2 and (2.15) gives (2.9). This proves the Lemma.

(iii) Notice that (2.5) implies in particular that for |ξ| = 1

‖ξ‖∗ ≥ L√
2

so that for E0 = Rn, (2.7) holds with ρ = ρ0 ∼ 1√
n

. We then perform the
“usual” flag construction

E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Es ⊃ Es+1 ⊃ · · ·

of subspaces Es, dimEs = ms >
1
2n, using the Lemma.

Assume
‖x‖∗ ≥ ρsL

√
n|x| for x ∈ Es. (2.16)

Take δs+1 =
(

log 1
ρs

)−2, so that by (2.8)

dimEs+1 = ms+1 >

(
1 − 1

(log 1
ρs

)2

)
ms (2.17)

and, by (2.9)

ρs+1 ∼
(

log
1
ρs

)−5

A−1. (2.18)

It follows from (2.17), (2.18) that then, assuming ρs−1 < A−2

dimEs >

[ ∏
s′<s

(
1 − 1

(log 1
ρs′ )2

)]
n

>

(
1 − 2

(log 1
ρs−1

)2

)
n

hence
ms >

(
1 − C(Aρs)1/3

)
n. (2.19)

Regarding volume, we get (cf. [Pi])

V (K0
1 ) >

(
c

n

)n
(by reverse Santalo inequality) (2.20)

V (K0
1 ∩ Es) ≤ V (K0

1 ∩ Es+1) · V (PE⊥
s+1∩Es(K

0
1 ∩ Es)

)
. (2.21)

Since by (2.16)

K0
1 ∩ Es ⊂ 1

ρsL
√
n
B (2.22)

(B= Euclidean ball),
we get
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V
(
PEs∩E⊥

s+1
(K0

1 ∩ Es)
)
<

(
C

ρsL
√
n
√
ms −ms+1

)ms−ms+1

. (2.23)

By iteration of (2.21) and (2.22), (2.23)

V (K0
1 ) ≤ V (K0

1 ∩ Es)
∏
s′≤s

V
(
PEs′−1∩E⊥

s′ (K
0
1 ∩ Es′−1)

)

≤
(

C

ρsLn

)ms ∏
s′≤s

(
C

ρs′−1L
√
n
√
ms′−1 −ms′

)ms′−1−ms′

≤
(

1
ρs

)ms( C

Ln

)n ∏
s′≤s

(
1

ρs′−1

)n(log ρ−1
s′−1

)−2




∏
s′≤s

(
n

ms′−1 −ms′

)m
s′−1−m

s′
2




<

(
1
ρs

)ms( C

Ln

)n
(2.24)

where we also used (2.17),(2.18).
We have chosen s such that ρ ∼ c(A), ms >

n
2 (cf. (2.19)).

Finally, from (2.20), (2.24)

L < Cρ
−ms

n
s < C(A)

proving part (1.4) of the Theorem.

(iv) Finally, we prove the Theorem in the more precise form (1.5). The con-
struction in (iii) terminates at s such that ρs ≥ A−2. Inequalities (2.20),
(2.24) clearly imply

(
C

n

)n
< V (Ko

1 ∩ Es)Cn
(

1
Ln

)n−ms

V (Ko
1 ∩ Es) > cnn−msLn−ms . (2.25)

Take then in the lemma E = Es,m = ms, ρ = ρs ≥ A−2.
It follows from (2.11) and Sudakov’s inequality that

V (Ko
1 ∩ E)

V (Bm)
< Cm

m∏
i=1

λi√
m

(2.26)

and from (2.25), (2.26)
Ln−m < Cm

∏
λi

hence
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1
m

m∑
i=1

λi > cL
n−m
m .

Substituting this last inequality in (2.14) then indeed gives

L � L
n
m � A. log(1 +A).

This proves the Theorem.

3 Remarks

(1) A. Giannopoulos [G] kindly pointed out to the author that if K is a ψ2-
body, then K is in fact already contained in a ball of radius CAL

√
n and

hence, by the Theorem, in a ball of radius CA2 logA
√
n (in particular, Ko

has finite volume ratio). We repeat his argument.
As a consequence of the log-concavity of the section function, we have

‖ξ‖Ko ≤ ‖〈x, ξ〉‖Ln(K).

Hence, if K satisfies (1.2)

‖ξ‖Ko ≤ C
√
nAL|ξ|. (3.1)

Thus, if we don’t care about the final estimate C(A) in (1.4), replacement of
K by K1 in the proof of the Theorem is unnecessary.

(2) Observe also that we only used the bound

‖〈x, ξ〉‖Lψ2 (K1) ≤ AL|ξ| (3.2)

with K1 defined as above. Writing for |ξ| ≤ 1 and x ∈ K1

|〈x, ξ〉| < C
√
nL (by (1.4))∫

K

{
exp c

|〈x, ξ〉|2√
nL2

}
dx ≤

∫
K

{
exp c′

|〈x, ξ〉|
L

}
dx < C

(3.2) therefore holds with A ∼ n1/4 (without further assumptions).
The general bound (1.1) is then implied by (1.5).
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On the Sum of Intervals
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To mark the 70th birthday of my
dear teacher M.Z. Solomyak

Let u1, u2, . . . , uN ∈ Sn−1 be a sequence of N unit vectors. A body V =
V (u1, . . . , uN ) is defined as follows:

V =
{
λ1u1 + λ2u2 + · · · + λNuN : |λi| ≤ 1, i = 1, . . . , N

}
. (1)

In geometric language the body V is the Minkowski sum of N intervals with
endpoints ±ui correspondingly. The main purpose of this note is to investigate
the order of the aspherical constant d(V ) of the body V (u1, . . . , uN ) for an
optimal choice of vectors u1, . . . , uN . Let us recall that the aspherical constant
d(V ) of a central symmetric body V is defined as follows

d(V ) = inf
{
R

r
: rD ⊂ V ⊂ RD

}
,

where D ⊂ R
n is the unit Euclidean ball. The optimal value of d(V (u1, . . . ,

uN )), which will be denoted by dn,N , describes the rate of approximation of
the Euclidean ball by zonotopes. The quantity dn,N was studied by many
authors, especially for the case N/n → ∞ (see [FLM], [BeMc], [BLM]). The
problem of the precise bounds of dn,N for all N , n was in particular discussed
by Milman [M]. To answer his question, we prove the following result.

Proposition 1. Let n, N be some integers with n < N . Then for some
universal constant C > 0, the following inequality holds:

1
C

min
{√

n, 1 +

√
N

N − n
log

N

N − n

}
≤ inf

(u1,...,uN )∈(Sn−1)N
d
(
V (u1, . . . , uN )

)

≤ C min
{√

n, 1 +

√
N

N − n
log

N

N − n

}
.

It is not surprising that the order of dn,N coincides with one of
√
N

times (N − n)-Kolmogorov width of an N -dimensional Euclidean ball with
respect to an �∞ metric provided N ≤ 2n. The close connection between these
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problems is rather well known, but we do not know any explicit treatment
of the relation between both problems. The main part of the paper presents
some improvement of the [GG] arguments, which immediately leads to the
proof of Theorem 1. Incidentally, a new bound of the Kolmogorov numbers is
obtained for some class of linear operators. For the convenience of the reader
who isn’t familiar with the widths, we mostly avoid using the width theory
terminology.

At the end of the paper, we consider the sums of the intervals of the
different lengths. It turns out that the same bounds as in Proposition 1 hold
true in this general situation (see Proposition 4 and the Remark following
it).

We use the following notation: [a] is an integral part of number a, (mn ) =
m!

n!(m−n)! is a binomial coefficient, [1 : N ] stands for the set of all integers
between 1 and N .

The standard basis of R
N will be denoted by (ei). As usual, we do not

notate the dimension of the space but use the same symbol (ei) to denote the
bases of the different Euclidean spaces. The coordinates of a vector x ∈ R

N

will be denoted by xi or by x(i). SN−1 is the unit sphere of R
N , while µ is a

normalized Lebesgue measure on it.
For x ∈ R

N , we define as usual ‖x‖p = (
∑N
i=1 |xi|p)1/p, for 1 ≤ p < ∞

and ‖x‖∞ = maxNi=1 |xi|. �Np stands for R
N occupied with the norm ‖ · ‖p.

The unit ball of a Banach space X is denoted by BX . Let B be a subset of
finite dimensional normed space X and L ⊂ X be some linear subspace of
X. The deviation of B from L is defined as follows:

ρX(B, L) = sup
x∈B

inf
y∈L

‖x− y‖ .

Using the Hahn–Banach theorem, it is not difficult to see that1

ρX(B, L) = sup
f∈L⊥∩BX∗

‖f‖B0 , (2)

where L⊥ = {f ∈ X∗ : f |L = 0} is the annihilator of L and the seminorm
‖ · ‖B0 is defined by

‖f‖B0 = sup
x∈B

|f(x)| .

For a linear operator T : R
n → R

N we denote by α(T ) and β(T ) the following
quantities:

α(T ) = sup
ξ∈Sn−1

‖Tξ‖1 , β(T ) = sup
ξ∈Sn−1

1
‖Tξ‖1

. (3)

Certainly α(T ) is the norm of the operator T from �n2 to �N1 . Note that by
duality, one can compute the aspheric constant of a body V , symmetric with
respect to the origin, as follows:
1 This duality relation is a very important tool in width theory (see e.g. [I],[ST]).
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d(V ) =
supξ∈Sn−1 supx∈V |〈x, ξ〉|
infξ∈Sn−1 supx∈V |〈x, ξ〉| .

So, if V is given by (1) and linear operator T is defined by T ∗ei = ui, then

d(V ) = α(T )β(T ) . (4)

Therefore, Proposition 1 follows immediately from the next three statements.

Lemma 1. For any integer n and N and for any linear operator T : R
n →

R
N , the following inequality holds

α(T ) ≥ 1
2
√
n

N∑
i=1

‖T ∗ei‖2 .

Lemma 2. For any integer n and N s.t. n < N < 6
5n and for any linear

operator T : R
n → R

N s.t. ‖T ∗ei‖2 = 1 for i = 1, . . . , N , the following
inequality holds

β(T ) ≥ C1

{
min

{
1,

√
1

N − n
log
( N

N − n

)
+ 1
}}

,

where C1 is a universal constant.

Proposition 2. For any integer n and N , n < N < 4n/3, there exists a
linear operator T : R

n → R
N s.t. ‖T ∗ei‖2 = 1 for i = 1, . . . , N and

α(T )β(T ) ≤ min
{√

n,C2

√
N

N − n
log

N

N − n

}
,

where C2 is a universal constant.

Remark. Lemma 1 as well as Proposition 2 are well known to experts. For
the convenience of the reader, we present their proofs below.

Proof of Proposition 1. Due to equality (4) and Lemmas 1 and 2, the left-
hand inequality holds for N < 6n/5. But for N ≥ 6n/5 it is reduced to the
inequality d(V ) ≥ 1, which holds for any V . By (4) and Proposition 2, the
right-hand inequality holds for N < 4n/3. To complete the proof, it is enough
to observe that dn,k ≤ 2dn,N for any k > N . Indeed this inequality follows
immediately from the definitions for k < 2N and we conclude by applying
the inequality dn,2N ≤ dn,N . ��
Proof of Lemma 1. Recall that for any vector u ∈ R

n one has (see e.g. (2.15)
of [FLM]) ∫

Sn−1

| < u, ξ > |dµ(ξ) =
‖u‖2√
π

Γ (n2 )
Γ (n+1

2 )
≥ ‖u‖2

2
√
n
.
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It follows that

α(T ) = sup
ξ∈Sn−1

‖Tξ‖1 ≥
∫
Sn−1

‖Tξ‖1dµ(ξ)

=
N∑
i=1

∫
Sn

〈ξ, T ∗ei〉|dµ(ξ) ≥ 1
2
√
n

N∑
i=1

‖T ∗ei‖2 .

��
For the proof of Lemma 2, we need the following elementary and fairly

well-known fact (see e.g. [GG], Lemma 1). For the reader’s convenience, we
reproduce here its proof.

Lemma 3. Let K be a subset of some Banach space X. Suppose that for
some positive ε > 0, κ > 0 and some integer k, the set K contains M > (2 +
κ)k points x1, . . . , xM ∈ K, s.t. ‖xi − xj‖ > 4ε, for any i = j, 1 ≤ i, j ≤ M ,
and ‖xi‖ < κε for any i, 1 ≤ i ≤ M . Then for any k-dimensional subspace
L ⊂ X one has

ρX(K,L) ≥ ε .

Proof. On the contrary, suppose that there exists a subspace L with

dimL = k <
log |M |

log(2 + κ)
s.t. ρX(K,L) < ε .

Then for i = 1, . . . ,M there exists yi ∈ L s.t. ‖yi − xi‖ < ε. We have

‖yi‖ ≤ ‖yi − xi‖ + ‖xi‖ < (1 + κ)ε .

On the other hand, for i = j

‖yi − yj‖ ≥ ‖xi − xj‖ − ‖xi − yi‖ − ‖xj − yj‖ > 2ε .

So the union of balls yi + ε(BX ∩ L) is disjoint and is contained in the set
(2 + κ)ε(BX ∩L). A comparison of volumes leads to the following inequality

Mεk =
1

vol(BX ∩ L)
vol
( M⋃
i=1

(
yi + ε(BX ∩ L)

))

≤ 1
vol(BX ∩ L)

vol
(
(2 + κ)ε(BX ∩ L)

)
= (2 + κ)kεk,

which contradicts the condition M > (2 + κ)k. ��

Remark. Certainly the last part of the proof is a well-known Kolmogorov
volumetric bound for ε-entropy of the ball ([KT], see also [N]).
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Proof of Lemma 2. Let us observe that by (2), one has

β(T ) = sup
x∈ImT

‖T−1x‖2

‖x‖1
= ρ�N∞

(
V, (ImT )⊥) , (5)

where V = {f : ‖T ∗f ||2 ≤ 1} and (ImT )⊥ is the orthogonal complement of
the image of operator T . By the parallelogram law, for any set A of integers
A ⊂ [1 : N ] one has

1
2|A|

∑
εi=±1

∥∥∥∑
i∈A

εiT
∗ei
∥∥∥2

2
=
∑
i∈A

‖T ∗ei‖2
2 = |A|

(the outer sum here is taken over all 2|A| possible choices of the signs). There-
fore, for any A ⊂ [1 : N ] there exists a vector xA ∈ R

N . s.t.

|xA(i)| = 1 for i ∈ A, |xA(i)| = 0 for i /∈ A and ‖T ∗xA‖2 ≤
√

|A| .
The last inequality means that |A|−1/2xA ∈ V . Set k = N − n and let � be a
minimal integer satisfying

8k ≤
(N

3k

)�
,

that is, � = 1 + [3k log 2/ log(N/3k)]. The condition N < 6n/5 implies an
inequality k < N/6. Therefore, � ≤ 3k < N/2. Hence the following inequality
holds

8k ≤
(N
�

)�
<

(
N
�

)
.

It follows that the family of the vectors |A|−1/2xA, where A runs over all
subsets of [1 : N ] with � elements, satisfies all conditions of Lemma 3 with

X = �n∞ , ε = 1/4
√
� , κ = 4 , k = N − n

and M = (N� ). Consequently for any subspace, L ⊂ �N∞ of dimension k, one
has

ρ�N∞(V,L) ≥ 1
4
√
�

=
1
4

([3k log 2
log N

3k

]
+ 1
)−1/2

.

In particular, the last inequality holds for L = (ImT )⊥ and we conclude by
Eq. (5). ��

In fact the proof of Lemma 2 leads to some result on the Kolmogorov
width. To formulate it, let us recall that for a given normed space X, a
natural number n and 1 ≤ p ≤ 2, the constant Tp(X,n) is the smallest T
such that (see e.g. [MS], n. 9)

(
1
2n

∑
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥2
)1/2

≤ T

( n∑
i=1

‖xi‖p
)1/p
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for all x1, . . . , xn ∈ X (the first sum here is taken over all 2n possible choices
of signs).

Recall that for a given subset K of a normed space Y , the n-Kolmogorov
width dn(K,Y ) is defined as follows:

dn(K,Y ) = inf
L⊂Y

dimL≤n
ρX(K,L) ,

where the inf is taken over a collection of all linear supspaces L ⊂ Y of
dimension dimL ≤ n. Next for a linear operator S from R

d to some normed
space X we denote by KS ⊂ R

d the following set

KS =
{
x ∈ R

d : ‖Sx‖X ≤ 1
}
.

Proposition 3. Let S be a linear operator from R
d to some normed space

X such that for at least N (N ≤ d) indices i one has ‖Sei‖X ≤ 1. Then for
any k ≤ N/6 and any p, 1 ≤ p ≤ 2, the following inequality holds

dk(KS , �
d
∞) ≥ c

Tp(X,n)
min

{
1,
( log N

k

k

)1/p
}
,

where c is some universal constant and n = 1 + [3k log 2
log( N3k ) ].

We omit the proof of this proposition, which repeats that of Lemma 2.

Proof of Proposition 2. It is fairly well known that for k < N/4 with some
universal constant c3, the following inequality holds:2

µ

{
x ∈ SN−1 :

k∑
i=1

|xi|2 > 1/2
}

≤ e−c3N .

Next, as usual, O(N) stands for the group of all orthogonal operators in R
N ,

while νN (or just ν) stands for a normalized Haar measure on O(N). For
W ∈ O(N) we denote by wj ∈ R

N the jth column of the matrix W and by
(wij) its entries. Note that when W runs on O(N), any of its rows runs on
SN−1 and the measure ν on O(N) thus induces the measure µ on SN−1. It
follows that ν{W ∈ O(N): for any i, i = 1, . . . , N

∑N
j=n+1 |wij |2 ≤ 1/2} >

1 −Ne−c3N . For N large enough the last quantity is bigger than 1/2. Now,
it is known3 that for some universal constant C4, the ν-measure W ∈ O(N)
such that
2 This fact follows easily from the concentration measure phenomenon for the

sphere SN−1 (see (2.6) of [FLM]). Certainly it can be proven by direct compu-
tation (see e.g. [A])

3 This fact is proven in [G] [GG]. See also [Mk] for a simple proof and [GM] for
a general discussion of the problem. We also wish to mention here that [G] was
greatly influenced by Kashin’s work [K] and its dual exposition to Mityagin [Mit].
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sup
(ξ1,...,ξn) �=0

∥∥ n∑
j=1

ξjwj
∥∥

2∥∥ n∑
j=1

ξjwj
∥∥

1

≤ min


1, C4

√
log N

N−n
N − n


 , (6)

is exponentially close to 1 and in particular is bigger than 1/2 for N large
enough. So for N large enough there exists an operator W ∈ O(N) satisfying
(6) and s.t. for any i, i = 1, . . . , N ,

n∑
j=1

|wij |2 = 1 −
N∑

j=n+1

|wij |2 > 1
2
. (7)

It is quite easy to construct for any N an operator W ∈ O(N), satisfying (7)
only. For example, if N = 2k is even, one can use the operator given by the
matrix

1√
2

(
Ik −Ik
Ik Ik

)
,

where Ik is the k×k unit matrix. It is clear that for bounded N any operator
W ∈ O(N) satisfies (6), probably with a bigger constant. Thus, through a
correction of the constant C4, one gets for any n and N < 4n/3 operators,
W ∈ O(N), satisfying both (6) and (7). Now let S : R

n → R
N be defined by

Sei = wi, i = 1, . . . , n, where W satisfies (6) and (7). Since the vectors wj
are orthonormal, we have α(S) ≤ √

N . On the other hand, the inequality (6)
is equivalent to

β(S) ≤ min
{

1, C4

√
1

N − n
log

N

N − n

}

while (7) means that

1√
2

≤ ‖S∗ej‖2 ≤ 1 j = 1, . . . , N .

Therefore operator T defined by

T ∗ej =
1

‖S∗ej‖�n2
S∗ej ,

gives the desired example. ��
Proposition 4. Let T be a linear operator from R

n to R
N with α(T ) ≤ 1.

Then

β(T ) ≥ cmin
{√

n, 1 +

√
N

N − n
log

N

N − n

}
,

where c > 0 is some universal constant.
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Proof. Let us denote by γ2(T ) the Hilbert–Schmidt norm of the operator T :

γ2(T ) =
( N∑
i=1

‖T ∗ei‖2
2

)1/2

.

It is well known that γ2(T ) ≤ α(T ). Indeed, by the parallelogram law,

γ2(T ) =
(

1
2N

∑
εi=±1

∥∥∥∥T ∗
( N∑
i=1

εiei

)∥∥∥∥
2

2

)1/2

.

Then by duality
‖T ∗x‖2 ≤ α(T )‖x‖∞

for all x ∈ R
N and the inequality γ2(T ) ≤ α(T ) follows. So for T satisfying

α(T ) ≤ 1 there exists at least [N/2]+1 indices i such that ‖T ∗ei‖2 ≤√2/N .
Applying Proposition 3 to the operator S =

√
N/2 T ∗, with d = N and

[N/2] + 1 instead of N , one gets

dN−n
({f : ‖T ∗f‖2 ≤ 1}, �N∞

) ≥ c
√
N/2 min


1 ,

√
log( N

2(N−n) )

N − n


 ,

provided that N − n ≤ N/12. Due to (5), the last inequality implies the
desired estimate for n ≥ 11

12N . Now it is enough to use the elementary bound
α(T ) · β(T ) ≥ 1 to complete the proof for n < 11

12N . ��

Remarks. 1. By (4), Proposition 4 gives the desired bound for the aspherical
constant of the sum of N arbitrary length intervals.
2. Using the factorization theorem [Mau] instead of the inequality α(T ) ≥
γ2(T ) permits the proof of Proposition 4 to be reduced to [GG] directly.
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Note on the Geometric-Arithmetic Mean
Inequality

E. Gluskin and V. Milman

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
gluskin@post.tau.ac.il, milman@post.tau.ac.il

In this note, we put together a few observations in the reverse direction in
the classical geometric-arithmetic mean inequality which we will study in the
form: √√√√ 1

n

n∑
1

λ2
i ≥

( n∏
1

λi

)1/n

, λi > 0 . (1)

We show that this inequality is, in fact, asymptotic equivalence with very high
probability and also in some other sense connected with the linear structure
of the vectors λ = (λi) ∈ R

n. These observations are “standard” from the
point of view of the Asymptotic Theory of Normed Spaces but may be useful
for purely analytical purposes.

1. Let x = (xi)n1 ∈ Sn−1, i.e.
∑n

1 x
2
i = 1. Then (1) states( n∏

1

|xi|
)1/n

≤ 1√
n
.

We equip Sn−1 with the probability rotation invariant measure σ(x).

Proposition 1. Prob{x ∈ Sn−1 | (
∏ |xi|)1/n < θ/

√
n} ≤ (C

√
θ)n for some

absolute constant C > 0. Say C = 1, 6 suffices. (And therefore, the re-
verse geometric-arithmetic mean inequality holds for x ∈ Sn−1: (

∏ |xi|)1/n ≥
θ/

√
n = θ ( 1

n

∑n
1 x

2
i )

1/2 with the probability above 1 − (C
√
θ)n.)

Proof. Let ϕ be a positive homogeneous degree α function on R
n, i.e. ϕ(tx) =

tαϕ(x), t > 0. Then for any continuous positive function f : R → R
+, one

has ∫
Rn

ϕ(x)f(|x|)dx =

∞∫
0

rα · rn−1f(r)dr
∫

x∈Sn−1

ϕ(x)dx .

Apply this formula to the functions ϕ(x) = (
∏n

1 |xi|)p and f(r) = e−r2/2.
Then α = np and we have

∫
Rn

∏
|xi|pe− ∑ |xi|2/2dx =

∫
Sn−1

∏
|xi|p dx

σn−1
· σn−1

∞∫
0

rn+np−1e−r2/2dr ,

(2)

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 131–135, 2003.
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where σn−1 denotes the Lebesgue measure of Sn−1.
The last integral in (2) as well as the left hand one are easily expressed

in terms of Γ -functions. So, we see that

∫
Sn−1

(∏
|xi|
)p
dσ(x) =

2
σn−1

· Γ (p+1
2 )n

Γ (n+np
2 )

.

In particular, taking p = −1/2 and recalling that σn−1 = 2πn/2
Γ (n2 ) we obtain

ESn−1

(∏
|xi|−1/2

)
=
∫

Sn−1

∏
|xi|−1/2dσ(x) =

Γ (n2 )
Γ (n4 )

· Γ ( 1
4 )n

πn/2
≤ (Cn1/4)n

for some absolute constant C > 0 (one may take C = Γ ( 1
4 )√

πe1/4
∼ 1, 593).

Therefore, probability

P

{
x∈Sn−1

∣∣∣ ∏ |xi|−1/2>
(√

n

θ

)n/2}
= P

{
x∈Sn−1

∣∣∣ ∏ |xi|1/n < θ√
n

}
≤ (C

√
θ)n ,

by the Chebyshev inequality.

2. Since the first investigations on Dvorezky’s Theorem (see [M] and the no-
tion of spectrum there), it has become a common fact in Asymptotic Theory
(see [FLM], [MS], [K]) that if some given functional on R

n has a sharp con-
centration then there also exists a subspace of proportional dimension θn,
0 < θ < 1, such that the restriction of this functional on its unit sphere is
almost a constant.

However, interestingly and obviously, it is not so for the geometric mean.
Indeed, if a subspace L ⊂ R

n has dimension dimL ≥ 2 then there is x ∈
L∩ Sn−1 such that at least one of its coordinates xi is zero and

∏n
i |xi| = 0.

To avoid this obstacle one can consider a slightly different functional

ϕ(x) = max
1≤k≤n

√
k

( k∏
1

x∗
i

)1/k

, (3)

where as usual (x∗
i )
n
i=1 is a non-increasing rearrangement of the sequence

(|xi|)ni=1, i.e., say, x∗
1 = max |xi|. Note that inequality (1) means that

ϕ(x) ≤ ‖x‖�2 =
√∑

|xi|2 ,

and we are studying its reverse.
The functional ϕ is known to be equivalent to weak �2-norm
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‖x‖�2,∞ := max
k

1√
k

k∑
i=1

x∗
i ,

and more precisely
ϕ(x) ≤ ‖x‖�2,∞ ≤ 2ϕ(x) . (4)

Indeed, the left side follows by the geometric-arithmetic mean inequality.
Also x∗

k ≤ ϕ(x)√
k

for k = 1, . . . n, and therefore

k∑
1

x∗
i ≤ ϕ(x)

k∑
1

1√
i

≤ 2ϕ(x)
√
k ,

which implies the right side.
Certainly �2,∞ norm is very close to �2 norm. Particularly, for any vector

for which �1 and �2 norms are equivalent the norms �2,∞ and �2 are also
equivalent. The well known Kashin [K] theorem claims that also for some
θn-dimensional subspaces �n1 and �n2 norms are equivalent (for an almost iso-
metric corresponding fact, see [FLM] and for the right behavior of parameters
when θ approaches 1, see [GG]). More precisely:
for any θ, 0 < θ < 1, there exists a subspace L ⊂ R

n of dimension k = [θn]
such that

1√
n

‖x‖�n1 ≤ ‖x‖�n2 ≤ C(θ)√
n

‖x||�n1 (5)

for any x ∈ L. The function C(θ) above depends only on θ and it is known

([GG]) that C(θ) ∼
√

1
1−θ log 1

1−θ when θ approaches 1. Also, (5) is satisfied
for an exponentially close to 1 measure of k-dimensional subspaces (with
probability above 1 − e−ck for a universal number c > 0).

From (4) it follows that for such subspaces L and any x ∈ L also

ϕ(x) ≤ ‖x‖�n2 ≤ 2C(θ)ϕ(x) .

In fact, the functional ϕ in the last inequalities may be changed to a smaller
one which is more useful. Introduce for m = [n/4C(θ)2]

ϕ̃(x) =
√
m

( m∏
1

x∗
i

)1/m

.

Then for any x ∈ R
n one has

‖x‖�n1 ≤ (n−m)x∗
m +

√
m‖x‖�n2 .

Now, whenever (5) is satisfied the following inequality also holds

‖x‖�n2 ≤ C(θ)
√
nx∗

m + 1
2‖x‖�n2

and consequently
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ϕ̃(x) ≤ ‖x‖�n2 ≤ 2C(θ)
√
nx∗

m ≤ 4C2(θ)ϕ̃(x) .

Summarizing the information we collected above we have

Proposition 2. Let f(x) = − 1
x log x. For some universal constant c > 0,

any integer n and any θ, 0 < θ < 1, k = [θn], a random k-dimensional
subspace L ⊂ R

n with high probability satisfies: for any x ∈ L

√
m

( m∏
1

x∗
i

)1/m

≥ c

f(1 − θ)
‖x‖�n2 ,

where m = [cn/f(1 − θ)].

Kashin also proved that for a random orthogonal matrix u ∈ O(n) with
probability above 1 − e−cn the following inequality holds:

‖x‖�n2 ≤ c√
n

(‖x‖�n1 + ‖ux‖�n1
)
.

Exactly as before one gets a similar corollary in our case.

Corollary. There are universal constants ci > 0, i = 1, 2, 3 such that for
k = [c1n] for a random operator u ∈ O(n) with probability above 1 − e−c2n

and any x ∈ R
n either

√
k

( k∏
1

x∗
i

)1/k

≥ c3‖x‖�2

or this inequality is satisfied for the vector y = ux.

3. Note also that for any C > 1 the set of positive vectors

G1;n(C) =
{
x ∈ (Rn)+

∣∣ 1
n

n∑
1

xi ≤ C
( n∏

1

xi

)1/n
}

is a convex cone. (It is a trivial consequence of the geometric-arithmetic mean
inequality.) Convex sets

G1;n(C) ∩
{
x
∣∣ n∑

1

xi = 1
}

are interesting objects to study.
There are other related convex sets. Let {xi > 0}n1 and Ej = 1/

(
n
j

)∑
1≤i1<...<ij≤n xi1xi2 · · ·xij , 1 ≤ j ≤ n, be the normalized elementary sym-

metric functions. Then the classical inequalities of Maclaurin’s state, for j > i,
are

E
1/i
i ≥ E

1/j
j .
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Then, for i = 1 and any C > 1, sets

{
x ∈ (Rn)+ | E1 ≤ CE

1/j
j

}
:= Gj;n(C)

are convex cones, and again, it means that convex sets

Gj;n(C) ∩
{
x
∣∣ n∑

1

xi = 1
}

describe reverse Maclaurin’s inequalities.
To prove this fact one should use the Lopez-Marcus [LM] inequalities: for

any x and y ∈ (Rn)+ and any j, 1 ≤ j ≤ n,

Ej

(x+ y

2

)1/j
≥ Ej(x)1/j + Ej(y)1/j

2
.

Indeed, let x, y ⊂ Gj;n(C). Then

Ej

(x+ y

2

)1/j
≥ Ej(x)1/j + Ej(y)1/j

2
≥ 1
C

E1(x) + E1(y)
2

=
1
C
E1

(x+ y

2

)
.
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Summary. In this paper we study the quantity E supt∈T Xt, where Xt is some
random process. In the case of the Gaussian process, there is a natural sub-metric
d defined on T . We find an upper bound in terms of labelled-covering trees of
(T, d) and a lower bound in terms of packing trees (this uses the knowledge of
packing numbers of subsets of T ). The two quantities are proved to be equivalent
via a general result concerning packing trees and labelled-covering trees of a metric
space. Instead of using the majorizing measure theory, all the results involve the
language of entropy numbers. Part of the results can be extended to some more
general processes which satisfy some concentration inequality.

1 Introduction

Let (T, d) be a compact metric space and for all t ∈ T , Xt be a collection of
random variables such that EXt = 0. The aim of this paper is to present a
different approach to the theory of majorizing measures. To avoid the problem
of measurability of supt∈T Xt, we take, as usual, the following definition:

E sup
t∈T

Xt = sup
{

E sup
t∈Tf

Xt, Tf finite subset of T
}
. (∗)

It allows us to assume without loss of generality that (T, d) is in fact a finite
metric space, which will make the presentation of the statements clearer. It
means that in a general compact metric space (T, d), we take a very fine net
on the set T to approach the quantity E supt∈T Xt. We want to present a new
way to provide an estimate of this quantity where (Xt)t∈T is in particular
a Gaussian process. In this case, there is a natural sub-metric d defined on
T by d(s, t)2 = E|Xs − Xt|2 and of course, by taking a quotient, we can
assume that d is a metric on T. We recall a result of Talagrand in terms of
the majorizing measure

Theorem [T1]. If T is a finite set, (Xt)t∈T is a Gaussian process with the
natural sub-metric d associated, then, up to universal constants, E supt∈T Xt

is similar to the quantity

inf sup
t∈T

∫ ∞

0

√
log

1
µ(B(t, ε))

dε,
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where the infimum is taken over all probability measures on T , and B(t, ε) =
{s ∈ T, d(s, t) ≤ ε}.

One of the biggest problems is to provide a uniform approach for con-
struction of a “good” measure.

The main tools of this paper are “packing” and “labelled-covering” trees.
The idea to use these objects comes from works of Talagrand [T3], [T5]. In
[T3] he defined the notion of an s-tree and he shows, using the majorizing
measures technique, that an s-tree provides an estimate for E supt∈T Xt. This
point of view has been very fruitful in the study of embeddings of subspace
of Lp into �np for 0 < p < 1 [Z]. Here we would like to present a geometrical
method for providing bounds for the supremum of a process which satisfies
a concentration type inequality, where instead of measures, we will consider
special families of sets of our metric space T . The main idea is to present
a straightforward technique which like the theorems of Dudley and Sudakov
involves the language of entropy numbers.

There are two different sections in this paper. First, we present the notions
of packing and labelled-covering trees and define how to measure the size of
such trees. The main result of this part is a general comparison of these
two quantities. The second part is devoted to the study of upper and lower
bounds of (∗) when the process satisfies a concentration type inequality. We
obtain an improvement of Dudley’s result which gives directly, iterating this
result, an upper bound in function of the size of labelled-covering trees of the
compact metric space (T, d). For the lower bound, an additional hypothesis is
a Sudakov type minoration of E sup(Xt1 , . . . , XtN ) for well separated points
in T . In this part, we consider for simplicity a particular case of the Gaussian
process but the spirit of this idea allows generalization when the process
satisfies other types of concentrations and other Sudakov type minorations
[L], [T2]. We obtain an expression in terms of the size of packing trees and
combining this with the result of the first part, it shows that in the Gaussian
(or Euclidean) case, all these quantities are similar up to universal constants.

2 Trees of Sets

Consider a finite metric space (T, d).
Recall that a tree of subsets of T is a finite collection F of subsets of T

with the property that for all A,B ∈ F , either A ∩ B = ∅, or A ⊂ B, or
B ⊂ A. We say that B is a son of A if B ⊂ A, B �= A and

C ∈ F , B ⊂ C ⊂ A =⇒ C = B or C = A.

We assume that A1 consists of one single set (this is the root of F) and that
for each k ∈ N

�, Ak+1 is a finite collection of subsets of T such that each of
them is a son of a set in Ak. A branch of F is a sequence A1 ⊃ A2 ⊃ . . .
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such that Ak+1 is a son of Ak. A branch is maximal if it is not contained in a
longer branch. To each A ∈ F we denote by N(A) the number of sons of A.

Let B1, . . . , BN(A) be sons of A. We denote by �A a one-to-one map

�A : {B1, . . . , BN(A)} → {
1, . . . , N(A)

}
.

Consider some fixed number r ≥ 120. A tree F is called a packing tree if
to each A ∈ F , we can associate an integer n(A) ∈ Z such that

1) for all sons B of A, diam(B) ≤ 2r−n(A),
2) if B and B′ are two distinct sons of A then d(B,B′) ≥ 30r−n(A).

We define the size γp(F , d) of a packing tree F to be the infimum over all
possible maximal branches of

∑
k≥1

r−n(Ak)
√

log
(
N(Ak)

)
.

A tree F is called a labelled-covering tree if

1) for any t ∈ T there is a maximal branch A1 ⊃ A2 ⊃ . . . such that
t =

⋂
Ak,

2) to each A ∈ F is associated a labelled function �A (which numerates each
son of A) and an integer n(A) ∈ Z such that radius(A) ≤ r−n(A) (we
allow n(A) = +∞ when the set A is a single point).

Finally we define the size γc(F , d) of a labelled-covering tree F as the supre-
mum over all possible maximal branches of

∑
k≥1

r−n(Ak)
√

log
(
e�Ak(Ak+1)

)
.

We denote by Cov(T, d) (respectively, Pac(T, d)) the set of all labelled-
covering (respectively, packing) trees in T . The first theorem shows a connec-
tion between the definitions of size of packing trees and of labelled-covering
trees.

Theorem 1. There exists a constant C > 1 such that for any finite metric
space (T, d)

inf
F∈Cov(T,d)

γc(F , d) ≤ C sup
F∈Pac(T,d)

γp(F , d).

To prove it, we will use the following theorem due to Talagrand.

Theorem [T5]. Consider a finite metric space (T, d) and the largest i ∈ Z

such that radius(T ) ≤ r−i. Assume that for j ≥ i there are functions φj :
T → R

+ with the following property:



Supremum of a Process in Terms of Trees 139

For any point s of T , any integer j ≥ i and N ≥ 1, if t1, . . . tN are N
points in B(s, r−j) such that

d(tl′ , tl) ≥ r−j−1, for any l, l′ ≤ N, l �= l′,

then we have
φj(s) ≥ αr−j√logN + min

l≤N
φj+2(tl). (1)

Assume also that (φj)j≥i is a decreasing sequence of functions. Then

inf
F∈Cov(T,d)

γc(F , d) ≤ 5
α

sup
t∈T

φi(t).

For completeness of the paper, we reproduce here a proof of this result
which is almost the proof of Proposition 4.3 of [T5].

Proof. Our goal is to construct a labelled-covering tree F such that

∑
k≥1

r−n(Ak)
√

log
(
e�Ak(Ak+1)

) ≤ C sup
t∈T

φi(t),

for any branch {A1 ⊃ . . . ⊃ Ak ⊃ . . .} in F .
We will inductively construct our covering tree.

First step: k = 1.
The first step consists of taking A1 = T , n(A1) = n(T ) = i and we define
a1(A1) ∈ A1 such that

A1 ⊂ B
(
a1(A1), r−i).

Iterative step: from k to k + 1.
Assume that we have constructed the kth level Ak of the tree F (which is a
covering of the set T) such that

1) T = A1
k ∪ . . . ∪Adk,

2) for each set Ak of this covering, either Ak is a single point or there
exists ak(Ak) ∈ Ak such that Ak ⊂ B(ak(Ak), r−n(Ak)) with the biggest
possible integer n(Ak).

If all the sets of this covering consist of single points then the construction
is finished (and this situation will appear because T is a finite set). Now we
show how to partition any given element Ak of this covering. If Ak is a single
point then n(Ak) = +∞ and A1 ⊃ . . . ⊃ Ak is a maximal branch so we have
nothing to do. Assume now that Ak is not a single point.
We pick t1 ∈ Ak such that

φn(Ak)+2(t1) = max
{
φn(Ak)+2(t); t ∈ Ak

}
.

Then the first son of Ak is
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B1 = Ak ∩B(t1, r−n(Ak)−1)

and ak+1(B1) = t1. We define n(B1) as the biggest integer such that B1 ⊂
B(t1, r−n(B1)). To construct B2 we repeat this procedure, replacing Ak by
Ak \B1. This set is not empty because r > 2, Ak is not a single point and by
the maximum condition on n(Ak).

Finally we have constructed points t1, . . . , tN (N ≥ 2) and sonsB1, . . . , BN
such that for any m ∈ {1, . . . , N},

tm ∈ Ak \
⋃
l<m

B(tl, r−n(Ak)−1)

and

φn(Ak)+2(tm) = max
{
φn(Ak)+2(t); t ∈ Ak \

⋃
l<m

B
(
tl, r

−n(Ak)−1)}.
It is clear (by construction) that B1, . . . , BN are sons of Ak, form a covering of
Ak and that n(Bm) ≥ n(Ak) + 1. Also by construction d(tl, tl′) ≥ r−n(Ak)−1,
d(ak(Ak), tm) ≤ r−n(Ak) and taking j = n(Ak), we obtain by definition of
our functions φj that for any m ∈ {1, . . . , N},

φn(Ak)
(
ak(A)

) ≥ αr−n(Ak)
√

logm+ min
l≤m

φn(Ak)+2(tl).

We labelled the sons by setting �A(Bm) = m so

φn(Ak)
(
ak(A)

) ≥ αr−n(Ak)
√

log �A(Bm) + min
l≤m

φn(Ak)+2(tl).

By construction of the points {tl}, if l < l′,

φn(Ak)+2(tl) ≥ φn(Ak)+2(tl′),

so we get
min
l≤m

φn(Ak)+2(tl) ≥ φn(Ak)+2(tm).

At this stage, for each set Ak of our starting covering of T , we have con-
structed a labelled function �Ak , sons who form a covering of Ak such that
for all sons Ak+1 of Ak, n(Ak+1) ≥ n(Ak) + 1, and point ak+1(Ak+1) such
that

φn(Ak)
(
ak(Ak)

) ≥ αr−n(Ak)
√

log �Ak(Ak+1) + φn(Ak)+2
(
ak+1(Ak+1)

)
.

Next we observe that of course, for all sons Ak+2 of Ak+1, ak+2(Ak+2) ∈ Ak+1
so by construction of ak+1(Ak+1),

φn(Ak)+2(ak+1(Ak+1)) ≥ φn(Ak)+2
(
ak+2(Ak+2)

)
.
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But n(Ak+2) ≥ n(Ak+1) + 1 ≥ n(Ak) + 2 (by construction) and as (φj)j≥i is
a decreasing sequence of functions,

φn(Ak)+2
(
ak+2(Ak+2)

) ≥ φn(Ak+2)
(
ak+2(Ak+2)

)
,

and finally, for all branches Ak ⊃ Ak+1 ⊃ Ak+2,

φn(Ak)
(
ak(Ak)

) ≥ αr−n(Ak)
√

log �Ak(Ak+1) + φn(Ak+2)
(
ak+2(Ak+2)

)
.

Conclusion.
If we sum up the last inequality for k ≥ 1, we get

φn(A1)
(
a1(A1)

)
+ φn(A2)

(
a2(A2)

) ≥ α
∑
k≥1

r−n(Ak)
√

log �Ak(Ak+1)

which gives (because the sequence (φj)j≥i is decreasing), for all branches
A1 ⊃ . . . ⊃ Ak ⊃ . . . of the labelled-covering tree F

α
∑
k≥1

r−n(Ak)
√

log �Ak(Ak+1) ≤ 2 sup
t∈T

φi(t).

Now call
S1 = sup

maximal branch

∑
k≥1

r−n(Ak)
√

log �Ak(Ak+1)

and
S2 = sup

maximal branch

∑
k≥1

r−n(Ak)
√

log e�Ak(Ak+1).

It is clear that S1 ≥ r−n(A1)
√

log 2. By construction, for all sons Ak+1 of Ak,
n(Ak+1) ≥ n(Ak) + 1 then for all maximal branch A1 ⊃ . . . ⊃ Ak ⊃ . . . of
the labelled-covering tree F ,∑

k≥1

r−n(Ak)
√

log e�Ak(Ak+1) ≤
∑
k≥1

r−n(Ak)
(

1 +
√

log �Ak(Ak+1)
)

≤ S1 +
r − 1
r

r−n(A1) ≤ 5
2
S1

because r is large enough. It proves that for this tree F ,

S2 ≤ 5S1/2 ≤ 5 sup
t∈T

φi(t)/α.

��
Proof (of Theorem 1). Let i be the largest integer such that radius(T ) ≤ r−i.
For a set A ⊂ T, let γp(A) = supF∈Pac(A,d) γp(F , d), and for all integers
j ≥ i, define the function φj : T → R

+ by

∀s ∈ T, φj(s) = γp
(
B(s, 2r−j)

)
.
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The sequence (φj)j≥i is decreasing and, by definition of i ∈ Z,

sup
t∈T

φi(t) = γp(T ).

To prove Theorem 1, we need to check assumption (1) of the previous the-
orem. Fix some j ≥ i and s ∈ T . Let t1, . . . , tN be points in B(s, r−j) with
d(tl, tl′) ≥ r−j−1, then

φj+2(tl) = γp
(
B(tl, 2r−j−2)

)
and B(tl, 2r−j−2) ⊂ B(s, 2r−j)

and

d
(
B(tl, 2r−j−2), B(tl′ , 2r−j−2)

) ≥ r−j−1 − 4r−j−2 ≥ 1
4
r−j−1.

Consider in B(s, 2r−j) a two level packing tree whose first level is B(s, 2r−j)
and whose second level consists of{

Bl = B(tl, 2r−j−2)
}
l≤N .

Take n(B(s, 2r−j)) = j+2 then for each son B, B′ of B(s, 2r−j), diam(B) ≤
2r−n(B(s,2r−j)) and

d(B,B′) ≥ 1
4
r−j−1 ≥ 30 r−n(B(s,2r−j)) =

30
r
r−j−1

because r is large enough (r = 120). By definition of the size of packing trees,

γp
(
B(s, 2r−j)

) ≥ r−j−2
√

logN + min
l≤N

γp
(
B(tl, 2r−j−2)

)
,

or
φj(s) ≥ 1

r2
r−j√logN + min

l≤N
φj+2(tl),

so we can apply the previous theorem with α = 1/r2. ��

3 Application to Random Processes

Let (T, d) be a finite metric space, and for all t ∈ T , Xt be a collection of
random variables such that EXt = 0. In this part, we show how the quantities
defined in the above sections are related to the study of E supt∈T Xt.

We will say that the process (Xt)t∈T satisfies a concentration inequality
(H) if there exists c > 0 such that


for all subsets A ⊂ T, for all t0 ∈ T,
if YA,t0 = sup

t∈A
(Xt −Xt0) and σ = sup

t∈A
d(t, t0) then

∀u ≥ 0,P
(|YA,t0 − EYA,t0 | ≥ u

) ≤ 2 exp
(

− c
(u
σ

)2)
.
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Remark. This hypothesis (H) implies a deviation inequality: for all (s, t) ∈ T ,

P(|Xs −Xt| ≥ u) ≤ 2 exp
(

− c
( u

d(s, t)

)2
)
.

Indeed, choose s = t0 and A = {t} then σ = d(s, t) and YA,t0 = Xt − Xt0

which gives the result. Maurey and Pisier ([P] Theorem 4.7) have proved that
(H) is satisfied for the Gaussian process (with c = 2/π2) and Talagrand [T4]
proved it for the Bernoulli process. We don’t know if it is true for a general
subgaussian process, i.e. a process which satisfies only a deviation inequality
as above.

3.1 Relation with the Size of Covering Trees

When the process (Xt)t∈T satisfies such a concentration inequality, we obtain
an upper bound of E supt∈T Xt in terms of the size of labelled-covering trees
of T with respect to the metric d. The next result is an improvement of
Lemma 3.4.4 in [Fe] which was the usual Dudley’s upper bound.

Theorem 2. If the process (Xt)t∈T satisfies a concentration inequality (H),
there exists a constant C1 > 0 (depending only on the constant c in (H)) such
that for all N ∈ N

�, for all subsets A1, . . . , AN of T , and A = A1 ∪ . . .∪AN ,
we have

E sup
t∈A

Xt ≤ sup
1≤�≤N

(
C1diamA

√
log e�+ E sup

t∈A�
Xt

)
.

Proof. Let t0 ∈ A then E sup
t∈A

Xt = E sup
t∈A

(Xt −Xt0). For all � ∈ {1, . . . , N},
let Y� = sup

t∈A�
(Xt −Xt0) then

E sup
t∈A

Xt = E sup
1≤�≤N

Y�.

Let S be defined by

S = sup
1≤�≤N

(
c1diam(A)

√
log e�+ E sup

t∈A�
Xt

)
,

where c1 will be defined later in accordance with the constant c > 0 in the
hypothesis (H).
As sup1≤�≤N Y� is a non-negative random variable,

E sup
1≤�≤N

Y� =
∫ +∞

0
P
(∃ � ∈ {1 . . . , N}, Y� > u

)
du

≤ K +
∫ +∞

K

P
(∃ � ∈ {1 . . . , N}, Y� > u

)
du.

By definition of S, for all � ∈ {1, . . . , N},
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S ≥
(
c1diam(A)

√
log e�+ EY�

)
,

so by choosing K = S, we obtain

E sup
1≤�≤N

Y� ≤ S +
∫ +∞

S

P

(
∃ �, Y� − EY� > u− S + c1diam(A)

√
log e�

)
du

≤ S +
N∑
�=1

∫ +∞

0
P

(
Y� − EY� > u+ c1diam(A)

√
log e�

)
du.

To conclude, we know that for all t ∈ A�, d(t, t0) ≤ diam(A) and by the
concentration inequality (H), we have

E sup
1≤�≤N

Y� ≤ S + 2
+∞∑
�=1

∫ +∞

0
exp

(
− c
( u

diam(A)
+ c1

√
log e�

)2
)
du

≤ S +
√
π

c
diam(A)

+∞∑
�=1

exp
(− cc21 log(e�)

)

≤ S +
1
e2

√
π

c
diam(A)

+∞∑
�=1

1
�2
,

choosing c1 such that cc21 = 2. Because log e� ≥ 1, we have proved the theorem
with

C1 =
1√
c

(√
2 +

π3/2

6e2

)
.

��
Now, it is very easy to deduce the following result.

Corollary 3. If the process (Xt)t∈T satisfies a concentration inequality (H)
then there exists a constant C > 1 (depending only on the constant c in (H))
such that

E sup
t∈T

Xt ≤ C inf
F∈Cov(T,d)

γc(F , d).

Proof. Let F be a labelled-covering tree of T with respect to the metric d.
Then by Theorem 2, we deduce that

E sup
t∈T

Xt ≤ sup
Ai sons of T

(
C1 diamT

√
log e�T (Ai) + E sup

t∈Ai
Xt

)
.

Now iterating this procedure over a particular son that realizes this maximum
(it is finite because T is finite and note also that by the hypothesis on a
labelled-covering tree, the last term of the sum will be EXti = 0 because the
last sons must be a single point), we deduce that

E sup
t∈T

Xt ≤ C1 sup
maximal branch

∑
k≥1

2 r−n(Ak)
√

log e�Ak(Ak+1).

This is true for all labelled-covering trees so it gives exactly the stated result.
��
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3.2 Relation with the Size of Packing Trees

To study a lower bound of E supt∈T Xt, we would like to start with the
following theorem due to Talagrand [T5], which will lead us to the idea of how
to bound E supt∈T Xt, where (Xt)t∈T is a Gaussian process, using packing
trees.

Theorem [T5]. Consider a Gaussian process (Xt)t∈T , d the natural sub-
metric associated and sets {Bl}l≤N with N ≥ 2. Assume that d(Bl, Bl′) ≥
15u for all integers l, l′ ≤ N, l �= l′ and diam(Bl) ≤ u. Consider A =⋃
l≤N Bl, then

E sup
t∈A

Xt ≥ C u
√

logN + min
l≤N

E sup
t∈Bl

Xt,

where C = π/
√

2 > 2.

Proof. The proof of this theorem is based on the following two classical lem-
mas.

Lemma. Under the assumptions of the previous theorem, let tl ∈ Bl and
Y� = sup

t∈B�
(Xt −Xtl) then

E sup
�∈{1,...,N}

|Y� − EY�| ≤ u
π√
2

√
log eN.

Remark. This result was also used to obtain the classical Dudley upper
bound in terms of entropy numbers [Fe] but is weaker than Theorem 2. As
sup1≤�≤N |Y� − EY�| is a non-negative random variable,

E sup
1≤�≤N

|Y� − EY�| =
∫ +∞

0
P
(∃ � ∈ {1 . . . , N}, |Y� − EY�| > t

)
dt

≤ K +
N∑
�=1

∫ +∞

K

P
(|Y� − EY�| > t

)
dt

≤ K + 2
N∑
�=1

∫ +∞

K

exp
(

− c
( t
u

)2
)
dt,

by the concentration inequality (H) and because diamBl ≤ u. The result
follows choosing K = u/

√
c
√

logN (and recall that in this case, we could
take c = 2/π2). ��

The next result is a Sudakov type inequality. There are many methods
to obtain this kind of inequality. For the Gaussian case, we could see it as
an application of Slepian’s lemma but there is another method which can
be generalized to other processes in the paper of Talagrand [T2] and in the
paper of Lata�la [L].
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Lemma. If t1, . . . , tN (N ≥ 2) are well separated points in T , i.e. assume
that there exists u > 0 such that for all l �= l′, d(tl, tl′) ≥ 15u, then

E sup
i∈{1,...,N}

Xti ≥ uπ
√

2 log eN.

Proof. Let g1, . . . , gN be i.i.d. random normal Gaussian variables and define
the process Y1, . . . , YN by Yi = 15√

2
u gi. Then it is clear that for all l �= l′,

E|Xtl −Xtl′ |2 = d(tl, tl′)2 ≥ E|Yl − Yl′ |2.
As

E sup(g1, . . . , gN ) ≥
√

logN
π log 2

≥
√

log eN
π log 2e

for N ≥ 2 (see for example formula 1.7.1 in [Fe]), the result follows easily by
an application of Slepian’s comparison property. ��

Combining these two lemmas, it is very easy to finish the proof of the
previous theorem.

E sup
t∈A

Xt = E sup
l≤N

(Yl − EYl) + EYl +Xtl

≥ min
l≤N

EYl + E sup(Xt1 , . . . , XtN ) − E sup
l≤N

|Yl − EYl|

≥ π√
2
u
√

logN + min
l≤N

E sup
t∈Bl

Xt.

��
Using this theorem we deduce the following corollary.

Corollary 4. There is a universal constant C > 0 such that, if (Xt)t∈T is a
Gaussian process and d the natural sub-metric associated, then

C sup
F∈Pac(T,d)

γp(F , d) ≤ E sup
t∈T

Xt.

Proof. Let F be a packing tree of T with respect to the metric d. For any
element A of this packing tree, let B1, . . . , BN(A) be the sons of A ∈ F . Then
we use the previous lemma with u = 2r−n(A) (because d(Bl, Bl′) ≥ 15u and
diam(Bl) ≤ 2r−n(A) ≤ u) to get

E sup
t∈A

Xt ≥ Cr−n(A)
√

logN(A) + min
l≤N(A)

E sup
t∈Bl

Xt.

Now iterate this formula over a particular son which realizes this minimum
to deduce that

E sup
t∈T

Xt ≥ C inf
maximal branch

∑
k≥1

r−n(Ak)
√

log
(
N(Ak)

)
.

This is true for all packing trees and it finishes the proof. ��
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To conclude this part, we just want to state the result we can deduce from
Theorem 1, Corollary 3 and Corollary 4 in the case of the Gaussian process.

Theorem 5. Let T be a finite set, (Xt)t∈T a Gaussian process with EXt = 0
and d the natural sub-metric associated, then, up to universal constants, the
three quantities

E sup
t∈T

Xt, inf
F∈Cov(T,d)

γc(F , d) and sup
F∈Pac(T,d)

γp(F , d)

are similar.
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Point Preimages under Ball Non-Collapsing
Mappings�

Olga Maleva

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100,
Israel maleva@wisdom.weizmann.ac.il

Summary. We study three classes of Lipschitz mappings of the plane: Lipschitz
quotient mappings, ball non-collapsing mappings and locally ball non-collapsing
mappings. For each class, we estimate the maximum cardinality of point preimage
in terms of the ratio of two characteristic constants of the mapping. For Lipschitz
quotients and for Lipschitz locally BNC mappings, we provide a complete scale of
such estimates, while for the intermediate class of BNC mappings the answer is not
complete yet.

1. LetX and Y be metric spaces. The class of Lipschitz mappings f : X → Y
is defined by the condition: f(Br(x)) ⊂ BLr(f(x)) for all points x of X and
all positive r (by Br(x) we denote an open ball of radius r, centered at x).
Here L is a constant depending on the mapping f but not on the point x;
the infimum of all possible such L is called the Lipschitz constant of f .

In a similar way, co-Lipschitz mappings f : X → Y are defined by the
condition f(Br(x)) ⊃ Bcr(f(x)), where the positive constant c is indepen-
dent of x and r; the supremum of all such c is called the co-Lipschitz con-
stant of the mapping f . (In some fundamental papers, e.g. [JLPS], the co-
Lipschitz constant of the mapping is defined as infimum over all c′, such that
f(Br(x)) ⊃ Br/c′(f(x)).)

By definition, a Lipschitz quotient mapping is a mapping that satisfies
both of the above conditions, i.e. is L-Lipschitz and c-co-Lipschitz for some
constants 0 < c ≤ L < ∞.

The recently developed theory of Lipschitz quotient mappings between
Banach spaces raised many interesting questions about the properties of these
mappings. Here we are interested in the case when X and Y are finite di-
mensional Banach spaces.

The paper [JLPS] contains far-reaching results for Lipschitz quotient map-
pings f : R

2 → R
2. In particular, it is proved there that the preimage of each

point under such an f is finite. The question whether the same is true for
Lipschitz quotients f : R

n → R
n for n ≥ 3 is still open, although the following

result concerning this was obtained in [M]: There is a ρn < 1 such that if
the ratio of co-Lipschitz and Lipschitz constants of such a mapping is greater
than ρn, then the mapping is one-to-one. It was also proved in [M] that the
cardinality of the preimage of a point under a Lipschitz quotient mapping
� Supported by the Israel Science Foundation.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 148–157, 2003.
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of the plane does not exceed the ratio between its Lipschitz constant L and
co-Lipschitz constant c with respect to the Euclidean norm.

In section 2 of the present paper, we generalize this result to the case
of arbitrary norm. One important situation is when the ratio c/L is greater
than 1/2, then the mapping is a homeomorphism. In section 3, we discuss
the question whether the bound c/L ≤ 1/maxx #f−1(x) is tight.

In section 4, we study so-called ball non-collapsing (BNC) mappings. We
say that a mapping f : X → Y is C-ball non-collapsing, if for any x ∈ X and
r > 0 one has

f
(
Br(x)

) ⊃ BCr(y) (∗)

for some y ∈ Y . This property generalizes co-Lipschitzness. We will say that
a mapping is C locally BNC, if for any x ∈ X there exists ε = ε(x) > 0 such
that (∗) holds for all r ≤ ε.

Note that ball non-collapsing mappings can be very far from being co-
Lipschitz: e.g., the mapping F (x, y) = (x, |y|) from R

2 to itself is 1/2 BNC,
but is not co-Lipschitz (its image is not the whole plane).

The local ball non-collapsing property does not imply in general the global
property, as demonstrated by another plane-folding example: F1(x, y) =
(x, |y − [y + 1

2 ]|), where [t] stands for the integer part of t. This mapping
is locally 1/2 ball non-collapsing, but is not globally ball non-collapsing for
any constant.

However, it turns out that in particular cases, the local BNC property may
even imply co-Lipschitzness, though with smaller constant: it is easy to show
(see Lemma 4, section 4 that if the Lipschitz constant of a Lipschitz, locally
BNC mapping f is less than twice the BNC constant, then f is a Lipschitz
quotient mapping. For the mappings of the plane this immediately yields
finiteness of point preimages. But we obtain a stronger result. In Theorem 2
we show that such a mapping f is a bi-Lipschitz homeomorphism, that is, the
preimage of each point consists of one point. On the other hand, the above
example of locally BNC mapping F1(x, y) shows that as soon as the ratio of
constants is less than or equal to one half, the locally BNC mapping may
have infinite point preimages.

The idea of folding the plane infinitely many times has to be modified
in order to construct an example of a Lipschitz globally BNC mapping of
the plane with infinite point preimage. In section 5 we discuss the modified
construction, but it yields the BNC constant less than (and arbitrarily close
to) one third of the Lipschitz constant. Thus, we do not know exactly how
large the point preimages in the global BNC case can be, when the ratio of
constants is in the interval [1/3, 1/2].

2. This section is devoted to Lipschitz quotient mappings. We would like to
prove the following theorem, which is a generalization of a similar result in
[M] to the case of arbitrary norm.
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Theorem 1. If f : (R2, ‖·‖) → (R2, ‖·‖) is an L-Lipschitz and c-co-Lipschitz
mapping with respect to any norm ‖ · ‖ and

max
x∈R2

#f−1(x) = n,

then c/L ≤ 1/n.

Proof. The proof will follow the same scheme as the proof of [M, Theorem 2].
We will only explain the details needed for the argument to work in case of
arbitrary norm. We consider the decomposition f = P ◦h, where h : R

2 → R
2

is a homeomorphism and P (z) is a polynomial of one complex variable (see
[JLPS]). Clearly, degP = maxx∈R2 #f−1(x) = n. We may also assume that
f(0) = 0 and L = Lip(f) = 1.

Assume c > 1/n, then there exists ε > 0 such that c1 = c(1 − ε) > 1/n.
We omit the proof of the following lemma, since it would in fact repeat

the proof of [M, Lemma 1]:

Lemma 1. There exists an R such that for any x with ‖x‖ ≥ R one has
‖f(x)‖ ≥ c1‖x‖. ��

Let us show that for large enough r the index of the image f(∂B‖·‖
r (0))

around zero is equal to n.

Lemma 2. There exists d > 1 such that for any ρ > d

Ind0 f
(
∂B‖·‖

ρ (0)
)

= Ind0 P
(
h
(
∂B‖·‖

ρ (0)
))

= n.

Proof. Denote the Euclidean norm of x ∈ R
2 by |x|. By [M, Lemma 3] there

exists such σ that Ind0 f(∂B|·|
σ (0)) = n, and all preimages of zero under f lie

in B|·|
σ (0). Take d such that ‖x‖ ≥ d implies |x| ≥ σ, and let ρ ≥ d. Since the

set B‖·‖
ρ (0) \B|·|

σ (0) does not contain preimages of zero, one has

Ind0 f
(
∂B‖·‖

ρ (0)
)

= Ind0 f
(
∂B|·|

σ (0)
)

= n.

��
The last lemma in the proof of Theorem 1 is rather obvious in the Eu-

clidean case, but needs some technical work in the case of arbitrary norm
and the corresponding Hausdorff measure. By the k-dimensional Hausdorff
measure of a Borel set A we mean

Hk(A) = sup
δ>0

inf
{ ∞∑
j=1

(diam Cj)k
∣∣ A ⊂

∞⋃
j=1

Cj , diam Cj ≤ δ

}

(cf. [F, 2.8.15]). The diameter in this definition is with respect to the metric
given by the norm ‖ · ‖. Note that Hk is so normalized that the 1-Hausdorff
measure of a segment [x, y] is equal to ‖x− y‖.
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Lemma 3. If Γ : [0, 1] → R
2 is a closed curve with ‖Γ (t)‖ ≥ r for all t ∈

[0, 1] and Ind0 Γ = n, then the length of Γ in the sense of the 1-dimensional
Hausdorff measure H1 is at least nH1(∂Br(0)).

Proof. In order to prove Lemma 3, it suffices to prove it in the case n = 1,
since a closed curve of index n can be split into n closed curves of index 1.

Note first that there exist convex polygons inscribed in the sphere ∂Br(0)
with perimeter arbitrarily close to H1(∂Br(0)).

Indeed, fix positive ε and take δ > 0 such that for any covering of
∂Br(0) by balls of diameters less than δ, the sum of the diameters is at least
H1(∂Br(0)) − ε. Consider the family of all balls with centers on ∂Br(0) and
diameters less than δ. By the Besicovitch Covering Theorem (see [F, 2.8.15])
there exists a countable subfamily of disjoint balls {Bi}, which covers almost
all of ∂Br(0). Since the remaining part of ∂Br(0) is of H1 measure zero, it
can be covered by a collection of balls with diameters less than δ and sum of
diameters less than ε. Therefore,

∑
i diam(Bi) ≥ H1(∂Br(0)) − 2ε.

Choose m such that
∑
i≤m diam(Bi) ≥ H1(∂Br(0)) − 3ε. The perimeter

of the convex polygon whose vertices are the centers of B1, . . . , Bm is then
at least H1(∂Br(0)) − 3ε, since the balls are disjoint.

Thus it is enough to consider a convex polygon γ inside the ball Br(0),
and to prove that H1(Γ ) ≥ H1(γ).

Let us note that the H1-length of a planar curve is at least the ‖ · ‖-
distance between its endpoints. This can be shown by replacing the curve
by a broken line of nearly the same H1-length (which may be achieved by a
procedure similar to inscribing a polygon in a sphere as above) and using the
triangle inequality. Therefore, if we replace an arc of a curve by a straight
line segment, we do not make the curve longer (this is similar to the case of
Euclidean norm, except that in some norms a curve may have length equal
to the distance between its endpoints even if it is not a straight line).

Successively replacing arcs of the curve Γ by straight line segments con-
taining sides of the polygon γ, we do not increase the H1-length, and in a
finite number of steps will replace Γ by γ. ��

To conclude the proof of Theorem 1, note that 1-Lipschitz mappings
do not increase the Hausdorff measure. Therefore the H1-length of Γ =
f(∂Bρ(0)) cannot exceed H1(∂Bρ(0)). On the other hand, if ρ is sufficiently
large, then by Lemma 2, Ind0 Γ = n, and by Lemma 1, ‖y‖ ≥ c1ρ for any
y ∈ Γ . So by Lemma 3 the H1-length of Γ is at least nc1H1(∂Bρ(0)). Since
nc1 > 1, this is a contradiction which finishes the proof of the theorem. ��

3. Having proved such a theorem, one would like to know if the 1/n bounds
are precise. In the case of Euclidean norm the mappings φn(reiθ) = reniθ

have the ratio of constants equal to 1/n and maximum cardinality of a point
preimage equal to n. Unfortunately, this does not immediately generalize to
the case of arbitrary norm.
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We are able to construct examples of such mappings in the situation when
the unit ball is a regular polygon (or, of course, its affine equivalent). The 	∞
norm is then a particular case of this. The idea of construction is as follows.
Let V0 be a vertex of the unit sphere S = {x : ‖x‖ = 1}. If x is a point on S,
let arg‖·‖(x) be the length of the arc of S between V0 and x in the counter-
clockwise direction, measured by the Hausdorff measure H1 corresponding to
the metric defined by the norm ‖ · ‖. We define ψn(rx) = ry, where r ≥ 0,
and y is such a point on S that arg‖·‖(y) = n arg‖·‖(x). One easily checks
that the Lipschitz constant of ψn is equal to n. To check that the co-Lipschitz
constant is equal to 1, one may consider a local inverse of ψn (see Lemma 5
below) and satisfy oneself that this inverse does not increase the ‖·‖-distance.

We do not know of such examples for other norms, so despite the feeling
that the converse of the theorem holds for any norm (that is, there exist
mappings with maximum of n point preimages and the ratio of constants
equal to 1/n), this question remains open.

4. Now we would like to switch from Lipschitz quotient mappings to more
general locally BNC mappings of R

2 with the distance defined by an arbitrary
norm ‖ · ‖. Our next goal will be to obtain a result which links the maximum
cardinality of a point preimage to the ratio of the BNC constant C and
the Lipschitz constant L of the mapping. This result, which is Theorem 2
below, deals only with the case C/L > 1/2. Recall that if C/L ≤ 1/2, point
preimages can be infinite (an example is given in Section 1). However, we
know this only for Lipschitz, locally BNC mappings of the plane. See the
next section for a discussion of the case C/L ≤ 1/2 for Lipschitz, globally
BNC mappings of R

2.
We start with a simple lemma for BNC mappings between metric spaces.

Lemma 4. If a mapping f between two normed spaces X and Y is L-
Lipschitz and is locally C-BNC with C/L > 1/2 then f is c = (2C − L)
co-Lipschitz.

Proof. Consider any point x and radius R ≤ ε(x), where ε(x) is from the defi-
nition (∗) of local BNC property of the mapping f . There exists a point y such
that BCR(y) ⊂ fBR(x) ⊂ BLR(f(x)). Then the distance dist(y, f(x)) does
not exceed (L−C)R < CR. Now since BCR−dist(y,f(x))(f(x)) is contained in
BCR(y), we conclude that the mapping f is locally C − (L−C) = (2C − L)
co-Lipschitz. This implies that f is globally (2C−L) co-Lipschitz. For a proof
that local co-Lipschitzness at every point implies global co-Lipschitzness see,
for example, [C, Section 4]. ��
We proved in Theorem 1 that for an L-Lipschitz and c-co-Lipschitz mapping
from the plane to itself, the cardinality of a point preimage is not greater
than L/c. We thus have a

Corollary. If f : R
2 → R

2 is L-Lipschitz and C locally BNC with C/L > 1/2
then
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max
x∈R2

#f−1(x) ≤ L
2C−L .

The bound on the right blows up when C/L is larger than but close to
1/2. Our aim now is to improve the bound to the best possible one, that is,
to prove that a C locally BNC and L-Lipschitz mapping with C/L > 1/2 is
in fact a homeomorphism, i.e. the preimage of each point is a single point.

We will need several lemmas.

Lemma 5 (Local invertibility of a Lipschitz quotient mapping). Let f : R
2 →

R
2 be a Lipschitz quotient mapping. There exists a finite subset A of R

2 such
that if Ω is a connected simply connected open domain which does not in-
tersect with A, then for any point x such that y = f(x) ∈ Ω there exists a
mapping φ = φx,y : Ω → R

2 which satisfies φ(y) = x and f ◦ φ = IdΩ. This
mapping φ is open and is locally 1/c-Lipschitz, where c is the co-Lipschitz
constant of f .

Proof. By [JLPS] any such f is a composition P ◦ h of a polynomial P with
a homeomorphism h. Let A be the finite set {P (z) | P ′(z) = 0}. If Ω is a
connected simply connected open domain which does not intersect with A,
then the polynomial P has a unique inverse, which is an analytic function
p defined on Ω such that p(y) = h(x). Define φ = h−1 ◦ p. It is clear that
φ(y) = x and f ◦ φ = IdΩ .

Since φ is a composition of a homeomorphism h−1 and an analytic func-
tion p, whose derivative p′(ω) = 1

P ′(p(ω)) is nonzero, we conclude that φ is
open.

Suppose ω ∈ Ω and r > 0 is so small that Bcr(ω) ⊂ Ω and Br(φ(ω)) ⊂
φ(Ω). Then co-Lipschitzness of f implies that φBcr(ω) ⊂ Br(φ(ω)) , so φ is
locally c−1-Lipschitz, where c is the co-Lipschitz constant of f . ��
Lemma 6. Assume that a mapping f between two finite dimensional normed
spaces X and Y is C locally BNC and is differentiable at a point a. Then
for any ε > 0 there exists r = r(ε, a) such that fBρ(a) ⊃ B(C−ε)ρ(f(a)) for
ρ ≤ r.

Proof. Let daf be the differential of f at a, so that f(a+h) = f(a)+(daf)h+
o(h). We will show now that (daf)B1(0) ⊃ BC(0). Then for every ε > 0 one
can find r such that ‖o(h)‖ < ε‖h‖ for ‖h‖ ≤ r. It follows that for ρ ≤ r the
image fBρ(a) contains the ball centered at f(a) of radius Cρ−ερ = ρ(C−ε).

Assume C1 = min‖x‖=1 ‖daf(x)‖ < C. Then (daf)B1(0) ⊃ BC1(1+ε)(0)
for every ε > 0 (thus, in particular, (daf)B1(0) ⊃ BC(0)).

It follows that (daf)B1(0) ⊃ BC1(1+ε)(x) for any x ∈ (daf)B1(0) and ε >
0. Indeed, assuming (daf)B1(0) ⊃ BR(x) one gets (daf)B1(0) ⊃ −BR(x) =
BR(−x) and thus

(daf)B1(0) ⊃ conv
(
BR(x), BR(−x)

) ⊃ BR(0).



154 O. Maleva

Take r such that ‖o(h)‖ < C−C1
2 ‖h‖ for ‖h‖ ≤ r. Then for any ρ ≤ r one

has
fBρ(a) ⊂ Σ = f(a) + ρ(daf)B1(0) +B

ρ
C−C1

2
(0).

The latter does not contain a ball of radius greater than C+C1
2 ρ (the proof of

this uses that (daf)B1(0) is convex), and in particular we conclude that Σ
(and therefore fBρ(a)) does not contain a ball of radius Cρ, in contradiction
to the local C-BNC property of f . ��

In what follows we will assume that f(0) = 0.
The next key lemma is an analogue of Lemma 1 for Lipschitz quotient

mappings, but in the case of BNC mappings the proof becomes technically
more complicated.

Lemma 7. If a mapping f : R
2 → R

2 is L-Lipschitz and is locally C-BNC
with C/L > 1/2 and f(0) = 0, then for any C ′ < C there exists R > 0 such
that ‖f(x)‖ ≥ C ′‖x‖ for any ‖x‖ ≥ R. Consequently, fBr(0) ⊃ BC′r(0) for
all r ≥ R.

Proof. Assume L = 1, set M = 1+maxf(z)=0 ‖z‖ and consider R = 4M/(C−
C ′). Assume that there exists a point x0 such that ‖x0‖ = r ≥ R and
‖f(x0)‖ < C ′r. There exists ε > 0 such that for all y ∈ U(x0, ε) = {y : ‖y‖ =
‖x0‖ and ‖y − x0‖ < ε} one has ‖f(y)‖ < C ′r.

Note that there exists x1 ∈ U(x0, ε) and ε′ > 0 such that U(x1, ε
′) ⊂

U(x0, ε) and
Ω = ∪y∈U(x1,ε′)

(
0, 2f(y)

)
is such a domain as was described in Lemma 5 (i.e., Ω does not contain
P (z) such that P ′(z) = 0). Here (0, a) is the straight line interval between
0 and a in R

2. Let φ = φx1,f(x1) : Ω → R
2 be the mapping from Lemma 5.

Note that φ(Ω), being open, contains an open neighbourhood of x1, so there
exists ε1 : 0 < ε1 < ε′, such that U(x1, ε1) ⊂ φ(Ω). Then φf(y) = y for any
y ∈ U(x1, ε1), since φ|Ω is a 1-1 mapping.

Since φ is locally Lipschitz, and is defined in an open cone, φ(0) is also
well-defined.

In what follows, we are going to use both the Lebesgue measure Lk and
the Hausdorff measure Hk for k = 1, 2. Recall that in R

k the measure Lk
coincides with Hk on Borel sets. But the measure Hk is defined also in spaces
of dimension different from k; if ψ is a Lipschitz mapping and A is such a set
that Hk(A) = 0, then Hk(ψ(A)) = 0. In particular, if A is a Borel set in R

k

such that Lk(A) = 0, and ψ : R
k → R

k is Lipschitz, then Lk(ψ(A)) = 0.
We know that f is L2-almost everywhere differentiable on φ(Ω). Let

D = {t ∈ φ(Ω) | f is differentiable at t}. Since H2(φ(Ω) \ D) = 0 and f
is Lipschitz, we conclude that the set Ω \ f(D) is also of L2 measure zero.
Then by Fubini’s theorem there exists a point y in U(x1, ε1), such that al-
most every point of the interval (0, 2f(y)) with respect to L1 measure is
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in f(D). Now consider the restriction of φ onto the segment [0, f(y)]. This
restriction is a Lipschitz mapping from [0, f(y)] to R

2; therefore H1-almost
every point of the curve γ = φ([0, f(y)]) is in D, that is f is H1-almost ev-
erywhere differentiable on γ. Let B = D ∩ γ be the set of points on γ where
f is differentiable.

Since C+C′
2 < C, by Lemma 6 for each differentiability point z ∈ B there

exists rz > 0 such that fBρ(z) ⊃ Bρ(C+C′)/2(f(z)) for any ρ ≤ rz.
Let H1(γ) be the 1-Hausdorff measure of γ. There exists τ > 0 such that

if almost all of γ is covered by balls of diameter at most τ , then the sum of
diameters of the balls is at least H1(γ) − M

2 (we defined M in the beginning
of the proof). Without loss of generality we may assume that τ < M/2.

Consider F = {Bρ(z) | z ∈ B, ρ ≤ min{rz, τ/2}}. By the Besicovitch
Covering Theorem (see [F, 2.8.15]) there exists a countable disjoint subcol-
lection F0 of F , which covers almost all of B, therefore almost all of γ, with
respect to the measure H1. Then

∑
B∈F0

diam B ≥ H1(γ) − M

2
.

On the other hand the f -image of each ball B ∈ F0 contains a ball with
center on [0, f(y)] and of radius r(B)C+C′

2 . Note that F1={Bρ(C+C′)/2(f(z)) |
Bρ(z) ∈ F0} is a family of nonintersecting balls with centers on the interval
[0, f(y)], therefore

C + C ′

2

∑
B∈F0

diam B =
∑
B∈F1

diam B ≤ ‖f(y)‖ + τ
C + C ′

2
.

Thus

‖f(y)‖ ≥
(

H1(γ) − M

2

)
C + C ′

2
− τ

C + C ′

2
≥ (H1(γ) −M

)C + C ′

2
.

Note also that H1(γ) ≥ ‖y‖−‖φ(0)‖ ≥ r−M (see the explanation in the proof
of Lemma 3), so ‖f(y)‖ ≥ (r−2M)C+C′

2 . But we assumed that ‖f(y)‖ < C ′r,
so one gets

C ′r >
C + C ′

2
r − 2M,

or, equivalently, 2M > C−C′
2 r, which contradicts r ≥ R = 4M

C−C′ . ��

Theorem 2. Let R
2 be equipped with an arbitrary norm ‖ · ‖. If f : R

2 → R
2

is an L-Lipschitz and C locally ball non-collapsing mapping with C/L > 1/2,
then

#f−1(x) = 1

for any point x ∈ R
2.
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Proof. By Lemma 4, such a mapping f is a Lipschitz quotient mapping. Let
n = maxx∈R2 #f−1(x). We may assume f(0) = 0.

Fix any C ′, such that L/2 < C ′ < C. Then by Lemma 7 there exists R
such that ‖f(x)‖ ≥ C ′‖x‖ for all ‖x‖ ≥ R. By Lemma 2, there exists r > R
such that | Ind0 f(∂Br(0))| = n.

Then by Lemma 4 the H1-length of f(∂Br(0)) is at least nC ′H1(∂Br(0)),
which is strictly greater than nL

2 H1(∂Br(0)). But since f is L-Lipschitz, the
length of f(∂Br(0)) is at most LH1(∂Br(0)). Hence nL

2 < L, therefore n = 1.
This finishes the proof of the theorem. ��

5. The last question we would like to discuss here is what happens when a
globally BNC mapping has a ratio of constants less than or equal to 1/2. The
plane folding example, F (x, y) = (x, |y|), where C/L = 1/2, shows that such
a mapping neither has to be co-Lipschitz, nor is necessarily 1-1. However, the
mapping in this example has point preimages of finite maximum cardinality 2.

On the other hand a mapping with ratio C/L less than 1/3 may have
infinite point preimages. An example to this end is the following. For an
interval I = [a, b] in R

1 define the “hat function” hI(x) by b−a
2 − |x − a+b

2 |.
Now let the mapping ζA : R

1 → R
1, where A > 1, be defined by

ζA(x) =



x, if x ≤ 0,
(−1)kh[A−k,A−k+1](x), if A−k ≤ x ≤ A−k+1, k a positive integer,
x− 1, if x > 1.

Obviously, ζA is a 1-Lipschitz function. One can check that ζA is BNC with
constant C = 1−A−2

3−A−2 . Then the function f(x, y) = (x, ζA(y)) is a Lipschitz
and BNC mapping of the plane, with infinite point preimages, and the ratio
of constants less than but arbitrarily close to 1/3 (at least with respect to a
norm ‖ · ‖ for which ‖(x, y)‖ = ‖(x,−y)‖).

Note that a point preimage under a Lipschitz BNC mapping may even be
uncountable. For example, if

E = [0, 1] \
⋃

k,n≥0

(
3k + 1

3n
,

3k + 2
3n

)

is a Cantor set on [0, 1], the mapping g(x) = dist(x,E) is 1-Lipschitz and is
globally BNC, whose zeros set is E.

We also have a proof that in 1-dimensional space the bound of 1/3 cannot
be improved (that is, if a Lipschitz and BNC mapping has infinite point
preimages, then the ratio of constants C/L is strictly less than 1/3). Thus, we
have no definite results concerning point preimages under Lipschitz globally
BNC mappings of the plane whose ratio of constants is between 1/3 and 1/2.

Let us summarize the results concerning the estimates of the maximum
cardinality of the preimage of a point under the three classes of Lipschitz
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mappings of the plane. Let L be the Lipschitz constant of a mapping. If a
mapping is Lipschitz quotient with co-Lipschitz constant c, the preimage of a
point consists of at most L/c points. If a mapping is (globally) BNC with BNC
constant C, then in the case C/L > 1/2 a point preimage is a single point, in
the case C/L < 1/3 it can be infinite, and in the case 1/3 ≤ C/L ≤ 1/2 we
have no definite answer. And if a mapping is locally BNC with BNC constant
C, the complete answer is as follows. If C/L > 1/2, a point preimage is a
single point, and in the case C/L ≤ 1/2 a point preimage can be infinite.

Acknowledgement. I thank Professor Gideon Schechtman for his continuing support
throughout my research in this field.
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Some Remarks on a Lemma of Ran Raz
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In this note we will review a Lemma published by Ran Raz in [R], and suggest
improvements and extensions. Raz’ Lemma compares the measure of a set on
the sphere to the measure of its section with a random subspace. Essentially,
it is a sampling argument. It shows that, in some sense, we can simultaneously
sample a function on the entire sphere and in a random subspace.

In the first section we will discuss some preliminary ideas, which un-
derlie the lemma and our interest in it. We will view a random subspace
as the span of random points, without discussing the sampling inside the
subspace. We will demonstrate how substantial results follow from this ele-
mentary approach. In the second section we will review the original proof of
Raz’ Lemma, analyse it, and improve the result. In the final section we will
extend the Lemma to other settings.

1 Random Points Span a Random Subspace, and What
It Has to Do with Medians, Spectra and Concentration

1.1 An Appetiser

The starting point of our discussion, and an important ingredient in Raz’
Lemma, is the following simple observation regarding random subspaces: to
choose a random k-dimensional subspace in R

n is nothing more than to scat-
ter k random points on the sphere.

Indeed, the Lebesgue measure on the sphere is the unique normalised
Haar measure invariant under rotations. In other words, fix U ∈ O(n); if
y1, . . . , yn are independent and uniform, then so are U(y1), . . . , U(yn). There-
fore span{y1, . . . , yn} has the same distribution as span{U(y1), . . . , U(yn)} =
U(span{y1, . . . , yn}). So the distribution of the span of k random points on
the sphere is the unique rotation invariant distribution on the Grassmanian
Gn,k.

This observation alone has surprising strength. Take a continuous function
f on Sn−1 with median M (namely both µ(f(x) > M) and µ(f(x) < M) do
not exceed 1/2). The probability that k independent uniformly distributed
points be on the same side of the median is at most 2−k+1. The probability
that their span is on one side of the median is even smaller. Since their span
is uniform in the Grassmanian, we find that those elements of Gn,k, which
do not intersect the median, measure less than 2−k+1.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 158–168, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Some Remarks on a Lemma of Ran Raz 159

Playing with parameters, one can see that in a random orthogonal de-
composition of Rn into logn-dimensional subspaces, each component will
intersect the median, and thus produce n/ log n orthogonal points on the me-
dian. Using the additional information from Raz’ Lemma (to be introduced
below), we can obtain the same result for an orthogonal decomposition into
130-dimensional subspaces, yielding n/130 orthogonal points on the median.
These facts are brought only to illustrate possible application avenues for
the ideas we promote. We omit the details, because the above results are
not optimal for this specific instance. Indeed, as G. Schechtmann observed,
if we orthogonally decompose the space into 2-dimensional subspaces, each
component is 50% likely to intersect the median. In expectation, therefore,
half of the components intersect the median, and yield n/4 orthogonal points
on the median.

There is a small notable advantage to the non-optimal arguments over the
final argument sketched in the last paragraph — the first arguments are “high
probability” arguments, and can therefore be used in conjunction with other
“high probability” restrictions. Finally, in [YY] topological considerations
provide any real continuous function on Sn−1 with n orthogonal equivalued
points. In our discussion we secure less points, but prescribe them on the
median.

1.2 From Spectrum to Concentration

It has by now become a standard turn of narrative to begin with concentration
of measure and culminate with existence of spectrum. One proves first, using
an isoperimetric inequality, that a Lipschitz function is close to its median
everywhere but for a small-measure exceptional set. Then one deduces that
the function can have only small oscillations on random subspaces, which
makes it close to a constant. In our jargon we will say it has spectrum (cf.
[M]).

The ideas of the previous section allow to reverse the plot. We will first
invoke some 20-year-old unpublished discussions between M. Gromov and
the first named author in order to obtain spectrum. We will then go from
there to prove concentration. One protagonist finds itself missing from our
new storyline; isoperimetry will play no role. Instead, we will only require the
classical cap volume estimate:

µSn(x1 ≥ ε) ≤
√
π

8
e− 1

2 ε
2(n−2) . (1)

A large portion of our account will take place on the Stieffel manifold Wn,2 =
{(x, u) | x ∈ Sn−1, u ∈ Sn−2(Tx)} equipped with the local product topology.
An element of this manifold is a pair of normalised orthogonal vectors (Tx is
the tangent plane at x).

Note that the action of O(n) on Sn−1 naturally extends to a transitive
action on Wn,2, inducing the measure
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µWn,2(A) = µO(n)
({
T | T (e1, e2) ∈ A

})
,

where e1 and e2 are two orthogonal unit vectors used as reference. As the
Stiefel manifold is metrically equivalent to joining two copies of Dn−1×Sn−2,
it carries a δ-net of cardinality at no more than (Cδ )2n.

Let F be a 1-Lipschitz function on the sphere. We will view ∇F , the
gradient of F , as a function on Wn,2 with the action ∇F (x, u) = ∇xF · u.
Since we want F to have a gradient, and since we want to induce from the
behaviour of the gradient on a net to its behaviour on the entire space, we
must replace F for a while with a smoother look-alike. We will introduce

f(x) = Avey∈Bη(x)∩Sn−1F (y) ,

where Bη(x) is the ball of radius η around x (η will be selected later). Since
F is 1-Lipschitz, this new function is differentiable with

1. |∇f(x, u)| ≤ 1 for all (x, u) ∈ Wn,2,
2. the Lipschitz constant of ∇f(·, u) is smaller than C

η , and
3. |f(x) − F (x)| ≤ η for all x ∈ Sn−1.

Let us now agree that C and C ′ represent universal constants, which do
not retain the same value throughout the text, and commence arguing.

Step 1. The action of ∇f on Wn,2 is small everywhere but for a small-
measure exceptional set.

Proof. Fix x ∈ Sn−1. The linear functional ∇f(x, ·) on the tangent space
Tx has a 1–codimensional kernel. If u ∈ S(Tx) is ε–approximated by a v ∈
ker(∇f(x, ·)), then

|∇f(x, u)| ≤ |∇f(x, u− v)| + |∇f(x, v)| ≤ ‖u− v‖ ≤ ε .

According to (1), the measure of directions u with the above property is at
least 1 − e−Cε2n. As this holds for every x ∈ Sn−1, we conclude

µWn,2

{
(x, u)| |∇f(x, u)| ≤ ε

} ≥ 1 − e−Cε2n . (2)

��
The information gathered in the first step above allows us to simultane-

ously map any eCε
2n elements of Wn,2 to elements with small ∇f using a

single orthogonal transformation. Indeed,

µO(n)
({
T | ∣∣∇f(T (x, u)

)∣∣ ≤ ε
})

= µWn,2

({
(x, u) | |∇f(x, u)| ≤ ε

})
≥ 1 − e−Cε2n

and therefore

µO(n)

({
T | ∣∣∇f(T (xi, ui)

)∣∣ ≤ ε, 1 ≤ i < eCε
2n
})

> 0 .
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As usual, if we take eC
′ε2n elements, with C ′ < C, only an exponentially

small measure of operators in O(n) will fail to do the job.

Step 2. F has small oscillations on random subspaces.

Proof. As we observed, (C
′
δ )2k points suffice for a δ-net on Wk,2(Rk). Assume

that (C
′
δ )2k < eCε

2n. By the above, this net can be orthogonally mapped to
points where ∇f is bounded by ε (as a function on Wn,2). The new points
still form a δ-net in Wk,2(V k) for some Vk ∈ Gn,k. We can now establish that
∇f is small on the entire Wk,2(V k).

Indeed, any (x, u) ∈ Wk,2(V k) has a δ–neighbour (x′, u′) in the net, so we
get

|∇f(x, u)| ≤ |∇f(x, u) − ∇f(x, u′)| + |∇f(x, u′) − ∇f(x′, u′)| + |∇f(x′, u′)|
≤ δ +

C

η
· δ + ε .

The combination of f ’s small directional derivatives with the sphere’s bounded
diameter secures small oscillations for f . These small oscillations easily trans-
fer to the original F .

Take x1, x2 ∈ V k, and η ≤ 1. We get

|F (x0) − F (x1)| ≤ max
(x,u)∈Wk,2(V k)

|∇f(x, u)| · ‖x0 − x1‖ + 2η

≤ C

η
· δ + ε+ 2η .

We now set ε ≤ 1, η = ε, δ = ε2, and k = �Cε2n/ log 1
ε2 	, and obtain the

following:

Statement. With probability at least 1 − e−Cε2n, the 1-Lipschitz function F
oscillates by no more than ε on random �Cε2n/ log 1

ε2 	-dimensional subspaces.
��
Step 3. The measure of points, where F is ε-close to its median, is at least
1 − e−Cε2n (as long as ε > C ′ log n√

n
).

Proof. From the previous section we know that a k-dimensional subspace
intersects the median of F with probability at least 1 − 2−k+1. Combining
this information with the even greater odds of k-dimensional spectrum, we
find that only an e−Ck proportion of k-dimensional subspaces allow F to
diverge more than ε from its median (note that this argument requires k ≥ 2,
but this is supported by the restriction on ε).

This estimate readily carries over to at most e−Ck proportion of points
on the sphere, where F can diverge by ε from its median; we are close to our
goal, but not quite there.
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In order to get an improved estimate to the proportion of points where
F diverges by at least ε from its median, let’s recycle again the idea that a
random k-dimensional subspace is the span of k random points.

PV ∈Gn,k(F is ε-far from its median on all points of V )
= P{xi}ki=1∈(Sn−1)k(F is ε-far from its median on span{x1, . . . , xk})

≤ P{xi}ki=1∈(Sn−1)k(F is ε-far from its median on {x1, . . . , xk}) ≤ (e−C′k)k .

We again confront this estimate with the estimate for k-dimensional spectrum
in the Statement above. Since k2 > Cε2n for the stated values of ε and k, we
conclude that at least 1−e−Cε2n proportion of k-dimensional subspaces, and
hence at least such a proportion of points of the sphere, are sent by F ε-close
to the median. By repeating the above argument, we can improve slightly
the restriction on ε, and bring the enumerator towards

√
log(n). ��

While we demonstrated this line of thought only for the sphere, it can be
easily imagined in other contexts. Complementing the well-known “concen-
tration implies spectrum” principle, we should encourage a general “spectrum
implies concentration” ideology. Raz’ Lemma, as discussed below, is one of
the components of this ideology.

2 Raz’ Lemma

2.1 Raz’ Original Argument

Up to this point we only used the simple fact that independent random points
sample random subspaces. We will now see that the same random points, even
though they needn’t be independent with respect to the subspace they span,
are still tame enough to provide useful information regarding their span.

Raz’ Lemma, introduced in [R], is a special deviation inequality on the
Grassmanian. Let µ be the normalised Haar measure on the unit sphere, and
ν be the Haar probability measure on Gn,k. If we restrict µ to subspaces
according to the formula µ|V (A) = µV (A ∩ V ), where µV is the normalised
Haar measure on V , we’ll find that

µ(A) =
∫
V ∈Gn,k

µ|V (A) dν.

We may now ask how well µ|V (A) is concentrated as a function of V on Gn,k.
It turns out, that even though µ|V (A) needn’t even be continuous, we still
get a concentration inequality similar to that of Lipschitz functions.

Theorem 1 (Raz’ Lemma). Let C ⊆ Sn−1 and denote µ(C) = c. Then:

ν
(∣∣µ|V (C) − c

∣∣ ≥ ε
) ≤ 4e− ε2k

2

ε
,

where ν and µ|V are as above.
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Remark 1. In the following text we will use P for the product of k Haar
probability measures on k copies of Sn−1. Recall that we have established
that a sequence uniform in P spans a subspace uniform in ν. Therefore,
where an event in (Sn−1)k depends only on the span of the sequence of
vectors, the probability P becomes synonymous with ν. In fact, where no
harm is expected, we intend to generally confuse subspaces and their spanning
sequences.

Proof. Let y1, . . . , yk be independent µ-uniform variables. We already es-
tablished that span{y1, . . . , yk} is a uniform element of the unique rotation
invariant measure on Gn,k. The behaviour of the yi’s inside their span is
more delicate. If y1, . . . , yk were independent inside their span, they would
simultaneously sample both A and A ∩ V quite well, and thus secure an
easy proof of Raz’ Lemma. However, restricting a measure to a zero measure
subset depends on further desired properties, and our needs preclude inde-
pendence inside the span. We will motivate our choice of restricted measure
and justify its properties in the next section. For now, just assume that yi is
Haar-uniform in span{y1, . . . , yk}, and nothing more.

Let’s start with the upper tail estimate. We will study the event

B =
{

(yi)ki=1 | µ|span{yi}ki=1
(C) ≥ c+ 2ε

}
.

We use the elementary inequality:

P (B) ≤ P (A)
P (A|B)

,

into which we substitute

A =
{

(yi)ki=1

∣∣∣ ∑k
i=1 1C(yi)

k
− c ≥ ε

}
.

P (A) is estimated from above by e−2ε2k (computer scientists call this
sampling estimate a Chernoff-type bound, but it goes back to Kolmogorov,
see [L], section 18.1). In order to estimate P (A|B), let’s take a subspace V
where B holds, and consider first

P
(
A | span{yi}ki=1 = V

)
.

Chebyshev’s inequality bounds this from below by:

E

(∑
1C(yi)
k

∣∣ span{yi}ki=1 = V
)

− (c+ ε)

max
(∑

1C(yi)
k

∣∣ span{yi}ki=1 = V
)

− (c+ ε)
.

Since each yi is uniform in span{yi}ki=1, and regardless of their conditional
dependence, this equals
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µ|V (C) − (c+ ε)
1 − (c+ ε)

.

Since V was chosen such that µ|V (C) ≥ c+ 2ε, we get

P
(
A | span{yi}ki=1 = V

) ≥ ε ,

and deduce
P (A|B) ≥ ε. (3)

This last transition is, from the point of view of measure theory, the most
delicate point of the proof. It would follow, if, for example, the global measure
were the average of the restricted measures. This property is the key to our
choice of restriction of the measure to a subspace. We will defer the details
to the next section, so that we can now directly conclude

P (B) ≤ P (A)
P (A|B)

≤ e−2ε2k

ε
.

If we rescale ε, and consider the symmetric lower tail estimate, we find the
theorem proved. ��

We would like to point out that Raz’ Lemma is not optimal in the case
of fixed ε and k, and c tending to 0 (or, symmetrically, to 1). Obviously
PV (|µ|V (C) − c| > ε) should tend to zero as c tends to zero. Nevertheless,
the bound we have does not emulate this property.

The reason for this lies in the sampling estimate we quote. While
P
(∑k

i=1 1C(yi)
k − c > ε

)
tends to zero with c, the bound e−2ε2k does not.

To adapt Raz’ Lemma to such a marginal situation, one must replace the
sampling estimate in the proof. Fortunately, one of the advantages of the
proof is its remarkable modularity and resilience to variations.

2.2 Conditional (In)dependence

The restriction of a measure to a zero measure subset requires additional
structure in order to make sense. For example, while volume in R

n is uniquely
determined, the definition of surface area depends on Euclidean structure.

For the definition of the restricted measure P
(
A | span{yi}ki=1 = V

)
in

the proof (to which we will refer in short as P (A|V )) we shall take∫
x1∈Sn−1

· · ·
∫
xk∈Sn−1

∫
T∈O(n,span{x1,...,xk}→V )

χA
(
T (x1), . . . , T (xk)

)
,

where the integral is calculated with respect to normalised Haar measures,
andO(n,U → V ) stands for the collection of unitary operators inO(n), which
map the subspace U to the subspace V . The definition aims at validating the
deduction of (3), which would follow from the equality
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V ∈Gn,k

P (A|V )dν = P (A) . (4)

Indeed,∫
V ∈Gn,k

∫
(xi)ki=1∈(Sn−1)k

∫
T∈O(n,span{x1,...,xk}→V )

χA
(
T (x1), . . . , T (xk)

)
=
∫

(xi)ki=1∈(Sn−1)k

∫
V ∈Gn,k

∫
T∈O(n,span{x1,...,xk}→V )

χA
(
T (x1), . . . , T (xk)

)
=
∫

(xi)ki=1∈(Sn−1)k

∫
T∈O(n)

χA
(
T (x1), . . . , T (xk)

)
=
∫
T∈O(n)

∫
(xi)ki=1∈(Sn−1)k

χA
(
T (x1), . . . , T (xk)

)
=
∫
T∈O(n)

∫
(xi)ki=1∈(Sn−1)k

χA(x1, . . . , xk)

=
∫

(xi)ki=1∈(Sn−1)k
χA(x1, . . . , xk) = P (A) .

The transition between the second and third lines follows from the uniqueness
of the normalised Haar measure on O(n).

Our definition also conforms to our earlier statement that the marginal
distribution of a single coordinate with respect to P (·|V ) is simply the Haar
probability measure on the sphere. Indeed, substitute into the definition a
set of the form A× Sn−1 × · · ·Sn−1, follow a reasoning similar to the above,
and you will simply get µ|V (A).

Finally, the restricted measure P (·|V ) is no longer the product of k Haar
measures on S(V ). Indeed, let A be the set of all closely clustered k-tuples in
(Sn−1)k. The global measure P (A) will be strictly smaller than the product
measure of A in (S(V ))k for all subspaces V (by well-known concentration of
measure estimates). Therefore, if P (·|V ) were the product of k Haar measures,
we would be in violation of the just-proven equality (4).

The loss of independence when restricting to a subspace is responsible for
the ‘bad’ denominator in Raz’ estimate. In the next section we will present
a trick, which allows one to erase the denominator altogether.

2.3 Getting Rid of the Denominator

We will use here the ‘tensorisability’ of the exponential estimate of P (A) to
suppress the linear factor arising from the estimate of P (A|B).

Fix k < n and arbitrary m. Consider y1, . . . ymk independent Haar-
uniform variables in Sn−1. Now the sequence {span{yi}jki=(j−1)k+1}mj=1 is
Haar-uniform and independent in Gn,k, and for every 1 ≤ � ≤ k the vari-
able y(j−1)k+� is Haar-uniform in span{yi}jki=(j−1)k+1 (we make no claim as
to their conditional independence here).
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We will consider the event:

A =
{

(yi)mki=1

∣∣∣∣
∑mk
i=1 1C(yi)
mk

− c > ε

}

and
B = B1 ∩B2 ∩ · · · ∩Bm ,

where
Bj =

{
(yi)mki=1

∣∣ µ|span{yi}jki=(j−1)k+1
(C) ≥ c+ 2ε

}
.

Just as before P (A) ≤ e−2ε2mk. Furthermore, by Chebyshev

P (A | ∀j : span{yi}jki=(j−1)k+1 = Vj)

≥
E

(∑
1C(yi)
mk

∣∣ ∀j : span{yi}jki=(j−1)k+1 = Vj

)
− (c+ ε)

max
(∑

1C(yi)
mk

∣∣ ∀j : span{yi}jki=(j−1)k+1 = Vj

)
− (c+ ε)

≥
1
m

∑
j µ|Vj (C) − (c+ ε)

1 − (c+ ε)
.

As before, we conclude that P (A|B) ≥ ε.
Since the original yi’s are independent, so are the events Bi, And we get

P (B) = P (B1) · . . . · P (Bm) = P (B1)m. It follows that

P (B1)m ≤ P (A)
P (A|B)

≤ e−2ε2km

ε
.

Letting m go to infinity, we find:

P (B1) ≤ e−2ε2k .

Again, rescaling and repeating for the lower tail, we conclude with

Theorem 2 (Improved Raz’ Lemma). In the same setting as Theorem 1,

ν
(∣∣µ|V (C) − c

∣∣ ≥ ε
) ≤ 2e− ε2k

2 .

3 Extensions

3.1 From Sn−1 to Gn,m

In this section we will transport the result from Sn−1 (which, for the purpose
of this discussion, works like Gn,1) to Gn,m. The same can be repeated for
various related homogeneous manifolds.
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Theorem 3. Let C ⊆ Gn,m and µ(C) = c (where µ is the normalised Haar-
measure on Gn,m). Choose k such that km ≤ n, then

PV ∈Gn,km
(∣∣µ(C | Gkm,m(V )

)− c
∣∣ > ε

)
≤ 2e− ε2k

2 .

Proof. Let V1, . . . , Vk be independent Haar-uniform variables in Gn,m. The
span{Vi}ki=1 is uniform inGn,mk and each Vi is uniform inGmk,m(span{Vi}ki=1).

Let

A =
{

(Vi)ki=1

∣∣∣∑k
i=1 1C(Vi)

k
− c ≥ ε

}
and

B =
{

(Vi)ki=1

∣∣µ|Gkm,m(span{Vi}ki=1)
(C) ≥ c+ 2ε

}
.

The remainder of the argument works just as before. By a sampling esti-
mate

P (A) ≤ e−2ε2k .

By Chebyshev’s inequality

P
(
A | span{Vi}ki=1 = V

) ≥ µ|Gkm,m(V )(C) − (c+ ε)
1 − (c+ ε)

,

and so P (A|B) ≥ ε. The same trick as in section 2.3 can write off P (A|B),
and we obtain the desired result. ��

3.2 From Indicators to General Functions

The purpose of this section is to replace the function 1C in the previous
sections by any other function. For this we require the following inequality
by Kolmogorov (as quoted in [L], section 18.1).

Theorem 4 (Kolmogorov’s Inequality). Let f be a function on a probability
space with Ef = M , ||f − M ||2 = s and ||f − M ||∞ = b. Let (yi)ki=1 be
independent random variables on the domain of f .

1. If ε ≤ s2

b then:

P

(∣∣∣∣
∑k
i=1 f(yi)
k

−M

∣∣∣∣ ≥ ε

)
≤ 2e− 1

4 ( εs )2k .

2. If ε ≥ s2

b then:

P

(∣∣∣∣
∑k
i=1 f(yi)
k

−M

∣∣∣∣ ≥ ε

)
≤ 2e− 1

4 ( εb )k .

Kolmogorov’s inequality allows to extend Raz’ technique to general func-
tions.
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Theorem 5. Let f : Sn−1 → R, and M ,s, and b as in the previous theorem.
1. If ε ≤ s2

b then:

PV ∈Gn,k
(∣∣E|V (f) −M

∣∣ > ε
) ≤ 2 · e− 1

16 ( εs )2k .

2. If ε ≥ s2

b then:

PV ∈Gn,k
(∣∣E|V (f) −M

∣∣ > ε
) ≤ 2 · e− 1

8 ( εb )k .

Note that if we substitute characteristic functions into f , we reproduce
the original statement for sets (up to constants).

Proof. Substitute into Raz’ argument the events:

A =
{

(yi)ki=1

∣∣∣∑k
i=1 f(yi)
k

−M ≥ ε

}
and

B =
{

(yi)ki=1

∣∣E|V (f) ≥ M + 2ε
}
.

Estimate P (A) by Kolmogorov’s bound, and use Chebyshev’s inequality as
above:

P
(
A | span{yi}i = V

) ≥ E|V (f) − (M + ε)
(b+M) − (M + ε)

,

and so
P (A|B) ≥ ε

b
.

Using the trick from section 2.3 to write off P (A|B), we obtain the promised
result. ��
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On the Maximal Perimeter of a Convex Set in
R
n with Respect to a Gaussian Measure
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Introduction

Let A be an n× n positive definite symmetric matrix and let

dγA(y) = ϕA(x) dx = (2π)−n
2
√

detAe− 〈Ax,x〉
2 dx

be the corresponding Gaussian measure. Let

Γ (A) = sup
{
γA(Qh \Q)

h
: Q ⊂ R

n is convex, h > 0
}

where Qh denotes the set of all points in R
n whose distance from Q does not

exceed h.
Since, for convex Q, one has Qh′+h′′ \Q = [(Qh′)h′′ \Qh′ ] ∪ [Qh′ \Q], the

definition of Γ (A) can be rewritten as

Γ (A) = sup
{

lim sup
h→0+

γA(Qh \Q)
h

: Q ⊂ R
n is convex

}

= sup
{∫

∂Q

ϕA(y) dσ(y) : Q ⊂ R
n is convex

}

where dσ(y) is the standard surface measure in R
n.

Making the change of variable x → Bx where B is the (positive definite)
square root of A, the last expression can be rewritten as

sup
{∫

∂Q

ϕ(y)|Bνy| dσ(y) : Q ⊂ R
n is convex

}

where ϕ(y) = (2π)−n
2 e− |y|2

2 is the density of the standard Gaussian measure
dγ in R

n and νy is the unit normal vector to the boundary ∂Q of the body
Q at the point y ∈ ∂Q.

Recall that the Hilbert-Schmidt norm ‖A‖H-S of a positive definite sym-
metric matrix A is defined as the square root of the sum of squares of all
entries of A or, which is the same, as the square root of the sum of squares
of the eigenvalues of A. The aim of this paper is to prove the following

Theorem. There exist absolute constants 0 < c < C < +∞ such that

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 169–187, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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c
√

‖A‖H-S � Γ (A) � C
√

‖A‖H-S.

A few words should, probably, be said about the history of the question.
To the best of my knowledge, it was S. Kwapien who first pointed out that
it would be desirable to have good estimates for Γ (In) (i.e., for the maximal
perimeter of a convex body with respect to the standard Gaussian measure).
The only progress that has been made was due to K. Ball who in 1993 proved
the inequality Γ (In) � 4n

1
4 for all n � 1 and observed that a cube in R

n

may have its Gaussian perimeter as large as
√

log n (see [B]). Many people
seemed to believe that the logarithmic order of growth must be the correct
one and that it is the upper bound that needs to be improved. If it were the
case, it would open a road to essentially improving some constants in various
“convex probability” theorems (see [Be1],[Be2] for a nice example). Alas, as
it turned out, K. Ball’s estimate is sharp.

As to the proof of the theorem, I cannot shake the feeling that there should
exist some simple and elegant way leading to the result. Unfortunately, what
I can present is a pretty boring and technical computation. So I encourage
the reader to stop reading the paper here and to (try to) prove the theorem
by himself.

The Case A = In

We shall be primarily interested in the behavior of Γ (In) for large n. Our
first goal will be to prove the asymptotic upper bound

lim sup
n→∞

Γ (In)
n

1
4

� π− 1
4 < 0.76 ,

which, with some extra twist, can be improved to

lim sup
n→∞

Γ (In)
n

1
4

� (2π)− 1
4 < 0.64 .

While this result is essentially equivalent to that of K. Ball, our proof will
use different ideas and yield more information about the possible shapes of
convex bodies with large Gaussian perimeter.

As to the estimates from below, we shall show that

lim inf
n→∞

Γ (In)
n

1
4

� e− 5
4 > 0.28 .

First of all, note that in the definition of Γ (In) we may restrict ourselves
to convex bodies Q containing the origin. One of the most natural ways to
estimate the integral

∫
∂Q

ϕ(y) dσ(y) is to introduce some “polar coordinate
system” x = X(y, t) in R

n with y ∈ ∂Q, t � 0. Then we can write
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1=
∫

Rn

ϕ(x) dx=
∫
∂Q

[ ∫ ∞

0
ϕ(X(y, t))D(y, t) dt

]
dσ(y)=

∫
∂Q

ϕ(y)ξ(y) dσ(y)

(∗)
where D(y, t) stands for the determinant of the differential ∂X(y,t)

∂y ∂t of the
mapping ∂Q× (0,+∞) 	 (y, t) → X(y, t) ∈ R

n and

ξ(y) = ϕ(y)−1
∫ ∞

0
ϕ
(
X(y, t)

)
D(y, t) dt.

This yields the estimate ∫
∂Q

ϕ(y) dσ(y) � 1
min
∂Q

ξ
.

There are two natural polar coordinate systems associated with a convex
body Q containing the origin. The first one is given by the mappingX1(y, t) =
ty. Then

D1(y, t) = tn−1|y|α(y)

where α(y) is the cosine of the angle between the “radial vector” y and the
unit outer normal vector νy to the surface ∂Q at the point y. So, in this case,
we have

ξ1(y) = e
|y|2
2

[ ∫ ∞

0
|y|tn−1e− t2|y|2

2 dt

]
α(y)

= |y|−(n−1)e
|y|2
2

[ ∫ ∞

0
tn−1e− t2

2 dt

]
α(y) .

It is not hard to see that the function f(t) := tn−1e− t2
2 is nice enough for the

application of the Laplace asymptotic formula. Since it attains its maximum
at t0 =

√
n− 1 and since d2

dt2 log f(t0) = −2, we get∫ ∞

0
f(t)dt =

[√
π + o(1)

]
f(t0).

Observing that d2

dt2 log f(t0) � −1 for all t > 0, we get

f(t) � f(t0)e− (t−t0)2

2 for all t > 0.

Bringing these estimates together, we conclude that

ξ1(y) � e
(|y|−√

n−1)2

2
[√
π + o(1)

]
α(y).

Unfortunately, as one can easily see, α(y) can be very close to 0 at some
points, so we cannot get an estimate for the Gaussian perimeter of an arbi-
trary convex body Q using ξ1 alone. Nevertheless, let us mention here that if
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we know in advance that Q contains a ball of radius R > 0 centered at the
origin, we may use the elementary inequality α(y) � R

|y| and conclude (after
some not very hard computations) that

min
∂Q

ξ1 �
[
1 + o(1)

]√π R√
n
.

Thus, if R is much greater than n
1
4 , the Gaussian perimeter of Q is much less

than n
1
4 . It is interesting to compare this observation with the construction

of the convex body Q with large perimeter below: the body we shall construct
will have the ball of radius n

1
4 as its inscribed ball!

Let us now consider the second natural “polar coordinate system” as-
sociated with Q, which is given by the mapping X2(y, t) = y + t νy. The
reader may object that it is a coordinate system in R

n \ Q, not in R
n,

but this makes things only better because now we can write 1 − γ(Q)
instead of 1 on the left hand side of the inequality (∗) (it is this im-
provement that, exploited carefully, yields the extra factor of 2− 1

4 ). It is
not hard to check that X2(y, t) is an expanding map in the sense that
|X2(y′, t′) −X2(y′′, t′′)|2 � |y′ − y′′|2 + (t′ − t′′)2 and, therefore, D2(y, t) � 1
for all y ∈ ∂Q, t > 0. This results in the inequality

ξ2(y) �
∫ ∞

0
e−t|y|α(y)e− t2

2 dt � 1
|y|α(y) + 1

.

This expression can also be small, but only if α(y) is large. Thus, it seems to
be a good idea to bring these two estimates together and to write∫

∂Q

ϕ(y)Ξ(y) dσ(y) � 2

where

Ξ(y) = ξ1(y) + ξ2(y) � [1 + o(1)] ·
{
e

(|y|−√
n−1)2

2
√
π α(y) +

1
|y|α(y) + 1

}
.

It is a simple exercise in elementary analysis now to show that the minimum
of the right hand side over all possible values of |y| and α(y) is [2+o(1)]π

1
4n− 1

4

attained at |y| ≈ √
n− 1, α(y) ≈ (πn)− 1

4 .
Note that if |y| or α(y) deviate much from these values (|y| on the additive

and α(y) on the multiplicative scale), the corresponding value of Ξ(y) is much
greater than n− 1

4 . Thus, if a convex body Q with the Gaussian perimeter
comparable to n

1
4 exists at all, a noticeable part of its boundary (in the

sense of angular measure) should lie in the constant size neighborhood of the
sphere S of radius

√
n centered of the origin, α(y) being comparable to n− 1

4

on that part of the boundary. At first glance, this seems unfeasible because
what it means is that the boundary of Q should simultaneously be very close
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to the sphere S and very transversal (almost orthogonal!) to it. Actually, it
leaves one with essentially one possible choice of the body Q for which it is
impossible to “do something” to essentially improve the upper bound: the
regular polyhedron with inscribed radius of n

1
4 and circumscribed radius of√

n (there is no such deterministic thing, to be exact, but there is a good
random substitute).

The fastest way to get the estimate Γ (In) � constn
1
4 seems to be the

following. Observe, first of all, that the polar coordinate system X1(y, t) can
be used to obtain the inequality∫

∂Q

ϕ(y) dσ(y) �
∫

(∂Q)′
ϕ(y) dσ(y) � const n

1
4 γ(KQ)

where

(∂Q)′ =
{
y ∈ ∂Q :

∣∣ |y| − √
n− 1

∣∣ � 1, 1
2n

− 1
4 � α(y) � 2n− 1

4

}
and KQ = {ty : y ∈ (∂Q)′, t � 0} is the cone generated by (∂Q)′. Let now H

be a hyperplane tangent to the ball of radius n
1
4 centered at the origin. Let S

be the (smaller) spherical cap cut off from the sphere S of radius
√
n centered

at the origin by the hyperplane H, let H̃ = {y ∈ H :
√
n − 1 � |y| � √

n},
and let S̃ be the radial projection of H̃ to the sphere S. Now, instead of one
hyperplane H, take N independent random hyperplanes Hj and consider
the convex body Q that is the intersection of the corresponding half-spaces.
A point y ∈ H̃j belongs to (∂Q)′ unless it is cut off by one of the other
hyperplanes Hk. Note that if a point y ∈ H̃j is cut off by a hyperplane Hk,
then its radial projection to the sphere S belongs to Sk. Thus,

γ(KQ) �
N∑
j=1

λ

(
S̃j \

⋃
k:k �=j

Sj

)

where dλ is the normalized (by the condition λ(S) = 1) angular measure on S.
Since the random hyperplanes Hj are chosen independently, the expectation
of the right hand side equals N(1 − λ(S))N−1λ(S̃). Observing that, for large
n, λ(S) is small compared to 1 and choosing N ≈ λ(S)−1, we get the estimate

γ(K) � const
λ(S̃)
λ(S)

.

A routine computation shows that the ratio λ(S̃)
λ(S) stays bounded away from

0 as n → ∞, finishing the proof. While this (sketch of a) proof is missing a
few technical details, I included it in the hope that it might give the reader
a clearer picture of how the example was constructed than the completely
formal reasoning below aimed at obtaining the largest possible coefficient in
front of n

1
4 rather than at making the geometry transparent.
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The formal construction runs as follows. Consider N (a large integer to be
chosen later) independent random vectors xj equidistributed over the unit
sphere in R

n+1 (this 1 is added just to avoid indexing ϕ) and define the
(random) polyhedron

Q :=
{
x ∈ R

n+1 : 〈x, xj〉 � ρ
}
.

In other words, Q is the intersection of N random half-spaces bounded by
hyperplanes Hj whose distance from the origin is ρ. The expectation of the
Gaussian perimeter of Q equals

N
1√
2π
e− ρ2

2

∫
Rn

ϕ(y)
(
1 − p(|y|))N−1

dy

where p(r) is the probability that a fixed point whose distance from the origin
equals

√
r2 + ρ2 is separated from the origin by one random hyperplane Hj .

It is easy to compute p(r) explicitly: it equals

[∫ √
r2+ρ2

−
√
r2+ρ2

(
1 − t2

r2 + ρ2

)n−1
2

dt

]−1 ∫ √
r2+ρ2

ρ

(
1 − t2

r2 + ρ2

)n−1
2

dt.

This is quite a cumbersome expression so let us try to find a good asymptotics
for it when ρ = eO(1)n

1
4 and r =

√
n− 1 + w, |w| < O(1). The first integral

then becomes a typical exercise example for the Laplace asymptotic formula
and we get it equal to

√
2π + o(1). Using the inequality (1 − a) � e− a2

2 e−a

(a > 0), we can estimate the second integral by

∫ ∞

ρ

exp
{

− n− 1
4(r2 + ρ2)2

t4
}

exp
{

− n− 1
r2 + ρ2

t2

2

}
dt

� exp
{

− n− 1
4(r2 + ρ2)2

ρ4
}∫ ∞

ρ

exp
{

− n− 1
r2 + ρ2

t2

2

}
dt .

The first factor is asymptotically equivalent to e− ρ4

4n in the ranges of ρ and
r we are interested in. To estimate the second factor, let us observe that, for
every a > 0, ∫ ∞

ρ

e−a t22 dt �
∫ ∞

ρ

e−a ρ22 e−aρ(t−ρ)dt =
1
aρ
e−a ρ22 .

Observe also that under our restrictions for r and ρ, we have

n− 1
r2 + ρ2 = 1 − 2w√

n
− ρ2

n
+ o(n− 1

2 ).

Bringing all the estimates together, we arrive at the inequality
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p(r) �
[
1 + o(1)

] 1√
2π

1
ρ

exp
{
ρ4

4n

}
exp
{
wρ2
√
n

}
e− ρ2

2 =: L(n, ρ) exp
{
wρ2
√
n

}

(the reader should treat o(1) in the definition of L(n, ρ) as some hard to
compute but definite quantity that depends on n only and tends to 0 as n →
∞). Since we expect the main part of the integral

∫
Rn
ϕ(y)(1 − p(|y|))N−1dy

to come from the points y with |y| ≈ √
n− 1, which correspond to the values

of w close to 0, let us look at what happens if we replace the last factor in our
estimate for p(r) by its value at w = 0, which is just 1. Then p(r) would not
depend on r at all and, taking into account that

∫
Rn
ϕ(y) dy = 1, we would

get the quantity
1√
2π
e− ρ2

2 N
[
1 − L(n, ρ)

]N−1

to maximize. Optimizing first with respect to N (note that L(n, ρ) → 0
as n → ∞), we see that we should take N satisfying the inequality N �
L(n, ρ)−1 � N + 1, which results in the value of the maximum being

[
1 + o(1)

]
e−1ρ exp

{
− ρ4

4n

}
.

Optimizing with respect to ρ, we see that the best choice would be ρ = n
1
4

which would yield the desired asymptotic lower bound e− 5
4n

1
4 for Γ (In).

Now let us use these values of N and ρ and make an accurate estimate of the
integral

∫
Rn

ϕ(y)
(
1−p(|y|))N−1

dy � c

∫ W

−W
f(

√
n− 1+w)

(
1−L(n, ρ) exp

{wρ2
√
n

})N−1

where f(t) = tn−1e− t2
2 as before, c =

(∫∞
0 f(t) dt

)−1
, and W is some big posi-

tive number. Note again that the product c f(
√
n− 1+w) = [1+o(1)] 1√

π
e−w2

for fixed w and n → ∞. Also, for fixed w and n → ∞, the second factor in
the integral is asymptotically equivalent to exp{−ew} (recall that ρ = n

1
4

and, therefore, ρ2√
n

= 1). Thus, we obtain the estimate

Γn �
[
1 + o(1)

]
e− 1

4n
1
4

1√
π

∫ W

−W
exp{−ew}e−w2

dw.

The integral on the right looks scary, but, since everything except the factor
exp{−ew} is symmetric, we can replace it by

∫ W

−W

exp{−ew} + exp{−e−w}
2

e−w2
dw.

Using the elementary inequality
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exp{−a} + exp{− 1
a}

2
� 1
e

for all a > 0,

we conclude that

Γn �
[
1 + o(1)

]
e− 5

4n
1
4

1√
π

∫ W

−W
e−w2

dw.

It remains to note that 1√
π

∫W
−W e−w2

dw can be made arbitrarily close to 1
by choosing W large enough.

The General Case

Let us start with two simple reductions. First of all, observe that the estimate
we want to prove is homogeneous with respect to A, so, without loss of
generality, we may assume that TrA = 1.

Since the problem is rotation invariant, we may assume that both A and
B are diagonal matrices. We shall primarily deal with B, so let us denote
the diagonal entries of B by b1, . . . , bn (our normalization condition TrA = 1
means that

∑
j b

2
j = 1). Denote

D := 4

√∑
j

b4j .

Note that 0 < D � 1, so D2 � D and so forth.

Proof of the Estimate Γ (A) � C
√‖A‖H-S

We shall follow the idea of K. Ball and use the Cauchy integral formula. Let
us recall how it works. Suppose you have two functions F,G : R

n → [0,+∞),
a nonnegative homogeneous of degree 1 function Ψ in R

n, and a random unit
vector zω ∈ R

n. Suppose that you can show that for every point y ∈ R
n and

for every vector ν ∈ R
n,

Eω
[
|〈ν, zω〉|

∫
R

G(y − tzω)dt
]

� κF (y)Ψ(ν)

with some constant κ > 0, where Eω denotes the expectation with respect to
zω. Then for any convex body Q ⊂ R

n,∫
∂Q

F (y)Ψ(νy) dσ(y) � 2κ−1
∫

Rn

G(x) dx.

To make this general formula applicable to our special case, we have to choose
F (y) = ϕ(y) and Ψ(ν) = |Bν|. Unfortunately, there is no clearly forced choice
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of zω and G. To choose zω, let us observe that our task is to make the “typical
value” of |〈ν, zω〉| approximately equal to |Bν|. The standard way to achieve
this is to take zω = BZω with Zω =

∑
j εj(ω)ej where ej is the orthonormal

basis in R
n in which B is diagonal and εj(ω) (ω ∈ Ω) are independent

random variables taking values ±1 with probability 1
2 each. Note that our

normalization condition
∑
j b

2
j = 1 guarantees that zω is always a unit vector

in R
n. The hardest part is finding an appropriate function G. We shall search

for G(x) in the form
G(x) = ϕ(x)Ξ(x)

where Ξ(x) is some relatively tame function: after all, the integral of a func-
tion over a random line containing a fixed point is equal to the value at the
point times something “not-so-important” (at least, I do not know a better
way to evaluate it with no a priori information). If Ξ(x) changes slower than
ϕ(x), then we may expect the main part of the integral

∫
R
G(y − tzω) dt to

come from the points t that lie in a small neighbourhood of t0 = 〈y, zω〉,
which is the point where the function t → ϕ(y − tzω) attains its maximum.
To make this statement precise, let us observe that

ϕ
(
y − (t0 + τ)zω

)
= exp

{
−τ2

2

}
exp
{ 〈y, zω〉2

2

}
ϕ(y)

� 1√
e

exp
{ 〈y, zω〉2

2

}
ϕ(y)

when |τ | � 1. If our function Ξ(x) satisfies the condition

max
{
Ξ(x− τzω), Ξ(x+ τzω)

}
� 1

2
Ξ(x) for all x ∈ R

n, ω ∈ Ω, |τ | � 1

(which we shall call “weak convexity” condition), then we may estimate the
integral from below by 1

2
√
e
ϕ(y)Ξ(y − 〈y, zω〉zω) exp{〈y, zω〉2/2}. Then our

“only” task will be to prove the inequality

Eω
[
|〈ν, zω〉| ·Ξ(y − 〈y, zω〉zω

) · exp
{ 〈y, zω〉2

2

}]
� κ|Bν|. (∗∗)

Let us make a second “natural leap of faith” and assume that Ξ changes so
slowly that Ξ(y− 〈y, zω〉zω) ≈ Ξ(y). Then we can just compute the expecta-
tion of the product of other two factors and define Ξ(y) to be the factor that
makes the desired inequality almost an identity (we should pray that after
that the loop will close and we shall not have to make a second iteration).
Thus, our first task will be to compute the quantity

Eω
[
|〈ν, zω〉| · exp

{ 〈y, zω〉2
2

}]
= Eω

[
|〈Bν,Zω〉| · exp

{ 〈By,Zω〉2
2

}]
.

Since Bν and By are just two arbitrary vectors in R
n, let us introduce some

one-letter notation for them. Let, say, Bν = v and By = u. As usual, we shall
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write vj and uj for the coordinates of v and u in the basis ej . The unpleasant
thing we shall have to face on this way is that even Eω[exp{〈u, Zω〉2/2}]
(forget about the factor |〈v, Zω〉| !) is not easy to compute when |u| > 1.
Fortunately, if we assume in addition that Ξ(βx) � Ξ(x) for all x ∈ R

n,
β � 1, then the left hand side of (∗∗) will satisfy a similar inequality with
respect to y and, thereby, (∗∗) will hold for all points y with |By| > 1 as soon
as it holds for all y with |By| = 1.

We shall use the formula

exp
{ 〈u, Zω〉2

2

}
=

1√
2π

∫ ∞

−∞
e− t2

2 exp
{
t〈u, Zω〉} dt

and write

Eω
[
exp
{ 〈u, Zω〉2

2

}]
=

1√
2π

∫ ∞

−∞
e− t2

2 Eω
[
exp
{
t〈u, Zω〉}] dt

=
1√
2π

∫ ∞

−∞
e− t2

2

∏
j

(
e−tuj + etuj

2

)
dt .

Using the elementary inequality e−s+es
2 � e

s2
2
[
1 + s4

26

]−1, we can estimate
the last integral from above by

1√
2π

∫ ∞

−∞
exp
{

− (1 − |u|2)t2

2

} [
1 +

(t‖u‖4)4

26

]−1

dt

where ‖u‖4 := 4
√∑

j u
4
j . If |u| � 1, we can say that, from the L1 point of

view, the integrand is hardly distinguishable from the characteristic function
of the interval |t| � ∆(u) where ∆(u) = 1/max{√1 − |u|2, ‖u‖4}, so the last
integral should be, roughly speaking, ∆(u). A reasonably accurate computa-
tion yields the upper bound min{1/

√
1 − |u|2, 3/‖u‖4} � 3∆(u). To estimate

Eω[exp{〈u, Zω〉2/2}] from below, we shall use another elementary inequality
e−s+es

2 � es
2/2e−s4/8. It yields the lower bound

Eω
[
exp
{ 〈u, Zω〉2

2

}]
� 1√

2π

∫ ∞

−∞
exp
{

− (1 − |u|2)t2

2

}
exp
{

− (t‖u‖4)4

8

}
dt

� ∆(u)
1√
2π

∫ ∞

−∞
e− t2

2 e− t4
8 dt � 1

2
∆(u).

Let us now turn to the estimates for the expectation Eω[|〈v, Zω〉|
exp{〈u, Zω〉2/2}]. To this end, we shall first estimate Eω[exp{is〈v, Zω〉}
exp{〈u, Zω〉2/2}] where, as usual, i =

√−1. Again, write



On the Maximal Perimeter of a Convex Set 179

Eω
[
exp
{
is〈v, Zω〉} exp

{ 〈u, Zω〉2
2

}]

=
1√
2π

∫ ∞

−∞
e− t2

2 Eω
[
exp
{
is〈v, Zω〉 + t〈u, Zω〉}] dt

=
1√
2π

∫ ∞

−∞
e− t2

2

∏
j

(
e−(tuj+isvj) + e(tuj+isvj)

2

)
dt.

Now note that for all α, β ∈ R, one has∣∣∣∣e−(α+iβ) + e(α+iβ)

2

∣∣∣∣ � e−α + eα

2

and this trivial estimate (the triangle inequality) can be improved to∣∣∣∣e−(α+iβ) + e(α+iβ)

2

∣∣∣∣ � e−δ β2
(
e−α + eα

2

)

with some absolute δ ∈ (0, 1) for |α|, |β| � 1. Therefore,

∏
j

∣∣∣∣e−(tuj+isvj) + e(tuj+isvj)

2

∣∣∣∣ �∏
j

(
e−tuj + etuj

2

)

for all t, s ∈ R and

∏
j

∣∣∣∣e−(tuj+isvj) + e(tuj+isvj)

2

∣∣∣∣ � e−δs2|v|2∏
j

(
e−tuj + etuj

2

)

if |t| � ‖u‖−1
∞ and |s| � ‖v‖−1

∞ . Since ‖u‖−1
∞ � ‖u‖−1

4 � ∆(u), we can write

Eω
[
exp
{ 〈u, Zω〉2

2

}]
−
∣∣∣∣Eω
[
exp
{
is〈v, Zω〉} exp

{ 〈u, Zω〉2
2

}] ∣∣∣∣
�
(

1 − e−δs2|v|2
) 1√

2π

∫ ∆(u)

−∆(u)
e− t2

2

∏
j

(
e−tuj + etuj

2

)
dt

�
(

1 − e−δs2|v|2
)
∆(u)

1√
2π

∫ 1

−1
e− t2

2 e− t4
8 dt � 1

2

(
1 − e−δs2|v|2

)
∆(u) .

On the other hand, the trivial inequality |α− αeiβ | � 2αmin{|β|, 1} (α > 0,
β ∈ R) yields

∣∣∣∣Eω
[
exp
{ 〈u, Zω〉2

2

}]
− Eω

[
exp
{
is〈v, Zω〉} exp

{ 〈u, Zω〉2
2

}] ∣∣∣∣
� 2Eω

[
min
{|s〈v, Zω〉|, 1} exp

{ 〈u, Zω〉2
2

}]
.
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Bringing these estimates together and taking s = |v|−1, we obtain

Eω
[
min
{|〈v, Zω〉|, |v|} exp

{ 〈u, Zω〉2
2

}]
� 1

4
(1 − e−δ)∆(u)|v| = 2η∆(u)|v|

where η := 1
8 (1−e−δ) > 0 is an absolute constant. Obviously, the expectation

Eω[|〈v, Zω〉| exp{〈u, Zω〉2/2}] can be only greater.
This brings us to the idea to take Ξ(y) = ∆(By)−1 = max{‖By‖4,√

1 − |By|2}. This formula makes little sense for |By| > 1, so, to be for-
mally correct, we shall distinguish two cases: |By|2 � 1 − ‖By‖2

4 and
|By|2 < 1 − ‖By‖2

4. We shall separate them completely and even construct
two different functions Ξ1 and Ξ2 serving the first and the second case cor-
respondingly. Note that all points y for which |By| � 1 are covered by the
first case, so we need the condition that Ξ be non-decreasing along each ray
starting at the origin only for Ξ1. Let us start with

Case 1: 1 − ‖By‖2
4 � |By|2 � 1.

In this case the natural candidate for Ξ1 is Ξ1(y) = ‖By‖4. We have no
problem with the “weak convexity” condition because Ξ1 is even strongly
convex. Also, it obviously satisfies Ξ1(βy) � Ξ1(y) for every β � 1. The only
thing we should take care about is the assumption Ξ1(y−〈y, zω〉zω) ≈ Ξ1(y).
What we would formally need here is Ξ1(y− 〈y, zω〉zω) � ζ Ξ1(y) with some
absolute 0 < ζ � 1. Unfortunately, it is futile to hope for such an estimate
for all y ∈ R

n and ω ∈ Ω because it can easily happen that y is collinear
with some zω and then we shall get Ξ1(y − 〈y, zω〉zω) = 0. To exclude this
trivial problem, let us bound Ξ from below by some constant. Since our
aim is to control the integral of Ξ1 with respect to the Gaussian measure
in R

n, we may just take the maximum of Ξ1 and its average value with
respect to the Gaussian measure dγ(x) = ϕ(x) dx, which is almost the same
as ‖Ξ1‖L4(Rn,dγ) = 4

√
3 4
√∑

j b
4
j = 4√3 D. This leads to the revised definition

Ξ1(y) = max {‖By‖4,D}
(note that this revised function Ξ1 is still convex and non-decreasing along
each ray starting at the origin). The condition Ξ1(y − 〈y, zω〉zω) � ζ Ξ1(y)
is then trivially satisfied with ζ = 1 if ‖By‖4 � D. Assume that ‖By‖4 � D.
Then

Ξ1(y − 〈y, zω〉zω) � ‖By − 〈y, zω〉Bzω‖4 � ‖By‖4 − |〈By,Zω〉| · ‖B2Zω‖4

= Ξ1(y) − |〈By,Zω〉| 4

√∑
j

b8j � Ξ1(y) − D2|〈By,Zω〉|.

Uniting this estimate with the trivial lower bound Ξ1(y−〈y, zω〉zω) � D, we
can write

Ξ1(y − 〈y, zω〉zω) � 1
1 + D|〈By,Zω〉|Ξ1(y)
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(we used here the elementary estimate max{α − βD,D} � α
1+β ). Therefore

we shall be able to prove (∗∗) if we demonstrate that under the conditions√
1 − |u|2 � ‖u‖4 and ‖u‖4 � D (where, as before, u = By), the main part

of the expectation Eω[min{|〈v, Zω〉|, |v|} exp{〈u, Zω〉2/2}] comes from those
ω ∈ Ω for which |〈v, Zω〉| is not much greater than D−1. To this end, we
shall have to prove some “tail estimate” for Eω[exp{〈u, Zω〉2/2}]. Using the
inequality

〈u, Zω〉2 exp
{ 〈u, Zω〉2

2

}
� 1√

2π

∫ ∞

−∞
t2e− t2

2 exp
{
t〈u, Zω〉} dt,

we get

Eω
[
〈u, Zω〉2 exp

{ 〈u, Zω〉2
2

}]
� 1√

2π

∫ ∞

−∞
t2e− t2

2 Eω
[
exp
{
t〈u, Zω〉}] dt

=
1√
2π

∫ ∞

−∞
t2e− t2

2

∏
j

(
e−tuj + etuj

2

)
dt

� 1√
2π

∫ ∞

−∞
t2
[
1 +

(t‖u‖4)4

26

]−1

dt

=
2
3
π

1
2 26

3
4 ‖u‖−3

4 � 16‖u‖−3
4 .

This results in the tail estimate

Eω
[
χ{|〈u,Zω〉|>β‖u‖−1

4 } exp
{ 〈u, Zω〉2

2

}]

� β−2‖u‖2
4Eω
[
〈u, Zω〉2 exp

{ 〈u, Zω〉2
2

}]
� 16β−2‖u‖−1

4 .

Choosing β := 4√
η and recalling that ‖u‖4 � D, we finally get (u = By,

v = Bν)

Eω
[
|〈v, Zω〉| ·Ξ1(y − 〈y, zω〉zω) · exp

{ 〈u, Zω〉2
2

}]

� Eω
[
min
{|〈v, Zω〉|, |v|} ·Ξ1(y − 〈y, zω〉zω) · exp

{ 〈u, Zω〉2
2

}]

� 1
1 + β

Ξ1(y) · Eω
[
χ{|〈u,Zω〉|�βD−1} · min

{|〈v, Zω〉|, |v|} · exp
{ 〈u, Zω〉2

2

}]

� 1
1 + β

Ξ1(y) · Eω
[
χ{|〈u,Zω〉|�β‖u‖−1

4 } · min
{|〈v, Zω〉|, |v|} · exp

{ 〈u, Zω〉2
2

}]

� Ξ1(y)
1 + β

(
Eω
[
min {|〈v, Zω〉|, |v|} · exp

{
〈u,Zω〉2

2

}]
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−|v| · Eω
[
χ{|〈u,Zω〉|>β‖u‖−1

4 } exp
{

〈u,Zω〉2
2

}])
� Ξ1(y)

1 + β

(
2η‖u‖−1

4 |v| − 16β−2‖u‖−1
4 |v|) � η

1 + β
Ξ1(y)‖u‖−1

4 |v| =
η

1 + β
|v|.

This finishes Case 1.

Case 2: |By|2 � 1 − ‖By‖2
4.

To make the long story short, the function Ξ2 that we shall use for this case
is

Ξ2(y) = max
{√

(1 − |By|2)+,D
}
.

It is easy to see that

‖Ξ2‖4
L4(Rn,dγ) � D4 +

∫
Rn

(1 − |Bx|2)2 dγ(x) = 3D4.

To prove “weak convexity”, let us observe that

1 − |B(x+ τzω)|2 = 1 − |Bx|2 − 2τ〈Bx,Bzω〉 − τ2|Bzω|2 � 1 − |Bx|2 − D4

if |τ | � 1 and the sign of τ is opposite to that of 〈Bx,Bzω〉. Therefore,√
(1 − |Bx+ τzω|2)+ �

√
(1 − |Bx|2)+ − D2 �

√
(1 − |Bx|2)+ − D

for such τ , which is enough to establish the weak convexity property for Ξ2.
Now let us turn to the inequality Ξ2(y − 〈y, zω〉zω) � ζ Ξ2(y). Again, it is
trivial if

√
1 − |By|2 � D. For other y, write

1 − |B(y − 〈y, zω〉zω)|2 = 1 − |By|2 + 2〈y, zω〉〈By,Bzω〉 − 〈y, zω〉2|Bzω|2.
It will suffice to show that the main contribution to the mathematical ex-
pectation Eω[min{|〈v, Zω〉|, |v|} exp{〈u, Zω〉2/2}] is made by those ω ∈ Ω for
which

2〈y, zω〉〈By,Bzω〉 − 〈y, zω〉2|Bzω|2 � −K2D2

where K is some absolute constant (for such ω, one has Ξ2(y− 〈y, zω〉zω) �
Ξ2(y)
1+K ). Since |Bzω|2 = D4, we can use the tail estimate

Eω
[
χ{|〈u,Zω〉|>β 1√

1−|u|2

} exp
{ 〈u, Zω〉2

2

}]

� β−2(1 − |u|2)Eω
[
〈u, Zω〉2 exp

{ 〈u, Zω〉2
2

}]
� β−2 1√

1 − |u|2

(which is proved in exactly the same way as the tail estimate in Case 1) to
restrict ourselves to ω ∈ Ω satisfying |〈y, zω〉| � βD−1. This allows to bound
the subtrahend in the difference 2〈y, zω〉〈By,Bzω〉− 〈y, zω〉2|Bzω|2 by β2D2.
To bound the minuend from below, we shall use the following
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Correlation Inequality

Let u,w ∈ R
n satisfy |u| < 1, 〈u,w〉 � 0. Then

Eω
[
χ{

〈u,Zω〉〈w,Zω〉<−β |w|√
1−|u|2

} exp
{ 〈u, Zω〉2

2

}]
� 2√

3
e−β 1√

1 − |u|2 .

Let us first show that this correlation inequality implies the desired bound
for the minuend 2〈y, zω〉〈By,Bzω〉. Indeed, write

〈y, zω〉〈By,Bzω〉 = 〈By,Zω〉〈B3y, Zω〉 = 〈u, Zω〉〈B2u, Zω〉
where, as always, u = By. Observe that 〈u,B2u〉 = |Bu|2 � 0. Therefore,
according to the correlation inequality, we may restrict ourselves to ω ∈ Ω
satisfying 〈u, Zω〉〈B2u, Zω〉 � −β 1√

1−|u|2 |B2u| where β > 0 is chosen so large

that β−2 + 2√
3
e−β � η. Now observe that

|B2u| =
√∑

j

b4ju
2
j �
√√√√√∑

j

b8j

√∑
j

u4
j � D2‖u‖4.

Thus

2〈u, Zω〉〈B2u, Zω〉 � −2β
‖u‖4√
1 − |u|2 D2 � −2βD2

due to our assumption |u|2 < 1 − ‖u‖2
4. To prove the correlation inequality,

just take

ũ := u−
√

1 − |u|2
2|w| w

and observe that |ũ|2 � |u|2 + 1
4 (1−|u|2), so

√
1 − |ũ|2 �

√
3

2

√
1 − |u|2 . Now

we have

Eω
[
χ{〈u,Zω〉〈w,Zω〉<−β |w|√

1−|u|2

} exp
{ 〈u, Zω〉2

2

}]
� e−βEω

[
exp
{ 〈ũ, Zω〉2

2

}]

because

〈ũ, Zω〉2 � 〈u, Zω〉2 − 2

√
1 − |u|2
2|w| 〈u, Zω〉〈w,Zω〉 � 〈u, Zω〉2 + β

under the condition 〈u, Zω〉〈w,Zω〉 < −β |w|√
1−|u|2 . It remains to recall that

Eω
[
exp
{ 〈ũ, Zω〉2

2

}]
� 1√

1 − |ũ|2 � 2√
3

1√
1 − |u|2 .

The upper bound for Γ (A) is now completely proved.
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Proof of the Estimate Γ (A) � c
√‖A‖H-S

Let � > 0. Consider the family of random polyhedrons

Q(�,N ;ω) :=
{
x ∈ R

n :
∣∣〈x, x[k]〉∣∣ � � for all k = 1, . . . , N

}
where x[k] = BZ

[k]
ω and Z

[k]
ω (k � 1) is a sequence of independent random

vectors equidistributed with Zω =
∑
j εj(ω)ej . Let us observe that |Bνy|

identically equals
√∑

j b
4
j = D2 on ∂Q(�;ω). Thus, the inequality Γ (A) �

c
√‖A‖H-S = cD will be proved if we show that at least one polyhedron
Q(�,N ;ω) has the Gaussian perimeter of cD−1 or greater.

I tried to use as few non-trivial statements about Bernoulli random vari-
ables in this note as possible but I still had to employ the following

Pinnelis Tail Lemma. Let u ∈ R
n, β � 0. Then

Pω
{〈u, Zω〉 � β|u|} � K

1√
2π

∫ ∞

β

e− t2
2 dt � K

1
1 + β

e− β2

2

where K is some universal constant. Informally speaking, this means that
Bernoulli tails do not exceed Gaussian tails.

The simplest and most elegant proof of the Pinnelis Tail Lemma belongs
to Sergei Bobkov, who observed that the function

Φ(β) =
1√
2π

∫ ∞

β

e− t2
2 dt

satisfies the inequality

Φ

(
β − a√
1 − a2

)
+ Φ

(
β + a√
1 − a2

)
� 2Φ(β)

for all β �
√

3, 0 � a < 1 (to prove it, just differentiate the left hand side with
respect to a and check that the derivative is never positive), which allows to
prove the lemma by induction with K = 1

2Φ(
√

3 )
< 13.

We shall show that the “average perimeter” of Q(�,N ;ω) is large. To for-
malize this, choose some nice continuous non-negative decreasing L1-function
p : [0,+∞) → R (which will serve as the weight with which we shall average
with respect to �) and some small h > 0.

Note that for each � > 0, N � 1, and ω ∈ Ω,

γ
(
Q(�+ h,N ;ω)

)− γ
(
Q(�,N ;ω)

)
� hΥ

where Υ is the supremum of all perimeters of our polyhedra with respect to
the standard Gaussian measure. Therefore
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Eω
[
γ
(
Q(�+ h,N ;ω)

)]− Eω
[
γ
(
Q(�,N ;ω)

)]
� hΥ.

On the other hand,

Eω
[
γ
(
Q(�;ω)

)]
=
∫

Rn

(
1 − Pω

{|〈Bx,Zω〉| > �
})N(�)

dγ(x) .

Now take �� = �h (� = 1, 2, . . . ), choose some integer-valued positive increas-
ing function N(�), and consider the sumtegral

∞∑
�=1

p(��)
∫

Rn

[
(1 − Pω {|〈Bx,Zω〉| > ��+1})N(��)

− (1 − Pω {|〈Bx,Zω〉| > ��})N(��)
]
dγ(x) .

On one hand, this sumtegral does not exceed
∑∞
�=1 p(��)hΥ � Υ

∫∞
0 p(�) d�.

On the other hand, since

(1 − α)M − (1 − β)M � e−1M(β − α) whenever α � β � 1
M

,

we can change the order of summation and integration (the sumtegrand is
nonnegative) and estimate our sumtegral from below by

e−1
∫
S

{ ∞∑
�=1

p(��)N(��)
[
Pω {|〈Bx,Zω〉| > ��}

− Pω {|〈Bx,Zω〉| > ��+1}
]}

dγ(x)

where S ⊂ R
n is the set of all points x for which Pω {|〈Bx,Zω〉| > �} �

N(�)−1 for all � > 0. For each fixed x ∈ S, the integrand converges to
the mathematical expectation Eω

[
p
(|〈Bx,Zω〉|)N(|〈Bx,Zω〉|)] as h → 0+.

Therefore, the lower limit of the sumtegral is at least

e−1γ(S)Eω
[
p
(|〈Bx,Zω〉|)N(|〈Bx,Zω〉|)]

as h → 0+. Comparing the upper and the lower bound, we get the inequality

Υ

∫ ∞

0
p(�) d� � e−1γ(S)Eω

[
p
(|〈Bx,Zω〉|)N(|〈Bx,Zω〉|)] .

Our aim will be to choose the function N(ρ) sufficiently small to make the set
S large on one hand and sufficiently large to make the right hand side much
larger than

∫∞
0 p(�) d� on the other hand. Note that the demand that N(�)

assume only integer values can be dropped because, given any non-negative
function N(�), we can always replace it by the function Ñ(�) that takes value
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1 if 0 � N(�) � 2 and value k if k < N(�) � k + 1, k = 2, 3, . . . . This will
not reduce the set S and will reduce the mathematical expectation on the
right not more than twice.

Now recall that∫
Rn

‖Bx‖4
4 dγ(x) = 3D4 and

∫
Rn

(
1 − |Bx|2)2 dγ(x) = 2D4.

Therefore, for at least one quarter (with respect to dγ) of the points x ∈ R
n,

one has both

‖Bx‖4 � 2D and
∣∣1 − |Bx|2∣∣ � 2D2

(the measures of the exceptional sets do not exceed 3
16 and 1

2 correspond-
ingly).

Now we can use Pinnelis Tail Lemma and observe that for such points x,

Pω
{|〈Bx,Zω〉| > �

}
� 2K

(
1 +

�√
1 + 2D2

)−1

exp
{

− 1
1 + 2D2

�2

2

}
.

This leads to the choice

N(�) :=
1

2K

(
1 +

�√
1 + 2D2

)
exp
{

1
1 + 2D2

�2

2

}
.

Let us now choose the weight p. Since the only mathematical expectations we
can easily compute are those of slight perturbations of exponential functions,
it seems reasonable to try

p(�) := exp
{

−D2

3
�2

2

}
.

With such a choice, we have

Eω
[
p
(|〈Bx,Zω〉|)N(|〈Bx,Zω〉|)] � 1

2K
Eω
[
(1 + |〈u, Zω〉|) exp

{ 〈u, Zω〉2
2

}]

where

u :=

√
1

1 + 2D2 − D2

3
Bx .

Note that

‖u‖4 � ‖Bx‖4 � 2D and |u|2 �
(

1
1 + 2D2 − D2

3

)
(1 − 2D2) � 1 − 5D2 .

Using the inequality

(
1 + |〈u, Zω〉|) exp

{ 〈u, Zω〉2
2

}
� 1√

2π

∫ ∞

−∞
|t|e− t2

2 exp
{
t〈u, Zω〉} dt,
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we conclude that

Eω
[
(1 + |〈u, Zω〉|) exp

{ 〈u, Zω〉2
2

}]
� D−2 · 1√

2π

∫ ∞

−∞
|t|e− 5t2

2 e−2t4 dt.

Since
∫∞
0 p(�) d� =

√
3π
2 D−1, the desired bound Υ � cD−1 follows.

The theorem is thus completely proved.
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On p-Pseudostable Random Variables,
Rosenthal Spaces and lnp Ball Slicing�

Krzysztof Oleszkiewicz

Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa,
Poland koles@mimuw.edu.pl

Summary. We introduce the class of p-pseudostable random variables and inves-
tigate some of their properties. Short notes concerning embedding Rosenthal-type
spaces into Lq(0, 1) and hyperplane sections of the unit ball of lnp are added.

Notation. Throughout this paper the symbol ∼ denotes equality of distribu-
tions; X,G,X1, G1, X2, G2, . . . are independent symmetric random variables
with Xn ∼ X and Gn ∼ G ∼ N (0, 1) for n = 1, 2, . . . A Fourier transform
of an integrable function f : R −→ R is defined by f̂(t) =

∫
R
eitxf(x)dx, so

that if f is even and continuous, and also f̂ is integrable then (f̂)∧ = 2πf(x).

Introduction. A characteristic function of a symmetric p-stable distribution
(0 < p ≤ 2) is of the form ϕ(t) = e−c|t|p for some c > 0. It is well known that
no random variable has a characteristic function of the form ϕ(t) = e−c|t|p

for p > 2, c > 0. Indeed, assume that p > 2 and ϕ(t) = EeitX = e−c|t|p for
all real t. Then ϕ′′(0) = 0 and therefore EX2 = 0 implying that X = 0 a.s.

Also if we turn to the standard characterization of symmetric p-stable
distributions by

aX1 + bX2 ∼ (|a|p + |b|p)1/pX
we see that aX1 + bX2 would have a greater second moment than (|a|p +
|b|p)1/pX for p > 2 and ab �= 0 if EX2 < ∞. And we would like to have
EX2 < ∞ because the classical p-stable has an absolute q-th moment finite
for all q ∈ (0, p).

However, one can hope that the “overdose” of variance could be extracted
in some easy to control way, for example, in the form of the independent
Gaussian summand.

Definition 1. For p > 2 we call X a symmetric p-pseudostable random
variable (a p-pseudostable) if X is not Gaussian (meaning also that X is not
identically zero) and if for any real a and b there exists some real number
v(a, b) such that

aX1 + bX2 ∼ (|a|p + |b|p)1/pX + v(a, b)G.

We will say that a p-pseudostable X is pure if X is Gaussian-free (i.e. it
cannot be expressed as the sum of two independent random variables one of
which is a nondegenerate Gaussian).
� Research partially supported by KBN Grant 2 P03A 043 15.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 188–210, 2003.
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The following theorem is the main result of this note.

Theorem 1. All p-pseudostables have finite second moments. If X is a p-
pseudostable then it has a characteristic function

ϕ(t) = e−c|t|p−αt2

for some positive constants c and α. Conversely, if a random variable X has
a characteristic function of the above form then X is p-pseudostable. For p ∈
(2, 4]∪⋃∞

k=2[4k−2, 4k] there are no p-pseudostables. For p ∈ ⋃∞
k=1(4k, 4k+2)

there exist pure p-pseudostables and any p-pseudostable is either pure or it
can be expressed as a sum of a pure p-pseudostable and an independent Gaus-
sian summand. Moreover, for fixed p all pure p-pseudostables are dilations of
the pure p-pseudostable X with EX2 = 1, whose distribution is uniquely de-
termined. If X is a p-pseudostable then it has a continuous density g (with
respect to the Lebesgue measure on R) and the limit limt→∞ tp+1g(t) exists
and it is finite and strictly positive. Moreover, g has a zero point if and only
if X is pure.

Proof. Assume that X is a p-pseudostable. Let ϕ(t) = EeitX be the char-
acteristic function of X. Certainly ϕ is an even and real-valued function on
R since X is symmetric. As limt→0 ϕ(t) = 1 there is some t0 > 0 such that
ϕ(t) > 0 for t ∈ [0, t0]. Let

A = inf
t∈[2−1/pt0,t0]

ϕ(t)t
−p
.

A ∈ (0, 1] because ϕ is continuous. There exists some real v such that

2−1/pX1 + 2−1/pX2 ∼ X + vG.

Therefore
ϕ(2−1/pt) = ϕ(t)1/2e−v2t2/4

for any t ∈ [0, t0]. By iteration we arrive at

ϕ
(
2−n/pt

)
= ϕ(t)2

−n
exp

(
− 1

2
v2(2−n/pt)2 ·

n∑
k=1

(
2

2−p
p
)k)

≥ (
ϕ(t)t

−p)(2−n/pt)p
e− 1

2v
2(2−n/pt)2·

(
2
p−2
p −1

)−1

for any positive integer n. For any s ∈ (0, t0] there exists t ∈ [2−1/pt0, t0] and
a positive integer n such that s = 2−n/pt, so that we have

ϕ(s) ≥ As
p

e−Bs2 ,

where B = 1
2v

2 · (2
p−2
p − 1)−1. Hence lim sups→0

1−ϕ(s)
s2 < ∞ and therefore

EX2 < ∞. Comparing second moments of aX1 + bX2 and (|a|p+ |b|p)1/pX+
v(a, b)G we arrive at
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|v(a, b)| =
√
a2 + b2 − (|a|p + |b|p)2/p

√
EX2.

From the equality

ϕ(at)ϕ(bt) = ϕ
(
(|a|p + |b|p)1/pt)e−v(a,b)2t2/2

which holds for any real a, b and t we deduce that the continuous function
ψ(t) = ϕ(t1/p)eEX

2t2/p/2 satisfies ψ(x)ψ(y) = ψ(x + y) for any x, y > 0 and
ψ(0) = 1. Therefore ψ(t) = e−ct for some constant c and all t ≥ 0. Hence

ϕ(t) = e−EX2
2 t2−c|t|p

for t ∈ R. We know that c ≥ 0 because ϕ is bounded and the case c = 0
is excluded since we assume X is not Gaussian. Of course, if some random
variable X has a characteristic function of the form ϕ(t) = e−αt2−c|t|p then
it satisfies the functional equation which is equivalent to the fact that X is a
p-pseudostable with EX2 = 2α. Assume now that p ∈ (4k − 2, 4k) for some
integer k ≥ 1. The function ϕ(t) = e−αt2−c|t|p is 4k − 2 times differentiable
and therefore EX4k−2 < ∞ and ϕ(4k−2)(t) = −EX4k−2eitX . Hence

ϕ(4k−2)(t) ≥ −EX4k−2 = ϕ(4k−2)(0).

We know that

f(x) = x−2k
(
e−x −

2k−1∑
l=0

(−1)lxl

l!

)

is an analytic function. Now, as

ϕ(t) =
2k−1∑
l=0

(−1)l
(αt2 + c|t|p)l

l!
+ (αt2 + c|t|p)2kf(αt2 + c|t|p),

differentiating each summand separately 4k− 2 times, we see that growth of
ϕ(4k−2)(t) at the neighbourhood of zero is determined by the second summand
(l = 1). In the (4k − 2)-th derivatives of all other summands there appear
either constant summands or the summands with powers of |t| higher than
|t|p−4k+2. Therefore

ϕ(4k−2)(0)−ϕ(4k−2)(t) = cp(p−1)(p−2) . . . (p−4k+3)|t|p−4k+2+o
(|t|p−4k+2)

which contradicts the fact that ϕ(4k−2) has the global minimum at t = 0. We
have proved that there are no p-pseudostables for p ∈ ⋃∞

k=1(4k − 2, 4k).
For even p ≥ 4 we use another argument – Marcinkiewicz’ theorem (Th.

2bis of [M]) stating that if ϕ(t) = eW (t) is a characteristic function of some
probability distribution and W is a polynomial then degW ≤ 2. In the case
of p divisible by 4 we can give a straightforward argument. Since ϕ(t) =
e−αt2−ctp belongs to C∞(R) all moments of X are finite and ϕ(2l)(0) =
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(−1)lEX2l for l = 0, 1, 2, . . . We know that ϕ(z) = e−αz2−czp is an entire
analytic function and therefore

ϕ(z) =
∞∑
l=0

ϕ(2l)(0)
(2l)!

z2l.

Hence

eαt
2−ctp = ϕ(it) =

∞∑
l=0

(−1)lϕ(2l)(0)
(2l)!

t2l =
∞∑
l=0

EX2l

(2l)!
t2l.

For real t we can use the Fubini theorem because X2lt2l is nonnegative,
arriving at

EetX = E
etX + e−tX

2
= E

∞∑
l=0

(tX)2l

(2l)!
= eαt

2−ctp .

On the other hand
EetX ≥ P (tX ≥ 0) ≥ 1/2,

so that for t large enough we obtain a contradiction. The case p = 4k + 2
(p > 2) is a bit harder. Since the characteristic function ϕ(t) = e−αt2−ctp

extends to an entire analytic function we have

lim sup
l→∞

2l

√
EX2l/(2l)! = lim sup

l→∞
2l

√
|ϕ(2l)(0)|/(2l)! = 0,

so that z 
→ EezX = E ezX+e−zX
2 =

∑∞
l=0

EX2l

(2l)! z
2l is an entire function, too.

By the identity principle we get EezX = ϕ(−iz) = eαz
2+czp for all complex

z. Therefore for zp = cos 2π
p + i sin 2π

p and t > 0 we have

Eet(Re zp)X = eαt
2 cos2 2π

p +ctp cosp 2π
p

and
ERe etzpX = ReEetzpX = eαt

2 cos πp+ctp cos
(
αt2 sin

π

p

)
.

Hence for tn =
√

2πn
α sin π

p
and integer n great enough there would be

Eetn(Re zp)X < ERe etnzpX

in contradiction to the fact that eReu = |eu| ≥ Re eu for all complex u.
Assume now that p ∈ (4k, 4k+2) for some natural k ≥ 1. Let fp(t) = e−|t|p

and Fp = f̂p. We will need several lemmas. The first of them is well known
(cf. [PS], Part Three, Chapter 4, Problem 154) and covers a wider range of
the parameter p. We give its proof for the sake of completeness – later we
will use a more refined version of this argument.
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Lemma 1. If p > 2 then Fp : R −→ R is a continuous even function inte-
grable with respect to the Lebesgue measure and such that

∫
R
Fp(x)dx = 2π

and

lim
x→∞xp+1Fp(x) = −2Γ (p+ 1) cos

(p+ 1
2

π
)

= 2Γ (p+ 1) sin
(pπ

2

)
.

Proof. Only the last assertion of the lemma needs proof as it implies the
integrability of Fp and therefore F̂p = (f̂p)∧ = 2πfp; in particular∫

R

Fp(x)dx = F̂p(0) = 2πfp(0) = 2π.

Let
hp(t) = e−|t|p + |t|pe−|t| + |t|p+1e−|t| = 1 − 1

2
|t|p+2 + . . .

The function hp is at least �p� + 1 times differentiable (to see it expand
the exponential terms into power series and note that due to fast enough
convergence one can differentiate the series term by term) and all derivatives
of hp up to order �p� + 1 are integrable (use the Leibniz rule). Hence by the
Riemann-Lebesgue theorem

lim
x→∞

∣∣x�p�+1ĥp(x)
∣∣ = lim

x→∞ |(h(�p�+1)
p )∧(x)| = 0,

so that ĥp(x) = o(x−p−1) for x → ∞. Note now that

fp(t) = hp(t) − |t|pe−|t| − |t|p+1e−|t|

and therefore

Fp(x) = ĥp(x) −
∫
R

eitx|t|pe−|t|dt−
∫
R

eitx|t|p+1e−|t|dt.

Hence our assertion immediately follows from the following lemma. �

Lemma 2. For p > 0 we have

lim
x→∞xp+1

∫
R

eitx|t|pe−|t|dt = 2Γ (p+ 1) cos
(p+ 1

2
π
)
.

Proof. We will prove a little more, namely that

I1 =
∫
R

eitx|t|pe−|t|dt =
2Γ (p+ 1)

(1 + x2)
p+1
2

cos
(
p+ 1

2
π − (p+ 1) arcsin

1√
1 + x2

)

which follows from I1 = 2Re I2, where

I2 =
∫ ∞

0
eitxtpe−tdt =

(
cos
(p+ 1

2
π
)

+ i sin
(p+ 1

2
π
))

· Γ (p+ 1)
(x+ i)p+1 .
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Here values of (x + i)p+1 are taken from the main branch of zp+1. This
is a simple transformation of the formula for the characteristic function of
the gamma distribution which can be found, for example, in [F]. A simple
argument goes as follows: I2 is an analytic function of x (Imx > −1) and the
formula for I2 can be easily checked for x being a purely imaginary complex
number; therefore by the identity principle the formula must be valid for all
real x. �

Lemma 3. Let p ∈ (4k, 4k + 2) for some natural k ≥ 1. For σ > 0 let
Hσ(x) = EFp(x+ σG). Then

lim
x→∞xp+1Hσ(x) = 2Γ (p+ 1) sin

(pπ
2

)
and there exists σ > 0 such that Hσ(x) ≥ 0 for all x ∈ R. Moreover, there
exists yp > 0 such that Hσ(x) > 0 for all x > yp and σ > 0.

Proof. Let u(x) = xp+1Fp(x). By Lemma 1 u is continuous and

lim
x→∞u(x) = −2Γ (p+ 1) cos

(p+ 1
2

π
)
.

Therefore u and Fp are bounded on R. Let us recall the well known estimate:

P (G > x) ≤ e−x2
EexG = e−x2/2

for x ≥ 0. Splitting

xp+1Hσ(x) = E
( x

x+ σG

)p+1
u(x+ σG)1|G|≤ x

2σ
+ xp+1EFp(x+ σG)1|G|> x

2σ

we obtain the first assertion of the lemma by the Lebesgue theorem on ma-
jorized convergence – the first term tends to 2Γ (p+1) sin(pπ2 ) and the second
one converges to zero as x → ∞ because its absolute value is bounded by

xp+1‖Fp‖∞e− x2

8σ2 . The second assertion is more delicate. From Lemma 1 it fol-
lows that there exist some xp > 1000 and εp > 0 such that

∫ xp
−xp Fp(x)dx > π

and Fp(x) > εp
xp+1 if |x| > xp. Because of the symmetry we can restrict our

considerations to the case x > 0. Let F+
p = max(Fp, 0), F−

p = max(−Fp, 0)
and let Ap =

∫ xp
−xp F

+
p (x)dx, Bp =

∫ xp
−xp F

−
p (x)dx; therefore Ap > Bp > 0.

Choose yp > 2xp and such that the following two facts hold simultaneously:

εpe
1
8x

1/2
> 4Bpxp+

1
4

for all x ≥ yp and
Ap > Bp · e2xpy−1/2

p +x2
py

−3/2
p .

First we will prove that Hσ(x) ≥ 0 for all x ≥ yp and σ > 0. Let us consider
two cases.
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Case 1: σ ≥ x3/4.
Then

√
2πσHσ(x) =

∫
R

Fp(t)e− (x−t)2
2σ2 dt ≥

∫ xp

−xp
Fp(t)e− (x−t)2

2σ2 dt

= e− x2

2σ2

∫ xp

−xp
Fp(t)e(xt−

t2
2 )σ−2

dt.

For |t| < xp we have

∣∣∣xt− t2

2

∣∣∣σ−2 ≤
(
xpx+

x2
p

2

)
x−3/2 = xpx

−1/2 +
1
2
x2
px

−3/2

≤ xpy
−1/2
p +

1
2
x2
py

−3/2
p .

From the way in which we chose yp it follows that∫ xp

−xp
Fp(t)e(xt−

t2
2 )σ−2

dt

≥ Ape
−xpy−1/2

p − 1
2x

2
py

−3/2
p −Bpe

xpy
−1/2
p + 1

2x
2
py

−3/2
p > 0

which ends the proof of Case 1.

Case 2: σ ≤ x3/4.
Then (recall that x ≥ yp ≥ 2xp ≥ 2000)

√
2πσHσ(x) =

∫
R

Fp(t)e− (x−t)2
2σ2 dt ≥

∫ x

x/2

εp
tp+1 e

− (x−t)2
2σ2 dt−Bpe

− (x−xp)2

2σ2

≥ εpx
−p−1

∫ x

x/2
e− (x−t)2

2σ2 dt−Bpe
− x2

8σ2

= εpx
−p−1σ

∫ x
2σ

0
e−t2/2dt−Bpe

− x2

8σ2

≥ εpx
−p−1σ

∫ x1/4
2

0
e−t2/2dt−Bpe

− x2

8σ2

≥ εpx
−p−1σ

∫ 3

0
e−t2/2dt−Bpe

− x2

8σ2

≥ εpx
−p−1σ −Bpe

− x2

8σ2 .

Define the function Ψx(w) = εpe
1
8w

2x1/2 − Bpwx
p+ 1

4 . Note that Ψx(1) =
εpe

1
8x

1/2−Bpxp+1/4 > 0 because of the way in which we chose yp and similarly
Ψ ′
x(1) = 1/4εpx1/2e1/8x

1/2 − Bpx
p+1/4 ≥ 1

4εpe
1/8x1/2 − Bpx

p+1/4 > 0. Since
Ψx is convex on [1,∞) it means that Ψx(w) > 0 for all w ≥ 1. Hence putting
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w = x3/4/σ ≥ 1 we arrive at εpe
x2

8σ2 > Bpx
p+1/σ which ends the proof of

Case 2.
To finish the proof of Lemma 3 we show that for σ =

√
(2xpyp)/(ln

Ap
Bp

)
there is Hσ(x) ≥ 0 for x ∈ [0, yp] and therefore for all real x. Indeed,

√
2πσHσ(x) ≥

∫ xp

−xp
Fp(t)e− (x−t)2

2σ2 dt

≥ Ape
− (x+xp)2

2σ2 −Bpe
− (x−xp)2

2σ2

= e− (x+xp)2

2σ2 (Ap −Bpe
2xpyp/σ2

) = 0.

This completes the proof. �

Note that EFp(x + σG) = (Fp ∗ γσ)(x) where γσ(x) = 1√
2π σ

e− x2

2σ2 .

Lemma 1 and Lemma 3 imply that Fp and Fp ∗ γσ are integrable functions
and therefore

(Fp ∗ γσ)∧(t) = F̂p(t) · γ̂σ(t) = (f̂p)∧(t) · e−σ2t2
2 = 2πe−|t|p−σ2t2

2 .

Hence if Hσ ≥ 0 then g = 1/(2π)Hσ is the density of a symmetric probability
measure on R with a characteristic function ϕ(t) = e−|t|p−σ2t2

2 . This proves
that p-pseudostables do exist for p ∈ ⋃∞

k=1(4k, 4k + 2). Note that the argu-
ments used can be easily adapted to prove that there are no p-pseudostables
for p ∈ ⋃∞

k=1(4k − 2, 4k). For σ′ > σ we have

Hσ′(x) = EFp

(
x+ σG1 +

√
σ′2 − σ2G2

)
= EHσ

(
x+

√
σ′2 − σ2G

)
.

Therefore Hσ ≥ 0 implies Hσ′ > 0 for σ′ > σ. Let σp = inf{σ > 0 : Hσ ≥
0}. As t 
→ e−|t|p− 1

2σ
2t2 is a continuous function and it is a pointwise limit of a

sequence of characteristic functions e−|t|p− 1
2 (σp+ 1

n )2t2 we deduce that it is also
a characteristic function and therefore Hσp ≥ 0. We know that 1

2πHσp is the
density of a symmetric random variable X. We will prove that X is Gaussian-
free. Indeed, assume that X can be expressed as a sum of two independent
random variables one of which is a non-degenerate Gaussian. Without loss of
generality we can assume that the Gaussian summand is symmetric (transfer-
ring its mean to the other summand). Then the other summand would have
a characteristic function of the form e−|t|p− 1

2σ
2t2 for some σ < σp yielding

Hσ ≥ 0 which contradicts the minimality of σp. Hence X is a pure pseu-
dostable and any p-pseudostable with the characteristic function of the form
e−|t|p− 1

2σ
2t2 for σ > σp can be expressed as a sum of a pure p-pseudostable

having the same distribution as X and an independent N (0,
√
σ2 − σ2

p) sum-
mand. After obvious rescaling the same holds for a random variable with char-
acteristic function e−c|t|p−αt2 – it is a pure p-pseudostable if

√
2αc−1/p = σp
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and it is a non-pure p-pseudostable if
√

2αc−1/p > σp. Note that σp > 0 since
there are no p-stables for p > 2. The above considerations imply that densi-
ties of all non-pure p-pseudostables are strictly positive. Now we will prove
that the continuous density of a pure p-pseudostable has some zero point. In-
deed, we know that functions H n

n+1σp
have some zero points for n = 1, 2, . . .

because they are continuous. Denote by zn some zero point of H n
n+1σp

(the
choice is arbitrary). From Lemma 3 it follows that |zn| ≤ yp for n = 1, 2, . . .
and therefore we can choose a subsequence znl convergent to some point z.
Note that Fp is a Lipschitz function as

|F ′
p(x)| =

∣∣∣ ∫
R

iteitx−|t|pdt
∣∣∣ ≤ ∫

R

|t|e−|t|pdt

= Γ

(
1 +

2
p

)
≤ sup
u∈[1,2]

Γ (u) = L < ∞.

Therefore all functionsHσ (σ ≥ 0) are also Lipschitz with a Lipschitz constant
L. Hence∣∣H nl

nl+1σp
(z)
∣∣ =

∣∣H nl
nl+1σp

(z) −H nl
nl+1σp

(znl)
∣∣ ≤ L|z − znl | −→

l→∞
0.

We also know that for σ′ > σ there is

sup
x∈R

|Hσ′(x) −Hσ(x)| = sup
x∈R

∣∣∣EHσ

(
x+

√
σ′2 − σ2G

)−Hσ(x)
∣∣∣

≤ L · E|G| ·
√
σ′2 − σ2

and therefore H nl
nl+1σp

(z) → Hσp(z) as l → ∞. Hence Hσp(z) = 0 and the
proof is finished. We have proved Theorem 1. �

Proposition 1. The function p 
→ σp (where σp = inf{σ > 0 : Hσ ≥ 0}) is
continuous on

⋃∞
k=1(4k, 4k + 2) with

lim
p→4k+

σp = lim
p→(4k+2)−

σp = ∞.

Proof. Recall that fp(t) = e−|t|p and Fp = f̂p.
We will need the following lemmas.

Lemma 4. Let [p1, p2] ⊂ (4k, 4k + 2) for some integer k ≥ 1. Then there
exist x0 and ε (depending on p1 and p2 only) such that Fp(x) ≥ ε

xp2+1 for
any x > x0 and p ∈ [p1, p2].

Proof (sketch). We will follow the approach used in the proof of Lemma 1.
However, now we need more precision. For p ∈ [p1, p2] let

wp(t) = e−|t|p +
3∑
l=0

1
l!

|t|p+le−|t|.
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In the neighbourhood of zero wp(t) = 1 − 1
24 |t|p+4 + o(|t|p+4) since p > 4.

Hence wp ∈ C4k+4(R). Using the Leibniz rule for |t| > 1 and differ-
entiating the series expansion term by term for |t| < 1 we prove that
supp∈[p1,p2] ‖w(4k+4)

p ‖1 < ∞ and therefore

sup
p∈[p1,p2]

sup
x∈R

|x|4k+4|ŵp(x)| < ∞.

Hence there exists some positive constant C depending on p1 and p2 only such
that |ŵp(x)| < C

xp+2 for all x > 1 and p ∈ [p1, p2]. According to Lemma 2

Fp(x) = ŵp(x)−
4∑
l=1

2Γ (p+ l)

(l − 1)!(1 + x2)
k+l
2

cos
(
p+ l

2
π−(p+l) arcsin

1√
1 + x2

)
.

Let D = 1 + tan−1(p1−4k
2p1+2π). One easily checks that

inf
p∈[p1,p2]

inf
x≥D

− cos
(
p+ 1

2
π − (p+ 1) arcsin

1√
1 + x2

)
> 0.

Therefore by some elementary estimates we prove that there exists some
positive constant M such that for all x > D and all p ∈ [p1, p2] there is
Fp(x) ≥ M

xp+1 − 1
Mxp+2 . The assertion of the lemma easily follows. We omit

long but elementary calculations. �

Lemma 5. Let [p1, p2] ⊂ (4k, 4k + 2) for some integer k ≥ 1. Then there
exists some number y > 0 (depending on p1 and p2 only) such that for all
x > y, σ > 0 and p ∈ [p1, p2] there is Hσ(x) = EFp(x+ σG) > 0.

Proof. The proof follows closely the proof of Lemma 3. Note that in view
of Lemma 4 the main problem remaining is how to deal uniformly (for p ∈
[p1, p2]) with xp, Ap and Bp. First one needs to prove that there exists some
s > 0 such that for all p ∈ [p1, p2] and all z ≥ s there is∫ z

−z
Fp(x)dx > π.

Then for y0 = max(x0, s, 2000), being the “uniform version” of xp, put
Ap =

∫ y0
−y0 F

+
p (x)dx and Bp =

∫ y0
−y0 F

−
p (x)dx. One needs to show that

infp∈[p1,p2] (Ap/Bp) > 1 and supp∈[p1,p2]Bp < ∞ to complete the proof. The
last two assertions are equivalent since Ap −Bp ∈ [π, 2π] and they are equiv-
alent to the fact that

sup
p∈[p1,p2]

∫ y0

−y0
|Fp(x)|dx < ∞.
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Step 1: We prove that such s exists.
By the approach used in the proof of Lemma 4 one proves also that there
exists D > 0 (depending on p1 and p2 only) such that Fp(x) ≤ D

xp1+1 for
any x > D and p ∈ [p1, p2]. The proof of this fact is simpler than the proof
of Lemma 4 so that we leave it to the reader. Recall that for any p there is∫
R
Fp(x)dx = 2π and therefore for z > D we have

∫ z

−z
Fp(x)dx > 2π − 2D

∫ ∞

z

dx

xp1+1 = 2π − 2D
p1zp1

.

Hence there exists s > 0 such that for any z ≥ s and p ∈ [p1, p2] there is∫ z
−z Fp(x)dx > π.

Step 2: We prove that supp∈[p1,p2]
∫ y0

−y0 |Fp(x)|dx < ∞.
Note that by the Hölder inequality and the Plancherel identity we have

∫ y0

−y0
|Fp(x)|dx ≤

√
2y0

(∫ y0

−y0
|Fp(x)|2dx

)1/2

≤
√

2y0

(∫
R

|f̂p(x)|2dx
)1/2

=
√

2y0

(
2π
∫
R

fp(t)2dt
)1/2

=
√

8πy0

(∫ ∞

0
e−2tpdt

)1/2

and the last expression is uniformly bounded for p ∈ [p1, p2]. The proof of
Lemma 5 is finished. �

Let ϕp(t) = e−|t|p− 1
2σ

2
pt

2
. Lemma 5 immediately implies that for x >

y there is ϕ̂p(x) > 0. Note also that the family (ϕ̂p)p∈[p1,p2] is uniformly
Lipschitz. Indeed,

|(ϕ̂p)′(x)| ≤
∫
R

|t|e−|t|p− 1
2σ

2
pt

2
dt ≤ 2

∫ ∞

0
te−tpdt

= Γ

(
1 +

2
p

)
≤ sup
u∈[1,2]

Γ (u) < ∞.

Now we are in a position to prove Proposition 1.
Let p, q1, q2, . . . ∈ (p1, p2) with limn→∞ qn = p. Choose a subsequence

(qnl) such that
lim
l→∞

σqnl = lim inf
n→∞ σqn = σinf .

Then
ϕqnl

L1−→
l→∞

e−|t|p− 1
2σ

2
inf t

2
= ϕinf(t)

by the Lebesgue majorized convergence theorem. Therefore ϕ̂qnl tends uni-
formly to ϕ̂inf as l → ∞. Hence ϕ̂inf ≥ 0. Assume that σinf < σp. Then

ϕ̂p(x) = Eϕ̂inf

(
x+

√
σ2
p − σ2

infG
)
> 0
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in contradiction to the fact that 1
2π ϕ̂p as the continuous density of a pure

p-pseudostable must have some zero point. Hence σinf ≥ σp. Now choose a
subsequence (qnl) such that

lim
l→∞

σqnl = lim sup
n→∞

σqn = σsup

(a priori it is possible that σsup = ∞). Then, again by the Lebesgue majorized
convergence theorem we have

ϕqnl (t)
L1−→
l→∞

e−|t|p− 1
2σ

2
supt

2
= ϕsup(t)

(with ϕsup = 0 if σsup = ∞) and therefore ϕ̂qnl tends uniformly to ϕ̂sup as
l → ∞. Note that 1

2π ϕ̂qnl as the continuous density of a pure qnl -pseudostable
must have some zero point in [−y, y] (since by Lemma 5 it has no zero points
outside this interval). As ϕ̂qnl are uniformly Lipschitz we deduce (the same
argument appeared at the very end of the proof of Theorem 1) that ϕ̂sup also
has some zero point. But σsup > σp would imply

ϕ̂sup(x) = Eϕ̂p

(
x+

√
σ2

sup − σ2
p G
)
> 0

since 1
2π ϕ̂p is the density of a pure p-pseudostable. The obtained contradiction

proves that σsup ≤ σp. We have proved that

lim inf
n→∞ σqn ≥ σp ≥ lim sup

n→∞
σqn

and therefore σqn → σp as n → ∞, so that p 
→ σp is continuous on (p1, p2).
Choosing p1 and p2 arbitrarily close to 4k and 4k + 2 respectively we prove
that p 
→ σp is continuous on (4k, 4k + 2). It remains to investigate the
boundary behavior. Assume that there exists a sequence (pn) ⊂ (4k, 4k + 2)
convergent to 4k and such that the sequence σpn is bounded from above.
Then there would exist a subsequence (pnl) such that σpnl → σ as l → ∞
for some σ ≥ 0 and therefore ϕpnl (t) would tend pointwise to e−t4k− 1

2σ
2t2 .

Hence e−t4k− 1
2σ

2t2 as a continuous function being the pointwise limit of the
sequence of the characteristic functions would also be a characteristic func-
tion in contradiction to the fact that there are no 4k-pseudostables. Hence
limp→4k+ σp = ∞. In a similar way one proves that limp→(4k−2)− σp = ∞.
The proof of Proposition 1 is finished. �

Remark 1. Let X be a p-pseudostable with a characteristic function ϕ(t) =
e−c|t|p− 1

2 t
2
. Then for all positive integers l < p we have EX l = EGl.

Proof. It suffices to prove that ϕ(l)(0) does not depend on c for positive
integers l < p and this is an easy consequence of the Leibniz rule and the fact
that dm

dtm (e−c|t|p) = 0 for t = 0 and positive integer m < p. �
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K. M. Ball pointed out that by the so-called “moment method” (in his
review article [D] Diaconis traces it back to Chebyshev’s proof of the Central
Limit Theorem and presents some of its applications) Remark 1 immediately
yields the following corollary.

Corollary 1. If X is a p-pseudostable then

sup
t∈R

∣∣∣P(X < t
√
EX2

)
− P (G < t)

∣∣∣ ≤√ π

2(p− 1)
.

Proof. X/
√
EX2 has a characteristic function of the form ϕ(t) = e−c|t|p− 1

2 t
2
.

Now it suffices to apply Theorem 2 of [D] and Remark 1 to X/
√
EX2. �

Corollary 2. Under the notation of Proposition 1

lim
k→∞

(
inf

p∈(4k,4k+2)
σp

)
= ∞.

Proof. Assume that there exists a sequence (pn) tending to infinity with pn ∈⋃∞
k=1(4k, 4k+2) and supn σpn < ∞. Let Zn be the pure pn-pseudostable with

EZ2
n = 1, therefore it has the characteristic function ψn(t) = e−σ−pn

pn
|t|pn− 1

2 t
2
.

Corollary 1 implies that Zn tends in distribution to G as n → ∞ and therefore
ψn(t) → e−t2/2 pointwise, meaning that σ−pn

pn |t|pn → 0 as n → ∞ for any real
t. Taking t = 2 supn σpn we obtain the contradiction which ends the proof.
�

Remark 2. If X is a pure p-pseudostable then

lim
q→p−

(p− q)1/p‖X‖q = κp‖X‖2,

where κp = ( 2
πΓ (p+ 1) sin(pπ2 ))1/pσ−1

p .

Proof. By Lemma 3 we can precisely describe the limit behavior of the density
of X. The assertion follows by some elementary calculation. �

One of the classical applications of p-stable random variables is the linear
isometric embedding of lnp space into Lq(0, 1) for 0 < q < p ≤ 2. The main
idea (a so-called representation theorem, cf. [L]) comes from P. Levy, at least
for finite n although the application to Banach spaces appeared much later.
For embedding l∞p some more effort is needed (see [K] and [BDCK]). Of course
there is no linear isomorphic embedding of l∞p into Lq(0, 1) for 2 ≤ q < p ≤ ∞
since Lq(0, 1) has cotype q and l∞p does not have cotype q. However, using
p-pseudostables instead of p-stables we can transfer the ideas to obtain some
other results.

We will need the following simple lemma.



Pseudostable Random Variables 201

Lemma 6. Let X,X1, X2, . . . be i.i.d. p-pseudostables with EX2 = 1. Then
for any a = (a1, a2, . . .) ∈ l∞2 the series

∑∞
n=1 anXn is convergent a.s. and

∞∑
n=1

anXn ∼ ‖a‖pX +
√

‖a‖2
2 − ‖a‖2

pG.

Proof. By the Kolmogorov three series theorem one easily checks that∑∞
n=1 anXn converges a.s.; therefore the series converges also in distribution

to the same limit. To finish the proof it suffices to show that the characteris-
tic functions of

∑N
n=1 anXn tend pointwise to the characteristic function of

‖a‖pX +
√

‖a‖2
2 − ‖a‖2

pG as N → ∞, which is trivial. �

Before we pass to embedding results let us transfer the cotype argument
to the pseudostable setting to obtain some bounds on κp and σp.

Lemma 7. For q ≥ 2 and any real a, b there is

�q/2�−1∑
l=0

(
q

2l

)
|a|q−2lb2l +

1
2

(
q

2�q/2�
)

|a|q−2�q/2�b2�q/2�

≤ |a+ b|q + |a− b|q
2

≤
�q/2�∑
l=0

(
q

2l

)
|a|q−2lb2l + |b|q.

Proof. Treat the three expressions, which we compare as functions of the
parameter b and note that their derivatives up to order 2�q/2� agree at b = 0,
so that it suffices to prove the inequalities for 2�q/2�-th derivatives, i.e.

|a|β
2

≤ |a+ b|β + |a− b|β
2

≤ |a|β + |b|β ,

where β = q − 2�q/2� ∈ [0, 2], which are elementary and well-known to be
true. �

Lemma 8. Let X be a p-pseudostable with EX2 = 1. Then

(2 − 2
q
p )E|X|q ≤ 2

q
2+1E|G|q

for any q ∈ [2, p).

Proof. Recall that X1 and X2 denote independent copies of X. From an
elementary inequality |a+b|q+|a−b|q

2 ≥ |a|q + |b|q holding for q ≥ 2 and any
real a, b we deduce that

E|X1 +X2|q = E
|X1 +X2|q + |X1 −X2|q

2
≥ E|X1|q + E|X2|q = 2E|X|q.
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On the other hand there is X1 +X2 ∼ 21/pX +
√

2 − 22/pG so that

E|X1 +X2|q = E
∣∣21/pX +

√
2 − 22/pG

∣∣q
= E

∣∣√2 − 22/pG+ 21/pX
∣∣q +

∣∣√2 − 22/pG− 21/pX
∣∣q

2

≤
�q/2�∑
l=0

(
q

2l

)
E
∣∣√2 − 22/pG

∣∣q−2l
E(21/pX)2l + E|21/pX|q

=
�q/2�∑
l=0

(
q

2l

)
E
∣∣√2 − 22/pG1

∣∣q−2l
E|21/pG2|2l + E|21/pX|q

≤ E
(∣∣√2 − 22/pG1 + 21/pG2

∣∣q +
∣∣√2 − 22/pG1 − 21/pG2

∣∣q)
+2q/pE|X|q

= 2E
∣∣√2G

∣∣q + 2q/pE|X|q
= 2

q
2+1E|G|q + 2

q
pE|X|q,

where we used Lemma 7, Remark 1 and again Lemma 7. Putting both in-
equalities together we finish the proof. �

Proposition 2. For any p ∈ ⋃∞
k=1(4k, 4k + 2) there is

κp ≤ 2
(
pΓ (p+1

2 )√
π ln 2

)1/p

and for any θ ∈ (0, 1) there is

lim inf
k→∞

(
inf

p∈(4k+θ,4k+2−θ)
p−1/2σp

)
> 0.

Proof. The first assertion follows from Lemma 8 and Remark 2 as

lim
q→p−

(2 − 2q/p)1/q

(p− q)1/p
=
(

2 ln 2
p

)1/p

and

‖G‖p =
√

2
(
Γ (p+1

2 )√
π

)1/p

.

The second assertion follows immediately from the first one – note that
infk infp∈(4k+θ,4k+2−θ) sin(pπ2 ) > 0 for any θ ∈ (0, 1) and use the fact that

limu→∞
Γ (u)1/u

u = 1/e. This ends the proof. �

Lemma 9. If X is a p-pseudostable and EX2 = 1 then 4‖X‖q ≥ ‖G‖q for
any q ∈ [1, p).
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Proof. As X1 +X2 ∼ 21/pX +
√

2 − 22/pG we have

2‖X‖q = ‖X1‖q + ‖X2‖q ≥ ‖X1 +X2‖q
=
∥∥21/pX +

√
2 − 22/pG

∥∥
q

≥
√

2 − 22/p ‖G‖q ≥ 1
2
‖G‖p

since p > 4. �
Remark 3. In the above we have used the well known fact – if Y and Z are
independent mean-zero random variables then

max(‖Y ‖q, ‖Z‖q) ≤ ‖Y + Z‖q ≤ ‖Y ‖q + ‖Z‖q
for any q ≥ 1. The first inequality follows by the Jensen inequality:

‖Y + Z‖qq = EY (EZ |Y + Z|q) ≥ EY |Y + EZ|q = E|Y |q = ‖Y ‖qq
and by the same argument ‖Y + Z‖q ≥ ‖Z‖q.
Proposition 3. Under the assumptions of Lemma 6 there is

1
32
(‖X‖q‖a‖p + ‖G‖q‖a‖2

) ≤ ‖
∞∑
n=1

anXn‖q ≤ ‖X‖q‖a‖p + ‖G‖q‖a‖2

for any q ∈ [1, p).

Proof. From Lemma 6 and Remark 3 we deduce that

1
2

(
‖a‖p‖X‖q +

√
‖a‖2

2 − ‖a‖2
p ‖G‖q

)
≤ ‖

∞∑
n=1

anXn‖q

≤ ‖a‖p‖X‖q +
√

‖a‖2
2 − ‖a‖2

p ‖G‖q.
The second inequality of Proposition 3 follows immediately. To prove the first
one we consider two cases.

Case 1: ‖a‖2
p ≤ 1

2‖a‖2
2

Then
√

‖a‖2
2 − ‖a‖2

p ≥ 1
2‖a‖2 and therefore ‖∑∞

n=1 anXn‖q ≥ 1
32 (‖a‖p‖X‖q+

‖a‖2‖G‖q).
Case 2: ‖a‖2

p ≥ 1
2‖a‖2

2

Then ‖a‖p ≥ 1
2‖a‖2 and by Lemma 9 we get

‖a‖p‖X‖q ≥ 1
2
‖a‖2‖X‖q ≥ 1

8
‖a‖2‖G‖q

and therefore

‖a‖p‖X‖q+
√

‖a‖2
2 − ‖a‖2

p ‖G‖q ≥ ‖a‖p‖X‖q ≥ 1
16

‖a‖p‖X‖q+
1
16

‖a‖2‖G‖q,

yielding ‖∑∞
n=1 anXn‖q ≥ 1

32 (‖a‖p‖X‖q + ‖a‖2‖G‖q) which ends the proof.
�
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It is well known that any sequence of independent random variables can be
realized on the probability space (0, 1) equipped with the Lebesgue measure
and the σ-field of Borel sets (an easy way to see it is to produce the i.i.d. se-
quence of random variables uniformly distributed on [0, 1] out of Rademacher
functions and then to express given probability distributions as images of the
uniform ones).

Corollary 3. Let p ∈ ⋃∞
k=1(4k, 4k+2) and q ∈ [1, p). On a (Rosenthal type)

linear space of square summable sequences equipped with the norm

‖a‖ = ‖X‖q‖a‖p + ‖G‖q‖a‖2

let a linear Lq(0, 1)-valued operator T be given by

Ta =
∞∑
n=1

anXn,

where X1, X2, . . . are i.i.d. p-pseudostables defined on the probability space
((0, 1), λ1,B(0, 1)) and such that EX2

n = 1. Then

1
32

‖a‖ ≤ ‖Ta‖q ≤ ‖a‖

for any a ∈ l∞2 .

Proof. It is an immediate consequence of Proposition 3. Note that X1, X2, . . .
indeed belong to Lq since E|X|q < ∞ for q ∈ (0, p) – it can be deduced from
Theorem 1 or directly from Definition 1, by a simple modification of Step 1
of [KPS]. �

The main disadvantage of Corollary 3 is that we do not have precise
information on the possible values of ‖X‖q

‖G‖q‖X‖2
for X being a p-pseudostable

(note that Corollary 3 holds true also for p-pseudostables which are not pure).
In fact it seems most interesting when q is close to p. Note that for any even
natural number q < p we have

‖Ta‖q = ‖G‖q‖a‖2 =
(
(q − 1)!!

)1/q‖a‖2

as a simple consequence of Remark 1, so that in this case we get an embed-
ding similar to the classical isometric embedding of l∞2 into Lq using Gaussian
random variables. If X is a pure p-pseudostable then Remark 2 and Proposi-
tion 2 yield that limq→p−

‖X‖q
‖G‖q‖X‖2

(p− q)1/p can be bounded from above by
some universal constant (not depending on p.) However some lower bound
would be much more useful since we are interested in the situation when the
lp-norm summand is as little perturbed by the l2-summand as possible. We
will see in a moment that the range of q’s covered by Corollary 3 is far from
the best possible for isomorphic embeddings of l∞p into Lq. Finally, also the
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condition p ∈ ⋃∞
k=1(4k, 4k+ 2) seems restrictive. To obtain better results on

embedding Rosenthal spaces into Lq we will use the following fact due to
Hitczenko, Montgomery-Smith and the present author.

Theorem 2. ([HMSO]) There exist universal positive constants A and B
such that for any p ≥ 2, any natural n and independent symmetric ran-
dom variables Y1, Y2, . . . , Yn having logarithmically convex tails (i.e. such that
t 
→ lnP (|Yi| > t) is a convex function on R+) and finite p-th moment, the
inequalities

A

(( n∑
i=1

E|Yi|p
)1/p

+
√
p
( n∑
i=1

EY 2
i

)1/2
)

≤ ‖
n∑
i=1

Yi‖p ≤ B

(( n∑
i=1

E|Yi|p
)1/p

+
√
p
( n∑
i=1

EY 2
i

)1/2
)

hold true.

Corollary 4. Let p ≥ 2. If Y, Y1, Y2, . . . are i.i.d. symmetric random vari-
ables with logarithmically convex tails defined on the probability space ((0, 1),
λ1,B(0, 1)) and such that EY 2 = 1 and E|Y |p < ∞ then the linear operator
S defined on a linear space of square summable sequences equipped with the
norm

‖a‖ = ‖Y ‖p‖a‖p +
√
p‖a‖2

by the formula Ta =
∑∞
n=1 anYn satisfies

A‖a‖ ≤ ‖Ta‖p ≤ B‖a‖,

where A and B are some universal positive constants.

Proof. The proof follows closely the proof of Lemma 6. To prove that the
series

∑∞
n=1 anXn is convergent also in Lp note that the Cauchy condition is

satisfied (it follows easily by Theorem 2 or by some general theory). �

The above corollary gives a good embedding into Lp(0, 1). Before we turn
to the embeddings into Lq(0, 1) for q ∈ [2, p) let us determine the possible
values of the parameter s =

√
p‖Y ‖2

‖Y ‖p (of course we are not interested in the
case s > 1 since then the Banach-Mazur distance from ‖ · ‖ to the Euclidean
norm is not greater than 2).

Lemma 10. Let p > 2. If s ∈ (0,
√

2pΓ (p+ 1)−1/p) then there exists a sym-
metric random variable Y with logarithmically convex tails and all moments
finite such that

√
p‖Y ‖2

‖Y ‖p = s.

Proof. Let Y be a symmetric random variable with P (|Y | > t) = e−t1/θ for
all t > 0, where θ ≥ 1 is some constant. Y has then the so-called Weibull



206 K. Oleszkiewicz

distribution and it has logarithmically convex tails and all moments finite.
Let

h(θ) =
√
p‖Y ‖2

‖Y ‖p =
√
pΓ (2θ + 1)Γ (θp+ 1)−1/p.

Since h(θ) → 0 as θ → ∞ and h is continuous it takes on all values from the
interval (0, h(1)) which ends the proof. �

Remark 4. The estimate of Lemma 10 cannot be improved since for any
symmetric random variable Y with logarithmically convex tails there is

‖Y ‖p
‖Y ‖2

≥ Γ (p+ 1)1/p√
2

for p > 2 (see [HMSO] for the proof).

It seems that there is a gap in our method of isomorphic embedding
Rosenthal spaces into Lq for s ∈ (q−1/2, 1) but in a while we will see that
this gap can be easily filled.

Lemma 11. Let p > q > 2 and let s ≥ ( 1√
2
)
q(p−2)
p−q . Then for any a ∈ l∞2

there is
‖a‖p + s‖a‖2 ≤ ‖a‖q + s‖a‖2 ≤ 3(‖a‖p + s‖a‖2).

Proof. The first inequality is trivial. To prove the second one it suffices to
show that ‖a‖q ≤ 2(‖a‖p + s‖a‖2). Note that by the Hölder inequality

‖a‖q ≤ ‖a‖1−β
p ‖a‖β2 ,

where β = 2(p−q)
q(p−2) ∈ (0, 1). Let t = ‖a‖p/‖a‖2 ∈ (0, 1] (the case a = 0 is

trivial). We are to prove that

t1−β ≤ 2(t+ s)

so it suffices to show that

inf
t∈(0,1]

tβ + stβ−1 ≥ 1
2
.

The infimum is attained at t = 1−β
β s or at t = 1. The second case is trivial

and the first one leads to checking whether β−β(1 − β)−(1−β)sβ ≥ 1
2 . Note

that infu∈(0,1) u
−u = 1; therefore it suffices to prove that

s ≥ 21/β =
(

1√
2

) q(p−2)
p−q

which was our assumption. �
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Corollary 5. Let p > 2 and s ∈ (0, 1). If q ∈ (2, p) is such that s ≥
(1/

√
2)

q(p−2)
p−q then the Rosenthal space with a norm ‖a‖ = ‖a‖p + s‖a‖2 is

in the Banach-Mazur distance not greater than a certain universal constant
(not depending on p, s and q) from some linear subspace of Lq(0, 1).

Proof. If s ∈ (0,
√

2pΓ (p + 1)−1/p then the corollary is a direct consequence
of Corollary 4, Lemma 10 and Lemma 11. If s >

√
2pΓ (p + 1)−1/p then

in Corollary 4 replace Y, Y1, Y2, . . . by an i.i.d. sequence Z,Z1, Z2, . . . with
Z ∼ E+cG, where E andG are independent, E is the Weibull distribution with
θ = 1 (i.e. a symmetric exponential distribution) and c > 0. Note that then,
in view of Remark 3, ‖∑∞

n=1 anZn‖p is up to some universal multiplicative
constant equal to ∥∥∥ ∞∑

n=1

anEn
∥∥∥
p

+ c
∥∥∥ ∞∑
n=1

anGn

∥∥∥
p

or
‖E‖p‖a‖p + (c+ ‖E‖2)‖G‖p.

Choosing appropriately large c we can represent any value from the interval
(
√

2pΓ (p+ 1)−1/p, 1) as c+‖E‖2‖G‖p
‖E‖p up to a universal multiplicative constant

since
√

2pΓ (p + 1)−1/p‖E‖p/‖G‖p is uniformly bounded away from zero for
p > 2. Now use Lemma 11 to finish the proof. �

Remark 5. Of course the constant 1/
√

2 in Corollary 5 can be replaced by
some other constant 1/C with an appropriate change of the bound on the
Banach-Mazur distance (the bound on the Banach-Mazur distance grows ap-
proximately like C2 and in a moment we will see that it cannot be essentially
improved).

Remark 6. The estimate of Corollary 5 is close to optimal. Let s ∈ (0, 1) and
p > 2. If the Rosenthal space with a norm ‖a‖ = ‖a‖p + s‖a‖2 is in the
Banach-Mazur distance less than C from some linear subspace of Lq(0, 1) for

q ∈ (2, p) then s ≥ (1/C ′)
q(p−2)
p−q , where C ′ > 1 is some constant depending

on C only.

Proof. If s ≥ 2(p−q)
p(q−2) then s ≥ 2(p−q)

q(p−2) since p(q − 2) ≤ q(p − 2). Therefore

s ≥ (1/2)
q(p−2)
p−q because 2−u ≤ 2/u for u > 0. Hence we can restrict ourselves

to the case s < 2(p−q)
p(q−2) . Put n = �( 2(p−q)

p(q−2)s )
2p
p−2 � ≥ 1. By a standard cotype

argument we get

CqE
∥∥∥ n∑
l=1

rlvl

∥∥∥q ≥
n∑
l=1

‖vl‖q,

where r1, r2, . . . , rn are independent symmetric Bernoulli random variables
(P (rl = 1) = P (rl = −1) = 1/2) and v1, v2, . . . , vn are vectors of the Rosen-
thal space. Taking vl = el (the l-th versor) we arrive at
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C(n1/p + sn1/2) ≥ (1 + s)n1/q ≥ n1/q.

Therefore
C ≥ 1

n
1
p− 1

q + sn
1
2 − 1

q

.

By some elementary calculation one checks that the supremum of the expres-
sion 1

n1/p−1/q+sn1/2−1/q over n > 0 is attained at nmax = ( 2(p−q)
p(q−2)s )

2p
p−2 and is

equal to ββ(1−β)1−βs−β , where β = 2(p−q)
q(p−2) . Note that nmax ≥ n = �nmax� ≥

nmax
2 , since we assumed that s < 2(p−q)

p(q−2) . Therefore

C ≥ 2
1
p− 1

q
1

n
1
p− 1

q
max + sn

1
2 − 1

q
max

≥ 1
2
ββ(1 − β)1−βs−β

and hence

s ≥
(

1√
6C

) q(p−2)
p−q

,

since uu ≥ e−1/e ≥ 1/
√

3 for u ∈ (0, 1). Taking C ′ =
√

6C we finish the
proof. �

Proposition 4. There exist universal positive constants A and B such that
for any p > q > 2 and s ∈ (0, 1) the Rosenthal space with the norm given
by ‖a‖ = ‖a‖p + s‖a‖2 is in the Banach-Mazur distance not greater than

As− 2(p−q)
q(p−2) from some linear subspace of Lq(0, 1) spanned by independent ran-

dom variables and it is in the Banach-Mazur distance greater than Bs− 2(p−q)
q(p−2)

from all linear subspaces of Lq(0, 1).

Proof. It is a simple consequence of Remark 5 and Remark 6. �

Remark 7. Despite the similarities between Corollary 3 and Corollary 4 for
any p ∈ ⋃∞

k=1(4k, 4k + 2) there exists a non-pure p-pseudostable which does
not have logarithmically convex tails. Also pure p-pseudostables do not have
logarithmically convex tails. The author does not know whether there exists
any p-pseudostable with logarithmically convex tail.

Proof. Note that for any p ∈ ⋃∞
k=1(4k, 4k + 2) one can choose a sequence of

non-pure p-pseudostables tending in distribution to some Gaussian random
variable. If all of them had logarithmically convex tails then the limit dis-
tribution would also have logarithmically convex tails which is not the case.
The contradiction ends the proof. Pure p-pseudostables cannot have logarith-
mically convex tails since by Theorem 1 their continuous densities have zero
points. �

In the end of the paper let us turn to the sections of the unit ball of lnp .
There are many interesting results concerning this subject due to Ball, Had-
wiger, Hensley, Koldobsky, Meyer, Pajor, Vaaler and others (see [BN] for
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more references and related results on projections). The result of Ball ([B])
states that among hyperplane sections of the unit cube in Rn the central
section orthogonal to (1, 1, 0, 0, 0, . . . , 0) has the greatest (n− 1)-dimensional
Lebesgue measure. It was of interest whether the same direction of a hyper-
plane maximizes the (n− 1)-dimensional Lebesgue measure of the section of
the unit ball of lnp . The answer is negative, at least for small enough values of
p. Perhaps it is positive for p large enough – this problem remains open. In
the recent paper of Barthe and Naor ([BN]) a similar observation was made
for the projections of the unit ball of lnp for p ∈ (1, 2) which in some sense is a
dual problem (although there cannot be any formal duality since the “phase
transition” in [BN] appears for p = 4/3 whereas in our considerations there
is no “phase transition” for p = 4).

Proposition 5. Let A(p, n) denote the (n−1)-dimensional Lebesgue measure
of the central section of the unit ball of lnp with the hyperplane orthogonal to
(1, 1, . . . , 1) and let B(p, n) denote the (n− 1)-dimensional Lebesgue measure
of the central section of the unit ball of lnp with the hyperplane orthogonal to
(1, 1, 0, 0, . . . , 0). Then

lim
n→∞

(
A(p, n)
B(p, n)

)2

=
Γ (1/p)322/p

πp2Γ (3/p)

which is greater than 1, for example, for p = 24.

Proof. Some computer calculation suggests that the limit is greater than 1
for p ∈ (2, p0) and it is less than 1 for p ∈ (p0,∞), where p0 is some number
close to 26. It is clear that the limit is less than 1 for p large enough since it
tends to 3/π as p → ∞.

Let Z1, Z2, . . . , Zn be i.i.d. random variables with the density gp(x) =
cpe

−|x|p , where cp = 1
2Γ (1+ 1

p ) . To prove the formula for the limit recall the

well known fact that the (n−1)-dimensional Lebesgue measure of the section
of the unit ball of lnp with the hyperplane orthogonal to the unit vector a ∈ Rn

is proportional to the value of continuous density g of a1Z1+a2Z2+. . .+anZn
at zero and the proportionality constant depends on p and n only (and it does
not depend on the choice of a). Therefore

A(p, n)
B(p, n)

= gZ1+Z2+...+Zn√
n

(0)/gZ1+Z2√
2

(0).

Note that

gX1+X2√
2

(0) =
∫
R

(√
2gp(

√
2t)
)2
dt = 2− 1

2 − 1
p /Γ

(
1 +

1
p

)
.

Since EX2 = 2cpΓ (3/p)
p , by the Central Limit Theorem we get
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lim
n→∞ gZ1+Z2+...+Zn√

n

(0) =

√
Γ (1/p)

2πΓ (3/p)
.

Here we used a version of the CLT for i.i.d. random variables stating that the
integrability of the characteristic function (ϕZ is integrable due to Lemma
1) implies the uniform convergence of the densities to the normal density, cf.
[F] for details. This ends the proof. �
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Ψ2-Estimates for Linear Functionals on Zonoids
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Summary. Let K be a convex body in R
n with centre of mass at the origin and

volume |K| = 1. We prove that if K ⊆ α
√
nBn

2 where Bn
2 is the Euclidean unit

ball, then there exists θ ∈ Sn−1 such that

‖〈·, θ〉‖Lψ2 (K) ≤ cα‖〈·, θ〉‖L1(K), (∗)

where c > 0 is an absolute constant. In other words, “every body with small diame-
ter has ψ2-directions”. This criterion applies to the class of zonoids. In the opposite
direction, we show that if an isotropic convex body K of volume 1 satisfies (∗) for
every direction θ ∈ Sn−1, then K ⊆ Cα2√n lognBn

2 , where C > 0 is an absolute
constant.

1 Introduction

We shall work in R
n which is equipped with a Euclidean structure 〈·, ·〉. The

Euclidean norm 〈x, x〉1/2 is denoted by |·|. We write Bn2 for the Euclidean unit
ball, Sn−1 for the unit sphere, and σ for the rotationally invariant probability
measure on Sn−1.

Throughout this note we assume that K is a convex body in R
n with

volume |K| = 1 and centre of mass at the origin. Given α ∈ [1, 2], the Orlicz
norm ‖f‖ψα of a bounded measurable function f : K → R is defined by

‖f‖ψα = inf
{
t > 0 :

∫
K

exp
(( |f(x)|

t

)α)
dx ≤ 2

}
. (1.1)

It is not hard to check that

‖f‖ψα � sup
{‖f‖p
p1/α : p ≥ 1

}
. (1.2)

Let y 	= 0 in R
n. We say that K satisfies a ψα-estimate with constant bα in

the direction of y if
‖〈·, y〉‖ψα ≤ bα‖〈·, y〉‖1. (1.3)

We say that K is a ψα-body with constant bα if (1.3) holds for every y 	= 0.
It is easy to see that if K satisfies a ψα-estimate in the direction of y and

if T ∈ SL(n), then T (K) satisfies a ψα-estimate (with the same constant)
in the direction of T ∗(y). It follows that T (K) is a ψα-body if K is a ψα-
body. By Borell’s lemma (see [MiS], Appendix III), every convex body K is
a ψ1-body with constant b1 = c, where c > 0 is an absolute constant.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 211–222, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Estimates of this form are related to the hyperplane problem for convex
bodies. Recall that a convex body K of volume 1 with centre of mass at the
origin is called isotropic if there exists a constant LK > 0 such that∫

K

〈x, θ〉2dx = L2
K (1.4)

for all θ ∈ Sn−1. Every convex body K with centre of mass at the origin
has an isotropic image under GL(n) which is uniquely determined up to
orthogonal transformations (for more information on the isotropic position,
see [MiP]). It follows that the isotropic constant LK is an invariant for the
class {T (K) : T ∈ GL(n)}. The hyperplane problem asks if every convex body
of volume 1 has a hyperplane section through its centre of mass with “area”
greater than an absolute constant. An affirmative answer to this question
is equivalent to the following statement: there exists an absolute constant
C > 0 such that LK ≤ C for every isotropic convex body K.

Bourgain [Bou] has proved that LK ≤ c 4
√
n log n for every origin sym-

metric isotropic convex body K in R
n (the same estimate holds true for

non-symmetric convex bodies as well; see [D2] and [P]). Bourgain’s argument
shows that if K is a ψ2-body with constant b2, then LK ≤ cb2 log n where
c > 0 is an absolute constant. Examples of ψ2-bodies are given by the ball
and the cube in R

n.
Alesker [A] has proved that the Euclidean norm satisfies a ψ2-estimate:

there exists an absolute constant C > 0 such that∫
K

exp
( |x|2
C2I2

2

)
dx ≤ 2 (1.5)

for every isotropic convex body K in R
n, where I2

2 =
∫
K

|x|2dx.
It is not clear if every isotropic convex body satisfies a good ψ2-estimate

for most directions θ ∈ Sn−1; for a related conjecture, see [AnBP]. On the
other hand, to the best of our knowledge, even the existence of some good
ψ2-direction has not been verified in full generality. This would correspond
to a sharpening of Alesker’s result.

Bobkov and Nazarov [BoN] have recently proved that every 1-uncondi-
tional and isotropic convex body satisfies a ψ2-estimate with constant c in the
direction y = (1, 1, . . . , 1), where c > 0 is an absolute constant. The purpose
of this note is to establish an analogous fact for zonoids.

Theorem 1.1. There exists an absolute constant C > 0 with the following
property: For every zonoid Z in R

n with volume |Z| = 1, there exists θ ∈ Sn−1

such that (∫
Z

|〈x, θ〉|pdx
)1/p

≤ C
√
p

∫
Z

|〈x, θ〉|dx

for every p ≥ 1.
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The proof of Theorem 1.1 is presented in Section 2. The argument shows
that the same is true for every convex body in R

n which has a linear image of
volume 1 with diameter of the order of

√
n (we call these “bodies with small

diameter”). In Section 3 we show that zonoids belong to this class.
In the opposite direction, we show that every ψ2-isotropic convex body

has small diameter. More precisely, in Section 4 we prove the following.

Theorem 1.2. Let K be an isotropic convex body in R
n. Assume that K is

a ψ2-body with constant b2. Then,

K ⊆ Cb22
√
n log nBn2 ,

where C > 0 is an absolute constant.

The letters c, c1, c2, c′ etc. denote absolute positive constants, which may
change from line to line. Wherever we write a � b, this means that there exist
absolute constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. We refer the reader to
the books [MiS], [Pi] and [S] for standard facts that we use in the sequel. We
thank the referee for suggestions that improved the presentation and some
estimates.

2 Bodies with Small Diameter

We say that a convex body K in R
n with centre of mass at the origin has

“small diameter” if |K| = 1 and K ⊆ α
√
nBn2 , where α is “well bounded”.

Note that a convex body has a linear image with small diameter if and only if
its polar body has bounded volume ratio. Our purpose is to show that bodies
with small diameter have “good” ψ2-directions.

Our first lemma follows by a simple computation.

Lemma 2.1. For every p ≥ 1 and every x ∈ R
n,(∫

Sn−1
|〈x, θ〉|pσ(dθ)

)1/p

�
√
p√

p+ n
|x|. (2.1)

Proof. Observe that∫
Bn2

|〈x, y〉|pdy = |Bn2 | n

n+ p

∫
Sn−1

|〈x, θ〉|pσ(dθ).

On the other hand,∫
Bn2

|〈x, y〉|pdy = |x|p
∫
Bn2

|〈e1, y〉|pdy

= 2|Bn−1
2 | · |x|p

∫ 1

0
tp(1 − t2)(n−1)/2dt

= |Bn−1
2 | · |x|pΓ

(
p+1
2

)
Γ
(
n+1

2

)
Γ
(
p+n+2

2

) .
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Since |Bk2 | = πk/2/Γ
(
k+2
2

)
, we get∫

Sn−1
|〈x, θ〉|pσ(dθ) =

1√
π

n+ p

n

Γ
(
p+1
2

)
Γ
(
n+2

2

)
Γ
(
p+n+2

2

) |x|p.

The result follows from Stirling’s formula. �
Lemma 2.2. Let K be a convex body in R

n with volume |K| = 1 and centre
of mass at the origin. Then,

σ

(
θ ∈ Sn−1 :

∫
K

|〈x, θ〉| dx ≥ c1

)
≥ 1 − 2−n,

where c1 > 0 is an absolute constant.

Proof. The Binet ellipsoid E of K is defined by

‖θ‖2
E =

∫
K

〈x, θ〉2dx = 〈MKθ, θ〉,

where MK =
( ∫

K
xixjdx

)
is the matrix of inertia of K (see [MiP]). It is easily

checked that detMK = detMTK for every T ∈ SL(n), and this implies that∫
Sn−1

‖θ‖−n
E σ(dθ) =

|E|
|Bn2 | = (detMK)−1/2 = L−n

K .

Then, Markov’s inequality shows that

σ
(
θ ∈ Sn−1 : ‖θ‖E ≥ LK/2

) ≥ 1 − 1
2n
.

Since LK ≥ c and ‖〈·, θ〉‖1 � ‖〈·, θ〉‖2 (see [MiP]), the result follows. �
Lemma 2.3. Let K be a convex body in R

n with volume |K| = 1 and centre
of mass at the origin. Assume that K ⊆ α

√
nBn2 . Then,∫

Sn−1

∫
K

exp
( |〈x, θ〉|

c2α

)2

dxσ(dθ) ≤ 2,

where c2 > 0 is an absolute constant.

Proof. For every s > 0 we have∫
Sn−1

∫
K

exp
( |〈x, θ〉|

s

)2

dxσ(dθ) = 1+
∞∑
k=1

1
k!s2k

∫
K

∫
Sn−1

|〈x, θ〉|2kσ(dθ)dx.

From Lemma 2.1 we see that this is bounded by

1 +
∞∑
k=1

1
k!s2k

(
c · 2k

2k + n

)k ∫
K

|x|2kdx ≤ 1 +
∞∑
k=1

(
c′α
s

)2k

,

where c, c′ > 0 are absolute constants. We conclude the proof taking s = c2α
where c2 = 2c′. �
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An application of Markov’s inequality gives the following.

Corollary 2.1. Let K be a convex body in R
n with volume |K| = 1 and

centre of mass at the origin. Assume that K ⊆ α
√
nBn2 . Then, for every

A > 2 we have

σ

(
θ ∈ Sn−1 :

∫
K

exp
( |〈x, θ〉|

c2α

)2

dx < A

)
> 1 − 2

A
,

where c2 > 0 is the constant from Lemma 2.3. �
Theorem 2.1. Let K be a convex body in R

n with volume |K| = 1 and centre
of mass at the origin. Assume that K ⊆ α

√
nBn2 . There exists θ ∈ Sn−1 such

that (∫
K

|〈x, θ〉|pdx
)1/p

≤ Cα
√
p

∫
K

|〈x, θ〉|dx

for every p > 1, where C > 0 is an absolute constant.

Proof. Choose A = 4. Using the inequality ez > zk/k! (z > 0), Lemma 2.2
and Corollary 2.1 we see that with probability greater than 1

2 − 1
2n a direction

θ ∈ Sn−1 satisfies∫
K

|〈x, θ〉|dx ≥ c1 and
∫
K

exp
( |〈x, θ〉|

c2α

)2

dx < 4.

It follows that ∫
K

|〈x, θ〉|2kdx ≤ 4k!(c2α)2k

for every k ≥ 1, and hence

(∫
K

|〈x, θ〉|2kdx
) 1

2k

≤ cα
√

2k ≤ c

c1
α
√

2k
∫
K

|〈x, θ〉|dx.

This is the statement of the theorem for p = 2k. The general case follows
easily. �

Remarks. (a) Bourgain’s argument in [Bou] shows that LK is bounded by
a power of logn for every convex body K in R

n if the following statement
holds true: If an isotropic convex body W in R

n is contained in the centered
Euclidean ball of radius α

√
nLW , then W is a ψ2-body with constant O(αs).

Lemma 2.3 shows that, under the same assumptions, “half” of the directions
are ψ2-directions for W , with constant cα.

(b) It can be also easily proved that convex bodies with small diameter
have large hyperplane sections (this can be verified in several other ways, but
the argument below gives some estimate on the distribution of the volume of
their (n− 1)-dimensional sections).
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Proposition 2.1. Let K be a convex body in R
n with volume |K| = 1 and

centre of mass at the origin. Assume that K ⊆ α
√
nBn2 . Then, for every

t > 0 we have

σ
(
θ ∈ Sn−1 : |K ∩ θ⊥| ≥ c3

tα

)
≥ 1 − 2e−t2 ,

where c3 > 0 is an absolute constant.

Proof. Applying Jensen’s inequality to Lemma 2.3, we get∫
Sn−1

exp
((∫

K
|〈x, θ〉| dx
c2α

)2)
σ(dθ) ≤ 2.

Markov’s inequality shows that

σ

(
θ ∈ Sn−1 :

∫
K

|〈x, θ〉| dx ≥ c2αt

)
≤ 2e−t2

for every t > 0. On the other hand, it is a well-known fact (see [MiP] for the
symmetric case) that if K has volume 1 and centre of mass at the origin,
then ∫

K

|〈x, θ〉| dx � 1
|K ∩ θ⊥| (2.2)

for every θ ∈ Sn−1. This completes the proof. �

3 Positions of Zonoids

We first introduce some notation and recall basic facts about zonoids. The
support function of a convex body K is defined by hK(y) = maxx∈K〈x, y〉
for all y 	= 0. The mean width of K is given by

w(K) = 2
∫
Sn−1

hK(u)σ(du).

We say that K has minimal mean width if w(K) ≤ w(TK) for every T ∈
SL(n).

Recall also the definition of the area measure σK of a convex body K: for
every Borel V ⊆ Sn−1 we have

σK(V ) = ν
({
x ∈ bd(K) : the outer normal to K at x is in V

})
,

where ν is the (n − 1)-dimensional surface measure on K. It is clear that
σK(Sn−1) = A(K), the surface area of K. We say that K has minimal surface
area if A(K) ≤ A(TK) for every T ∈ SL(n).

A zonoid is a limit of Minkowski sums of line segments in the Hausdorff
metric. Equivalently, a symmetric convex body Z is a zonoid if and only if its
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polar body is the unit ball of an n-dimensional subspace of an L1 space; i.e.
if there exists a positive measure µ (the supporting measure of Z) on Sn−1

such that
‖x‖Z◦ =

1
2

∫
Sn−1

|〈x, y〉|µ(dy). (3.1)

The class of zonoids coincides with the class of projection bodies. Recall that
the projection body ΠK of a convex body K is the symmetric convex body
whose support function is defined by

hΠK(θ) = |Pθ(K)|, θ ∈ Sn−1, (3.2)

where Pθ(K) is the orthogonal projection of K onto θ⊥. From the integral
representation

|Pθ(K)| =
1
2

∫
Sn−1

|〈u, θ〉| dσK(u) (3.3)

which is easily verified in the case of a polytope and extends to any con-
vex body K by approximation, it follows that the projection body of K is
a zonoid whose supporting measure is σK . Moreover, if we denote by Cn the
class of symmetric convex bodies and by Z the class of zonoids, Aleksan-
drov’s uniqueness theorem shows that the Minkowski map Π : Cn → Z with
K �→ ΠK, is injective. Note also that Z is invariant under invertible linear
transformations (in fact, Π(TK) = (T−1)∗(ΠK) for every T ∈ SL(n)) and
closed in the Hausdorff metric. For more information on zonoids, see [S] and
[BouL].

We shall see that three natural positions of a zonoid have small diameter
in the sense of Section 2. The proof makes use of the isotropic description of
such positions which allows the use of the Brascamp-Lieb inequality.
1. Lewis position: A result of Lewis [L] (see also [B]) shows that every
zonotope Z has a linear image Z1 (the “Lewis position” of Z) with the fol-
lowing property: there exist unit vectors u1, . . . , um and positive real numbers
c1, . . . , cm such that

hZ1(x) =
m∑
j=1

cj |〈x, uj〉|

and

I =
m∑
j=1

cjuj ⊗ uj ,

where I denotes the identity operator in R
n. Using the Brascamp-Lieb in-

equality, Ball proved in [B] that, under these conditions,

|Z◦
1 | ≤ 2n

n!
and Bn2 ⊆ √

nZ◦
1 .

The reverse Santaló inequality for zonoids (see [R] and [GoMR]) implies that
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|Z1| ≥ 2n and Z1 ⊆ √
nBn2 . (3.4)

This shows that
diam(Z1) ≤ √

n|Z1|1/n. (A)

2. Lowner position: Assume that Bn2 is the ellipsoid of minimal volume
containing a zonoid Z2. Let Z1 be the Lewis position of Z2. Then,

|Bn2 |
|Z2| ≤ |√nBn2 |

|Z1| . (3.5)

Now, (3.5) and (3.4) show that

diam(Z2) ≤ 2 ≤ |Z1|1/n ≤ √
n|Z2|1/n. (B)

3. Minimal mean width position: Assume that Z3 = ΠK is a zonoid of
volume 1 which has minimal mean width. The results of [GM1] and [GMR]
show that the area measure σK is isotropic, i.e.∫

Sn−1
〈u, θ〉2dσK(u) =

A(K)
n

(3.6)

for every θ ∈ Sn−1, where A(K) is the surface area of K. Moreover, a result
of Petty [Pe] shows that K has minimal surface area. Now, an application of
the Cauchy-Schwarz inequality and (3.6) show that

hZ3(θ) =
1
2

∫
Sn−1

|〈θ, u〉|dσK(u) ≤ A(K)
2
√
n

for every θ ∈ Sn−1. We will use the following fact from [GP]:

Lemma 3.1. If K has minimal surface area, then

A(K) ≤ n|ΠK|1/n.
It follows that hZ3(θ) ≤ √

n/2 for every θ ∈ Sn−1. In other words,

diam(Z3) ≤ √
n|Z3|1/n. (C)

The preceding discussion shows that zonoids have positions with small
diameter. More precisely, we have the following statement.

Theorem 3.1. Let Z be a zonoid in Lewis or Lowner or minimal mean width
position. Then,

diam(Z) ≤ √
n|Z|1/n. �

It follows that the results of Section 2 apply to the class of zonoids: every
zonoid has ψ2-directions in the sense of Theorem 1.1.

Remark. We do not know if isotropic zonoids have small diameter. One can
check that their mean width is bounded by c

√
n (it is of the smallest possible

order).
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4 Isotropic ψ2-Bodies have Small Diameter

The purpose of this last section is to show that a convex body is a ψ2-body
only if its isotropic position has small diameter. More precisely, we prove the
following.

Theorem 4.1. Let K be an isotropic convex body in R
n. Assume that K is

a ψ2-body with constant b2. Then,

K ⊆ Cb22
√
n log nBn2 ,

where C > 0 is an absolute constant.

The proof will follow from two simple lemmas. The idea for the first one
comes from [GM2].

Lemma 4.1. Let K be a convex body in R
n with volume 1 and centre of

mass at the origin. Then, for every θ ∈ Sn−1,∫
K

|〈x, θ〉|pdx ≥ Γ (p+ 1)Γ (n)
2eΓ (p+ n+ 1)

max
{
hpK(θ), hpK(−θ)}.

Proof. Consider the function fθ(t) = |K∩(θ⊥+tθ)|. Brunn’s principle implies
that f1/(n−1)

θ is concave. It follows that

fθ(t) ≥
(

1 − t

hK(θ)

)n−1

fθ(0)

for all t ∈ [0, hK(θ)]. Therefore,∫
K

|〈x, θ〉|pdx =
∫ hK(θ)

0
tpfθ(t)dt+

∫ hK(−θ)

0
tpf−θ(t)dt

≥
∫ hK(θ)

0
tp
(

1 − t

hK(θ)

)n−1

fθ(0)dt

+
∫ hK(−θ)

0
tp
(

1 − t

hK(−θ)
)n−1

fθ(0)dt

= fθ(0)
(
hp+1
K (θ) + hp+1

K (−θ)
)∫ 1

0
sp(1 − s)n−1ds

=
Γ (p+ 1)Γ (n)
Γ (p+ n+ 1)

fθ(0)
(
hp+1
K (θ) + hp+1

K (−θ)
)

≥ Γ (p+ 1)Γ (n)
2Γ (p+ n+ 1)

fθ(0)
(
hK(θ) + hK(−θ))

· max
{
hpK(θ), hpK(−θ)}.

Since K has its centre of mass at the origin, we have ‖fθ‖∞ ≤ efθ(0) (see
[MM]), and hence
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1 = |K| =
∫ hK(θ)

−hK(−θ)
fθ(t)dt ≤ e

(
hK(θ) + hK(−θ))fθ(0).

This completes the proof. �
Lemma 4.2. Let K be a convex body in R

n with volume 1 and centre of
mass at the origin. For every θ ∈ Sn−1,

‖〈·, θ〉‖ψ2 ≥ cmax{hK(θ), hK(−θ)}√
n

,

where c > 0 is an absolute constant.

Proof. Let θ ∈ Sn−1 and define

Ip(θ) :=
(∫

K

|〈x, θ〉|pdx
)1/p

for every p ≥ 1. Then, (1.2) shows that

‖〈·, θ〉‖ψ2 ≥ cIn(θ)√
n

.

From Lemma 4.1 we easily see that In(θ) � max{hK(θ), hK(−θ)} and the
result follows. �
Proof of Theorem 4.1. Since K is a ψ2-body with constant b2, Lemma 4.2
shows that

chK(θ)√
n

≤ ‖〈·, θ〉‖ψ2 ≤ b2‖〈·, θ〉‖1

for every θ ∈ Sn−1. Since K is isotropic, we have

‖〈·, θ〉‖1 ≤ LK

for every θ ∈ Sn−1. Bourgain’s argument in [Bou] (see also [D1]) together
with the ψ2-assumption show that

LK ≤ c′b2 log n.

This implies that
K ⊆ Cb22

√
n log nBn2 . �

Theorem 4.1 shows that ψ2-bodies belong to a rather restricted class
(their polars have at most logarithmic volume ratio). It would be interesting
to decide if zonoids are ψ2-bodies or not.
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Summary. We prove that every n-dimensional normed space with a type p < 2,
cotype 2, and (asymptotically) extremal Euclidean distance has a quotient of a sub-
space, which is well isomorphic to �kp and with the dimension k almost proportional
to n. A structural result of a similar nature is also proved for a sequence of vectors
with extremal Rademacher average inside a space of type p. The proofs are based
on new results on restricted invertibility of operators from �nr into a normed space
X with either type r or cotype r.

1 Introduction

The initial motivation of this paper was the following problem from [J-S]:
Let 1 ≤ p ≤ 2 and let X be an n-dimensional subspace of Lp whose distance
from Euclidean space satisfies the inequality d(X, �n2 ) ≥ αn1/p−1/2. Does X
contain a subspace of proportional dimension, which is well isomorphic to
�kp? For p = 1, the answer is positive [J-S], while for 1 < p ≤ 2 the question
is still open. The paper [B-T] contains related results and solutions to other
problems from [J-S], but left this particular problem open as well. Although
the present paper leaves this problem open as well, we do show here that
X has an almost proportional quotient of a subspace which is almost well
isomorphic to �kp. The term “almost” above refers to factors of order a power
of log n. We actually get the same conclusion for a wider class of spaces. This
clearly is implied by Theorem 13.

Not surprisingly our approach involves restricted invertibility methods.
We have two kinds of such results. The first is for operators from �nq into
spaces with cotype q. This is the content of Corollary 6. Section 2 in which it
is contained is heavily based on a method developed by Gowers in [G1] and
[G2]. The second restricted invertibility result is for operators from either
�n2 or �np into spaces with type p. This is contained in Section 3. Section 4
contains the proof of the structural Theorem 13. Finally, Section 5 contains
a related result: Under the same conditions as in Theorem 13 one can get a

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 223–240, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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subspace, rather than quotient of a subspace, almost well isomorphic to �kp.
However, its dimension k is a certain power of n rather than being close to a
proportion of n.

Most of the undefined notions here can be found in [TJ]. We only recall
here the definition of the Lorentz spaces Lp,q.

Let (Ω,Σ, µ) be a measure space, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. The
Lorentz space Lp,q(µ) consists of all equivalent classes of µ-measurable func-
tions f such that

‖f‖p,q =
(∫ ∞

0
(t1/pf∗(t))q dt/t

)1/q

< ∞ if 1 ≤ q < ∞,

‖f‖p,∞ = sup
t
t1/pf∗(t) < ∞,

where f∗ is the decreasing rearrangement of |f |, i.e. f∗(t) = inf
(
a : µ{|f | >

a} ≤ t
)
, 0 < t < ∞.

If p = q then Lp,p(µ) is Lp(µ). In general ‖f‖p,q is a quasi-norm, which
for p > 1 is equivalent to a norm, the equivalence constant depending on p
and q only. So we consider Lp,q(µ) under this norm.

For a positive integer n, one defines the finite dimensional spaces �np,q to
be Lp,q(µ), where µ is the uniform measure on the interval I = {1, . . . , n},
µ({i}) = 1.

It can be easily checked for 1 ≤ p < ∞, 1 ≤ q ≤ ∞ that ‖x‖p ≤
(log n)1/p‖x‖p,∞ for all x ∈ �np,q, and that ‖∑n

i=1 ei‖p,q ∼ n1/p, where ei
are the coordinate vectors in �np,q.

Our estimates often involve “constants” that depend on various parame-
ters. So we write, for example, c = c(p,M) to denote a constant depending
on p and M only.

Acknowledgement. The first named author was supported in part by the ISF, and
the second named author holds the Canada Research Chair in Mathematics.

2 Restricted Invertibility: Spaces with Cotype

Let us start with a general theorem about finite symmetric block bases which
is of independent interest. This theorem (and its proof) is a variant of Gowers’
results on the subject and in a sense lies in-between [G1] and [G2].

Theorem 1. Let 1 ≤ q < ∞, and let B ≥ 1. Let X be a Banach space, let
n ≥ 1 and (xi)i≤n be a sequence of n vectors in X satisfying∥∥∥∑ aixi

∥∥∥ ≤ B‖a‖q and E

∥∥∥∑ εiaixi

∥∥∥ ≥ ‖a‖q
for all a = (ai) ∈ R

n. Then for any ε > 0 there exists a block basis (yi)i≤m
of permutation of (xi), which is (1 + ε)-symmetric and has cardinality
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m ≥ (cε/B)2q+2n/ log n,

where c > 0 is an absolute constant.

First recall the definition of a symmetric basis in its natural “localized”
form used in the proof. Let m ≥ 1 and consider the group

Ψ = {−1, 1}m × Sm

acting on R
m as follows: for a ∈ R

m and (η, σ) ∈ Ψ , we define aη,σ =∑m
i=1 ηieσ(i).

Definition 2. Let C ≥ 1. A set of vectors (yi)i≤m in X is said to be C-
symmetric at a ∈ R

m if for every (η, σ) ∈ Ψ we have∥∥∥∑
i

(aη,σ)iyi
∥∥∥
X

≤ C
∥∥∥∑

i

aiyi

∥∥∥
X
.

A set (yi)i≤m is C-symmetric if for every a ∈ R
m, (yi)i≤m is C-symmetric

at a.

Proof of Theorem 1. Fix an integer m of the form m = 2+(c′ε/B)2q+2n/ log n
where c′ > 0 is an absolute constant to be defined later. As in [G1], we
divide the interval of natural numbers [1, n] into m blocks of length h (where
h ∼ log n), and relabel the indices in [1, n] as follows: the pair (i, j) will be
the j-th element in the i-th block, i = 1, . . . ,m, j = 1, . . . , h. This identifies
[1, n] with the product [1,m] × [1, h]. Consider the group

Ω = {−1, 1}n × Sn.

Here we think of Sn as the group of permutations of the product [1,m]×[1, h].
We write πij = π((i, j)) for π ∈ Sn and θij = θ(i,j) for θ ∈ {−1, 1}n. Define
the random operator φθ,π : R

m → X by setting

φθ,π(ei) =
h∑
j=1

θijxπij , i = 1, . . . ,m.

We shall show that with high probability the vectors yi = φθ,π(ei) for i =
1, . . . ,m are (1 + ε)-symmetric.

The first ingredient in the proof is a lemma from [G2], which says that in
any normed space the symmetry of a sequence can be verified on a set of a
polynomial, not exponential, cardinality.

Lemma 3. [G2]. Let ε > 0, let (Rm, ‖·‖) be a normed space and set N = mD,
where D = ε−1 log(3ε−1). There exists a set N of cardinality N in R

m such
that if the standard basis of R

m is (1 + ε)-symmetric at each element from
N , then it is (1 + ε)(1 − 6ε)−1-symmetric.
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The next lemma is central. For a real valued random variable Z, by M(Z)
we denote its median, that is, the number satisfying P{Z ≤ M(Z)} ≥ 1/2
and P{Z ≥ M(Z)} ≥ 1/2.

Lemma 4. Let 1 < q < ∞ and B ≥ 1. Let (xj)j≤n be a sequence of vectors
satisfying

∥∥∑ ajxj‖ ≤ B
∥∥a‖q for all a ∈ R

n. Fix a ∈ R
m and 0 < β < 1/2.

Then with the notation above we have

PΩ

(
max
η,σ∈Ψ

∣∣‖φθ,π(aη,σ)‖ −M
(‖φθ,π(a)‖)∣∣ > β‖a‖qh1/q

)
≤ m−(c/β) log(c/β),

where M denotes the expectation if q = 1, or the median if q > 1, and
provided that

m ≤ (cβ/B)2q+2n/ log n,

where c > 0 is an absolute constant.

This deviation inequality was proved in [G1] (page 195, (iii)) and the form
of M follows from the proof. Moreover, the inequality is stated in [G1] for a
particular value of m although it is clear from the proof that it is valid for
all smaller values of m as well.

To successfully apply this lemma we require the estimate

M
(‖φθ,π(a)‖) ≥ (1/6)‖a‖qh1/q. (1)

For M being the expectation, an estimate follows readily from our lower
bound assumption in Theorem 1, even with the constant 1 replacing 1/6.
This settles the case q = 1. For q > 1, we will use the following lemma, a
version of which will also be needed in Section 5.

Lemma 5. Let (xi) be a finite sequence of vectors in a Banach space, and
(ai) be scalars. Then

PΩ

{∥∥∥∑ θiaixπ(i)

∥∥∥ ≥ (1/2)E
∥∥∥∑ θiaixπ(i)

∥∥∥} ≥ δ,

where δ > 0 is an absolute constant.

Proof. Define the random variable Z = ‖∑ θiaixπ(i)‖, and let ‖Z‖p =
(E|Z|p)1/p. By Kahane’s inequality for any 0 < p, r < ∞ we have ‖Z‖r ≤
A‖Z‖p, where A = A(p, r) (see [M-S] 9.2). Then

PΩ

{
Z ≥ 2−1/p‖Z‖p

} ≥ (2Ap)r/(p−r) (2)

This estimate follows from the standard argument (see e.g., [Le-Ta], Lemma
4.2) based on Hölder’s inequality. For t > 0 we have

EZp ≤ tp +
∫
Z>t

ZpdPΩ ≤ tp + ‖Z‖prPΩ{Z > t}1−p/r.

Setting t = 2−1/p‖Z‖p we get (2). Now the conclusion of the lemma follows
from (2) with p = 1, r = 1/2.
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We return to the proof of Theorem 1. First, to complete the proof of (1),
let Z = ‖φθ,π(a)‖. It is easy to check that our lower bound assumption implies
that EZ ≥ ‖a‖qh1/q. Let δ be as in Lemma 5 and let c > 0 be a constant
from Lemma 4. Fix 0 < β1 < 1/3 such that 2−(c/β1) log(c/β1) < δ. We shall
ensure later that m satisfies the upper bound assumption of Lemma 4. Using
Lemma 4 together with the above lower bound for EZ we get, since m ≥ 2,

PΩ

{|Z −M(Z)| > (1/3)EZ
}

≤ PΩ

{|Z −M(Z)| > βEZ
} ≤ 2−(c/β) log(c/β) < δ.

On the other hand, by Lemma 5 we have PΩ{Z ≥ (1/2)EZ} ≥ δ. An easy
calculation shows M(Z) ≥ (1/6)EZ ≥ (1/6)‖a‖qh1/q, which is (1).

Finally, we can now finish the proof of Theorem 1. Fix any 0 < ε < 1/6,
let D be as in the Lemma 3, given by D = ε−1 log(3ε−1) and let N be the set
in the conclusion of this lemma. Let c > 0 be the constant from Lemma 4.
Set β2 = cε/3. Then (c/β2) log(c/β2) > D. We may additionally assume that
β2 < ε/2. By a suitable choice of the constant c′ fixed at the beginning of
the proof we may ensure that m satisfies the upper bound assumption in
Lemma 4 for β = min(β1, β2). By Lemma 4 together with (1) we observe
that the vectors (yi)i≤m = (φθ,π(ei))i≤m are (1 + ε)-symmetric at any fixed
a ∈ N with probability at least 1 −m−D. It follows that there is a choice of
(yi)i≤m which is (1+ε)-symmetric at each a ∈ N . Then Lemma 3 yields that
(yi)i≤m is (1 + ε)(1− 6ε)−1-symmetric. This completes the proof of Theorem
1.

As an immediate corollary we get a restricted invertibility result for op-
erators �nq → X where X is a Banach space of cotype q.

Corollary 6. Let q ≥ 2 and K,M ≥ 1. Let X be a Banach space with cotype
q constant Cq(X) ≤ K. Let u : �nq → X be an operator with ‖u‖ ≤ M and
satisfying the non-degeneracy condition ‖uei‖ ≥ 1 for i = 1, . . . , n. Then
there exists a subspace E in R

n spanned by disjointly supported vectors such
that

‖ux‖ ≥ (1/2K)‖x‖ for x ∈ E,

and
dimE ≥ (c/MK)2q+2n/ log n,

where c > 0 is an absolute constant.

3 Restricted Invertibility: Spaces with Type

In this section we prove some restricted invertibility results for operators
with values in spaces of type p. The conclusion is slightly weaker than the
known results for the more special case of operators between �np spaces ([B-T],



228 G. Schechtman et al.

Theorem 5.7). In that case the conclusion holds with the �p- rather than �p,∞-
norm. As we will see later such a stronger conclusion does not hold in general
under our assumptions (see Remark 2 after Corollary 12).

Theorem 7. Let 1 < p ≤ 2 and K,M ≥ 1. Let X be a Banach space with
type p constant Tp(X) ≤ K. Let u : �n2 → X be an operator with ‖u‖ ≤ M
and satisfying the non-degeneracy condition �(u) ≥ √

n. Then there exists a
subset σ ⊂ {1, . . . , n} of cardinality |σ| ≥ cn such that

‖ux‖X ≥ (c/K)n1/2−1/p‖x‖p,∞ for x ∈ R
σ,

where c = c(p,M) > 0.

Remark. Let p = 2, let X be a space with dual of cotype 2, C2(X∗) ≤ K and
let u satisfy all the assumptions of Theorem 7. Then the resulting estimate
can be improved to the lower �2 estimate ‖ux‖X ≥ c‖x‖2 for all x ∈ R

σ,
where c = c(K,M) > 0.

The proof of the theorem is based on the following two lemmas. The
first one is a reformulation of the generalization of Elton’s theorem in [B-T],
Theorem 5.2.

Lemma 8. Let 1 < r < ∞ and M ≥ 1. Let (xi)n1 be a set of vectors in a
Banach space satisfying

(1) ‖∑η xi‖ ≤ M |η|1/r for any subset η ⊂ {1, . . . , n};
(2) E‖∑ εixi‖ ≥ n1/r.
Then there exists a subset σ ⊂ {1, . . . , n} of cardinality |σ| ≥ cn such that∥∥∥∑

σ

aixi

∥∥∥ ≥ cn−1/r′‖a‖1 for a ∈ R
σ,

where c = c(r,M) > 0.

The second lemma is a factorization result of Pisier [P] for (q, 1)-summing
operators. We do not need here the definition of such operators and their
norms πq,1, and the interested reader can find them e.g., in [TJ]. Let us only
recall that it is easy to see (e.g., [TJ], the proof of Theorem 21.4) that if Y is a
Banach space of cotype q ≥ 2 and K is a compact Hausdorff space then every
bounded operator T : C(K) → Y is (q, 1)-summing and πq,1(T ) ≤ Cq(Y )‖T‖.
We shall combine this fact with Pisier’s factorization theorem which states
[P] (see also [TJ] Theorem 21.2 and (21.6))

Lemma 9. Let 1 ≤ q < ∞, let Y be a Banach space and let T : C(K) → Y
be a (q, 1)-summing operator. There exists a probability measure λ on K such
that T factors as T = T̃ j,

T : C(K)
j→ Lq,1(λ) T̃→ Y,

where j is the natural inclusion map and ‖T̃‖ ≤ cπq,1(T ), where c is an
absolute constant.
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Corollary 10. Let q > 2 and K ≥ 1. Let Y be a Banach space with Cq(Y ) ≤
K. Let T : �n∞ → Y . Then there exists a subset σ ⊂ {1, . . . , n} of cardinality
|σ| ≥ n/2 such that

‖TRσ : �nq,1 → Y ‖ ≤ cKn−1/q‖T‖,
where Rσ denotes the coordinate projection in R

n onto R
σ and c is an absolute

constant.

Proof. Observe that πq,1(T ) ≤ K‖T‖. Consider Pisier’s factorization

T : �n∞
j→ Lq,1(λ) T̃→ Y,

where λ is a probability measure on {1, . . . , n} and ‖T̃‖ ≤ cπq,1(T ). Then the
set σ = {j : λ(j) ≤ 2/n} has cardinality at least n/2. Moreover

‖jRσ : �σq,1 → Lq,1(λ)‖ ≤ (2/n)1/q.

This immediately completes the proof.

In the dual setting, this gives

Corollary 11. Let 1 < p < 2 and let Tp(X) ≤ K. Consider vectors (yj)n1
in X such that ‖∑ aiyi‖ ≥ ‖a‖1 for all a ∈ R

n. Then there exists a subset
σ ⊂ {1, . . . , n} of cardinality |σ| ≥ n/2 such that∥∥∥∑

σ

aiyi

∥∥∥ ≥ (c/K)n1/p′‖a‖p,∞ for a ∈ R
σ,

where c > 0 is an absolute constant.

Proof. Let X0 be the span of (yj)n1 , and define T : X0 → �n1 by Tyj = ej for
j = 1, . . . , n. Then ‖T‖ ≤ 1, so ‖T ∗ : �n∞ → X∗

0‖ ≤ 1. Apply Corollary 10
with Y = X∗

0 and q = p′. We get a subset σ of cardinality at least n/2 such
that

‖T ∗Rσ : �np′,1 → X∗
0‖ ≤ cKn−1/p′

.

Thus
‖RσT : X0 → �np,∞‖ ≤ cKn−1/p′

.

Note that RσTyj = ej for j ∈ σ. From this the desired estimate follows.

Now, Theorem 7 is a combination of Lemma 8 (for r = 2) and Corollary
11. One needs only to recall that X has cotype q, where q < ∞ and Cq(X)
both depend only on p and Tp(X) (see [K-T] for quantitative estimates), and
that �(u) ≤ CE‖∑ εiuei‖ where C depends on q and Cq(X) only. If p = 2,
the remark following the theorem is proved by a similar argument, with use
of Pisier’s factorization in Lemma 9 replaced by Maurey’s strengthening of
Grothendieck’s theorem ([TJ], Theorem 10.4) and Pietsch’s factorization for
2-summing operators ([TJ], Theorem 9.2).

As a corollary we have a further invertibility result.
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Corollary 12. Let 1 < p ≤ 2, K,M ≥ 1 and α > 0. Let X be a Banach
space with type p constant Tp(X) ≤ K. Let u : �np → X be an operator with
‖u‖ ≤ M and satisfying the non-degeneracy condition �(u : �n2 → X) ≥ n1/p.
Then there exists a subset σ ⊂ {1, . . . , n} of cardinality |σ| ≥ cn such that

‖ux‖X ≥ (c/K)‖x‖p,∞ for x ∈ R
σ,

where c = c(p,M) > 0.

The proof is an easy application of Theorem 7 for the operator w =
n1/2−1/pu : �n2 → X.

Remarks. 1. The proof above shows that Theorem 7 remains valid with the
same estimates if the norm ‖u : �n2 → X‖ is replaced by M = ‖u : �n2,1 → X‖.
An analogous fact is true also for Corollary 12. If p = 1, both Theorem 7 and
Corollary 12 are true (and follow directly from Lemma 8) if the space X is
assumed to have cotype q, for some q < ∞.

2. The space �p,q (with 1 < p < 2 and 1 < q < ∞) has type p. This
known fact follows for example from the easy fact that �p,q has an upper
p-estimate for disjoint vectors, together with Theorems 1.e.16 and 1.f.10 in
[L-T]. It follows that one cannot improve the conclusions of Theorem 7 and
Corollary 12 by replacing ‖ · ‖p,∞ by ‖ · ‖p.

4 Spaces with Extremal Euclidean Distance

In this section we concentrate on the structure of finite-dimensional normed
spaces which, while satisfying geometric type-cotype conditions, have the
distance to a Euclidean space of maximal order. The maximality of the dis-
tance is expressed in terms of the lower estimate which for some 1 ≤ p ≤ 2
(depending on of the properties of X) has the form

dX = d(X, �n2 ) ≥ αn1/p−1/2 (3)

for some constant α > 0.
The main result of this section is

Theorem 13. Let 1 < p ≤ 2, K ≥ 1 and α > 0. Let X be an n-
dimensional normed space with cotype 2 constant C2(X) ≤ K and type p
constant Tp(X) ≤ K, and whose Euclidean distance satisfies (3). Then there
exists Y , a quotient of a subspace of X, of dimension k ≥ cn(logn)−b such
that d(Y, �kp) ≤ C(logn)1/p, where c = c(p,K, α) > 0, C = C(p,K, α) and
b = b(p) > 0.

We do not know whether the log-factor can be removed in either the
distance or the dimension estimates. We also do not know whether “quotient
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of a subspace” can be replaced by “subspace” without an essential change to
the estimates.

The proof of this theorem depends on two successive steps: the first is the
lower estimate result for spaces satisfying our assumptions, and the second
is a lower estimate for dual spaces. The latter step is based on Corollary 6,
while the former one is contained in the following lower �p,∞-estimate for
spaces with maximal Euclidean distance.

Theorem 14. Let 1 < p < 2, K ≥ 1 and α > 0. Let X be an n-dimensional
normed space with cotype 2 constant C2(X) ≤ K and type p constant Tp(X) ≤
K, and whose Euclidean distance satisfies d(X, �n2 ) ≥ αn1/p−1/2. Then there
exist k ≥ cn norm one vectors y1, . . . , yk in X such that∥∥∥∑

i

aiyi

∥∥∥
X

≥ c‖a‖p,∞ for a ∈ R
k,

where c = c(p,K, α) > 0.

Remark. As often happens in such cases, the proof has the unsatisfactory
feature that it yields constants tending to 0 as p → 2. Of course, by Kwapien’s
theorem (see e.g., [TJ] Theorem 13.15) an even stronger statement holds for
p = 2.

To prove Theorem 14 we require some preliminaries. First recall the def-
inition which has often been used in a similar context (see [TJ], §27). The
relative Euclidean factorization constant ek(X) (k = 1, 2, . . .) of a Banach
space X is the smallest C such that for every subspace E of X of dimen-
sion k there exists a projection P in X onto E with the �2 factorable norm
satisfying γ2(P ) ≤ C.

Note that the Euclidean distance satisfies

d(X, �n2 ) ≤ en(X).

We will work with a relaxation of the parameter ek(X) which will be
shown to be comparable to ek(X) (up to a logarithm of the dimension).

Definition 15. For k = 1, 2, . . ., we denote by e′
k(X) the smallest C such

that for every subspace E of X of dimension k there exists a projection P in
X such that P (X) ⊂ E, rankP ≥ k/2, and γ2(P ) ≤ C.

Lemma 16. Let X be a Banach space and n be a natural number. Then

e′
n(X) ≤ en(X) ≤

∞∑
k=0

e′
n/2k(X).

Proof. Assume for simplicity that n is a power of 2; the general case easily
follows. It is well known in the theory of 2-factorable operators (see e.g., [TJ],
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Theorem 27.1) that the right hand side inequality will follow once we prove
that for every v : �n2 → X such that π2(v∗) = 1 we have

π2(v) ≤
∞∑
k=0

e′
n/2k(X).

To this end fix v as above and without loss of generality assume that v is one-
to-one. Let P0 be a projection on X such that P0(X) ⊂ v(�n2 ), rankP0 ≥ n/2
and γ2(P0) ≤ e′

n(X). Let H0 = v−1(P0X). By passing to a smaller subspace
if necessary we may assume that dimH0 = n/2.

By induction construct k0 = log2 n mutually orthogonal subspaces Hk ⊂
�n2 with dimHk = n/2k+1 and projections Pk from X onto v(Hk) such that
γ2(Pk) ≤ e′

n/2k(X) for k = 0, . . . , k0 − 1.
For k = 0, . . . , k0 − 1, denote by Qk : �n2 → Hk the orthogonal projection

onto Hk. Then

π2(vQk) = π2(PkvQk) ≤ π2(Pkv) ≤ γ2(Pk)π2(v∗) ≤ e′
n/2k(X).

Since �n2 = H0 ⊕ . . .⊕Hk0−1, then

π2(v) = π2

( k0−1∑
k=0

vQk

)
≤
k0−1∑
k=0

e′
n/2k(X),

as required.

Let us recall a standard set-up for finite-dimensional normed spaces. The
Euclidean unit ball on R

n is denoted by Bn2 (and it corresponds to the Eu-
clidean norm ‖ · ‖2). Let ‖ · ‖X be a norm on R

n, and X be the corresponding
normed space. Let Q be an orthogonal projection in R

n. Then by QX we de-
note the quotient of X with the canonical norm ‖y‖QX = inf{‖x‖X : Qx =
y}. This way we view QX as the vector space Q(Rn) with the norm ‖ · ‖QX .
In particular, QX carries the Euclidean structure inherited from R

n with the
unit ball Q(Bn2 ) = Bn2 ∩Q(Rn).

Lemma 17. Let X be a normed space, dimX = n, and assume that π2(id :
X → �n2 ) ≤ A

√
n. Let Q be an orthogonal projection in R

n. Let Y ⊂ Q(Rn) be
an m-dimensional subspace on which we consider two norms: the Euclidean
norm ‖ · ‖2 and the norm ‖ · ‖QX . Then

�
(
id : (Y, ‖ · ‖2) → (Y, ‖ · ‖QX)

) ≥ (1/AT2(X∗)2
)
m/

√
n.

Proof. To shorten the notation, denote the operator id : (Y, ‖ · ‖2) → (Y, ‖ ·
‖QX) by u. We first estimate π2(u−1). Recall that for any operator w : Z →
Z1, the norm π2(w) is equal to the supremum of (

∑ ‖wvej‖2)1/2 where the
supremum runs over all operators v : �k2 → Z with ‖v‖ ≤ 1 and all k (see
[TJ] Proposition 9.7).
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Thus fix v : �k2 → (Y, ‖ · ‖QX) with ‖v‖ ≤ 1. Consider v as an operator
into QX. Using Maurey’s extension theorem for the dual operator (see [TJ]
Theorem 13.13), there exists a lifting v′ : �k2 → X, Qv′ = v, with ‖v′‖ ≤
T2(X∗) (note that (QX)∗ is a subspace of X∗). Therefore

( k∑
i=1

‖u−1vei‖2
2

)1/2

=
( k∑
i=1

‖Qv′ei‖2
2

)1/2

≤
( k∑
i=1

‖v′ei‖2
2

)1/2

≤ T2(X∗)π2(id : X → �n2 ) ≤ AT2(X∗)
√
n.

Thus π2(u−1) ≤ AT2(X∗)
√
n.

It is now sufficient to use two well known and easy facts (see [TJ], Propo-
sition 9.10 and Theorem 12.2 (ii)) that m ≤ π2(u)π2(u−1) and π2(u) ≤
C2(Y )�(u), to get �(u) ≥ m/AC2(Y )T2(X∗)

√
n. Since C2(Y ) ≤ T2(Y ∗) ≤

T2(X∗), this completes the proof.

Proof of Theorem 14. It is well known and easy to see from Maurey’s exten-
sion theorem (see [TJ], Prop. 27.4) that for every k = 1, 2, . . . we have

e′
k(X) ≤ cC2(X)Tp(X)k1/p−1/2 ≤ cK2k1/p−1/2, (4)

where c is an absolute constant.
Assume again that n is a power of 2, let Ap = 1 − 21/p−1/2 and let k0

be the smallest k such that e′
n/2k(X) ≥ (Apα/2)(n/2k)1/p−1/2. If no such k

exists let k0 = ∞. By the maximality of distance, Lemma 16 and (4) we get

αn1/p−1/2 ≤ en(X) ≤
∞∑
k=0

e′
n/2k(X)

≤ n1/p−1/2
(
Apα

2

∞∑
k=0

2−k(1/p−1/2) + cK2
∞∑

k=k0

2−k(1/p−1/2)
)

≤ n1/p−1/2((α/2) + cK22−k0(1/p−1/2)A−1
p

)
.

This shows that k0 is finite and k0 ≤ C, where C = C(p,K, α).
Set m = n/2k0 and d = (Apα/2)m1/p−1/2. Then m ≥ βn and d ≥ βdX ,

where β = β(p,K, α) > 0. Moreover,

e′
m(X) ≥ d. (5)

Let | · |2 be a Euclidean norm on X given by a combination of a distance
ellipsoid and the maximal volume ellipsoid (see [TJ], Prop. 17.2). Denote the
n-dimensional Hilbert space (X, | · |2) by H and write ‖ · ‖X for the norm in
X. Then we have(√

2dX
)−1|x|2 ≤ ‖x‖X ≤

√
2|x|2, for x ∈ X,

π2(id : X → H) ≤
√

2n.

Using (5), we will prove
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Lemma 18. Under the notation above there exist vectors x1, . . . , xβ′m in X
with ‖xi‖X ≤ d−1 and an orthogonal projection R on H with rankR ≥ m/2
and such that

β′‖a‖2 ≤
∣∣∣∑ aiRxi

∣∣∣
2

≤ B‖a‖2 for a ∈ R
β′m,

where β′ = β′(p,K, α) > 0 and B = B(p,K, α).

Proof. Estimate (5) implies that there exists a subspace E in X with dimE =
m such that for every projection P in X with P (X) ⊂ E, rankP ≥ m/2 we
have ‖P : X → H‖ ≥ d/‖id : H → X‖ ≥ d/

√
2.

Our vectors xi will be chosen among a sequence of vectors constructed by
induction as follows. Assume that 1 ≤ k < m/2 and that vectors x1, . . . , xk−1
have already been constructed. Let P be the orthogonal projection in H
onto [x1, . . . , xk−1]⊥ ∩ E. Then P satisfies the assumptions above, so there
exists an xk ∈ X such that ‖xk‖X = 1/d and |Pxk|2 ≥ 1/

√
2. Let also

fk = Pxk/|Pxk|2.
This procedure gives us vectors x1, . . . , xm/2 with ‖xi‖X = 1/d and or-

thonormal vectors f1, . . . , fm/2 such that

〈xi, fi〉 ≥ 1/
√

2 for 1 ≤ i ≤ m/2.

Let β = β(p,K, α) be the constant appearing before (5), and we may
clearly assume that β ≤ 1.

Note that
|xi|2 ≤

√
2dX/d ≤

√
2/β for i ≤ m/2. (6)

A known and easy argument shows that for every 0 < δ < 1/2 there exists
an orthogonal projection R in [xi]i≤m/2 with corankR ≤ δm and such that

∣∣∣∣
m/2∑

1

aiRxi

∣∣∣∣
2

≤ 1/(β2δ)‖a‖2 for a ∈ R
m/2. (7)

Indeed, denote by H1 the space ([xi], | · |2) and consider the operator T :
�
m/2
2 → H1 defined by Tei = xi for i = 1, . . . ,m/2. Let λ1 ≥ λ2 ≥ . . . ≥ 0 be

the s-numbers of T so that Tfi = λif
′
i for some orthonormal bases {fi} and

{f ′
i} in �

m/2
2 and H1, respectively. We have, by (6),

m/2∑
i=1

λ2
i = ‖T‖2

HS =
m/2∑
i=1

|xi|22 ≤ m/β2.

This implies that for i0 = δm we have λi0 ≤ 1/(β2δ), and then the projection
R onto [fi0+1, . . . , fm/2] satisfies (7).

Set δ = β2/32 and let R satisfy (7). Extend R to all of H by setting
Rx = x for x ∈ [xi]⊥. Then for R′ = id −R we have rankR′ ≤ δm. Therefore



Maximal �np -Structures in Spaces with Extremal Parameters 235

m/2∑
i=1

|Rxi|2 ≥
m/2∑
i=1

〈Rxi, fi〉 =
m/2∑
i=1

〈xi, fi〉 −
m/2∑
i=1

〈R′xi, fi〉

≥ 2−3/2m−
m/2∑
i=1

〈xi, R′fi〉 ≥ 2−3/2m− (√2/β
)m/2∑
i=1

|R′fi|2

≥ 2−3/2m− (√2/β
)√

m/2 ‖R′‖HS

≥ 2−3/2m− (√δ/β)m = 2−5/2m.

From this inequality and (6) it easily follows that the set σ = {i : |Rxi|2 ≥
1/4

√
2} has cardinality |σ| ≥ βm/16. Applying Theorem 1.2 from [B-T] for

the operator T : �σ2 → H defined by Tei = Rxi for i ∈ σ, we get, by (7) and
the definition of σ that there exists a subset σ′ ⊂ σ such that∣∣∣∑

i∈σ′
aiRxi

∣∣∣
2

≥ β′‖a‖2 for a ∈ R
σ′
.

Moreover, |σ′| ≥ β′m, where β′ = β′(p,K, α) > 0. This together with (7)
completes the proof by relabeling the vectors from σ′.

Returning to the proof of Theorem 14, identify X with R
n in such a way

that | · |2 coincides with the usual �n2 -norm ‖ · ‖2. Let x1, . . . , xβ′n be vectors
constructed in Lemma 18. If (RX, ‖ · ‖RX) denotes the quotient of X given
by R then first note that∥∥∥∑ aiRxi

∥∥∥
RX

≤
√

2
∣∣∣∑ aiRxi

∣∣∣
2

≤
√

2B‖a‖2 for a ∈ R
β′n.

Consider the subspace Y = [Rxi]
β′m
i=1 of RX, (i.e., with the norm ‖ · ‖RX

inherited from RX), and consider also the norm ‖·‖2 on Y inherited from �n2 .
To apply Lemma 17 note that sinceX has control of the cotype 2 constant and
the K-convexity constant (having non-trivial type) then T2(X∗) is bounded
above by a function of K. Thus by the lemma, the �-norm of the identity
operator satisfies �(id : (Y, ‖ · ‖2) → Y ) ≥ c

√
n, where c = c(p,K, α) > 0.

On the other hand, since the set of vectors (Rxi) admits a lower �2-estimate,
then by the ideal property of the �-norm �(id) can be estimated using that
set, namely,

�
(
id : (Y, ‖ · ‖2) → Y

) ≤ (1/β′)E
∥∥∥∥
β′m∑
i=1

giRxi

∥∥∥∥
RX

.

Thus

E

∥∥∥∥
β′n∑
i=1

giRxi

∥∥∥∥
RX

≥ c1
√
n,
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where c1 = c1(p,K, α) > 0. Then by Theorem 7 there exists a subset η of
{1, . . . , β′m} of cardinality |η| > c2n and such that∥∥∥∑

η

aiRxi

∥∥∥
RX

≥ c2n
1/2−1/p‖a‖p,∞, for a ∈ R

η,

where c2 = c2(p,K, α) > 0. Recall that ‖xi‖X = d−1. Then for i ∈ η let
yi = dxi. Clearly, yi’s are unit vectors in X and for a ∈ R

η we have∥∥∥∑ aiyi

∥∥∥
X

≥ d
∥∥∥∑ aiRxi

∥∥∥
RX

≥ c2(dn1/2−1/p)‖a‖p,∞ ≥ c3‖a‖p,∞,

where c3 = c3(p,K, α) > 0. This completes the proof of Theorem 14.

Now we are ready to prove Theorem 13, as a combination of Theorem 14
and Corollary 6.

Proof of Theorem 13. We can clearly assume that 1 < p < 2, because for
p = 2 the whole space X is K2-isomorphic to �n2 by Kwapien’s Theorem (see
[TJ] Theorem 13.15).

We apply Theorem 14, and let (yi)i≤k be the vectors from its conclusion,
k ≥ cn with c = c(p,K, α). Consider the space X1 = [yi]i≤k as a subspace of
X. Since the vectors yi are necessarily linearly independent, we may define
the operator v : X1 → �kp by

vyi = ei, for i ≤ k.

Then by the conclusion of Theorem 14

‖v‖ ≤ ‖v : X1 → �kp,∞‖‖id : �kp,∞ → �p‖ ≤ C1(logn)1/p,

where C1 = C1(p,K, α). Consider the adjoint operator v∗ : �kq → X∗
1 , where

1/q + 1/p = 1. Then
‖v∗‖ ≤ C1(logn)1/p (8)

and for all i ≤ k,
‖v∗ei‖ ≥ 〈v∗ei, yi〉 = 〈ei, ei〉 = 1.

Applying Corollary 6 we get norm one vectors (hi)i≤m in �kq with disjoint
supports satisfying for all a ∈ R

k,∥∥∥∥v∗
( m∑
i=1

aihi

)∥∥∥∥
X∗

1

≥ 1
2K

∥∥∥∥
m∑
i=1

aihi

∥∥∥∥
q

=
1

2K
‖a‖q.

Moreover, m ≥ c1(log n)−2(q+1)/pn/ log n, where c1 = c1(p,K, α) > 0.
Also from (8), ∥∥∥∥v∗

( m∑
i=1

aihi

)∥∥∥∥
X∗

1

≤ C1(logn)1/p‖a‖q.
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Thus the sequence of vectors zi = v∗hi, i ≤ m, spans in X∗
1 a subspace Z,

which is C(log n)1/p-isomorphic to �mq , with C = C(p,K, α). Since Z is a
subspace of a quotient X∗

1 of X∗, the space Z∗ is a quotient of a subspace of
X and is C(log n)1/p-isomorphic to �mp . This completes the proof of Theorem
13.

5 �n
p Subspaces in Spaces with Extremal Type p

We show another interesting application of methods discussed here to the
structure of subspaces of spaces which attain their best type. More precisely,
if a Banach space of type p contains a sequence of vectors with extremal
Rademacher average, then it contains a relatively large subspace close to �kp.

Proposition 19. Let 1 < p ≤ 2, K ≥ 1 and α > 0. Let X be a Banach space
with type p constant Tp(X) ≤ K. Assume that there exist norm one vectors
x1, . . . , xn in X such that E‖∑n

1 εixi‖ ≥ αn1/p. Then there is a block basis
of permutation of (xi)i≤n of cardinality m which is C(logn)1/p-equivalent to
the unit vector basis in �mp , and m ≥ c(logn)−1n2/p−1, where C = C(p,K, α)
and c = c(p,K, α) > 0.

The proof combines the main result of [G2] and Corollary 12.

Proof. Fix an ε > 0. By [G2], our assumption on the Rademacher average
of (xi) implies that there exists a block basis (yi)m1 of permutation of (xi)n1 ,
with blocks of random ±1 coefficients and equal lengths, which is 2-symmetric
with probability larger than 1 − ε. Moreover m ≥ c(logn)−1n2/p−1, where
c = c(p, α, ε) and we may assume that m is an even number. The precise
definition of the random vectors (yi) is given in the proof of Theorem 1, the
underlying probability space being denoted by PΩ .

Then with probability larger than 1− ε the following holds for all subsets
σ of {1, . . . ,m} of cardinality |σ| = m/2:

2
∥∥∥∑
i∈σ

yi

∥∥∥ ≥
∥∥∥∑
i∈σ

yi

∥∥∥+
1
2

∥∥∥∑
i∈σc

yi

∥∥∥ ≥ 1
2

∥∥∥∥
m∑
i=1

yi

∥∥∥∥.
On the other hand, by Lemma 5 we have, with probability larger than δ > 0,∥∥∥∥

m∑
i=1

yi

∥∥∥∥ =
∥∥∥∥

n∑
i=1

εixπ(i)

∥∥∥∥ ≥ 1
2

EΩ

∥∥∥∥
n∑
i=1

εixπ(i)

∥∥∥∥
=

1
2

E

∥∥∥∥
n∑
i=1

εixi

∥∥∥∥ ≥ 1
2
αn1/p

(where π denotes a random permutation of {1, . . . , n}, and E is the expecta-
tion over random signs εi). Therefore with probability larger than δ − ε
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i∈σ

yi

∥∥∥ ≥ 1
8
αn1/p holds for all subsets σ, |σ| = m/2. (9)

Let n = mh and we can assume that h is integer. By the type assumption
and the definition of yi, for every i ≤ m we have EΩ‖yi‖ ≤ Kh1/p. Then
EΩ

(∑m
i=1 ‖yi‖

) ≤ Kmh1/p. So, with probability larger than 1 − ε we have(∑m
i=1 ‖yi‖

) ≤ (1/ε)Kmh1/p. This clearly implies that

∃ a subset σ, |σ| = m/2, such that ‖yi‖ ≤ 2
ε
Kh1/p for i ∈ σ. (10)

With probability at least δ−2ε, events (9) and (10) hold simultaneously. For
ε = δ/3 this probability is positive, so we can consider a realization of (yi)
for which both events occur. Let zi = h−1/pyi, i ∈ σ. Then ‖zi‖ ≤ (6/δ)K,
so by the type p and symmetry∥∥∥∑

i∈σ
aizi

∥∥∥ ≤ (12/δ)K2‖a‖p for all (ai)i∈σ.

Next, by (9) and symmetry
∥∥∥∑
i∈σ

εizi

∥∥∥ ≥ 1
2
h−1/p

∥∥∥∑
i∈σ

yi

∥∥∥ ≥ 1
16
αm1/p.

Corollary 12 yields then that there exists a subset σ1 ⊂ σ with cardinality
|σ1| ≥ cm and such that∥∥∥∑

i∈σ1

aizi

∥∥∥ ≥ c‖a‖p,∞ for all (ai)i∈σ,

where c = c(p,K, α) > 0. This completes the proof.

Remark. It is not clear whether the exponent 2/p − 1 in Proposition 19 is
optimal. However, for p = 2 the optimal exponent must be 0, because the
identical vectors xi = 1 in X = R

1 satisfy the assumptions of Proposition 19.
As a corollary we get a variant of Theorem 13 where the conclusion is

improved by getting a subspace rather than quotient of a subspace, at the
price of a worse estimate on the dimension.

Proposition 20. Under the assumptions of Theorem 13, there exists a sub-
space Y of X of dimension k ≥ c(logn)−1n2/p−1, with d(Y, �kp) ≤ C(logn)1/p,
where C = C(p,K, α) and c = c(p,K, α) > 0.

Proof. By (3) and Kwapien’s theorem we get T2(X) ≥ c1K
−1αn1/p−1/2,

where c1 > 0 is an absolute constant. By Tomczak-Jaegermann’s result (cf.
[TJ], Theorems 25.6 and 25.1), the type 2 constant can be essentially com-
puted on n vectors, i.e. there exist vectors (xi)i≤n in X such that
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E

∥∥∥∥
n∑
i=1

εixi

∥∥∥∥ ≥ c2K
−1αn1/p−1/2

( n∑
i=1

‖xi‖2
)1/2

(11)

for some absolute c2 > 0.
Now we employ a known argument to show that the vectors xi can be

essentially chosen of norm one. We can assume that
∑n
i=1 ‖xi‖2 = n, so

that the right side in (11) is c2K−1αn1/p. Fix a positive number M and
let σ = {i ∈ [1, n] : ‖xi‖ ≤ M}. Then |σc| ≤ (

∑n
i=1 ‖xi‖2)/M2 = M−2n.

Therefore, using the type p of X we see that

E

∥∥∥∑
i∈σc

εixi

∥∥∥ ≤ K
(∑
i∈σc

‖xi‖p
)1/p

≤ K|σc|1/p−1/2
(∑
i∈σc

‖xi‖2
)1/2

≤ KM1−2/pn1/p.

Define the vectors yi = xi/‖xi‖, i ∈ σ. By the standard comparison principle
it follows that

E

∥∥∥∥∑
i∈σ

εiyi

∥∥∥ ≥ M−1
E

∥∥∥∑
i∈σ

εixi

∥∥∥ ≥ M−1
(

E

∥∥∥∥
n∑
i=1

εixi

∥∥∥∥− E

∥∥∥∑
i∈σc

εixi

∥∥∥)

≥ M−1(c2K−1αn1/p −KM1−2/pn1/p). (12)

Choosing M so that KM1−2/p = (c2/2)K−1α, we make the right hand side
in (12) bounded below by ((c2α/2)K2+p)2−p. This clearly implies that there
exist norm one vectors (zi)i≤n in X for which

E

∥∥∥∥
n∑
i=1

εizi

∥∥∥∥ ≥ c(K,α)n1/p.

An application of Proposition 19 for the vectors (zi) finishes the proof.
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Summary. Let K be a convex body in Rn and let f : ∂K → R+ be a continuous,
positive function with

∫
∂K

f(x)dµ∂K(x) = 1 where µ∂K is the surface measure on
∂K. Let Pf be the probability measure on ∂K given by dPf (x) = f(x)dµ∂K(x). Let
κ be the (generalized) Gauß-Kronecker curvature and E(f,N) the expected volume
of the convex hull of N points chosen randomly on ∂K with respect to Pf . Then,
under some regularity conditions on the boundary of K

lim
N→∞

voln(K) − E(f,N)( 1
N

) 2
n−1

= cn

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
dµ∂K(x),

where cn is a constant depending on the dimension n only.
The minimum at the right-hand side is attained for the normalized affine surface

area measure with density

fas(x) =
κ(x)

1
n+1∫

∂K
κ(x)

1
n+1 dµ∂K(x)

.
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1 Introduction

1.1 Notation and Background. The Main Theorem

How well can a convex body be approximated by a polytope?

This is a central question in the theory of convex bodies, not only because
it is a natural question and interesting in itself but also because it is rele-
vant in many applications, for instance in computervision ([SaT1], [SaT2]),
tomography [Ga], geometric algorithms [E].
We recall that a convex body K in Rn is a compact, convex subset of Rn

with non-empty interior and a polytope P in Rn is the convex hull of finitely
many points in Rn.

As formulated above, the question is vague and we need to make it more
precise.

Firstly, we need to clarify what we mean by “approximated”. There are
many metrics which can and have been considered. For a detailed account
concerning these metrics we refer to the articles by Gruber [Gr1],[Gr3]. We
will concentrate here on the symmetric difference metric ds which measures
the distance between two convex bodies C and K through the volume of the
difference set

ds(C,K) = voln(C�K) = voln((C \K) ∪ (K \ C)).

Secondly, various assumptions can be made and have been made on the ap-
proximating polytopes P . For instance, one considers only polytopes con-
tained in K or only polytopes containing K, polytopes with a fixed number
of verices, polytopes with a fixed number of facets, etc. Again we refer to the
articles [Gr1],[Gr3] for details.
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We will concentrate here on the question of approximating a convex body
K in Rn by inscribed polytopes PN with a fixed number of vertices N in the
ds metric. As we deal with inscribed polytopes the ds metric reduces to the
volume difference

voln(K)− voln(PN )

and we ask how the (optimal) dependence is in this metric on the various
paramenters involved like the dimension n, the number of vertices N and so
on.

As a first result in this direction we want to mention a result by Bron-
shteyn and Ivanov [BrI].
There is a numerical constant c > 0 such that for every convex body K in
Rn which is contained in the Euclidean unit ball and for every N ∈ N there
exists a polytope PN ⊆ K with N vertices such that

voln(K)− voln(PN ) ≤ c
n voln(K)

N
2

n−1
.

The dependence on N and n in this result is optimal. This can be seen
from the next two results. The first is due to Macbeath and says that the
Euclidean unit ball Bn2 is worst approximated in the ds metric by polytopes
or more precisely [Ma]:
For every convex body K in Rn with voln(K) = voln(Bn2 ) we have

inf {ds(K,PN ) : PN ⊆ K and PN has at most N vertices} ≤

inf {ds(Bn2 , PN ) : PN ⊆ Bn2 and PN has at most N vertices}.
Notice that inf {ds(K,PN ) : PN ⊆ K and PN has at most N vertices} is

the ds-distance of the best approximating inscribed polytope with N vertices
to K. By a compactness argument such a best approximating polytope exists
always.

Hence to get an estimate from below for the Bronshteyn Ivanov result,
it is enough to check the Euclidean unit ball which was done by Gordon,
Reisner and Schütt [GRS1], [GRS2].
There are two positive constants a and b such that for all n ≥ 2, every
N ≥ (bn)

2
n+1 , every polytope PN ⊆ Bn2 with at most N vertices one has

voln(Bn2 )− voln(PN ) ≥ a
n voln(Bn2 )

N
2

n−1
.

Thus the optimal dependence on the dimension is n and on N it is N
2

n−1 .
The next result is about best approximation for large N .

Let K be a convex body in Rn with C2-boundary ∂K and everywhere
strictly positive curvature κ. Then
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lim
N→∞

inf{ds(K,PN )|PN ⊆ K and PN has at most N vertices}( 1
N

) 2
n−1

= 1
2deln−1

(∫
∂K

κ(x)
1

n−1 dµ∂K(x)
) n+1

n−1

.

This theorem was proved by McClure and Vitale [McV] in dimension 2 and
by Gruber [Gr2] for general n. On the right hand side of the above equation
we find the expression

∫
∂K

κ(x)
1

n−1 dµ∂K(x) which is an affine invariant, the
so called affine surface area ofK which “measures” the boundary behaviour of
K. It is natural that such a term should appear in questions of approximation
of convex bodies by polytopes. Intuitively we expect that more vertices of
the approximating polytope should be put where the boundary of K is very
curved and fewer points should be put where the boundary of K is flat to
get a good approximation in the ds-metric. In Section 1.3 we will discuss the
affine surface in more detail.

deln−1, which also appears on the right hand side of the above formula,
is a constant that depends on n only. The value of this constant is known
for for n = 2, 3. Putting for K the Euclidean unit ball in the last mentioned
theorem, it follows from the result above by Gordon, Reisner and Schütt
[GRS1], [GRS2] that deln−1 is of the order n. deln−1 was determined more
precisely by Mankiewicz and Schütt [MaS1], [MaS2]. We refer to Section 1.4.
for the exact statements.

Now we want to come to approximation of convex bodies by random
polytopes.

A random polytope is the convex hull of finitely many points that are
chosen from K with respect to a probability measure P on K. The expected
volume of a random polytope of N points is

E(P, N) =
∫
K

· · ·
∫
K

voln([x1, . . . , xN ])dP(x1) . . .dP(xN )

where [x1, . . . , xN ] is the convex hull of the points x1, . . . , xN . Thus the
expression voln(K) − E(P, N) measures how close a random polytope and
the convex body are in the symmetric difference metric. Rényi and Sulanke
[ReS1], [ReS2] have investigated this expression for large numbers N of cho-
sen points. They restricted themselves to dimension 2 and the case that the
probability measure is the normalized Lebesgue measure on K.

Their results were extended to higher dimensions in case that the prob-
ability measure is the normalized Lebesgue measure. Wieacker [Wie] settled
the case of the Euclidean ball in dimenision n. Bárány proved the result for
convex bodies with C3-boundary and everywhere positive curvature [Ba1].
This result was generalized to arbitrary convex bodies in [Sch1] (see also Sec-
tion 1.4):
Let K be a convex body in Rn. Then
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lim
N→∞

voln(K)− E(Pm, N)(
voln(K)
N

) 2
n+1

= c1(n)
∫
∂K

κ(x)
1

n−1 dµ∂K(x),

where c1(n) is a constant that depends on n.
We can use this result to obtain an approximation of a convex body by a

polytope with at most N vertices. Notice that this does not give the optimal
dependence on N . One of the reasons is that not all the points chosen at
random from K appear as vertices of the approximating random polytope.
We will get back to this point in Section 1.4.

One avoids this problem that not all points chosen appear as vertices
of the random polytope by choosing the points at random directly on the
boundary of the convex body K.

This is what we do in this paper. We consider convex bodies in dimension
n and probability measures that are concentrated on the boundary of the
convex body. It is with respect to such probability measures that we choose
the points at random on the boundary of K and all those points will then be
vertices of the random polytope. This had been done before only in the case
of the Euclidean ball by Müller [Mü] who proved the asymptotic formula
for the Euclidean ball with the normalized surface measure as probability
measure.

Here we treat much more general measures Pf defined on the boundary of
K where we only assume that the measure has a continuous density f with
respect to the surface measure µ∂K on ∂K. Under some additional technical
assumptions we prove an asymptotic formula. This is the content of Theorem
1.1.

In the remainder of Section 1.1 we will introduce further notation used
throughout the paper. We conclude Section 1.1 by stating the Theorem 1.1.
The whole paper is devoted to prove this main theorem. In doing that, we
develop tools that should be helpful in further investigations.

In Section 1.2 we compute which is the optimal f to give the least value
in the volume difference

voln(K)− E(Pf , N).

It will turn out that the affine surface area density gives the optimal mea-
sure: Choosing points according to this measure gives random polytopes of
greatest possible volume. Again, this is intuitively clear: An optimal measure
should put more weight on points with higher curvature. Moreover, and this
is a crucial observation, if the optimal measure is unique then it must be
affine invariant. There are not too many such measures and the affine sur-
face measure is the first that comes to ones mind. This measure satisfies two
necessary properties: It is affine invariant and it puts more weight on points
with greater curvature.

In Section 1.5 we compare random approximation with best approxima-
tion and observe a remarkable fact. Namely, it turns out that -up to a nu-
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merical constant- random approximation with the points chosen Pf -randomly
from the boundary of K with the optimal f is as good as best approximation.

In Section 1.3 we propose an extension of the p-affine surface area which
was introduced by Lutwak [Lu] and Hug [Hu]. We also give a geometric
interpretation of the p-affine surface area in terms of random polytopes.

It was a crucial step in the proof of Theorem 1.1 to relate the random
polytope to a geometric object. The appropriate geometric object turned out
to be the surface body which we introduce in Chapter 2.

In Chapter 3 we review J. Müller’s proof for the case of the Euclidean
ball. We use his result in our proof.

Chapter 4 is devoted to prove probabilistic inequalities needed for the
proof of Theorem 1.1 and finally Chapter 5 gives the proof of Theorem 1.1.

Now we introduce further notations used throughout the paper.
Bn2 (x, r) is the Euclidean ball in Rn centered at x with radius r. We denote

Bn2 = Bn2 (0, 1). Sn−1 is the boundary ∂Bn2 of the Euclidean unit ball. The
norm ‖ · ‖ is the Euclidean norm.

The distance d(A,B) of two sets in Rn is

d(A,B) = inf{‖x− y‖|x ∈ A, y ∈ B}.

For a convex body K the metric projection p : Rn → K maps x onto the
unique point p(x) ∈ K with

‖x− p(x)‖ = inf
y∈K

‖x− y‖.

The uniqueness of the point p(x) follows from the convexity of K. If x ∈ K
then p(x) = x.

For x, ξ in Rn, ξ �= 0, H(x, ξ) denotes the hyperplane through x and
orthogonal to ξ. The two closed halfspaces determined by this hyperplane
are denoted by H−(x, ξ) and H+(x, ξ). H−(x, ξ) is usually the halfspace
that contains x+ ξ. Sometimes we write H, H+ and H−, if it is clear which
are the vectors x and ξ involved.

For points x1, . . . xN ∈ Rn we denote by

[x1, . . . xN ] =

{
λ1x1 + · · ·+ λNxN

∣∣∣∣∣ 0 ≤ λi ≤ 1, 1 ≤ i ≤ N,

N∑
i=1

λi = 1

}

the convex hull of these points. In particular, the closed line segment between
two points x and y is

[x, y] = {λx+ (1− λ)y| 0 ≤ λ ≤ 1}.

The open line segment is denoted by

(x, y) = {λx+ (1− λ)y| 0 < λ < 1}.
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µ∂K is the surface area measure on ∂K. It equals the restriction of the n−1-
dimensional Hausdorff measure to ∂K. We write in short µ if it is clear which
is the body K involved. Let f : ∂K → R be a integrable, nonnegative function
with ∫

∂K

f(x)dµ = 1.

Then we denote by Pf the probability measure with dPf = fdµ∂K and
E(f,N) = E(Pf , N). If f is the constant function (voln−1(∂K))−1 then we
write E(∂K,N) = E(Pf , N). For a measurable subset A of ∂K we write
voln−1(A) for µ∂K(A).

Let K be a convex body in Rn with boundary ∂K. For x ∈ ∂K we
denote the outer unit normal by N∂K(x). We write in short N(x) if it is clear
which is the body K involved. The normal N(x) may not be unique. κ∂K(x)
is the (generalized) Gauß curvature at x (see also Section 1.5 for the precise
definition). By a result of Aleksandrov [Al] it exists almost everywhere. Again,
we write in short κ(x) if it is clear which is the body K involved. The centroid
or center of mass cen of K is

cen =

∫
K
xdx

voln(K)
.

We conclude Section 1.1 with the main theorem.

Theorem 1.1. Let K be a convex body in Rn such that there are r and R in
R with 0 < r ≤ R <∞ so that we have for all x ∈ ∂K

Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

and let f : ∂K → R+ be a continuous, positive function with
∫
∂K

f(x)dµ∂K(x) =
1. Let Pf be the probability measure on ∂K given by dPf (x) = f(x)dµ∂K(x).
Then we have

lim
N→∞

voln(K)− E(f,N)( 1
N

) 2
n−1

= cn

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
dµ∂K(x)

where κ is the (generalized) Gauß-Kronecker curvature and

cn =
(n− 1)

n+1
n−1Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!(voln−2(∂Bn−1

2 ))
2

n−1
.

The minimum at the right-hand side is attained for the normalized affine
surface area measure with density

fas(x) =
κ(x)

1
n+1∫

∂K
κ(x)

1
n+1 dµ∂K(x)

.
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Fig. 1.1.1

The condition: There are r and R in R with 0 < r ≤ R < ∞ so that we
have for all x ∈ ∂K

Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

is satisfied if K has a C2-boundary with everywhere positive curvature. This
follows from Blaschke’s rolling theorem ([Bla2] , p.118) and a generalization
of it ([Lei], Remark 2.3). Indeed, we can choose

r = min
x∈∂K

min
1≤i≤n−1

ri(x) R = max
x∈∂K

max
1≤i≤n−1

ri(x)

where ri(x) denotes the i-th principal curvature radius.
By a result of Aleksandrov [Al] the generalized curvature κ exists a.e. on

every convex body. It was shown in [SW1] that κ
1

n+1 is an integrable function.
Therefore the density

fas(x) =
κ(x)

1
n+1∫

∂K
κ(x)

1
n+1 dµ∂K(x)

.

exists provided that
∫
∂K

κ(x)
1

n+1 dµ∂K(x) > 0. This is certainly assured by
the assumption on the boundary of K.

1.2 Discussion of Some Measures Pf and the Optimality of the
Affine Surface Area Measure

We want to discuss some measures that are of interest.
1. The most interesting measure is the normalized affine surface area

measure as given in the theorem. This measure is affine invariant, i.e. for an
affine, volume preserving map T and all measurable subsets A of ∂K



Random Polytopes 249∫
A

κ
1

n+1
∂K (x)dµ∂K(x) =

∫
T (A)

κ
1

n+1

∂T (K)(x)dµ∂T (K)(x).

Please note that if the optimal measure is unique it should be affine invariant
since the image measure induced by T must also be optimal.

We show that the measure is affine invariant. To do so we introduce the
convex floating body. For t ∈ R, t > 0 sufficiently small, the convex floating
body C[t] of a convex body C [SW1] is the intersection of all halfspaces whose
defining hyperplanes cut off a set of n-dimensional volume t from C. By [SW1]
we have for all convex bodies C

lim
t→0

voln(C)− voln(C[t])

t
2

n+1
= dn

∫
∂C

κ∂C(x)
1

n+1 dµ∂C(x),

where dn = 1
2

(
n+1

voln−1(Bn−1
2 )

)2/(n+1)
. For an affine, volume preserving map

T we have

voln(C) = voln(T (C)) and voln(C[t]) = voln(T (C[t])). (1)

Thus the expression ∫
∂C

κ∂C(x)
1

n+1 dµ∂C(x)

is affine invariant. For a closed subset A of ∂K where K is a convex body, we
define the convex body C as the convex hull of A. For a point x ∈ ∂C with
x /∈ A we have that the curvature must be 0 if it exists. Thus we get by the
affine invariance (1) for all closed sets A∫

A

κ∂C(x)
1

n+1 dµ∂C(x) =
∫
∂T (A)

κ∂T (C)(y)
1

n+1 dµ∂T (C)(y).

This formula extends to all measurable sets. For the affine surface measure
we get

lim
N→∞

voln(K)− E(f,N)( 1
N

) 2
n−1

= cn

(∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) n+1

n−1

. (2)

We show now that the expression for any other measure given by a density
f is greater than or equal to (2). Since

∫
∂K

f(x)dµ∂K(x) = 1, we have
(

1
voln−1(∂K)

∫
∂K

∣∣∣∣ κ(x)
f(x)2

∣∣∣∣
1

n−1

dµ∂K(x)

) 1
n+1

=


 1

voln−1(∂K)

∫
∂K

∣∣∣∣∣
(
κ(x)
f(x)2

) 1
n2−1

∣∣∣∣∣
n+1

dµ∂K(x)




1
n+1

×

(
1

voln−1(∂K)

∫
∂K

∣∣∣f(x)
2

n2−1

∣∣∣n2−1
2

dµ∂K(x)

) 2
n2−1

(voln−1(∂K))
2

n2−1 .



250 C. Schütt and E. Werner

We have 1
n+1 + 2

n2−1 = 1
n−1 and we apply Hölder inequality to get

(
1

voln−1(∂K)

∫
∂K

∣∣∣∣ κ(x)
f(x)2

∣∣∣∣
1

n−1

dµ∂K(x)

) 1
n+1

≥
(

1
voln−1(∂K)

∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) 1

n−1

(voln−1(∂K))
2

n2−1 ,

which gives us

∫
∂K

∣∣∣∣ κ(x)
f(x)2

∣∣∣∣
1

n−1

dµ∂K(x) ≥
(∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) n+1

n−1

.

2. The second measure of interest is the surface measure given by the
constant density

f(x) =
1

voln−1(∂K)
.

This measure is not affine invariant and we get

lim
N→∞

voln(K)− E(f,N)(
voln−1(∂K)

N

) 2
n−1

= cn

∫
∂K

κ(x)
1

n−1 dµ∂K(x).

3. The third measure is obtained in the following way. Let K be a convex
body, cen its centroid and A a subset of ∂K. Let

P(A) =
voln([cen, A])

voln(K)
.

If the centroid is the origin, then the density is given by

f(x) =
< x,N∂K(x) >∫

∂K
< x,N∂K(x) > dµ∂K(x)

and the measure is invariant under linear, volume preserving maps. We have
1
n

∫
∂K

< x,N(x) > dµ∂K(x) = voln(K) and thus

f(x) =
< x,N∂K(x) >
n voln(K)

.

We get

lim
N→∞

voln(K)− E(f,N)(
n voln(K)

N

) 2
n−1

= cn

∫
∂K

κ(x)
1

n−1

< x,N∂K(x) >
2

n−1
dµ∂K(x).

We recall that for p > 0 the p-affine surface area Op(K) [Lu], [Hu] of a convex
body K is defined as (see 1.3 below for more details)
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Op(K) =
∫
∂K

κ(x)
p

n+p

< x,N∂K(x) >
n(p−1)

n+p

dµ∂K(x).

Note that then for n > 2 the right hand expression above is a p-affine surface
area with p = n/(n− 2).

4. More generally, let K be a convex body in Rn with centroid at the
origin and satisfying the assumptions of Theorem 1.1. Let α and β be real
numbers. Let the density be given by

fα,β(x) =
< x,N∂K(x) >α κ(x)β∫

∂K
< x,N∂K(x) >α κ(x)βdµ∂K(x)

.

Then by Theorem 1.1

lim
N→∞

voln(K)− E(fα,β , N)( 1
N

) 2
n−1

=

cn

(∫
∂K

κ(x)
1−2β
n−1 dµ∂K(x)

< x,N∂K(x) >
2α

n−1

)(∫
∂K

< x,N∂K(x) >α κ(x)βdµ∂K(x)
) 2

n−1

.

The second expression on the right hand side of this equation is a p-affine
surface area iff

α = −n(p− 1)
n+ p

and β =
p

n+ p
.

Then

lim
N→∞

voln(K)− E(f,N)(
Op(K)
N

) 2
n−1

= cn

∫
∂K

κ(x)
n−p

(n−1)(n+p) < x,N∂K(x) >
2n(p−1)

(n−1)(n+p) dµ∂K(x).

Note that the right hand side of this equality is a q-affine surface area with
q = n−p

n+p−2 .

5. Another measure of interest is the measure induced by the Gauß map.
The Gauß map N∂K : ∂K → ∂Bn2 maps a point x to its normal N∂K(x). As
a measure we define

P(A) = σ{N∂K(x)|x ∈ A}
where σ is the normalized surface measure on ∂Bn2 . This can also be written
as

P(A) =

∫
A
κ(x)dµ∂K(x)

voln−1(∂Bn2 )
.

This measure is not invariant under linear transformations with determinant
1. This can easily be seen by considering the circle with radius 1 in R2. An
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affine transformation changes the circle into an ellipse. We consider a small
neighborhood of an apex with small curvature. This is the affine image of a
small set whose image under the Gauß map is larger. We get

lim
N→∞

voln(K)− E(f,N)(voln−1(∂Bn
2 )

N

) 2
n−1

= cn

∫
∂K

κ(x)−
1

n−1 dµ∂K(x).

1.3 Extensions of the p-Affine Surface Area

The p-affine surface area Op(K) was introduced by Lutwak [Lu], see also Hug
[Hu]. For p = 1 we get the affine surface area which is related to curve evo-
lution and computer vision [SaT1, SaT2]. Meyer and Werner [MW1, MW2]
gave a geometric interpretation of the p-affine surface area in terms of the
Santaló bodies. They also observed that -provided the integrals exist- the
definition of Lutwak for the p-affine surface area makes sense for −n < p ≤ 0
and their geometric interpretation in terms of the Santaló bodies also holds
for this range of p. They also gave a definition of the p-affine surface area for
p = −n together with its geometric interpretation.

In view of 1.2.4 we propose here to extend the p-range even further,
namely to −∞ ≤ p ≤ ∞. Theorem 1.1 then provides a geometric inter-
pretation of the p-affine surface area for this whole p-range. See also [SW2]
for another geometric interpretation.

Let K be a convex body in Rn with the origin in its interior. For p with
p �= −n and −∞ ≤ p ≤ ∞ we put

O±∞(K) =
∫
∂K

κ(x)
< x,N∂K(x) >n

dµ∂K(x)

and

Op(K) =
∫
∂K

κ(x)
p

n+p

< x,N∂K(x) >
n(p−1)

n+p

dµ∂K(x),

provided the integrals exist.
If 0 is an interior point of K then there are strictly positive constants a and
b such that

a ≤< x,N∂K(x) >≤ b.

Assume now that K is such that the assumptions of Theorem 1.1 hold. Then
the above integrals are finite. We consider the densities

f±∞(x) =
1

O±∞(K)
κ(x)

< x,N∂K(x) >n

and for −∞ < p <∞, p �= −n
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fp(x) =
1

Op(K)
κ(x)

p
n+p

< x,N∂K(x) >
n(p−1)

n+p

.

As a corollary to Theorem 1.1 we get the following geometric interpretation
of the p-affine surface area.

lim
N→∞

voln(K)− E(f±∞, N)(
O±∞(K)
N

) 2
n−1

=

cn

∫
∂K

κ(x)−
1

n−1 < x,N∂K(x) >
2n

n−1 dµ∂K(x) = O−1(K)

and

lim
N→∞

voln(K)− E(fp, N)(
Op(K)
N

) 2
n−1

=

cn

∫
∂K

κ(x)
n−p

(n−1)(n+p) < x,N∂K(x) >
2n(p−1)

(n−1)(n+p) dµ∂K(x) = Oq(K)

where q = n−p
n+p−2 .

Thus each density fp gives us a q-affine surface area Oq with q = n−p
n+p−2

as the expected difference volume. Note that for the density f−n+2 we get
O±∞(K). Conversely, for each q-affine surface area Oq, −∞ ≤ q ≤ +∞,
q �= −n, there is a density fp with p = n−nq+2q

q+1 such that

lim
N→∞

voln(K)− E(fp, N)(
Op(K)
N

) 2
n−1

= cnOq(K).

1.4 Random Polytopes of Points Chosen from the Convex Body

Whereas random polytopes of points chosen from the boundary of a convex
body have up to now only been considered in the case of the Euclidean ball
[Mü], random polytopes of points chosen from the convex body and not only
from the boundary have been investigated in great detail. This has been done
by Rényi and Sulanke [ReS1, ReS2] in dimension 2. Wieacker [Wie] computed
the expected difference volume for the Euclidean ball in Rn. Bárány [Ba1]
showed for convex bodies K in Rn with C3-boundary and everywhere positive
curvature that

lim
N→∞

voln(K)− E(P, N)

(voln(K)
N )

2
n+1

= c1(n)
∫
∂K

κ(x)
1

n+1 dµ∂K(x)

where P is the normalized Lebesgue measure on K, κ(x) is the Gauß-
Kronecker curvature, and
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c1(n) =
(n+ 1)

2
n+1 (n2 + n+ 2)(n2 + 1)Γ (n

2+1
n+1 )

2(n+ 3)(n+ 1)!voln−1(Bn−1
2 )

2
n+1

.

Schütt [Sch1] verified that this formula holds for all convex bodies, where
κ(x) is the generalized Gauß-Kronecker curvature.

The order of best approximation of convex bodies by polytopes with a
given number of vertices N is N− 2

n−1 (see above). The above formula for
random polytopes chosen from the body gives N− 2

n+1 . Thus random approx-
imation by choosing the points from K does not give the optimal order. But
one has to take into account that not all points chosen from the convex body
turn out to be vertices of a random polytope. Substituting N by the num-
ber of expected vertices we get the optimal order [Ba2] for the exponent of
N in the case of a convex body with C3-boundary and everywhere positive
curvature. Indeed, for all convex bodies with a C3-boundary and everywhere
positive curvature the expected number of i-dimensional faces is of the order
N

n−1
n+1 [Ba2].

1.5 Comparison between Best and Random Approximation

Now we want to compare random approximation with best approximation in
more detail. We will not only consider the exponent of N but also the other
factors. It turns out that random approximation and best approximation with
the optimal density are very close.

McClure and Vitale [McV] obtained an asymptotic formula for best ap-
proximation in the case n = 2. Gruber [Gr2] generalized this to higher di-
mensions. The metric used in these results is the symmetric difference metric
dS . Then these asymptotic best approximation results are (see above for the
precise formulation):

If a convex body K in Rn has a C2-boundary with everywhere positive
curvature, then

inf{dS(K,PN )|PN ⊂ K and PN is a polytope with at most N vertices}

is asymptotically the same as

1
2deln−1

(∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) n+1

n−1
(

1
N

) 2
n−1

.

where deln−1 is a constant that is related to the Delone triangulations and
depends only on the dimension n. Equivalently, the result states that if we
divide one expression by the other and take the limit for N to ∞ we obtain
1. It was shown by Gordon, Reisner and Schütt in [GRS1, GRS2] that the
constant deln−1 is of the order of n, which means that there are numerical
constants a and b such that we have for all n ∈ N
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an ≤ deln−1 ≤ bn.

It is clear from Theorem 1.1 that we get the best random approximation if
we choose the affine surface area measure. Then the order of magnitude for
random approximation is

(n− 1)
n+1
n−1Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!(voln−2(∂Bn−1

2 ))
2

n−1

(∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) n+1

n−1
(

1
N

) 2
n−1

.

Since

(voln−2(∂Bn−1
2 ))

2
n−1 ∼ 1

n
and Γ

(
n+ 1 + 2

n−1

)
∼ Γ (n+ 1)(n+ 1)

2
n−1

random approximation (with randomly choosing the points from the bound-
ary of K) is of the same order as

n

(∫
∂K

κ(x)
1

n+1 dµ∂K(x)
) n+1

n−1
(

1
N

) 2
n−1

,

which is the same order as best approximation.
In two papers by Mankiewicz and Schütt the constant deln−1 has been

better estimated [MaS1, MaS2]. It was shown there

n−1
n+1voln−1(Bn−1

2 )−
2

n−1 ≤ deln−1 ≤ (1 + c lnn
n )n−1

n+1voln−1(Bn−1
2 )−

2
n−1 ,

where c is a numerical constant. In particular, limn→∞
deln−1
n = 1

2πe =
0.0585498.... Thus(

1− c
lnn
n

)
lim
N→∞

voln(K)− E(fas, N)( 1
N

) 2
n−1

≤ lim
N→∞

N
2

n−1 inf{dS(K,PN )|PN ⊂ K and PN

is a polytope with at most N vertices}.

In order to verify this we have to estimate the quotient

(n− 1)
n+1
n−1Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!(voln−2(∂Bn−1

2 ))
2

n−1
( 1
2deln−1)−1.

Since n−1
n+1voln−1(Bn−1

2 )−
2

n−1 ≤ deln−1 the quotient is less than 1
n!Γ (n+ 1 +

2
n−1 ). Now we use Stirlings formula to get

Γ (n+ 1 + 2
n−1 )

n!
≤ 1 + c

lnn
n
.
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1.6 Subdifferentials and Indicatrix of Dupin

Let U be a convex, open subset of Rn and let f : U → R be a convex function.
df(x) ∈ Rn is called subdifferential at the point x0 ∈ U , if we have for all
x ∈ U

f(x0)+ < df(x0), x− x0 >≤ f(x).

A convex function has a subdifferential at every point and it is differentiable
at a point if and only if the subdifferential is unique. Let U be an open,
convex subset in Rn and f : U → R a convex function. f is said to be twice
differentiable in a generalized sense in x0 ∈ U , if there is a linear map d2f(x0)
and a neighborhood U(x0) ⊆ U such that we have for all x ∈ U(x0) and for
all subdifferentials df(x)

‖df(x)− df(x0)− d2f(x0)(x− x0)‖ ≤ Θ(‖x− x0‖)‖x− x0‖,

where Θ is a monotone function with limt→0Θ(t) = 0. d2f(x0) is called
generalized Hesse-matrix. If f(0) = 0 and df(0) = 0 then we call the set

{x ∈ Rn|xtd2f(0)x = 1}

the indicatrix of Dupin at 0. Since f is convex this set is an ellipsoid or a
cylinder with a base that is an ellipsoid of lower dimension. The eigenval-
ues of d2f(0) are called principal curvatures and their product is called the
Gauß-Kronecker curvature κ. Geometrically the eigenvalues of d2f(0) that
are different from 0 are the lengths of the principal axes of the indicatrix
raised to the power −2.

The following lemma can be found in e.g. [SW1].

Lemma 1.1. Let U be an open, convex subset of Rn and 0 ∈ U . Suppose
that f : U → R is twice differentiable in the generalized sense at 0 and that
f(0) = 0 and df(0) = 0.
(i) Suppose that the indicatrix of Dupin at 0 is an ellipsoid. Then there is a
monotone, increasing function ψ : [0, 1] → [1,∞) with lims→0 ψ(s) = 1 such
that {

(x, s)
∣∣∣∣xtd2f(0)x ≤ 2s

ψ(s)

}
⊆ {(x, s)|f(x) ≤ s} ⊆ {(x, s)|xtd2f(0)x ≤ 2sψ(s)}.

(ii) Suppose that the indicatrix of Dupin is an elliptic cylinder. Then for
every ε > 0 there is s0 > 0 such that we have for all s with s < s0{

(x, s)
∣∣xtd2f(0)x+ ε‖x‖2 ≤ 2s

}
⊆ {(x, s)|f(x) ≤ s}.
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Lemma 1.2. Let K be a convex body in Rn with 0 ∈ ∂K and N(0) = −en.
Suppose that the indicatrix of Dupin at 0 is an ellipsoid. Suppose that the
principal axes biei of the indicatrix are multiples of the unit vectors ei, i =
1, . . . , n− 1. Let E be the n-dimensional ellipsoid

E =



x ∈ Rn

∣∣∣∣∣∣∣∣∣
n−1∑
i=1

x2
i

b2i
+

(
xn −

(∏n−1
i=1 bi

) 2
n−1

)2

(
∏n−1
i=1 bi)

2
n−1

≤
(
n−1∏
i=1

bi

) 2
n−1



.

Then there is an increasing, continuous function φ : [0,∞) → [1,∞) with
φ(0) = 1 such that we have for all t{(

x1

φ(t)
, . . . ,

xn−1

φ(t)
, t

)∣∣∣∣x ∈ E , xn = t

}
⊆ K ∩H((0, . . . , 0, t), N(0))
⊆ {(φ(t)x1, . . . , φ(t)xn−1, t)|x ∈ E , xn = t} .

We call E the standard approximating ellipsoid .

Proof. Lemma 1.2 follows from Lemma 1.1. Let f be a function whose graph
is locally the boundary of the convex body. Consider (x, s) with

xtd2f(0)x = 2s

which is the same as
n−1∑
i=1

x2
i

b2i
= 2s.

Then

n−1∑
i=1

x2
i

b2i
+

(
xn −

(∏n−1
i=1 bi

) 2
n−1

)2

(
∏n−1
i=1 bi)

2
n−1

= 2s+

(
s−

(∏n−1
i=1 bi

) 2
n−1

)2

(
∏n−1
i=1 bi)

2
n−1

=
s2(∏n−1

i=1 bi

) 2
n−1

+

(
n−1∏
i=1

bi

) 2
n−1

.

��

Let us denote the lengths of the principal axes of the indicatrix of Dupin
by bi, i = 1, . . . , n− 1. Then the lengths ai, i = 1, . . . , n of the principal axes
of the standard approximating ellipsoid E are
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ai = bi

(
n−1∏
i=1

bi

) 1
n−1

i = 1, . . . , n− 1 and an =

(
n−1∏
i=1

bi

) 2
n−1

.

(3)

This follows immediately from Lemma 1.2. For the Gauß-Kronecker curvature
we get

n−1∏
i=1

an
a2
i

. (4)

This follows as the Gauß-Kronecker curvature equals the product of the eigen-
values of the Hesse matrix. The eigenvalues are b−2

i , i = 1, . . . , n− 1. Thus

n−1∏
i=1

b−2
i =

(
n−1∏
i=1

bi

)2 n−1∏
i=1


bi

(
n−1∏
k=1

bk

) 1
n−1




−2

=
n−1∏
i=1

an
a2
i

.

In particular, if the indicatrix of Dupin is a sphere of radius
√
ρ then the

standard approximating ellipsoid is a Euclidean ball of radius ρ.
We consider the transform T : Rn → Rn

T (x) =


x1

a1

(
n−1∏
i=1

bi

) 2
n−1

, . . . ,
xn−1

an−1

(
n−1∏
i=1

bi

) 2
n−1

, xn


 . (5)

This transforms the standard approximating ellipsoid E into a Euclidean ball
T (E) with radius r = (

∏n−1
i=1 bi)2/(n−1). This is obvious since the principal

axes of the standard approximating ellipsoid are given by (3). The map T is
volume preserving.

Lemma 1.3. Let

E =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

∣∣∣∣xiai
∣∣∣∣
2

≤ 1

}

and let H = H((an−∆)en, en). Then for all ∆ with ∆ ≤ 1
2an the intersection

E ∩H is an ellipsoid whose principal axes have lengths

ai
an

(
2an∆−∆2) 1

2 i = 1, . . . , n− 1.

Moreover,

voln−1(E ∩H) ≤ voln−1(∂E ∩H−)

≤
√

1 +
2∆a3

n

(an −∆)2 min1≤i≤n−1 a2
i

voln−1(E ∩H)
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and

voln−1(E ∩H) = voln−1(Bn−1
2 )

(∏n−1
i=1 ai

) (
2∆
an
−

∣∣∣ ∆an

∣∣∣2)
n−1

2

= voln−1(Bn−1
2 )√

κ(anen)

(
2∆− ∆2

an

)n−1
2
,

where κ is the Gauß-Kronecker curvature.

Proof. The left hand inequality is trivial. We show the right hand inequality.
Let pen

be the orthogonal projection onto the subspace orthogonal to en. We
have

voln−1(∂E ∩H−) =
∫
E∩H

1
< en, N∂E(ȳ) >

dy (6)

where ȳi = yi, i = 1, . . . , n− 1, and

ȳn = an

√√√√1−
n−1∑
i=1

∣∣∣∣yiai
∣∣∣∣
2

.

Therefore we get

voln−1(∂E ∩H−) ≤ voln−1(E ∩H)
minx∈∂E∩H− < en, N∂E(x) >

.

We have

N∂E(x) =

(
xi

a2i

)n
i=1√∑n

i=1 | xi

a2i
|2
.

Therefore we get

< en, N∂E(x) > =
xn

a2n√∑n
i=1 | xi

a2i
|2

=

(
1 +

a4
n

x2
n

n−1∑
i=1

x2
i

a4
i

)− 1
2

≥
(

1 +
a4
n

x2
nmin1≤i≤n−1 a2

i

n−1∑
i=1

x2
i

a2
i

)− 1
2

=

(
1 +

a4
n

x2
nmin1≤i≤n−1 a2

i

(
1−

∣∣∣∣xnan
∣∣∣∣
2
))− 1

2

=
(

1 +
a2
n

min1≤i≤n−1 a2
i

(
a2
n

x2
n

− 1
))− 1

2

.
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The last expression is smallest for xn = an −∆. We get

< en, N∂E(x) > ≥
(

1 +
a2
n(2∆an −∆2)

(an −∆)2 min1≤i≤n−1 a2
i

)− 1
2

≥
(

1 +
2∆a3

n

(an −∆)2 min1≤i≤n−1 a2
i

)− 1
2

.

The equalities are proved using

κ(anen) =
n−1∏
i=1

an
a2
i

.

��

Lemma 1.4. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin at x0 exists and is an ellipsoid. Let E be the standard
approximating ellipsoid at x0. Then for all ε > 0 there is ∆0 such that for all
∆ < ∆0

voln−1(K ∩H(x0 −∆N∂K(x0), N∂K(x0))) ≤
voln−1(∂K ∩H−(x0 −∆N∂K(x0), N∂K(x0))) ≤

(1+ε)

√
1 +

2∆a3
n

(an −∆)2 min1≤i≤n−1 a2
i

voln−1(K∩H(x0−∆N∂K(x0), N∂K(x0))),

where a1, . . . , an are the lengths of the principal axes of E.

Proof. We can assume that K is in such a position that N∂K(x0) coincides
with the n-th unit vector en and that the equation of the approximating
ellipsoid is

E =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

∣∣∣∣xiai
∣∣∣∣
2

≤ 1

}
.

Then the proof follows from Lemma 1.2 and Lemma 1.3. ��

Lemma 1.5. Let H be a hyperplane with distance p from the origin and s
the area of the cap cut off by H from Bn2 . r denotes the radius of the n− 1-
dimensional Euclidean ball H ∩Bn2 . We have

dp
ds

= −
(
rn−3voln−2(∂Bn−1

2 )
)−1

= −
(
(1− p2)

n−3
2 voln−2(∂Bn−1

2 )
)−1

.



Random Polytopes 261

Proof. Using (6) and polar coordinates, we get for the surface area s of a cap
of the Euclidean ball of radius 1

s = voln−2(∂Bn−1
2 )

∫ r

0

tn−2

(1− t2)
1
2
dt = voln−2(∂Bn−1

2 )
∫ √1−p2

0

tn−2

(1− t2)
1
2
dt.

This gives

ds
dp

= −voln−2(∂Bn−1
2 )(1− p2)

n−2
2

p

p√
1− p2

= −rn−3voln−2(∂Bn−1
2 ).

��

Lemma 1.6. (Aleksandrov [Al]) Let K be a convex body in Rn. Then its
boundary is almost everywhere twice differentiable in the generalized sense.

For a proof of this result see [Ban], [EvG], [BCP].

At each point where ∂K is twice differentiable in the generalized sense
the indicatrix of Dupin exists. Therefore the indicatrix of Dupin exists almost
everywhere.

Lemma 1.7. (John [J]) Let K be a convex body in Rn that is centrally sym-
metric with respect to the origin. Then there exists an ellipsoid E with center
0 such that

E ⊆ K ⊆
√
n E .

Lemma 1.8. Let K and C be convex bodies in Rn such that C ⊆ K and 0
is an interior point of C. Then we have for all integrable functions f∫

∂C

f(x)dµ∂C(x) =
∫
∂K

f(x(y))
‖x(y)‖n < y,N(y) >
‖y‖n < x(y), N(x(y)) >

dµ∂K(y)

where {x(y)} = [0, y] ∩ ∂C.

2 The Surface Body

2.1 Definitions and Properties of the Surface Body

Let 0 < s and let f : ∂K → R be a nonnegative, integrable function with∫
∂K

fdµ = 1.
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The surface body Kf,s is the intersection of all the closed half-spaces H+

whose defining hyperplanes H cut off a set of Pf -measure less than or equal
to s from ∂K. More precisely,

Kf,s =
⋂

Pf (∂K∩H−)≤s
H+.

We write usually Ks for Kf,s if it is clear which function f we are considering.
It follows from the Hahn-Banach theorem that K0 ⊆ K. If in addition f is
almost everywhere nonzero, then K0 = K. This is shown in Lemma 2.1.(iv).

∂K

∂Ks

xs H

H+

Fig. 2.1.1

We say that a sequence of hyperplanes Hi, i ∈ N, in Rn converges to a
hyperplane H if we have for all x ∈ H that

lim
i→∞

d(x,Hi) = 0,

where d(x,H) = inf{‖x− y‖ : y ∈ H}. This is equivalent to: The sequence of
the normals of Hi converges to the normal of H and there is a point x ∈ H
such that

lim
i→∞

d(x,Hi) = 0.

Lemma 2.1. Let K be a convex body in Rn and let f : ∂K → R be a a.e.
positive, integrable function with

∫
∂K

fdµ = 1. Let ξ ∈ Sn−1.
(i) Let x0 ∈ ∂K. Then
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Pf (∂K ∩H−(x0 − tξ, ξ))

is a continuous function of t on[
0,max
y∈K

< x0 − y, ξ >

)
.

(ii) Let x ∈ Rn. Then the function

Pf (∂K ∩H−(x− tξ, ξ))

is strictly increasing on[
min
y∈K

< x− y, ξ >,max
y∈K

< x− y, ξ >

]
.

(iii) Let Hi, i ∈ N, be a sequence of hyperplanes that converge to the hyper-
plane H0. Assume that the hyperplane H0 intersects the interior of K. Then
we have

lim
i→∞

Pf (∂K ∩H−
i ) = Pf (∂K ∩H−

0 ).

(iv)
◦
K⊆

⋃
0<s

Ks

In particular, K = K0.

Proof. (i)
voln−1(∂K ∩H−(x0 − tξ, ξ))

is a continuous function on[
0,max
y∈K

< x0 − y, ξ >

)
.

Then (i) follows as f is an integrable function.
(ii) Since H−(x, ξ) is the half space containing x+ ξ we have for t1 < t2

H−(x− t1ξ, ξ) � H−(x− t2ξ, ξ).

If
Pf (∂K ∩H−(x− t1ξ, ξ)) = Pf (∂K ∩H−(x− t2ξ, ξ))

then f is a.e. 0 on ∂K ∩H−(x− t2ξ, ξ) ∩H+(x− t1ξ, ξ). This is not true.
(iii) Let Hi = Hi(xi, ξi), i = 0, 1, . . . . We have that

lim
i→∞

xi = x0 lim
i→∞

ξi = ξ0,



264 C. Schütt and E. Werner

where x0 is an interior point of K. Therefore

∀ε > 0 ∃ i0 ∀ i > i0 :
∂K ∩H−(x0 + εξ0, ξ0) ⊆ ∂K ∩H−(xi, ξi) ⊆ ∂K ∩H−(x0 − εξ0, ξ0).

This implies

Pf
(
∂K ∩H−(x0 + εξ0, ξ0)

)
≤ Pf

(
∂K ∩H−(xi, ξi)

)
≤ Pf

(
∂K ∩H−(x0 − εξ0, ξ0)

)
.

Since x0 is an interior point of K, for ε small enough x0 − εξ0 and x0 + εξ0
are interior points of K. Therefore,

H(x0 − εξ0, ξ0) and H(x0 + εξ0, ξ0)

intersect the interior of K. The claim now follows from (i).

(iv) Suppose the inclusion is not true. Then there is x ∈
◦
K with x /∈⋃

0<sKs. Therefore, for every s > 0 there is a hyperplane Hs with x ∈ Hs
and

Pf (∂K ∩H−
s ) ≤ s.

By compactness and by (iii) there is a hyperplane H with x ∈ H and

Pf (∂K ∩H−) = 0.

On the other hand, voln−1(∂K ∩H−) > 0 which implies

Pf (∂K ∩H−) > 0

since f is a.e. positive.
We have K = K0 because K0 is a closed set that contains

◦
K. ��

Lemma 2.2. Let K be a convex body in Rn and let f : ∂K → R be a a.e.
positive, integrable function with

∫
∂K

fdµ = 1.

(i) For all s such that Ks �= ∅, and all x ∈ ∂Ks ∩
◦
K there exists a supporting

hyperplane H to ∂Ks through x such that Pf (∂K ∩H−) = s.
(ii) Suppose that for all x ∈ ∂K there is R(x) <∞ so that

K ⊆ Bn2 (x −R(x)N∂K(x), R(x)).

Then we have for all 0 < s that Ks ⊂
◦
K.

Proof. (i) There is a sequence of hyperplanes Hi with Ks ⊆ H+
i and Pf (∂K∩

H−
i ) ≤ s such that the distance between x and Hi is less than 1

i . We check
this.
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Since x ∈ ∂Ks there is z /∈ Ks with ‖x − z‖ < 1
i . There is a hyperplane

Hi separating z from Ks satisfying

Pf (∂K ∩H−
i ) ≤ s and Ks ⊆ H+

i .

We have
d(x,Hi) ≤ ‖x− z‖ < 1

i .

By compactness and by Lemma 2.1 .(iii) there is a subsequence that converges
to a hyperplane H with x ∈ H and Pf (∂K ∩H−) ≤ s.

If Pf (∂K ∩H−) < s then we choose a hyperplane H̃ parallel to H such
that Pf (∂K ∩ H̃−) = s. By Lemma 2.1.(i) there is such a hyperplane. Con-
sequently, x is not an element of Ks. This is a contradiction.

(ii) Suppose there is x ∈ ∂K with x ∈ Ks and 0 < s. By K ⊆ Bn2 (x −
R(x)N∂K(x), R(x)) we get

voln−1(∂K ∩H(x,N∂K(x))) = 0.

By Lemma 2.1.(i) we can choose a hyperplane H parallel to H(x,N∂K(x))
that cuts off a set with Pf (∂K ∩ H̃−) = s. This means that x /∈ Ks. ��

Lemma 2.3. Let K be a convex body in Rn and let f : ∂K → R be a a.e
positive, integrable function with

∫
∂K

fdµ = 1.
(i) Let si, i ∈ N, be a strictly increasing sequence of positive numbers with
limi→∞ si = s0. Then we have

Ks0 =
∞⋂
i=1

Ksi .

(ii) There exists T with 0 < T ≤ 1
2 such that KT is nonempty and voln(KT ) =

0 and voln(Kt) > 0 for all t < T .

Proof. (i) Since we have for all i ∈ N that Ks0 ⊆ Ksi , we get

Ks0 ⊆
∞⋂
i=1

Ksi .

We show now that both sets are in fact equal. Let us consider x /∈ Ks0 . If
x /∈ K, then x /∈ ⋂∞

i=1Ksi , as

K = K0 ⊇
∞⋂
i=1

Ksi .

If x ∈ K and x /∈ Ks0 then there is a hyperplane H with x ∈
◦
H−, Ks0 ⊆ H+,

and
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Pf (K ∩H−) ≤ s0.

There is a hyperplane H1 that is parallel to H and that contains x. There is
another hyperplane H2 that is parallel to both these hyperplanes and whose
distance to H equals its distance to H1. By Lemma 2.1.(ii) we get

0 ≤ Pf (∂K ∩H−
1 ) < Pf (∂K ∩H−

2 ) < Pf (∂K ∩H−) ≤ s0.

Let s
′
0 = Pf (∂K ∩H−

2 ). It follows that

x /∈
⋂

Pf (H−∩∂K)≤s′0

H+ = Ks′0
.

Therefore x /∈ Ksi
, for si ≥ s

′
0.

(ii) We put
T = sup{s|voln(Ks) > 0}.

Since the sets Ks are compact, convex, nonempty sets,⋂
voln(Ks)>0

Ks

is a compact, convex, nonempty set. On the other hand, by (i) we have

KT =
⋂
s<T

Ks =
⋂

voln(Ks)>0

Ks.

Now we show that voln(KT ) = 0. Suppose that voln(KT ) > 0. Then there is

x0 ∈
◦
KT . Let

t0 = inf{Pf (∂K ∩H−)|x0 ∈ H}.
Since we require that x0 ∈ H we have that Pf (∂K∩H−) is only a function of
the normal of H. By Lemma 2.1.(iii), Pf (∂K ∩H−) is a continuous function
of the normal of H. By compactness this infimum is attained and there is H0
with x0 ∈ H0 and

Pf (∂K ∩H−
0 ) = t0.

Moreover, t0 > T . If not, then KT ⊆ H+
0 and x0 ∈ H0, which means that

x0 ∈ ∂KT , contradicting the assumption that x0 ∈
◦
KT .

Now we consider K(1/2)(T+t0). We claim that x0 is an interior point of
this set and therefore

voln(K 1
2 (T+t0)

) > 0,

contradicting the fact that T is the supremum of all t with

voln(Kt) > 0.



Random Polytopes 267

We verify now that x0 is an interior point of K(1/2)(T+t0). Suppose x0 is
not an interior point of this set. Then in every neighborhood of x0 there is
x /∈ K 1

2 (T+t0)
. Therefore for every ε > 0 there is a hyperplane Hε such that

Pf (∂K ∩H−
ε ) ≤ 1

2 (T + t0), x ∈ Hε and ‖x− x0‖ < ε.

By Lemma 2.1.(iii) we conclude that there is a hyperplane H with x0 ∈ H
and

Pf (∂K ∩H−) ≤ 1
2 (T + t0).

But this contradicts the definition of t0. ��

In the next lemma we need the Hausdorff distance dH which for two
convex bodies K and L in Rn is

dH(K,L) = max
{

max
x∈L

min
y∈K

‖x− y‖, max
y∈K

min
x∈L

‖x− y‖
}
.

Lemma 2.4. Let K be a convex body in Rn and let f : ∂K → R be a positive,
continuous function with

∫
∂K

fdµ = 1.
(i) Suppose that K has a C1-boundary. Let s be such that Ks �= ∅ and let

x ∈ ∂Ks∩
◦
K. Let H be a supporting hyperplane of Ks at x such that Pf (∂K∩

H−) = s. Then x is the center of gravity of ∂K∩H with respect to the measure

f(y)µ∂K∩H(y)
< N∂K∩H(y), N∂K(y) >

i.e.

x =

∫
∂K∩H

yf(y)dµ∂K∩H(y)
<N∂K∩H(y),N∂K(y)>∫

∂K∩H
f(y)dµ∂K∩H(y)

<N∂K∩H(y),N∂K(y)>

,

where N∂K(y) is the unit outer normal to ∂K at y and N∂K∩H(y) is the unit
outer normal to ∂K ∩H at y in the plane H.
(ii) If K has a C1-boundary and Ks ⊂

◦
K, then Ks is strictly convex.

(iii) Suppose that K has a C1-boundary and KT ⊂
◦
K. Then KT consists

of one point {xT } only. This holds in particular, if for every x ∈ ∂K there
are r(x) > 0 and R(x) < ∞ such that Bn2 (x − r(x)N∂K(x), r(x)) ⊆ K ⊆
Bn2 (x−R(x)N∂K(x), R(x)).
(iv) For all s with 0 ≤ s < T and ε > 0 there is δ > 0 such that
dH(Ks,Ks+δ) < ε.

We call the point xT of Lemma 2.4.(iii) the surface point. If KT does not
consist of one point only, then we define xT to be the centroid of KT .
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Proof. (i) By Lemma 2.2.(i) there is a hyperplane H with s = Pf (∂K ∩H−).
Let H̃ be another hyperplane passing through x and ε the angle between the
two hyperplanes. Then we have

s = Pf (∂K ∩H−) ≤ Pf (∂K ∩ H̃−).

Let ξ be one of the two vectors in H with ‖ξ‖ = 1 that are orthogonal to
H ∩ H̃. Then

0 ≤ Pf (∂K ∩ H̃−)− Pf (∂K ∩H−)

=
∫
∂K∩H

< y − x, ξ > f(y) tan ε
< N∂K∩H(y), N∂K(y) >

dµ∂K∩H(y) + o(ε).

We verify the latter equality. First observe that for y ∈ ∂K ∩H the “height”
is < y − x, ξ > tan ε. This follows from the following two graphics.

ξ

∂K ∩H

y

x

H ∩ H̃

< y − x, ξ >

Fig. 2.4.1

H

H̃

ξ

ε

< y − x, ξ >

< y − x, ξ > tan ε

y

Fig. 2.4.2
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A surface element at y equals, up to an error of order o(ε), the product
of a volume element at y in ∂K ∩ H and the length of the tangential line
segment between H and H̃ at y. The length of this tangential line segment
is, up to an error of order o(ε),

< y − x, ξ > tan ε
< N∂K∩H(y), N∂K(y) >

.

< y − x, ξ > tan ε

N∂K∩H(y)

∂K

yH

H̃

Fig. 2.4.3

Therefore,

0 ≤
∫
∂K∩H

< y − x, ξ > f(y) tan ε
< N∂K∩H(y), N∂K(y) >

dµ∂K∩H(y) + o(ε).

We divide both sides by ε and pass to the limit for ε to 0. Thus we get for all
ξ

0 ≤
∫
∂K∩H

< y − x, ξ > f(y)
< N∂K∩H(y), N∂K(y) >

dµ∂K∩H(y).

Since this inequality holds for ξ as well as −ξ we get for all ξ

0 =
∫
∂K∩H

< y − x, ξ > f(y)
< N∂K∩H(y), N∂K(y) >

dµ∂K∩H(y)

or

0 =
〈∫
∂K∩H

(y − x)f(y)
< N∂K∩H(y), N∂K(y) >

dµ∂K∩H(y), ξ
〉
.

Therefore,

x =

∫
∂K∩H

yf(y)dµ∂K∩H(y)
<N∂K∩H(y),N∂K(y)>∫

∂K∩H
f(y)dµ∂K∩H(y)

<N∂K∩H(y),N∂K(y)>

.
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(ii) Suppose that Ks is not strictly convex. Then ∂Ks contains a line-segment

[u, v]. Let x ∈ (u, v). AsKs ⊆
◦
K it follows from Lemma 2.2.(i) that there exists

a support-hyperplane H = H(x,NKs(x)) of Ks such that Pf (∂K ∩H−) = s.
Moreover, we have that u, v ∈ H.

By (i)

x = u = v =

∫
∂K∩H

yf(y)dµ∂K∩H(y)
<N∂K∩H(y),N∂K(y)>∫

∂K∩H
f(y)dµ∂K∩H(y)

<N∂K∩H(y),N∂K(y)>

.

(iii) By Lemma 2.3.(ii) there is T such that KT has volume 0. Suppose that
KT consists of more than one point. All these points are elements of the
boundary of KT since the volume of KT is 0. Therefore ∂KT contains a
line-segment [u, v] and cannot be strictly convex, contradicting (ii).

The condition: For every x ∈ ∂K there is r(x) < ∞ such that K ⊇
Bn2 (x − r(x)N∂K(x), r(x)), implies that K has everywhere unique normals.
This is equivalent to differentiability of ∂K. By Corollary 25.5.1 of [Ro] ∂K is
continuously differentiable. The remaining assertion of (iii) now follows from
Lemma 2.2.(ii). ��

∂K

∂Ks

Fig. 2.4.4

We have the following remarks.
(i) The assertion of Lemma 2.2.(i) is not true if x ∈ ∂K. As an example
consider the square S with sidelength 1 in R2 and f(x) = 1

4 for all x ∈ ∂S. For
s = 1

16 the midpoints of the sides of the square are elements of S1/16, but the
tangent hyperplanes through these points contain one side and therefore cut
off a set of Pf -volume 1

4 (compare Figure 2.4.4). The construction in higher
dimensions for the cube is done in the same way. This example also shows
that the surface body is not necessarily strictly convex and it shows that the
assertion of Lemma 2.2.(ii) does not hold without additional assumptions.

(ii) If K is a symmetric convex body and f is symmetric (i.e. f(x) = f(−x)
if the center of symmetry is 0), then the surface point xT coincides with the
center of symmetry.
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If K is not symmetric then T < 1
2 is possible. An example for this is a

regular triangle C in R2. If the sidelength is 1 and f = 1
3 , then T = 4

9 and
C 4

9
consists of the barycenter of C.

(iii) In Lemma 2.4 we have shown that under certain assumptions the
surface body reduces to a point. In general this is not the case. We give an
example. Let K be the Euclidean ball Bn2 and

f =
χC + χ−C
2voln−1(C)

where C is a cap of the Euclidean ball with surface area equal to 1
4voln−1(∂Bn2 ).

Then we get that for all s with s < 1
2 that Ks contains a Euclidean ball with

positive radius. On the other hand K1/2 = ∅.

2.2 Surface Body and the Indicatrix of Dupin

The indicatrix of Dupin was introduced in section 1.5.

Lemma 2.5. Let K be a convex body in Rn and let f : ∂K → R be a a.e.
positive, integrable function with

∫
∂K

fdµ = 1. Let x0 ∈ ∂K. Suppose that
the indicatrix of Dupin exists at x0 and is an ellipsoid (and not a cylinder).
For all s such that Ks �= ∅, let the point xs be defined by

{xs} = [xT , x0] ∩ ∂Ks.

Then for every ε > 0 there is sε so that for all s with 0 < s ≤ sε the points
xs are interior points of K and for all normals N∂Ks(xs) (if not unique)

< N∂K(x0), N∂Ks(xs) > ≥ 1− ε.

If x0 is an interior point of an (n − 1)-dimensional face, then, as in the
example of the cube, there is s0 > 0 such that we have for all s with 0 ≤ s ≤ s0
that x0 ∈ ∂Ks. Thus xs = x0.

Proof. Let us first observe that for all s with 0 < s < T where T is given
by Lemma 2.3.(ii) the point xs is an interior point of K. First we observe
that x0 �= xT since the indicatrix of Dupin at x0 is an ellipsoid. Again (see
Figure 2.5.1), since the indicatrix of Dupin at x0 is an ellipsoid, (xT , x0) is a

subset of the convex hull of a cap contained in K and xT . Thus (xT , x0) ⊂
◦
K.

Lemma 2.1. (i) assures that

Pf (∂K ∩H(x0 − tN∂K(x0), N∂K(x0)))
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x0

∂K

x
T
Fig. 2.5.1

is a continuous function on [0,maxy∈K < x0 − y,N∂K(x0) >).
We claim now

∀δ > 0∃sδ > 0∀s, 0 ≤ s ≤ sδ :< N∂K(x0), N∂Ks(xs) >≥ 1− δ.

Suppose that is not true. Then there is a sequence sn, n ∈ N, such that

lim
n→∞

sn = 0 lim
n→∞

N∂Ksn
(xsn) = ξ

where ξ �= N∂K(x0). By Lemma 2.1.(iv) limn→∞ xsn = x0. Thus we get

lim
n→∞

sn = 0 lim
n→∞

xsn
= x0 lim

n→∞
N∂Ksn

(xsn
) = ξ.

Since the normal at x0 is unique and ξ �= N∂K(x0) the hyperplane H(x0, ξ)
contains an interior point of K. There is y ∈ ∂K and a supporting hyperplane
H(y, ξ) to K at y that is parallel to H(x0, ξ). There is ε > 0 and n0 such
that for all n with n ≥ n0

Bn2 (y, ε) ∩H+(xsn
, N∂Ksn

(xsn
)) = ∅.

Thus we get
Bn2 (y, ε) ∩

⋃
n≥n0

Ksn = ∅.

On the other hand, by Lemma 2.1.(iv) we have

⋃
s>0

Ks ⊇
◦
K .

This is a contradiction. ��

Lemma 2.6. Let A : Rn → Rn be a diagonal matrix with ai > 0 for all
i = 1, . . . , n. Then we have for all x, y ∈ Rn with ‖x‖ = ‖y‖ = 1
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‖Ax‖ −
Ay

‖Ay‖

∥∥∥∥ ≤ 2
(

max1≤i≤n ai
min1≤i≤n ai

)
‖x− y‖.

In particular we have

1−
〈

Ax

‖Ax‖ ,
Ay

‖Ay‖

〉
≤ 2

(
max1≤i≤n ai
min1≤i≤n ai

)2

‖x− y‖2.

Proof. We have
‖Ax−Ay‖ ≤ ( max

1≤i≤n
ai)‖x− y‖

and ∥∥∥∥ Ax

‖Ax‖ −
Ay

‖Ay‖

∥∥∥∥ ≤
∥∥∥∥ Ax

‖Ax‖ −
Ay

‖Ax‖

∥∥∥∥ +
∥∥∥∥ Ay

‖Ax‖ −
Ay

‖Ay‖

∥∥∥∥
≤ (max1≤i≤n ai)‖x− y‖

‖Ax‖ +
|‖Ax‖ − ‖Ay‖|
‖Ax‖‖Ay‖ ‖Ay‖

≤ 2
(max1≤i≤n ai)‖x− y‖

‖Ax‖ .

Since ‖x‖ = 1 we have ‖Ax‖ ≥ min1≤i≤n |ai|‖x‖. ��

By Lemma 2.5 the normal to ∂Ks at xs differs little from the normal to
K at x0 if s is small. Lemma 2.7 is a strengthening of this result.

Lemma 2.7. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be an integrable, a.e. positive function with

∫
∂K

fdµ = 1 that is continuous
at x0. Suppose that the indicatrix of Dupin exists at x0 and is an ellipsoid
(and not a cylinder). For all s such that Ks �= ∅, let xs be defined by {xs} =
[xT , x0] ∩ ∂Ks.
(i) Then for every ε > 0 there is sε so that for all s with 0 < s ≤ sε the points
xs are interior points of K and

s ≤ Pf (∂K ∩H−(xs, N∂K(x0))) ≤ (1 + ε)s.

(ii) Then for every ε > 0 there is sε so that for all s with 0 < s ≤ sε and all
normals N∂Ks

(xs) at xs

s ≤ Pf (∂K ∩H−(xs, N∂Ks
(xs))) ≤ (1 + ε)s.

Proof. We position K so that x0 = 0 and N∂K(x0) = en. Let bi, i =
1, . . . , n − 1 be the lenghts of the principal axes of the indicatrix of Dupin.
Then, by Lemma 1.2 and (3) the lengths of the principal axes of the standard
approximating ellipsoid E at x0 are given by



274 C. Schütt and E. Werner

ai = bi

(
n−1∏
i=1

bi

) 1
n−1

i = 1, . . . , n− 1 and an =

(
n−1∏
i=1

bi

) 2
n−1

.

We consider the transform T : Rn → Rn (5)

T (x) =


x1

a1

(
n−1∏
i=1

bi

) 2
n−1

, . . . ,
xn−1

an−1

(
n−1∏
i=1

bi

) 2
n−1

, xn


 . (7)

This transforms the standard approximating ellipsoid into a Euclidean
ball with radius r = (

∏n−1
i=1 bi)2/(n−1). T is a diagonal map with diagonal

elements
√
an

b1
, . . . ,

√
an

bn−1
, 1.

Let ε > 0 be given. Let δ > 0 be such that

(1 + δ)
5
2

(1− δ)(1− c2δ)3
≤ 1 + ε,

where

c = 2
max

{
max1≤i≤n−1

bi√
an
, 1

}
min

{
min1≤i≤n−1

bi√
an
, 1

} .

As f is continuous at x0 there exists a neighborhood Bn2 (x0, α) of x0 such
that for all x ∈ Bn2 (x0, α) ∩ ∂K

f(x0) (1− δ) ≤ f(x) ≤ f(x0) (1 + δ). (8)

By Lemma 2.5, for all ρ > 0 there exists s(ρ) such that for all s with 0 < s ≤
s(ρ)

< N∂K(x0), N∂Ks(xs) >≥ 1− ρ (9)

and the points xs are interior points of K.
Therefore, for δ > 0 given, it is possible to choose s(δ) such that for all

s with 0 < s ≤ s(δ), N∂K(x0) and N∂Ks(xs) differ so little that both of the
following hold

∂K ∩H−(xs, N∂Ks
(xs)) ⊆ Bn2 (x0, α) (10)

and

< N∂K(x0), N∂Ks
(xs) > ≥ 1− δ. (11)

Indeed, in order to obtain (11) we have to choose ρ smaller than δ. In order
to satisfy (10) we choose s(δ) so small that the distance of xs to x0 is less
than one half of the height of the biggest cap of K with center x0 that is
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contained in the set K ∩Bn2 (x0, α). Now we choose ρ in (9) sufficiently small
so that (10) holds.

As the points xs are interior points of K, by Lemma 2.2.(i), for all s with
0 < s ≤ s(δ) there is N∂Ks(xs) such that

s = Pf (∂K ∩H(xs, N∂Ks(xs)). (12)

Please note that

T−1t(N∂Ks
(xs))

‖T−1t(N∂Ks
(xs))‖

(13)

is the normal of the hyperplane

T (H(xs, N∂Ks(xs))).

We observe next that (9) implies that for all ρ > 0 there exists s(ρ) such that
for all s ≤ s(ρ) 〈

N∂K(x0),
T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉
≥ 1− c2ρ, (14)

where T−1t is the transpose of the inverse of T and c the constant above.
Indeed, since

< N∂K(x0), N∂Ks(xs) > ≥ 1− ρ

we have
‖N∂K(x0)−N∂Ks(xs)‖ ≤

√
2ρ.

Now we apply Lemma 2.6 to the map T−1t. Since N∂K(x0) = en =
T−1t(en) = T−1t(N∂K(x0)) we obtain with

c = 2
max{max1≤i≤n−1

bi√
an
, 1}

min{min1≤i≤n−1
bi√
an
, 1}

that ∥∥∥∥N∂K(x0)−
T−1t(N∂Ks

(xs))
‖T−1t(N∂Ks(xs))‖

∥∥∥∥ ≤ c
√

2ρ

which is the same as

1− c2ρ ≤
〈
N∂K(x0),

T−1t(N∂Ks
(xs))

‖T−1t(N∂Ks(xs))‖

〉
.

By Lemma 1.4, for δ given there exists t1 such that for all t with t ≤ t1

voln−1(K ∩H(x0 − t N∂K(x0), N∂K(x0)))
≤ voln−1(∂K ∩H−(x0 − t N∂K(x0), N∂K(x0))) (15)

≤ (1 + δ)

√
1 +

2ta3
n

(an − t)2 min1≤i≤n−1 a2
i

×voln−1(K ∩H(x0 − t N(x0), N(x0))).
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Recall that r is the radius of the approximating Euclidean ball for T (K) at
x0 = 0. For δ given, we choose η = η(δ) such that

η < min

{
r

1− (1− c2δ)
2

n−1

1 + (1− c2δ)
2

n−1
, δ

}
. (16)

Then, for such an η, by Lemma 1.2, there is t2 > 0 so that we have for all t
with 0 ≤ t ≤ t2

Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H(x0 − t N∂K(x0), N∂K(x0)))
⊆ T (K) ∩ T (H(x0 − t N∂K(x0), N∂K(x0))) (17)
⊆ Bn2 (x0 − (r + η)N∂K(x0), r + η) ∩ T (H(x0 − t N∂K(x0), N∂K(x0))).

Let t0 = min{t1, t2}.
By (14) we can choose s(η) such that for all s ≤ s(η), N∂K(x0) and the

normal to T (H(xs, N∂Ks
(xs))) differ so little that both of the following hold〈

N∂K(x0),
T−1t(N∂Ks

(xs))
‖T−1t(N∂Ks(xs))‖

〉
≥ 1− c2η ≥ 1− c2δ (18)

and

min{yn|y = (y1, . . . , yn) ∈ T (H(xs, N∂Ks
(xs))) (19)

∩Bn2 (x0 − (r − η)N∂K(x0), r − η)} ≥ −t0.

Then we get by (17) for all s with 0 < s ≤ s(η)

Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H(xs, N∂Ks
(xs)))

⊆ T (K) ∩ T (H(xs, N∂Ks(xs))) (20)
⊆ Bn2 (x0 − (r + η)N∂K(x0), r + η) ∩ T (H(xs, N∂Ks(xs))).

The set on the left hand side of (20) is a (n− 1)-dimensional Euclidean ball
whose radius is greater or equal√

2(r − η)hs − h2
s (21)

where hs is the distance of T (xs) to the boundary of the Euclidean ball
Bn2 (x0 − (r − η)N∂K(x0), r − η). See Figure 2.7.1. The height of the cap

K ∩H−(xs, N∂K(x0))

is denoted by ∆s. It is also the height of the cap

K ∩H−(T (xs), N∂K(x0))

because T does not change the last coordinate. Let θ be the angle between
x0 − T (xT ) and N∂K(x0). Then we have by the Pythagorean theorem
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((r − η)− hs)2 = ((r − η)−∆s)2 + (∆s tan θ)2

and consequently

hs = (r − η)


1−

√(
1− ∆s

r − η

)2

+
(
∆s tan θ
r − η

)2

 .

zs

x̄s

θ
x0

T ( )

T ( )xs

T ( )x
T − ρN( )x0x0

Bn2 (x0− (r−η)N(x0), r−η)

hs

Fig. 2.7.1

x0 and T (xs) are in the plane that can be seen in Figure 2.7.1. We use
now

√
1− t ≤ 1− 1

2 t to get that

hs ≥ ∆s −
1
2
∆2
s

r − η

(
1 + tan2 θ

)
. (22)

Now we prove (i). The inequality

s ≤ Pf (∂K ∩H−(xs, N∂K(x0)))

holds because H passes through xs. We show the right hand inequality. Let
ε, δ and η be as above. We choose sδ such that

1. sδ ≤ min {s(δ), s(η) }

2. ∆sδ
≤ min

{
t0,

an
2
, (r − η),

a2
nδ

8 min1≤i≤(n−1) bi
,

4c2δ(r − η)
(n− 1)(1 + tan2 θ)

,

2

(
r − η

1 + (1− c2δ)
2

n−1

1− (1− c2δ)
2

n−1

)}
.
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We have for all s ≤ sδ

voln−1(∂K ∩H−(xs, N∂Ks
(xs))) ≥ voln−1(K ∩H(xs, N∂Ks

(xs))).

Now note that

voln−1(K ∩H(xs, N∂Ks
(xs))) =

voln−1(pen
(K ∩H(xs, N∂Ks

(xs))))
< N∂K(x0), N∂Ks

(xs) >
(23)

≥ voln−1(pen
(K ∩H(xs, N∂Ks

(xs)))) (24)

where pen is the orthogonal projection onto the first n− 1 coordinates.

∂K
xs

x0 H(xs, N∂Ks
(xs))

pen
(K ∩H(xs, N∂Ks

(xs)))

Fig. 2.7.2

Since T ◦ pen = pen ◦ T and since T is volume preserving in hyperplanes
that are orthogonal to en we get

voln−1(∂K ∩H−(xs, N∂Ks(xs)))
≥ voln−1(pen(T (K) ∩ T (H(xs, N∂Ks(xs))))

=
〈
N∂K(x0),

T−1t(N∂Ks
(xs))

‖T−1t(N∂Ks
(xs))‖

〉
voln−1(T (K) ∩ T (H(xs, N∂Ks(xs))).

The last equality follows from (13) and (23). By (18) we then get that the
latter is greater than or equal to

(1− c2δ) voln−1(T (K) ∩ T (H(xs, N∂Ks(xs)))),

which, in turn, by (20) and (21) is greater than or equal to

(1− c2δ)voln−1(Bn−1
2 )

(
2(r − η)hs − h2

s

)n−1
2 .

By (22) and as the function
(
2(r − η)∆−∆2

)n−1
2 is increasing in ∆ for ∆ ≤

r − η, the latter is greater or equal

(1− c2δ)voln−1(Bn−1
2 )

(
1− (1 + tan2 θ)∆s

2(r − η)

)n−1
2 (

2(r − η)∆s −∆2
s

)n−1
2 .

(25)
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In the last inequality we have also used that (1− (1+tan2 θ)∆s

2(r−η) )
n−1

2 ≤ 1.

∆s ≤ 4c2δ(r−η)
(n−1)(1+tan2 θ) implies that

(
1− (1 + tan2 θ)∆s

2(r − η)

)n−1
2

≥
(

1− 2c2

n− 1
δ

)n−1
2

≥ 1− c2δ.

∆s ≤ 2
(
r − η 1+(1−c2δ)

2
n−1

1−(1−c2δ)
2

n−1

)
implies that

2(r − η)− 2(r + η)(1− c2δ)
2

n−1 ≥ ∆s(1− (1− c2δ)
2

n−1 )

which is equivalent to

(2(r − η)−∆s) ≥ (1− c2δ)
2

n−1 (2(r + η)−∆s)

and (
2(r − η)∆s −∆2

s

)n−1
2 ≥ (1− c2δ)

(
2(r + η)∆s −∆2

s

)n−1
2 .

Hence we get for all s ≤ sδ that (25) is greater than

(1− c2δ)3voln−1(Bn−1
2 )

(
2(r + η)∆s −∆2

s

)n−1
2

= (1− c2δ)3voln−1(Bn2 (x0 − (r + η)N∂K(x0), r + η)
∩H(x0 −∆sN∂K(x0), N∂K(x0)))

= (1− c2δ)3voln−1(Bn2 (x0 − (r + η)N∂K(x0), r + η)
∩ T (H(x0 −∆sN∂K(x0), N∂K(x0)))),

as T does not change the last coordinate. By (17) the latter is greater than

(1− c2δ)3voln−1(T (K) ∩ T (H(x0 −∆sN∂K(x0), N∂K(x0)))
= (1− c2δ)3voln−1(K ∩H(x0 −∆sN∂K(x0), N∂K(x0)))

≥ (1− c2δ)3

1 + δ

voln−1(∂K ∩H−(x0 −∆sN∂K(x0), N∂K(x0)))(
1 + 2∆sa3n

(an−∆s)2 min1≤i≤(n−1) a
2
i

) 1
2

≥ (1− c2δ)3

(1 + δ)
3
2

voln−1(∂K ∩H−(x0 −∆sN∂K(x0), N∂K(x0))).

The second last inequality follows with (15) and the last inequality follows
as ∆s ≤ a2nδ

8 min1≤i≤(n−1) bi
.

Therefore we get altogether that

voln−1(∂K ∩H−(xs, N∂Ks(xs))) (26)

≥ (1− c2δ)3

(1 + δ)
3
2

voln−1(∂K ∩H−(x0 −∆sN∂K(x0), N∂K(x0))).
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Hence, by (12)

s = Pf (∂K ∩H−(xs, N∂Ks
(xs))) =

∫
∂K∩H−(xs,N∂Ks (xs))

f(x)dµ.

By (8)
s ≥ (1− δ)f(x0)voln−1(∂K ∩H−(xs, N∂Ks(xs))).

By (26)

s ≥ (1− δ)(1− c2δ)3

(1 + δ)
3
2

f(x0)voln−1(∂K ∩H−(x0 −∆sN∂K(x0), N∂K(x0)))).

By (8) and (10)

s ≥ (1− δ)(1− c2δ)3

(1 + δ)
5
2

∫
∂K∩H−(x0−∆sN∂K(x0),N∂K(x0)))

f(x)dµ

=
(1− δ)(1− c2δ)3

(1 + δ)
5
2

Pf (∂K ∩H−(x0 −∆sN∂K(x0), N∂K(x0)))).

For ε given, we choose now sε = sδ. By our choice of δ, this finishes (i).

(ii) We assume that the assertion is not true. Then

∃ε > 0∀sε > 0∃s, 0 < s < sε∃N∂Ks
(xs) : Pf (∂K∩H(xs, N∂Ks

(xs))) ≥ (1+ε)s.

We consider ys ∈ H(xs, N∂Ks
(xs)) such that T (ys) is the center of the n− 1-

dimensional Euclidean ball

Bn2 (x0 − (r − η)N(x0), r − η) ∩ T (H(xs, N∂Ks(xs))).

Since ys ∈ H(xs, N∂Ks
(xs)) we have ys /∈

◦
Ks. Consequently, by the definition

of Ks there is a hyperplane H such that ys ∈ H and Pf (∂K ∩H−) ≤ s.
On the other hand, we shall show that for all hyperplanes H with ys ∈ H

we have Pf (∂K ∩H−) > s which gives a contradiction.
We choose δ as in the proof of (i) and moreover so small that ε > 10δ and

sδ small enough so that the two following estimates hold.

(1 + ε)s ≤ Pf (∂K ∩H−(xs, N∂Ks
(xs)))

≤ (1 + δ)f(x0)voln−1(∂K ∩H−(xs, N∂Ks(xs)))

We verify this. As f is continuous at x0, for all δ > 0 there exists α such that
for all x ∈ Bn2 (x0, α) ∩ ∂K

(1− δ)f(x0) ≤ f(x) ≤ (1 + δ)f(x0).

By Lemma 2.5, for all ρ > 0 there is sρ such that for all s with 0 < s ≤ sρ
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< N∂K(x0), N∂Ks(xs) > ≥ 1− ρ.

Moreover, the indicatrix at x0 exists and is an ellipsoid. Therefore we can
choose sρ sufficiently small so that for all s with 0 < s ≤ sρ

∂K ∩H−(xs, N∂Ks
(xs)) ⊆ Bn2 (x0, α).

Thus there is sδ such that for all s with 0 < s ≤ sδ

Pf (∂K ∩H−(xs, N∂Ks
(xs))) =

∫
∂K∩H−(xs,N∂Ks (xs))

f(x)dµ(x)

≤ (1 + δ)f(x0)voln−1(∂K ∩H−(xs, N∂Ks
(xs))).

Thus
(1 + ε)s ≤ (1 + δ)f(x0)voln−1(∂K ∩H−(xs, N∂Ks(xs))).

Since the indicatrix at x0 exists and is an ellipsoid for all ρ there is sρ such
that for all x ∈ ∂K ∩H−(xs, N∂Ks

(xs))

< N∂K(x), N∂Ks
(xs) > ≥ 1− ρ.

Therefore

(1 + ε)s ≤ (1 + 2δ)f(x0)voln−1(K ∩H(xs, N∂Ks
(xs)))

which by (23) equals

(1 + 2δ)f(x0)
voln−1(pen

(K ∩H(xs, N∂Ks
(xs))))

< N∂K(x0), N∂Ks
(xs) >

.

By Lemma 2.5 for all s with 0 < s ≤ sδ

(1 + ε)s ≤ (1 + 3δ)f(x0)voln−1(pen(K ∩H(xs, N∂Ks(xs)))).

Since T ◦ pen = pen ◦T and since T is volume preserving in hyperplanes that
are orthogonal to en we get

(1 + ε)s ≤ (1 + 3δ)f(x0)voln−1(pen(T (K) ∩ T (H(xs, N∂Ks(xs))))).

Since

T (K) ∩ T (H(xs, N∂Ks(xs))))
⊆ Bn2 (x0 − (r + η)N∂K(x0), r + η) ∩ T (H(xs, N∂Ks(xs))))

we get

(1 + ε)s
≤ (1 + 3δ)f(x0)voln−1(pen

(Bn2 (x0 − (r + η)N∂K(x0), r + η))
∩T (H(xs, N∂Ks

(xs))))
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and thus

(1 + ε)s
≤ (1 + 4δ)f(x0)voln−1(pen(Bn2 (x0 − (r − η)N∂K(x0), r − η)

∩T (H(xs, N∂Ks(xs))))).

Since T (ys) is the center of

Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H(xs, N∂Ks(xs))))

we have for all hyperplanes H with ys ∈ H

(1 + ε)s
≤ (1 + 4δ)f(x0)voln−1(pen(Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H)).

Thus we get for all hyperplanes H with ys ∈ H and

Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H) ⊆ T (K) ∩ T (H)

that
(1 + ε)s ≤ (1 + 5δ)Pf (∂K ∩H−).

Please note that ε > 10δ. We can choose sδ so small that we have for all s
with 0 < s ≤ sδ and all hyperplanes H with ys ∈ H and

Bn2 (x0 − (r − η)N∂K(x0), r − η) ∩ T (H) � T (K) ∩ T (H)

that
s < Pf (∂K ∩H−).

Thus we have s < Pf (∂K ∩H−) for all H which is a contradiction. ��

Lemma 2.8. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin at x0 exists and is an ellipsoid. Let f : ∂K → R be a a.e.
positive, integrable function with

∫
fdµ = 1 that is continuous at x0. Let E be

the standard approximating ellipsoid at x0. For 0 ≤ s ≤ T let xs be given by

{xs} = [xT , x0] ∩ ∂Ks

and x̄s by

{x̄s} = H(xs, N∂Ks(xs)) ∩ {x0 + tN∂K(x0)|t ∈ R}.

The map Φ : ∂K ∩H(xs, N∂Ks(xs)) → ∂E ∩H(xs, N∂Ks(xs)) is defined by

{Φ(y)} = ∂E ∩ {x̄s + t(y − xs)|t ≥ 0}.
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Then, for every ε > 0 there is sε such that we have for all s with 0 < s < sε
and all z ∈ ∂E ∩H(xs, N∂Ks

(xs))∣∣∣∣∣ 1√
1− < N∂E(z), N∂Ks(xs) >2

− 1√
1− < N∂K(Φ−1(z)), N∂Ks(xs) >2

∣∣∣∣∣
≤ ε√

1− < N∂E(z), N∂Ks
(xs) >2

.

Proof. During this proof several times we choose the number sε sufficiently
small in order to assure certain properties. Overall, we take the minimum of
all these numbers.

Note that x̄s ∈ K and by Lemma 2.7.(i) xs is an interior point of K for s
with 0 < s ≤ sε. Therefore the angles between any of the normals are strictly
larger than 0 and the expressions are well-defined.

Let zs be given by

{zs} = {x0 + tN∂K(x0)|t ∈ R} ∩H(xs, N∂K(x0)).

∂K

∂E

xs

−xs

zs

H(xs, N(xs))
x0

Fig. 2.8.1

In Figure 2.8.1 we see the plane through x0 spanned by N∂K(x0) and
N∂Ks(xs). The point xs is not necessarily in this plane, but zs is. The
point xs is contained in the intersection of the planes H(xs, N∂Ks(xs)) and
H(xs, N∂K(x0)).

As in the proof of Lemma 2.7 let bi, i = 1, . . . , n− 1 be the lenghts of the
principal axes of the indicatrix of Dupin. Then, by Lemma 1.2 and by (3)
in the standard approximating ellipsoid E at x0 the lengths of the principal
axes are given by

ai = bi

(
n−1∏
i=1

bi

) 1
n−1

i = 1, . . . , n− 1 and an =

(
n−1∏
i=1

bi

) 2
n−1

.
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We can assume that x0 = 0 and N∂K(x0) = en. The standard approximating
ellipsoid E is centered at x0 − anN∂K(x0) and given by

n−1∑
i=1

∣∣∣∣xiai
∣∣∣∣
2

+
∣∣∣∣xnan + 1

∣∣∣∣
2

≤ 1.

We consider the transform T : Rn → Rn

T (x) =


x1

a1

(
n−1∏
i=1

bi

) 2
n−1

, . . . ,
xn−1

an−1

(
n−1∏
i=1

bi

) 2
n−1

, xn


 .

See (5) and (7). This transforms the ellipsoid into a Euclidean sphere with

radius ρ =
(∏n−1

i=1 bi

) 2
n−1

, i.e.

T (E) = Bn2 ((0, . . . , 0,−ρ), ρ) .

Let δ > 0 be given. Then there exists sδ such that for all s with 0 < s ≤ sδ
and all normals N∂Ks(xs) at xs (the normal may not be unique)

f(x0) voln−1(T (E) ∩ T (H(xs, N∂Ks(xs)))) ≤ (1 + δ)s. (27)

Indeed, by Lemma 2.7.(ii) we have

Pf (∂K ∩H−(xs, N∂Ks
(xs))) ≤ (1 + δ)s.

Now

(1 + δ)s ≥ Pf (∂K ∩H−(xs, N∂Ks
(xs)))

=
∫
∂K∩H−(xs,N∂Ks (xs))

f(x)dµ∂K(x).

By continuity of f at x0

(1 + δ)2s ≥ f(x0)voln−1(∂K ∩H−(xs, N∂Ks(xs)))
≥ f(x0)voln−1(K ∩H(xs, N∂Ks(xs))).

We have N∂K(x0) = en. By (23) we see that the latter equals

f(x0)
voln−1(pen

(K ∩H(xs, N∂Ks
(xs))))

< N∂K(x0), N∂Ks
(xs) >

.

Since < N∂K(x0), N∂Ks(xs) >≤ 1

(1 + δ)2s ≥ f(x0)voln−1(pen(K ∩H(xs, N∂Ks(xs)))).

Since T is volume preserving in all hyperplanes orthogonal to N∂K(x0)
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(1 + δ)2s ≥ f(x0)voln−1(T (pen(K ∩H(xs, N∂Ks(xs))))).

Since T ◦ pen
= pen

◦ T

(1 + δ)2s ≥ f(x0)voln−1(pen(T (K) ∩ T (H(xs, N∂Ks(xs)))))

= f(x0)
〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉
×voln−1(T (K) ∩ T (H(xs, N∂Ks(xs)))).

The latter equality follows since en = N∂K(x0). As in the proof of Lemma
2.7. (i) we get

(1 + δ)3s ≥ f(x0)voln−1(T (K) ∩ T (H(xs, N∂Ks
(xs)))).

α

zs

x̄s

θ T (H(xs, N(xs)))

α

x0

T ( )
T ( )xs

T ( )x
T − ρN( )x0x0

Bn2 ((0, . . . , 0,−ρ), ρ) = T (E)

Fig. 2.8.2

T (E) approximates T (K) well as E approximates K well. By Lemma 2.5
we have < N∂K(x0), N∂Ks(xs) >≥ 1− δ. This and Lemma 1.2 give

(1 + δ)4s ≥ f(x0)voln−1(T (E) ∩ T (H(xs, N∂Ks(xs)))).

Now we pass to a new δ and establish (27).
x̄s is the point where the plane H(xs, N∂Ks(xs)) and the line through x0

with direction N∂K(x0) intersect.

{x̄s} = H(xs, N∂Ks
(xs)) ∩ {x0 + tN∂K(x0)|t ∈ R}

In Figure 2.8.2 we see the plane through x0 spanned by the vectors N∂K(x0)
and T−1t(N∂Ks

(xs)). The point zs is also contained in this plane. The line
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through x0, T (xs), and T (xT ) is not necessarily in this plane. We see only
its projection onto this plane. Also the angle θ is not necessarily measured in
this plane. θ is measured in the plane spanned by N∂K(x0) and x0 − T (xT ).

α is the angle between the hyperplanes

T (H(xs, N∂K(xs))) and H(zs, N∂K(x0)).

Please observe that x̄s = T (x̄s), zs = T (zs) and that the plane

T (H(xs, N∂Ks
(xs)))

is orthogonal to T−1t(N∂Ks
(xs)).

We observe that for small enough sδ we have for s with 0 < s ≤ sδ

‖x0 − x̄s‖ ≥ (1− δ)‖x0 − zs‖ (28)

which is the same as

‖x0 − T (x̄s)‖ ≥ (1− δ)‖x0 − zs‖.

We check the inequality. Figure 2.8.2 gives us that

‖x̄s − zs‖ ≤ tan θ tanα‖x0 − zs‖.

We would have equality here if the angle θ would be contained in the plane
that is seen in Figure 2.8.2. The angle θ is fixed, but we can make sure that
the angle α is arbitrarily small. By Lemma 2.5 it is enough to choose sδ
sufficiently small. Thus (28) is established.

By Figure 2.8.2 the radius of the n− 1-dimensional ball

Bn2 (x0 − ρN∂K(x0), ρ) ∩ T (H(xs, N∂Ks(xs)))

with ρ =
(∏n−1

i=1 bi

) 2
n−1

equals
√
ρ2 − (ρ− ‖x0 − x̄s‖)2 cos2 α

which by (28) is greater than or equal to√
ρ2 − (ρ− (1− δ)‖x0 − zs‖)2 cos2 α

=

√
ρ2 − (ρ− (1− δ)‖x0 − zs‖)2

〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉2

.

By (27) we get with a new δ[
ρ2 − (ρ− (1− δ)‖x0 − zs‖)2

〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉2
]n−1

2

×voln−1(Bn−1
2 )

≤ voln−1(T (E) ∩H(T (xs), T−1t(N∂Ks
(xs)))) ≤

(1 + δ)s
f(x0)

. (29)
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On the other hand,

s ≤ Pf (∂K ∩H−(xs, N∂K(x0))) = Pf (∂K ∩H−(zs, N∂K(x0)))

=
∫
∂K∩H−(zs,N∂K(x0))

f(x)dµ(x).

Now we use the continuity of f at x0 and Lemma 1.4 to estimate the latter.

s ≤ (1 + δ)f(x0)voln−1(K ∩H(zs, N∂K(x0)))

As above we use that T is volume-preserving in hyperplanes orthogonal to
N∂K(x0). Note that T (H(zs, N∂K(x0))) = H(zs, N∂K(x0)).

s ≤ (1 + δ)f(x0)voln−1(T (K) ∩H(zs, N∂K(x0)))

Since T (E) approximates T (K) well (Lemma 1.2)

s ≤ (1 + δ)2f(x0)voln−1(T (E) ∩H(zs, N∂K(x0))).

Therefore (29) is less than

(1 + δ)3voln−1(T (E) ∩H(zs, N∂K(x0)))

= (1 + δ)3(ρ2 − (ρ− ‖x0 − zs‖)2)
n−1

2 voln−1(Bn−1
2 )

= (1 + δ)3(2ρ‖x0 − zs‖ − ‖x0 − zs‖2)
n−1

2 voln−1(Bn−1
2 ).

From this we get

ρ2 − (ρ− (1− δ)‖x0 − zs‖)2
〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks

(xs))‖

〉2

≤ (1 + δ)
6

n−1 (2ρ‖x0 − zs‖ − ‖x0 − zs‖2)

which gives us

(ρ− (1− δ)‖x0 − zs‖)2
(

1−
〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks

(xs))‖

〉2
)

≤ (1 + δ)
6

n−1 (2ρ‖x0 − zs‖ − ‖x0 − zs‖2)
−2(1− δ)ρ‖x0 − zs‖+ (1− δ)2‖x0 − zs‖2.

This is less than cδρ‖x0− zs‖ where c is a numerical constant. Thus we have

1−
〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉2

≤ cδ
ρ‖x0 − zs‖

(ρ− ‖x0 − zs‖)2
.
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xs

zs

− ρN ( )

Bn2 ( − (ρ+ η)N ( ), ρ+ η)

Bn2 ( − (ρ−η)N ( ), ρ−η)

T (Φ−1(z))

T (z)
x0

x0 x0

x0 x0

x0 x0

∂K

∂K

∂K

Fig. 2.8.3

If we choose sδ sufficiently small we get for all s with 0 < s ≤ sδ

1−
〈
N∂K(x0),

T−1t(N∂Ks(xs))
‖T−1t(N∂Ks(xs))‖

〉2

≤ δ‖x0 − zs‖. (30)

This is equivalent to

1−
〈
N∂K(x0),

T−1t(N∂Ks
(xs))

‖T−1t(N∂Ks
(xs))‖

〉
≤ δ‖x0 − zs‖ (31)

which is the same as∥∥∥∥N∂K(x0)−
T−1t(N∂Ks

(xs))
‖T−1t(N∂Ks(xs))‖

∥∥∥∥ ≤√
2δ‖x0 − zs‖. (32)

Now we show that for every ε > 0 there is sε such that we have for all s with
0 < s ≤ sε

‖N∂K(Φ−1(z))−N∂E(z)‖ ≤ ε
√
‖x0 − zs‖. (33)

By Lemma 2.6 it is enough to show∥∥∥∥ T−1t(N∂K(Φ−1(z)))
‖T−1t(N∂K(Φ−1(z)))‖ −

T−1t(N∂E(z))
‖T−1t(N∂E(z))‖

∥∥∥∥ ≤ ε
√
‖x0 − zs‖.

T transforms the approximating ellipsoid E into the Euclidean ball T (E) =
Bn2 (x0 − ρN∂K(x0), ρ). We have

N∂TK(T (Φ−1(z))) =
T−1t(N∂K(Φ−1(z)))
‖T−1t(N∂K(Φ−1(z)))‖

and
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N∂TE(T (z)) =
T−1t(N∂E(z))
‖T−1t(N∂E(z))‖ .

Therefore, the above inequality is equivalent to

‖N∂TK(T (Φ−1(z)))−N∂TE(T (z))‖ ≤ ε
√
‖x0 − zs‖.

T (z) and T (Φ−1(z))) are elements of the hyperplane T (H(xs, N∂Ks
(xs)))

that is orthogonal to T−1t(N∂Ks(xs)). We want to verify now this inequality.
It follows from Lemma 1.2 that for every η there is a δ so that

Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η) ∩H−(x0 − δN∂K(x0), N∂K(x0))
⊆ T (K) ∩H−(x0 − δN∂K(x0), N∂K(x0)) (34)
⊆ Bn2 (x0 − (ρ+ η)N∂K(x0), ρ+ η) ∩H−(x0 − δN∂K(x0), N∂K(x0)).

For sη sufficiently small we get for all s with 0 < s ≤ sη

T (H−(xs, N∂Ks
(xs))) ∩Bn2 (x0 − (ρ+ η)N∂K(x0), ρ+ η)

⊆ H−(x0 − 2‖x0 − zs‖N∂K(x0), N∂K(x0)) (35)
∩Bn2 (x0 − (ρ+ η)N∂K(x0), ρ+ η).

We verify this. By (30) the angle β between the vectors

N∂K(x0) and
T−1t(N∂Ks

(xs))
‖T−1t(N∂Ks(xs))‖

satisfies sin2 β ≤ δ‖x0 − zs‖. In case (35) does not hold we have

tanβ ≥ 1
4

√
‖x0 − zs‖
ρ+ η

.

β

H(x0 − 2‖x0 − zs‖N∂K(x0), N∂K(x0))

H(x0 − ‖x0 − zs‖N∂K(x0), N∂K(x0))

T (H(xs, N∂Ks(xs)))

x0

Fig. 2.8.4

This is true since T (H(xs, N∂Ks
(xs))) intersects the two hyperplanes

H(x0−‖x0−zs‖N∂K(x0), N∂K(x0)) andH(x0−2‖x0−zs‖N∂K(x0), N∂K(x0)).
Compare Figure 2.8.4. This is impossible if we choose δ sufficiently small.

Let sη be such that (35) holds. The distance of T (Φ−1(z))) to the bound-
ary of Bn2 (x0 − (ρ − η)N∂K(x0), ρ − η) is less than 4η

ρ−η‖x0 − zs‖. We check
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this. T (Φ−1(z))) is contained in Bn2 (x0 − (ρ + η)N∂K(x0), ρ + η) but not in
Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η). See Figure 2.8.5.

Bn2 ( − (ρ+ η)N ( ), ρ+ η)

Bn2 ( − (ρ−η)N ( ), ρ−η)

x0

T (Φ−1(z))

x0

x0

x0

x0− (ρ−η)N ( )x0x0 ∂K∂K

∂K

x0 + tnN∂K(x0)

y

Fig. 2.8.5

Let tn denote the n-th coordinate of T (Φ−1(z))). By Figure 2.8.5 we get

‖(x0 − (ρ− η)N∂K(x0))− y‖2

= (ρ− η − |tn|)2 + (2|tn|(ρ+ η)− t2n)
= (ρ− η)2 + 4η|tn|.

Thus the distance of T (Φ−1(z))) to the boundary of

Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η)

is less than

‖(x0 − (ρ− η)N∂K(x0))− y‖ − (ρ− η)

=
√

(ρ− η)2 + 4η|tn| − (ρ− η)

= (ρ− η)

{√
1 +

4η|tn|
(ρ− η)2

− 1

}

≤ (ρ− η)
2η|tn|

(ρ− η)2
=

2η|tn|
ρ− η

.

By (35) we have |tn| ≤ 2‖x0 − zs‖. Thus we get

‖(x0 − (ρ− η)N∂K(x0))− y‖ − (ρ− η) ≤ 4η‖x0 − zs‖
ρ− η

.

Thus the distance of T (Φ−1(z))) to the boundary of
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Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η)

is less than

4η
ρ− η

‖x0 − zs‖. (36)

By (34)

Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η) ∩H−(x0 − δN∂K(x0), N∂K(x0))
⊆ T (K) ∩H−(x0 − δN∂K(x0), N∂K(x0)).

Therefore a supporting hyperplane of ∂T (K) at T (Φ−1(z))) cannot intersect

Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η) ∩H−(x0 − δN∂K(x0), N∂K(x0)).

Therefore, if we choose sε small enough a supporting hyperplane of ∂T (K)
at T (Φ−1(z))) cannot intersect

Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η).

We consider now a supporting hyperplane of Bn2 (x0− (ρ− η)N∂K(x0), ρ− η)
that is parallel to T (H(Φ−1(z), N∂K(Φ−1(z)))). Let w be the contact point
of this supporting hyperplane and Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η).

T (Φ−1(z))

Bn2 ( − (ρ−η)N ( ), ρ−η)

x0

x0 x0

v

− (ρ−η)N ( )x0 x0

∂K

∂K

w

u

H( , N∂K ( ))T (Φ−1(z)) T (Φ−1(z))

Fig. 2.8.6

Thus the hyperplane is H(w,N∂K(Φ−1(z)))) and
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N∂Bn
2 (x0−(ρ−η)N∂K(x0),ρ−η)(w) = N∂TK(T (Φ−1(z))). (37)

We introduce two points v ∈ ∂Bn2 (x0 − (ρ− η)N∂K(x0), ρ− η) and u.

v = x0 − (ρ− η)N∂K(x0) + (ρ− η)
T (Φ−1(z)))− (x0 − (ρ− η)N∂K(x0))
‖T (Φ−1(z)))− (x0 − (ρ− η)N∂K(x0))‖

{u} = [x0 − (ρ− η)N∂K(x0), T (Φ−1(z))] ∩H(w, T−1t(N∂K(Φ−1(z))))

We claim that
‖w − u‖ ≤ ε

√
‖x0 − zs‖.

We check this inequality. By the Pythagorean theorem (see Figure 2.8.6)

‖w − u‖ =
√
‖u− (x0 − (ρ− η)N∂K(x0))‖2 − (ρ− η)2.

By (36) the distance ‖T (Φ−1(z))) − v‖ of T (Φ−1(z))) to the boundary of
Bn2 (x0 − (ρ − η)N∂K(x0), ρ − η) is less than 4η

ρ−η‖x − zs‖. Since ‖v − u‖ ≤
‖v − T (Φ−1(z)))‖ we get with ε = 4η

ρ−η

‖w − u‖ ≤
√

(ρ− η + ε‖x0 − zs‖)2 − (ρ− η)2

≤
√

2ερ‖x0 − zs‖) + (ε‖x0 − zs‖)2.

This implies
‖w − u‖ ≤ ε

√
‖x0 − zs‖

and also
‖w − v‖ ≤ ε

√
‖x0 − zs‖.

Since

N(w) = N∂Bn
2 (x0−(ρ−η)N∂K(x0),ρ−η)(w)

N(v) = N∂Bn
2 (x0−(ρ−η)N∂K(x0),ρ−η)(v)

we get

‖N(w)−N(v)‖ =
‖w − v‖
ρ− η

≤ ε

√
‖x0 − zs‖
ρ− η

.

Since N(w) = N∂K(T (Φ−1(z)))) we get

‖N∂T (K)(T (Φ−1(z))))−N(v)‖ ≤ ε

√
‖x0 − zs‖
ρ− η

.

We observe that
‖v − T (z)‖ ≤ ε

ρ

√
‖x0 − zs‖.

This is done as above. Both points are located between the two Euclidean
balls Bn2 (x0 − (ρ − η)N∂K(x0), ρ − η) and Bn2 (x0 − (ρ + η)N∂K(x0), ρ + η).
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The line passing through both points also intersects both balls and thus the
distance between both points must be smaller than ε

ρ

√
‖x0 − zs‖.

From this we conclude in the same way as we have done for N(v) and
N∂K(T (Φ−1(z)))) that we have with a new ε

‖N(v)−N∂TE(T (z))‖ ≤ ε

ρ

√
‖x0 − zs‖.

Therefore we get by triangle inequality

‖N∂TK(T (Φ−1(z))))−N∂TE(T (z))‖ ≤ ε

ρ

√
‖x0 − zs‖

and thus finally the claimed inequality (33) with a new ε

‖N∂K(Φ−1(z))−N∂E(z)‖ ≤ ε
√
‖x0 − zs‖.

Now we show

1− < N∂K(Φ−1(z)), N∂Ks
(xs) >2 ≥ c‖x0 − zs‖. (38)

For all s with 0 < s ≤ sε the distance of T (xs) to the boundary of TE =
Bn2 (x0 − ρN∂K(x0), ρ) is larger than c‖x0 − zs‖. Thus the height of the cap

TE ∩H−(xs, N∂Ks(xs))

is larger than c‖x0−zs‖. The radius of the cap is greater than
√

2cρ‖x0 − zs‖.
By Figure 2.8.2 there is a c such that we have for all s with 0 < s ≤ sη

‖T (xs)− x0‖ ≤ c‖x0 − zs‖.

By triangle inequality we get with a new c

‖x0 − T (z)‖ ≥ c
√
ρ‖x0 − zs‖.

We have
N∂TE(T (z)) = 1

ρ (T (z))− (x0 − ρN∂K(x0))).

We get

c
√
ρ‖x0 − zs‖ ≤ ‖x0 − T (z)‖

= ‖ρN∂K(x0)− (T (z)− (x0 − ρN∂K(x0))))‖
= ρ‖N∂K(x0)−N∂TE(T (z))‖.

Since T (N∂K(x0))) = N∂K(x0) we get by Lemma 2.6 with a new c

c
√
‖x0 − zs‖ ≤ ‖N∂K(x0)−N∂E(z))‖.

We have by (32) and Lemma 2.6
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‖N∂K(x0)−N∂Ks(xs)‖ ≤ δ
√
‖x0 − zs‖. (39)

Now we get by triangle inequality

c
√
‖x0 − zs‖ ≤ ‖N∂Ks(xs)−N∂E(z))‖.

By (33) and triangle inequality we get

c
√
‖x0 − zs‖ ≤ ‖N∂Ks(xs)−N∂E(Φ−1(z))‖.

Therefore we get with a new constant c

c‖x0 − zs‖ ≤ 1− < N∂Ks(xs), N∂K(Φ−1(z)) >
≤ 1− < N∂Ks

(xs), N∂K(Φ−1(z)) >2 .

We have

| < N∂K(Φ−1(z)), N∂Ks(xs) >
2 − < N∂E(z), N∂Ks(xs) >

2 |
= | < N∂K(Φ−1(z)) +N∂E(z), N∂Ks(xs) > ×

< N∂K(Φ−1(z))−N∂E(z), N∂Ks(xs) > |
≤ 2| < N∂K(Φ−1(z))−N∂E(z), N∂Ks(xs) > |
≤ 2| < N∂K(Φ−1(z))−N∂E(z), N∂Ks

(xs)−N∂E(z) > |
+2| < N∂K(Φ−1(z))−N∂E(z), N∂E(z) > |

≤ 2‖N∂K(Φ−1(z))−N∂E(z)‖ ‖N∂Ks(xs)−N∂E(z)‖
+2|1− < N∂K(Φ−1(z)), N∂E(z) > |.

By (33)
‖N∂K(Φ−1(z))−N∂E(z)‖ ≤ ε

√
‖x0 − zs‖

which is the same as

1− < N∂K(Φ−1(z)), N∂E(z) > ≤ 1
2ε

2‖x− zs‖.

We get

| < N∂K(Φ−1(z)), N∂Ks(xs) >
2 − < N∂E(z), N∂Ks(xs) >

2 | (40)

≤ 2ε
√
‖x0 − zs‖ ‖N∂Ks(xs)−N∂E(z)‖+ ε2‖x0 − zs‖.

We show

‖N∂Ks
(xs)−N∂E(z)‖ ≤ c

√
‖x0 − zs‖. (41)

By (35) we have

‖N∂TKs
(Txs)−N∂TE(Tz)‖ ≤ c

√
‖x0 − zs‖.
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(41) follows now from this and Lemma 2.6. (40) and (41) give now

| < N∂K(Φ−1(z)), N∂Ks(xs) >
2 − < N∂E(z), N∂Ks(xs) >

2 |
≤ 2ε

√
‖x0 − zs‖

√
‖x0 − zs‖+ ε2‖x0 − zs‖ ≤ 3ε‖x0 − zs‖.

With this we get∣∣∣∣∣ 1√
1− < N∂E(z), N∂Ks(xs) >2

− 1√
1− < N∂K(Φ−1(z)), N∂Ks(xs) >2

∣∣∣∣∣
=

∣∣∣√1− < N∂K(Φ−1(z)), N∂Ks
(xs) >2 −

√
1− < N∂E(z), N∂Ks

(xs) >2
∣∣∣√

1− < N∂E(z), N∂Ks
(xs) >2

√
1− < N∂K(Φ−1(z)), N∂Ks

(xs) >2

≤
∣∣< N∂K(Φ−1(z)), N∂Ks

(xs) >2 − < N∂E(z), N∂Ks
(xs) >2

∣∣√
1− < N∂E(z), N∂Ks(xs) >2 (1− < N∂K(Φ−1(z)), N∂Ks(xs) >2)

≤ 1√
1− < N∂E(z), N∂Ks

(xs) >2

3ε‖x0 − zs‖
(1− < N∂K(Φ−1(z)), N∂Ks(xs) >2)

.

By (38) we have that 1− < N∂K(Φ−1(z)), N∂Ks(xs) >
2≥ c‖x0 − zs‖. There-

fore we get∣∣∣∣∣ 1√
1− < N∂E(z), N∂Ks(xs) >2

− 1√
1− < N∂K(Φ−1(z)), N∂Ks(xs) >2

∣∣∣∣∣
≤ 3ε
c
√

1− < N∂E(z), N∂Ks
(xs) >2

.

��

Lemma 2.9. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin at x0 exists and is an ellipsoid. Let f : ∂K → R be a
integrable, a.e. positive function with

∫
fdµ = 1 that is continuous at x0. Let

x̄s and Φ be as given in Lemma 2.8 and zs as given in the proof of Lemma
2.8.
(i) For every ε there is sε so that we have for all s with 0 < s ≤ sε

(1− ε) sup
y∈∂K∩H(xs,N∂Ks (xs))

| < N∂K(x0), y − x0 > |

≤ ‖x0 − zs‖
≤ (1 + ε) inf

y∈∂K∩H(xs,N∂Ks (xs))
| < N∂K(x0), y − x0 > |.

(ii) For every ε there is sε so that we have for all s with 0 < s ≤ sε and all
z ∈ ∂E ∩H(xs, N∂Ks(x0))
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(1− ε) < N∂K∩H(Φ−1(z)), z − xs >

≤ < N∂E∩H(z), z − xs >

≤ (1 + ε) < N∂K∩H(Φ−1(z))), z − xs >

where H = H(xs, N∂Ks(xs)) and the normals are taken in the plane H.
(iii) Let φ : ∂K ∩H → R be the real valued, positive function such that

Φ(y) = x̄s + φ(y)(y − x̄s).

For every ε there is sε such that we have for all s with 0 < s ≤ sε and all
y ∈ ∂K ∩H(xs, N∂Ks

(xs))

1− ε ≤ φ(y) ≤ 1 + ε.

Proof. We may suppose that x0 = 0 and N∂K(x0) = en.
(i) We put

ms = inf
y∈∂K∩H(xs,N∂Ks (xs))

| < N∂K(x0), y − x0 > |.

We show now the right hand inequality. Let ρ be strictly greater than all the
lengths of the principal axes of the standard approximating ellipsoid E . Then
there is η > 0

E ∩H(x0 − ηN∂K(x0), N∂K(x0))
⊆ Bn2 (x0 − ρN∂K(x0), ρ) ∩H(x0 − ηN∂K(x0), N∂K(x0)).

Let αs denote the angle between N∂K(x0) and N∂Ks
(xs). Recall that in the

proof of Lemma 2.8 we put

{zs} = {x0 + tN∂K(x0)|t ∈ R} ∩H(xs, N∂K(x0)).

Then we have

tanαs ≥
‖x0 − zs‖ −ms

c‖x0 − zs‖+
√
ρ2 − (ρ− ‖x0 − zs‖)2

≥ ‖x0 − zs‖ −ms

c‖x0 − zs‖+
√

2ρ‖x0 − zs‖ − ‖x0 − zs‖2

≥ ‖x0 − zs‖ −ms

c‖x0 − zs‖+
√

2ρ‖x0 − zs‖
.

To see this consult Figure 2.9.1. In Figure 2.9.1 we see the plane through x0
that is spanned by N∂K(x0) and N∂Ks(xs). The point xs is not necessarily
in this plane.
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zs

x̄s

∂E

xs

x0

x0

H(xs, N∂Ks
(xs))

√
ρ2 − (ρ− ‖x0 − zs‖)2

Bn2 (x0−ρN∂K(x0), ρ)

Fig. 2.9.1

On the other hand, by (39)

sin2 αs = 1− < N∂K(x0), N∂Ks(xs) >
2≤ ε‖x0 − zs‖

which implies for sufficiently small ε

tanαs ≤
√

2ε‖x0 − zs‖.

Altogether we get

√
2ε‖x0 − zs‖ ≥

‖x0 − zs‖ −ms

c‖x0 − zs‖+
√

2ρ‖x0 − zs‖
and thus

(c
√

2ε+ 4
√
ερ)‖x0 − zs‖ ≥ ‖x0 − zs‖ −ms.

Finally we get with a new constant c

(1− 2c
√
ε)‖x0 − zs‖ ≤ ms.

The left hand inequality is proved similarly.
(ii) By (i) we have for all s with 0 < s ≤ sε

∂K ∩H−(xs + ε‖x0 − zs‖N∂K(x0), N∂K(x0))
⊆ ∂K ∩H−(xs, N∂Ks(xs))
⊆ ∂K ∩H−(xs − ε‖x0 − zs‖N∂K(x0), N∂K(x0)).

pN∂K(x0) is the orthogonal projection onto the subspace orthogonal toN∂K(x0).
From this we get

pN∂K(x0)(K ∩H(xs + ε‖x0 − zs‖N∂K(x0), N∂K(x0)))
⊆ pN∂K(x0)(K ∩H(xs, N∂Ks

(xs)))
⊆ pN∂K(x0)(K ∩H(xs − ε‖x0 − zs‖N∂K(x0), N∂K(x0))).
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Let D be the indicatrix of Dupin at x0. By Lemma 1.1 for every ε there is tε
so that for all t with 0 < t ≤ tε

(1− ε)D ⊆ 1√
2t
pN∂K(x0)(K ∩H(x0 − tN∂K(x0), N∂K(x0))) ⊆ (1 + ε)D.

By choosing a proper sε we get for all s with 0 < s ≤ sε

(1− ε)D ⊆ 1√
2‖x0 − zs‖

pN∂K(x0)(K ∩H(xs, N∂Ks
(xs))) ⊆ (1 + ε)D. (42)

We get the same inclusions for E instead of K.

(1− ε)D ⊆ 1√
2‖x0 − zs‖

pN∂E(x0)(E ∩H(xs, N∂Ks
(xs))) ⊆ (1 + ε)D (43)

Consider now y ∈ ∂K ∩H(xs, N∂Ks(xs)) and Φ(y). Since

pN∂K(x0)(x̄s) = x0 = 0

there is λ > 0 so that

pN∂K(x0)(y) = λpN∂K(x0)(Φ(y)).

By (42) and (43) we get with a new sε

‖NpN∂K (x0)(∂K∩H)(pN∂K(x0)(y))−NpN∂K (x0)(∂E∩H)(pN∂K(x0)(Φ(y)))‖ < ε

where H = H(xs, N∂Ks(xs)) and the normals are taken in the subspace
of the first n − 1 coordinates. The projection pN∂K(x0) is an isomorphism
between Rn−1 and H(xs, N∂Ks

(xs)). The norm of this isomorphism equals 1
and the norm of its inverse is less than 1+ ε if we choose sε sufficiently small.
Therefore, if we choose a new sε we get for all s with 0 < s ≤ sε

‖N∂K∩H(y)−N∂E∩H(Φ(y))‖ < ε.

(iii) follows from (42) and (43) and from the fact that the projection pN∂K(x0)
is an isomorphism between Rn−1 and H(xs, N∂Ks(xs)) whose norm equals
1 and the norm of its inverse is less than 1 + ε. Indeed, the norm of the
inverse depends only on the angle between Rn and H(xs, N∂Ks

(xs)). The
angle between these two planes will be as small as we wish if we choose sε
small enough. ��

Lemma 2.10. (i) Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that
the indicatrix of Dupin at x0 exists and is an ellipsoid. Let f : ∂K → R be a
integrable, a.e. positive function with

∫
fdµ = 1. Suppose that f is continuous

at x0 and f(x0) > 0. Let xs and Φ as given by Lemma 2.8 and let zs be given
as in the proof of Lemma 2.8 by
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{zs} = {x0 + tN∂K(x0)|t ∈ R} ∩H(xs, N∂K(x0)).

For every x0 ∈ ∂K and every ε > 0 there is sε so that we have for all s with
0 < s < sε∣∣∣∣

∫
∂K∩H(xs,N∂Ks (xs))

f(y)√
1− < N∂K(y), N∂Ks(xs) >2

dµ∂K∩H(xs,N(xs))(y)

−
∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))√
1− < N∂E(z), N∂K(x0) >2

dµ∂E∩H(xs,N(x0))(z)

∣∣∣∣∣
≤ ε

∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))√
1− < N∂E(z), N∂K(x0) >2

dµ∂E∩H(xs,N∂K(x0))(z).

(ii) Let Bn2 denote the Euclidean ball and (Bn2 )s its surface body with respect
to the constant density (voln−1(∂Bn2 ))−1. Let {xs} = ∂(Bn2 )s∩ [0, en] and Hs
the tangent hyperplane to (Bn2 )s at xs. For every ε > 0 there is sε so that we
have for all s with 0 < s < sε

(1− ε)
(
s

voln−1(∂Bn2 )
voln−1(Bn−1

2 )

)n−3
n−1

voln−2(∂Bn−1
2 )

≤
∫
∂Bn

2 ∩Hs

1√
1− < N∂(Bn

2 )s
(xs), N∂Bn

2
(y) >2

dµ∂Bn
2 ∩Hs

(y)

≤
(
s

voln−1(∂Bn2 )
voln−1(Bn−1

2 )

)n−3
n−1

voln−2(∂Bn−1
2 ).

(iii) Let a1, . . . , an > 0 and

E =

{
x

∣∣∣∣∣
n∑
i=1

∣∣∣∣x(i)
ai

∣∣∣∣
2

≤ 1

}
.

Let Es, 0 < s ≤ 1
2 , be the surface bodies with respect to the constant density

(voln−1(∂E))−1. Moreover, let λE : R+ → [0, an] be such that λE(s)en ∈ ∂Es
and Hs the tangent hyperplane to Es at λE(s)en. Then, for all ε > 0 there is
sε such that for all s and t with 0 ≤ s, t ≤ 1

2∫
∂E∩Hs

1√
1− < N∂Es(xs), N∂E(y) >2

dµ∂E∩Hs
(y)

≤ (1 + ε)( st )
n−3
n−1

∫
∂E∩Ht

1√
1− < N∂Et

(xt), N∂E(y) >2
dµ∂E∩Ht(y).

Please note that N∂Es(λE(s)en) = N∂E(anen) = en.
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Proof. (i) In the first part of the proof H denotes H(xs, N∂Ks(xs)). We prove
first that for every ε there is sε so that we have for all s with 0 < s ≤ sε∣∣∣∣∣

∫
∂K∩H

f(y)√
1− < N∂K(y), N∂Ks(xs) >2

dµ∂K∩H(y)

−
∫
∂E∩H

f(Φ−1(z))√
1− < N∂E(z), N∂Ks

(xs) >2
dµ∂E∩H(z)

∣∣∣∣∣ (44)

≤ ε

∫
∂E∩H

f(Φ−1(z))√
1− < N∂E(z), N∂Ks

(xs) >2
dµ∂E∩H(z).

x̄s and Φ are as given in Lemma 2.8. There is a real valued, positive function
φ : ∂K ∩H → R such that

Φ(y) = x̄s + φ(y)(y − x̄s).

By Lemma 1.8 we have with y = Φ−1(z)∫
∂K∩H

f(y)√
1− < N∂K(y), N∂Ks(xs) >2

dµ∂K∩H(y)

=
∫
∂E∩H

f(Φ−1(z))φ−n+2(Φ−1(z))√
1− < N∂K(Φ−1(z)), N∂Ks(xs) >2

×
< N∂E∩H(z), z

‖z‖ >

< N∂K∩H(Φ−1(z)), z
‖z‖ >

dµ∂E∩H(z)

=
∫
∂E∩H

f(Φ−1(z))φ−n+2(Φ−1(z))√
1− < N∂K(Φ−1(z)), N∂Ks

(xs) >2

× < N∂E∩H(z), z >
< N∂K∩H(Φ−1(z)), z >

dµ∂E∩H(z).

With this we get∣∣∣∣∣
∫
∂K∩H

f(y)√
1− < N∂K(y), N∂Ks(xs) >2

dµ∂K∩H(y)

−
∫
∂E∩H

f(Φ−1(z))√
1− < N∂E(z), N∂Ks

(xs) >2
dµ∂E∩H(z)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
∂E∩H

f(Φ−1(z))√
1− < N∂E(z), N∂Ks(xs) >2

− f(Φ−1(z))√
1− < N∂K(Φ−1(z)), N∂Ks

(xs) >2
dµ∂E∩H(z)

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
∂E∩H

f(Φ−1(z))
(
1− φ−n+2(Φ−1(z)) <N∂E∩H(z),z>

<N∂K∩H(Φ−1(z)),z>

)
√

1− < N∂K(Φ−1(z)), N∂Ks(xs) >2
dµ∂E∩H(z)

∣∣∣∣∣∣ .



Random Polytopes 301

By Lemma 2.8 we have∣∣∣∣∣ 1√
1− < N∂E(z), N∂Ks

(xs) >2
− 1√

1− < N∂K(Φ−1(z)), N∂Ks
(xs) >2

∣∣∣∣∣
≤ ε√

1− < N∂E(z), N∂Ks(xs) >2

which gives the right estimate of the first summand.
We apply Lemma 2.9.(ii) and (iii) to the second summand. The second

summand is less than

ε

∫
∂E∩H

f(Φ−1(z))√
1− < N∂K(Φ−1(z)), N∂Ks

(xs) >2
dµ∂E∩H(z).

Now we apply Lemma 2.8 and get that this is less than or equal to

3ε
∫
∂E∩H

f(Φ−1(z))√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(z).

This establishes (44). Now we show∣∣∣∣∣
∫
∂E∩H(xs,N∂Ks (xs))

f(Φ−1(y))√
1− < N∂E(y), N∂Ks(xs) >2

dµ∂E∩H(xs,N∂Ks (xs))(y)

−
∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(zs,N∂K(x0))(z)

∣∣∣∣∣
≤ ε

∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(zs,N∂K(x0))(z).

(45)

Since f is continuous at x0 and f(x0) > 0 it is equivalent to show∣∣∣∣∣
∫
∂E∩H(xs,N∂Ks (xs))

f(x0)√
1− < N∂E(y), N∂Ks

(xs) >2
dµ∂E∩H(xs,N∂Ks (xs))(y)

−
∫
∂E∩H(zs,N∂K(x0))

f(x0)√
1− < N∂E(z), N∂Ks

(xs) >2
dµ∂E∩H(zs,N∂K(x0))(z)

∣∣∣∣∣
≤ ε

∫
∂E∩H(zs,N∂K(x0))

f(x0)√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(zs,N∂K(x0))(z)

which is of course the same as
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∫
∂E∩H(xs,N∂Ks (xs))

1√
1− < N∂E(y), N∂Ks

(xs) >2
dµ∂E∩H(xs,N∂Ks (xs))(y)

−
∫
∂E∩H(zs,N∂K(x0))

1√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(zs,N∂K(x0))(z)

∣∣∣∣∣
≤ ε

∫
∂E∩H(zs,N∂K(x0))

1√
1− < N∂E(z), N∂Ks(xs) >2

dµ∂E∩H(zs,N∂K(x0))(z).

(46)

We put E in such a position that N∂K(x0) = en, x0 = rnen, and such that E
is given by the equation

n∑
i=1

∣∣∣∣yiri
∣∣∣∣
2

= 1.

Let ξ ∈ ∂Bn2 and y = (r(ξ, yn)ξ, yn) ∈ ∂E . Then

N∂E(y) =

(
y1
r21
, . . . , yn

r2n

)
√∑n

i=1
y2i
r4i

=

(
r(ξ,yn)ξ1
r21

, . . . , r(ξ,yn)ξn−1

r2n−1
, yn

r2n

)
√
y2n
r4n

+ r(ξ, yn)2
∑n−1
i=1

ξ2i
r4i

with

r(ξ, yn) =

√
r2n − y2

n

rn

√∑n−1
i=1

ξ2i
r2i

. (47)

As N∂K(x0) = en we get

< N∂E(y), N∂K(x0) >=
yn

r2n

√∑n
i=1

y2i
r4i

.

Therefore

1
1− < N∂E(y), N∂K(x0) >2 =

∑n
i=1

y2i
r4i∑n−1

i=1
y2i
r4i

.

For y, z ∈ ∂E we get

1− < N∂E(z), N∂K(x0) >2

1− < N∂E(y), N∂K(x0) >2 =

∑n
i=1

y2i
r4i∑n

i=1
z2i
r4i

∑n−1
i=1

z2i
r4i∑n−1

i=1
y2i
r4i

.

For y, z ∈ ∂E with the same direction ξ we get by (47)

1− < N∂E(z), N∂K(x0) >2

1− < N∂E(y), N∂K(x0) >2 =

∑n
i=1

y2i
r4i∑n

i=1
z2i
r4i

(
r2n − z2

n

r2n − y2
n

)
.
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We can choose sε sufficiently small so that we have for all s with 0 < s ≤ sε,
and all y ∈ ∂E ∩H(xs, N∂Ks

(xs)), z ∈ ∂E ∩H(xs, N∂K(x0))

|yn − rn| < ε |zn − rn| < ε

and by Lemma 2.9.(i)

1− ε ≤ rn − zn
rn − yn

≤ 1 + ε.

We pass to a new ε and obtain: We can choose sε sufficiently small so that
we have for all s with 0 < s ≤ sε, and all y ∈ ∂E ∩ H(xs, N∂Ks(xs)), z ∈
∂E ∩H(xs, N∂K(x0)) such that pen(y) and pen(z) are colinear

1− ε ≤ 1− < N∂E(z), N∂K(x0) >2

1− < N∂E(y), N∂K(x0) >2 ≤ 1 + ε. (48)

By Lemma 2.5 we have

< N∂K(x0), N∂Ks(xs) > ≥ 1− ε.

Therefore, the orthogonal projection pen restricted to the hyperplane

H(xs, N∂Ks(xs))

is a linear isomorphism between this hyperplane and Rn−1 and moreover,
‖pen

‖ = 1 and ‖p−1
en
‖ ≤ 1

1−ε . By this, there is sε such that for all s with
0 < s ≤ sε

(1− ε)
∫
∂E∩H(xs,N∂Ks (xs))

dµ∂E∩H(xs,N∂Ks (xs))(y)√
1− < N∂E(y), N∂Ks

(xs) >2

≤
∫
pen (∂E∩H(xs,N∂Ks (xs)))

dµpen (∂E∩H(xs,N∂Ks (xs)))(z)√
1− < N∂E(p−1

en (z)), N∂Ks(xs) >2

≤
∫
∂E∩H(xs,N∂Ks (xs))

dµ∂E∩H(xs,N∂Ks (xs))(y)√
1− < N∂E(y), N∂Ks(xs) >2

where z = pen
(y). Let qen

denote the orthogonal projection from

H(xs, N∂K(x0))

to Rn−1. qen is an isometry. Therefore∫
∂E∩H(xs,N∂Ks (x0))

dµ∂E∩H(xs,N∂Ks (x0))(y)√
1− < N∂E(y), N∂Ks(xs) >2

=
∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(q−1

en (y)), N∂Ks(xs) >2
.



304 C. Schütt and E. Werner

Thus, in order to show (46) it suffices to show∣∣∣∣∣∣
∫
pen (∂E∩H(xs,N∂Ks (xs)))

dµpen (∂E∩H(xs,N∂Ks (xs)))(y)√
1− < N∂E(p−1

en (y)), N∂Ks
(xs) >2

−
∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(q−1

en (y)), N∂Ks
(xs) >2

∣∣∣∣∣∣
≤ ε

∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(q−1

en (y)), N∂Ks(xs) >2
.

Let ρ : qen(∂E ∩H(xs, N∂K(x0)))→ pen(∂E ∩H(xs, N∂Ks(xs))) be the radial
map defined by

{ρ(y)} = {ty|t ≥ 0} ∩ pen
(∂E ∩H(xs, N∂K(x0))).

We have

(1− ε)
∫
pen (∂E∩H(xs,N∂Ks (xs)))

dµpen (∂E∩H(xs,N∂Ks (xs)))(y)√
1− < N∂E(p−1

en (y)), N∂Ks(xs) >2

≤
∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(p−1

en (ρ(y))), N∂Ks(xs) >2

≤ (1 + ε)
∫
pen (∂E∩H(xs,N∂Ks (xs)))

dµpen (∂E∩H(xs,N∂Ks (xs)))(y)√
1− < N∂E(p−1

en (y)), N∂Ks
(xs) >2

.

To see this, consider the indicatrix of Dupin D of K at x0. We have by (43)

(1− ε)D ⊆ 1√
2‖x0 − zs‖

qen(E ∩H(xs, N∂K(x0))) ⊆ (1 + ε)D

(1− ε)D ⊆ 1√
2‖x0 − zs‖

pen
(E ∩H(xs, N∂K(xs))) ⊆ (1 + ε)D.

They imply that with a new sε the surface element changes at most by a
factor (1 + ε). Thus, in order to verify (46), it is enough to show∣∣∣∣∣∣

∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(p−1

en (ρ(y))), N∂Ks
(xs) >2

−
∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(q−1

en (y)), N∂Ks(xs) >2

∣∣∣∣∣∣ (49)



Random Polytopes 305

≤ ε

∫
qen (∂E∩H(xs,N∂K(x0)))

dµqen (∂E∩H(xs,N∂K(x0)))(y)√
1− < N∂E(q−1

en (y)), N∂Ks
(xs) >2

.

We verify this. By (48) there is sε so that we have for all s with 0 < s ≤ sε,
and all y ∈ ∂E ∩H(xs, N∂Ks

(xs)), z ∈ ∂E ∩H(xs, N∂K(x0)) such that pen
(y)

and pen(z) are colinear

1− ε ≤ ‖N∂E(z)−N∂K(x0)‖
‖N∂E(y)−N∂K(x0)‖

≤ 1 + ε.

By (39) for every ε there is sε such that for all s with 0 < s ≤ sε

‖N∂K(x0)−N∂Ks
(xs)‖ ≤ ε

√
‖x0 − zs‖

and by the formula following (2.8.13) for all y ∈ ∂E ∩H(xs, N∂Ks
(xs)) and

z ∈ ∂E ∩H(xs, N∂K(x0))

‖N∂E(y)−N∂Ks(xs)‖ ≥ c
√
‖x0 − zs‖

‖N∂E(z)−N∂Ks(xs)‖ ≥ c
√
‖x0 − zs‖.

Therefore,

‖N∂K(x0)−N∂Ks(xs)‖ ≤ ε
√
‖x0 − zs‖ ≤ ε

c‖N∂E(z)−N∂Ks(xs)‖.
By triangle inequality

‖N∂E(z)−N∂Ks(xs)‖ ≤ (1 + ε
c )‖N∂E(z)−N∂K(x0)‖ (50)

and the same inequality for y. In the same way we get the estimates from
below. Thus there is sε so that we have for all s with 0 < s ≤ sε, and all
y ∈ ∂E ∩ H(xs, N∂Ks(xs)), z ∈ ∂E ∩ H(xs, N∂K(x0)) such that pen(y) and
pen(z) are colinear

1− ε ≤ ‖N∂E(z)−N∂Ks
(xs)‖

‖N∂E(y)−N∂Ks
(xs)‖

≤ 1 + ε

which is the same as

1− ε ≤ 1− < N∂E(z), N∂Ks(xs) >
2

1− < N∂E(y), N∂Ks
(xs) >2 ≤ 1 + ε.

This establishes (49) and consequently (45). Combining the formulas (44)
and (45) gives∣∣∣∣

∫
∂K∩H(xs,N∂Ks (xs))

f(y)dµ∂K∩H(xs,N(xs))(y)√
1− < N∂K(y), N∂Ks(xs) >2

−
∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))dµ∂E∩H(xs,N(x0))(z)√
1− < N∂E(z), N∂Ks

(xs) >2

∣∣∣∣∣
≤ ε

∫
∂E∩H(zs,N∂K(x0))

f(Φ−1(z))dµ∂E∩H(xs,N∂K(x0))(z)√
1− < N∂E(z), N∂Ks(xs) >2

.



306 C. Schütt and E. Werner

It is left to replace N∂Ks(xs) by N∂K(x0). This is done by using the formula
(50) relating the two normals.

(ii) For every ε > 0 there is sε such that for all s with 0 < s ≤ sε

(1− ε)s ≤ voln−1(Bn2 ∩Hs)
voln−1(∂Bn2 )

≤ voln−1(∂Bn2 ∩H−
s )

voln−1(∂Bn2 )
= s.

Bn2 ∩Hs is the boundary of a n− 1-dimensional Euclidean ball with radius

r =
(

voln−1(Bn2 ∩Hs)
voln−1(Bn−1

2 )

) 1
n−1

.

Therefore(
(1− ε)s

voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 1
n−1

≤ r ≤
(
s

voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 1
n−1

.

We have N(xs) = en and
√

1− < en, N∂Bn
2
(y) >2 is the sine of the angle

between en and N∂Bn
2
(y). This equals the radius r of Bn2 ∩Hs. Altogether we

get ∫
∂Bn

2 ∩Hs

dµ∂Bn
2 ∩Hs(y)√

1− < N(xs), N∂Bn
2
(y) >2

= rn−3voln−2(∂Bn−1
2 ) ≤

(
s

voln−1(∂Bn2 )
voln−1(Bn−1

2 )

)n−3
n−1

voln−2(∂Bn−1
2 ).

(iii) E ∩Hs and E ∩Ht are homothetic, n− 1-dimensional ellipsoids. The
factor φ0 by which we have to multiply E ∩Hs in order to recover E ∩Ht is

φ0 =
(

voln−1(E ∩Ht)
voln−1(E ∩Hs)

) 1
n−1

.

On the other hand, for all ε > 0 there is sε such that for all s with 0 < s ≤ sε

(1− ε)s ≤ voln−1(E ∩Hs)
voln−1(∂E)

≤ voln−1(∂E ∩H−
s )

voln−1(∂E)
= s.

Therefore (
(1− ε)t

s

) 1
n−1

≤ φ0 ≤
(

t

(1− ε)s

) 1
n−1

.

The volume of a volume element of ∂E ∩Hs that is mapped by the homothety
onto one in ∂E ∩Ht increases by φn−2

0 .
Now we estimate how much the angle between N∂E(y) and N∂Es(xs) = en

changes. The normal to E at y is
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 yi

a2
i

√∑n
k=1

y2k
a4k



n

i=1

.

Thus
< N∂E(y), en >=

yn

a2
n

√∑n
k=1

y2k
a4k

and

1− < N∂E(y), en >2=

∑n−1
k=1

y2k
a4k∑n

k=1
y2k
a4k

.

Let y(s) ∈ E ∩Hs and y(t) ∈ E ∩Ht be vectors such that (y1(s), . . . , yn−1(s))
and (y1(t), . . . , yn−1(t)) are colinear. Then

(y1(t), . . . , yn−1(t)) = φ0(y1(s), . . . , yn−1(s))

Thus

1− < N∂E(y(t)), en >2

1− < N∂E(y(s)), en >2 =

∑n−1
k=1

y2k(t)
a4k∑n

k=1
y2k(t)
a4k

∑n
k=1

y2k(s)
a4k∑n−1

k=1
y2k(s)
a4k

= φ2
0

∑n
k=1

y2k(s)
a4k∑n

k=1
y2k(t)
a4k

.

For every ε > 0 there is sε such that for all s with 0 < s ≤ sε we have
an − ε ≤ yn(s) ≤ an. Therefore there is an appropriate sε such that for all s
with 0 < s ≤ sε

1− ε ≤
∑n
k=1

y2k(t)
a4k∑n

k=1
y2k(s)
a4k

≤ 1 + ε.

Thus

(1− ε)φ0 ≤
√

1− < N∂E(y(t)), en >2√
1− < N∂E(y(s)), en >2

≤ (1 + ε)φ0.

Consequently, with a new sε∫
∂E∩Hs

dµ∂E∩Hs(y)√
1− < N∂Es

(xs), N∂E(y) >2

≤ (1 + ε)φ−(n−3)
0

∫
∂E∩Ht

dµ∂E∩Ht
(y)√

1− < N∂Et(xt), N∂E(y) >2

≤ (1 + ε)
(s
t

)n−3
n−1

∫
∂E∩Ht

dµ∂E∩Ht(y)√
1− < N∂Et(xt), N∂E(y) >2

.

��
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Lemma 2.11. Let K be a convex body in Rn such that for all t > 0 the
inclusion Kt ⊆

◦
K holds and that K has everywhere a unique normal. Let

f : ∂K → R a continuous, positive function with
∫
∂K

f(x)dµ∂K(x) = 1.
(i) Let t < T and ε > 0 such that t+ε < T . Let x ∈ ∂Kt and let H(x,N∂Kt

(x))
be a hyperplane such that

Pf (∂K ∩H−(x,N∂Kt(x))) = t.

Let h(x, ε) be defined by

Pf (∂K ∩H−(x− h(x, ε)N∂Kt
(x), N∂Kt

(x))) = t+ ε.

Then we have for sufficiently small ε

ε− o(ε) =
∫
∂K∩H(x,N∂Kt (x))

f(y)h(x, ε)dµ∂K∩H(x,N∂Kt (x)))(y)√
1− < N∂Kt

(x), N∂K(y) >2
.

(ii) Let t+ ε < T , x ∈ ∂Kt+ε, and H(x,N∂Kt+ε
(x)) a hyperplane such that

Pf (∂K ∩H−(x,N∂Kt+ε
(x))) = t+ ε.

Let k(x, ε) be defined

Pf (∂K ∩H(x+ k(x, ε)N∂Kt+ε(x), N∂Kt+ε(x))) = t.

Then we have

ε+ o(ε) =
∫
∂K∩H(x,N∂Kt+ε

(x))

f(y)k(x, ε)dµ∂K∩H(x,N∂Kt+ε
(x))(y)√

1− < N∂Kt+ε
(x), N∂K(y) >2

.

(iii) Let E be an ellipsoid

E =

{
x

∣∣∣∣∣
n∑
i=1

∣∣∣∣xiai
∣∣∣∣
2

≤ 1

}

and Es, 0 < s ≤ 1
2 surface bodies with respect to the constant density. {xs} =

[0, anen] ∩ ∂Es. Let ∆ : (0, T ) → [0,∞) be such that ∆(s) is the height of
the cap E ∩H−(xs, N∂Es

(xs)). Then ∆ is a differentiable, increasing function
and

d∆
ds

(s) =

(∫
∂E∩Hs

(voln−1(∂E))−1√
1− < N∂Es(xs), N∂E(y) >2

dµ(y)

)−1

where Hs = H(xs, N∂Es(xs)).
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Proof. (i) As Kt ⊂
◦
K we can apply Lemma 2.2 and assure that for all 0 <

t < T and all x ∈ ∂Kt there is a normal N∂Kt(x) with

t =
∫
∂K∩H−(x,N∂Kt (x))

f(z)dµ∂K(z).

∂K

y N∂K∩H(y)

N∂Kt(x)

H(x,N∂Kt(x))

∂Kt

H(x− h(x, ε)N∂Kt(x), N∂Kt(x))

x

Fig. 2.11.1

We have

ε =
∫
∂K∩H−(x−h(x,ε)N∂Kt (x)),N∂Kt (x))

f(z)dµ∂K(z)

−
∫
∂K∩H−(x,N∂Kt (x))

f(z)dµ∂K(z)

=
∫
∂K∩H−(x−h(x,ε)N∂Kt (x)),N∂Kt (x))∩H+(x,N∂Kt (x))

f(z)dµ∂K(z).

Consider now small ε. Since K has everywhere a unique normal a surface
element of

∂K ∩H−(x− h(x, ε)N∂Kt
(x)), N∂Kt

(x)) ∩H+(x,N∂Kt
(x))

at y has approximately the area

h(x, ε)dµ∂K∩H(x,N∂Kt (x))(y)

divided by the cosine of the angle between N∂K(y) and N∂K∩H(x,N∂Kt (x))(y).
The latter normal is taken in the plane H(x,N∂Kt(x)). The vector N∂K(y) is
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contained in the plane spanned by N∂K∩H(x,N∂Kt (x))(y) and N∂Kt(x). Thus
we have

N∂K(y) = < N∂K(y), N∂K∩H(x,N∂Kt (x))(y) > N∂K∩H(x,N∂Kt (x))(y)
+ < N∂K(y), N∂Kt

(x) > N∂Kt
(x)

which implies

1 =< N∂K(y), N∂K∩H(x,N∂Kt (x))(y) >2 + < N∂K(y), N∂Kt(x) >2 .

We get for the approximate area of the surface element

h(x, ε)dµ∂K∩H(x,N∂Kt (x))(y)
< N∂K(y), N∂K∩H(x,N∂Kt (x))(y) >

=
h(x, ε)dµ∂K∩H(x,N∂Kt (x))(y)√

1− < N∂K(y), N∂Kt(x) >2
.

Since f is a continuous function

ε+ o(ε) =
∫
∂(K∩H(x,N∂Kt (x)))

f(y)h(x, ε)dµ∂K∩H(x,N∂Kt (x)))(y)√
1− < N∂Kt(x), N∂K(y) >2

.

(iii) By the symmetries of the ellipsoids en is a normal to the surface body
Es. In fact we have

P{∂E ∩H−(xs, en)} = s.

This follows from Lemma 2.4. Moreover,

h(xs, ε) ≤ ∆(s+ ε)−∆(s) ≤ k(xs, ε).

��

Lemma 2.12. Let K be a convex body in Rn that has everywhere a unique
normal and let f : ∂K → R be a continuous, positive function with∫
∂K

f(x)dµ∂K(x) = 1. Ks, 0 ≤ s ≤ T , are the surface bodies of K with
respect to the density f . Suppose that for all t with 0 < t ≤ T we have
Kt ⊆

◦
K. Let G : K → R be a continuous function. Then∫

Ks

G(x)dx

is a continuous, decreasing function of s on the interval [0, T ] and a differ-
entiable function on (0, T ). Its derivative is

d
ds

∫
Ks

G(x)dx = −
∫
∂Ks

G(xs)dµ∂Ks(xs)∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
.

where Hs = H(xs, N∂Ks
(xs)). The derivative is bounded on all intervals [a, T )

with [a, T ) ⊂ (0, T ) and∫
K

G(x)dx =
∫ T

0

∫
∂Ks

G(xs)dµ∂Ks(xs)ds∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
.
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Proof. We have

d
ds

∫
Ks

G(x)dx = limε→0
1
ε

(∫
Ks+ε

G(x)dx−
∫
Ks

G(x)dx
)

= −limε→0
1
ε

∫
Ks\Ks+ε

G(x)dx

provided that the right hand side limit exists.
Let ∆(xs, ε) be the distance of xs to ∂Ks+ε. By Lemma 2.4.(iv), for all

s and δ > 0 there is ε > 0 such that dH(Ks,Ks+ε) < δ. By this and the
continuity of G we get

d
ds

∫
Ks

G(x)dx = −limε→0
1
ε

∫
∂Ks

G(xs)∆(xs, ε)dµ∂Ks(xs).

We have to show that the right hand side limit exists. By Lemma 2.11.(i) we
have

ε− o(ε) =
∫
∂(K∩H(x,N∂Kt (x)))

f(y)h(x, ε)dµ∂K∩H(x,N∂Kt (x))(y)√
1− < N∂Kt

(x), N∂K(y) >2
.

Since h(xs, ε) ≤ ∆(xs, ε) we get

liminfε→0
1
ε

∫
∂Ks

G(xs)∆(xs, ε)dµ∂Ks
(xs)

≥
∫
∂Ks

G(xs)∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

dµ∂Ks(xs)

where Hs = H(xs, N∂Ks(xs)). We show the inverse inequality for the Limes
Superior. This is done by using Lemma 2.11.(ii).

We show now that the function satisfies the fundamental theorem of cal-
culus.∫

∂K∩Hs

f(y)dµ∂K∩Hs(y)√
1− < N∂Ks(xs), N∂K(y) >2

≥
∫
∂K∩Hs

f(y)dµ∂K∩Hs
(y) ≥ min

y∈∂K
f(y)voln−2(∂K ∩Hs).

By the isoperimetric inequality there is a constant c > 0 such that∫
∂K∩Hs

f(y)dµ∂K∩Hs(y)√
1− < N∂Ks

(xs), N∂K(y) >2
≥ c min

y∈∂K
f(y)voln−1(K ∩Hs).

By our assumption Ks ⊆
◦
K the distance between ∂K and ∂Ks is strictly

larger than 0. From this we conclude that there is a constant c > 0 such that
for all xs ∈ ∂Ks
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voln−1(K ∩Hs) ≥ c.

This implies that for all s with 0 < s < T there is a constant cs > 0∣∣∣∣ d
ds

∫
Ks

G(x)dx
∣∣∣∣ ≤ cs.

Thus, on all intervals [a, T ) ⊂ (0, T ) the derivative is bounded and therefore
the function is absolutely continuous. We get for all t0, t with 0 < t0 ≤ t < T∫ t

t0

d
ds

∫
Ks

G(x)dx =
∫
Kt

G(x)dx−
∫
Kt0

G(x)dx.

We take the limit of t0 → 0. By Lemma 2.3.(iii) we have
⋃
t>0Kt ⊇

◦
K. The

monotone convergence theorem implies∫ t

0

d
ds

∫
Ks

G(x)dx =
∫
Kt

G(x)dx−
∫
K

G(x)dx.

Now we take the limit t → T . By Lemma 2.3 we have KT =
⋂
t<T Kt. The

monotone convergence theorem implies∫ T

0

d
ds

∫
Ks

G(x)dx =
∫
KT

G(x)dx−
∫
K

G(x)dx.

Since the volume of KT equals 0 we get∫ T

0

d
ds

∫
Ks

G(x)dx = −
∫
K

G(x)dx.

��

3 The Case of the Euclidean Ball

We present here a proof of the main theorem in case that the convex body is
the Euclidean ball. This result was proven by J. Müller [Mü]. We include the
results of chapter 3 for the sake of completeness. Most of them are known.

Proposition 3.1. (Müller [Mü]) We have

lim
N→∞

voln(Bn2 )− E(∂Bn2 , N)

N− 2
n−1

=
voln−2(∂Bn−1

2 )
2(n+ 1)!

(
(n− 1)voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) n+1
n−1

Γ
(
n+ 1 + 2

n−1

)

=
(n− 1)

n+1
n−1 (voln−1(∂Bn2 ))

n+1
n−1

(voln−2(∂Bn−1
2 ))

2
n−1

Γ
(
n+ 1 + 2

n−1

)
2(n+ 1)!

.
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We want to show first that almost all random polytopes are simplicial.

Lemma 3.1. The n2-dimensional Hausdorff measure of the real n × n-
matrices with determinant 0 equals 0.

Proof. We use induction. For n = 1 the only matrix with determinant 0 is
the zeromatrix. Let A11 be the submatrix of the matrix A that is obtained
by deleting the first row and column. We have

{A|det(A) = 0} ⊆ {A| det(A11) = 0} ∪ {A|det(A) = 0 and det(A11) �= 0}.

Since

{A|det(A11) = 0} = Rn
2−(n−1)2 × {B ∈Mn−1| det(B) = 0}

we get by the induction assumption that {A|det(A11) = 0} is a nullset. We
have

{A| det(A) = 0 and det(A11) �= 0}

=

{
A

∣∣∣∣∣a11 =
1

det(A11)

n∑
i=1

a1i(−1)1+i det(A1i))

}
.

Since this is the graph of a function it is a nullset. ��

Lemma 3.2. The n(n−1)-dimensional Hausdorff measure of the real n×n-
matrices whose determinant equal 0 and whose columns have Euclidean norm
equal to 1 is 0.

Proof. Let Ai,j be the submatrix of the matrix A that is obtained by deleting
the i-th row and j-th column. We have

{A|det(A) = 0} ⊆ {A| det(A11) = 0} ∪ {A|det(A) = 0 and det(A11) �= 0}.

By Lemma 3.1 the set of all (n−1)×(n−1) matrices with determinant equal
to 0 has (n− 1)2-dimensional Hausdorff measure 0. Therefore, the set

{(a1, . . . , an−1)| det(ā1, . . . , ān−1) = 0}

has (n− 1)2-dimensional Hausdorff measure 0 where āi is the vector ai with
the first coordinate deleted. From this we conclude that {A|det(A11) = 0}
has n(n− 1)-dimensional Hausdorff measure 0.

As in Lemma 3.1 we have
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{A| det(A) = 0 and det(A11) �= 0}

=

{
A

∣∣∣∣∣a11 =
1

det(A11)

n∑
i=1

a1i(−1)1+i det(A1i))

}
.

By this and since the columns of the matrix have Euclidean length 1 the
above set is the graph of a differentiable function of n(n − 1) − 1 variables.
Thus the n(n− 1)-dimensional Hausdorff measure is 0. ��

The next lemma says that almost all random polytopes of points chosen
from a convex body are simplicial. Intuitively this is obvious. Suppose that we
have chosen x1, . . . , xn and we want to choose xn+1 so that it is an element of
the hyperplane spanned by x1, . . . , xn, then we are choosing it from a nullset.

Lemma 3.3. Let K be a convex body in Rn and P the normalized Lebesgue
measure on K. Let PNK the N -fold probability measure of P. Then
(i)

PNK{(x1, . . . , xN )|∃i1, . . . , in+1∃H : xi1 , . . . , xin+1 ∈ H} = 0

where H denotes a hyperplane in Rn.
(ii)

PNK{(x1, . . . , xN )| ∃i1, . . . , in : xi1 , . . . , xin are linearly dependent} = 0

Proof. (i) It suffices to show that

PNK{(x1, . . . , xN )|∃H : x1, . . . , xn+1 ∈ H} = 0.

Let X = (x1, . . . , xn). We have that

{(x1, . . . , xN )|∃H : x1, . . . , xn+1 ∈ H} = {(x1, . . . , xN )| det(X) = 0}

∪
{

(x1, . . . , xN )|det(X) �= 0 and ∃t1, . . . , tn−1 :

xn+1 = xn +
n−1∑
i=1

ti(xi − xn)
}
.

The set with det(X) = 0 has measure 0 by Lemma 3.1. Now we consider the
second set. det(X) �= 0 and xn+1 = xn +

∑n−1
i=1 ti(xi − xn) imply that

X−1(xn+1) = X−1

(
xn +

n−1∑
i=1

ti(xi − xn)

)
= en +

n−1∑
i=1

ti(ei − en).

We get
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ti =< X−1(xn+1), ei > i = 1, . . . , n− 1.

Therefore we get{
(x1, . . . , xN )

∣∣∣∣∣det(X) �= 0 and ∃t1, . . . , tn−1 : xn+1 = xn +
n−1∑
i=1

ti(xi − xn)

}

⊆
{

(x1, . . . , xn, z, xn+2, . . . , xN )
∣∣∣∣det(X) �= 0 and

z = xn +
n−1∑
i=1

< X−1(xn+1), ei > (xi − xn)
}
.

We have that

∂z

∂xn+1(j)
=
n−1∑
i=1

< X−1(ej), ei > (xi − xn).

Since all the vectors ∂z
∂xn+1(j)

, j = 1, . . . , n are linear combinations of the
vectors xi − xn, i = 1, . . . , n− 1, the rank of the matrix(

∂z

∂xn+1(j)

)n
j=1

is at most n− 1. Therefore, the determinant of the Jacobian of the function
mapping (x1, . . . , xN ) onto (x1, . . . , xn, z, xn+2, . . . , xN ) is 0. Thus the set{

(x1, . . . , xN )

∣∣∣∣∣det(X) �= 0 and ∃t1, . . . , tn−1 : xn+1 = xn +
n−1∑
i=1

ti(xi − xn)

}

has measure 0. ��

Lemma 3.4. Let P∂Bn
2

be the normalized surface measure on ∂Bn2 . Let PN∂Bn
2

the N -fold probability measure of P∂Bn
2
. Then we have

(i)
PN∂Bn

2
{(x1, . . . , xN )|∃i1, . . . , in+1∃H : xi1 , . . . , xin+1 ∈ H} = 0

where H denotes a hyperplane in Rn.
(ii)

PN∂Bn
2
{(x1, . . . , xN )| ∃i1, . . . , in : xi1 , . . . , xin are linearly dependent} = 0

Proof. Lemma 3.4 is shown in the same way as Lemma 3.3. We use in addition
the Cauchy-Binet formula ([EvG], p. 89). ��
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Lemma 3.5. Almost all random polytopes of points chosen from the bound-
ary of the Euclidean ball with respect to the normalized surface measure are
simplicial.

Lemma 3.5 follows from Lemma 3.4.(i).
Let F be a n − 1-dimensional face of a polytope. Then dist(F ) is the

distance of the hyperplane containing F to the origin 0. We define

Φj1,...,jk(x) =
1
n

voln−1([xj1 , . . . , xjk ])dist(xj1 , . . . , xjk)

if [xj1 , . . . , xjk ] is a n − 1-dimensional face of the polytope [x1, . . . , xN ] and
if 0 ∈ H+ where H denotes the hyperplane containing the face [xj1 , . . . , xjk ]
and H+ the halfspace containing [x1, . . . , xN ]. We define

Φj1,...,jk(x) = − 1
n

voln−1([xj1 , . . . , xjk ])dist(xj1 , . . . , xjk)

if [xj1 , . . . , xjk ] is a n − 1-dimensional face of the polytope [x1, . . . , xN ] and
if 0 ∈ H−. We put

Φj1,...,jk(x) = 0

if [xj1 , . . . , xjk ] is not a n− 1-dimensional face of the polytope [x1, . . . , xN ].

Lemma 3.6. Let x1, . . . , xN ∈ Rn such that [x1, . . . , xN ] is a simplicial poly-
tope. Then we have

voln([x1, . . . , xN ]) =
∑

{j1,...,jn}⊆{1,...,N}
Φj1,...,jn(x).

Note that the above formula holds if 0 ∈ [x1, . . . , xN ] and if 0 /∈
[x1, . . . , xN ].

dLnk is the measure on all k-dimensional affine subspaces of Rn and dLnk (0)
is the measure on all k-dimensional subspaces of Rn [San].

Lemma 3.7. [Bla1, San]

k∧
i=0

dxni = (k!volk([x0, . . . , xk]))n−k
k∧
i=0

dxki dL
n
k

where dxni is the volume element in Rn and dxki is the volume element in Lnk .

The above formula can be found as formula (12.22) on page 201 in [San].
We need this formula here only in the case k = n − 1. It can be found as
formula (12.24) on page 201 in [San]. The general formula can also be found
in [Mil]. See also [Ki] and [Pe].
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Lemma 3.8.
dLnn−1 = dpdµ∂Bn

2
(ξ)

where p is the distance of the hyperplane from the origin and ξ is the normal
of the hyperplane.

This lemma is formula (12.40) in [San].
Let X be a metric space. Then a sequence of probability measures Pn

converges weakly to a probability measure P if we have for all φ ∈ C(X) that

lim
n→∞

∫
X

φdPn =
∫
X

φdPn.

See ([Bil], p.7). In fact, we have that two probability measures P1 and P2 coin-
cide on the underlying Borel σ-algebra if we have for all continuous functions
φ that ∫

X

φdP1 =
∫
X

φdP2.

Lemma 3.9. We put

Aε = Bn2 (0, r + ε) \Bn2 (0, r)

and as probability measure Pε on Aε ×Aε × · · · ×Aε

Pε =
χAε × · · · × χAε(x1)dx1 . . .dxk
((r + ε)n − rn)k(voln(Bn2 ))k

.

Then Pε converges weakly for ε to 0 to the k-fold product of the normalized
surface measure on ∂Bn2 (0, r)

µ∂Bn
2 (0,r)(x1) . . . µ∂Bn

2 (0,r)(xk)
rk(n−1)(voln−1(∂Bn2 ))k

.

Proof. All the measures are being viewed as measures on Rn, otherwise it
would not make sense to talk about convergence. For the proof we consider
a continuous function φ on Rn and Riemann sums for the Euclidean sphere.
��

Lemma 3.10. [Mil]

dµ∂Bn
2
(x1) · · ·dµ∂Bn

2
(xn)

= (n− 1)!
voln−1([x1, . . . , xn])

(1− p2)
n
2

dµ∂Bn
2 ∩H(x1) · · ·dµ∂Bn

2 ∩H(xn)dpdµ∂Bn
2
(ξ)

where ξ is the normal to the plane H through x1, . . . , xn and p is the distance
of the plane H to the origin.
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Proof. We put
Aε = Bn2 (0, 1 + ε) \Bn2 (0, 1)

and as probability measure Pε on Aε ×Aε × · · · ×Aε

Pε =
χAε × · · · × χAε(x1)dx1 . . .dxn

((1 + ε)n − 1)n(voln(Bn2 ))n
.

Then, by Lemma 3.9, Pε converges for ε to 0 to the n-fold product of the
normalized surface measure on ∂Bn2

µ∂Bn
2
(x1) . . . µ∂Bn

2
(xn)

(voln−1(∂Bn2 ))n
.

By Lemma 3.7 we have

n∧
i=1

dxni = (n− 1)!voln−1([x1, . . . , xn])dLnn−1

n∧
i=1

dxn−1
i

and by Lemma 3.8
dLnn−1 = dpdµ∂Bn

2
(ξ).

We get

n∧
i=1

dxni = (n− 1)!voln−1([x1, . . . , xn])
n∧
i=1

dxn−1
i dpdµ∂Bn

2
(ξ).

Thus we get

Pε = χAε × · · · × χAε(n− 1)!voln−1([x1, . . . , xn])

×
dxn−1

1 . . .dxn−1
n dpdµ∂Bn

2
(ξ)

((1 + ε)n − 1)n(voln(Bn2 ))n
.

This can also be written as

Pε = (n− 1)!voln−1([x1, . . . , xn])

×
χAε∩H × · · · × χAε∩Hdxn−1

1 . . .dxn−1
n dpdµ∂Bn

2
(ξ)

((1 + ε)n − 1)n(voln(Bn2 ))n

where H is the hyperplane with normal ξ that contains the points x1, . . . , xn.
p is the distance of H to 0. Aε∩H is the set-theoretic difference of a Euclidean
ball of dimension n− 1 with radius (1− p2 +2ε+ ε2)

1
2 and a ball with radius

(1− p2)
1
2 . By Lemma 3.9 we have that

χAε∩H × · · · × χAε∩Hdxn−1
1 . . .dxn−1

n

((1− p2 + 2ε+ ε2)
n−1

2 − (1− p2)
n−1

2 )n(voln−1(Bn−1
2 ))n
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converges weakly to the n-fold product of the normalized surface measure on
∂Bn2 ∩H

dµ∂Bn
2 ∩H . . .dµ∂Bn

2 ∩H

(1− p2)n
n−2

2 (voln−2(∂Bn−1
2 ))n

.

Therefore we get that

χAε∩H × · · · × χAε∩Hdxn−1
1 . . .dxn−1

n

((1 + ε)n − 1)n(voln(Bn2 ))n

converges to(
(n− 1)voln−1(Bn−1

2 )
n voln(Bn2 )

)n
(1− p2)n

n−1
2 −n dµ∂Bn

2 ∩H . . .dµ∂Bn
2 ∩H

(1− p2)n
n−2

2 (voln−2(∂Bn−1
2 ))n

=
dµ∂Bn

2 ∩H . . .dµ∂Bn
2 ∩H

(1− p2)
n
2 (voln−1(∂Bn2 ))n

.

��

Lemma 3.11. [Mil]∫
∂Bn

2 (0,r)
· · ·

∫
∂Bn

2 (0,r)
(voln([x1, . . . , xn+1]))2

×dµ∂Bn
2 (0,r)(x1) · · ·dµ∂Bn

2 (0,r)(xn+1)

=
(n+ 1)r2n

n!nn
(voln−1(∂Bn2 (r)))n+1 =

(n+ 1)rn
2+2n−1

n!nn
(voln−1(∂Bn2 ))n+1

We just want to refer to [Mil] for the proof. But we want to indicate an
alternative proof here. One can use

lim
N→∞

E(∂Bn2 , N) = voln(Bn2 )

and the computation in the proof of Proposition 3.1.

Lemma 3.12. Let C be a cap of a Euclidean ball with radius 1. Let s be the
surface area of this cap and r its radius. Then we have(

s

voln−1(Bn−1
2 )

) 1
n−1

− 1
2(n+ 1)

(
s

voln−1(Bn−1
2 )

) 3
n−1

−c
(

s

voln−1(Bn−1
2 )

) 5
n−1

≤ r(s) ≤
(

s

voln−1(Bn−1
2 )

) 1
n−1

− 1
2(n+ 1)

(
s

voln−1(Bn−1
2 )

) 3
n−1

+ c

(
s

voln−1(Bn−1
2 )

) 5
n−1

where c is a numerical constant.
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Proof. The surface area s of a cap of the Euclidean ball of radius 1 is

s = voln−2(∂Bn−1
2 )

∫ α

0
sinn−2 tdt

where α is the angle of the cap. Then α = arcsin r where r is the radius of
the cap. For all t with t ≥ 0

t− 1
3! t

3 ≤ sin t ≤ t− 1
3! t

3 + 1
5! t

5.

Therefore we get for all t with t ≥ 0

sinn−2 t ≥ (t− 1
3! t

3)n−2 = tn−2(1− 1
3! t

2)n−2 ≥ tn−2(1−n−2
3! t

2) = tn−2−n−2
3! t

n.

Now we use (1− u)k ≤ 1− ku+ 1
2k(k − 1)u2 and get for all t ≥ 0

sinn−2 t ≤ tn−2 − n−2
3! t

n + ctn+2.

Thus

s ≥ voln−2(∂Bn−1
2 )

∫ α

0
tn−2 − n−2

3! t
ndt

= voln−2(∂Bn−1
2 )

(
1
n−1α

n−1 − n−2
6(n+1)α

n+1
)

= voln−2(∂Bn−1
2 )

(
1
n−1 (arcsin r)n−1 − n−2

6(n+1) (arcsin r)n+1
)

and

s ≤ voln−2(∂Bn−1
2 )×(

1
n−1 (arcsin r)n−1 − n−2

6(n+1) (arcsin r)n+1 + c
n+3 (arcsin r)n+3

)
.

We have

arcsin r = r +
1
2
r3

3
+

1 · 3
2 · 4

r5

5
+

1 · 3 · 5
2 · 4 · 6

r7

7
+ · · ·

Thus we have for all sufficiently small r that

r + 1
3!r

3 ≤ arcsin r ≤ r + 1
3!r

3 + r5.

We get with a new constant c

s ≥ voln−2(∂Bn−1
2 )

(
1
n−1 (r + 1

3!r
3)n−1 − n−2

6(n+1) (r + 1
3!r

3 + r5)n+1
)

≥ voln−2(∂Bn−1
2 )

(
1
n−1r

n−1 + 1
3!r
n+1 − n−2

6(n+1)r
n+1 − crn+3

)
= voln−2(∂Bn−1

2 )
(

1
n−1r

n−1 + 1
2(n+1)r

n+1 − crn+3
)

= voln−1(Bn−1
2 )

(
rn−1 + n−1

2(n+1)r
n+1 − c(n− 1)rn+3

)
.
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We get the inverse inequality

s ≤ voln−1(Bn−1
2 )

(
rn−1 + n−1

2(n+1)r
n+1 + c(n− 1)rn+3

)
in the same way. We put now

u =
s

voln−1(Bn−1
2 )

and get

u
1

n−1 − 1
2(n+ 1)

u
3

n−1 − cu
5

n−1

≤
(
rn−1 + n−1

2(n+1)r
n+1 + c(n− 1)rn+3

) 1
n−1

− 1
2(n+ 1)

(
rn−1 + n−1

2(n+1)r
n+1 − c(n− 1)rn+3

) 3
n−1

−a
(
rn−1 + n−1

2(n+1)r
n+1 − c(n− 1)rn+3

) 5
n−1

.

If we choose a big enough then this can be estimated with a new constant c
by

r − cr5 ≤ r

provided r is small enough. The opposite inequality is shown in the same
way. Altogether we have with an appropriate constant c

(
s

voln−1(Bn−1
2 )

) 1
n−1

− 1
2(n+ 1)

(
s

voln−1(Bn−1
2 )

) 3
n−1

−c
(

s

voln−1(Bn−1
2 )

) 5
n−1

≤ r(s) ≤
(

s

voln−1(Bn−1
2 )

) 1
n−1

− 1
2(n+ 1)

(
s

voln−1(Bn−1
2 )

) 3
n−1

+ c

(
s

voln−1(Bn−1
2 )

) 5
n−1

.

��

Proof. (Proof of Proposition 3.1) We have

P =
µ∂Bn

2

voln−1(Bn2 )

and

E(∂Bn2 , N) =
∫
∂Bn

2

· · ·
∫
∂Bn

2

voln([x1, . . . , xN ])dP(x1) · · ·dP(xN ).
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By Lemma 3.5 almost all random polytopes are simplicial. Therefore we get
with Lemma 3.6

E(∂Bn2 , N)

=
∫
∂Bn

2

· · ·
∫
∂Bn

2

∑
{j1,...,jn}⊆{1,...,N}

Φj1,...,jn(x1, . . . , xN )dP(x1) · · ·dP(xN )

=
(
N

n

) ∫
∂Bn

2

· · ·
∫
∂Bn

2

Φ1,...,n(x1, . . . , xN )dP(x1) · · ·dP(xN ).

H is the hyperplane containing the points x1, . . . , xn. The set of points where
H is not well defined has measure 0. H+ is the halfspace containing the
polytope [x1, . . . , xN ]. We have

PN−n {(xn+1, . . . , xN )|Φ1,...,n(x1, . . . , xN )
= 1
nvoln−1([x1, . . . , xn])dist(x1, . . . , xn)

}
=

(
voln−1(∂Bn2 ∩H+)

voln−1(∂Bn2 )

)N−n

and

PN−n {(xn+1, . . . , xN )|Φ1,...,n(x1, . . . , xN )
= − 1

nvoln−1([x1, . . . , xn])dist(x1, . . . , xn)
}

=
(

voln−1(∂Bn2 ∩H−)
voln−1(∂Bn2 )

)N−n
.

Therefore

E(∂Bn2 , N) =
(
N

n

)
1
n

∫
∂Bn

2

· · ·
∫
∂Bn

2

voln−1([x1, . . . , xn])dist(x1, . . . , xn)

×
{(

voln−1(∂Bn2 ∩H+)
voln−1(∂Bn2 )

)N−n
−

(
voln−1(∂Bn2 ∩H−)

voln−1(∂Bn2 )

)N−n}

×dP(x1) · · ·dP(xn).

By Lemma 3.10 we get

E(∂Bn2 , N) =
1
n

(
N

n

)
(n− 1)!

(voln−1(∂Bn2 ))n

∫
∂Bn

2

∫ 1

0
p(1− p2)−

n
2

×
{(

voln−1(∂Bn2 ∩H+)
voln−1(∂Bn2 )

)N−n
−

(
voln−1(∂Bn2 ∩H−)

voln−1(∂Bn2 )

)N−n}

×
∫
∂Bn

2 ∩H
· · ·

∫
∂Bn

2 ∩H
(voln−1([x1, . . . , xn]))2

×dµ∂Bn
2 ∩H(x1) · · ·dµ∂Bn

2 ∩H(xn)dpdµ∂Bn
2
(ξ).
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We apply Lemma 3.11 for the dimension n− 1

E(∂Bn2 , N) =
1
n

(
N

n

)
(n− 1)!

(voln−1(∂Bn2 ))n

∫
∂Bn

2

∫ 1

0
p(1− p2)−

n
2

×
{(

voln−1(∂Bn2 ∩H+)
voln−1(∂Bn2 )

)N−n
−

(
voln−1(∂Bn2 ∩H−)

voln−1(∂Bn2 )

)N−n}

× nrn
2−2

(n− 1)!(n− 1)n−1 (voln−2(∂Bn−1
2 ))ndpdµ∂Bn

2
(ξ).

Since r(p) =
√

1− p2 we get

E(∂Bn2 , N) =
(
N

n

)
(voln−2(∂Bn−1

2 ))n

(voln−1(∂Bn2 ))n−1

1
(n− 1)n−1

∫ 1

0
rn

2−n−2
√

1− r2{(
voln−1(∂Bn2 ∩H+)

voln−1(∂Bn2 )

)N−n
−

(
voln−1(∂Bn2 ∩H−)

voln−1(∂Bn2 )

)N−n}
dp.

Now we introduce the surface area s of a cap with height 1 − p as a new
variable. By Lemma 1.5 we have

dp
ds

= −
(
rn−3voln−2(∂Bn−1

2 )
)−1

.

Thus we get

E(∂Bn2 , N) =
(
N

n

)
(voln−2(∂Bn−1

2 ))n−1

(voln−1(∂Bn2 ))n−1

1
(n− 1)n−1

×
∫ 1

2voln−1(∂Bn
2 )

0
r(n−1)2

√
1− r2

×
{(

1− s

voln−1(∂Bn2 )

)N−n
−

(
s

voln−1(∂Bn2 )

)N−n}
ds.

Now we introduce the variable

u =
s

voln−1(∂Bn2 )

and obtain

E(∂Bn2 , N) =
(
N

n

)
(voln−2(∂Bn−1

2 ))n−1

(voln−1(∂Bn2 ))n−2

1
(n− 1)n−1

×
∫ 1

2

0
r(n−1)2

√
1− r2

{
(1− u)N−n − uN−n

}
du.

By Lemma 3.12 we get
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E(∂Bn2 , N)

≤
(
N

n

)
(voln−2(∂Bn−1

2 ))n−1

(voln−1(∂Bn2 ))n−2

1
(n− 1)n−1

∫ 1
2

0

{
(1− u)N−n − uN−n

}

×
{(

u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 1
n−1

− 1
2(n+ 1)

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 3
n−1

+c
(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 5
n−1

}(n−1)2

×
{

1−
[(

u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 1
n−1

− 1
2(n+ 1)

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 3
n−1

−c
(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 5
n−1

]2} 1
2

du.

From this we get

E(∂Bn2 , N)

≤
(
N

n

)
voln−1(∂Bn2 )

∫ 1
2

0

{
(1− u)N−n − uN−n

}
un−1 ×

{
1− 1

2(n+ 1)

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 2
n−1

+ c

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 4
n−1

}(n−1)2

×
{

1−
[(

u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 1
n−1

− 1
2(n+ 1)

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 3
n−1

−c
(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 5
n−1

]2} 1
2

du.

This implies that we get for a new constant c

E(∂Bn2 , N)

≤
(
N

n

)
voln−1(∂Bn2 )

∫ 1
2

0

{
(1− u)N−n − uN−n

}
un−1

×
{

1− (n− 1)2

2(n+ 1)

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 2
n−1

+ c

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 4
n−1

}

×
(

1−
{

1
2

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 2
n−1

− c

(
u voln−1(∂Bn2 )
voln−1(Bn−1

2 )

) 4
n−1

})
du.

This gives, again with a new constant c
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E(∂Bn2 , N) ≤
(
N

n

)
voln−1(∂Bn2 )

∫ 1
2

0

{
(1− u)N−n − uN−n

}
un−1du

−
(
N

n

)
n2 − n+ 2
2(n+ 1)

voln−1(∂Bn2 )
n+1
n−1

voln−1(Bn−1
2 )

2
n−1

×
∫ 1

2

0

{
(1− u)N−n − uN−n

}
un−1+ 2

n−1 du

+c
(
N

n

) ∫ 1
2

0

{
(1− u)N−n − uN−n

}
un−1+ 4

n−1 du.

From this we get

E(∂Bn2 , N) ≤
(
N

n

)
voln−1(∂Bn2 )B(N − n+ 1, n)

−
(
N

n

)
n2 − n+ 2
2(n+ 1)

voln−1(∂Bn2 )
n+1
n−1

voln−1(Bn−1
2 )

2
n−1

B(N − n+ 1, n+ 2
n−1 )

+c
(
N

n

)
B(N − n+ 1, n+ 4

n−1 ) + c

(
1
2

)−N+ 2
n−1

.

This implies

E(∂Bn2 , N) ≤ voln(Bn2 )

−
(
N

n

)
n2 − n+ 2
2(n+ 1)

voln−1(∂Bn2 )
n+1
n−1

voln−1(Bn−1
2 )

2
n−1

Γ (N − n+ 1)Γ (n+ 2
n−1 )

Γ (N + 1 + 2
n−1 )

+c
(
N

n

)
Γ (N − n+ 1)Γ (n+ 4

n−1 )

Γ (N + 1 + 4
n−1 )

+ c

(
1
2

)−N+ 2
n−1

.

We have the asymptotic formula

lim
k→∞

Γ (k + β)
Γ (k)kβ

= 1.

Therefore we get that E(∂Bn2 , N) is asymptotically less than

voln(Bn2 )− n2 − n+ 2
2(n+ 1)

voln−1(∂Bn2 )
n+1
n−1

voln−1(Bn−1
2 )

2
n−1

Γ (n+ 2
n−1 )

n!N
2

n−1

+c
Γ (n+ 4

n−1 )

n!N
4

n−1
+ c

(
1
2

)−N+ 2
n−1

.

We apply now xΓ (x) = Γ (x+ 1) to x = n+ 2
n−1 .

E(∂Bn2 , N) ≤ voln(Bn2 )− n− 1
2(n+ 1)!

voln−1(∂Bn2 )
n+1
n−1

voln−1(Bn−1
2 )

2
n−1

Γ (n+ 1 + 2
n−1 )

N
2

n−1

+c
Γ (n+ 4

n−1 )

n!N
4

n−1
+ c

(
1
2

)−N+ 2
n−1

.
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The other inequality is proved similarly. ��

4 Probabilistic Estimates

4.1 Probabilistic Estimates for General Convex Bodies

Lemma 4.1. Let K be a convex body in Rn with 0 as an interior point. The
n(n − 1)-dimensional Hausdorff measure of the real n × n-matrices whose
determinant equal 0 and whose columns are elements of ∂K is 0.

Proof. We deduce this lemma from Lemma 3.2. We consider the map rp :
∂Bn2 → ∂K

rp−1(x) =
x

‖x‖
and Rp : ∂Bn2 × · · · × ∂Bn2 → ∂K × · · · × ∂K with

Rp(x1, . . . , xn) = (rp(x1), . . . , rp(xn)).

Rp is a Lipschitz-map and the image of a nullset is a nullset. ��

Lemma 4.2. Let K be a convex body in Rn and let f : ∂K → R be a
continuous, positive function with

∫
fdµ = 1. Then we have for all x ∈

◦
K

PNf {(x1, . . . , xN )|x ∈ ∂[x1, . . . , xN ]} = 0.

Let ε = (ε(i))1≤i≤n be a sequence of signs, that is ε(i) = ±1, 1 ≤ i ≤ n.
We denote, for a given sequence ε of signs, by Kε the following subset of K

Kε = {x = (x(1), x(2), . . . , x(n)) ∈ K| ∀i = 1, . . . , n : sgn(x(i)) = ε(i)}.

Lemma 4.3. (i) Let K be a convex body in Rn, a, b positive constants and
E an ellipsoid with center 0 such that aE ⊆ K ⊆ bE. Then we have

PN∂K{(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]} ≤ 2n
(

1− 1
2n

(a
b

)n−1
)N

.

(ii) Let K be a convex body in Rn, 0 an interior point of K, and let f : ∂K →
R be a continuous, nonnegative function with

∫
∂K

f(x)dµ = 1. Then we have

PNf {(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]} ≤ 2n
(

1−min
ε

∫
∂Kε

f(x)dµ
)N

.

(Here we do not assume that the function f is strictly positive.)
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Proof. (i) A rotation puts K into such a position that

E =

{
x

∣∣∣∣∣
n∑
i=1

∣∣∣∣x(i)
ai

∣∣∣∣
2

≤ 1

}
.

We have for all ε
an−1

2n
voln−1(∂E) ≤ voln−1(∂Kε).

We show this. Let pK,aE be the metric projection from ∂K onto ∂aE . We
have pK,aE(∂Kε) = ∂aEε. Thus we get

an−1

2n
voln−1(∂E) = an−1voln−1(∂Eε) ≤ voln−1(∂Kε).

We have

{(x1, . . . , xN )| ∀ε ∃i : xi ∈ ∂Kε} ⊆ {(x1, . . . , xN )|0 ∈ [x1, . . . , xN ]}

and therefore

{(x1, . . . , xN )| ∃ε ∀i : xi /∈ ∂Kε} ⊇ {(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]}.

Consequently⋃
ε

{(x1, . . . , xN )| ∀i : xi /∈ ∂Kε} ⊇ {(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]}.

Therefore we get

PNf {(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]} ≤
∑
ε

(
1− voln−1(∂Kε)

voln−1(∂K)

)N

≤ 2n
(

1− minε voln−1(∂Kε)
voln−1(∂K)

)N

≤ 2n
(

1− an−1

2n
voln−1(∂E)
voln−1(∂K)

)N

≤ 2n
(

1− 1
2n

(a
b

)n−1
)N

.

(ii) As in (i)

PNf {(x1, . . . , xN )|0 /∈ [x1, . . . , xN ]} ≤ PNf {(x1, . . . , xN )|∃ε∀i : xi /∈ ∂Kε}

≤ 2n
(

1−min
ε

∫
∂Kε

f(x)dµ(x)
)N

.

��
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Lemma 4.4. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be a strictly positive, continuous function with

∫
∂K

fdµ = 1. Suppose that for

all 0 < t ≤ T we have Kt ⊆
◦
K and that there are r,R > 0 with

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R)

and let N∂Ks
(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks

(xs))).
Then there is s0 that depends only on r, R, and f such that we have for all
s with 0 < s ≤ s0 and for all sequences of signs ε, δ

voln−1((K ∩H(xs, N∂Ks(xs)))
δ)

≤ C(r,R, f, θ, n)voln−1((K ∩H(xs, N∂Ks
(xs)))ε)

where the signed sets are taken in the plane H(xs, N∂Ks
(xs)) with xs as the

origin and any orthogonal coordinate system. θ is the angle between N∂K(x0)
and x0 − xT .

The important point in Lemma 4.4 is that s0 and the constant in the
inequality depend only on r, R, and f .

Another approach is to use that xs is the center of gravity of K ∩
H(xs, N∂Ks(xs)) with respect to the weight

f(y)
< N∂K∩H(y), N∂K(y) >

where H = H(xs, N∂Ks(xs)). See Lemma 2.4.

Proof. We choose s0 so small that x0 − rN∂K(x0) ∈ Ks0 . We show first that
there is s0 that depends only on r and R such that we have for all s with
0 ≤ s ≤ s0√

1− 2R∆
r2

(
maxx∈∂K f(x)
minx∈∂K f(x)

) 2
n−1

≤ 〈N∂K(x0), N∂Ks
(xs)〉 (51)

where ∆ is the distance of x0 to the hyperplane H(xs, N∂K(x0))

∆ =< N∂K(x0), x0 − xs > .

Let α denote the angle between N∂K(x0) and N∂Ks(xs). From Figure 4.4.1
and 4.4.2 we deduce that the height of the cap

Bn2 (x0 − rN∂K(x0), r) ∩H−(xs, N∂Ks
(xs))

is greater than

r(1− cosα) = r(1− 〈N∂K(x0), N∂Ks
(xs)〉).
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Here we use that xT ∈ Ks0 and x0 − rN∂K(x0) ∈ Ks0 . We have

Pf (∂K ∩H−(xs, N∂Ks
(xs))) =

∫
∂K∩H−(xs,N∂Ks (xs))

f(x)dµ∂K(x)

≥ min
x∈∂K

f(x)voln−1(∂K ∩H−(xs, N∂Ks(xs))).

Since Bn2 (x0 − rN∂K(x0), r) ⊆ K we get

Pf (∂K ∩H−(xs, N∂Ks
(xs)))

≥ min
x∈∂K

f(x)voln−1(∂Bn2 (x0 − rN∂K(x0), r) ∩H−(xs, N∂Ks
(xs)))

≥ min
x∈∂K

f(x)voln−1(Bn2 (x0 − rN∂K(x0), r) ∩H(xs, N∂Ks(xs))).

H(xs, N∂Ks
(xs))x0

xs

α

α

Bn2 (x0 − rN∂K(x0), r)

x0 − rN∂K(x0)

us

xT

ws

Fig. 4.4.1: We see the plane through x0 that is spanned by N∂K(x0) and
N∂Ks(xs). The points xs and xT are not necessarily in this plane. Since the
height of the cap is greater than r(1− cosα) we get

Pf (∂K ∩H−(xs, N∂Ks(xs)))

≥ min
x∈∂K

f(x)voln−1(Bn−1
2 )

(
2r2(1− cosα)− r2(1− cosα)2

)n−1
2

= min
x∈∂K

f(x)voln−1(Bn−1
2 )

(
r2(1− cos2 α)

)n−1
2 . (52)
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H(xs, N∂Ks
(xs))

x0

xs

α

α

Bn2 (x0 − rN∂K(x0), r)

x0 − rN∂K(x0)

xT

vs

ws

Fig. 4.4.2

On the other hand

s = Pf (∂K ∩H−(xs, N∂Ks(xs)))

=
∫
∂K∩H−(xs,N∂Ks (xs))

f(x)dµ∂K(x)

=
∫
∂K∩H−(xs,N∂K(x0))

f(x)dµ∂K(x)

≤ max
x∈∂K

f(x)voln−1(∂K ∩H−(xs, N∂K(x0))).

Since Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 − RN∂K(x0), R) we get for suffi-
ciently small s0

Pf (∂K ∩H−(xs, N∂Ks(xs)))
≤ max
x∈∂K

f(x)voln−1(∂Bn2 (x0 −RN∂K(x0), R) ∩H−(xs, N∂K(x0)))

≤ max
x∈∂K

f(x)voln−1(Bn−1
2 )(2R∆)

n−1
2 . (53)

Since

s = Pf (∂K ∩H−(xs, N∂Ks
(xs))) ≤ Pf (∂K ∩H−(xs, N∂K(x0)))

we get by (52) and (53)

min
x∈∂K

f(x)voln−1(Bn−1
2 )

(
r2(1− cos2 α)

)n−1
2

≤ max
x∈∂K

f(x)voln−1(Bn−1
2 )(2R∆)

n−1
2 .
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This implies

cosα ≥

√
1− 2R∆

r2

(
maxx∈∂K f(x)
minx∈∂K f(x)

) 2
n−1

.

Thus we have established (51).
The distance of xs to ∂K ∩H(xs, N∂Ks(xs)) is greater than the distance

of xs to ∂Bn2 (x0 − rN∂K(x0), r) ∩ H(xs, N∂Ks(xs)). We have ‖xs − (x0 −
∆N∂K(x0))‖ = ∆ tan θ. Let x̄s be the image of xs under the orthogonal
projection onto the 2-dimensional plane seen in Figures 4.4.1 and 4.4.2. Then
‖x̄s − xs‖ ≤ ∆ tan θ. There is a n − 1-dimensional ball with center x̄s and
radius min{‖x̄s − us‖, ‖x̄s − vs‖} that is contained in K ∩H(xs, N∂Ks(xs)).

We can choose s0 small enough so that for all s with 0 < s ≤ s0 we have
cosα ≥ 1

2 .

tanα =
√

1− cos2 α
cosα

≤ 2
√

2R∆
r

(
maxx∈∂K f(x)
minx∈∂K f(x)

) 1
n−1

(54)

We compute the point of intersection of the line through vs and x̄s and the
line through x0 and ws. Formula (54) and the fact that the height of the cap
Bn2 (x0−rN∂K(x0), N∂K(x0))∩H−(xs, N∂K(x0)) is ∆ and its radius 2r∆−∆2

give further
c
√
∆ ≤ min{‖x̄s − us‖, ‖x̄s − vs‖}

where c is a constant depending only on r,R, f, n. Thus K∩H(xs, N∂Ks(xs))
contains a Euclidean ball with center x̄s and radius greater c

√
∆. Therefore,

K ∩ H(xs, N∂Ks
(xs)) contains a Euclidean ball with center xs and radius

greater c
√
∆−∆ tan θ. On the other hand,

K ∩H(xs, N∂Ks(xs)) ⊆ Bn2 (x0 −RN∂K(x0), R) ∩H(xs, N∂Ks(xs)).

Following arguments as above we find that K∩H(xs, N∂Ks(xs)) is contained
in a Euclidean ball with center xs and radius C

√
∆ where C is a constant

that depends only on r,R, f, n. Therefore, with new constants c, C we get for
all sequences of signs δ

c∆
n−1

2 ≤ voln−1((K ∩H(xs, N∂Ks(xs)))
δ) ≤ C∆

n−1
2 .

��

Lemma 4.5. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be a strictly positive, continuous function with

∫
∂K

fdµ = 1. For all t with

0 < t ≤ T we have Kt ⊆
◦
K. Suppose that there are r,R > 0 with

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R)
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and let N∂Ks(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks(xs))).
Then there is s0 that depends only on r, R, and f such that we have for all
s with 0 < s ≤ s0

voln−1(∂K ∩H−(xs, N∂Ks
(xs))) ≤ 3 voln−1(K ∩H(xs, N∂Ks

(xs))).

Proof. Since

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R)

we can choose ∆ sufficiently small so that we have for all y ∈ ∂K ∩H−(x0−
∆N∂K(x0), N∂K(x0))

< N∂K(x0), N∂K(y) >≥ 1− 1
8 (55)

and ∆ depends only on r and R. Since f is strictly positive we find s0 that
depends only on r, R, and f such that we have for all s with 0 < s ≤ s0

K ∩H(xs, N∂Ks
(xs)) ⊆ K ∩H−(x0 −∆N∂K(x0), N∂K(x0)). (56)

By (55) and (56)
< N∂K(x0), N∂Ks(xs) >≥ 1− 1

8 .

Thus

< N∂Ks
(xs), N∂K(y) >

=< N∂K(x0), N∂K(y) > + < N∂Ks
(xs)−N∂K(x0), N∂K(y) >

≥ 1− 1
8 − ‖N∂Ks

(xs)−N∂K(x0)‖
= 1− 1

8 −
√

2− 2 < N∂Ks
(xs), N∂K(x0) > ≥ 1− 3

8 .

Altogether
< N∂Ks

(xs), N∂K(y) >≥ 1− 3
8 .

Let pN∂Ks (xs) be the metric projection from ∂K∩H−(xs, N∂Ks(xs)) onto the
plane H (xs, N∂Ks

(xs)). With this we get now

voln−1(∂K ∩H−(xs, N∂Ks
(xs)))

=
∫
K∩H(xs,N∂Ks (xs))

1
< N∂Ks

(xs), N∂K(p−1
N∂Ks (xs)(z)) >

dz

≤ 3 voln−1(K ∩H(xs, N∂Ks(xs))).

��
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Lemma 4.6. Let K be a convex body in Rn and x0 ∈ ∂K. xs is defined
by {xs} = [x0, xT ] ∩ Ks. Let f : ∂K → R be a strictly positive, continuous

function with
∫
∂K

fdµ = 1. For all t with 0 < t ≤ T we have Kt ⊆
◦
K. Suppose

that there are r,R > 0 such that

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R)

and let N∂Ks(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks(xs))).
Then there is s0 that depends only on r, R, and f such that for all s with 0 <
s ≤ s0 there are hyperplanes H1, . . . , Hn−1 containing xT and xs such that
the angle between two n − 2-dimensional hyperplanes Hi ∩H(xs, N∂Ks(xs))
is π2 and such that for

∂KH,ε = ∂K ∩H−(xs, N∂Ks(xs)) ∩
n−1⋂
i=1

Hεii

and all sequences of signs ε and δ we have

voln−1(∂KH,ε) ≤ c voln−1(∂KH,δ)

where c depends on n, r, R, f and d(xT , ∂K) only.

xs

∂KH,ε

H(xs, N(xs))

x
T

Fig. 4.6.1

Proof. Since xT is an interior point of K we have d(xT , ∂K) > 0. We choose
s0 so small that

Bn2 (xT , 1
2d(xT , ∂K)) ⊆ Ks0 . (57)
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We choose hyperplanes Hi, i = 1, ..., n − 1, such that they contain xT and
xs and such that the angles between the hyperplanes Hi ∩H(xs, N∂Ks

(xs)),
i = 1, ..., n− 1 is π2 .

By Lemma 4.4 there is s0 so that we have for all s with 0 < s ≤ s0 and
for all sequences of signs ε and δ

voln−1((K ∩H(xs, N∂Ks
(xs)))ε) ≤ c voln−1((K ∩H(xs, N∂Ks

(xs)))δ)

where c depends only on r, R, and n. Then we have by Lemma 4.5

voln−1(∂KH,ε) ≤ voln−1(∂K ∩H−(xs, N∂Ks(xs)))
≤ c voln−1(K ∩H(xs, N∂Ks

(xs))).

Therefore we get with a new constant c that depends only on n, f , r and R

voln−1(∂KH,ε) ≤ c voln−1((K ∩H(xs, N∂Ks
(xs)))δ).

We consider the affine projections q : Rn → H(xs, N∂Ks
(xs)) and p : Rn →

H(xs, xs−xT

‖xs−xT ‖ ) given by q(t(xs − xT ) + y) = y where y ∈ H(xs, N∂Ks(xs))
and p(t(xs − xT ) + y) = y where y ∈ H(xs, xs−xT

‖xs−xT ‖ ). Please note that p is a
metric projection and q ◦ p = q. Since p is a metric projection we have

voln−1(p(∂KH,δ)) ≤ voln−1(∂KH,δ).

q is an affine, bijective map between the two hyperplanes and

q ◦ p(∂KH,δ) = q(∂KH,δ) ⊇ (K ∩H(xs, N∂Ks(xs)))
δ.

By this (compare the proof of Lemma 2.7)

voln−1(∂KH,δ)
< N∂Ks(xs),

xs−xT

‖xs−xT ‖ >
≥ voln−1(q(∂KH,δ))

≥ voln−1((K ∩H(xs, N∂Ks(xs)))
δ).

By (57) the cosine of the angle between the plane H(xs, N∂Ks(xs)) and the
plane orthogonal to xs − xT is greater than 1

2
d(xT ,∂K)
‖xs−xT ‖ . Therefore we get

voln−1(∂KH,δ) ≥
1
2
d(xT , ∂K)
‖xs − xT ‖

voln−1((K ∩H(xs, N∂Ks(xs)))
δ).

��

Lemma 4.7. Let K be a convex body in Rn and x0 ∈ ∂K. xs is defined
by {xs} = [x0, xT ] ∩ Ks. Let f : ∂K → R be a strictly positive, continuous
function with

∫
∂K

fdµ = 1. Suppose that there are r,R > 0 such that we have
for all x ∈ ∂K
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Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

and let N∂Ks(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks(xs))).
Then there are constants s0, a, and b with 0 ≤ a, b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s ≤ s0 and for all N ∈ N
and all k = 1, . . . , N

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩H−(xs, N∂Ks
(xs))

and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks
(xs))}

≤ (1− s)N−k
sk2n(aN−k + bk).

Proof. Let H1, . . . , Hn−1 be hyperplanes and ∂KH,ε as specified in Lemma
4.6:

∂KH,ε = ∂K ∩H−(xs, N∂Ks
(xs)) ∩

n−1⋂
i=1

Hεii .

We have by Lemma 4.6 that for all sequences of signs ε and δ

voln−1(∂KH,ε) ≤ c voln−1(∂KH,δ)

where c depends on n, f , r, R and d(xT , ∂K). As

{(x1, . . . , xN )|xs ∈ [x1, . . . , xN ]}
⊇ {(x1, . . . , xN )|xT ∈ [x1, . . . , xN ] and [xs, x0] ∩ [x1, . . . , xN ] �= ∅}

we get

{(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]}
⊆ {(x1, . . . , xN )|xT /∈ [x1, . . . , xN ] or [xs, x0] ∩ [x1, . . . , xN ] = ∅}.

Therefore we get

{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩H−(xs, N∂Ks
(xs))

and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks(xs))}
⊆ {(x1, . . . , xN )|xT /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩H−(xs, N∂Ks

(xs))
and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks(xs))}

∪{(x1, . . . , xN )|[xs, x0] ∩ [x1, . . . , xN ] = ∅, x1, . . . , xk ∈ ∂K ∩
H−(xs, N∂Ks

(xs)) and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks
(xs))}.

With Hs = H(xs, N∂Ks(xs))

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩H−(xs, N∂Ks(xs))

and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks(xs))}
≤ (1− s)N−k

sk PN−k
f,∂K∩H+

s
{(xk+1, . . . , xN )|xT /∈ [xk+1, . . . , xN ]}

+ (1− s)N−k
skPk

f,∂K∩H−
s
{(x1, . . . , xk)|[xs, x0] ∩ [x1, . . . , xk] = ∅}



336 C. Schütt and E. Werner

where we obtain Pf,∂K∩H+
s

from Pf by restricting it to the subset ∂K ∩H+
s

and then normalizing it. The same for Pf,∂K∩H−
s

. We have

PN−k
f,∂K∩H+

s
{(xk+1, . . . , xN )|xT /∈ [xk+1, . . . , xN ]} (58)

= PN−k
f̃

{(xk+1, . . . , xN )|xT /∈ [xk+1, . . . , xN ]}

where f̃ : ∂(K ∩H+(xs, N∂Ks(xs)))→ R is given by

f̃(x) =




f(x)
Pf (∂K ∩H+

s )
x ∈ ∂K ∩H+(xs, N∂Ks

(xs))

0 x ∈
◦
K ∩H(xs, N∂Ks

(xs)).

We apply Lemma 4.3.(ii) to K ∩H+(xs, N∂Ks(xs)), f̃ , and xT as the origin.
We get

PN−k
f̃

{(xk+1, . . . , xN )|xT /∈ [xk+1, . . . , xN ]} (59)

≤ 2n
(

1−min
ε

∫
∂(K∩H+

s )ε

f̃(x)dµ

)N−k

.

Since
Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R)

we can choose s0 sufficiently small so that for all s with 0 < s ≤ s0

min
ε

∫
∂(K∩H+

s )ε

f̃(x)dµ ≥ c > 0

where c depends only on s0 and s0 can be chosen in such a way that it
depends only on r, R, and f . Indeed, we just have to make sure that the
surface area of the cap K ∩H−(xs, N∂Ks(xs)) is sufficiently small. We verify
the inequality. Since we have for all x ∈ ∂K

Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

the point xT is an interior point. We consider

Bn2 (xT , 1
2d(xT , ∂K)).

Then, by considering the metric projection

1
2n voln−1(∂Bn2 (xT , 1

2d(xT , ∂K)))
= voln−1(∂Bn2 (xT , 1

2d(xT , ∂K))ε) ≤ voln−1(∂Kε).

We choose now
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s0 = 1
2n+1 voln−1(∂Bn2 (xT , 1

2d(xT , ∂K))) min
x∈∂K

f(x).

Then we get

Pf (∂K ∩H+
s )

∫
∂(K∩H+

s )ε

f̃(x)dµ(x)

=
∫
∂(K∩H+

s )ε

f(x)dµ(x)

=
∫
∂Kε

f(x)dµ(x)−
∫
∂Kε∩H−

s

f(x)dµ.

Since
∫
∂Kε∩H−

s
f(x)dµ = s ≤ s0

Pf (∂K ∩H+
s )

∫
∂(K∩H+

s )ε

f̃(x)dµ(x)

≥
∫
∂Kε

f(x)dµ(x)− s0

≥ voln−1(∂Kε) min
x∈∂K

f(x)− s0

≥ 1
2n+1 voln−1(∂Bn2 (xT , 1

2d(xT , ∂K))) min
x∈∂K

f(x).

We put

a = 1−min
ε

∫
∂(K∩H+

s )ε

f̃(x)dµ.

We get by (58) and (59)

PN−k
f,∂K∩H+

s
{(xk+1, . . . , xN )|xT /∈ [xk+1, . . . , xN ]} ≤ 2naN−k.

Moreover, since

{(x1, . . . , xk)| [xs, x0]∩ [x1, . . . , xk] �= ∅} ⊇ {(x1, . . . , xk)| ∀ε ∃i : xi ∈ ∂KH,ε}

we get

{(x1, . . . , xk)| [xs, x0]∩ [x1, . . . , xk] = ∅} ⊆ {(x1, . . . , xk)| ∃ε ∀i : xi /∈ ∂KH,ε}.

By Lemma 4.6 there is b with 0 ≤ b < 1 so that

Pk
f,∂K∩H−

s
{(x1, . . . , xk)|[xs, x0] ∩ [x1, . . . , xk] = ∅} ≤ 2n−1bk.

Thus we get

PN∂K{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩H−(xs, N∂Ks(xs))
and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks

(xs))}
≤ (1− s)N−k

sk2n(aN−k + bk).

��
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Lemma 4.8. Let K be a convex body in Rn and x0 ∈ ∂K. xs is defined
by {xs} = [x0, xT ] ∩ Ks. Let f : ∂K → R be a strictly positive, continuous
function with

∫
∂K

fdµ = 1. Suppose that there are r,R > 0 such that we have
for all x ∈ ∂K

Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

and let N∂Ks
(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks

(xs))).
Then there are constants s0, a and b with 0 ≤ a, b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s ≤ s0 and for all N ∈ N
and all k = 1, . . . , N

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} ≤ 2n (a− as+ s)N + 2n(1− s+ bs)N .

s0, a, and b are as given in Lemma 4.7.

Proof. We have

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}

=
N∑
k=0

(
N

k

)
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ], x1, . . . , xk ∈ ∂K ∩

H−(xs, N∂Ks(xs)) and xk+1, . . . , xN ∈ ∂K ∩H+(xs, N∂Ks(xs))}.
By Lemma 4.7 we get

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}

≤ 2n
N∑
k=0

(
N

k

)
(1− s)N−k

sk(aN−k + bk)

= 2n (a− as+ s)N + 2n(1− s+ bs)N .

��

Lemma 4.9. Let K be a convex body in Rn and x0 ∈ ∂K. xs is defined
by {xs} = [x0, xT ] ∩ Ks. Let f : ∂K → R be a strictly positive, continuous
function with

∫
∂K

fdµ = 1. Suppose that there are r,R > 0 such that we have
for all x ∈ ∂K

Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

and let N∂Ks
(xs) be a normal such that s = Pf (∂K ∩ H−(xs, N∂Ks

(xs))).
Then for all s0 with 0 < s0 ≤ T

lim
N→∞

N
2

n−1

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}dµ∂Ks(xs)ds∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
= 0

where Hs = H(xs, N∂Ks
(xs)).
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Proof. Since < N∂Ks(xs), N∂K(y) >≤ 1

N
2

n−1

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
dµ∂Ks(xs)ds

≤ N
2

n−1

minx∈∂K f(x)

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}
voln−2(∂(K ∩H(xs, N∂Ks(xs)))

dµ∂Ks
(xs)ds.

We observe that there is a constant c1 > 0 such that

c1 = d(∂K, ∂Ks0) = inf{‖x− xs0‖|x ∈ ∂K, xs0 ∈ ∂Ks0}. (60)

If not, there is xs0 ∈ ∂K ∩ ∂Ks0 . This cannot be because the condition

∀x ∈ ∂K : Bn2 (x− rN∂K(x), r) ⊆ K ⊆ Bn2 (x−RN∂K(x), R)

implies that Ks0 is contained in the interior of K. It follows that there is a
constant c2 > 0 that depends on K and f only such that for all s ≥ s0 and
all xs ∈ ∂Ks

voln−2(∂(K ∩H(xs, N∂Ks
(xs)))) ≥ c2. (61)

Therefore

N
2

n−1

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N(xs),N(y)>2

dµ∂K∩Hs
(y)

dµ∂Ks(xs)ds

≤ N
2

n−1

c2 minx∈∂K f(x)
×

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}dµ∂Ks(xs)ds.

Now we apply Lemma 4.3.(ii) to K with xs as the origin. Let

∂Kε(xs) = {x ∈ ∂K|∀i = 1, . . . , n : sgn(x(i)− xs(i)) = εi}.
With the notation of Lemma 4.3 we get that the latter expression is less than

2nN
2

n−1

c2 minx∈∂K f(x)

∫ T

s0

∫
∂Ks

(
1−min

ε

∫
∂Kε(xs)

f(x)dµ

)N
dµ∂Ks(xs)ds

≤ 2nN
2

n−1

c2 minx∈∂K f(x)
×

∫ T

s0

∫
∂Ks

(
1− min

x∈∂K
f(x) min

ε
voln−1(∂Kε(xs))

)N
dµ∂Ks

(xs)ds

≤ 2nN
2

n−1 voln−1(∂K)(T − s0)
c2 minx∈∂K f(x)

×
(

1− min
x∈∂K

f(x) inf
s0≤s≤T

min
ε

voln−1(∂Kε(xs))
)N

.
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By (60) the ball with center xs and radius c1 is contained in K

cn−1
1 2−nvoln−1(∂Bn2 ) = cn−1

1 voln−1(∂(Bn2 )ε) ≤ voln−1(∂Kε(xs)).

Thus we obtain

N
2

n−1

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N(xs),N(y)>2

dµ∂K∩Hs
(y)

dµ∂Ks
(xs)ds (62)

≤ 2nN
2

n−1 voln−1(∂K)(T − s0)
c2 minx∈∂K f(x)

(
1− min

x∈∂K
f(x)cn−1

1 2−nvoln−1(∂Bn2 ))
)N

.

Since f is strictly positive the latter expression tends to 0 for N to infinity.
��

Lemma 4.10. Let K be a convex body in Rn and x0 ∈ ∂K. Let xs ∈ ∂Ks
be given by the equation {xs} = [x0, xT ] ∩ ∂Ks. Suppose that there are r,R
with 0 < r,R <∞ and

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).

Let f : ∂K → R be a strictly positive, continuous function with
∫
∂K

fdµ = 1.

Suppose that for all t with 0 < t ≤ T we have Kt ⊆
◦
K. Let the normals

N∂Ks(xs) be such that

s = Pf (∂K ∩H−(xs, N∂Ks
(xs))).

Let Θ be the angle between N∂K(x0) and x0 − xT and s0 the minimum of

1
2

( r

8R

)n−1
2 (minx∈∂K f(x))2

maxx∈∂K f(x)
voln−1(Bn−1

2 )rn−1 ( 1
4 cos3Θ

)n−1
2

and the constant C(r,R, f,Θ, n) of Lemma 4.4. Then we have for all s with
0 < s < s0 and all y ∈ ∂K ∩H−(xs, N∂Ks

(xs))

√
1− < N∂Ks(xs), N∂K(y) >2 ≤ 30R

r2

(
s maxx∈∂K f(x)

(minx∈∂K f(x))2 voln−1(Bn−1
2 )

) 1
n−1

.

Proof. Θ is the angle between N∂K(x0) and x0−xT . Let ∆r(s) be the height
of the cap

Bn2 (x0 − rN∂K(x0), r) ∩H−(xs, N∂Ks(xs))

and ∆R(s) the one of

Bn2 (x0 −RN∂K(x0), R) ∩H−(xs, N∂Ks
(xs)).
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By assumption

s0 ≤ 1
2

( r

8R

)n−1
2 (minx∈∂K f(x))2

maxx∈∂K f(x)
voln−1(Bn−1

2 )rn−1 ( 1
4 cos3Θ

)n−1
2 . (63)

y

Θ

α

xs

x0
N∂K(y)

xT

H(xs, N∂K(x0))

Fig. 4.10.1

First we want to make sure that for s with 0 < s < s0 the number ∆r(s)
is well-defined, i.e. the above cap is not the empty set. For this we have to
show that H(xs, N∂Ks

(xs)) intersects Bn2 (x0 − rN∂K(x0), r). It is enough to
show that for all s with 0 < s ≤ s0 we have xs ∈ Bn2 (x0− rN∂K(x0), r). This
follows provided that there is s0 such that for all s with 0 < s ≤ s0

‖x0 − xs‖ ≤ 1
2r cos2Θ. (64)

See Figure 4.10.2. We are going to verify this inequality. We consider the
point z ∈ [xT , x0] with ‖x0 − z‖ = 1

2r cos2Θ. Let H be any hyperplane with
z ∈ H. Then

Pf (∂K ∩H−) =
∫
∂K∩H−

f(x)dµ∂K(x) ≥
(

min
x∈∂K

f(x)
)

voln−1(∂K ∩H−).

The set K ∩H− contains a cap of Bn2 (x0 − rN∂K(x0), r) with height greater
than 3

8r cos2Θ. We verify this. By Figure 4.10.3 we have
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x0

Θr cos Θ

x0 − rN∂K(x0)

xT

Fig. 4.10.2

x0

Θ

x0 − rN∂K(x0)

z

1
2r cos2 Θ 1

2r cos3 Θ

1
2r cos2 Θ sinΘ

xT

Fig. 4.10.3

‖z − (x0 − rN∂K(x0)‖ =
√
|r − 1

2r cos3Θ|2 + 1
4r

2 cos4Θ sin2Θ

=
√
r2 − r2 cos3Θ + 1

4r
2 cos6Θ + 1

4r
2 cos4Θ sin2Θ

=
√
r2 − r2 cos3Θ + 1

4r
2 cos4Θ

≤ r
√

1− 3
4 cos3Θ.

Therefore the height of a cap is greater than

r − ‖z − (x0 − rN∂K(x0)‖ ≥ r

(
1−

√
1− 3

4 cos3Θ
)
≥ 3

8r cos3Θ.

By Lemma 1.3 a cap of a Euclidean ball of radius r with height h = 3
8r cos3Θ

has surface area greater than
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voln−1(Bn−1
2 )r

n−1
2

(
2h− h2

r

)n−1
2

= voln−1(Bn−1
2 )r

n−1
2

( 3
4r cos3Θ − 9

64r cos6Θ
)n−1

2

≥ voln−1(Bn−1
2 )rn−1 ( 1

4 cos3Θ
)n−1

2 .

By our choice of s0 (63) we get

Pf (∂K ∩H−) ≥
(

min
x∈∂K

f(x)
)

voln−1(Bn−1
2 )rn−1 ( 1

4 cos3Θ
)n−1

2 > s0.

Therefore we have for all s with 0 < s < s0 that z ∈ Ks0 . By convexity we
get

∂Ks ∩ [z, x0] �= ∅.
Thus (64) is shown.

Next we show that for all s with 0 < s < s0 we have√√√√1− 8R
3r3

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 2
n−1

≤ 〈N∂K(x0), N∂Ks(xs)〉 .

(65)

By the same consideration for showing (64) we get for all s with 0 < s < s0

∆r(s) ≤ 3
8r cos3Θ

and by Lemma 1.3

s = Pf (∂K ∩H−(xs, N∂Ks
(xs)))

≥
(

min
x∈∂K

f(x)
)

voln−1(Bn−1
2 )r

n−1
2

(
2∆r(s)−

(∆r(s))2

r

)n−1
2

.

Since ∆r(s) ≤ 3
8r cos3Θ

s ≥
(

min
x∈∂K

f(x)
)

voln−1(Bn−1
2 )r

n−1
2

(
2∆r(s)−∆r(s) 3

8 cos3Θ
)n−1

2

≥
(

min
x∈∂K

f(x)
)

voln−1(Bn−1
2 )(r∆r(s))

n−1
2 .

Thus we have

s ≥
(

min
x∈∂K

f(x)
)

voln−1(Bn−1
2 )(r∆r(s))

n−1
2

or equivalently
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∆r(s) ≤
1
r

(
s

minx∈∂K f(x)voln−1(Bn−1
2 )

) 2
n−1

. (66)

Next we show
3
4∆(s) ≤ ∆r(s)

where ∆(s) is the distance of x0 to the hyperplane H(xs, N∂K(x0))

∆(s) =< N∂K(x0), x0 − xs > .

xT

Θ
x0

xs

∆(s)∆r(s)

∆(s) tan Θ H(xs, N∂K(x0))

Fig. 4.10.4

By the Pythagorean Theorem, see Figure 4.10.4,

(r −∆r(s))2 = (r −∆(s))2 + (∆(s) tanΘ)2.

Thus

∆r(s) = r −
√

(r −∆(s))2 + (∆(s) tanΘ)2

= r

(
1−

√
1− 1

r2
(2r∆(s)−∆2(s)− (∆(s) tanΘ)2)

)
.

We use
√

1− t ≤ 1− 1
2 t

∆r(s) ≥
1
2r

(
2r∆(s)−∆2(s)− (∆(s) tanΘ)2

)
= ∆r(s)

[
1− 1

2
∆r(s)
r

(1 + tan2Θ)
]
.

By (64) we get∆(s) = ‖x0−xs‖ cosΘ ≤ 1
2r cos3Θ and thus∆(s) ≤ 1

2r cos3Θ.
With this
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∆r(s) = ∆r(s)
[
1− 1

2
∆r(s)
r

(1 + tan2Θ)
]

= ∆r(s)
[
1− 1

2r
(1 + tan2Θ) 1

2r cos3Θ
]

= ∆r(s)
[
1− 1

4 cos4Θ
]
≥ 3

4∆r(s).

By formula (51) of the proof of Lemma 4.4 we have√
1− 2R∆(s)

r2

(
maxx∈∂K f(x)
minx∈∂K f(x)

) 2
n−1

≤ 〈N∂K(x0), N∂Ks
(xs)〉 .

By 3
4∆(s) ≤ ∆r(s)√

1− 8R∆r(s)
3r2

(
maxx∈∂K f(x)
minx∈∂K f(x)

) 2
n−1

≤ 〈N∂K(x0), N∂Ks(xs)〉 .

By (66) we get√√√√1− 8R
3r3

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 2
n−1

≤ 〈N∂K(x0), N∂Ks
(xs)〉 .

Thus we have shown (65).
Next we show that for all y ∈ ∂Bn2 (x0−RN∂K(x0), R)∩H−(xs, N∂Ks(xs))

1− ∆r(s)
r

≤
〈
N∂Ks

(xs),
y − (x0 −RN∂K(x0))
‖y − (x0 −RN∂K(x0))‖

〉
. (67)

For this we show first that for all s with 0 < s < s0

∆R(s) ≤ R

r
∆r(s). (68)

By our choice (63) of s0 and by (65)

〈N∂Ks
(xs), N∂K(x0)〉 ≥

√
1− 1

12 cos3Θ

and by (64) we have ‖xs − x0‖ < 1
2r cos2Θ. Therefore we have for all s with

0 < s < s0 that the hyperplane H(xs, N∂Ks(xs)) intersects the line segment

[x0, x0 − rN∂K(x0)].

Let r1 be the distance of x0 to the point defined by the intersection

[x0, x0 − rN∂K(x0)] ∩H(xs, N∂Ks(xs)).

We get by Figure 4.10.5
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r −∆r(s)
R−∆R(s)

=
r − r1
R− r1

≤ r

R
.

The right hand side inequality follows from the monotonicity of the function
(r − t)/(R− t).

Bn2 (x0 − rN∂K(x0), r)

x0
H(xs, N∂Ks

(xs))
r1

Bn2 (x0 −RN∂K(x0), R)

x0 −RN∂K(x0)

x0 − rN∂K(x0),

Fig. 4.10.5

Thus
r −∆r(s) ≤

r

R
(R−∆R(s)) = r − r

R
∆R(s)

and therefore
r

R
∆R(s) ≤ ∆r(s).

For all y ∈ ∂Bn2 (x0 − RN∂K(x0), R) ∩ H−(xs, N∂Ks
(xs)) the cosine of the

angle between N∂Ks(xs) and y− (x0−RN∂K(x0)) is greater than 1− ∆R(s)
R .

This holds since y is an element of a cap of a Euclidean ball with radius R
and with height ∆R(s). Thus we have

1− ∆R(s)
R

≤
〈
N∂Ks(xs),

y − (x0 −RN∂K(x0))
‖y − (x0 −RN∂K(x0))‖

〉
.

By (68)

1− ∆r(s)
r

≤
〈
N∂Ks

(xs),
y − (x0 −RN∂K(x0))
‖y − (x0 −RN∂K(x0))‖

〉
and we have verified (67).

We show now that this inequality implies that for all s with 0 < s < s0
and all y ∈ ∂Bn2 (x0 −RN∂K(x0), R) ∩H−(xs, N∂Ks

(xs))

1−∆r(s)
R2

r3
≤

〈
N∂Ks

(xs),
y − (x0 − rN∂K(x0))
‖y − (x0 − rN∂K(x0))‖

〉
. (69)
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Let α be the angle between N∂Ks(xs) and y− (x0−RN∂K(x0)) and let β be
the angle between N∂Ks

(xs) and y − (x0 − rN∂K(x0)).

cosα =
〈
N∂Ks

(xs),
y − (x0 −RN∂K(x0))
‖y − (x0 −RN∂K(x0))‖

〉

cosβ =
〈
N∂Ks

(xs),
y − (x0 − rN∂K(x0))
‖y − (x0 − rN∂K(x0))‖

〉

We put
a = ‖y − (x0 − rN∂K(x0))‖ b = ‖y − x0‖.

See Figure 4.10.6.

α

β

x0 −RN∂K(x0)

Bn2 (x0 −RN∂K(x0), R)

x0

Bn2 (x0 − rN∂K(x0), r)

x0 − rN∂K(x0)

α

β

x0

R

a

b

Fig. 4.10.6

By elementary trigonometric formulas we get

b2 = 2R2(1− cosα) b2 = a2 + r2 − 2ar cosβ

and

a2 = R2 + (R− r)2 − 2R(R− r) cosα = r2 + 2R(R− r)(1− cosα).

From these equations we get

cosβ =
a2 + r2 − b2

2ar
=
a2 + r2 − 2R2(1− cosα)

2ar

=
2r2 − 2Rr(1− cosα)

2r
√
r2 + 2R(R− r)(1− cosα)

=
r −R(1− cosα)√

r2 + 2R(R− r)(1− cosα)
.

Thus

cosβ =
1− R

r (1− cosα)√
1 + 2R( Rr2 − 1

r )(1− cosα)
.

By (67) we have 1− cosα ≤ ∆r(s)
r and therefore



348 C. Schütt and E. Werner

cosβ ≥ 1− R∆r(s)
r2√

1 + 2R( Rr2 − 1
r )
∆r(s)
r

≥ 1− R∆r(s)
r2

1 +R( Rr2 − 1
r )
∆r(s)
r

= 1−
R2

r3 ∆r(s)

1 +R( Rr2 − 1
r )
∆r(s)
r

≥ 1− R2

r3
∆r(s).

Thus we have proved (69). From (69) it follows now easily that for all s with
0 < s < s0 and all y ∈ ∂K ∩H−(xs, N∂Ks

(xs))

1−∆r(s)
R2

r3
≤

〈
N∂Ks(xs),

y − (x0 − rN∂K(x0))
‖y − (x0 − rN∂K(x0))‖

〉
. (70)

This follows because the cap K ∩H−(xs, N∂Ks(xs)) is contained in the cap
Bn2 (x0 −RN∂K(x0), R) ∩H−(xs, N∂Ks

(xs)). Using now (66)

1− R2

r4

(
s

minx∈∂K f(x)voln−1(Bn−1
2 )

) 2
n−1

(71)

≤
〈
N∂Ks(xs),

y − (x0 − rN∂K(x0))
‖y − (x0 − rN∂K(x0))‖

〉
.

For all s with 0 < s < s0 and all y ∈ ∂K ∩ H−(xs, N∂Ks
(xs)) the angle

between y − (x0 − rN∂K(x0)) and N∂K(y) cannot be greater than the angle
between y− (x0 − rN∂K(x0)) and N∂K(x0). This follows from Figure 4.10.7.

Bn2 (x0 −RN∂K(x0), R)

x0

Bn2 (x0 − rN∂K(x0), r)

x0 − rN∂K(x0)

y

Fig. 4.10.7

A supporting hyperplane of K through y cannot intersect Bn2 (x0 −
rN∂K(x0), r). Therefore the angle between y− (x0− rN∂K(x0)) and N∂K(y)
is smaller than the angle between y − (x0 − rN∂K(x0)) and the normal of a
supporting hyperplane of Bn2 (x0 − rN∂K(x0), r) that contains y.

Let α1 denote the angle between N∂K(x0) and N∂Ks
(xs), α2 the angle be-

tween N∂Ks
(xs) and y−(x0−rN∂K(x0)), and α3 the angle between N∂K(x0)

and y − (x0 − rN∂K(x0)). Then by (65) and (71) we have
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α3 ≤ α1 + α2 ≤ π
2 sinα1 + π

2 sinα2

≤ π
2

√
8R
3r3

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 1
n−1

+ π√
2

R

r2

(
s

minx∈∂K f(x)voln−1(Bn−1
2 )

) 1
n−1

≤ 10
R

r2

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 1
n−1

.

Let α4 be the angle between N∂K(y) and y− (x0− rN∂K(x0)). By the above
consideration α4 ≤ α3. Thus

α4 ≤ 10
R

r2

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 1
n−1

.

Let α5 be the angle between N∂Ks
(xs) and N∂K(y). Then

sinα5 ≤ α5 ≤ α2 + α4

≤ 10
R

r2

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 1
n−1

+ π√
2

R

r2

(
s

minx∈∂K f(x)voln−1(Bn−1
2 )

) 1
n−1

≤ 30
R

r2

(
s

maxx∈∂K f(x)
(minx∈∂K f(x))2 voln−1(Bn−1

2 )

) 1
n−1

.

��

Lemma 4.11. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be a strictly positive, continuous function with

∫
∂K

fdµ = 1. Assume that for

all t with 0 < t ≤ T we have Kt ⊆
◦
K. Let xs ∈ ∂Ks be given by the equation

{xs} = [x0, xT ] ∩ ∂Ks. Suppose that there are r,R with 0 < r,R <∞ and

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).

Let the normals N∂Ks(xs) be such that

s = Pf (∂K ∩H−(xs, N∂Ks(xs))).

Let s0 be as in Lemma 4.10. Then we have for all s with 0 < s < s0
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∂K∩Hs

1√
1− < N∂Ks

(xs), N∂K(y) >2
dµ∂K∩Hs(y)

≥ cn
rn (minx∈∂K f(x))

2
n−1 (voln−1(Bn−1

2 ))
2

n−1

Rn−1 maxx∈∂K f(x)
s

n−3
n−1

where c is an absolute constant and Hs = H(xs, N∂Ks
(xs)).

Proof. By Lemma 4.10 we have∫
∂K∩Hs

1√
1− < N∂Ks(xs), N∂K(y) >2

dµ∂K∩Hs
(y)

≥ r2

30R

(
(minx∈∂K f(x))2 voln−1(Bn−1

2 )
s maxx∈∂K f(x)

) 1
n−1

voln−2(∂K ∩Hs)

≥ r2

30R

(
(minx∈∂K f(x))2 voln−1(Bn−1

2 )
s maxx∈∂K f(x)

) 1
n−1

×voln−2(∂Bn2 (x0 − rN∂K(x0), r) ∩Hs). (72)

Now we estimate the radius of the n− 1-dimensional Euclidean ball Bn2 (x0−
rN∂K(x0), r) ∩Hs from below. As in Lemma 4.10 ∆r(s) is the height of the
cap

Bn2 (x0 − rN∂K(x0), r) ∩H−(xs, N∂Ks(xs))

and ∆R(s) the one of

Bn2 (x0 −RN∂K(x0), R) ∩H−(xs, N∂Ks(xs)).

By (68) we have ∆R(s) ≤ R
r∆r(s). Moreover,

s = Pf (∂K ∩H−(xs, N∂Ks(xs)))

=
∫
∂K∩H−

s

f(x)dµ∂K(x) ≤ max
x∈∂K

f(x)voln−1(∂K ∩H−
s ). (73)

Since K ∩H−
s ⊆ Bn2 (x0 −RN∂K(x0), R) ∩H−

s we have

voln−1(∂K ∩H−
s ) ≤ voln−1(∂(K ∩H−

s ))
≤ voln−1(∂(Bn2 (x0 −RN∂K(x0), R) ∩H−

s ))
≤ 2voln−1(∂Bn2 (x0 −RN∂K(x0), R) ∩H−

s ).

By Lemma 1.3 we get

voln−1(∂K ∩H−
s ) ≤ 2

√
1 +

2∆R(s)R
(R−∆R(s))2

voln−1(Bn−1
2 )(2R∆R(s))

n−1
2 .
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As we have seen in the proof of Lemma 4.10 we have ∆r(s) ≤ 1
2r. Together

with ∆R(s) ≤ R
r∆r(s) we get ∆R(s) ≤ 1

2R. This gives us

voln−1(∂K ∩H−
s ) ≤ 2

√
5voln−1(Bn−1

2 )(2R∆R(s))
n−1

2

and

R

r
∆r(s) ≥ ∆R(s) ≥ 1

2R

(
voln−1(∂K ∩H−

s )
2
√

5voln−1(Bn−1
2 )

) 2
n−1

≥ 1
2R

(
s

2
√

5voln−1(Bn−1
2 ) maxx∈∂K f(x)

) 2
n−1

.

By this and by ∆r(s) ≤ 1
2r the radius of Bn2 (x0−rN∂K(x0), r)∩Hs is greater

than√
2r∆r(s)−∆r(s)2 ≥

√
r∆r(s)

≥ r√
2R

(
s

2
√

5voln−1(Bn−1
2 ) maxx∈∂K f(x)

) 1
n−1

.

Therefore, by (72)∫
∂K∩Hs

1√
1− < N∂Ks

(xs), N∂K(y) >2
dµ∂K∩Hs(y)

≥ r2

30R

(
(minx∈∂K f(x))2 voln−1(Bn−1

2 )
s maxx∈∂K f(x)

) 1
n−1

voln−2(∂Bn−1
2 )

(
r√
2R

)n−2 (
s

2
√

5voln−1(Bn−1
2 ) maxx∈∂K f(x)

)n−2
n−1

.

By (73) the latter expression is greater than or equal to

cn
rn (minx∈∂K f(x))

2
n−1 (voln−1(Bn−1

2 ))
2

n−1

Rn−1 maxx∈∂K f(x)
s

n−3
n−1

where c is an absolute constant. ��

Lemma 4.12. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be a strictly positive, continuous function with

∫
∂K

fdµ = 1. Assume that for

all t with 0 < t ≤ T we have Kt ⊆
◦
K. Let xs ∈ ∂Ks be given by the equation

{xs} = [x0, xT ] ∩ ∂Ks. Suppose that there are r,R with 0 < r,R <∞ and

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).
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Let the normals N∂Ks(xs) be such that

s = Pf (∂K ∩H−(xs, N∂Ks(xs))).

Let s0 be as in Lemma 4.10. Let β be such that Bn2 (xT , β) ⊆ Ks0 ⊆ K ⊆
Bn2 (xT , 1

β ) and let Hs = H(xs, N∂Ks
(xs)). Then there are constants a and b

with 0 ≤ a, b < 1 that depend only on r, R, and f such that we have for all
N

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

×
(‖xs − xT ‖
‖x0 − xT ‖

)n
< x0 − xT , N∂K(x0) >
< xs − xT , N∂Ks(xs) >

ds

≤ cn
Rn−1 maxx∈∂K f(x)

[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
β2rn (minx∈∂K f(x))

n+1
n−1

where cn is a constant that depends only on the dimension n. The constants
a and b are the same as in Lemma 4.8. They depend only on n, r, R and f .

Lemma 4.12 provides an uniform estimate. The constants do not depend
on the boundary point x0.

Proof. As in Lemma 4.10 Θ denotes the angle between the vectors N∂K(x0)
and x0 − xT . Θs is the angle between the vectors N∂Ks

(xs) and xs − xT
which is the same as the angle between N∂Ks(xs) and x0 − xT . Thus
< x0−xT

‖x0−xT ‖ , N∂K(x0) >= cosΘ and < xs−xT

‖xs−xT ‖ , N∂Ks(xs) >= cosΘs. By
Lemma 2.3.(ii) Ks has volume strictly greater than 0 if we choose s small

enough. Since Kt ⊆
◦
K the point xT is an interior point of K. For small enough

s0 the set Ks0 has nonempty interior and therefore there is a β > 0 such that

Bn2 (xT , β) ⊆ Ks0 ⊆ K ⊆ Bn2 (xT , 1
β ).

Then for all s with 0 < s ≤ s0

β2 ≤
〈

x0 − xT
‖x0 − xT ‖

, N∂K(x0)
〉
≤ 1 and β2 ≤

〈
xs − xT
‖xs − xT ‖

, N∂Ks(xs)
〉
≤ 1.

Thus
‖xs − xT ‖ < x0 − xT , N∂K(x0) >
‖x0 − xT ‖ < xs − xT , N∂Ks(xs) >

≤ 1
β2 .

As ‖xs−xT ‖
‖x0−xT ‖ ≤ 1,
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N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

×
(‖xs − xT ‖
‖x0 − xT ‖

)n
< x0 − xT , N∂K(x0) >
< xs − xT , N∂Ks

(xs) >
ds

≤ N
2

n−1
1
β2

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds.

By Lemma 4.8 and Lemma 4.11 the last expression is less than

N
2

n−1
Rn−1 maxx∈∂K f(x)

β2cnrn (minx∈∂K f(x))
2

n−1 (voln−1(Bn−1
2 ))

2
n−1

(74)

×
∫ s0

0

[
2n (a− as+ s)N + 2n(1− s+ bs)N

]
s−

n−3
n−1 ds.

We estimate now the integral∫ s0

0

[
2n (a− as+ s)N + 2n(1− s+ bs)N

]
s−

n−3
n−1 ds

= 2n
∫ s0

0
[1− (1− a)(1− s)]Ns−

n−3
n−1 + [1− (1− b)s]Ns−

n−3
n−1 ds.

For s0 ≤ 1
2 (we may assume this) we have 1− (1− a)(1− s) ≤ 1− (1− a)s.

Therefore the above expression is smaller than

2n
∫ s0

0
[1− (1− a)s]Ns−

n−3
n−1 + [1− (1− b)s]Ns−

n−3
n−1 ds

= 2n(1− a)−
2

n−1

∫ (1−a)s0

0
[1− s]Ns−

n−3
n−1 ds

+2n(1− b)−
2

n−1

∫ (1−b)s0

0
[1− s]Ns−

n−3
n−1 ds.

Since s0 ≤ 1
2 and 0 < a, b < 1 the last expression is smaller than

2n
[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
B

(
N + 1, 2

n−1

)
where B denotes the Beta function. We have

lim
x→∞

Γ (x+ α)
Γ (x)

x−α = 1.

Thus
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lim
N→∞

B(N + 1, 2
n−1 )(N + 1)

2
n−1

= lim
N→∞

Γ (N + 1)Γ ( 2
n−1 )

Γ (N + 1 + 2
n−1 )

(N + 1)
2

n−1 = Γ ( 2
n−1 )

and

B(N + 1, 2
n−1 ) ≤ 22+ 2

n−1
Γ ( 2
n−1 )

N
2

n−1
.

We get ∫ s0

0

[
2n (a− as+ s)N + 2n(1− s+ bs)N

]
s−

n−3
n−1 ds

≤ 2n
[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
22+ 2

n−1
Γ ( 2
n−1 )

N
2

n−1
.

Therefore, by (74)

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−(<N(xs),N(y)>)2)
1
2

×
(‖xs − xT ‖
‖x0 − xT ‖

)n
< x0 − xT , N∂K(x0) >
< xs − xT , N∂Ks(xs) >

ds

≤ N
2

n−1
Rn−1 maxx∈∂K f(x)

β2cnrn (minx∈∂K f(x))
2

n−1 (voln−1(Bn−1
2 ))

2
n−1

2n
[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
22+ 2

n−1
Γ ( 2
n−1 )

N
2

n−1
.

With a new constant cn that depends only on the dimension n the last ex-
pression is less than

cn
Rn−1 maxx∈∂K f(x)

[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
β2rn (minx∈∂K f(x))

2
n−1

.

��

Lemma 4.13. Let K be a convex body in Rn and x0 ∈ ∂K. Let f : ∂K → R
be a strictly positive, continuous function with

∫
∂K

fdµ = 1. Assume that for

all t with 0 < t ≤ T we have Kt ⊆
◦
K. Let xs ∈ ∂Ks be given by the equation

{xs} = [x0, xT ] ∩ ∂Ks. Suppose that there are r,R with 0 < r,R <∞ and

Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).

Let the normals N∂Ks
(xs) be such that



Random Polytopes 355

s = Pf (∂K ∩H−(xs, N∂Ks(xs))).

Let s0 be as in Lemma 4.10. Then there are c1, c2, c3 > 0, N0, and u0 such
that we have for all u > u0 and N > N0

N
2

n−1

∫ T

u
N

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
ds ≤ c1e

−u + c2e
−c3N

where Hs = H(xs, N∂Ks
(xs)). The constants u0, N0, c1, c2 and c3 depend

only on n, r, R and f .

Proof. First we estimate the integral from s0 to u
N . As in the proof of Lemma

4.12 we show

N
2

n−1

∫ s0

u
N

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
ds

≤ N
2

n−1
Rn−1 maxx∈∂K f(x)

β2cnrn (minx∈∂K f(x))
2

n−1 (voln−1(Bn−1
2 ))

2
n−1

2n
[
(1− a)−

2
n−1 + (1− b)−

2
n−1

] ∫ s0

u
N

[1− s]Ns−
n−3
n−1 ds.

We estimate the integral∫ s0

u
N

[1− s]Ns−
n−3
n−1 ds ≤

∫ s0

u
N

e−sNs−
n−3
n−1 ds = N− 2

n−1

∫ s0N

u

e−ss−
n−3
n−1 ds.

If we require that u0 ≥ 1 then the last expression is not greater than

N− 2
n−1

∫ s0N

u

e−sds ≤ N− 2
n−1

∫ ∞

u

e−sds = N− 2
n−1 e−u.

Thus

N
2

n−1

∫ s0

u
N

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
ds

≤ Rn−1 maxx∈∂K f(x)

β2cnrn (minx∈∂K f(x))
2

n−1 (voln−1(Bn−1
2 ))

2
n−1

×2n
[
(1− a)−

2
n−1 + (1− b)−

2
n−1

]
e−u.

Now we estimate the integral from s0 to T

N
2

n−1

∫ T

s0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

ds.
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The same arguments that we have used in the proof of Lemma 4.9 in order
to show formula (62) give that the latter expression is less than

2nN
2

n−1 voln−1(∂K)(T − s0)
c2 minx∈∂K f(x)

(
1− min

x∈∂K
f(x)cn−1

1 2−nvoln−1(∂Bn2 ))
)N

where c1 is the distance between ∂K and ∂Ks0 . Choosing now new constants
c1 and c2 finishes the proof. ��

Lemma 4.14. Let H be a hyperplane in Rn that contains 0. Then in both
halfspaces there is a 2n-tant i.e. there is a sequence of signs θ such that

{x|∀i, 1 ≤ i ≤ n : sgn(xi) = θi}.

Moreover, if H+ is the halfspace that contains the above set then

H+ ⊂
n⋃
i=1

{x|sgn(xi) = θi}.

The following lemma is an extension of a localization principle introduced
by Bárány [Ba1] for random polytopes whose vertices are chosen from the in-
side of the convex body. The measure in that case is the normalized Lebesgue
measure on the convex body.

For large numbers N of chosen points the probability that a point is
an element of a random polytope is almost 1 provided that this point is
not too close to the boundary. So it leaves us to compute the probability
for those points that are in the vicinity of the boundary. The localization
principle now says that in order to compute the probability that a point
close to the boundary is contained in a random polytope it is enough to
consider only those points that are in a small neighborhood of the point
under consideration. As a neighborhood we choose a cap of the convex body.

The arguments are similar to the ones used in [Sch1].

Lemma 4.15. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin exists at x0 and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let f : ∂K → R be a continuous, strictly positive
function with

∫
∂K

fdµ∂K = 1. Assume that for all t with 0 < t ≤ T we have

Kt ⊆
◦
K. We define the point xs by {xs} = [xT , x0] ∩ ∂Ks and

∆(s) =< N∂K(x0), x0 − xs >

is the distance between the planes H(x0, N∂K(x0)) and H(xs, N∂K(x0)). Sup-
pose that there are r,R with 0 < r,R <∞ and
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Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).

Then, there is c0 such that for all c with c ≥ c0 and b with b > 2 there is
sc,b > 0 such that we have for all s with 0 < s ≤ sc,b and for all N ∈ N with

N ≥ 1
bsvoln−1(∂K)

that ∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−]}

∣∣
≤ 2n−1 exp(− c1b

√
c)

where H = H(x0 − c∆(s)N∂K(x0), N∂K(x0)) and c1 = c1(n) is a constant
that only depends on the dimension n.

In particular, for all ε > 0 and all k ∈ N there is N0 ∈ N such that we
have for all N ≥ N0 and all xs ∈ [x0, xT ]∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −

PN+k
f {(x1, . . . , xN+k)| xs /∈ [x1, . . . , xN+k]}

∣∣ ≤ ε.

The numbers sc,b may depend on the boundary points x0.

∂K

∂E

xs

x0

H(x0 −∆N(x0), N(x0))

H(x0 − c∆N(x0), N(x0))

Fig. 4.15.1

Subsequently we apply Lemma 4.15 to a situation where b is already given
and we choose c sufficiently big so that

2n−1 exp(− c1b
√
c)

is as small as we desire.
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Proof. Let c and b be given. Since f is continuous for any given ε > 0 we
can choose sc,b so small that we have for all s with 0 < s ≤ sc,b and all
x ∈ ∂K ∩H−(x0 − c∆(s)N∂K(x0), N∂K(x0))

|f(x)− f(x0)| < ε.

We may assume that x0 = 0, N∂K(x0) = −en. Let

E =

{
x ∈ Rn

∣∣∣∣∣
n−1∑
i=1

∣∣∣∣xiai
∣∣∣∣
2

+
∣∣∣∣xnan − 1

∣∣∣∣
2

≤ 1

}

be the standard approximating ellipsoid at x0 (see Lemma 1.2). Thus the
principal axes are multiples of ei, i = 1, . . . , n.

We define the operator Tη : Rn → Rn

Tη(x1, . . . , xn) = (ηx1, . . . , ηxn−1, xn).

By Lemma 1.2 for any ε > 0 we may choose sc,b so small that we have

T1−ε(E ∩H−(x0 − c∆(sc,b)N∂K(x0), N∂K(x0)))
⊆ K ∩H−(x0 − c∆(sc,b)N∂K(x0), N∂K(x0)) (75)
⊆ T1+ε(E ∩H−(x0 − c∆(sc,b)N∂K(x0), N∂K(x0))).

For s with 0 < s ≤ sc,b we denote the lengths of the principal axes of the
n− 1-dimensional ellipsoid

T1+ε(E) ∩H(x0 − c∆(s)N∂K(x0), N∂K(x0)))

by λi, i = 1, . . . , n − 1, so that the principal axes are λiei, i = 1, . . . , n − 1.
We may assume (for technical reasons) that for all s with 0 < s ≤ sc,b

x0 − c∆(s)N∂K(x0)± λiei /∈ K i = 1, . . . , n− 1. (76)

This is done by choosing (if necessary) a slightly bigger ε.
For any sequence Θ = (Θi)ni=1 of signs Θi = ±1 we put

cornK(Θ) = ∂K ∩H+(xs, N∂K(x0)) (77)

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}
.

We have

cornK(Θ) ⊆ H−(x0 − c∆(s)N∂K(x0), N∂K(x0)). (78)

We refer to these sets as corner sets (see Figure 4.15.2). The hyperplanes

H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
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∂K

xs
H(x0 −∆N(x0), N(x0))

H(x0 − c∆N(x0), N(x0))

Fig. 4.15.2: The shaded area is cornK(Θ).

Θi = ±1 and i = 1, . . . , n− 1 are chosen in such a way that xs and

x0 +Θiλiei + c∆(s)en = Θiλiei + c∆(s)en

(x0 = 0) are elements of the hyperplanes. We check this. By definition xs is
an element of this hyperplane. We have

< xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei >
= (Θi < xs, ei > −λi) < xs, en > +Θi(c− 1)∆(s) < xs, ei > .

Since N∂K(x0) = −en we have ∆(s) =< xs, en > and

< xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei >
= (Θi < xs, ei > −λi)∆(s) +Θi(c− 1)∆(s) < xs, ei >

= ∆(s){(Θi < xs, ei > −λi) +Θi(c− 1) < xs, ei >}
= ∆(s){−λi +Θic < xs, ei >}

and

< Θiλiei + c∆(s)en, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei >
= λi(c− 1)∆(s) + c∆(s)(Θi < xs, ei > −λi)
= −λi∆(s) +Θic∆(s) < xs, ei > .

These two equalities show that for all i with i = 1, . . . , n− 1

Θiλiei + c∆(s)en ∈ H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei).

We conclude that for all i with i = 1, . . . , n− 1 and all s, 0 < s ≤ sc,b,
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K ∩H+(x0 − c∆(s)N∂K(x0), N∂K(x0)) (79)
∩H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei) = ∅.

We verify this. Since

x0 +Θiλiei + c∆(s)en ∈ H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)

we have

H(x0 − c∆(s)N∂K(x0), N∂K(x0))
∩H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)

=


x0 +Θiλiei + c∆(s)en +

∑
j �=i,n

ajej

∣∣∣∣∣∣ aj ∈ R


 .

On the other hand, by (75)

K ∩H−(x0 − c∆(sc,b)N∂K(x0), N∂K(x0))
⊆ T1+ε(E ∩H−(x0 − c∆(sc,b)N∂K(x0), N∂K(x0)))

and by (76)

x0 − c∆(s)N∂K(x0) + λiei /∈ K i = 1, . . . , n− 1.

From this we conclude that

H(x0 − c∆(s)N∂K(x0))
∩H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei) ∩K = ∅.

Using this fact and the convexity of K we deduce (78).
We want to show now that we have for all s with 0 < s ≤ sc,b and

H = H(x0 − c∆(s)N∂K(x0), N∂K(x0))

{(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−]} (80)
\{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}

= {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}
⊆

⋃
Θ

{(x1, . . . , xN )| x1, . . . , xN ∈ ∂K \ cornK(Θ)}.

In order to do this we show first that forH = H(x0−c∆(s)N∂K(x0), N∂K(x0))
we have

{(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]} (81)
⊆ {(x1, . . . , xN )|∃Hxs , hyperplane : xs ∈ Hxs , H

−
xs
∩K ∩H+ �= ∅

and {x1, . . . , xN} ∩H− ⊆
◦
H+

xs
}.
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We show this now. We have xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ].

We observe that there is z ∈ K∩
◦
H+ (x0 − c∆(s)N∂K(x0), N∂K(x0)) such

that

[z, xs] ∩ [{x1, . . . , xN} ∩H−(x0 − c∆(s)N∂K(x0), N∂K(x0))] = ∅. (82)

We verify this. Assume that x1 . . . , xk ∈ H−(x0 − c∆(s)N∂K(x0), N∂K(x0))

and xk+1 . . . , xN ∈
◦
H+ (x0−c∆(s)N∂K(x0), N∂K(x0)). Since xs ∈ [x1, . . . , xN ]

there are nonnegative numbers ai, i = 1, . . . , N , with
∑N
i=1 ai = 1 and

xs =
N∑
i=1

aixi.

Since xs /∈ [{x1, . . . , xN} ∩ H−] we have
∑N
i=k+1 ai > 0 and since xs ∈

H−(x0 −∆(s)N∂K(x0), N∂K(x0)) we have
∑k
i=1 ai > 0. Now we choose

y =
∑k
i=1 aixi∑k
i=1 ai

and z =
∑N
i=k+1 aixi∑N
i=k+1 ai

.

Thus we have y ∈ [x1, . . . , xk], z ∈ [xk+1, . . . , xN ], and

xs = αy + (1− α)z

where α =
∑k
i=1 ai.

H(x0 − c∆N(x0), N(x0))

x0

y

z

v xs

∂K

xT

Fig. 4.15.3

We claim that [z, xs]∩ [x1, . . . , xk] = ∅. Suppose this is not the case. Then
there is v ∈ [z, xs] with v ∈ [x1, . . . , xk]. We have v �= z and v �= xs. Thus
there is β with 0 < β < 1 and v = βz + (1− β)xs. Therefore we get

v = βz + (1− β)xs = β( 1
1−αxs − α

1−αy) + (1− β)xs = 1−α+αβ
1−α xs − αβ

1−αy
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and thus
xs = 1−α

1−α+αβ v + αβ
1−α+αβ y.

Thus xs is a convex combination of y and v. Since v ∈ [x1, . . . , xk] and y ∈
[x1, . . . , xk] we conclude that xs ∈ [x1, . . . , xk] which is not true. Therefore
we have reached a contradiction and

[z, xs] ∩ [x1, . . . , xk] = ∅.

We have verified (82).
Now we conclude that

{xs + t(z − xs)| t ≥ 0} ∩ [x1, . . . , xk] = ∅.

We have

{xs + t(z − xs)| t ≥ 0} = [z, xs] ∪ {xs + t(z − xs)| t > 1}.

We know already that [z, xs] and [x1, . . . , xk] are disjoint. On the other hand
we have

{xs + t(z − xs)| t > 1} ⊆
◦
H+ (x0 − c∆(s)N∂K(x0), N∂K(x0)).

This is true since xs ∈
◦
H

−
(x0 − c∆(s)N∂K(x0), N∂K(x0)) and

z ∈
◦
H+ (x0 − c∆(s)N∂K(x0), N∂K(x0)). (83)

Since {x1, . . . , xk} ⊆ H−(x0−c∆(s)N∂K(x0), N∂K(x0)) we conclude that the
sets

{xs + t(z − xs)| t > 1} and [x1, . . . , xk]

are disjoint. Now we apply the theorem of Hahn-Banach to the convex, closed
set {xs + t(z− xs)| t ≥ 0} and the compact, convex set [x1, . . . , xk]. There is
a hyperplane Hxs

that separates these two sets strictly. We pass to a parallel
hyperplane that separates these two sets and is a support hyperplane of
{xs+t(z−xs)| t ≥ 0}. Let us call this new hyperplane now Hxs . We conclude
that xs ∈ Hxs . We claim that Hxs satisfies (81).

We denote the halfspace that contains z by H−
xs

. Then

[x1, . . . , xk] ⊆
◦

H+
xs
.

Thus we have xs ∈ Hxs , H
−
xs
∩ K ∩ H+(x0 − c∆(s)N∂K(x0), N∂K(x0)) ⊃

{z} �= ∅, and

[x1, . . . , xk] ⊆
◦

H+
xs
.

Therefore we have shown (81)
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{(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}
⊆ {(x1, . . . , xN )|∃Hxs

: xs ∈ Hxs
, H−
xs
∩K ∩H+ �= ∅

and {x1, . . . , xN} ∩H− ⊆
◦

H+
xs
}

where H = H(x0 − c∆(s)N∂K(x0), N∂K(x0)). Now we show that

{(x1, . . . , xN )|∃Hxs : xs ∈ Hxs , H
−
xs
∩K ∩H+ �= ∅ (84)

and {x1, . . . , xN} ∩H− ⊆
◦

H+
xs
}

⊆
⋃
Θ

{(x1, . . . , xN )|x1, . . . , xN ∈ ∂K \ cornK(Θ)}

which together with (81) gives us (80).
We show that for every Hxs

with xs ∈ Hxs
and H−

xs
∩K ∩H+ �= ∅ there

is a sequence of signs Θ so that we have

cornK(Θ) ⊆ H−
xs

and cornK(−Θ) ⊆ H+
xs
. (85)

This implies that for all sequences (x1, . . . , xN ) that are elements of the left
hand side set of (4.15.5) there is a Θ such that for all k = 1, . . . , N

xk /∈ cornK(Θ).

Indeed,

{x1, . . . , xN} ∩H−(x0 − c∆(s)N∂K(x0), N∂K(x0)) ⊆
◦

H+
xs

cornK(Θ) ∩H+(x0 − c∆(s)N∂K(x0), N∂K(x0)) = ∅.

This proves (84). We choose Θ so that (85) is fulfilled. We have for all i =
1, . . . , n− 1

H(xs, N∂K(x0)) ∩H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
= {x ∈ Rn| < x, en >=< xs, en > and < x− xs, Θiei >≥ 0}.

Indeed, N∂K(x0) = −en and

H(xs, N∂K(x0)) = {x ∈ Rn| < x, en >=< xs, en >}

and

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
= {x ∈ Rn| < x− xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei >≥ 0}.

On the intersection of the two sets we have < x− xs, en >= 0 and thus

0 ≤ < x− xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei >
=< x− xs, Θi(c− 1)∆(s)ei > .
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Since c− 1 and ∆(s) are positive we can divide and get

0 ≤ < x− xs, Θiei > .

Therefore, the hyperplanes

H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei) i = 1, . . . , n− 1

divide the hyperplane H(xs, N∂K(x0)) into 2n−1-tants, i.e. 2n−1 sets of equal
signs. xs is considered as the origin in the hyperplane H(xs, N∂K(x0)). By
Lemma 4.14 there is Θ such that

H(xs, N∂K(x0)) ∩H+
xs

⊇ H(xs, N∂K(x0))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}

and

H(xs, N(x0)) ∩H−
xs

⊇ H(xs, N(x0))

∩
{n−1⋂
i=1

H−(xs, (−Θi < xs, ei > −λi)en −Θi(c− 1)∆(s)ei)
}
.

For a given Hxs we choose this Θ and claim that

cornK(Θ) ⊆ H−
xs
. (86)

Suppose this is not the case. We consider the hyperplane H̃xs with

Hxs ∩H(xs, N∂K(x0)) = H̃xs ∩H(xs, N∂K(x0))

and
n−1⋂
i=1

H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei) ⊆ H̃xs
.

The set on the left hand side is a 1-dimensional affine space. We obtain H̃xs

from Hxs
by rotating Hxs

around the “axis” Hxs
∩ H(xs, N∂K(x0)). Then

we have

H+(xs, N∂K(x0)) ∩H−
xs
⊆ H+(xs, N∂K(x0)) ∩ H̃−

xs
.

Indeed, from the procedure by which we obtain H̃xs
from Hxs

it follows
that one set has to contain the other. Moreover, since cornK(Θ) ⊆ H̃−

xs
, but

cornK(Θ) � H−
xs

we verify the above inclusion. On the other hand, by our
choice of Θ and by Lemma 4.14
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H̃−
xs
⊆
n−1⋃
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei).

By (76) none of the halfspaces

H+(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei) i = 1, . . . , n− 1

contains an element of

K ∩H+(x0 − c∆(s)N∂K(x0), N∂K(x0))

and therefore H−
xs

also does not contain such an element. But we know that
Hxs

contains such an element by (83) giving a contradiction. Altogether we
have shown (80) with H = H(x0 − c∆(s)N∂K(x0), N∂K(x0))

{(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}
⊆

⋃
Θ

{(x1, . . . , xN )| x1, . . . , xN ∈ ∂K \ cornK(Θ)}.

This gives us

PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}
≤

∑
Θ

PNf {(x1, . . . , xN )| x1, . . . , xN ∈ ∂K \ cornK(Θ)}

=
∑
Θ

(
1−

∫
cornK(Θ)

f(x)dµ(x)
)N

≤
∑
Θ

(1− (f(x0)− ε)voln−1(cornK(Θ)))N . (87)

Now we establish an estimate for voln−1(cornK(Θ)). Let p be the orthog-
onal projection onto the hyperplane H(x0, N∂K(x0)) = H(0,−en). By the
definition (77) of the set cornK(Θ)

p

(
K ∩H+(xs, N∂K(x0)))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
})

= p

(
∂

(
K ∩H+(xs, N∂K(x0)))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}))

⊆ p(cornK(Θ)) ∪ p(K ∩H(xs, N∂K(x0))). (88)
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This holds since u ∈ H(x0, N∂K(x0)) can only be the image of a point

w ∈ ∂
(
K ∩H+(xs, N∂K(x0)))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
})

if < N(w), N∂K(x0) >=< N(w),−en > ≥ 0. This holds only for w ∈
cornK(Θ) or w ∈ H(xs, N∂K(x0)) ∩K. Indeed, the other normals are

−(Θi < xs, ei > −λi)en −Θi(c− 1)∆(s)ei i = 1, . . . , n− 1

and for i = 1, . . . , n− 1

< −(Θi < xs, ei > −λi)en −Θi(c− 1)∆(s)ei,−en >= Θi < xs, ei > −λi.

By (76) we have for all i = 1, . . . , n− 1 that | < xs, ei > | < λi. This implies
that Θi < xs, ei > −λi < 0.

Since
voln−1(p(cornK(Θ))) ≤ voln−1(cornK(Θ))

and

voln−1(p(K ∩H(xs, N∂K(x0)))) = voln−1(K ∩H(xs, N∂K(x0)))

we get from (88)

voln−1(cornK(Θ))) (89)

≥ voln−1

(
p

(
K ∩H+(xs, N∂K(x0)))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}))

−voln−1(K ∩H(xs, N∂K(x0))).

Now we use that the indicatrix of Dupin at x0 exists. Let E be the standard
approximating ellipsoid (Lemma 1.2) whose principal axes have lengths ai,
i = 1, . . . , n. By Lemma 1.2 and Lemma 1.3 for all ε > 0 there is s0 such that
for all s with 0 < s ≤ s0 the set

K ∩H(xs, N∂K(x0))

is contained in an n − 1-dimensional ellipsoid whose principal axes have
lengths less than

(1 + ε)ai

√
2∆(s)
an

i = 1, . . . , n− 1.
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∂K

xs
H(x0 −∆N(x0), N(x0))

H(x0 − c∆N(x0), N(x0))

The shaded area is a part of the surface of the set

K ∩H+(xs, N∂K(x0))) ∩
{
n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en + Θi(c− 1)∆ei)

}
.

Fig. 4.15.4

We choose sc,b to be smaller than this s0. Therefore for all s with 0 < s ≤
sc,b

voln−1(K ∩H(xs, N∂K(x0)))

≤ (1 + ε)n−1
(

2∆(s)
an

)n−1
2

(
n−1∏
i=1

ai

)
voln−1(Bn−1

2 ).

Thus we deduce from (89)

voln−1(cornK(Θ))) (90)

≥ voln−1

(
p

(
K ∩H+(xs, N∂K(x0)))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}))

−(1 + ε)n−1
(

2∆(s)
an

)n−1
2

(
n−1∏
i=1

ai

)
voln−1(Bn−1

2 ).

Now we get an estimate for the first summand of the right hand side. Since E
is an approximating ellipsoid we have by Lemma 1.2 that for all ε > 0 there
is s0 such that we have for all s with 0 < s ≤ s0

x0 −∆(s)N∂K(x0) + (1− ε)Θiai

√
2∆(s)
an

ei ∈ K i = 1, . . . , n− 1.
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Again, we choose sc,b to be smaller than this s0.
Let θ be the angle between N∂K(x0) = −en and x0 − xT = −xT . Then

‖xs‖ = ∆(s)(cos θ)−1. (91)

Consequently,

‖(x0 −∆(s)N∂K(x0))− xs‖ = ∆(s) tan θ.

Therefore, for all ε > 0 there is s0 such that we have for all s with 0 < s ≤ s0

xs + (1− ε)Θiai
√

2∆(s)
an

ei ∈ K i = 1, . . . , n− 1.

Moreover, for i = 1, . . . , n− 1

xs + (1− ε)Θiai
√

2∆(s)
an

ei ∈ K ∩H+(xs, N∂K(x0)) (92)

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}
.

Indeed, by the above these points are elements of K. Since N∂K(x0) = −en

xs + (1− ε)Θiai
√

2∆(s)
an

ei ∈ K ∩H(xs, N∂K(x0)).

For i �= j〈
xs + (1− ε)Θjaj

√
2∆(s)
an

ej , (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei

〉
= 〈xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei〉

and for i = j〈
xs + (1− ε)Θiai

√
2∆(s)
an

ei, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei

〉
= 〈xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei〉

+(1− ε)(c− 1)ai
√

2∆(s)
an

∆(s).

Since the second summand is nonnegative we get for all j with j = 1, . . . , n−1

xs + (1− ε)Θjaj

√
2∆(s)
an

ej ∈

n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei).

There is a unique point z in H+(xs, N∂K(x0)) with
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{z} = ∂K ∩
{n−1⋂
i=1

H(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}
. (93)

This holds since the intersection of the hyperplanes is 1-dimensional. We have
that

voln−1

([
p(z), p(xs) +

(
(1− ε)Θ1a1

√
2∆(s)
an

e1

)
, . . . ,

p(xs) +
(

(1− ε)Θn−1an−1

√
2∆(s)
an

en−1

)])

= voln−1

(
p

[
z, xs +

(
(1− ε)Θ1a1

√
2∆(s)
an

e1

)
, . . . ,

xs +
(

(1− ε)Θn−1an−1

√
2∆(s)
an

en−1

)])

≤ voln−1

(
p

(
K ∩H+(xs, N∂K(x0))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}))

.

(94)

The (n− 1)-dimensional volume of the simplex[
p(z), p(xs) +

(
(1− ε)Θ1a1

√
2∆(s)
an

e1

)
, . . . ,

p(xs) +
(

(1− ε)Θn−1an−1

√
2∆(s)
an

en−1

)]

equals

d

n− 1
voln−2

([
(1− ε)a1

√
2∆(s)
an

e1, . . . , (1− ε)an−1

√
2∆(s)
an

en−1

])

where d is the distance of p(z) from the plane spanned by

p(xs) + (1− ε)Θiai

√
2∆(s)
an

ei i = 1, . . . , n− 1

in the space Rn−1. We have

voln−2

([
(1− ε)a1

√
2∆(s)
an

e1, . . . , (1− ε)an−1

√
2∆(s)
an

en−1

])
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= (1− ε)n−2
(

2∆(s)
an

)n−2
2

voln−2 ([a1e1, . . . , an−1en−1])

=
1

(n− 2)!
(1− ε)n−2

(
2∆(s)
an

)n−2
2 n−1∏
i=1

ai

(
n−1∑
i=1

|ai|−2

) 1
2

.

From this and (94)

d

(n− 1)!
(1− ε)n−2

(
2∆(s)
an

)n−2
2 n−1∏
i=1

ai

(
n−1∑
i=1

|ai|−2

) 1
2

≤ voln−1

(
p

(
K ∩H+(xs, N∂K(x0))

∩
{n−1⋂
i=1

H−(xs, (Θi < xs, ei > −λi)en +Θi(c− 1)∆(s)ei)
}))

.

From this inequality and (90)

voln−1(cornK(Θ)) (95)

≥ d

(n− 1)!
(1− ε)n−2

(
2∆(s)
an

)n−2
2 n−1∏
i=1

ai

(
n−1∑
i=1

|ai|−2

) 1
2

−(1 + ε)n−1
(

2∆(s)
an

)n−1
2 n−1∏
i=1

ai voln−1(Bn−1
2 ).

We claim that there is a constant c2 that depends only on K (and not on s
and c) such that we have for all c and s with 0 < s ≤ sc,b

d ≥ c2
√
c∆(s). (96)

d equals the distance of p(z) from the hyperplane that passes through 0 and
that is parallel to the one spanned by

p(xs) + (1− ε)Θiai
√

2∆(s)
an

ei i = 1, . . . , n− 1

in Rn−1 minus the distance of 0 to the hyperplane spanned by

p(xs) + (1− ε)Θiai
√

2∆(s)
an

ei i = 1, . . . , n− 1.

Clearly, the last quantity is smaller than

‖p(xs)‖+
√

2∆(s)
an

max
1≤i≤n−1

ai
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which can be estimated by (91)

‖p(xs)‖+
√

2∆(s)
an

max
1≤i≤n−1

ai ≤ ‖xs‖+
√

2∆(s)
an

max
1≤i≤n−1

ai

= ∆(s)(cos θ)−1 +
√

2∆(s)
an

max
1≤i≤n−1

ai.

It is left to show that the distance of p(z) to the hyperplane that passes
through 0 and that is parallel to the one spanned by

p(xs) + (1− ε)Θiai
√

2∆(s)
an

ei i = 1, . . . , n− 1

is greater than a constant times
√
c∆(s). Indeed, there is c0 such that for all

c with c > c0 the distance d is of the order
√
c∆(s).

Since z is an element of all hyperplanes

H(xs, (Θixs(i)− λi)en +Θi(c− 1)∆(s)ei) i = 1, . . . , n− 1

we have for all i = 1, . . . , n− 1

< z − xs, (Θixs(i)− λi)en +Θi(c− 1)∆(s)ei >= 0

which implies that we have for all i = 1, . . . , n− 1

z(i)− xs(i) = (z(n)− xs(n))
λi −Θixs(i)
Θi(c− 1)∆(s)

. (97)

Instead of z we consider z̃ given by

{z̃} = ∂T1−ε(E) ∩
{n−1⋂
i=1

H(xs, (Θixs(i)− λi)en +Θi(c− 1)∆(s)ei)
}
. (98)

We also have

z̃(i)− xs(i) = (z̃(n)− xs(n))
λi −Θixs(i)
Θi(c− 1)∆(s)

. (99)

By (75)

T1−ε(E ∩H−(x0 − c∆(s)N∂K(x0), N∂K(x0)))
⊆ K ∩H−(x0 − c∆(s)N∂K(x0), N∂K(x0)).

Therefore we have for all i = 1, . . . , n that |z̃(i)| ≤ |z(i)|. We will show that
we have for all i = 1, . . . , n−1 that c3

√
c∆(s) ≤ |z̃(i)|. (We need this estimate

for one coordinate only, but get it for all i = 1, . . . , n− 1. z̃(n) is of the order
∆(s).)

We have
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1 =
n−1∑
i=1

∣∣∣∣ z̃(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ z̃(n)
an

− 1
∣∣∣∣
2

and equivalently

2
z̃(n)
an

=
n−1∑
i=1

∣∣∣∣ z̃(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ z̃(n)
an

∣∣∣∣
2

=
n−1∑
i=1

∣∣∣∣ z̃(i)− xs(i) + xs(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ z̃(n)− xs(n) + xs(n)

an

∣∣∣∣
2

.

By triangle-inequality

√
2
z̃(n)
an

−

√√√√n−1∑
i=1

∣∣∣∣ xs(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣xs(n)
an

∣∣∣∣
2

≤

√√√√n−1∑
i=1

∣∣∣∣ z̃(i)− xs(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ z̃(n)− xs(n)

an

∣∣∣∣
2

.

By (99)

√
2
z̃(n)
an

−

√√√√n−1∑
i=1

∣∣∣∣ xs(i)
ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣xs(n)
an

∣∣∣∣
2

≤ |z̃(n)− xs(n)|

√√√√n−1∑
i=1

∣∣∣∣ λi −Θixs(i)
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ 1
an

∣∣∣∣
2

.

Since z̃ ∈ H+(xs, N∂K(x0)) we have z̃(n) ≥ ∆(s). By (91) we have for all
i = 1, . . . , n that |xs(i)| ≤ ‖xs‖ ≤ ∆(s)(cos θ)−1. Therefore, for small enough
s √

z̃(n)
an

≤ |z̃(n)− xs(n)|

√√√√n−1∑
i=1

∣∣∣∣ λi −Θixs(i)
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2

+
∣∣∣∣ 1
an

∣∣∣∣
2

.

Since z̃(n) ≥ xs(n) ≥ 0

1
an
≤ |z̃(n)− xs(n)|

(
n−1∑
i=1

∣∣∣∣ Θi < xs, ei > −λi
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2

+
1
an

)
.

For sufficiently small s we have |z̃(n)− xs(n)| ≤ 1
2 and therefore

1
2an

≤ |z̃(n)− xs(n)|
n−1∑
i=1

∣∣∣∣ Θi < xs, ei > −λi
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2
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and

√
1

2an
≤

√
z̃(n)− xs(n)

(
n−1∑
i=1

∣∣∣∣ Θi < xs, ei > −λi
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2
) 1

2

≤
√
z̃(n)− xs(n)

{(
n−1∑
i=1

∣∣∣∣ Θi < xs, ei >

(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2
) 1

2

+

(
n−1∑
i=1

∣∣∣∣ λi
(c− 1)∆(s)ai(1− ε)

∣∣∣∣
2
) 1

2 }
.

Therefore

√
1

2an
≤

√
|z̃(n)− xs(n)|

(c− 1)(1− ε)∆(s)




(
n−1∑
i=1

∣∣∣∣xs(i)ai

∣∣∣∣
2
) 1

2

+

(
n−1∑
i=1

∣∣∣∣λiai
∣∣∣∣
2
) 1

2



≤
√
|z̃(n)− xs(n)|

(c− 1)(1− ε)∆(s)




(∑n−1
i=1 |xs(i)|

2
) 1

2

min1≤i≤n−1 ai
+

(
n−1∑
i=1

∣∣∣∣λiai
∣∣∣∣
2
) 1

2


 .

By (91) we have ‖xs‖ = ∆(s)(cos θ)−1. From the definition of λi, i =
1, . . . , n − 1, (following formula (75)) and Lemma 1.3 we get λi ≤ (1 +

ε)ai
√
c∆(s)
an

. Therefore we get

√
1

2an
≤

√
|z̃(n)− xs(n)|

(c− 1)(1− ε)∆(s)


 ∆(s)(cos θ)−1

min1≤i≤n−1 ai
+ (1 + ε)

√
(n− 1)

c∆(s)
an


 .

Thus there is a constant c3 such that for all c with c ≥ 2 and s with 0 < s ≤
sc,b

1
an
≤ c3
c∆(s)

|z̃(n)− xs(n)|.

By this inequality and (99)

|z̃(i)− xs(i)| = |z̃(n)− xs(n)| |Θi < xs, ei > −λi|
(c− 1)∆(s)

≥ c4|Θi < xs, ei > −λi|.

By (91) we have ‖xs‖ = ∆(s)(cos θ)−1 and from the definition of λi, i =

1, . . . , n− 1, we get λi ≥ (1− ε)ai
√
c∆(s)
an

. Therefore z̃(i) is of the order of λi
which is in turn of the order of

√
c∆(s).

The orthogonal projection p maps (z1, . . . , zn) onto (z1, . . . , zn−1, 0). The
distance d of p(z) to the n − 2-dimensional hyperplane that passes through
0 and that is parallel to the one spanned by
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p(xs) + (1− ε)ai
√

2∆(s)
an

ei i = 1, . . . , n− 1

equals | < p(z), ξ > | where ξ is the normal to this plane. We have

ξ =


 1

ai(∑n−1
i=1 a−2

i

) 1
2



n−1

i=1

and get | < p(z), ξ > | ≥ c4
√
c∆(s). Thus we have proved (96). By (95) and

(96) there is a constant c0 such that for all c with c ≥ c0

voln−1(cornK(Θ))

≥ c4
√
c∆(s)

(n− 1)!
(1− ε)n−2

(
2∆(s)
an

)n−2
2 n−1∏
i=1

ai

(
n−1∑
i=1

|ai|−2

) 1
2

−(1 + ε)n−1voln−1(Bn−1
2 )

(
2∆(s)
an

)n−1
2 n−1∏
i=1

ai

≥ c5
√
c∆(s)

n−1
2

where c5 depends only on K. Finally, by the latter inequality and by (87)

PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}

≤
∑
Θ

(
1− (f(x0)− ε)voln−1(cornK(Θ))

)N

≤ 2n−1
(

1− (f(x0)− ε)c5
√
c∆(s)

n−1
2

)N
≤ 2n−1 exp

(
−N(f(x0)− ε)c5

√
c∆(s)

n−1
2

)
.

By hypothesis we have 1
bN voln−1(∂K) ≤ s. We have

s ≤ Pf (∂K ∩H−(xs, N∂K(x0)))
≤ (f(x0) + ε)voln−1(∂K ∩H−(xs, N∂K(x0))).

By Lemma 1.3 we get
s ≤ c6f(x0)∆(s)

n−1
2

and therefore
N

voln−1(∂K)
≥ 1
bs
≥ 1

c6bf(x0)∆(s)
n−1

2

.

Therefore
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PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−] and xs ∈ [x1, . . . , xN ]}

≤ 2n−1 exp
(
−c7

√
c

b

)
.

Now we derive∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN+k
f {(x1, . . . , xN+k)| xs /∈ [x1, . . . , xN+k]}

∣∣ ≤ ε.

It is enough to show∣∣PNf {(x1, . . . , xN )| xs ∈ [{x1, . . . , xN} ∩H−]} −
PN+k
f {(x1, . . . , xN+k)| xs ∈ [{x1, . . . , xN+k} ∩H−]}

∣∣ ≤ ε.

We have

{(x1, . . . , xN+k)| xs ∈ [{x1, . . . , xN+k} ∩H−]}
= {(x1, . . . , xN+k)| xs ∈ [{x1, . . . , xN} ∩H−]}

∪{(x1, . . . , xN+k)| xs /∈ [{x1, . . . , xN} ∩H−] and
xs ∈ [{x1, . . . , xN+k} ∩H−]}.

Clearly, the above set is contained in

{(x1, . . . , xN+k)| xs ∈ [{x1, . . . , xN} ∩H−]}
∪{(x1, . . . , xN+k)|∃i, 1 ≤ i ≤ k : xN+i ∈ H− ∩ ∂K}.

Therefore we have

PN+k
f {(x1, . . . , xN+k)| xs ∈ [{x1, . . . , xN+k} ∩H−]}

≤ PNf {(x1, . . . , xN )| xs ∈ [{x1, . . . , xN} ∩H−]}
+Pkf{(xN+1, . . . , xN+k)|∃i, 1 ≤ i ≤ k : xN+i ∈ H− ∩ ∂K}

= PNf {(x1, . . . , xN )| xs ∈ [{x1, . . . , xN} ∩H−]}

+k
∫
∂K∩H−

f(x)dµ.

We choose H so that k
∫
∂K∩H− f(x)dµ is sufficiently small. ��

Lemma 4.16. Let K be a convex body in Rn and x0 ∈ ∂K. Let E be the
standard approximating ellipsoid at x0. Let f : ∂K → R be a continuous,
strictly positive function with

∫
∂K

fdµ = 1 and Ks be the surface body with
respect to the measure fdµ∂K and Es the surface body with respect to the
measure with the constant density (voln−1(∂E))−1 on ∂E. Suppose that the
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indicatrix of Dupin at x0 exists and is an ellipsoid (and not a cylinder with
an ellipsoid as base). We define xs, ys and zs by

{xs} = [x0, xT ] ∩ ∂Ks {zs} = [x0, zT ] ∩ ∂Es

{ys} = [x0, xT ] ∩H(zs, N∂K(x0)).

(i) For every ε > 0 and all C ∈ N there are c0 > 1 and s0 > 0 so that
we have for all k ∈ N with 1 ≤ k ≤ C, all s and all c with 0 < cs < s0
and c0 ≤ c, and all hyperplanes H that are orthogonal to N∂K(x0) and that
satisfy voln−1(∂K ∩H−) = cs∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]}
∣∣ < ε

where Pf,∂K∩H− is the normalized restriction of the measure Pf to the set
∂K ∩H−.
(ii) For every ε > 0 and all C ∈ N there are c0 > 1 and s0 > 0 so that
we have for all k ∈ N with 1 ≤ k ≤ C, all s and all c with 0 < cs < s0
and c0 ≤ c, and all hyperplanes H that are orthogonal to N∂K(x0) and that
satisfy voln−1(∂K ∩H−) = cs∣∣Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk∂E∩H−{(z1, . . . , zk)| xs ∈ [z1, . . . , zk]}
∣∣ < ε.

(iii) For every ε > 0 and all C ∈ N there are c0 > 1 and s0 > 0 so that
we have for all k ∈ N with 1 ≤ k ≤ C, all s and all c with 0 < cs < s0
and c0 ≤ c, and all hyperplanes H that are orthogonal to N∂K(x0) and that
satisfy voln−1(∂K ∩H−) = cs∣∣Pk∂E∩H−{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]} −

Pk∂E∩H−{(z1, . . . , zk)| ys ∈ [z1, . . . , zk]}
∣∣ < ε.

(iv) For every ε > 0 and all C ∈ N there are c0 > 1, s0 > 0, and δ > 0 so that
we have for all k ∈ N with 1 ≤ k ≤ C, all s, s′ and all c with 0 < cs, cs′ < s0,
(1−δ)s ≤ s′ ≤ (1+δ)s, and c0 ≤ c, and all hyperplanes Hs that are orthogonal
to N∂E(x0) and that satisfy voln−1(∂E ∩H−

s ) = cs∣∣∣Pk
∂E∩H−

s
{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]} −

Pk
∂E∩H−

s′
{(z1, . . . , zk)| zs′ ∈ [z1, . . . , zk]}

∣∣∣ < ε.

(v) For every ε > 0 and all C ∈ N there are c0 > 1 and ∆0 > 0 so that we have
for all k ∈ N with 1 ≤ k ≤ C, all ∆, all γ ≥ 1 and all c with 0 < cγ∆ < ∆0
and c0 ≤ c, and
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∂E∩H−

c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]} −

Pk
∂E∩H−

cγ∆

{(x1, . . . , xk)| x0 − γ∆N∂K(x0) ∈ [x1, . . . , xk]}
∣∣∣ < ε

where Hc∆ = Hc∆(x0 − c∆N∂K(x0), N∂K(x0)).
(vi) For every ε > 0 and all C ∈ N there are c0 > 1 and s0 > 0 so that we
have for all k ∈ N with 1 ≤ k ≤ C, all s with 0 < cs < s0, all c with c0 ≤ c,
and all hyperplanes H and H̃ that are orthogonal to N∂K(x0) and that satisfy

Pf (∂K ∩H−) = cs
voln−1(∂E ∩ H̃−)

voln−1(∂E)
= cs

that∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk
∂E∩H̃−{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]}

∣∣ < ε.

(The hyperplanes H and H̃ may not be very close, depending on the value
f(x0).)

Proof. (i) This is much simpler than the other cases. We define Φxs : ∂K ×
· · · × ∂K → R by

Φxs(x1, . . . , xk) =
{

0 xs /∈ [x1, . . . , xk]
1 xs ∈ [x1, . . . , xk].

Then we have

Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]}
= (Pf (∂K ∩H−))−k ×∫

∂K∩H−
· · ·

∫
∂K∩H−

Φxs
(x1, . . . , xk)

k∏
i=1

f(xi)dµ∂K(x1) · · ·dµ∂K(xk).

By continuity of f for every δ > 0 we find s0 so small that we have for all s
with 0 < s ≤ s0 and all x ∈ ∂K ∩H−(xs, N∂K(x0))

|f(x0)− f(x)| < δ.

(ii) We may suppose that x0 = 0 and that en is orthogonal to K at x0.
Let Ts : Rn → Rn be given by

Ts(x(1), . . . , x(n)) = (sx(1), . . . , sx(n− 1), x(n)). (100)

Then, by Lemma 1.2, for every δ > 0 there is a hyperplane H orthogonal to
en such that for
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E1 = T 1
1+δ

(E) E2 = T1+δ(E)

we have

E1 ∩H− = T 1
1+δ

(E) ∩H− ⊆ K ∩H− ⊆ T1+δ(E) ∩H− = E2 ∩H−.

Since the indicatrix of Dupin at x0 is an ellipsoid and not a cylinder and
since f is continuous with f(x0) > 0 we conclude that there is s0 such that

T 1
1+δ

(E) ∩H−(xs0 , N∂K(x0)) ⊆ K ∩H− ⊆ T1+δ(E) ∩H−(xs0 , N∂K(x0)).
(101)

We have that

Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]}
= Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦}.

This follows from Lemma 4.2. Therefore it is enough to verify the claim for
this set. The set

{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦, x1, . . . , xk ∈ ∂K ∩H−}

is an open subset of the k-fold product (∂K∩H−)×· · ·×(∂K∩H−). Indeed,
since xs is in the interior of the polytope [x1, . . . , xk] we may move the vertices
slightly and xs is still in the interior of the polytope.

Therefore this set is an intersection of (∂K ∩ H−) × · · · × (∂K ∩ H−)
with an open subset O of Rkn. Such a set O can be written as the countable
union of cubes whose pairwise intersections have measure 0. Cubes are sets
Bn∞(x0, r) = {x|maxi |x(i) − x0(i)| ≤ r}. Thus there are cubes Bn∞(xji , r

j
i ),

1 ≤ i ≤ k, j ∈ N, in Rn such that

O =
∞⋃
j=1

k∏
i=1

Bn∞(xji , r
j
i ) (102)

and for j �= m

volkn

(
k∏
i=1

Bn∞(xji , r
j
i ) ∩

k∏
i=1

Bn∞(xmi , r
m
i )

)

=
k∏
i=1

voln(Bn∞(xji , r
j
i ) ∩Bn∞(xmi , r

m
i )) = 0.

Therefore, for every pair j,m with j �= m there is i, 1 ≤ i ≤ k, such that

Bn∞(xji , r
j
i ) ∩Bn∞(xmi , r

m
i ) (103)
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is contained in a hyperplane that is orthogonal to one of the vectors e1, . . . , en.
We put

Wj =
k∏
i=1

(
Bn∞(xji , r

j
i ) ∩ ∂K ∩H−

)
j ∈ N (104)

and get

{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦, x1, . . . , xk ∈ ∂K ∩H−} =
∞⋃
j=1

Wj . (105)

Then we have for j �= m that

volk(n−1)(Wj ∩Wm) = 0.

Indeed,

Wj ∩Wm =
{

(x1, . . . , xk)|∀i : xi ∈ ∂K ∩Bn∞(xji , r
j
i ) ∩Bn∞(xmi , r

m
i ) ∩H−

}
.

There is at least one i0 such that

Bn∞(xji0 , r
j
i0

) ∩Bn∞(xmi0 , r
m
i0 )

is contained in a hyperplane L that is orthogonal to one of the vectors
e1, . . . , en. Therefore

voln−1(∂K ∩Bn∞(xji0 , r
j
i0

) ∩Bn∞(xmi0 , r
m
i0 )) ≤ voln−1(∂K ∩ L).

The last expression is 0 if the hyperplane is chosen sufficiently close to x0.
Indeed, ∂K ∩L is either a face of K or ∂K ∩L = ∂(K ∩L). In the latter case
voln−1(∂K∩L) = voln−1(∂(K∩H)) = 0. If H is sufficiently close to x0, then
L does not contain a n− 1-dimensional face of K. This follows from the fact
that the indicatrix exists and is an ellipsoid and consequently all normals are
close to N∂K(x0) = en but not equal.

Let rp : ∂K → ∂E where rp(x) is the unique point with

{rp(x)} = {xs + t(x− xs)|t ≥ 0} ∩ ∂E . (106)

For s0 small enough we have for all s with 0 < s ≤ s0 that xs ∈ E . In this
case rp is well defined. Rp : ∂K × · · · × ∂K → ∂E × · · · × ∂E is defined by

Rp(x1, . . . , xk) = (rp(x1), . . . , rp(xk)). (107)

There is a map α : ∂K → (−∞, 1) such that

rp(x) = x− α(x)(x− xs). (108)
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Since xs is an interior point of K the map α does not attain the value 1. For
every ε > 0 there is s0 such that we have for all s and c with 0 < cs ≤ s0
and c ≥ c0 and for all hyperplanes H that are orthogonal to N∂K(x0) = en
and that satisfy voln−1(∂K ∩H−) = cs and all cubes Bn∞(xji , r

j
i ) that satisfy

(104) and (105)

voln−1(∂K ∩Bn∞(xji , r
j
i )) ≤ (1 + ε)voln−1(rp(∂K ∩Bn∞(xji , r

j
i ))). (109)

∂K

∂E

xs

x rp(x)

Fig. 4.16.1

To show this we have to establish that there is s0 such that for all x ∈
∂K ∩H−(xs0 , N∂K(x0)) and all s with 0 < s ≤ s0

‖x− rp(x)‖ ≤ ε‖xs − rp(x)‖ (110)

(1− ε) ≤

〈
N∂K(x), x−xs

‖x−xs‖

〉
〈
N∂E(rp(x)), x−xs

‖x−xs‖

〉 ≤ (1 + ε). (111)

Indeed, the volume of a surface element changes under the map rp by the
factor (‖rp(x)− xs‖

‖x− xs‖

)n−1
〈
N∂K(x), x−xs

‖x−xs‖

〉
〈
N∂E(rp(x)), x−xs

‖x−xs‖

〉 .
We establish (111). We have

〈N∂K(x), x− xs〉
〈N∂E(rp(x)), x− xs〉

= 1 +
〈N∂K(x)−N∂E(rp(x)), x− xs〉

〈N∂E(rp(x)), x− xs〉

≤ 1 +
‖N∂K(x)−N∂E(rp(x))‖ ‖x− xs‖

〈N∂E(rp(x)), x− xs〉
.

We have
‖N∂K(x)−N∂E(rp(x))‖ ≤ ε‖x− x0‖.

This can be shown in the same way as (33) (Consider the planeH(x,N∂K(x0)).
The distance of this plane to x0 is of the order ‖x− x0‖2.) Thus we have
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〈N∂K(x), x− xs〉
〈N∂E(rp(x)), x− xs〉

≤ 1+
ε‖x− x0‖‖x− xs‖
〈N∂E(rp(x)), x− xs〉

≤ 1+
εc0‖x− xs‖2

〈N∂E(rp(x)), x− xs〉
.

It is left to show

| < N∂E(rp(x)), x− xs > | ≥ c0‖x− xs‖2.

If x is close to x0 then this estimate reduces to ‖x− xs‖ ≥ ‖x− xs‖2 which
is obvious. If x is not close to x0 then ‖x− xs‖2 is of the order of the height
of the cap ∂E ∩H−(rp(x), N∂K(x0)). Therefore, it is enough to show

| < N∂E(rp(x)), x− xs > | ≥ c0| < N∂K(x0), rp(x)− x0 > |.

We consider the map T : Rn → Rn that transforms the standard approxi-
mating ellipsoid into a Euclidean ball (5)

T (x) =


x1

a1

(
n−1∏
i=1

bi

) 2
n−1

, . . . ,
xn−1

an−1

(
n−1∏
i=1

bi

) 2
n−1

, xn


 .

Thus it is enough to show

| < T−1tN∂E(rp(x)), Tx− Txs > | ≥ c0| < N∂K(x0), rp(x)− x0 > |.

Since Tx0 = x0 = 0 and T−1t(N∂K(x0)) = N∂K(x0) = en the above inequal-
ity is equivalent to

| < T−1tN∂E(rp(x)), Tx− Txs > | ≥ c0| < N∂K(x0), T (rp(x))− x0 > |.

Allowing another constant c0, the following is equivalent to the above∣∣∣∣
〈

T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , Tx− Txs

〉∣∣∣∣ ≥ c0| < N∂K(x0), T (rp(x))− x0 > |.

Thus we have reduced the estimate to the case of a Euclidean ball.
The hyperplane H(T (rp(x)), N∂K(x0)) intersects the line

{x0 + tN∂K(x0)|t ∈ R}

at the point z with ‖x0−z‖ = | < N∂K(x0), T (rp(x))−x0 > |. Let the radius
of T (E) be r. See Figure 4.16.2. We may assume that< T−1tN∂E(rp(x)), N∂K(x0) >≥
1
2 . Therefore we have by Figure 4.16.2 (h = ‖x0 − z‖)∣∣∣∣

〈
T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , T (rp(x))− x0

〉∣∣∣∣
=

(
‖x0 − z‖+

‖x0 − z‖2
r − ‖x0 − z‖

) 〈
T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , N∂K(x0)

〉

≥ ‖x0 − z‖
〈

T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , N∂K(x0)

〉
≥ 1

2 | < N∂K(x0), T (rp(x))− x0 > |
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r

h

h+ h2

r−h

x0 − rN∂K(x0)

x0

zT (rp(x))

Fig. 4.16.2

where r is the radius of T (E). Since there is a constant c0 such that∣∣∣∣
〈

T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , T (x)− T (xs)

〉∣∣∣∣
≥ c0

∣∣∣∣
〈

T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , T (rp(x))− x0

〉∣∣∣∣
we get∣∣∣∣
〈

T−1tN∂E(rp(x))
‖T−1tN∂E(rp(x))‖ , T (x)− T (xs)

〉∣∣∣∣ ≥ 1
2c0| < N∂K(x0), T (rp(x))− x0 > |.

The left hand inequality of (111) is shown in the same way.
Now we verify (110).
Again we apply the affine transform T to K that transforms the indicatrix

of Dupin at x0 into a Euclidean sphere (5). T leaves x0 andN∂K(x0) invariant.
An affine transform maps a line onto a line and the factor by which a

segment of a line is stretched is constant. We have

‖x− rp(x)‖
‖xs − rp(x)‖ =

‖T (x)− T (rp(x))‖
‖T (xs)− T (rp(x))‖ .

Thus we have

Bn2 (x0 − rN∂K(x0), r) ∩H−(T (xs0), N∂K(x0))
⊆ T (K) ∩H−(T (xs0), N∂K(x0))

⊆ Bn2 (x0 − (1 + ε)rN∂K(x0), (1 + ε)r) ∩H−(T (xs0), N∂K(x0)).

The center of the n− 1-dimensional sphere
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Bn2 (x0 − rN∂K(x0), r) ∩H (T (rp(x)), N∂K(x0))

is
x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0)

and the height of the cap

Bn2 (x0 − rN∂K(x0), r) ∩H−(T (rp(x)), N∂K(x0))

is
| < x0 − T (rp(x)), N∂K(x0) > |.

Therefore, for sufficiently small s0 and all s with 0 < s ≤ s0 we get that the
radius of the cap ‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
satisfies√

r| < x0 − T (rp(x)), N∂K(x0) > | (112)
≤ ‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖.

We show that there is a constant c0 > 0 so that we have for all s with
0 < s ≤ s0 and all x ∈ ∂K ∩H−(xs0 , N∂K(x0))

‖T (rp(x))− T (xs)‖ ≥ c0
√
r| < x0 − T (rp(x)), N∂K(x0) > |. (113)

Let α be the angle between N∂K(x0) and x0 − T (xT ). We first consider the
case

‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
≥ 2(1 + (cosα)−1)| < x0 − T (xs), N∂K(x0) > |. (114)

(This case means: x0 is not too close to T (rp(x)).) Then we have

‖T (rp(x))− T (xs)‖
≥ ‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
−‖x0 − T (xs)‖ − | < x0 − T (rp(x)), N∂K(x0) > |

= ‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
−(cosα)−1| < x0 − T (xs), N∂K(x0) > |
−| < x0 − T (rp(x)), N∂K(x0) > |.

By the assumption (114)

‖T (rp(x))− T (xs)‖
≥ 1

2‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
+(1 + (cosα)−1)| < x0 − T (xs), N∂K(x0) > |
−(cosα)−1| < x0 − T (xs), N∂K(x0) > |
−| < x0 − T (rp(x)), N∂K(x0) > |

= 1
2‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖
+| < x0 − T (xs), N∂K(x0) > | − | < x0 − T (rp(x)), N∂K(x0) > |.



384 C. Schütt and E. Werner

By (112)

‖T (rp(x))− T (xs)‖
≥ 1

2

√
r| < x0 − T (rp(x)), N∂K(x0) > |

+| < x0 − T (xs), N∂K(x0) > | − | < x0 − T (rp(x)), N∂K(x0) > |
≥ 1

2

√
r| < x0 − T (rp(x)), N∂K(x0) > |

−| < x0 − T (rp(x)), N∂K(x0) > |.

We get for sufficiently small s0 that for all s with 0 < s ≤ s0

‖T (rp(x))− T (xs)‖ ≥ 1
4

√
r| < x0 − T (rp(x)), N∂K(x0) > |.

The second case is

‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖ (115)
< 2(1 + (cosα)−1)| < x0 − T (xs), N∂K(x0) > |.

(In this case, x0 is close to T (rp(x)).) ‖T (rp(x)) − T (xs)‖ can be es-
timated from below by the least distance of T (xs) to the boundary of
Bn2 (x0 − rN∂K(x0), r). This, in turn, can be estimated from below by

c′| < x0 − T (xs), N∂K(x0) > |.

Thus we have

‖T (rp(x))− T (xs)‖ ≥ c′| < x0 − T (xs), N∂K(x0) > |.

On the other hand, by our assumption (115)

‖T (rp(x))− T (xs)‖

≥ c′

2(1 + (cosα)−1)
×

‖T (rp(x))− (x0− < x0 − T (rp(x)), N∂K(x0) > N∂K(x0))‖.

By (112)

‖T (rp(x))− T (xs)‖ ≥
c′

2(1 + (cosα)−1)

√
r| < x0 − T (rp(x)), N∂K(x0) > |.

This establishes (113).
Now we show that for s0 sufficiently small we have for all s with 0 < s ≤ s0

and all x

‖T (x)− T (rp(x))‖ ≤ 2
√

2ε(1 + ε)r| < x0 − T (rp(x)), N∂K(x0) > |. (116)

Instead of T (x) we consider the points z and z′ with



Random Polytopes 385

{z} = Bn2 (x0 − (1 + ε)rN∂K(x0), (1 + ε)r) ∩ {T (xs) + t(T (x)− T (xs))|t ≥ 0}

{z′} = Bn2 (x0− (1− ε)rN∂K(x0), (1− ε)r)∩{T (xs)+ t(T (x)−T (xs))|t ≥ 0}.
We have

‖T (x)− T (rp(x))‖ ≤ max{‖z − T (rp(x))‖, ‖z′ − T (rp(x))‖}.

We may assume that ‖x − xs‖ ≥ ‖rp(x) − xs‖. This implies ‖T (x) −
T (rp(x))‖ ≤ ‖z − T (rp(x))‖. ‖z − T (rp(x))‖ is smaller than the diameter
of the cap

Bn2 (x0 − (1 + ε)rN∂K(x0), (1 + ε)r)
∩H−(T (rp(x)), N∂Bn

2 (x0−rN∂K(x0),r)(T (rp(x))))

because z and T (rp(x)) are elements of this cap. See Figure 4.16.3. We com-
pute the radius of this cap. The two triangles in Figure 4.16.3 are homothetic
with respect to the point x0. The factor of homothety is 1 + ε. The dis-
tance between the two tangents to Bn2 (x0 − (1 + ε)rN∂K(x0), (1 + ε)r) and
Bn2 (x0 − rN∂K(x0), r) is

ε| < x0 − T (rp(x)), N∂K(x0) > |.

Consequently the radius is less than

Bn2 (x0 − rN∂K(x0), r)

Bn2 (x0− (1 + ε)rN∂K(x0), (1 + ε)r)

r

(1 + ε)r
x0− rN∂K(x0)

T (rp(x))

x0

Fig. 4.16.3
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2ε(1 + ε)r| < x0 − T (rp(x)), N∂K(x0) > |.

Thus we have established (116). The inequalities (113) and (116) give (110).
From the inequalities (110) and (111) we get for x ∈ ∂K∩Bn∞(xji , r

j
i ) and

rji sufficiently small

voln−1(∂K∩ Bn∞(xji , r
j
i ))

≤

∣∣∣ ‖xs−x‖
‖xs−rp(x)‖

∣∣∣n−1

〈N∂K(x), N∂E(rp(x))〉voln−1(rp(∂K ∩Bn∞(xji , r
j
i )))

≤ (1 + ε)
(1 + ε)n−1

1− ε
voln−1(rp(∂K ∩Bn∞(xji , r

j
i ))).

It follows that for a new s0

volk(n−1)(Wj) =
k∏
i=1

voln−1(∂K ∩Bn∞(xji , r
j
i ))

≤ (1 + ε)k
k∏
i=1

voln−1(rp(∂K ∩Bn∞(xji , r
j
i )))

= (1 + ε)kvolk(n−1)(Rp(Wj)).

And again with a new s0

volk(n−1)(Wj) ≤ (1 + ε)volk(n−1)(Rp(Wj)). (117)

We also have for all xi ∈ ∂K, i = 1, . . . , k

Rp({(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦ and xi ∈ ∂K}) (118)
⊆ {(z1, . . . , zk)| xs ∈ [z1, . . . , zk] and zi ∈ ∂E}.

We verify this. Let ai, i = 1, . . . , k, be nonnegative numbers with
∑k
i=1 ai = 1

and

xs =
k∑
i=1

aixi.

We choose
bi =

ai

(1− α(xi))(1 +
∑k
j=1

α(xj)aj

1−α(xj)
)

where α(xi), i = 1, . . . , k, are defined by (108). We claim that
∑k
i=1 bi = 1

and

xs =
k∑
i=1

birp(xi).

We have
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k∑
i=1

bi =
k∑
i=1

ai

(1− α(xi))(1 +
∑k
j=1

α(xj)aj

1−α(xj)
)

=
k∑
i=1

ai(1 + α(xi)
1−α(xi)

)

1 +
∑k
j=1

α(xj)aj

1−α(xj)

= 1.

Moreover, by (108) we have rp(xi) = xi − α(xi)(xi − xs)
k∑
i=1

birp(xi) =
k∑
i=1

bi(xi − α(xi)(xi − xs))

=
k∑
i=1

ai(xi − α(xi)(xi − xs))

(1− α(xi))(1 +
∑k
j=1

α(xj)aj

1−α(xj)
)

=
k∑
i=1

aixi

1 +
∑k
j=1

α(xj)aj

1−α(xj)

+
k∑
i=1

aiα(xi)xs
(1− α(xi))(1 +

∑k
j=1

α(xj)aj

1−α(xj)
)

=
xs

1 +
∑k
j=1

α(xj)aj

1−α(xj)

+

∑k
i=1

aiα(xi)
1−α(xi)

xs

1 +
∑k
j=1

α(xj)aj

1−α(xj)

= xs.

Thus we have established (118)

Rp({(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦ and xi ∈ ∂K})
⊆ {(z1, . . . , zk)| xs ∈ [z1, . . . , zk] and zi ∈ ∂E}.

Next we verify that there is a hyperplane H̃ that is parallel to H and such
that

voln−1(∂K ∩ H̃−) ≤ (1 + ε)voln−1(∂K ∩H−) (119)

and

Rp({(x1, . . . , xk)| xs ∈ [x1, . . . , xk]◦, xi ∈ ∂K ∩H−}) (120)
⊆ {(z1, . . . , zk)| xs ∈ [z1, . . . , zk] and zi ∈ ∂E ∩ H̃−}.

This is done by arguments similar to the ones above. Thus we get with a new
s0

Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} =
volk(n−1)

(⋃∞
j=1Wj

)
(voln−1(∂K ∩H−))k

≤ (1 + ε)
volk(n−1)

(⋃∞
j=1Rp(Wj)

)
(voln−1(∂K ∩H−))k

≤ (1 + ε)
volk(n−1){(z1, . . . , zk)| xs ∈ [z1, . . . , zk] and zi ∈ ∂E ∩ H̃−}

(voln−1(∂K ∩H−))k

≤ (1 + ε)
volk(n−1){(z1, . . . , zk)| xs ∈ [z1, . . . , zk] and zi ∈ ∂E ∩H−}

(voln−1(∂K ∩H−))k
+ kε.
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voln−1(∂K ∩H−) and voln−1(∂E ∩H−) differ only by a factor between 1− ε
and 1+ ε if we choose s0 small enough. Therefore, for sufficiently small s0 we
have for all s with 0 < s ≤ s0

Pk∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]}
≤ (1 + ε)Pk∂E∩H−{(z1, . . . , zk)| xs ∈ [z1, . . . , zk]}+ ε.

(iii) We show now that for sufficiently small s0 we have

|Pk∂E∩H−{(z1, . . . , zk)| ys ∈ [z1, . . . , zk]}
−Pk∂E∩H−{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]}| < ε.

The arguments are very similar to those for the first inequality. We consider
the standard approximating ellipsoid E and the map tp : ∂E → ∂E mapping
x ∈ ∂E onto the unique point tp(x) with

{tp(x)} = ∂E ∩ {ys + t(x− zs)| t ≥ 0}.

See Figure 4.16.4.

zs

∂E

ysys − zs + ∂E

tp(x)

x+ ys − zs
x

Fig. 4.16.4

We define Tp : ∂E × · · · ∂E → ∂E × · · · × ∂E by Tp(z1, . . . , zk) =
(tp(z1), . . . , tp(zk)). Then we have

Tp({(z1, . . . , zk)| zs ∈ [z1, . . . , zk] and zi ∈ ∂E})
⊆ {(y1, . . . , yk)| ys ∈ [y1, . . . , yk] and yi ∈ ∂E}.

The calculation is the same as for the inequality (ii). The map tp changes the
volume of a surface-element at the point x by the factor

( ‖ys − tp(x)‖
‖ys − (x+ ys − zs)‖

)n−1
〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(x)
〉

〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))
〉 (121)

=
(‖ys − tp(x)‖

‖x− zs‖

)n−1
〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(x)
〉

〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))
〉 .
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We have to show that this expression is arbitrarily close to 1 provided that
s is sufficiently small. Since we consider an ellipsoid〈

ys−tp(x)
‖ys−tp(x)‖ , N∂E(x)

〉
〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))
〉 (122)

is sufficiently close to 1 provided that s is sufficiently small. We check this.
We have〈

ys−tp(x)
‖ys−tp(x)‖ , N∂E(x)

〉
〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))
〉 = 1 +

〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))−N∂E(x)
〉

〈
ys−tp(x)

‖ys−tp(x)‖ , N∂E(tp(x))
〉 .

We show that (122) is close to 1 first for the case that E is a Euclidean
ball. We have ‖N∂E(x) − N∂E(tp(x))‖ ≤ c0‖x0 − zs‖ for some constant c0
because ‖N∂E(x) − N∂E(tp(x))‖ ≤ ‖ys − zs‖ and ‖ys − zs‖ ≤ c0‖x0 − zs‖.
The inequality ‖ys − zs‖ ≤ c0‖x0 − zs‖ holds because {zs} = [x0, zT ] ∩ ∂Es
and {ys} = [x0, xT ] ∩H(zs, N∂K(x0)).

On the other hand, there is a constant c0 such that for all s〈
ys − tp(x)
‖ys − tp(x)‖ , N∂E(tp(x))

〉
≥ c0

√
‖x0 − zs‖.

These two inequalities give that (122) is close to 1 in the case that E is a
Euclidean ball. In order to obtain these inequalities for the case of an ellipsoid
we apply the diagonal map A that transforms the Euclidean ball into the
ellipsoid. A leaves en invariant. Lemma 2.6 gives the first inequality and the
second inequality gives〈

A

(
ys − tp(x)
‖ys − tp(x)‖

)
, A−1t(N∂E(tp(x)))

〉
≥ c0

√
‖x0 − zs‖.

This gives that (122) is close to 1 for ellipsoids. Therefore, in order to show
that the expression (121) converges to 1 for s to 0 it is enough to show that
for all x (‖ys − tp(x)‖

‖x− zs‖

)n−1

(123)

is arbitrarily close to 1 provided that s is small. In order to prove this we
show for all x

1− c1‖zs − x0‖
1
6 ≤ ‖ys − tp(x)‖

‖ys − (x+ ys − zs)‖
≤ 1 + c2‖zs − x0‖

1
6 (124)

or, equivalently, that there is a constant c3 such that
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‖tp(x)− (x+ ys − zs)‖
‖ys − tp(x)‖ ≤ c3‖zs − x0‖

1
6 . (125)

We verify the equivalence. By triangle inequality

1 + c3‖zs − x0‖
1
6 ≥ ‖ys − tp(x)‖+ ‖tp(x)− (x+ ys − zs)‖

‖ys − tp(x)‖

≥ ‖ys − (x+ ys − zs)‖
‖ys − tp(x)‖

which gives the left hand inequality of (124). Again, by triangle inequality

1− c3‖zs − x0‖
1
6 ≤ ‖ys − tp(x)‖ − ‖tp(x)− (x+ ys − zs)‖

‖ys − tp(x)‖

≤ ‖ys − (x+ ys − zs)‖
‖ys − tp(x)‖

which gives the right hand inequality of (124).
We show (125). We begin by showing that

‖tp(x0)− (x0 + ys − zs)‖
‖ys − tp(x0)‖

≤ c3‖zs − x0‖
1
2 . (126)

See Figure 4.16.5.

zs ys

∂Eys − zs + ∂E

∆s

u

v

ys − zs + x0x0

zs ys

∆s v

ys − zs + x0x0

tp(x0)

Fig. 4.16.5

Clearly, by Figure 4.16.5

‖tp(x0)− (x0 + ys − zs)‖ ≤ ‖v − (x0 + ys − zs)‖.

There is ρ such that for all s with 0 < s ≤ s0 we have ‖zs−u‖ ≥ ρ
√
‖x0 − zs‖.

Let θ be the angle between x0 − xT and N∂K(x0). By this and ‖zs − ys‖ =
(tan θ)‖x0 − zs‖

‖tp(x0)− (x0 + ys − zs)‖ ≤ ‖v − (x0 + ys − zs)‖

= ‖zs − ys‖
‖x0 − zs‖
‖zs − u‖ ≤

tan θ
ρ
‖x0 − zs‖

3
2 .
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It follows

‖ys−tp(x0)‖ = ‖zs−x0‖−‖tp(x0)−(x0+ys−zs)‖ ≥ ‖zs−x0‖−
tan θ
ρ
‖x0−zs‖

3
2 .

This proves (126) which is the special case x = x0 for (125).
Now we treat the general case of (125). We consider three cases: One

case being x ∈ H−(zs, N∂K(x0)) and ‖ys − w1‖ ≤ ‖x0 − zs‖
2
3 , another

x ∈ H−(zs, N∂K(x0)) and ‖ys − w1‖ ≥ ‖x0 − zs‖
2
3 and the last x ∈

H+(zs, N∂K(x0)). First we consider the case that x ∈ H−(zs, N∂K(x0)) and

‖ys − w1‖ ≤ ‖x0 − zs‖
2
3 .

We observe that (see Figure 4.16.5 and 4.16.7)

‖ys − tp(x)‖ ≥ ‖ys − w2‖
‖tp(x)− (x+ ys − zs)‖ ≤ ‖w2 − (x+ ys − zs)‖‖w2 − w5‖.

ys

∂E

ys − zs + ∂E

ys − zs + x0

tp(x)

x+ ys − zs
tp(x0)

u

Fig. 4.16.6

ys

ys − zs + ∂E

ys − zs + x0

x+ ys − zs

w1

w2

w3

tp(x0)

u

Fig. 4.16.7

ys
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Thus we get

‖tp(x)− (x+ ys − zs)‖
‖ys − tp(x)‖ ≤ ‖w2 − w5‖

‖ys − w2‖
=
‖w3 − w2‖
‖w1 − w2‖

. (127)

Comparing the triangles (tp(x0), w4, w2) and (tp(x0), u, ys) we get

‖w2 − w4‖
‖tp(x0)− w4‖

=
‖tp(x0)− ys‖
‖ys − u‖ .

Since ‖tp(x0)− w4‖ = ‖ys − w1‖

‖w2 − w4‖ = ‖ys − w1‖
‖tp(x0)− ys‖
‖ys − u‖ .

By the assumption ‖ys−w1‖ ≤ ‖x0−zs‖
2
3 , by ‖tp(x0)−ys‖ ≤ ‖x0−zs‖ and

by ‖ys − u‖ ≥ c0
√
‖x0 − zs‖ we get with a new constant c0

‖w2 − w4‖ ≤ c0‖x0 − zs‖
7
6

and with a new c0

‖w2 − w3‖ = ‖w2 − w4‖+ ‖w3 − w4‖
= ‖w2 − w4‖+ ‖tp(x0)− (ys − zs + x0)‖
≤ c0(‖x0 − zs‖

7
6 + ‖zs − x0‖

3
2 ).

From this and ‖w1 − w3‖ = ‖zs − x0‖ we conclude

‖w1 − w2‖ ≥ ‖zs − x0‖ − c0‖x0 − zs‖
7
6 .

The inequality (127) gives now

‖tp(x)− (x+ ys − zs)‖
‖ys − tp(x)‖ ≤ ‖w3 − w2‖

‖w1 − w2‖
≤ c‖x0 − zs‖

7
6

‖zs − x0‖ − c‖x0 − zs‖
7
6
.

The second case is that tp(x) ∈ H−(zs, N∂K(x0)) and

zs ys

∂Eys − zs + ∂E

∆s x
x+ ys − zs

tp(x)

Fig. 4.16.9



Random Polytopes 393

‖ys − w1‖ ≥ ‖x0 − zs‖
2
3 .

Compare Figure 4.16.9. Since ‖ys − w1‖ ≥ ‖x0 − zs‖
2
3 we get

‖ys − tp(x)‖ ≥ ‖x0 − zs‖
2
3 .

We have ‖tp(x)−(x+ys−zs)‖ ≤ ‖ys−zs‖ because x ∈ H−(zs, N∂K(x0)) (see
Figure 4.16.9). Since ‖zs−ys‖ ≤ c0‖x0−zs‖ we deduce ‖tp(x)−(x+ys−zs)‖ ≤
c0‖x0 − zs‖. Thus we get

‖tp(x)− (x+ ys − zs)‖
‖ys − tp(x)‖ ≤ c0‖x0 − zs‖

‖x0 − zs‖
2
3

= c0‖x0 − zs‖
1
3 .

The last case is tp(x) ∈ H+(zs, N∂K(x0)) (See Figure 4.16.10). We have

‖ys − tp(x)‖ ≥ ‖ys − u‖ ≥ ‖zs − u‖ − ‖ys − zs‖.

There are constants c0 and ρ such that

‖ys − tp(x)‖ ≥ ρ
√
‖x0 − zs‖ − c0‖x0 − zs‖

‖tp(x)− (x+ ys − zs)‖ ≤ c0‖x0 − zs‖. (128)

ys

∂E

ys − zs + ∂E

ys − zs + x0

tp(x)

x+ ys − zs

tp(x0)

x

u

Fig. 4.16.10
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tp(x0)

v1
v2 v3

v5
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tp(x)α
β

v1 v2 v3

v4

v5

Fig. 4.16.11 Fig. 4.16.12
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The first inequality is apparent, the second is not. We show the second
inequality. We know that the distance between v3 and x+ ys− zs is less than
‖ys − zs‖ which is less than c0‖x0 − zs‖ (See Figure 4.16.11). The angles α
and β are given in Figure 4.16.12. We show that there is a constant c0 such
that β ≥ c0α. We have

tanα =
‖ys − v4‖
‖v1 − v2‖

tan(α+ β) =
‖v4 − v5‖
‖v1 − v2‖

.

We have

1
1− tanα tanβ

+
tan β
tanα

1− tanα tanβ
=

tan(α+ β)
tanα

=
‖v4 − v5‖
‖ys − v4‖

= 1+
‖ys − v5‖
‖ys − v4‖

which gives

tanβ
tanα

= − tanα tanβ + (1− tanα tanβ)
‖ys − v5‖
‖ys − v4‖

.

It is not difficult to show that there is a constant c such that for all s with
0 < s ≤ s0

‖ys − v5‖ ≥ c‖ys − v4‖.
This gives

tanβ
tanα

≥ − tanα tanβ + c(1− tanα tanβ).

For s0 sufficiently small α and β will be as small as we require. Therefore,
the right hand side is positive. Since the angles are small we have tanα ∼ α
and tanβ ∼ β. From β ≥ c0α we deduce now that

‖tp(x)− (x+ ys − zs)‖ ≤ c0‖v3 − (x+ ys − zs)‖ ≤ c‖ys − zs‖.

We obtain by (128)

‖tp(x)− (x+ ys − zs)‖
‖ys − tp(x)‖ ≤ c‖ys − zs‖

ρ
√
‖x0 − zs‖ − c0‖x0 − zs‖

.

There is a constant c such that ‖ys − zs‖ ≤ c0‖x0 − zs‖.
(iv) First we show∣∣∣Pk
∂E∩H−

s
{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]} −

Pk
∂E∩H−

s
{(z1, . . . , zk)| zs′ ∈ [z1, . . . , zk]}

∣∣∣ < ε.

Here the role of the maps rp and tp used in (ii) and (iii) is played by the map
that maps x ∈ ∂E onto the element [zs, x+ zs− zs′ ]∩ ∂E . See Figure 4.16.13.
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zs

∂Ex

zs′

x+ zs − zs′

zs − zs′ + ∂E

Fig. 4.16.13

Then we show∣∣∣Pk
∂E∩H−

s
{(z1, . . . , zk)| zs′ ∈ [z1, . . . , zk]} −

Pk
∂E∩H−

s′
{(z1, . . . , zk)| zs′ ∈ [z1, . . . , zk]}

∣∣∣ < ε.

This is easy to do. It is enough to choose δ small enough so that the prob-
ability that a random point zi is chosen from ∂E ∩H−

s ∩H+
s′ is very small,

e.g. δ = C−2 suffices.
(v) We assume that x0 = 0, N∂K(x0) = en, and γ ≥ 1. We consider the

transform dil : ∂E → ∂( 1
γ E) defined by dil(x) = 1

γx. Then

dil(∂E ∩H−
cγ∆) = ∂( 1

γ E)∩H−
c∆ dil(x0−γ∆N∂K(x0)) = x0−∆N∂K(x0)

where H∆ = H(x0 − ∆N∂K(x0), N∂K(x0)). A surface element on ∂E is
mapped onto one of ∂( 1

γ E) whose volume is smaller by the factor γ−n+1.
Therefore we get∣∣∣∣Pk∂( 1

γ E)∩H−
c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]} − (129)

Pk
∂E∩H−

cγ∆

{(x1, . . . , xk)| x0 − γ∆N∂K(x0) ∈ [x1, . . . , xk]}
∣∣∣ < ε.

Now we apply the map pd : Rn → Rn with

pd(x) = (tx(1), . . . , tx(n− 1), x(n)).

We choose t such that the lengths of the principal radii of curvature of
pd(∂( 1

γ E)) at x0 coincide with those of ∂E at x0. Thus pd(∂( 1
γ E)) approxi-

mates ∂E well at x0 and we can apply Lemma 1.2. See Figure 4.16.14. The
relation

x0 −∆N∂K(x0) ∈ [x1, . . . , xk]
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∂E

∂ 1
γE

∂pd( 1
γE)

Fig. 4.16.14

holds if and only if

x0 −∆N∂K(x0) ∈ [pd(x1), . . . , pd(xk)].

Indeed, this follows from

x0 −∆N∂K(x0) = pd(x0 −∆N∂K(x0))

and
pd([x1, . . . , xk]) = [pd(x1), . . . , pd(xk)].

Let x ∈ ∂( 1
γ E) and let N

∂( 1
γ E)∩H(x) with H = H(x,N∂K(x0)) = H(x0 −

∆N∂K(x0), N∂K(x0)) be the normal in H to ∂( 1
γ E) ∩H. Let α be the angle

between N
∂( 1
γ E)

(x) and N
∂( 1
γ E)∩H(x).

Then a n − 2-dimensional surface element in ∂( 1
γ E) ∩H at x is mapped

onto one in ∂pd( 1
γ E) ∩H and the volume changes by a factor tn−2. A n− 1-

dimensional surface element of ∂( 1
γ E) at x has the volume of a surface element

of ∂( 1
γ E) ∩ H times (cosα)−1d∆. When applying the map pd the tangent

tanα changes by the factor t (see Figure 4.16.15). Thus a n− 1-dimensional
surface element of ∂( 1

γ E) at x is mapped by pd onto one in ∂pd( 1
γ E) and its

n− 1-dimensional volume changes by the factor

tn−2 cosα
√

1 + t2 tan2 α = tn−2
√

cos2 α+ t2 sin2 α.

See Figure 4.16.15. If we choose ∆0 sufficiently small then for all ∆ with
0 < ∆ ≤ ∆0 the angle α will be very close to π

2 . Thus, for every δ there is
∆0 such that for all x ∈ ∂( 1

γ E) ∩H−(x0 −∆0N∂K(x0), N∂K(x0))
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∂ 1
γE

∂pd( 1
γE)

Hc∆

x0

x0 −∆N∂K(x0)

∂ 1
γE

∂pd( 1
γE)

Hc∆

x0

α

Fig. 4.16.15

(1− δ)tn−1 ≤ tn−2
√

cos2 α+ t2 sin2 α ≤ (1 + δ)tn−1.

Therefore, the image measure of the surface measure on ∂( 1
γ E) under the

map pd has a density that deviates only by a small number from a constant
function. More precisely, for every δ there is ∆0 so that the density function
differs only by δ from a constant function. By (i) of this lemma∣∣∣∣Pk∂( 1

γ E)∩H−
c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]} −

Pk
∂pd( 1

γ E)∩H−
c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]}
∣∣∣∣ < ε.

(In fact, we need only the continuity of this density function at x0.) ∂pd( 1
γ E)

and ∂E have the same principal curvature radii at x0. Therefore, we can apply
(ii) of this lemma and get∣∣∣Pk

∂E∩H−
c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]} −

Pk
∂( 1
γ E)∩H−

c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]}
∣∣∣∣ < ε.

By (129)∣∣∣Pk
∂E∩H−

c∆

{(x1, . . . , xk)| x0 −∆N∂K(x0) ∈ [x1, . . . , xk]} −

Pk
∂E∩H−

cγ∆

{(x1, . . . , xk)| x0 − γ∆N∂K(x0) ∈ [x1, . . . , xk]}
∣∣∣ < ε.
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(vi) By (i) and (ii) of this lemma∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk∂E∩H−{(z1, . . . , zk)| xs ∈ [z1, . . . , zk]}
∣∣ < ε

where H satisfies voln−1(∂K ∩H−) = cs and H is orthogonal to N∂K(x0).
We choose s̃ so that

{zs̃} = [x0, zT ] ∩H(xs, N∂K(x0)) {zs̃} = [x0, zT ] ∩ ∂Es̃.

We have (1− ε)s̃ ≤ s

f(x0)voln−1(∂E)
≤ (1 + ε)s̃. We verify this. For sufficiently

small s0 we have for all s with 0 < s ≤ s0 and Hs = H(xs, N∂K(x0))

(1− ε)s ≤
∫
∂K∩Hs

f(x)dµ∂K ≤ (1 + ε)s.

(H and Hs are generally different.) By the continuity of f at x0 we get for a
new s0 and all s with 0 < s ≤ s0

(1− ε)s ≤ f(x0)voln−1(∂E ∩H−
s ) ≤ (1 + ε)s.

Since

s̃ =
voln−1(∂E ∩H−

s )
voln−1(∂E)

we get the estimates on s̃.
By (iii) of this lemma∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk∂E∩H−{(z1, . . . , zk)| zs̃ ∈ [z1, . . . , zk]}
∣∣ < ε.

A perturbation argument allows us to assume that s̃ = s

f(x0)voln−1(∂E)
. By

(iv) we get for H with voln−1(∂K ∩H−) = cs∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk∂E∩H−{(z1, . . . , zk)| zs̃ ∈ [z1, . . . , zk]}
∣∣ < ε.

Let L and L̃ be hyperplanes orthogonal to N∂K(x0) with voln−1(∂E ∩L−) =
cs and voln−1(∂E ∩ L̃−) = csf(x0)voln−1(∂E). By (v) of this lemma∣∣Pk

∂E∩L̃−{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]}
−Pk∂E∩L−{(z1, . . . , zk)| zs̃ ∈ [z1, . . . , zk]}

∣∣ < ε.

In order to verify this it is enough to check that the quotient of the height
of the cap ∂E ∩ L− and the distance of zs̃ to x0 equals up to a small error
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(cf(x0)voln−1(∂E))
2

n−1 . Indeed, by Lemma 1.3 the height of the cap ∂E ∩ L̃−

resp. the distance of zs to x0 equal up to a small error

1
2

(
csf(x0)voln−1(∂E)

√
κ

voln−1(Bn−1
2 )

) 2
n−1

resp.
1
2

(
s
√
κ

voln−1(Bn−1
2 )

) 2
n−1

.

For the height of the cap ∂E ∩ L− and the distance of zs̃ to x0

1
2

(
cs
√
κ

voln−1(Bn−1
2 )

) 2
n−1

resp.
1
2

(
s
√
κ

f(x0)voln−1(∂E)voln−1(Bn−1
2 )

) 2
n−1

.

Therefore the quotients are the same.
Since voln−1(∂K ∩ H−) = cs and voln−1(∂E ∩ L−) = cs and E is the

standard approximating ellipsoid of K at x0 we have

(1− ε)cs ≤ voln−1(∂E ∩H−) ≤ (1 + ε)cs

and ∣∣Pk∂E∩H−{(z1, . . . , zk)| zs̃ ∈ [z1, . . . , zk]}
−Pk∂E∩L−{(z1, . . . , zk)| zs̃ ∈ [z1, . . . , zk]}

∣∣ < ε.

Therefore∣∣∣Pkf,∂K∩H−{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} −

Pk
∂E∩L̃−{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]}

∣∣ < ε

with voln−1(∂K ∩ H−) = cs and voln−1(∂E ∩ L̃−) = csf(x0)voln−1(∂E).
Introducing the constant c′ = cf(x0)

voln−1(∂K ∩H−) =
c′s

f(x0)
voln−1(∂E ∩ L̃−)

voln−1(∂E)
= c′s.

Since

(1− ε)Pf (∂K ∩H−) ≤ f(x0)voln−1(∂K ∩H−) ≤ (1 + ε)Pf (∂K ∩H−)

we get the result. ��

Lemma 4.17. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin exists at x0 and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let E be the standard approximating ellipsoid at
x0. Let f : ∂K → R be a continuous, positive function with

∫
∂K

fdµ = 1. Let
Ks be the surface body with respect to the density f and Es the surface body
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with respect to the measure with the constant density (voln−1(∂E))−1 on ∂E.
Let xs and zs be defined by

{xs} = [xT , x0] ∩ ∂Ks and {zs} = [zT , x0] ∩ ∂Es.

Then for all ε > 0 there is sε such for all s ∈ [0, sε] and for all N ∈ N∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]}

∣∣ < ε.

Moreover, for all ε > 0 there is a δ > 0 such that we have for all s and s′

with 0 < s, s′ ≤ sε and (1− δ)s ≤ s′ ≤ (1 + δ)s∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| zs′ /∈ [z1, . . . , zN ]}

∣∣ < ε.

Proof. For all α ≥ 1, for all s with 0 < s ≤ T and all N ∈ N with

N ≤ 1
αs

we have

1 ≥ PNf {(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]}
≥ PNf {(x1, . . . , xN )|x1, . . . , xN ∈ (H−(xs, N∂Ks(xs)) ∩ ∂K)◦}

≥ (1− s)N ≥
(

1− 1
αN

)N
≥ 1− 1

α

and

1 ≥ PN∂E{(z1, . . . , zN )|zs /∈ [z1, . . . , zN ]}
≥ PN∂E{(z1, . . . , zN )|z1, . . . , zN ∈ (H−(zs, N∂Es(zs)) ∩ ∂E)◦}

≥ (1− s)N ≥ 1− sN ≥ 1− 1
α
.

Therefore, if we choose α ≥ 1
ε we get for all N with N < 1

αs

|PNf {(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]}
−PN∂E{(z1, . . . , zN )|zs /∈ [z1, . . . , zN ]}| ≤ ε.

By Lemma 4.8 for a given x0 there are constants a, b with 0 ≤ a, b < 1, and
sε such that we have for all s with 0 < s ≤ sε

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}
≤ 2n(a− as+ s)N + 2n(1− s+ bs)N

≤ 2n exp(N(ln a+ s( 1
a − 1))) + 2n exp(−Ns(1− b)).
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We choose sε so small that | ln a| ≥ 2sε( 1
a − 1). Thus

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}
≤ 2n exp(− 1

2sN | ln a|) + 2n exp(−Ns(1− b)).

Now we choose β so big that

2ne−β(1−b) < 1
2ε and 2ne−

1
2β| ln a| < 1

2ε.

Thus, for sufficiently small sε and all N with N ≥ β
s we get

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} ≤ ε

and
PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]} ≤ ε.

Please note that β depends only on a, b, n and ε. This leaves us with the case
1
α s ≤ N ≤ β

s .
We put γ = α voln−1(∂K). By Lemma 4.15 for all c with c ≥ c0 and γ

there is sc,γ such that for all s with 0 < s ≤ sc,γ and for all N ∈ N with

N ≥ 1
γ svoln−1(∂K) =

1
αs

that ∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−]}

∣∣
≤ 2n−1 exp(− c1γ

√
c) = 2n−1 exp

(
− c1

√
c

αvoln−1(∂K)

)

where H = H(x0 − c∆N∂K(x0), N∂K(x0)) and ∆ = ∆(s) as in Lemma 4.15.
We choose c so big that

2n−1 exp(− c1γ
√
c) < ε.

Thus for all ε there are c and sε such that for all s with 0 < s ≤ sε∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−]}

∣∣ ≤ ε

and in the same way that∣∣PN∂E{(x1, . . . , xN )| zs /∈ [x1, . . . , xN ]} −
PN∂E{(x1, . . . , xN )| zs /∈ [{x1, . . . , xN} ∩H−]}

∣∣ ≤ ε.

By Lemma 1.3 there are constants c1 and c2 such that
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c1∆
n−1

2 ≤ voln−1(H−(x0 − c∆N∂K(x0), N∂K(x0)) ∩ ∂E) ≤ c2∆
n−1

2

where ∆ is the height of the cap. Now we adjust the cap that will allow us
to apply Lemma 4.16. There is d > 0 such that for all s with 0 < s ≤ sε
there are hyperplanes Hds and H̃ds that are orthogonal to N∂K(x0) and that
satisfy

Pf (∂K ∩H−
ds) = ds

voln−1(∂E ∩ H̃−
ds)

voln−1(∂E)
= ds

and

∂K ∩H−(x0 − c∆N∂K(x0), N∂K(x0)) ⊆ ∂K ∩H−
ds

∂E ∩H−(x0 − c∆N∂K(x0), N∂K(x0)) ⊆ ∂E ∩ H̃−
ds.

Thus we have for all s with 0 < s ≤ sε∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} − (130)

PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]}

∣∣ ≤ ε

and∣∣PN∂E{(x1, . . . , xN )| zs /∈ [x1, . . . , xN ]} − (131)

PN∂E{(x1, . . . , xN )| zs /∈ [{x1, . . . , xN} ∩ H̃−
ds]}

∣∣ ≤ ε.

We choose C so big that
∞∑
k=8

(dβ)k

k!
< ε.

By Lemma 4.16.(vi) we can choose sε so small that we have for all k with
1 ≤ k ≤ C∣∣∣Pk

f,∂K∩H−
ds

{(x1, . . . , xk)| xs ∈ [x1, . . . , xk]} − (132)

Pk
∂E∩H̃−

ds

{(z1, . . . , zk)| zs ∈ [z1, . . . , zk]}
∣∣∣ < ε.

We have

|PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} (133)

−PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]}|
≤ |PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}

−PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]}|

+|PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]}

−PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−
ds]}|

+|PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]}
−PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−

ds]}|.
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By (130) and (131) the first and third summand are smaller than ε. It remains
to estimate the second summand. We do this now. We have

PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]}

=
N∑
k=0

(
N

k

)
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xk], x1, . . . , xk ∈ H−

ds,

xk+1, . . . , xN ∈ H+
ds}

=
N∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

f,∂K∩H−
ds

{(x1, . . . , xk)| xs /∈ [x1, . . . , xk]}.

Moreover, since N ≤ β
s we have

N∑
k=8

(
N

k

)
(1− ds)N−k (ds)k Pk

f,∂K∩H−
ds

{(x1, . . . , xk)| xs /∈ [x1, . . . , xk]}

≤
N∑
k=8

(
N

k

) (
dβ

N

)k
≤

N∑
k=8

(dβ)k

k!
< ε.

Thus we have∣∣∣∣PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]} −

8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

f,∂K∩H−
ds

{(x1, . . . , xk)| xs /∈ [x1, . . . , xk]}
∣∣∣∣ < ε.

In the same way we get∣∣∣∣PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−
ds]}

−
8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

∂E∩H̃−
ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}
∣∣∣∣ < ε.

From these two inequalities we get∣∣∣∣PNf {(x1, . . . , xN )| xs /∈ [{x1, . . . , xN} ∩H−
ds]}

−PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−
ds]}

∣∣∣∣
≤ 2ε+∣∣∣∣
8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

f,∂K∩H−
ds

{(x1, . . . , xk)| xs /∈ [x1, . . . , xk]}
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−
8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

∂E∩H̃−
ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}
∣∣∣∣

= 2ε+∣∣∣∣
8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k

[
Pk
f,∂K∩H−

ds

{(x1, . . . , xk)| xs /∈ [x1, . . . , xk]}

−Pk
∂E∩H̃−

ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}
]∣∣∣∣.

By (132) the last expression is less than

2ε+ ε

8−1∑
k=0

(
N

k

)
(1− ds)N−k (ds)k ≤ 3ε.

Together with (133) this gives the first inequality of the lemma.
We show now that for all ε > 0 there is a δ > 0 such that we have for all

s and s′ with 0 < s, s′ ≤ sε and (1− δ)s ≤ s′ ≤ (1 + δ)s∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| zs′ /∈ [z1, . . . , zN ]}

∣∣ < ε.

Using the first inequality we see that it is enough to show that for all ε > 0
there is a δ > 0 such that we have for all s and s′ with 0 < s, s′ ≤ sε and
(1− δ)s ≤ s′ ≤ (1 + δ)s∣∣PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]} −

PN∂E{(z1, . . . , zN )| zs′ /∈ [z1, . . . , zN ]}
∣∣ < ε.

As in the proof of the first inequality we show that we just have to consider
the case 1

α s ≤ N ≤ β
s . We choose δ = ε

8 . Thus δ depends on C, but C depends
only on β and c. In particular, C does not depend on N . As above, we write

PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−
ds]}

=
N∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

∂E∩H̃−
ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}.

We get as above∣∣PN∂E{(z1, . . . , zN )| zs /∈ [{z1, . . . , zN} ∩ H̃−
ds]}

−PN∂E{(z1, . . . , zN )| zs′ /∈ [{z1, . . . , zN} ∩ H̃−
ds′ ]}

∣∣
≤

∣∣∣∣∣
8∑
k=0

(
N

k

)
(1− ds)N−k (ds)k Pk

∂E∩H̃−
ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}

−
8∑
k=0

(
N

k

)
(1− ds′)N−k (ds′)k Pk

∂E∩H̃−
ds′
{(z1, . . . , zk)| zs′ /∈ [z1, . . . , zk]}

∣∣∣∣∣ .
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This expression is not greater than

8∑
k=0

(
N

k

) [
(1− ds)N−k (ds)k − (1− ds′)N−k (ds′)k

]
Pk
∂E∩H̃−

ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}

+
8∑
k=0

(
N

k

)
(1− ds′)N−k (ds′)k

∣∣∣Pk
∂E∩H̃−

ds′
{(z1, . . . , zk)| zs′ /∈ [z1, . . . , zk]}

−Pk
∂E∩H̃−

ds

{(z1, . . . , zk)| zs /∈ [z1, . . . , zk]}
∣∣∣ .

By Lemma 4.16.(iv) the second summand is smaller than

ε

8∑
k=0

(
N

k

)
(1− ds′)N−k (ds′)k ≤ ε.

The first summand can be estimated by (we may assume that s > s′)

8∑
k=0

(
N

k

) [
(1− ds)N−k (ds)k − (1− ds′)N−k (ds′)k

]

=
8∑
k=0

(
N

k

)
(1− ds)N−k (ds)k

[
1−

(
1− ds′

1− ds

)N−k (
s′

s

)k]
.

Since s > s′ we have 1 − ds′ ≥ 1 − ds and the above expression is smaller
than

8∑
k=0

(
N

k

)
(1− ds)N−k (ds)k

[
1− (1− δ)k

]

≤
8∑
k=0

(
N

k

)
(1− ds)N−k (ds)k kδ ≤ Cδ.

��

4.2 Probabilistic Estimates for Ellipsoids

Lemma 4.18. Let x0 ∈ ∂Bn2 and let (Bn2 )s be the surface body with respect
to the measure Pf with constant density f = (voln−1(∂Bn2 ))−1. We have

lim
N→∞

N
2

n−1

∫ 1
2

0

PN∂Bn
2
{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (xs),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
ds

= (n− 1)
n+1
n−1

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!
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where Hs = H(xs, N∂(Bn
2 )s

(xs)) and {xs} = [0, x0] ∩ ∂(Bn2 )s. (Let us note
that N∂(Bn

2 )s
(xs) = x0 and N∂Bn

2
(y) = y.)

Proof. Clearly, for all s with 0 ≤ s < 1
2 the surface body (Bn2 )s is homothetic

to Bn2 . We have

voln(Bn2 )− E(∂Bn2 , N) =
∫
Bn

2

PN∂Bn
2
{(x1, . . . , xN )|x /∈ [x1, . . . , xN ]}dx.

We pass to polar coordinates

voln(Bn2 )− E(∂Bn2 , N)

=
∫ 1

0

∫
∂Bn

2

PN∂Bn
2
{(x1, . . . , xN )|rξ /∈ [x1, . . . , xN ]}rn−1dξdr

where dξ is the surface measure on ∂Bn2 . Since Bn2 is rotationally invariant

PN∂Bn
2
{(x1, . . . , xN )|rξ /∈ [x1, . . . , xN ]}

is independent of ξ. We get that the last expression equals

voln−1(∂Bn2 )
∫ 1

0
PN∂Bn

2
{(x1, . . . , xN )|rξ /∈ [x1, . . . , xN ]}rn−1dr

for all ξ ∈ ∂Bn2 . Now we perform a change of variable. We define the function
s : [0, 1]→ [0, 1

2 ] by

s(r) =
voln−1(∂Bn2 ∩H−(rξ, ξ))

voln−1(∂Bn2 )
.

The function is continuous, strictly decreasing, and invertible. We have by
Lemma 2.11.(iii)

ds
dr

= −
∫
∂(Bn

2 ∩Hs)

(voln−1(∂Bn2 ))−1

(1− < N∂(Bn
2 )s

(xs), N∂Bn
2
(y) >2)

1
2
dµ∂(Bn

2 ∩Hs)(y).

We have r(s)ξ = xs. Thus we get

voln(Bn2 )− E(∂Bn2 , N)
voln−1(∂Bn2 )

=
∫ 1

2

0

PN∂Bn
2
{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}(r(s))n−1ds∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (xs),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
.

Now we apply Proposition 3.1 and obtain
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lim
N→∞

N
2

n−1

∫ 1
2

0

PN∂Bn
2
{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}(r(s))n−1ds∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (xs),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)

= (n− 1)
n+1
n−1

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

.

By Lemma 4.13 it follows that we have for all s0 with 0 < s0 ≤ 1
2

lim
N→∞

N
2

n−1

∫ s0

0

PN∂Bn
2
{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}(r(s))n−1ds∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (xs),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)

= (n− 1)
n+1
n−1

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

.

By this and since r(s) is a continuous function with lims→0 r(s) = 1 we get

lim
N→∞

N
2

n−1

∫ 1
2

0

PN∂Bn
2
{(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}ds∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (xs),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)

= (n− 1)
n+1
n−1

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

.

��

Lemma 4.19. Let K be a convex body in Rn and x0 ∈ ∂K. Suppose that the
indicatrix of Dupin exists at x0 and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let f, g : ∂K → R be continuous, strictly positive
functions with ∫

∂K

fdµ =
∫
∂K

gdµ = 1.

Let
Pf = fdµ∂K and Pg = gdµ∂K .

Then for all ε > 0 there is sε such that we have for all 0 < s < sε, all xs with
{xs} = [0, x0] ∩ ∂Kf,s, all {ys} = [0, x0] ∩ ∂Kg,s, and all N ∈ N

|PNf {(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]}−PNg {(x1, . . . , xN )|ys /∈ [x1, . . . , xN ]}| < ε.

Proof. By Lemma 4.17∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]}

∣∣ < ε,
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and ∣∣PNg {(x1, . . . , xN )| ys /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| zs /∈ [z1, . . . , zN ]}

∣∣ < ε.

The result follows by triangle-inequality. ��

Lemma 4.20. Let a1, . . . , an > 0 and let A : Rn → Rn be defined by Ax =
(aix(i))ni=1. Let E = A(Bn2 ), i.e.

E =

{
x

∣∣∣∣∣
n∑
i=1

∣∣∣∣x(i)
ai

∣∣∣∣
2

≤ 1

}
.

Let f : ∂E → R be given by

f(x) =


(

n∏
i=1

ai

)√√√√ n∑
i=1

x(i)2

a4
i

voln−1(∂Bn2 )




−1

.

Then we have
∫
∂E fdµ∂E = 1 and for all x ∈ Bn2

PN∂Bn
2
{(x1, . . . , xN )|x /∈ [x1, . . . , xN ]} = PNf {(z1, . . . , zN )|A(x) /∈ [z1, . . . , zN ]}.

Proof. We have that

x /∈ [x1, . . . , xN ] if and only if Ax /∈ [Ax1, . . . , AxN ].

For all subsets M of ∂E such that A−1(M) is measurable we put

ν(M) = P∂Bn
2
(A−1(M))

and get

PN∂Bn
2
{(x1, . . . , xN )|x /∈ [x1, . . . , xN ]} = νN{(z1, . . . , zN )|Ax /∈ [z1, . . . , zN ]}.

We want to apply the Theorem of Radon-Nikodym. ν is absolutely continuous
with respect to the surface measure µ∂E . We check this.

ν(M) = P∂Bn
2
(A−1(M)) =

hn−1(A−1(M))
voln−1(∂Bn2 )

where hn−1 is the n−1-dimensional Hausdorff-measure. By elementary prop-
erties of the Hausdorff-measure ([EvG], p. 75) we get

ν(M) ≤ (Lip(A))n−1 hn−1(M)
voln−1(∂Bn2 )

= (Lip(A))n−1 1
voln−1(∂Bn2 )

µ∂E(M)
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where Lip(A) is the Lipschitz-constant of A. Thus ν(M) = 0 whenever
µ∂E(M) = 0.

Therefore, by the Theorem of Radon-Nikodym there is a density f such
that dν = fdµ∂E . The density is given by

f(x) =


(

n∏
i=1

ai

)√√√√ n∑
i=1

x(i)2

a4
i

voln−1(∂Bn2 )




−1

.

We show this. We may assume that x(n) ≥ an√
n

(there is at least one coordi-
nate x(i) with |x(i)| ≥ ai√

n
). Let U be a small neighborhood of x in ∂E . We

may assume that for all y ∈ U we have y(n) ≥ an

2
√
n
. Thus the orthogonal

projection pen onto the subspace orthogonal to en is injective on U . Since
x ∈ ∂E we have (x(i)ai

)ni=1 ∈ ∂Bn2 and N∂Bn
2
(A−1(x)) = (x(i)ai

)ni=1. Then we
have up to a small error

ν(U) = P∂Bn
2
(A−1(U))

∼ voln−1(pen
(A−1(U)))

< en, N∂Bn
2
(A−1(x)) > voln−1(∂Bn2 )

=
anvoln−1(pen

(A−1(U)))
x(n) voln−1(∂Bn2 )

.

Moreover, since

N∂E(x) =

(
n∑
i=1

x(i)2

a4
i

)− 1
2 (

x(i)
a2
i

)n
i=1

we have

µ∂E(U) ∼ voln−1(pen(U))
< en, N∂E(x) >

= a2
n

√√√√ n∑
i=1

x(i)2

a4
i

(
voln−1(pen(U))

x(n)

)
.

We also have that

voln−1(pen
(U)) =

(
n−1∏
i=1

ai

)
voln−1(pen

(A−1(U))).

Therefore we get

µ∂E(U) ∼ an

(
n∏
i=1

ai

)√√√√ n∑
i=1

x(i)2

a4
i

(
voln−1(pen(A−1(U)))

x(n)

)

∼
(
n∏
i=1

ai

)√√√√ n∑
i=1

x(i)2

a4
i

voln−1(∂Bn2 )ν(U).

��
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Lemma 4.21. Let a1, . . . , an > 0 and

E =

{
x

∣∣∣∣∣
n∑
i=1

∣∣∣∣x(i)
ai

∣∣∣∣
2

≤ 1

}

Let Es, 0 < s ≤ 1
2 , be the surface body with respect to the measure Pg with

constant density g = (voln−1(∂E))−1. Moreover, let λE : [0, 1
2 ] → [0, an] be

such that λE(s)en ∈ ∂Es. Then we have for all t with 0 ≤ t ≤ 1
2

lim
N→∞

N
2

n−1

∫ t

0

PN∂E{(x1, . . . , xN )| λE(s)en /∈ [x1, . . . , xN ]}∫
∂(E∩Hs)

(voln−1(∂E))−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds

= an

(
n−1∏
i=1

ai

)− 2
n−1 (

voln−1(∂E)
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

where Hs = H(λE(s)en, N∂Es
(λE(s)en)). (Please note that N∂Es

(λE(s)en) =
en.)

Proof. (Bn2 )t, 0 < t ≤ 1
2 , are the surface bodies with respect to the constant

density (voln−1(∂Bn2 ))−1. λB : [0, 1
2 ]→ [0, 1] is the map defined by λB(t)en ∈

∂(Bn2 )t.
By Lemma 4.18

lim
N→∞

N
2

n−1

∫ 1
2

0

PN∂Bn
2
{(x1, . . . , xN )| λB(s)en /∈ [x1, . . . , xN ]}∫

∂(Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (λB(s)en),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
ds

=
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

where λB(s)en ∈ ∂(Bn2 )s and Hs = H(λB(s)en, en). By Lemma 4.13 for c
with c0 < c and N with N0 < N∣∣∣∣N 2

n−1

∫ c
N

0

PN∂Bn
2
{(x1, . . . , xN )| λB(s)en /∈ [x1, . . . , xN ]}∫

∂Bn
2 ∩Hs)

(voln−1(∂Bn
2 ))−1

(1−<N∂(Bn
2 )s (λB(s)en),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
ds

−
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣ ≤ c1e−c + c2e−c3N .

Let A be the diagonal operator with A(x) = (aixi)ni=1 such that A(Bn2 ) = E .
By Lemma 4.20 we have

PN∂Bn
2
{(x1, . . . , xN )| A−1(x) /∈ [x1, . . . , xN ]}

= PNf {(z1, . . . , zN )| x /∈ [z1, . . . , zN ]}
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where f : ∂E → (0,∞)

f(x) =


(

n∏
i=1

ai

)√√√√ n∑
i=1

x(i)2

a4
i

voln−1(∂Bn2 )




−1

.

For all c with c0 < c and N with N0 < N∣∣∣∣N 2
n−1

∫ c
N

0

PNf {(z1, . . . , zN )| A(λB(s)en) /∈ [z1, . . . , zN ]}∫
∂(Bn

2 ∩Hs)
(voln−1(∂Bn

2 ))−1

(1−<N∂(Bn
2 )s (λB(s)en),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
ds

−
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣ ≤ c1e−c + c2e−c3N .

The functions λB and λE are strictly decreasing, bijective, continuous func-
tions. Therefore, the function s : [0, an] → [0, 1]

s(t) = λ−1
B

(
λE(t)
an

)

exists, is continuous and has t : [0, 1] → [0, an]

t(s) = λ−1
E (anλB(s))

as its inverse function. Clearly, anλB(s(t)) = λE(t) and A(λB(s(t))en) =
λE(t)en. Thus

∣∣∣∣N 2
n−1

∫ c
N

0

PNf {(z1, . . . , zN )| λE(t(s))en /∈ [z1, . . . , zN ]}∫
∂(Bn

2 ∩Hs)
(voln−1(∂Bn

2 ))−1

(1−<N∂(Bn
2 )s (λB(s)en),N∂Bn

2
(y)>2)

1
2
dµ∂(Bn

2 ∩Hs)(y)
ds

−
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣ ≤ c1e−c + c2e−c3N .

Now we perform a change of variable. By Lemma 2.11.(iii) and anλB(s(t)) =
λE(t)

ds
dt

=
1
an
·

dλE
dt (t)

dλB

ds (s(t))

=
1
an

voln−1(∂E)
voln−1(∂Bn2 )

∫
∂Bn

2 ∩H(λB(s(t))en,en)
dµ∂Bn

2 ∩H(λB(s(t))en,en)(y)√
1−<en,N(y)>2∫

∂E∩H(λE(t)en,en)
dµ∂E∩H(λE (t)en,en)(y)√

1−<en,N(y)>2

.

Therefore we get for all c with c0 < c and N with N0 < N
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n−1

∫ t( c
N )

0

PNf {(z1, . . . , zN )| λE(t)en /∈ [z1, . . . , zN ]}∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

−an
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣
≤ 1
an

[
c1e−c + c2e−c3N

]
where Ht now denotes H(λE(t)en, N(λE(t)en)). Since anλB(s(t)) = λE(t) we
get that for sufficiently small t the quantities t and s are up to a small error
directly proportional. We have

t(s) ∼ s
cna

n−1
2
n

κ(anen)
n−1

4

.

Therefore, with a constant α and new constants c1, c2 we can substitute t( cN )
by c

N .
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(z1, . . . , zN )| λE(t)en /∈ [z1, . . . , zN ]}∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

−an
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣
≤ c1e−αc + c2e−c3N

We have λE(tf(anen)voln−1(∂E))en ∈ ∂Et′ with t′ = tf(anen)voln−1(∂E). By
Lemma 2.7.(i) for every δ > 0 there is t′′ with λE(t)en ∈ ∂Ef,t′′ and

(1− δ)tf(anen)voln−1(∂E) ≤ t′′ ≤ (1 + δ)tf(anen)voln−1(∂E)

i.e.
(1− δ)t′ ≤ t′′ ≤ (1 + δ)t′.

Applying Lemma 4.17 gives∣∣PNf {(x1, . . . , xN )| λE(t)en /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| λE(tf(anen)voln−1(∂E))en /∈ [z1, . . . , zN ]}

∣∣ < ε.

Therefore∣∣∣∣N 2
n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(tf(anen)voln−1(∂E))en /∈ [z1, . . . , zN ]}∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

−an
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣
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≤

∣∣∣∣∣∣∣N
2

n−1

∫ c
N

0

ε∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

∣∣∣∣∣∣∣
+c1e−αc + c2e−c3N .

By Lemma 4.11∫
∂E∩Ht

(1− < N∂Et(λE(t)en), N∂E(y) >2)−
1
2 dµ∂(E∩Ht)(y) ≥ γt

n−3
n−1 .

Therefore we have∫ c
N

0

ε∫
∂E∩Ht

(1− < N∂Et(λE(t)en), N∂E(y) >2)−
1
2 dµ∂(E∩Ht)(y)

dt

≤ ε

γ

∫ c
N

0
t−

n−3
n−1 dt =

ε

γ

n− 1
2

( c

N

) 2
n−1

.

Therefore∣∣∣∣N 2
n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(tf(anen)voln−1(∂E))en /∈ [z1, . . . , zN ]}∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

−an
(

voln−1(∂Bn2 )
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣
≤ ε

γ

n− 1
2

( c

N

) 2
n−1

+ c1e−αc + c2e−c3N .

We perform another transform, u = tf(anen)voln−1(∂E). With a new con-
stant α∣∣∣∣N 2

n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(u)en /∈ [z1, . . . , zN ]}∫
∂(E∩Ht(u))

(voln−1(∂E))−1

(1−<N∂Et(u)
(λE(t(u))en),N∂E(y)>2)

1
2
dµ∂(E∩Ht(u))(y)

× du
f(anen)voln−1(∂E)

− an

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!(n− 1)−

n+1
n−1

∣∣∣∣
≤ ε

γ

n− 1
2

( c

N

) 2
n−1

+ c1e−αc + c2e−c3N .

By Lemma 2.10.(iii)∫
∂E∩Hu

1√
1− < N∂Eu(xu), N∂E(y) >2

dµ∂E∩Hu(y)

≤ (1 + ε)(ut )
n−3
n−1

∫
∂E∩Ht

1√
1− < N∂Et(xt), N∂E(y) >2

dµ∂E∩Ht
(y)
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and the inverse inequality. Thus∣∣∣∣N 2
n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(u)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hu)

(voln−1(∂E))−1

(1−<N∂Eu (λE(u)en),N∂E(y)>2)
1
2
dµ∂(E∩Hu)(y)

×

du

(f(anen)voln−1(∂E))
2

n−1
− an

(
voln−1(∂Bn2 )

voln−2(∂Bn−1
2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!(n− 1)−

n+1
n−1

∣∣∣∣
≤ ε+

ε

γ

n− 1
2

( c

N

) 2
n−1

+ c1e−αc + c2e−c3N .

Since f(anen) = ((
∏n−1
i=1 ai)voln−1(∂Bn2 ))−1

∣∣∣∣N 2
n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(u)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hu)

(voln−1(∂E))−1

(1−<N∂Eu (λE(u)en),N∂E(y)>2)
1
2
dµ∂(E∩Hu)(y)

du

−an
(
n−1∏
i=1

ai

)− 2
n−1 (

voln−1(∂E)
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

∣∣∣∣

≤
(

voln−1(∂Bn2 )
voln−1(∂E)

n−1∏
i=1

ai

) 2
n−1 (

ε+
ε

γ

n− 1
2

( c

N

) 2
n−1

+ c1e−αc + c2e−c3N
)
.

By choosing first c sufficiently big and then ε sufficiently small we get the
above expression as small as possible provided that N is sufficiently large.
By this and Lemma 4.13

lim
N→∞

N
2

n−1

∫ t0

0

PN∂E{(z1, . . . , zN )| λE(t)en) /∈ [z1, . . . , zN ]}∫
∂(E∩Ht)

(voln−1(∂E))−1

(1−<N∂Et (λE(t)en),N∂E(y)>2)
1
2
dµ∂(E∩Ht)(y)

dt

= an

(
n−1∏
i=1

ai

)− 2
n−1 (

voln−1(∂E)
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1 .

��

5 Proof of the Theorem

Lemma 5.1. Let K be a convex body in Rn such that the generalized Gauß-
curvature exists at x0 ∈ ∂K and is not 0. Let f : ∂K → R be a con-
tinuous, strictly positive function with

∫
∂K

fdµ = 1. Let Ks be the sur-
face body with respect to the measure fdµ. Let {xs} = [xT , x0] ∩ Ks and
Hs = H(xs, N∂Ks(xs)). Assume that there are r and R with 0 < r,R < ∞
and
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Bn2 (x0 − rN∂K(x0), r) ⊆ K ⊆ Bn2 (x0 −RN∂K(x0), R).

Then for all s0 with 0 < s0 ≤ T

lim
N→∞

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds = cn
κ(x0)

1
n−1

f(x0)
2

n−1

where

cn =
(n− 1)

n+1
n−1Γ (n+ 1 + 2

n−1 )

2(n+ 1)!(voln−2(∂Bn−1
2 ))

2
n−1

.

We can recover Lemma 4.21 from Lemma 5.1 by choosing K = E and
f = (voln−1(∂E))−1.

Proof. Let E be the standard approximating ellipsoid at x0 with principal
axes having the lengths ai, i = 1, . . . , n− 1. Then we have (4)

κ(x0) =
n−1∏
i=1

an
a2
i

.

Therefore, by Lemma 4.21 we get for all s0 with 0 < s0 ≤ 1
2

lim
N→∞

N
2

n−1

∫ s0

0

PN∂E{(z1, . . . , zN )| λE(s)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hs)

(voln−1(∂E))−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds

= an

(
n−1∏
i=1

ai

)− 2
n−1 (

voln−1(∂E)
voln−2(∂Bn−1

2 )

) 2
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!

(n− 1)
n+1
n−1

= cnκ
1

n−1 (x0)(voln−1(∂E))
2

n−1

where

cn =
(n− 1)

n+1
n−1Γ (n+ 1 + 2

n−1 )

2(n+ 1)!(voln−2(∂Bn−1
2 ))

2
n−1

and Hs = H(λE(s)en, en). Hs is a tangent hyperplane to the surface body Es
with respect to the constant density (voln−1(∂E))−1.

By this for all ε > 0 and sufficiently big N∣∣∣∣N 2
n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N(xs)))

f(y)dµ∂(K∩H(xs,N(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds− cn
κ(x0)

1
n−1

f(x0)
2

n−1

∣∣∣∣
≤ ε+∣∣∣∣N 2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N(xs)))

f(y)dµ∂(K∩H(xs,N(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds
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−
(

N

f(x0)voln−1(∂E)

) 2
n−1

×
∫ s0

0

PN∂E{(z1, . . . , zN )| λE(s)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hs)

(voln−1(∂E))−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣.

By Lemma 4.13 there are constants b1, b2, b3 such that for all sufficiently big
c the latter expression is smaller than

ε+ 2(b1e−c + b2e
−b3N )

+
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N(xs)))

f(y)dµ∂(K∩H(xs,N∂Ks
(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds

−N 2
n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(s)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hs)

f(x0)
2

n−1 (voln−1(∂E))−
n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣.

By triangle-inequality this is smaller than

ε+ 2(b1e−c + b2e
−b3N )

+
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N∂Ks (xs)))

f(y)dµ∂(K∩H(xs,N∂Ks
(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

−
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(E∩Hs)
f(x0)

2
n−1 (voln−1(∂E))−

n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣

+
∣∣∣∣N 2

n−1

∫ c
N

0

PN∂E{(z1, . . . , zN )| λE(s)en /∈ [z1, . . . , zN ]}∫
∂(E∩Hs)

f(x0)
2

n−1 (voln−1(∂E))−
n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

−
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(E∩Hs)
f(x0)

2
n−1 (voln−1(∂E))−

n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣.

By Lemma 4.17∣∣PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]} −
PN∂E{(z1, . . . , zN )| λE(s)en /∈ [z1, . . . , zN ]}

∣∣ < ε.

Therefore, the above quantity is less than

ε+ 2(b1e−c + b2e
−b3N )

+
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N∂Ks (xs)))

f(y)dµ∂(K∩H(xs,N∂Ks
(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2
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−
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(E∩Hs)
f(x0)

2
n−1 (voln−1(∂E))−

n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣

+
∣∣∣∣N 2

n−1

∫ c
N

0

ε∫
∂(E∩Hs)

f(x0)
2

n−1 (voln−1(∂E))−
n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣.

By Lemma 4.11 we have∫ c
N

0

1∫
∂(E∩Hs)

dµ∂(E∩Hs)(y)

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2

ds

≤ cn0
Rn−1

rn
(voln−1(Bn−1

2 ))−
2

n−1 (voln−1(∂E))−
n−3
n−1

∫ c
N

0
s−

n−3
n−1 ds

= cn0
Rn−1

rn
(voln−1(Bn−1

2 ))−
2

n−1 (voln−1(∂E))−
n−3
n−1

n− 1
2

( c

N

) 2
n−1

.

Therefore, the above expression is not greater than

ε+ b1e−c + b2e−b3N + b4ε c
2

n−1

+
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N∂Ks (xs)))

f(y)dµ∂(K∩H(xs,N∂Ks
(xs)))(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

−
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(E∩Hs)
f(x0)

2
n−1 (voln−1(∂E))−

n−3
n−1

(1−<N∂Es (λE(s)en),N∂E(y)>2)
1
2
dµ∂(E∩Hs)(y)

ds
∣∣∣∣

for some constant b4. Let zs be defined by

{zs} = {x0 + tN∂K(x0)|t ∈ R} ∩H(xs, N∂K(x0)).

By Lemma 2.7 there is a sufficiently small sε such that we have for all s with
0 < s ≤ sε

s ≤ Pf (∂K ∩H−(zs, N∂K(x0))) ≤ (1 + ε)s.

Because f is continuous at x0 and because E is the standard approximating
ellipsoid at x0 we have for all s with 0 < s ≤ sε

(1− ε)s ≤ f(x0)voln−1(∂E ∩H−(zs, N∂K(x0))) ≤ (1 + ε)s.

Since s = voln−1(∂E∩H−
s )

voln−1(∂E)
we get by Lemma 2.10.(iii) for a new sε that for all

s with 0 < s ≤ sε

(1− ε)

(f(x0)voln−1(∂E))
n−3
n−1

∫
∂E∩Hs

dµ∂E∩Hs
(y)√

1− < N∂Es(x0), N∂E(y) >2
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≤
∫
∂E∩H−(zs,N∂K(x0))

dµ∂E∩H−(zs,N∂K(x0))(y)√
1− < N∂Et

(x0), N∂E(y) >2

≤ (1 + ε)

(f(x0)voln−1(∂E))
n−3
n−1

∫
∂E∩Hs

dµ∂E∩Hs
(y)√

1− < N∂Es
(x0), N∂E(y) >2

where t ∼ s(f(x0)voln−1(∂E))
n−3
n−1 . Please note that N∂K(x0) = N∂Es(zs).

Therefore, if we pass to another sε the above expression is not greater than

ε+ b1e
−c + b2e

−b3N + b4εc
2

n−1

+
∣∣∣∣N 2

n−1

∫ c
N

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩H(xs,N(xs)))

f(y)

(1−<N(xs),N(y)>2)
1
2
dµ∂(K∩H(xs,N(xs)))(y)

−
PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫

∂(E∩H (zs,N∂K(x0)))
f(x0)

(1−<N(λE(s)en),N(y)>2)
1
2
dµ∂(E∩H (zs,N∂K(x0))(y)

ds
∣∣∣∣.

Now we apply Lemma 2.10.(i). Choosing another sε the above expression is
less than ε+ b1e−c + b2e−b3N + b4εc

2
n−1 . We choose c and N sufficiently big

and ε sufficiently small. ��

Proof. (Proof of Theorem 1.1) We assume here that xT = 0. For x0 ∈ ∂K
the point xs is given by {xs} = [xT , x0] ∩ ∂Ks.

voln(K)− E(f,N) =
∫
K

PNf {(x1, . . . , xN )|x /∈ [x1, . . . , xN ]}dx.

By Lemma 2.1.(iv) we have that K0 = K and by Lemma 2.4.(iii) that KT
consists of one point only. Since PNf {(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]} is a
continuous functions of the variable xs we get by Lemma 2.12

voln(K) − E(f,N)

=
∫ T

0

∫
∂Ks

PNf {(x1, . . . , xN )|xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

dµ∂Ks
(xs)ds

where Hs = H(xs, N∂Ks(xs)). By Lemma 4.9 for all s0 with 0 < s0 ≤ T

lim
N→∞

N
2

n−1

∫ T

s0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}dµ∂Ks(xs)ds∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

= 0.

We get for all s0 with 0 < s0 ≤ T

lim
N→∞

voln(K)− E(f,N)

N− 2
n−1

=

lim
N→∞

N
2

n−1

∫ s0

0

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}dµ∂Ks(xs)ds∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

.
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We apply now the bijection between ∂K and ∂Ks mapping an element x ∈
∂K to xs given by {xs} = [xT , x0] ∩ ∂Ks. The ratio of the volumes of a
surface element in ∂K and its image in ∂Ks is

‖xs‖n < x0, N∂K(x0) >
‖x0‖n < xs, N∂Ks

(xs) >
.

Thus we get

∫
∂Ks

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
dµ∂Ks

(xs)

=
∫
∂K

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

×

‖xs‖n < x,N∂K(x) >
‖x‖n < xs, N∂Ks

(xs) >
dµ∂K(x).

We get for all s0 with 0 < s0 ≤ T

lim
N→∞

voln(K)− E(f,N)

N− 2
n−1

=

lim
N→∞

N
2

n−1

∫ s0

0

∫
∂K

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs(y)
×

‖xs‖n < x,N∂K(x) >
‖x‖n < xs, N∂Ks

(xs) >
dµ∂K(x)ds.

By the theorem of Tonelli

lim
N→∞

voln(K)− E(f,N)

N− 2
n−1

=

lim
N→∞

N
2

n−1

∫
∂K

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂K∩Hs

f(y)√
1−<N∂Ks (xs),N∂K(y)>2

dµ∂K∩Hs
(y)

×

‖xs‖n < x0, N∂K(x0) >
‖x0‖n < xs, N∂Ks(xs) >

dsdµ∂K(x).

Now we want to apply the dominated convergence theorem in order to change
the limit and the integral over ∂K. By Lemma 5.1 for all s0 with 0 < s0 ≤ T

lim
N→∞

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

ds = cn
κ(x0)

1
n−1

f(x0)
2

n−1
.

Clearly, we have lims→0 ‖xs‖ = ‖x‖ and by Lemma 2.5
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lim
s→0

< xs, N∂Ks(xs) >=< x,N∂K(x) > .

By this and since the above formula holds for all s0 with 0 < s0 ≤ T

lim
N→∞

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

‖xs‖n < x,N(x) >
‖x‖n < xs, N(xs) >

ds

= cn
κ(x0)

1
n−1

f(x0)
2

n−1
.

By Lemma 4.12 the functions with variable x0 ∈ ∂K

N
2

n−1

∫ s0

0

PNf {(x1, . . . , xN )| xs /∈ [x1, . . . , xN ]}∫
∂(K∩Hs)

f(y)dµ∂(K∩Hs)(y)

(1−<N∂Ks (xs),N∂K(y)>2)
1
2

‖xs‖n < x0, N(x0) >
‖x0‖n < xs, N(xs) >

ds

are uniformly bounded. Thus we can apply the dominated convergence the-
orem.

lim
N→∞

voln(K)− E(f,N)

N− 2
n−1

= cn

∫
∂K

κ(x)
1

n−1

f(x)
2

n−1
dµ∂K(x)

��
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[MaS2] Mankiewicz P., Schütt C. (2001): On the Delone triangulations numbers.
Journal of Approximation Theory, 111, 139–142

[McV] McClure D.E., Vitale R. (1975): Polygonal approximation of plane convex
bodies. J. Math. Anal. Appl., 51, 326–358

[MW1] Meyer M., Werner E. (1998): The Santaló-regions of a convex body. Trans-
actions of the AMS, 350, 4569–4591

[MW2] Meyer M., Werner E. (2000): On the p-affine surface area. Advances in
Mathematics, 152, 288–313
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they?

Wednesday, May 22

1. William B. Johnson (College Station, Texas): Lipschitz quotients
2. Eva Matouskova (Prague, Czech Republic): Bilipschitz mappings of nets
3. Tadeusz Dobrowolski (Pittsburg, Kansas): The simplicial approximation

and fixed-point properties
4. Vladimir Fonf (Beer-Sheva, Israel): On the set of functionals that do not

attain their norms
5. Gideon Schechtman (Rehovot, Israel): �np , 1 < p < 2, well embed in �an1

for any a > 1
6. Aleksander Pelczynski (Warsaw, Poland): Elliptic sections of convex bod-

ies
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