THE JOURNAL OF

 Organic ChemistryPUBLISHED BIWEEKLYBY THEAMERICAN CHEMICALSOCIETY

the journal, of Organic Chemistry

EDITOR-IN-CHIEF: FREIJERICK D. GREENF

SENIOR EDITORS

Werner Herz
Florida State ('nuersil!
Tallahassee, Flurida

James A. Moore
liniversity of listarar
Newark. Drlawari

Martin A. Schwartz
Florida State l'niurestit.
Tallahassere. Flurida

ASSISTANT EDITOR: Theodora W (ireene

ADVISORY BCARD

Robert A. Benkeser	Neville Finch	William M. Jones	Alhert I. Mevers	Henry Rapoport
John I. Brauman	Paul G. Cassman	Jay K. Kochi	John G. Moffatt	William Sheppard
Orville L. Chapman	Ralph Hirschmann	.James A. Marshall	Roy A. Olcfson	Robert V. Stevens
Stanton Ehrenson	Donald M. Jerina	James C. Martin	Leor A. Pacuette	Barry M Trost
David A. Evans	Carl R. Johnson		Marsin L. Poutsma	Nicholas .J. Turro

EX-OFFICIO MEMBERS: George H. Coleman. Sanibel Islend, Florida

Published by the

AMERICAN CHEMICAL SOCIETY

BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen. Director

Editorial_Department: Charles R. Bertsch. Head: Marianne C. Brogan. Associate Head; Eileen B. Segal, Production Editor: Fern S. Jackson, Assistant Editor: Andrew J. D`Amelio, Editorial Assistant.
Ciraphics and Production Department: Bacil Guiley, Head
Research and Development Department: Seldon W. Terrant. Head

Advertising Office: Centcom. Ltd. 50 W . State St.. Westport, Conn. 06880 .
c Copyright, 1976, by the American Chemical Society: No part of this publication may be reproduced in any form without permission in writing from the American Chemical Society.

Published biweekly by the American Chemical Society at 20th and Northampton Sts., Easton, Pa. 18042. Second class postage paid at Washington, D.C., and at additional mailing offices.

Editorial Information

Instructions for authors are printed in the first issue of each volume. Please conform to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor. Frederick I). (ireene. at his Cambridge. Mass.. address.

Correspondence regarding accepted papers and proofs should be directed to the

Editorial Department at the ACS Easton address.

Page charges of $\$ 70.00$ per page are assessed tor papers published in this journal. Ability to pay does not affect acceptance or scheduling of papers.

Bulk reprints or phot ocopies of individual articles are available. For information write to Business Operations. Books and Journals Division. at the ACS Washington address. Requests for permission to reprint should be directec to Permissions, Books and Journals Division, at the ACS Washington address.

The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributoss.

Subscription and Business Information

1976 subscription rates-including surface postage:

	Do-		Canada.
	mestic	PllAS	Foreign
Member	$\$ 26.00$	$\$ 33.25$	$\$ 34.25$
Nonmember	104.00	111.25	112.25
Supplementary	15.00	19.00	20.00
\quad material			

Air mail and Air freight rates are availahle from Membership \& Subscription Services, at the ACS Columbus address

New and renewal subscriptions should he sent with payment to the Office of the Controller at the ACS Washington address. Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to the ACS Columbus address. Please allow 6 weeks for change to become effective. Claims for missing numbers will not he allowed if loss was tue to failure of notice of change of address to he received in the time specified: if cleim is dated, (a)

North America, more than 90 days beyond issue date, (b) all other foreign, more than one vear beyond issue date; or if the reason given is "missing from files". Hard copy" claims are handled at the ACS Columbus address.

Microfiche subscriptions are available at the same rates but are mailed first class to LI.S. subscribers, air mail to the rest of the world. Direct all inquiries to Business Operations, Books and Journals Division. at the ACS Washington address or call (202; 872-4444.
Single issues in hard copy and/or microfiche are available from Special Issues Sales at the ACS Washington address. Current year 5.5 .00 . Back issue rates available from Special Issues Sales. Back volumes are available in hard copy and/or microform. Write to Specjal Issues Sales at the ACS Washington address for further informati in. Microfilm editions of ACS periodical publications are available from volume 1 to the present. For further information. contact Special Issues Sales at the ACS Washington address.

Supplementary material must he ordered directly from Business Operations, Books and Journals Division, at the ACS Washington address. Orders over 20 pages

PUAS, Other
U.S. Canada Foreign

Microfiche
Photocopy
$1-7$ pages $\quad 4.00 \quad 5.50 \quad 7.00$
$8-20$ pages $\quad 5.00 \quad 6.50 \quad 8.00$
are available only on microfiche. 4×6 in., $24 \times$, negative, silver halide. Orders must state photocopy or microfiche if both are available. Full bibliographic citation including names of all authors and prepayment are required. Prices are subject to change.

American Chemical Soristy: 1155 16th St. N.W.
Washington, D.C. 200:36 (202) $872-4610$

Meinbership \& Subscription Services
American Chemical Suciety

Columbus, ')n.o 4.211)
(614.421-7250

Editorial Department
American Chemical Society
20th and Northampton Sts.
Easton. Pa. $18(1) 42$
(21.5) 258-9111

mmosamator organic Chemistry

D. W. Wiley,* O. W. Webster, and E. P. Blanchard	1889	Hydrogen Cyanide Chemistry. 6. Cyanogen Condensation with Cyanide, $\mathrm{C}_{7} \mathrm{H}_{7}{ }^{-}$
Samuel P. McManus,* Richard A. Hearn, and Charles U. Pittman, Jr.	1895	Rearrangement of N-Acylaziridines in Strong Acid Media
Sung Moon,* Donald G. Wright, and Arthur L. Schwartz	1899	Versatile Intermediates for Heteroatom-Substituted Adamantane Derivatives
S. Yang and J. M. Cook*	1903	Reactions of Dicarbonyl Compounds with Dimethyl β-Ketoglutarate. 2. Simple Synthesis of Compounds of the [10.3.3]- and [6.3.3]Propellane Series
H.-G. Heine, ${ }^{*}$ W. Hartmann, F. D. Lewis,* and R. T. Lauterbach	1907	Photochemical Reactivity of Some Bridgehead Phenyl Ketones
Stanley J. Cristol,* John S. Perry, Jr., and Ronald S. Beckley	1912	Bridged Polycyclic Compounds. 82. Multiple Mechanisms for Oxymercuration of Some Dibenzobicyclo[2.2.2]octatrienes
Stanley J. Cristol,* Hans W. Mueller, Walter M. Macintyre, and R. Curtis Haltiwanger	1919	Bridged Polycyclic Compounds. 83. Steric and Bromine Substituent Acceleration in Bromination Reactions
William E. Gore* and Ian M. Armitage	1926	Lanthanide-Induced Chemical Shifts and the Relative Stereochemistry of Multistriatin, 2,4-Dimethyl-5-ethyl-6,8-dioxabicyclo[3.2.1]octane
Yuzuru Shimizu	1930	Synthesis of Samandarine-Type Alkaloids and Analogues
Masahiro Minabe, * Masaaki Yoshida, Minoru Fujimoto, and Kazuo Suzuki	1935	Clemmensen Reduction of 2-Acetylfluorene. Pathways for the Formation of $2,3-\mathrm{Di}(2$-fluorenyl)butane and Its Homologues
E. C. Ashby, ${ }^{*}$ J. J. Lin, and R. Kovar	1939	New and Effective Reagents for 1,4 Reduction of α, β-Unsaturated Ketones. $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ and Its Reactive Species $\mathrm{H}_{2} \mathrm{AlI}$
Suresh K. Pradhan,* Tarur V. Radhakrishnan, and Raman Subramanian	1943	A Study of the Stork Reductive Cyclization of Steroidal Acetylenic Ketones in Aprotic Media with the Naphthalene Anion Radicals
W. J. Scott, W. J. Bover, K. Bratin, and P. Zuman*	1952	Nucleophilic Additions to Aldehydes and Ketones. 2. Reactions of Heterocyclic Aldehydes with Hydroxide Ions
James H. Sedon and P. Zuman*	1957	Nucleophilic Additions to Aldehydes and Ketones. 3. Reactions of Ortho-Substituted Benzaldehydes and Their Polarographic Oxidations
Yoshiro Sato,* Yasuchika Ban, Toyohiko Aoyama, and Hideaki Shirai	1962	Reaction of N, N-Dimethyl-2-triorganosilylethylamines with Benzyne
Francis A. Carey* and J. Richard Toler	1966	Formation of Vinylsilanes and Allylsilanes in Thermal Elimination Reactions of Esters of β-Hydroxyalkyltrimethylsilanes
Dale F. Shellhamer,* David B. McKee, and Charles T. Leach	1972	Addition of Halogens to Vinylcyclopropanes
Fritz C. Kokesh* and Jack Hine*	1976	Kinetics of the Hydrolysis of Fluoromethyl Methyl Ether in Neutral to Alkaline Solution
Borzoo Modarai	1980	Insertion of Fluoro Olefins into Carbon-Hydrogen Bonds to Yield 1:1 Adducts and Dehydrofluorination of the Adducts
George A. Olah, ${ }^{*}$ Simon H. Yu, and David G. Parker	$\begin{array}{r} 1983 \\ \end{array}$	Organometallic Chemistry. 12. Proton and Carbon-13 Nuclear Magnetic Resonance Study of Arenemercurinium Ions, the Intermediate Complexes of Aromatic Mercuration
Theodore Cohen* and Mordecai D. Treblow	1986	Consecutive Decomposition Modes for m-Trifluoromethylphenylcopper in Ether
		 30.ก.ค. 2519

Curtis B. Anderson,* B. J. Burreson, and J. T. Michalowski

Gary R. Buske and Warren T. Ford*

Gary R. Buske and Warren T. Ford*

Mark W. Galley and Roger C. Hahn*
DeLos F. DeTar* and Carl J. Tenpas
Peter A. S. Smith* and Chi Van Dang
A. R. Mitchell* and
R.B. Merrifield

Bryan K. McQuoid, A. R. Goldhammer, and E. H. Cordes*
Jai Ho Kyung and Leallyn B. Clapp*

John R. Peyser and Thomas W. Flechtner*

Bruce F. Cain
Willard M. Welch
Koichi Miyashita* and Linus Pauling

Paolo A. Tardella* and Lucio Pellacani
William T. Brady*
and Theresa C. Cheng
Thomas W. Flechtner,* Leslie J. Szabo, and Louis J. Koenig
Kenneth Richard Fountain* and Michael Pierschbacher
Uri Reichman, David H. Hollenberg,
Chung K. Chu, Kyoichi A. Watanabe, and Jack J. Fox*
Frederick L. Weitl
Amos H. Heckendorf,
Kenneth C. Mattes,
C. Richard Hutchinson,* Edward W. Hagaman, and Ernest Wenkert*
Raymond P. Lutz,* Harlan A. J. Berg, and Paul J. Wang

Tsutomu Sakakibara* and Yoshinobu Odaira
Thomas E. Stanberry,
Michael J. Darmon, Herbert A. Fry, and Ronald S. Lenox*
W. H. Richardson* and K. W. Gunderson

William Kitching,* William Adcock,
T. C. Khor, and David Doddrell

Paul J. Sniegoski

1990 Methanolysis Products of Dichloro(1,5-cyclooctadiene)palladium(II) in the Presence of Bases and of Its Methoxy Adducts

1995 Additions and Cycloadditions of Cyclopentadienyl Metal Compounds to Benzyne
1998 Highly Stereoselective Preparations of anti-7-Benzonorbornadienyl Grignard Reagents
2006 Effects of a Remote Double Bond or Cyclopropane Ring on

- Electrophilic Aromatic Substitution

2009 Estimations of van der Waals Strain in Hydrocarbons
2013 Prototropic Equilibrium of Imines. N-Benzylidene Benzylamines
2015 Occurrence of N-Alkylation during the Acidolytic Cleavage of Urethane Protecting Groups
2020 Secondary Valence Force Catalysis. 16. Melittin-Catalyzed Hydrolysis of p-Nitrophenyl Dodecanoate
2024 Pathway Control of Products in the Reaction of Nitrosyl Chloride on Oximes

NOTES

2028 Dewar Benzene Oxide Isomerization. A Forbidden Reaction

2029 2-Acyloxymethylbenzoic Acids. Novel Amine Protective Functions Providing Amides with the Lability of Esters
2031 Synthesis of 2-Benzyl-4-phenyl-2,4-dihydropyrrolo[3,4-b]indole
$2032 s$-Triazines. 1. Reaction of Cyanuric Chloride with Unsaturated Nitrogen Compounds
2034 Ethoxycarbonylnitrene Insertion Selectivity. Photolysis of Ethyl Azidoformate in Bicyclo[4.n.0]alkanes and in Alkylcyclohexanes
2036 Some Reactions of Chlorotrialkyl-1,3-cyclobutanediones

2038 Photochemistry of Diphenylcyclopropanecarboxylic Acid Derivatives

2039 A Phosgeneless Synthesis of Diaryl Carbonates

2042 Nucleosides. 98. Direct Introduction of an Acetamido Group into the Sugar Moiety of Nucleoside Epoxides

2044 Regiospecific 2,4-Diiodination of Resorcinol with Nascent Iodine
2045 Stereochemistry and Conformation of Biogenetic Precursors of Indole Alkaloids

2048 Catalysis of the Cope Rearrangement by Alumina

2049 Carboxylation of Aromatic Compounds by Palladium(II) Carboxylates

2052 Synthesis of 4-Lithio-2-methyl-2-pentene. A New Type of Allylic Organometallic Compound

2054 Tetrabenzylethylene. An Unusually Sterically Hindered Olefin

2055 Remote Substituent Effects on Carbon-13 Shieldings in Some Bicyclo[2.2.2]octyl Systems

A Method for Relating Esterification Rates and Structures of AlkylSubstituted Acetic Acids

Chemists. pharmacologists, and technicians keep current on the synthesis of drugs, their structure, and metabolism with

THE JOURNAL OF MEDICINAL CHEMISTRY

One of the fastest growing Journals in this rapidly developing field, the JOURNAL OF MEDICINAL CHEMISTRY publishes dozens of papers on the design and synthesis of novel medicinal agents as well as the relationship of chemistry to structure activity. This comprehensive monthly journal covers the structural elucidation and synthesis of biologically active natural products as well as studies on the relationship between chemical constitution, distribution, and metabolism of drugs.

Keep current on the rapidly developing news in this vital
field-Complete and mail the coupon now to start your subscription to this important journal.

Orville G. Lowe 2061 Oxidation of Thiols and Disulfides to Sulfonic Acids by Dimethyl Sulfoxide

Vytautas Grakauskas 2064 Reactions of Fluorodinitroethoxyacetyl Chloride and Fluorodinitroethoxyacetic Anhydride with Friedel-Crafts Catalysts

Daniel L. Comins and Robert E. Lyle* 2065 | Bromination of 1-Alkyl-3-methyl-2-pyridones with |
| :--- |
| |
| N-Bromosuccinimide |

T. A. Bryson,* D. M. Donelson,
R. B. Dunlap, R. R. Fisher,
and P. D. Ellis

Daniel J. Pasto* and Michael F. Miles
Keisuke Kurita, ${ }^{*}$ Toru Matsumura, and Yoshio Iwakura
Ronald L. Blankespoor* and Colleen M. Snavely

2066 Biological Probes. 3. Methods for Carbon-4 and Carbon-5 Labeling in Nicotinamide

2068 Radical Additions to Alkenylidenecyclopropanes
2070 Trichloromethyl Chloroformate. Reaction with Amines, Amino Acids, and Amino Alcohols

2071 An Electron Spin Resonance Study of the Radical Anion of 7,8-Dimethylene-1,3,5-cyclooctatriene

COMMUNICATIONS

Yoshihiko Ito, Syotaro Fujii, 2073 Reaction of 1-Silyloxybicyclo[n.1.0]alkanes with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$. A Facile and Takeo Saegusa* Synthesis of 2-Cycloalkenones via Ring Enlargement of Cyclic Ketones

[^0]* In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

AUTHOR INDEX

Adcock, W., 2055
Anderson, C. B., 1990
Aoyama, T., 1962
Armitage, I. M., 1926
Ashby, E. C., 1939
Ban, Y., 1962
Beckley, R. S., 1912
Berg, H. A. J., 2048
Blanchard, E. P., 1889
Blankespoor, R. L., 2071
Bover, W. J., 1952
Brady, W. T., 2036
Bratin, K., 1952
Bryson, T. A., 2066
Burreson, B. J., 1990
Buske, G. R., 1995, 1998
Cain, B. F., 2029
Carey. F. A., 1966
Cheng, T. C., 2036
Chu, C. K., 2042
Clapp, L. B., 2024
Cohen, T., 1986
Comins, D. L., 2065
Cook, J. M., 1903
Cordes, E. H., 2020
Cristol, S. J., 1912, 1919
Dang, C. V., 2013
Darmon, M. J., 2052
DeTar, D. F., 2009
Doddrell, D., 2055
Donelson, D. M., 2066
Dunlap, R. B., 2066
Ellis, P. D., 2066
Fisher, R. R., 2066

Flechtner, T. W., 2028, 2038
Ford, W. T., 1995, 1998
Fountain, K. R., 2039
Fox, J. J., 2042
Fry, H. A., 2052
Fujii, S., 2073
Fujimoto, M., 1935
Galley, M. W., 2006
Goldhammer, A. R., 2020
Gore, W. E., 1926
Grakauskas, V., 2064
Gunderson, K. W., 2054
Hagaman, E. W., 2045
Hahn, R. C., 2006
Haltiwanger, R. C., 1919
Hartmann, W., 1907
Hearn, R. A., 1895
Heckendorf, A. H., 2045
Heine, H.-G., 1907
Hine, J., 1976
Hollenberg, D. H., 2042
Hutchinson, C. R., 2045
Ito, Y., 2073
Iwakura, Y., 2070
Khor, T. C., 2055
Kitching, W., 2055
Koenig, L. J., 2038
Kokesh, F. C., 1976
Kovar, R., 1939
Kurita, K., 2070
Kyung, J. H., 2024
Lauterbach, R. T., 1907
Leach, C. T., 1972

Lenox, R. S., 2052
Lewis, F. D., 1907
Lin, J. J., 1939
Lowe, O. G., 2061
Lutz, R. P., 2048
Lyle, R. E., 2065
Macintyre, W. M., 1919
Matsumura, T., 2070
Mattes, K. C., 2045
McKee, D. B., 1972
McManus, S. P., 1395
McQuoid, B. K., 2020
Merrifield, R. B., 2015
Michalowski, J. T., 1990
Miles, M. F., 2068
Minabe, M., 1935
Mitchell, A. R.., 2015
Miyashita, K., 2032
Modarai, B., 1980
Moon, S., 1899
Mueller, H. W., 1919
Odaira, Y., 2049
Olah, G. A., 1983
Parker, D. G., 1983
Pasto, D. J., 2068
Pauling, L., 2032
Pellacani, L., 2034
Perry, J. S., Jr., 1912
Peyser, J. R., 2028
Pierschbacher, M., 2039
Pittman, C. U., Jr., 1895
Pradhan, S. K., 1943
Radhakrishnan, T. V., 1943
Reichman, U., 2042
Richardson, W. H., 2054

Saegusa, T., 2073
Sakakibara, T., 2049
Sato, Y., 1962
Schwartz, A. L., 1899
Scott, W. J., 1952
Sedon, J. H., 1957
Shellhamer, D. F., 1972
Shimizu, Y., 1930
Shirai, H., 1962
Smith, P. A. S., 2013
Snavely, C. M., 2071
Sniegoski, P. J., 205
Stanberry, T. E., 2052
Subramanian, R., 1943
Suzuki, K., 1935
Szabo, L. J., 2038

Tardella, P. A., 2034
Tenpas, C. J., 2009
Toler, J. R., 1966
Treblow, M. D., 1986
Wang, P. J., 2048
Watanabe, K. A., 2042
Webster, O. W., 1889
Weitl, F. L., 2044
Welch, W. M., 2031
Wenkert, E., 2045
Wiley, D. W., 1889
Wright, D. G., 1899

Yang, S., 1903
Yoshida, M., 1935
Yu, S. H., 1983

Zuman, P., 1952, 1957

MAy 28, 1976

Hydrogen Cyanide Chemistry. 6. ${ }^{1}$ Cyanogen Condensation with Cyanide, $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$
D. W. Wiley,* O. W. Webster, and E. P. Blanchard
Contribution No. 1962 from the Central Research and Development Department. Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received February 6, 1976

Three moles of cyanogen react with cyanide ion to give the salt of $1 H$-imidazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile ($\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}, 1$). This structure is confirmed by its chemistry.

In the base-catalyzed condensation of hydrogen cyanide with cyanogen, diiminosuccinonitrile is formed via the additions of cyanide ion across the nitrile groups. ${ }^{2}$ In the absence

of a proton source, we have found that cyanide ion reacts with 3 mol of cyanogen to give a $\mathrm{C}_{7} \mathrm{~N}_{7}$ anion. For example, cyanogen reacts with an acetonitrile slurry of potassium cyanide to give $\mathrm{KC}_{7} \mathrm{~N}_{7}$. This material, isolated as the dioxane solvate in 65% yield, is the potassium salt of 1 H -imidazo [1,5-b]-s-triazole-2,5,7-tricarbonitrile ${ }^{3}$ (1).

1
Trifluoroacetonitrile, another activated nitrile, undergoes the same type of cyclization reaction to give the corresponding tris(trifluoromethyl) compound $2 .{ }^{4}$ The structure of 2 was in

part based on the structure of 1 . This paper will describe work on which the structure of 1 is based.

The free acid from 1, obtained either by treating the potassium salt with 9 N sulfuric acid or preferably by ion exchange, has a $\mathrm{p} K_{\mathrm{a}}$ of -3 (extrapolated to water from spectrophotometric measurements in acetonitrile). Polarographic
studies on $\mathrm{C}_{7} \mathrm{~N}_{7}-$ have shown an oxidation which is chemically but not electrochemically reversible. However, oxidation with chlorine yields only a chloro- $\mathrm{C}_{7} \mathrm{~N}_{7}$ which reverts to $\mathrm{C}_{7} \mathrm{~N}_{7} \mathrm{H}$ on contact with water.

The natural abundance ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{KC}_{7} \mathrm{~N}_{7}$ in water shows seven peaks ($87.8,102.0,110.7,112.6,114.9,141.2$, and 151.3 ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$) ruling out any symmetrical structure for 1 . The three peaks between 110 and 115 ppm (downfield from $\mathrm{Me}_{4} \mathrm{Si}$) occur in a range which has been reported for nitrile groups. ${ }^{\text {T}}$
$\mathrm{KC}_{7} \mathrm{~N}_{7}$ can be alkylated to give a mixture of two isomers. Methylation gives the two isomers in a ratio of $1: 3$ with NMR peaks at $\delta 4.51$ and 4.27 , respectively, indicating N-methyl groups. Methylation can be carried out using a variety of methylating agents and solvents with not much change in the ratio of the isomers. The major isomer was shown to be the 1 -methyl compound 3 by its ultimate conversion to 3 methylguanine 13 (see below) with the minor isomer being the

3 -methyl compound 4, supported by the presence of a $\mathrm{N}_{2} \mathrm{CH}_{3}{ }^{+}$ ion in its mass spectrum.

Methylation of the tris(trifluoromethyl) compound 2 gives a 1-methylated to 3 -methylated product ratio of 93:7. ${ }^{4}$

Interestingly, methylation of $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$with methyl p-toluenesulfonate is an equilibrium reaction. The reverse reaction can be observed in the reaction of potassium p-toluenesulfonate with a pure single isomer of $\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{~N}_{7}$ to give $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$and the $1: 3$ mixture of methyl isomers.

$$
\mathrm{C}_{7} \mathrm{~N}_{7}^{-}+\mathrm{CH}_{3} \mathrm{OTs} \xlongequal[80{ }^{\circ} \mathrm{C}]{\mathrm{CH}_{3} \mathrm{CN}} \mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{~N}_{7}+\mathrm{OTs}^{-}
$$

Hydrolysis of $\mathrm{C}_{7} \mathrm{~N}_{7}^{-}$in both acidic and basic media indicated three nitrile groups. With 30% sulfuric acid at room temperature, a base-soluble triamide (5) was formed in high yield. Other acidic conditions afforded mixtures. When $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$ was allowed to stand for a few minutes at room temperature in 0.6 N hydroxide, the salt of a diamide nitrile $6, \mathrm{p} K_{\mathrm{a}} \simeq 4.5$, was quantitatively precipitated. Further basic hydrolysis at reflux (1.5 h) afforded 2 mol of ammonia and the tribasic amido dicarboxylic acid (7), $\mathrm{p} K_{\mathrm{a}}=0.93,3.66$, and 7.34 .

Compound 7 was methylated at pH 10 to the methyl amido dicarboxylic acid (8), $\mathrm{p} K_{\mathrm{a}}=0.99$ and 3.78 , which was also obtained by base hydrolysis of the major $\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{~N}_{7}$ isomer 3 . Further methylation of 8 with diazomethane gave the trimethyl derivative 9 whose NMR spectrum showed $1 \mathrm{NCH}_{3}$ ($\delta 4.12$) and $2 \mathrm{OCH}_{3}(\delta 3.76$). The presence of the two carboxylic acid groups was also substantiated by the ready decarboxylation of 8 to the N-methyl monoamide compound (10) whose NMR spectrum in $\mathrm{D}_{2} \mathrm{O}$ showed two heterocyclic CH peaks at $\delta 8.17$ and 7.79 and a NCH_{3} at $\delta 4.00$ along with a DOH peak indicating two exchanged hydrogens.

9

10

Conversion of the amide function in compound 10 with phosphorus oxychloride to a nitrile group, along with the two lost carboxylic groups, accounts for all three of the original nitrile groups. The NMR spectrum of the N-methyl nitrile compound 11 in deuterioacetone showed two heterocyclic CH's at $\delta 7.76$ and 7.25 and the NCH_{3} at $\delta 3.33$. An attempt to dehydrate the amide group in 10 with acetic anhydride gave a monoacetyl compound which was hydrolyzed back to 10 in hot 2 N sodium carbonate. The solubility of the acetyl compound in cold base favors a structure with an acetylimide

11

12
group but the shift in uv from 276 nm in 10 to 299 nm indicates the possibility of an O-acetyl derivative or the cyclized stricture 12.

The N-methyl monoamide $\mathbf{1 0}$ quantitatively isomerizes (30 mir.) in hot 0.5 N sodium hydroxide to 3 -methylguanine $13 .{ }^{6}$ Assuming that there have been no rearrangements in the ske eton of $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$, compound 10 has two of the original C nitrile groups as CH with the other nitrile as an amide group. This leaves a nucleus of $\mathrm{C}_{4} \mathrm{~N}_{4}$ with a methyl attached to one of tiee nitrogens. If the carbonyl of the amide group in 10 is the same as the carbonyl at carbon atom 6 in the 3 -methylguanine, then a partial structure of 10 is 14 . Assuming minimum rear-

13

14

15

16
rangement in the isomerization, structure 15 is also possible for 10 where nitrogen atom c is connected to either carbon a. Structure 15 is elimirated, however, because $\mathrm{C}_{7} \mathrm{~N}_{7}{ }^{-}$would be the symmetrical 16 which should have a ${ }^{13} \mathrm{C}$ NMR spectrum of five peaks at the most, with two peaks of relative intensity 2.

Therefore, barring any gross rearrangements in the degradations, $\mathrm{C}_{7} \mathrm{~N}_{7}-$ contains the heterocyclic nucleus 1 H - or 3 H -imidazo $[1,5-b]$-s-triazole (17) and $\mathrm{KC}_{7} \mathrm{~N}_{7}$ is its 2,5,7-tricyano derivative.

17

The rearrangement of 10 to 3-methylguanine is postulated to occur as follows:

The attack of base on the triazole ring hydrogen gives the N-cyano intermediate, 18 , with the formation of the imidazole anion (further stabilized by resonance on the amide carbonyl) as the driving force. ${ }^{7}$ This is followed by ring closure and tautomerization to 3 -methylguanine.

The presence of the triazole ring is also shown by the acid hydrolysis and degradation of the tribasic amido dicarboxylic acid 7. Refluxing its monopotassium salt in water (pH 5.60) gave 1 mol of carbon dioxide and the monodecarboxylation

product 19 , which incidentally could be converted to the methyl amide 10 by methylation and decarboxylation. Prolonged treatment with more concentrated acid gave 3 mol of $\mathrm{CO}_{2}, 1 \mathrm{~mol}$ of formic acid, and 3-aminomethyl-1,2,4-triazole (20). Although 3-aminomethyl-1,2,4-triazole is described in the literature ${ }^{8,9}$ (as the 2 HCl and 2 HBr salts), its structure was confirmed by oxidation to $1,2,4$-triazole- 3 -carboxylic acid (21), ${ }^{10}$ which was decarboxylated to $1,2,4$-triazole (22).

The triazole ring was further noted in the very slow HCl hydrolysis of the methyl amide $\mathbf{1 0}$ to give a crude product characterized only by its lack of uv absorption and its mass spectrum which had a peak at $m / e 112$ as its highest mass peak of reasonable intensity. This corresponds to the fragment

The formation of $\mathrm{KC}_{7} \mathrm{~N}_{7}$ with its structure defined by the chemical transformations described above must occur through the following reactions:

The anion is stabilized by having the negative charge delocalized over the ring system as well as two of the cyano groups.

Experimental Section

The mass spectral data were in general obtained using direct injection techniques and the intensities of the m / e peaks are grossly variable and only strong or pertinent peaks are listed. Detailed interpretations of the mass spectral data were hampered by the lack of related compounds, but empirical formulas assigned to m / e peaks are based on related deuterated isomers.

Potassium $1 \boldsymbol{H}$-Imidazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile ($1, \mathrm{KC}_{7} \mathrm{~N}_{7}$). A three-necked 1-l. flask equipped with a magnetic stirrer, thermometer, gas inlet tube, and dry ice condenser was flamed out under N_{2}. Anhydrous potassium cyanide ($50 \mathrm{~g}, 0.8 \mathrm{~mol}$, excess) and 500 ml of anhydrous acetonitrile were placed in the flask. The slurry was cooled under N_{2} to $15^{\circ} \mathrm{C}$ with a cold-water bath. Cyanogen gas ($104 \mathrm{~g}, 2 \mathrm{~mol}$) was then added over $50-90 \mathrm{~min}$ wnile maintaining the mildly exothermic reaction mixture between 20 and $25^{\circ} \mathrm{C}$. The resulting dark brown-red mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for an additional 1 h or until removal of the water bath caused no rise in temperature. The excess potassium cyanide was removed by filtration (washing with 50 ml of acetonitrile). The combined filtrates were carefully diluted with ca. 4 l. of ether to effect precipitation of a brown, water-sensitive, flocculent solid which was removed by filtration. The clear orange solution was concentrated under vacuum to give 135 g of 1 as an orange solid. Three recrystallizations from acetonitriledioxane ($1: 4$ by volume) using Darco gave 110 g of colorless 12 dioxane. An additional 55 g of colorless product was obtained from the mother liquors for a total yield of 165 g (63%). The dioxane (44.3% by weight) was removed by drying at $140^{\circ} \mathrm{C}$ (refluxing xylene) for 2 h under vacuum: uv ($\mathrm{H}_{2} \mathrm{O}$) max $313 \mathrm{~nm}(\epsilon 16600)$, 279 (11300), and 220 (33500), ir 2250 (m), 2220 (s), 2170 (w), 1560 (s), 1420 (m), 1380 (s), 1305 (s), 1290 (w), 1210 (s), 1185 (s), 997 (m), 740 (m), 715 (w), and $695 \mathrm{~cm}^{-1}(w)$. (Raman was not taken because of the fluorescence of $\mathrm{C}_{7} \mathrm{~N}_{7}^{-}$in the $430-\mathrm{nm}$ range.)

The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 in water was determined using a saturated solution (ca. 60%) of the dioxane-solvated salt in water. Using the dioxane as an internal standard, seven peaks were observed at 87.8, $102.0,110.7,112.6,114.9,141.2$, and 151.3 ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{~N}_{7} \mathrm{~K}: ~ \mathrm{C}, 38.0 ; \mathrm{N}, 44.3 ; \mathrm{K}, 17.7$; mol wt, 221. Found: $\mathrm{C}, 37.8,37.9 ; \mathrm{N}, 31.2,37.0 ; \mathrm{K}, 17.3$; mol wt (by acetonitrile boiling point), 115-116 (indicating dissociation).

We could not obtain satisfactory nitrogen analyses on the anhydrous potassium salt presumably because of nitride formation. However, other salts described below obviated this problem.

This preparation has been run on two to three times this scale with yields varying from 45 to 65%. The 12 dioxane salt so obtained could be converted to the dihydrate by exposure to a stream of moist air. It was most convenient to store 1 as the dioxane salt since the dioxane (44% by weight) could easily be removed at $130^{\circ} \mathrm{C}$ (refluxing xylene) under vacuum for 2 h , whereas the dihydrate was only difficultly dried ($160^{\circ} \mathrm{C}, 8 \mathrm{~h}$ or longer).

Other salts of $\mathrm{C}_{7} \mathrm{~N}_{7}^{-}$were prepared as described below. Aside from the sodium salt, they were prepared either by metathesis or by neutralizing the free acid $\mathrm{HC}_{7} \mathrm{~N}_{7}$ (preparation below) with a carbonate or hydroxide of the desired metallic ion. An example of each procedure is illustrated. The others listed were prepared similarly and had satisfactory analyses.

Sodium $\mathrm{C}_{7} \mathbf{N}_{7}$. This was prepared from sodium cyanide and cyanogen in essentially the same manner as above at $25-29^{\circ} \mathrm{C}$. The crude reaction solution was passed through an alumina column (ethyl acetate eluent) to remove the bulk of the colored impurities. Recrystallization from dioxane-acetonitrile ($2: 1$ by volume) gave the colorless salt, no $\mathrm{mp}<3 \mathrm{E}^{\circ} 0^{\circ} \mathrm{C}$. A sample was analyzed as the hydrate (by alternate drying at $130^{\circ} \mathrm{C}$ and exposing to moist air).

Anal. Calcd for $\mathrm{C}_{-} \mathrm{N}_{7} \mathrm{Na}-2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 34.9$; $\mathrm{H}, 1.7 ; \mathrm{N}, 40.7$. Found: C, 34.8, 34.9; H, 1.9, 1.9; N, 40.7, 40.7.

Tetramethylammonium $\mathrm{C}_{7} \mathbf{N}_{7}$. A solution of $6.61 \mathrm{~g}(25.5 \mathrm{mmol})$ of $12 \mathrm{H}_{2} \mathrm{O}$ in 35 ml of water was treated with 5 g (excess) of tetramethylammonium chloride in 30 ml of water. The resulting precipitate was redissolved by heating the mixture to boiling. Cooling gave white, feathery needles, $\mathrm{mp}>300^{\circ} \mathrm{C}$, weighing $6.30 \mathrm{~g}(96 \%)$ after collecting, washing (25 ml of ice water), and air drying. It was recrystallized from water.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{8}$: C, 51.5; H, 4.7; N, 43.7. Found: C, 51.6; H, 4.7; N, 43.6.
Zinc ($\left.\mathrm{C}_{7} \mathrm{~N}_{7}\right)_{2}$. In an aqueous solution (60 ml) of $4.57 \mathrm{~g}(25 \mathrm{mmol})$ of $\mathrm{HC}_{7} \mathrm{~N}_{7}$ (see below), zinc carbonate (1.57 g) was dissolved in small portions until the pH became 4 . The slightly cloudy solution was filtered, treated with Darco (if necessary), and concentrated in vacuo at $80^{\circ} \mathrm{C}$ to a dry foam which upon crushing and drying gave 4.3 g of free-flowing white powder

Anal. Calcd for $\mathrm{C}_{14} \mathrm{~N}_{14} \mathrm{Zn} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 36.8 ; \mathrm{H}, 0.7 ; \mathrm{N}, 43.0 ; \mathrm{Zn}, 14.3$. Found: C, 36.6; H, 0.4; N, 42.9; Zn, 14.2.

Lithium $\mathrm{C}_{7} \mathrm{~N}_{\mathbf{7}} \cdot \mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$: white powder, $\mathrm{mp} 320^{\circ} \mathrm{C}$ dec.
Manganous $\left(\mathrm{C}_{\mathbf{7}} \mathrm{N}_{7}\right)_{2} \cdot \mathbf{2} \mathrm{C}_{\mathbf{2}} \mathrm{H}_{5} \mathrm{OH}$: yellow powder, darkening above $200^{\circ} \mathrm{C}$.

Cupric $\left(\mathrm{C}_{7} \mathrm{~N}_{7}\right)_{2} \cdot \mathrm{H}_{\mathbf{2}} \mathrm{O}$: chocolate brown powder, darkening above $300^{\circ} \mathrm{C}$ (water insoluble).

Silver $\mathrm{C}_{7} \mathbf{N}_{7}$: white needles from acetonitrile-water (water insoluble), no $\mathrm{mp}<300^{\circ} \mathrm{C}$.

Tetraethylammonium $\mathbf{C}_{7} \mathbf{N}_{7}$: white needles, $\mathrm{mp} 221-222^{\circ} \mathrm{C}(7: 1$ $\mathrm{H}_{2} \mathrm{O}$-acetonitrile).

Trimethyloctadecylammonium $\mathrm{C}_{7} \mathrm{~N}_{7}:$ mp $118-119^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)$.
\boldsymbol{N}-Methylphenazinium $\mathrm{C}_{7} \mathrm{~N}_{7}$: mixture of orange-yellow and deep red needles ($3: 1 \mathrm{H}_{2} \mathrm{O}$-acetonitrile). Upon standing the orange needles turned red. Both forms behaved similarly upon heating, turned or-ange-red at $70-80^{\circ} \mathrm{C}$, and melted with decomposition at $159^{\circ} \mathrm{C}$.

Trimethylsulfonium $\mathrm{C}_{7} \mathrm{~N}_{7}$: needles (2-propanol), mp 194-197 ${ }^{\circ} \mathrm{C}$ with bubbling to give mixture of methyl $\mathrm{C}_{7} \mathrm{~N}_{7}$ isomers (see below).

Methyltriphenylphosphonium $\mathbf{C}_{7} \mathbf{N}_{7}$: white platelets, mp 152-153 ${ }^{\circ} \mathrm{C}$ (3:1 $\mathrm{H}_{2} \mathrm{O}$-ethanol).
$1 \boldsymbol{H}$-Imidazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile ($\mathrm{HC}_{7} \mathrm{~N}_{7}$). A strong acid ion-excharge column was prepared by taking 100 ml of resin [Rexyn RG $50(\mathrm{H})$, exchange capacity 1.9 mequiv $/ \mathrm{ml}$] and washing with water, 100 ml of 2 N HCl , and then water until pH 6 . A solution of $12 \mathrm{H}_{2} \mathrm{O}$ (made from $39.7 \mathrm{~g}(0.1 \mathrm{~mol})$ of $\mathrm{KC}_{7} \mathrm{~N}_{7} 2$ dioxane by air drying overnight, weight loss 14 g) in 100 ml of water was passed through the column, collecting a total of 400 ml of solution washings. Concentration of the strongly acidic aqueous solution on a Rinco evaporator at $60^{\circ} \mathrm{C}$ gave 19.0 g of crude $\mathrm{HC}_{7} \mathrm{~N}_{7}$ as a red solid (theory 18.3 g). The uv spectrum of this material in water indicated it to be 96\% pure.

An analytical sample was obtained by careful recrystallizations from anhydrous acetonitrile ($1: 5 \mathrm{w} / \mathrm{v}$ with 40% weight loss each time) to give almost white prisms, no melting point, turned dark brown by $200^{\circ} \mathrm{C}$ and black at $250^{\circ} \mathrm{C}$. Recrystallization could also be effected from ethyl acetate-chloroform (35% weight loss) to give salmon-pink platelets: ir (KBr) 3225 (broad, m), 2260 (s), 1622 (s), 1505 (m), 1480 (m), 1450 (s), 1410 (m), 1332 (s), 1323 (sh, s), 1244 (w), 1227 (m), 1208 (s), 1185 (m), 1002 (m), 971 (w), $797(\mathrm{~m}), 722(\mathrm{w}), 710(\mathrm{~m}), 700(\mathrm{~m})$, and 657 cm^{-1} (s); uv $\left(\mathrm{H}_{2} \mathrm{O}\right)$ same as I ; (EtOH) max $325 \mathrm{~nm}(\epsilon 13000), 313$ (17300), $279(11700)$, and $229(30500)$; $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ max $305 \mathrm{~nm}(\epsilon$ 6900), 282 (5100), 262 (12600), and 219 (27000); NMR ($\mathrm{Me}_{4} \mathrm{Si}$ internal) one sharp peak which shifted with solvent and traces of water, in $\mathrm{CD}_{3} \mathrm{COCD}_{3}, \delta 13.36$; in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}, \delta 10.28$; and in $\mathrm{CH}_{3} \mathrm{CN}, \delta 8.98$; MS $m / e 183$ (parent), with other strong peaks at $m / e 131,103,79,77$, 53 , and 38.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{HN}_{7}$: C, 45.9; $\mathrm{H}, 0.6 ; \mathrm{N}, 53.6 ; \mathrm{mol} w t, 183$. Found: C, 45.3; H, 0.9; N, 53.2, 53.6; neut equiv, 185.

Molecular weight, measured by vapor pressure osmometry in acetonitrile, was found to be 142, whereas by freezing point lowering in dimethyl sulfoxide, strong dissociation was noted in the values of 91 and 108 , varying with concentration.

The $\mathrm{p} K_{\mathrm{a}}$ was determined spectrophotometrically in acetonitrile, using tetraalkylammonium $\mathrm{C}_{7} \mathrm{~N}_{7}$ salts. ${ }^{11}$ Picric acid was used as hydrogen ion indicator as well as source of hydrogen ion. The $\mathrm{p} K_{\mathrm{a}}$ values of $\mathrm{HC}_{7} \mathrm{~N}_{7}$ in acetonitrile were 5.55 and 5.32 . When converted to
aqueous scale, using picric acid as conversion reference standard, the $\mathrm{p} K_{1}$ of $\mathrm{HC}_{7} \mathrm{~N}_{7}$ is -3.1 ± 0.2. The validity of this conversion is based on the assumption that $\mathrm{C}_{7} \mathrm{~N}_{7}-$ behaves similarly to picrate ion in both acetonitrile and water.
Chlorination of 1 . To a solution of $4.42 \mathrm{~g}(20 \mathrm{mmol})$ of $\mathrm{KC}_{-} \mathrm{N}_{7}$ in 35 ml of acetonitrile at $10^{\circ} \mathrm{C} .22 \mathrm{mmol}$ of chlorine gas was added in a slow flow of N_{2}. The resulting colorless mixture was filtered to remove the bulk of the KCl . Concentration gave a very viscous oil which was then evaporatively distilled at $140^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. The colorless dist:llate of 1 -chloro-1 \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile was resinous at room temperature and quite soluble in most organic solvents.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{ClN}_{7}$: Cl, 16.3. Found: $\mathrm{Cl}, 16.2$. 16.1
The uv spectrum in dioxane showed a max of 285 nm (k varied markedly with concentration indicating strong π complexing). The addition of water caused the immediate appearance of those peaks characteristic of the $\mathrm{C}_{7} \mathrm{~V}_{7}-$ ion. The mass spectrum showed strong peaks (reported as ${ }^{35} \mathrm{Cl}$ peaks only) at $m / e 217\left(\mathrm{C}_{-} \mathrm{N}_{7} \mathrm{Cl}^{+}\right), 189$ $\left(\mathrm{C}_{7} \mathrm{~N}_{5} \mathrm{Cl}^{+}\right), 182\left(\mathrm{C}_{-} \mathrm{N}_{7}^{+}\right), 137\left(\mathrm{C}_{5} \mathrm{~N}_{3} \mathrm{Cl}^{+}\right), 128\left(\mathrm{C}_{6} \mathrm{~N}_{4}{ }^{+}\right), 102\left(\mathrm{C}_{5} \mathrm{~N}_{3}{ }^{+}\right)$, $85\left(\mathrm{C}_{3} \mathrm{NCl}^{+}\right)$, etc. It is the presence of the $\mathrm{m} / \mathrm{e} 137$ peak ($\mathrm{P}-\mathrm{C}_{2} \mathrm{~N}_{4}{ }^{+}$) on which the 1 -isomer structure is assigned.

Methylation of 1 . A solution of $158.8 \mathrm{~g}(0.40 \mathrm{~mol})$ of 12 dioxane in 1 l . of $\mathrm{CH}_{3} \mathrm{CN}$ and $59.5 \mathrm{~g}(0.47 \mathrm{~mol})$ of dimethyl sulfate was heated at reflux for 2 h with stirring. The solid, which deposited in the hot solution, was collected after cooling to $5^{\circ} \mathrm{C}$, thoroughly washed with 350 ml of $\mathrm{CH}_{3} \mathrm{CN}$, and dried under N_{2} to give $54.1 \mathrm{~g}(90 \%)$ of methyl potassium sulfate. Concentration of the filtrate gave a gummy solid, which was washed with 250 ml of $\mathrm{H}_{2} \mathrm{O}$ to give $77.0 \mathrm{~g}(97 \%)$ of a mixture of 1 - and 3 -methyl isomers, $\mathrm{mp} 180-198^{\circ} \mathrm{C}$. Four successive $100-\mathrm{ml}$ extractions with tetrahydrofuran afforded 40.2 g of almost pure 1 -methyl-1 \boldsymbol{H}-imidazo[1,j-b]-s-triazole-2,5,7-tricarbonitrile (3), mp 〔31-234 ${ }^{\circ} \mathrm{C}$. An analytical sample, $\mathrm{mp} 234-235^{\circ} \mathrm{C}$, was obtained after three crystallizaticns from methyl ethyl ketone (MEK). Con-cent-ation of the tetrahydrofuran extracts, followed by fractional crystallization of the total mixture from MEK, afforded a total of 49.7 g of pure $1-$ methyl $\mathrm{C}-\mathrm{N}_{-}^{-}, \mathrm{mp} 234.5-235^{\circ} \mathrm{C}$, in the head fractions: uv (EtOH) max $298 \mathrm{~nm}(\mathrm{e} 660$), 264 (12500), and 221 (22 400); ir (KBr) $1630 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, \mathrm{Me}_{4} \mathrm{Si}$ internal) $\delta 4.27$; MS m/e 197 (parent), other strong peaks at m/e $15\left(\mathrm{CH}_{3}{ }^{+}\right), 38\left(\mathrm{C}_{2} \mathrm{~N}^{+}\right), 40$ $\left(\mathrm{C}_{2} \mathrm{~F}_{2} \mathrm{~N}^{+}\right), 41\left(\mathrm{CH}_{3} \mathrm{CN}^{+}\right), 52\left(\mathrm{C}_{2} \mathrm{~N}_{2}{ }^{+}\right.$and $\left.\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}^{+}\right), 64\left(\mathrm{C}_{3} \mathrm{~N}_{2}{ }^{+}\right), 66$ $\left(\mathrm{CH}_{2} \mathrm{C}_{2} \mathrm{~N}_{2}{ }^{+}\right), 67\left(\mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{~N}_{2}{ }^{+}\right), 93\left(\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{~N}_{3}{ }^{+}\right), 102\left(\mathrm{C}_{5} \mathrm{~N}_{3}{ }^{+}\right), 116$ $\left(\mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{~N}_{3}{ }^{+}\right)$, and $117\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{~N}_{3}{ }^{+}\right)$. Empirical formulas were assigned from MS of $\mathrm{CD}_{3} \mathrm{C}_{7} \mathrm{~N}_{7}$ (1 isomer).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{~N}_{7}: \mathrm{C}, 48.7 ; \mathrm{H}, 1.5 ; \mathrm{N}, 49.7$. Found: $\mathrm{C}, 48.6,48.7$; H, 1.8, 1.7; N, 49.6, 49.8, 49.9.

Pure 3-methyl-3H-imdiazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile (4), $\mathrm{mp} 179.5-181^{\circ} \mathrm{C}$, was obtained from the tail fractions. An analytical sample, mp $182-183^{\circ} \mathrm{C}$ (crystalline transition at 176 ${ }^{\circ} \mathrm{C}$), was obtained by two recrystallizations from $1: 1$ chloroform-ethyl acetcte ($25 \mathrm{ml} / \mathrm{g}$): uv (EtOH) max $336 \mathrm{~nm}(\epsilon 20900)$, 325 (16600), 271 (3100), 248 (16700), $240(15000)$, and $217(22100)$; ir (KBr) 1610 cm^{-1}; NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, \mathrm{Me}_{4} \mathrm{Si}$ internal) $\delta 4.51$; MS m/e 197 (parent), other strong peaks at $m / e 15\left(\mathrm{CH}_{3}{ }^{+}\right), 38\left(\mathrm{C}_{2} \mathrm{~N}^{+}\right), 43\left(\mathrm{CH}_{3} \mathrm{~N}_{2}{ }^{+}\right)$, $52\left(\mathrm{C}_{2} \mathrm{~N}_{2}{ }^{+}\right), 64\left(\mathrm{C}_{3} \mathrm{~N}_{2}{ }^{+}\right), 66\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{2}{ }^{+}\right), 93\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{3}{ }^{+}\right), 102\left(\mathrm{C}_{5} \mathrm{~N}_{3}{ }^{+}\right)$, and : $45\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{~N}_{5}{ }^{+}\right)$.

Ar.al. Found: C, 48.9, 48.7; H, 1.6, 1.7; N, 49.6, 49.7 .
Aralysis by NMR of the crude reaction product showed an isomer ratio of $3: 1$ for 1-:3-methyl isomers. Both isomers could be sublimed at $12 \mathrm{~J}-130^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, with no evidence (by NMR) for thermal interconversion at temperatures up to $230^{\circ} \mathrm{C}$. (The 3 -methyl isomer slowly darkened in the melt at this temperature.) The same $3: 1$ ratio was noted when methylation was carried out with methyl iodide, methyl tosylate, trimethyloxonium fluoroborate, trimethylsulfonium iodide, and by reaction of diazomethane with $\mathrm{HC}_{7} \mathrm{~N}_{7}$.

1-Methyl-1 \boldsymbol{H}-imidazo [1,5-b]-s-triazole-2,5,7-tricarboxamide. To $1(1 \mathrm{ml}$ of concentrated HCl was added 0.65 g of powdered 3 and the mixture was stirred for 36 h . After dilution with 10 ml of water, the solid was collected and washed with 95% ethanol and ether. The crude hydrolysate (0.90 g) was heated in dimethylformamide on a steam bath and filtered. After thorough drying, 0.63 g (79\%) of the triamide was obtained as a microcrystalline solid, no $\mathrm{mp}<350^{\circ} \mathrm{C}$, ir no $\mathrm{C} \equiv \mathrm{N}$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{3}$: C, 38.2; $\mathrm{H}, 3.6 ; \mathrm{N}, 30.1$. Found: C, 38.6; H, 3.8, 3.5; N, 37.8, 38.1.

1-Benzyl-1 \boldsymbol{H}-imidazo[$1,5-\boldsymbol{b}$]-s-triazole-2,5,7-tricarbonitrile. A solution of 3.38 g of 1 and 10 ml of benzyl chloride in 25 ml of 1,2dimethoxyethane was heated at reflux for 5 days. After cooling, 1.09 g of KCl was removed by illtration. Concentration of the filtrate gave a mix:ure of oil and solid which was slurried with ether. The resulting solid was collected and recrystallized to give 3.0 g of white needles, mp 149-152 ${ }^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~N}_{7}$: C, 61.5; H, 2.6; $\mathrm{N}, 35.9$. Found: C, 61.2, 61.2; H, 2.6, 2.5; N, 35.2, 35.6.
$1 \boldsymbol{H}$-Imidazo[1,5-b]-s-triazole-2,5,7-tricarboxamide (5). To 25 ml of warm 30% (by weight, 20% by volume) $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added 1.00 g of $\mathrm{HC}_{7} \mathrm{~N}_{7}$. After standing overnight, the clear solution was diluted with 1 l . of $\mathrm{H}_{2} \mathrm{O}$ to give 5 as a gelatinous precipitate. The solid was collected (very slow filtration) and washed extensively with $\mathrm{H}_{2} \mathrm{O}$. After air drying the white powder (electrostatic) weighed 1.23 g (95\%). An analytical sample was dried at $80^{\circ} \mathrm{C}$ for 12 h . The identical product was obtained using $\mathrm{KC}_{7} \mathrm{~N}_{7} 2$ dioxane: uv (pH 13) max $335 \mathrm{~nm}(\epsilon$ 20600), 295 (8400), and 238 (24 400).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{3}: \mathrm{C}, 35.4 ; \mathrm{H}, 3.0 ; \mathrm{N}, 41.3$. Found: $\mathrm{C}, 35.5$, 35.7; H, 2.9, 2.8; N, 41.6.

7-Cyano-1 \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2,5-dicarboxamide (6). To $3.66 \mathrm{~g}(20 \mathrm{mmol})$ of $\mathrm{HC}_{7} \mathrm{~N}_{7}$ in 7 ml of $\mathrm{H}_{2} \mathrm{O}$ was added 60 ml of 1.000 N NaOH . The clear solution was stirred for 20 min and to the resulting slurry was added 40 ml of 1.000 N HCl . The pH was adjusted to 7 by adding 0.5 ml of saturated sodium bicarbonate. The entire mixture was heated to boiling and additional water was added to give a clear solution (total volume 350 ml). Cooling slowly to room temperature gave 3.51 g of the sodium salt of 7 -cyano- $1 \boldsymbol{H}$-imidazo[$1,5-\mathrm{b}]-\boldsymbol{s}$ -triazole-2,5-dicarboxamide (6) as fine needles, no $\mathrm{mp}<400^{\circ} \mathrm{C}$. An analytical sample was obtained by two recrystallizations from water. The free acid could be prepared by digestion in hot 30% acetic acid: uv (pH 12) max $323 \mathrm{~nm}(\epsilon 17700), 290(8700)$, and 234 (29600) with fluorescence at 491 nm ($356-\mathrm{nm}$ excitation); ir (KBr) $2230(\mathrm{C} \equiv \mathrm{N}$), and characteristic CONH_{2} at $3160-3550$ and $1695 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{Na}: \mathrm{C}, 34.9 ; \mathrm{H}, 1.7 ; \mathrm{N}, 40.7 ; \mathrm{Na}, 9.5$. Found: C, 34.4, 34.6; H, 2.1, 2.0; N, 40.4, 40.6; Na, 9.2.
7-Carboxamido-1 \boldsymbol{H}-imidazo[$1,5-b]$-s-triazole-2,5-dicarboxylic Acid. (7). A solution of $39.7 \mathrm{~g}(0.10 \mathrm{~mol})$ of 12 dioxane in 200 ml of $\mathrm{H}_{2} \mathrm{O}$ and 200 ml of $20 \% \mathrm{KOH}(0.60 \mathrm{~mol})$ was heated with stirring in an apparatus designed to collect distillate in $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. A precipitate formed in a few minutes which slowly dissolved upon distilling over the evolved ammonia. Additional water was added as needed to keep the volume at 450 ml . After 1.5 h , a total of 0.20 ml of ammonia had been collected, and a considerable amount of solid was present in the hot reaction solution. The reaction mixture was cooled to 35 ${ }^{\circ} \mathrm{C}$ and 425 ml of 2 N HCl was slowly added with stirring. The initial solid dissolved and another precipitate formed during the acidification. The precipitate was collected, washed with water, ethanol, and ether, and air dried to give 28.8 g (theory 27.7 g) of white, powdery monopotassium salt of 7 -carboxamido-1 \boldsymbol{H}-imidazo-[1,5-b]-s-triazole-2,5-dicarboxylic acid, no melting point darkening at $210^{\circ} \mathrm{C}$, evolved gas at $255-260^{\circ} \mathrm{C}$. Thin layer chromatography (TLC) on cellulose using $0.2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ showed one major fluorescent spot with three minor slower spots. Titration required 1 equiv of base to give solution and another 1 equiv for titrating acidity of $\mathrm{p} K_{\mathrm{a}} 7.40$ with neut equiv 271 (theory 277).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~K}: \mathrm{C}, 30.3, \mathrm{H}, 1.5 ; \mathrm{N}, 25.3 ; \mathrm{K}, 14.1$. Found: C, 30.8 ; H, 1.9; N, 26.2; K, 12.8 .
A small sample $(5 \mathrm{~g})$ was purified as the dipotassium salt by taking up in 60 ml of $3 \% \mathrm{KOH}$ and 10 ml of saturated KCl . The dark solution was saturated with CO_{2} to precipitate 4.3 g of light-blue crystals. Four recrystallizations from $1: 1$ isopropyl alcohol $-\mathrm{H}_{2} \mathrm{O}$ removed the blue color and gave 1.3 g of the dipotassium salt of 7 as white needles (TLC pure), no melting point, darkened by $340^{\circ} \mathrm{C}$. The $\mathrm{p} K_{\mathrm{a}}$ (spectrophotometric $)=0.93,3.66,7.34$ with $\mathrm{H}_{3} \mathrm{~A}$ having max at $311 \mathrm{~nm}(\epsilon 12400)$, 276 (9700), 221 (21 200); $\mathrm{H}_{2} \mathrm{~A}^{-}$at $307 \mathrm{~nm}(\epsilon 16000), 270$ (7500), 220 (19900); HA^{2-} at $302 \mathrm{~nm}(\epsilon 11900), 268$ (9300), 238 (13 400), 204 (20000); and A^{3-} at $328 \mathrm{~nm}(\epsilon 22300)$, 283 (6200), 237 (21400).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~K}_{2}$: C, 26.7; H, 1.0; N, 22.2; K, 24.8. Found: C, 26.7, 26.6; H, 1.1, 1.3; N, 22.4, 22.3; K, 25.1.

1-Methyl-7-carboxamido-1 \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2,5-dicarboxylic Acid (8). From 7. The monopotassium salt (2.72 $\mathrm{g}, 10 \mathrm{mmol}$) of 7 suspended in 35 ml of $\mathrm{H}_{2} \mathrm{O}$ was dissolved by adding 6 N NaOH . Dimethyl sulfate (15 g , excess) and 6 N NaOH were added over 3 h with stirring at $36^{\circ} \mathrm{C}$ while maintaining the pH between 9 and 10 . After stirring overnight, the solution (pH 9.5) was heated to boiling, filtered, and acidified with 20 ml of 2 N HCl . The resulting precipitate was collected and washed with water to give $1.75 \mathrm{~g}(69 \%)$ of white, powdery 8 , evolved gas at $180^{\circ} \mathrm{C}$ changing from powder to a crystalline form and then melted at $280-283^{\circ} \mathrm{C}$ (darkening 260-280 ${ }^{\circ} \mathrm{C}$). This material was identical (ir, TLC, and uv) with material obtained below.

From 3. In a $300-\mathrm{ml}$ flask, equipped with a magnetic stirrer, addition funnel, and Claisen distillation head, was placed 11.82 g (60 mmol) of pure 1 -methyl-1 H -imidazo-[1,5-b]-s-triazole-2,5,7-tricarbonitrile (3). A NaOH solution ($7.30 \mathrm{~g}, 180 \mathrm{mmol}$, in 100 ml of $\mathrm{H}_{2} \mathrm{O}$) was added in one portion. Heating the mixture caused rapid solution
followed by formation of precipitate. After $1.5 \mathrm{~h}, 20 \mathrm{ml}$ of distillate was collected in $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and shown to contain 119.3 mmol of evolved ammonia. The reaction mixture was diluted with 100 ml of EtOH and cooled to $5^{\circ} \mathrm{C}$. The product was collected and washed with 100 ml of 50% ethanol, 100 ml of absolute EtOH , and ether. Air drying gave 18.04 g of the disodium salt of 8 as a white, fluffy solid, no mp below $400^{\circ} \mathrm{C}$. An analytical sample was obtained by two recrystallizations from 1:1 $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g}$ in 70 ml$)$ followed by vacuum drying at $80{ }^{\circ} \mathrm{C}$ overnight. Two different solvated modifications were sometimes obtained with different ir spectra, but reverted to the same material upon drying: NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 4.73$ (DOH exchange peak, wt 2.3) and 4.16 (wt 3).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}_{2}$: C. $32.3 ; \mathrm{H}, 1.7 ; \mathrm{N}, 23.6 ; \mathrm{Na}, 15.5$. Found: C, 31.7, 31.7; H, 1.9, 1.7; N, 23.8, 23.7; Na, 15.1.
The disodium salt was converted to the free acid by dissolving 1.0 g in 50 ml of warm $\left(60^{\circ} \mathrm{C}\right) \mathrm{H}_{2} \mathrm{O}$ and acidifying with 2 N HCl until pH 1. The light cream precipitate (monohydrate by analysis) was collected and dried at $64^{\circ} \mathrm{C}$ to give 0.69 g of 8 , evolved gas at $175-180^{\circ} \mathrm{C}$ and melted with some decomposition at $275-280^{\circ} \mathrm{C}$. Drying at higher temperatures caused slow loss of CO_{2}. $\mathrm{Uv}(\mathrm{pH} 7$ and 10) max 302 nm ($\epsilon 14200$), 273 (sh, 8900), and 250 (13900); (pH 3) max 307 nm (ϵ $16400), 272$ (6600), and $247(12700)$; (2 N HCl) max $313 \mathrm{~nm}(\epsilon 12300)$, 278 (9900), 245 (sh, 12900), and 224 (17900); $\mathrm{p} K_{\mathrm{a}}$ (spectrophotometric) $=0.99$ and 3.78 .

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 35.4; $\mathrm{H}, 3.4 ; \mathrm{N}, 25.8$; neut equiv, 135.5. Found: C, 35.3; H, 3.6; N, 25.6; neut equiv, 137, 138.

Reaction of 8 with Diazomethane. To a slurry of $253 \mathrm{mg}(1 \mathrm{mmol})$ of 8 in 20 ml of ethanol was added 3 mmol of ethereal diazomethane. After stirring for 2 days, the solid phase was collected and washed with benzene to give 191 mg of dimethyl 7-carboxamido-1-methylI \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2,5-dicarboxylate (9), mp 198-200 ${ }^{\circ} \mathrm{C}$ dec. An analytical sample, mp 218-219 ${ }^{\circ} \mathrm{C}$ dec, was obtained by recrystallization from $\mathrm{DMF}-\mathrm{H}_{2} \mathrm{O}$ and drying overnight at $64^{\circ} \mathrm{C}$: uv $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and 2 N HCl$) \max 315 \mathrm{~nm}(\epsilon 11600)$, 280 (11300), and 228
 6).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 42.7; H, 4.0; $\mathrm{N}, 24.9$. Found: C, 42.2; H, 4.4; N, 25.0, 24.7.

7-Carboxamido-1 \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2- (or 5-) carboxylic Acid (19). A $150-\mathrm{ml}$ solution of the monopotassium salt of 7 was prepared by dissolving 10 g (33 mmol by titration) of the crude salt in water to which enough dilute KOH was added to give a clear solution and carefully adjusting the pH to exactly 5.60 . The clear, light-blue solution was then heated to reflux for 3 h under N_{2}. (In air, there was considerable darkening.) The pH had changed to 9.4 . The still-hot solution was acidified with 2 N HCl to pH 6 and cooled. The solid was collected, washed with water and ethanol, and dried to give 7.65 g of crude potassium 7 -carboxamido-1 \boldsymbol{H}-imidazo $[1,5-b]$-s-triazole-2- (or 5-) carboxylate. An analytical sample was obtained as glistening platelets, mp darkening above $340^{\circ} \mathrm{C}$, by recrystallizations under N_{2} from CO_{2}-free water. (Recrystallization in air gave blue crystals.) The product was dried at $80^{\circ} \mathrm{C}$ for 15 h , uv max $\left(\mathrm{H}_{2} \mathrm{O}\right) 280$ nm ($\epsilon 6120$) and 255 (12 700).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~K} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 28.7 ; \mathrm{H}, 2.4 ; \mathrm{N}, 27.9 ; \mathrm{K}, 15.6$. Found: C, 29.0, 28.9; H, 2.3; N, 27.4, 27.6; K, 15.3.

The free acid 19 was prepared by acidification of a dilute solution of the monopotassium salt. The precipitate was collected, washed, and dried at $80^{\circ} \mathrm{C}$ for 6 h to give a white, amorphous powder, no mp $<350^{\circ} \mathrm{C}$ (darkened at $260^{\circ} \mathrm{C}$); uv (pH 1) max $279 \mathrm{~nm}(\epsilon 7200)$ and 240 (shoulder, 8000); (pH 10) max $310 \mathrm{~nm}(\epsilon 13900)$ and 263 (7400). Potentiometric titration indicated two buffer zones with $\mathrm{p} K_{\mathrm{a}}=<4$ and 7.25 with neut equiv 189 and 194, respectively (theory, 195).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 36.9; H, 2.6; N, 35.9. Found: C, 36.8; 36.4; H, 2.8, 3.1; N, 34.9, 35.6, 35.8.

7-Carboxamido-1-methyl-1 \boldsymbol{H}-imidazo[1,5-b]-s-triazole-2- (or 5-) carboxylic Acid. 19 (3.1 g) was dissolved in 25 ml of water and 6 N NAOH. Dimethyl sulfate (15 ml excess) and 6 N NaOH were added in alternate small portions while maintaining the pH between 9 and 10 and the temperature at $35^{\circ} \mathrm{C}$. The solution was acidified to pH 4 with 2 N HCl and the product collected. The crude product was taken up in 50 ml of hot 0.1 N NaOH , acidified to pH 7 , and cooled. The sodium 7-carboxamido-1-methyl-1 H-imidazo[1,5-b]-s-triazole-2- (or 5-) carboxylate was collected, washed, and dried to give 1.85 g of white needles, no $\mathrm{mp}<400^{\circ} \mathrm{C}$. An analytical sample was recrystallized from water: NMR ($\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 8.67$ (wt 1) and 4.13 (wt 3).
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na}$: C. 36.4; $\mathrm{H}, 2.6 ; \mathrm{N}, 30.3$. Found: C, $36.0,36.0$; H, 3.0, 3.1; N, 30.3, 30.7, 30.5.
The free acid was prepared by acidifying a warm solution of the salt with 2 N HCl and cooling. The solid was collected, washed, and dried
at $64^{\circ} \mathrm{C}$ for 8 h to give the acid as small cubes: evolves CO_{2} at $195^{\circ} \mathrm{C}$ and melts with decomposition at $270^{\circ} \mathrm{C}$: uv (pH 7) max $261 \mathrm{~nm}(\epsilon$ 12400) and 285 (sh, 7900); (2 N HCl$) 285 \mathrm{~nm}(\epsilon 6200)$ and 244 (8300). Attempts to determine the $\mathrm{p} K_{\mathrm{a}}$ spectrophotometrically were unsuccessful giving a wide range of values (1.20-1.60) with shifts of the maxima indicating further protonation in the strong acids.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 40.2; $\mathrm{H}, 3.4 ; \mathrm{N}, 33.5$; neut equiv, 209. Found: C, 40.0, 39.7; H, 3.5, 3.5; N, 33.5; neut equiv, 208.

Hydrolysis of 7 with Acid. A mixture of 14.0 g (50 mmol) of the monopotassium salt of $7,100 \mathrm{ml}$ of water, and 42.0 ml of $6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was placed in a $500-\mathrm{ml}$ flask fitted with a reflux condenser leading to three gas scrubbing towers in series with 100 ml of 1.0 N NaOH solution in each. A slow N_{2} sweep was maintained through a tube leading down the condenser. The reaction mixture (thick slurry) was then heated to reflux for 12 h . After 3 h , the initially rapid gas evolution appeared to subside and a clear solution (5 h) gradually formed. Analyses of the trapping solutions indicated the evolution of 147 mmol of carbon dioxide (3 equiv).

The hot, clear reaction solution was then diluted with ethanol until turbid (300 ml) and cooled. The crystalline solid mixture of needles and amorphous powder was collected and dried to give 3.86 g of potassium sulfate with some ammonium ion present (ir and titration). The mother liquors were warmed and diluted with additional ethanol (total volume 1 l .) until turbid. Cooling afforded 7.43 g of crude 3 -aminomethyl-1,2,4-triazole $\mathbf{H}_{2} \mathbf{S O}_{4}$ (20). An additional 3.22 g was obtained from workup of the mother liquors. An analytical sample was prepared by three recrystallizations from 85% ethanol ($100 \mathrm{ml} / \mathrm{g}$) and dried at $80^{\circ} \mathrm{C}$ for $5 \mathrm{~h}: \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}\right.$ external) $\delta 8.88$ (wt 1), 4.86 (DOH , wt 5.4), and 4.47 (wt 2). Potentiometric titration indicated three buffer zones corresponding to $<4,7.8$ and 9.9 with neut equiv values of 204, 204, and 190, respectively (theory, 196).

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 18.4 ; \mathrm{H}, 4.1 ; \mathrm{N}, 28.6 ; \mathrm{S}, 16.3$. Found: C, 18.1, 18.3; H, 4.1, 4.1; N, 28.1, 28.4; S, 16.6, 16.4.

In another experiment the original hydrolysis solution was distilled to a low volume, fresh water was added, and the solution was redistilled successively until no more acid was collected in the distillate. There was obtained 99% of 1 equiv of volatile acid per mole of starting material. Concentration to dryness of the resulting titrated solution gave sodium formate (identified by ir).

The free base 20 was isolated by dissolving the crude $\mathrm{H}_{2} \mathrm{SO}_{4}$ salt (10.0 g) in 150 ml of $\mathrm{H}_{2} \mathrm{O}$ and 35 ml of 6 N NaOH . The solution was boiled until no more ammonia was evolved. The pH was then adjusted to 9.00 with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. Concentration of the clear solution to dryness followed by sublimation ($130^{\circ} \mathrm{C}, 0.1 \mathrm{~mm}$) afforded 4.25 g of 3 -ami-nomethyl-1,2,4-triazole (20) as a very water-soluble white solid: mp $104-143^{\circ} \mathrm{C}$; NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 8.13$ (wt 1), 4.74 (DOH, wt 3), and 3.92 (wt 2); MS parent at $m / e 98$ and base peak at $m / e 30$ $\left(\mathrm{NH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$with other strong peaks at $m / e 28,42,70\left(\mathrm{P}-\mathrm{N}_{2}{ }^{+}\right)$, and $97\left(\mathrm{P}-\mathrm{H}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4}: \mathrm{C}, 36.7 ; \mathrm{H}, 6.2 ; \mathrm{N}, 57.1$. Found: C, 37.0, 36.8; H, 6.0, 6.0; N, 57.4, 57.4, 57.5.

Oxidation of 20. The crude 3-aminomethyl-1,2,4-triazole $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(4.66 \mathrm{~g})$ in 50 ml of 3 N NaOH was oxidized by adding 7.95 g of potassium permanganate in small portions while stirring and heating on a hot plate for 1 hr . The clear basic filtrate was acidified first to pH 4, and then an additional 6.0 ml of $6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was added to give a precipitate. The 1,2,4-triazole-3-carboxylic acid (21) was collected, washed, and dried to give $2.31 \mathrm{~g}(86 \%)$ of fine white needles, mp 140 ${ }^{\circ} \mathrm{C}$ with evolution of gas (reported ${ }^{10} 137^{\circ} \mathrm{C}$); NMR ($\mathrm{D}_{2} \mathrm{O}$ with 1 drop $\mathrm{NaOH}) \delta 8.33$ and 4.86 (DOH).

This structure was confirmed by decarboxylation at $140^{\circ} \mathrm{C}$ and sublimation of the residue to give $1,2,4$-triazole (22), mp $120^{\circ} \mathrm{C}$ (reported ${ }^{10} 121^{\circ} \mathrm{C}$), identified by its ir spectrum. ${ }^{12}$

1-Methyl-1 H -imidazo[1,5-b]-s-triazole-7-carboxamide (10). 8 monohydrate ($705 \mathrm{mg}, 2.60 \mathrm{mmol}$) was placed in a micro sublimer and covered with a loose cotton plug. Sublimation under vacuum at $180-240^{\circ} \mathrm{C}$ was accompanied by initial CO_{2} evolution to give 306 mg (71\%) of $10, \mathrm{mp} \mathrm{281-285}{ }^{\circ} \mathrm{C}$ dec. Two recrystallizations from water (7.5 ml) followed by sublimation at $210-220^{\circ} \mathrm{C}$ gave an analytical sample (217 mg): mp $289-292^{\circ} \mathrm{C}$ dec; uv (pH 7 and 12) max 276 nm ($\in 17000$) and (pH 1) max $273 \mathrm{~nm}(\epsilon 15200)$ and 232 (6900); NMR ($\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 8.68$ (wt 1), 8.17 (wt 1), and 3.89 (wt 3); ($\mathrm{D}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 8.17$ (wt 1), 7.79 (wt 1), 4.33 (DOH, wt 2.5), and 4.00 ($w t 3$); MS parent at $m / e 165$ and base at $m / e 109$. (From the MS of 10 containing CD_{3} group, this peak contains the CD_{3} group and is $\mathrm{P}-\mathrm{CCONH}_{2}{ }^{+}$.)

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 43.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 42.4$. Found: C, 43.8; H, 4.4; N, 42.3, 42.1.

When the above reaction was carried out on a larger scale (12-15 g), the sublimation required $5-6$ days to give 10 in 65% yield. Attempts
to isclate 10 from the crude decarboxylated mixture by recrystallizations resulted in severe loss.

10 appears to form a crystalline hydrochloride when recrys:allized from HCl which reverts to free amide on treatment with NaHCO_{3}. Potentiometric titration gave a $\mathrm{p} K_{\mathrm{a}}$ of 1.82 ± 0.04 but this may be a mirage ${ }^{13}$ ($5 \times 10^{-3} \mathrm{~N}$ at halfway titration).

Under the same conditions, decarboxylation of 1-methyl-7-car-boxamido- $1 H$-imidazo[1,5-b]-s-triazole-2- (or 5-) carboxylic acid (19) gave 10.

1-Methyl-1 H -imidazo[1,5-b]-s-triazole-7-carbonitrile (11). A mixture of $1.65 \mathrm{~g}(10 \mathrm{mmol})$ of 10 and 12 ml of phosphorus oxychloride was refluxed for 2 h . The original thin slurry became very thick with solid which slowly dissolved to give a black solution. The excess phosphorus oxychloride was removed under vacuum and the tarry residue was treated with 12 ml of ice and water. The black solution was neutralized to pH 7.0 with dilute NaOH . The greenish solid was collected, washed, and dried to give $0.78 \mathrm{~g}(53 \%)$ of crude 11. Sublimation ($160{ }^{\circ} \mathrm{C}, 0.05 \mathrm{~mm}$) removed the color. An analytical sample, mp $219-220^{\circ} \mathrm{C}$, was obtained by recrystallizations from dichloroethane ($90 \mathrm{ml} / \mathrm{g}$) followed by sublimation: uv (pH 1 and 11) max $260 \mathrm{~nm}(\epsilon 12200)$ and $235(10400)$; (2 N HCl) max $265 \mathrm{~nm}(\epsilon 21000)$ and 227 (7000); ir ($\mathrm{KBr} \mathrm{C} \equiv \mathrm{N}$ at 2205 (s), $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ at 1620 (s), $1570(\mathbf{w})$, and $1520(\mathrm{~m})$, with other strong bands at $1185,1080,1060$, and $860 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CD}_{3} \mathrm{COCD}_{3}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 7.76$ (wt 1), 7.25 (wt 1), and 3.33 (wt 3); MS m/e 147 (parent, base), 15, 28, $41\left(\mathrm{CHN}_{2}{ }^{+}\right.$), 53, 68, $77\left(\mathrm{P}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{3}{ }^{+}\right), 91\left(\mathrm{P}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}{ }^{+}\right), 107$, and $120(\mathrm{P}-$ HCN^{+}).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{5}$: C, 49.0; H, 3.4; $\mathrm{N}, 47.6$. Found: C, 48.7, 48.8; H, 3.2, 3.3; N, 47.8, 47.9, 48.4.
Us.ng $\mathrm{CF}_{3} \mathrm{OOH}$ as a solvent, peaks were at $\delta 8.70,8.16$, and 3.64 in a ratio of $1: 1: 4$. The latter peak was resolved to two peaks with a $2.2-\mathrm{Hz}$ separation. Dilution with $\mathrm{D}_{2} \mathrm{O}$ caused the $\delta 3.64$ peak to coalesce to one peak but the relative area remained 4. Apparently, trifluoroacetic acid eeacted with the compound to give a new CH bond (nonexchangeable).

Acetylation of 10 . A mixture of 200 mg of 10 and 5 ml of acetic anhydride was refluxed until solution occurred. The solvent was evaporated and the residue sublimed to give 236 mg of acetyl 1 -methyl-1 H-imidazo[1,5-b]-s-triazole-7-carboxamide, mp $207-212^{\circ} \mathrm{C}$. An analytical sample, $\mathrm{mp} 220-221^{\circ} \mathrm{C}$, was obtained by recrystallization from water: uv (pH 1) max $297 \mathrm{~nm}(\epsilon 20600)$ and 239 (3600); (pH 7) max $299 \mathrm{~nm}(\epsilon 23600)$ and 250 (2900); (pH 11) max 298 $\mathrm{nm}(\epsilon 17500)$ and 286 (sh, 16000 , concentration dependent); NMR ($\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 8.20,7.70,3.43$, and 1.65 (wt 1:1:3:3, respectively); MS parent at m/e 207* with base peak 149* (P $\mathrm{CH}_{3} \mathrm{CONH}^{+}$), other strong peaks at $15^{*}, 28,42^{*}, 43,53,109^{*}, 122^{*}$, $136^{*}, 165^{*}$, and 192*. (Peaks marked contain the NCH_{3} group as shown by the MS of the NCD_{3} compound.)

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 46.4; H, 4.4; N, 33.8. Found: C, 46.4, 46.2; H, 4.4, 4.4; N, 33.9 .

Acidifying the pH 11 uv solution showed that no change had occurred. However, dissolving the acetyl compound in hot 1 N sodium carbonate caused a rapid precipitation of the unacetylated material 10.

Rearrangement of 10 to 3-Methylguanine (13). A mixture of 990 mg (6 mmol) of 10 and 30 ml of 0.5 N NaOH was heated at reflux for 1 h (reaction complete after 30 min). The solution was cooled and acidified to pH 7.0 with 1 N HCl . The precipitate was redissolved by heating and adding more water (total volume 90 ml). After cooling 883 mg of 3-methylguanine (13) was obtained as small needles, mp $366-371{ }^{\circ} \mathrm{C} \mathrm{dec}$. Two recrystallizations from water raised the melting point to $375-377{ }^{\circ} \mathrm{C}$ dec. An analytical sample was dried at $80^{\circ} \mathrm{C}$ for 7 h : uv (pH 1 1) max $265 \mathrm{~nm}(\epsilon 10600), 245$ (sh, 7250), and (pH 11) 247 $\mathrm{nm}(\epsilon 14100)$ [reported ${ }^{6}(\mathrm{pH} 1) 265 \mathrm{~nm}(\epsilon 10900), 245$ (sh, 8060), and 274 (13000)]; $\mathrm{p} K_{\mathrm{a}}$ (potertiometric, concentration 4.44 M , halfway) 4.41 ± 0.02 and 9.60 ± 0.04; (spectrophotometric) 4.43 and 9.62 ; NMR ($0.1 \mathrm{~N}^{-} \mathrm{NaOD}, \mathrm{Me}_{4} \mathrm{Si}$ external) $\delta 7.47$ (wt 1), 4.86 (DOH), and 3.27 (wt 3).

The material was identical with 3-methylguanine obtained from Cyclo Chemical Corp. Los Angeles, Calif., by uv, ir, MS, and paper chromatography (Whatman No. $1, n-\mathrm{BuOH}$ saturated with $\mathrm{H}_{2} \mathrm{O}$, ammonia atmosphere, $R_{\text {adenine }} 0.53,0.52$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C} .43 .6$; H .4 .3 ; $\mathrm{N}, 42.4$. Found: C, 44.0, 43.8; H, 4.5, 4.3; N, 42.4.

Registry No.-1, 58520-76-8; 3, 58502-13-9; 4, 58502-14-0; 5, 58502-15-1; 6 Na salt, 58502-16-2; 7 mono-K salt, 58502-17-3; 7 di-K salt, $53502-18-4 ; 8,58502-19-5 ; 8$ di-Na salt, 58502-20-8; 9, 58502-21-9; 10, 58502-22-0; 10 acetyl derivative, 58502-23-1; 11, 58502-24-2; 13, 2958-98-7; 192 isomer, $58502-25-3$; 192 isomer K salt, $58502-26-4$; 19

5 isomer, 58502 -27-5; 195 isomer K salt, 58502 -28-6; 20, 15285-16-2; $20 \mathrm{H}_{2} \mathrm{SO}_{4}, 58502-30-0$; 21, 4928-87-4; sodium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502-31-1$; tetramethylammonium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502$-33-3; zinc $\left(\mathrm{C}_{7} \mathrm{~N}_{7}\right)_{2}, 58502$-34-4; lithium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502-35-5$; manganous $\left(\mathrm{C}_{7} \mathrm{~N}_{7}\right)_{2}$, 58502-36-6; cupric $\left(\mathrm{C}_{7} \mathrm{~N}_{7}\right)_{2}, 58502-37-7$; silver $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502-38-8$; tetraethylammonium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502,39-9$; trimethylactadecylammonium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502-40-2$; N-methylphenazinium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58526-69-5$; trimethylsulfonium $\mathrm{C}_{7} \mathrm{~N}_{7}$, 58502-42-4; methyltriphenylphosphonium $\mathrm{C}_{7} \mathrm{~N}_{7}, 58502-43-5 ; \mathrm{HC}_{7} \mathrm{~N}_{7}$, 58502-44-6; potassium cyanide, 151-50-8; cyanogen, 2074-87-5; sodium cyanide, 143-33-9; tetramethylammonium chloride, 75-57-0; zinc carbonate, 3486-35-9; 1-chloro-1 H-imidazo[1,5-b]-s-triazole-2,5,7tricarbonitrile, 58502-45-7; 1-methyl-1 H-imidazo[1,5-b]-s-triazole-2,5,7-tricarboxamide, 58502-46-8; dimethylformamide, 68-12-2; 1 -benzyl-1 H-imidazo[1,5-b]-s-triazole-2,5,7-tricarbonitrile, 58502-47-9; benzyl chloride, 98-88-4; diazomethane, 334-88-3; 7-carboxamido-1-methyl-1 H -imidazo[1,5-b]-s-triazole-2-carboxylic acid, 58502-48-0; 7 -carboxamido-1-methyl-1 H -imidazo $[1,5-b]$-s-triazole-5-carboxylic acid, 58502-49-1; sodium 7-carboxamido-1-methyl-1 H -imid-azo[1,5-b]-s-triazole-2-carboxylate, 58502-50-4; sodium 7-carbox-amido-1-methyl-1 H-imidazo[1,5-b]-s-triazole-5-carboxylate, 58502-51-5.

References and Notes

(1) Part 5: W. A. Sheppard and O. W. Webster. J. Am. Chem. Soc., 95, 2695 (1973).
(2) R. W. Begland, A. Cairncross, D. S. Donald, D. R. Hartter, W. A. Sheppard and O. W. Webster, J. Am. Chem. Soc., 93, 4953 (1971).
(3) O. W. Webster, U.S. Patent 3093653 (1963).
(4) W. J. Middieton and D. Metzger, J. Org. Chem., 35, 3985 (1970).
(5) For example, see T. Pehk and E. Lippaa, Org. Magn. Reson., 3, 679 (1971); P. C. Lauterbur. J. Chem. Phys., 26, 217 (1957).
(6) G. B. Elion, J. Org. Chem., 27, 2478 (1962).
(7) There are numerous examples in the literature of the formation of nitrile compounds from five-membered heterocyclics; the most pertinent is the rearrangement

R. Fusco, P. Dalla Croce, and A. Salvi, Gazz. Chim. Ital, 98, 511 (1968).
(8) C. Ainsworth and R. G. Jones, J. Am. Chem. Soc., 76, 5641 (1954); U.S. Patent 2710296 (1955).
(9) P. Westermann, H. Paul, and G. Hilgetag. Chem. Ber., 97, 528 (1964).
(10) J. A. Bladin, Ber., 25, 741 (1892).
(11) We are indebted to Dr . J. S. Fok for this measurement.
(12) "Standard Infrared Prism Spectra"', Sadtler Research Laboratories, Inc., Philadelphia, Pa., Spectrum No. 10626.
(13) A. Albert and E. P. Serjeant, "lonization Constants of Acids and Bases"', Wiley, New York, N.Y., 1962, p 41.

Rearrangement of \boldsymbol{N}-Acylaziridines in Strong Acid Media ${ }^{1}$

Samuel P. McManus* and Richard A. Hearn
Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35807
Charles U. Pittman, Jr.
Department of Chemistry, University of Alabama, University, Alabama 35486

Received January 20, 1976

Abstract

The rearrangement of trans-1-p-nitrobenzoyl-2,3-dimethylaziridine (8) in either sulfuric or fluorosulfuric acid occurs stereoselectively to give the trans-2-phenyl-4,5-dimethyloxazolinium cation and after neutralization the trans oxazoline 10. In contrast, the isomeric cis aziridine derivative 7 gives a mixture of the cis and trans oxazolines, 9 and 10 , respectively, in a $28: 72$ ratio. These results implicate acyclic carbocationic intermediates in the rearrangement. The mechanism of the acid-catalyzed isomerization of acylaziridines is discussed in light of these results and other available data.

Gabriel and Stelzer ${ }^{2}$ reported the acid-catalyzed isomerization of thioacylaziridines in 1895. Their report described the conversion of the thiourea derivative 1 to the thiazoline 2 upon heating the former in concentrated hydrochloric acid.

The reaction lay dormant until the late 1950 s when a number of workers confirmed ${ }^{3}$ and extended ${ }^{4,5}$ the reaction. ${ }^{6}$ One of these reports included isomerizations of several aziridines utilizing other aqueous mineral acid catalysts. ${ }^{5}$

Heine and Proctor ${ }^{7}$ carried out a similar isomerization on acylaziridines using aluminum halides in refluxing heptane, eq 2. Two mechanisms for the isomerization were considered;

one involved sequentially acid attack at nitrogen, ring opening, and cyclization, eq 3; the second involved a four-centered transition state, eq 4. Owing to the low dielectric constant of

oxazoline

the solvent (heptane) and the high energy of the primary carbocationic intermediate formed from N-(p-ethoxybenzoyl)aziridine (3), Heine and Proctor ${ }^{7}$ preferred the mechanism shown in eq 4 for the isomerization of 3 .

In subsequent work, Heine et al. ${ }^{8}$ used concentrated sulfuric

Table I. NMR Data for 7, 8, 9, and $10^{a, b}$

Compd	Aryl protons	Methyl protons	Ring protons
$\mathbf{7}$	$8.16(\mathrm{~d}), J=9.1$	$1.35(\mathrm{~d}), J=5.5$	$2.66(\mathrm{~m})$
	$8.23(\mathrm{~d}), J=9.1$		
8	$8.10(\mathrm{~d}), J=9.0$	$1.23(\mathrm{~d}), J=5.2$	$2.56(\mathrm{~m})$
	$8.24(\mathrm{~d}), J=9.0$	$1.25(\mathrm{~d}), J=6.4$	$4.52(\mathrm{~m}, \mathrm{NCH})$
9	$8.09(\mathrm{~d}), J=9.0$	$1.38(\mathrm{~d}), J=6.0$	$4.89(\mathrm{~m}, \mathrm{OCH})$
	$8.25(\mathrm{~d}), J=9.0$	$1.31(\mathrm{~d}), J=6.7$	$3.86(\mathrm{~m}, \mathrm{NCH})$
10	$8.04(\mathrm{~d}), J=8.7$	$1.42(\mathrm{~d}), J=6.0$	$4.33(\mathrm{~m}, \mathrm{OCH})$

${ }^{a}$ Values are in parts per million from internal $\mathrm{Me}_{4} \mathrm{Si}$. Spectra were taken on Varian EM- 360 and HA-100 spectrometers in $\mathrm{CDCl}_{3} .{ }^{b} \mathrm{~d}=$ doublet; $\mathrm{m}=$ multiplet.
acid as the medium for isomerizing 1-p-nitrobenzoyl-2,2dimethylaziridine (4) to 2-p-nitrophenyl-5,5-dimethyl-2oxazoline (5) in 97% yield. The sole formation of 5 and not the 4,4-dimethyl isomer was taken as evidence for scission of a $\mathrm{C}-\mathrm{N}$ bond in a protonated aziridine. The mechanism shown in eq 5 was suggested to account for the observed reaction.

We have shown in an earlier paper ${ }^{9}$ that N-acylaziridines ($\mathbf{G a}-\mathbf{f}$) rearrange to oxazolinium cations upon their introduction into strong acid media, ${ }^{9-11}$ eq 6 , and these ions are

stable ${ }^{11,12}$ until neutralization by aqueous base. Demonstration of acyclic carbocationic intermediates or of N -protonated acylaziridines as precursors to oxazolinium ions in these isomerizations has not been achieved.

Olah and Szilagyi ${ }^{13}$ have prepared N -protonated acylaziridines from the reaction of aziridine and acylium salts, eq 7. Conversely, direct protonation of acylaziridines at low temperature provides, as the only protonated species (by NMR analysis), the O-protonated acylaziridine. ${ }^{9,13}$ Olah and Szilagyi ${ }^{13}$ suggested that an equilibrium exists between the 0 protonated and the N -protonated forms (see eq 7), but did not produce compelling evidence in favor of it.

The present study of the acid-catalyzed rearrangement of cis-17) and trans-(8) 1-p-nitrobenzoyl-2,3-dimethylaziridine provides the first published account on the stereochemistry of isomerization of acylaziridines in strong acid media.

Results and Discussion

The acylaziridines 7 and 8, dissolved in carbon tetrachloride. were readily extracted into cold 90% sulfuric acid solution or into fluorosulfuric acid resulting in solutions which gave NMR spectra characteristic of oxazolinium cations. However, the spectra were complex, making an unequivocal stereochemical assignment of the structures difficult. Therefore, the fluorosulfuric acid solutions of 7 and of 8 were drowned into cooled and rapidly stirred aqueous potassium carbonate-ether solutions. ${ }^{14}$ Upon drying of the ether layers and removal of the ether, the resulting oxazolines were obtained. Analysis of the NMR spectra of the products was performed. The NMR spectrum of the rearrangement products of the cis isomer 7 was complex; however, it was interpreted by assuming that a mixture of 9 and 10 was present. The isomerization product

7
$\mathrm{Ar}=p$-nitrophenyl

9

8

10

Scheme I

O-protonated 8

O-protonated 7
of the trans isomer 8 gave an NMR spectrum consistent with a single component which was shown to be the trans oxazoline 10 by comparison with an authentic sample. ${ }^{15}$ The NMR data for the aziridines and oxazolines are shown in Table I.
Gas chromatographic (GC) analysis of the product of isomerization of 8 in fluorosulfuric acid revealed a single peak due to $10 .{ }^{15}$ In agreement with the NMR analysis, GC analysis of the product of rearrangement of 7 revealed a $28: 72$ mixture of the cis (9) and trans (10) oxazolines, respectively.
Our results show that 8 stereoselectively rearranges to 10 while 7 shows little selectivity. The finding of stereoselectivity in the rearrangement of the trans aziridine 8 and the lack of stereoselectivity in the rearrangement of the cis isomer 7 confirms Heine's suggestion of acyclic carbocation involvement as shown in eq 5 . Our view of how these reactions occur is shown in Scheme I. It is reasonable to assume that these rearrangements occur via the N -protonated acylaziridines. The differences in the products can be accounted for by assessing the probable fates of the carbocations 11 and 13 . Since the trans oxazolinium ion 12 does not suffer from nonbonding interactions of the severity of those in 14, the transition state leading to 12 should be preferred to that leading to 14 . Thus upon opening of the N -protonated aziridine ring of 8 , ring closure of the carbocation 11 to the oxazolinium ion 12 would be highly favored over bond rotation (i.e., $k_{\mathrm{RC}}>k_{\mathrm{BR}}$) to give carbocation 13 which subsequently could undergo ring closure to 14 . The finding of a mixture of 9 and 10 from the rearrangement of 7 indicates that bond rotation in 13 (i.e., $13 \rightarrow$ 11) competes with ring closure to 14 (i.e., $k^{\prime}{ }_{B R} \simeq k^{\prime}{ }_{R C}$). From these results it seems likely that if substituents substantially larger than methyl groups were present in a cis aziridine like 7, the product upon acid-catalyzed rearrangement may well be solely the trans oxazoline.

Hearn ${ }^{17}$ has studied the isomerization of (S)-1-p-nitro-benzoyl-2-methylaziridine (15) in concentrated sulfuric acid and observed a significant amount of racemization. ${ }^{18} \mathrm{His} \mathrm{re-}$ sults tend to support the mechanism presented in Scheme I.

Nabeya and Iwakura and their co-workers ${ }^{19,20}$ have investigated the stereochemistry of the acid-catalyzed isomeriza-

$\mathrm{Ar}=p$-nitrophenyl
tion of 1-carbamylaziridines to 2 -amino-2-oxazoline derivatives and have obtained results which are remarkably different from ours. This is undoubtedly the result of their use of nonpolar solvents with low ionizing power whereas our solvents are highly polar and highly ionizing. Hence the SNl-like mechanism, which we propose for isomerization of acylaziridines in strong acids such as sulfuric and fluorosulfuric, is not favored in nonpolar solvents owing to the relative instability of carbocations in nonpolar media. ${ }^{21}$ The results of isomerization with p-toluenesulfonic acid of some carbamylaziridines in refluxing benzene are shown in eq $8-10$. Without additional evidence, one might suggest that the result shown in eq 8 is explicable by a carbocationic mechanism, that is, an intimate ion pair might result between the carbocation and the conjugate base of the acid (i.e., OTs^{-}). Collapse of such an ion pair in benzene would undoubtedly be rapid; hence stereochemistry might be retained. The results shown in eq 9 , however, negate the above proposal as the sole mechanism. Since a portion of the product is obtained from aziridine ring opening at the less substituted carbon, ${ }^{22}$ at least some of the product (and perhaps most of it) must arise by another mechanism. The most likely alternative mechanisms ${ }^{19,20}$ are one similar to that shown in eq 4 and an SN2-like mechanism similar to that known for nucleophile-catalyzed isomerization of acylaziridines. ${ }^{6,16}$ The results shown in eq 10 are best explained by the intimate ion pair mechanism. ${ }^{20}$ Thus, when no unbound counterion is present (as in the boron trifluoride cat-

alyzed reaction), the product is nearly racemized, ${ }^{20}$ indicating a mechanism change to one involving a free carbocation.

In summary, the acid-catalyzed isomerization of acylaziridines occurs via acyclic carbocation intermediates in strong acid media. The stereochemistry of the products appears to be determined by a competition between the rates of cyclization and of bond rotation, processes which are affected by nonbonded interactions. In nonpolar media, acyclic carbocations do not appear to be involved except where carbocation stabilizing groups, such as an aryl group, are present. In the latter cases, with protonic acids intimate ion pairs appear to be involved in determining product stereochemistry.

Experimental Section

erythro- and threo-3-Amino-2-butanol. The isomeric 3 -amino-2-butanols were prepared by the ammonolysis of the respective epoxides by the procedure previously reported. ${ }^{23}$ A mixture of cis-2,3-epoxybutane and trans-2,3-epoxybutane (Research Organic/ Inorganic Chemical Corp.) was separated by careful distillation with a Nester-Faust adiabatic annular Teflon spinning band assembly in a manner similar to that described by Dickey et al. ${ }^{24}$ Refractionation of the purified fractions gave the trans epoxide, bp $55-56^{\circ} \mathrm{C}$ (lit. ${ }^{24}$ $54-55^{\circ} \mathrm{C}$), and the cis epoxide, bp $59-60^{\circ} \mathrm{C}$ (lit. $.^{24} \mathrm{bp} 58-59^{\circ} \mathrm{C}$).

Reaction of the cis epoxide with excess liquid ammonia in the presence of 1 equiv of water, as described elsewhere, ${ }^{23}$ gave a 90% distilled yield of threo-3-amino-2-butanol, bp $69-70^{\circ} \mathrm{C}(20 \mathrm{~mm})$. The erythro isomer was prepared in a similar fashion from the trans epoxide. The crude amino alcohol was used to prepare the trans aziridine as described below.
cis-1-p-Nitrobenzoyl-2,3-dimethylaziridine (7). cis-2,3-Dimethylaziridine was prepared from threo-3-amino-2-butanol fol lowing the directions of Dickey et al. ${ }^{24}$ The purified aziridine, bp 82-83 ${ }^{\circ} \mathrm{C}$ (lit. $.^{24} \mathrm{bp} 82.5-82.9^{\circ} \mathrm{C}$), was converted to the amide 7 by reaction with freshly recrystallized p-nitrobenzoyl chloride and triethylamine in dry benzene by the procedure of Heine et al. ${ }^{16}$ Recrystallization from ethanol gave 7 melting at $142-143^{\circ} \mathrm{C}$ (lit. ${ }^{16} 143-145^{\circ} \mathrm{C}$). The NMR spectrum of 7 (see Table I) was consistent with the assigned structure.

Isomerization of 7 and 8 in $\mathbf{9 0 \%}$ Sulfuric Acid. A carbon tetrachloride solution containing ca. 10% of 8 was added dropwise to an equa volume of a rapidly stirred 90% sulfuric acid solution at $10-15$ ${ }^{\circ} \mathrm{C}$. After about 10 min of rapid stirring below $15^{\circ} \mathrm{C}$, the sulfuric acid layer was transferred to an NMR tube and a capillary filled with tetramethylsilane was added. The NMR spectrum had peaks at δ 1.96-2.15 (6 protons, broad multiplet, CHC), 4.98-5.40 (1 proton, broad multiplet, CHN), 5.50-5.90 (1 proton, broad multiplet, CHO), 8.55 i 2 protons, doublet, $J=8.5 \mathrm{~Hz}$, aryl), 9.02 (2 protons, doublet, $J=\varepsilon .5 \mathrm{~Hz}$, aryl), and 9.76 ppm (1 proton, broad NH). This spectrum was consistent with that of oxazolinium ions 12 or 14 but was too poorly resolved to allow a definitive stereochemical assignment.

In the same manner, a small sample of 7 was dissolved in $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and the NMR spectrum of the resulting solution was recorded. All of the peaks above plus additional peaks were present.
Isomerization of $\mathbf{7}$ and 8 in Fluorosulfuric Acid. The acylaziridines 7 and 8 each in ca. 10% carbon tetrachloride solutions were extracted into fluorosulfuric acid ${ }^{9}$ at $0^{\circ} \mathrm{C}$ using the technique described above. The acid solutions were allowed to warm to room temperature and their NMR spectra were recorded. The spectra of the protonated oxazolines in $\mathrm{FSO}_{3} \mathrm{H}$ appeared to be very similar to the spectra of the ions in $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
The $\mathrm{FSO}_{3} \mathrm{H}$ solutions were neutralized by dropwise addition to rapicly stirred dispersions of aqueous potassium carbonate-ethyl ether. ${ }^{14}$ The ether layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the crude isomerization products from 7 and from 8.
The NMR spectrum of the dried product from the isomerization of 8 proved to be identical with that of an authentic sample ${ }^{15}$ of 10 (see Table I). Gas chromatographic analysis on a $6 \mathrm{ft} \times 0.125 \mathrm{in}$. silicone gum W-98 column showed the isomerization product from 8 to be solel. 10 (i.e., with less than 0.5% of 9)

The dried product from the isomerization of 7 gave an NMR spectrum (in CCL_{4}) indicating a mixture. A comparison analysis of the spectrum of this sample with those of authentic samples of 9 and 10 (see Table I) proved the mixture to be composed of 9 and 10 . Gas chromatographic analysis under identical conditions with those above revealed the mixture to be 9 and 10 in a ratio of 28:72.
It was also shown that 9 and 10 do not equilibrate under workup or analytical conditions and that the cations in sulfuric or fluorosulfuric acid do not equilibrate. ${ }^{12}$ It could not be unequivocally demonstrated that 7 does not partially isomerize to 8 prior to rearrangement; yet there is no evidence that this is occurring.

Acknowledgment. This work was supported in part by the donors of the Petroleum Research Fund, administered by the American Chemical Society. We also kindly acknowledge a gift of authentic samples of 9 and 10 by Professor Harold W. Heine.

Registry No.-7, 7042-44-6; 8, 7042-45-7; 9, 7042-06-0; 10, 7042-07-1; cis-2,3-dimethylaziridine, 930-19-8; p-nitrobenzoyl chloride, 122-04-3.

References and Notes

(1) (a) Presented in part at the Joint Southeast-Southwest Regional Meeting of the American Chemical Society, New Orleans, La.. Dec 1970. Abstract No 338, p 103 Part 12 of the series Acid-Catalyzed Cyclization Reactions Previous paper: S P. McManus, K. Y. Lee, and C. U. Pittman, Jr., J. Org Chem., 39, 3041 (1974).
(2) S. Gabriel and R. Stelzner, Ber., 28, 2929 (1895).
(3) A. S. Deutsch and P. E. Fanta, J. Org. Chem., 21, 892 (1956).
(4) Y. Iwakura and A. Nabeya, J. Chem Soc., Jpn., Pure Chem. Sect., 77, 773 (1956).
(5) M. Tisler, Arch. Pharm (Weinheim. Ger.). 291, 457 (1958)
(6) For a review, see H. W. Heine, Angew Chem., Int Ed. Engl., 1, 528 (1962)
(7) H. W. Heine and Z. Proctor, J. Org. Chem., 22, 1554 (1958)
(8) H. W. Heine. M. E. Fetter, and E. M. Nicholson, J. Am. Chem. Soc., 81, 2202 (1959).
(9) C. U. Pittman. Jr., and S P McManus, J. Org. Chem., 35, 1187 (1970)
(10) Salts of oxazolinium ions had been isolated well before the direct NMR observation ${ }^{9}$ of their formation; cf. ref 11.
(11) C. U. Pittman. Jr.. S P. McManus. and J. W. Larsen, Chem Rev., 72, 357 (1972).
(12) S. P. McManus. J. T. Carroll, and C. U. Pittman, Jr., J. Org. Chem., 35, 3768 (1970).
(13) G. A. Olah and P. J. Szilagyi, J. Am Chem Soc., 91, 2949 (1969)
(14) S. P. McManus, J. T. Carroll, P. M. Grohse, and C. U. Pittman, Jr., Org. Prep Proced., 1, 235 (1969)
(15) Luthentic samples of 9 and 10 were provided by Professor Harold W. Heine cf ref 16
(16) H. W. Heine. D. C. King, and L. A. Portland, J. Org. Chem., 31, 2662 (1966)
(17) R. A. Hearn, unpublished B.S. Thesis, The University of Alabama in Huntsville, Sept 1970.
(18) Within experimental error (estimated at 15%), complete racemization was observed.
(19) T. Nishiguchi, H. Tochio, A. Nabeya, and Y. Iwakura, J. Am. Chem. Soc. 91, 5835, 5841 (1969)
(20) A. Nabeya, T. Shigemoto, and Y. Iwakura, J. Org. Chem., 40, 3536 (1975)
(21) S. P. McManus and C. U. Pittman, Jr., in "Organic Reactive Intermediates"
S. P. McManus, Ed., Academic Press, New York, N.Y., 1973, Chapter 4
(22) Opening at the less substituted carbon has been called the "normal" mode while opening at the more substituted carbon has been called the "abnormal" mode (cf. ref 18-20). Since this terminology is backwards for carbocation reactions, its use here would be confusing. We recommend that such terminology not be perpetuated.
(23) S. P. McManus, C. A. Larson, and R. A. Hearn, Synth. Commun., 3, 177 (1973).
(24) F. H. Dickey, W. Fickett, and H. J. Lucas, J. Am. Chem. Soc., 74, 944 (1952)

Versatile Intermediates for Heteroatom-Substituted Adamantane Derivatives

Sung Moon, * Donald G. Wright, and Arthur L. Schwartz
Department of Chemistry, Adelphi University, Garden City, New York 11530

Received March 27, 1975

Abstract

9-Acetoxybicyclo[3.3.1]nona-2,6(7)-diene (18), a versatile intermediate for the synthesis of heteroatom substituted adamantanes, was prepared in eight steps from the commercially available 1,4-cyclohexanediol. This intermediate may be used in the synthesis of substituted oxa-, aza-, and thiaadamantanes. Utility of this intermediate was shown by synthesis of 2-oxa-6-adamantanol (19), 2-oxa-6-adamantanone (22), 2-oxa-6-adamantanamine hydrochloride (23), and 2-oxa-6-adamantanecarboxylic acid (26).

There has been much interest in compounds containing the adamantane moiety since they exhibit many interesting medicinal properties. Adamantane derivatives have shown effectiveness against several types of viruses, ${ }^{1-4}$ and in treatment of leukemia. ${ }^{5}$ They were also found to be active in vitro against angeosarcoma, pancreatic sarcoma, ${ }^{6}$ and antineoplastic activity. ${ }^{7-9}$ Davies et al. ${ }^{10}$ discovered the inhibitory effects of 1 -adamantanamine hydrochloride (1) against in-

1
fluenza group A. 1-Adamantanamine was also found, quite by accident, to be active against Parkinson's disease. ${ }^{11}$
In view of the ability of adamantane to modify the biological activity of various compounds and the importance of heteroatoms in medicinal chemistry, we launched a program to synthesize adamantane derivatives with a heteroatom (oxygen, nitrogen, or sulfur) incorporated in the adamantane ring system. ${ }^{12}$ We report here the synthesis of versatile intermediates for heteroatom-substituted adamantanes, and the synthesis of 2 -oxaadamantan-6-amine and 2 -oxaadaman-tane-6-carboxylic acid.
The immediate goal was to synthesize 9 -substituted derivatives of bicyclo[3.3.1]nonadiene (2). Our long-range goal was to synthesize 2 -substituted heterocyclic compounds 3 of

2

3
$\mathrm{X}=\mathrm{OH} . \mathrm{OTs} . \mathrm{NH}_{2}, \mathrm{COOH}$
$\mathrm{Y}=\mathrm{O}, \mathrm{N}, \mathrm{S}$
the adamantane series through the intermediacy of compound 2. The envisioned synthesis that was proposed for the aforementioned goals is depicted in Scheme I.

Scheme I

4

5

Our plans for accomplishing the synthesis of the diol 4 in volved modification of a procedure originally worked out by Cope ${ }^{13}$ and Woodward. ${ }^{14}$ If these procedures were now applied to 4 -acetoxycyclohexanone, compound 4 should result (Scheme II).

We found that the acetate 8 could be produced in excellent yield by the direct acetylation of quinitol (7) with acetyl chloride and pyridine. Reactions with acetic anhydride gave inferior results. Although the ratio of 8 to 9 (Scheme III) was

65:35 when 1 mol of quinitol was used per mole of acetyl chloride, this ratio increased to 87:13 when a 2.4 molar excess of quinitol was used. Use of excess reagent causes no isolational problems since quinitol is soluble in water and practically insoluble in chloroform. It was not necessary to remove the diacetate 9 from 8 since the presence of 9 did not interfere with the subsequent reaction in which 8 and 9 had to be utilized. Furthermore, 9 could be removed from the acetoxy enamine 11 by fractional distillation. Oxidation of the mixture of 8 and 9 with Jones reagent gave 10 in good yield in addition to the unchanged diacetate 9 .

Hickmott ${ }^{15}$ has worked out a procedure in which morpholinocyclohexene, when treated with acryloyl chloride, produces bicyclo[3.3.1]nonane-2,9-dione directly. A bicyclic dione can be produced even if the 3 and 4 positions of the enamine are fused to another ring system. ${ }^{16}$ By applying the Hickmott procedure to the enamine 11, we were able to synthesize in good yield the bicyclic acetoxy dione 14 depicted below.

The procedure adopted for synthesis of the bicyclic diene 18 is depicted in Scheme IV. The dione 14 was reduced to the corresponding triol 15 , which was converted to the triacetate 16. Pyrolysis of the triacetate 16 was best accomplished as a two-step sequence. In the first step the neat syrup was heated at $400-500^{\circ} \mathrm{C}$ in a Pyrex test tube and the product, which consisted mainly of the monoolefin 17, was collected as a distillate. Pyrolysis of 17 in the vapor phase over glass beads led to the dienyl acetate 18 which could be isolated in relatively pure form by distillation. The overall yield of 18 from the diol 7 was 2.3%.

Cyclization. Our first step after the synthesis of the diene was cyclization to the oxaadamantane structure. Four meth-
Scheme IV

15

18
ods were tried with this diene. Treatment of the bicyclic diene with mercuric acetate in a THF/water solvent system ${ }^{17}$ gave the oxaadamantanol 19 in about 25% yield. Attempts to reduce the amounts of side products by longer reaction time did not increase the yield of oxaadamantanol. Separation was ac-

complished using an alumina column. Preparative gas chromatography was also used to separate these compounds.

A method which showed great promise because of the lack of side products was treatment of the bicyclic diene 18 with mercuric acetate in water. ${ }^{18}$ Gas chromatography showed that 19 was 90% of the product, but was isolated only in 10% yield.

Another method given much consideration in the early stages of the research was the addition of bromine in $10 \% \mathrm{KBr}$ in water, ${ }^{19}$ followed by a two-step reduction. The bromines were removed by treatment with Raney nickel and the acetoxy group was reduced with lithium aluminum hydride. This method was successful on a small scale, $100-200 \mathrm{mg}$ of the diene 18. However, attempts to duplicate on a larger scale, 1-g quantity, proved unsuccessful.

The refluxing of the bicyclic diene with formic acid provided another possible route. ${ }^{20}$ The number of side products, somewhat more plentiful than expected, made this an unacceptable procedure.

2-Oxa-6-adamantanamine Hydrochloride. The oxidation of oxaadamantanol 19 by Jones reagent provided a very efficient method ${ }^{21}$ for obtaining the ketone 22 in yields of 90-97\%. From the ketone 22, we considered two possible routes to the amine hydrochloride 23: reductive amination and the formation of the oxime followed by reduction of the amine.

Catalytic hydrogenation of adamantanone with Raney

nickel, under 50 psi hydrogen pressure in ethanol saturated with ammonia, gave the amine in 15% yield. Excess ammonia was used to prevent the formation of secondary amines. The low yield of the amine was due to the formation of adamantanol as a side product. A less active catalyst was sought. Ten percent palladium on carbon was found to work well, producing yields of about 65%. When the same procedure was applied to oxaadamantanone 22, a yellow oil was obtained, which was not crystallized, but converted directly to the amine hydrochloride, purified by sublimation in a 60% yield.

Our effort to reduce adamantanone oxime to the amine, either with lithium aluminum hydride or diborane in diglyme, was unsuccessful.
Carboxylic Acid. Alberts, Wynberg, and Strating reported ${ }^{22}$ supposedly the best method of converting 2 -adamantanone to 2 -adamantanecarboxylic acid. Their method, modified for our system, is shown in Scheme V. The aldehyde

25 was oxidized by Jones reagent to the oxaadamantanecarboxylic acid 26. The yield of acid from ketone 22 was 20%.

Experimental Section ${ }^{23}$

Acetylation of 1,4-Cyclohexanediol. The diol $7(400 \mathrm{~g}, 3.4 \mathrm{~mol})$ in 1.1 l . of chloroform and 1.01 . of dry pyridine was chilled to $0^{\circ} \mathrm{C}$ and to it was added, with rigorous mechanical stirring over a period of 9.5 h , a solution of $110 \mathrm{ml}(121 \mathrm{~g}, 1.5 \mathrm{~mol})$ of acetyl chloride in 0.6 l . of chloroform. Stirring overnight resulted in a clear golden yellow solution which was neutralized at $0^{\circ} \mathrm{C}$ by the addition of 1.91 . of 6 N HCl with vigorous stirring. The chloroform layer was separated and washed with saturated NaHCO_{3} and aqueous NaBr , and then dried over MgSO_{4}. Removal of solvent on a steam bath and then on a rotary evaporator at $93^{\circ} \mathrm{C}$ (20 Torr) left 171 g of a clear orange residual liquid. Gas chromatography of the neat liquid at $143^{\circ} \mathrm{C}$ showed that only 8 and 9 were present in a ratio of $87: 13$. The hydroxy acetate eluted first from the column and the CCL_{4} solution spectrum of the eluent showed $\mathrm{OH}\left(3620,3440 \mathrm{~cm}^{-1}\right)$ and acetate ($1735,1248 \mathrm{~cm}^{-1}$). The eluent derived from the second peak showed acetate and carbonyl (1735 and $1240 \mathrm{~cm}^{-1}$) but no OH absorption.

4 -Acetoxycyclohexanone (10). The residual liquid derived from the above acetylation procedure $(94.8 \mathrm{~g}, 0.60 \mathrm{~mol}, 8)$ was dissolved in 2.4 l . of reagent grade acetone and chilled in an ice bath. Jones reagent was made by dissolving 60 g of CrO_{3} in 49 ml of concentrated sulfuric acid and then diluting with 120 ml of water, giving a total volume of

184 ml . Approximately 122 ml of this reagent was placed in a vented dropping funnel and 112 ml of this volume was added to the acetone solution with vigorous mechanical stirring maintaining a reaction temperature of $10-15^{\circ} \mathrm{C}$. At this point the reaction mixture had a definite orange color and enough 2-propanol was added to turn the reaction color green again. To this mixture was added 200 g of solid NaHCO_{3} and 30 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and stirring was continued for an additional 0.5 h at $15^{\circ} \mathrm{C}$. The mixture was filtered and the residue was washed thoroughly with four portions of acetone. The combined acetone filtrates were stirred over solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and filtered. The solution was concentrated on a steam bath and then on a rotary evaporator at $30^{\circ} \mathrm{C}$ until two liquid phases were clearly visible. This mixture was extracted with methylene chloride ($3 \times 300 \mathrm{ml}$) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were dried over MgSO_{4}. Removal of the solvent on a steam bath and then on a rotary evaporator at 90° (20 Torr) left 98.0 g of a clear, light yellow liquid. Gas chromatography of the neat liquid on a $4-\mathrm{ft}$ silicone rubber column at $138^{\circ} \mathrm{C}$ showed the presence of only two peaks which corresponded to the keto acetate 10 and the diacetate 9 in order of their retention times, respectively. The ratio of the two peaks was $87: 13$ and the peak corresponding to 10 was collected. The infrared spectrum showed bands at 1730 (carbonyl) and 1740 and 1240 cm^{-1} (acetoxyl); NMR + 4.86 (distorted quartet, 1 H). 7.40-8.20 (multiplet, 11 H), 7.98 (sharp singlet. acetoxyl 3 H). A 2,4-DNP derivative was prepared from the ketone, $\operatorname{mp} 184-186^{\circ} \mathrm{C}$ (lit. ${ }^{16} 183^{\circ} \mathrm{C}$).

Preparation of Enamine 11. To the residual liquid from the above oxidation ($85 \mathrm{~g}, 0.54 \mathrm{~mol}$, of actual 10) in 21 . of reagent grade benzene was added $81 \mathrm{~g}(0.93 \mathrm{~mol})$ of morpholine and the solution was refluxed with continuous separation of water through a Dean-Stark trap for 40 h . The solvent was removed on a rotary evaporator and the residual orange oil was distilled at 0.03 Torr. With steam being sent through the condenser the diacetate 9 was distilled at $75-97^{\circ} \mathrm{C}$. A total of 95 g of distillate was collected at $97-110^{\circ} \mathrm{C}$ and 0.02 Torr. Gas chromatography showed that the diacetate was completely removed during this distillation. The ir spectrum of 11 (neat) showed bands at 3070 $(\mathrm{C}=\mathrm{CH}), 2960,2860,2815,1735,1650,1375$, and $1250 \mathrm{~cm}^{-1}$; NMR $\tau 5.15(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 6.38$ and 7.20 (both centers of an $\mathrm{A}^{2} \mathrm{~B}^{2}$ pattern, 4 H), 7.5-8.5 (m, 7 H).

Preparation of 2-Keto-7-acetoxybicyclo[3.3.1]nonan-9-one (14). To a refluxing solution of 95 ml of the above enamine 11 in 870 ml of dry benzene was added, over a period of 2 h with stirring, a solution of 42 ml of acryloyl chloride in 435 ml of benzene. Refluxing was continued for 18 h with sporadic magnetic stirring due to the fact that the brittle salt intermediate adhered to the bottom of the flask quite tenaciously. After cooling, the supernatant liquid was decanted, the residue was thoroughly washed four times with reagent grade dry benzene, and the solvent was removed under reduced pressure (20 Torr and then 0.2 Torr). Hydrolysis of the residue was accomplished by the addition of 1.11 . of ice water and stirring was continued for 3.5 h at $0-2{ }^{\circ} \mathrm{C}$. Solid sodium bromide (100 g) was then added to the mixture and it was extracted with methylene chloride ($6 \times 500 \mathrm{ml}$). After drying $\left(\mathrm{MgSO}_{4}\right)$ the solvent was removed on a steam bath and then on a rotary evaporator at $80^{\circ} \mathrm{C}$, leaving 87 g of a dark brown, viscous residual liquid. Distillation gave 52 g of $14, \mathrm{bp} 110-120^{\circ} \mathrm{C}(0.5$ Torr). The ir spectrum of 14 showed both ketone and acetoxyl absorptions at 1748,1718 , and $1240 \mathrm{~cm}^{-1} ; \mathrm{NMR} \tau 4.5-5.1(\mathrm{~m}, 1 \mathrm{H})$, 6.8-8.2 (m, 13 H).

2,7,9-Triacetoxybicyclo[3.3.1]nonane (16). The dione acetate $14(30.2 \mathrm{~g}, 0.144 \mathrm{~mol})$ in 600 ml of THF was added, with stirring under a nitrogen atmosphere at room temperature, to a suspension of 8.9 $\mathrm{g}(0.24 \mathrm{~mol})$ of LiAlH_{4} in 500 ml of THF. The temperature rose to 45 ${ }^{\circ} \mathrm{C}$ during addition and the color of the deep gray solid lightened considerably as the addition was continued. The solution was then refluxed with stirring under nitrogen for 18 h and after cooling 25 ml of ethyl acetate dissolved in 25 ml of THF was added to the mixture. Refluxing was then continued for 1 h . After cooling to $40^{\circ} \mathrm{C}, 40 \mathrm{ml}$ of water was added and the mixture was stirred for 35 min . This was followed by the addition of 30 ml of $1.5 \% \mathrm{NaOH}$ solution with 50 min of stirring. An additional 20 ml of water was added and stirring was continued for 15 min . The resulting off-white granular precipitate was removed by filtration and washed with hot THF. Removal of solvent on a steam bath and then on the rotary evaporator at $100^{\circ} \mathrm{C}(20 \mathrm{Torr})$ afforded 26.8 g of a light tan, waxy solid. The solid was further dried at 1 Torr and $100^{\circ} \mathrm{C}$ with only insignificant weight loss. This solid was then dissolved in 122 ml of pyridine and 142 ml of acetic anhydride and the resulting solution was stirred at $63-65^{\circ} \mathrm{C}$ for 18 h . After cooling, 500 ml of methylene chloride was added and the solution was acidified by the addition of 680 ml of 6 N HCl with stirring at ice bath temperatures. The aqueous layer was extracted with 200 ml of methylene chloride and the combined extracts were washed three times with $5 \% \mathrm{NaOH}$ and once with brine. The solution was dried
(MgSO_{4}) and concentrated on a steam bath and then on a rotary evaporator at 100° (20 Torr), giving 37.3 g (87%) of a honey-colored syrup (16). The ir spectrum of 16 (neat) showed acetate absorptions at 1735 and $1250 \mathrm{~cm}^{-1}$; NMR $\tau 5.02(\mathrm{~m}, 3 \mathrm{H}), 7.5-8.5(\mathrm{~m}, 19 \mathrm{H})$ (sharp singlet at 8.01). Gas chromatography of an acetone solution of the syrup revealed only trace quantities of lower molecular weight impurities.

Liquid Phase Pyrolysis of Triacetate 16. The above triacetate $16(15.2 \mathrm{~g}, 0.051 \mathrm{~mol})$ was placed in a $19 / 22$ Pyrex test tube. Into this was set a $19 / 22$ Рyrex air condenser which in turn supported a conventional distillation take-off apparatus. The test tube and approximately $2 / 3$ the length of the air condenser was set into a furnace and the entire system was purged with nitrogen before heating. Distillation of a liquid was ojserved as the temperature of the furnace was increased from 354 to $400^{\circ} \mathrm{C}$ during a 6 -min period. As the temperature was increased from 400 to $470^{\circ} \mathrm{C}$ during a $20-\mathrm{min}$ period foaming and distillation occurred simultaneously. During a $33-\mathrm{min}$. period as the temperature was increased from 470 to $512^{\circ} \mathrm{C}$ smooth distillation gave rise to a yellowish distillate which comprised the main bulk of the distillate. The distillate was dissolved in ether and the upper portions of the disillation apparatus were rinsed down with ether. The combined ethereal solution was washed with brine and 5\% NaOH . Drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvent on the steam bath and then on the rotary evaporator gave rise to $10.1 \mathrm{~g}(84 \%)$ of 17 , a pale yellow residual liquid which showed bands for olefinic and acetoxyl functions at 3040 (m), 1740 (br), 1650 (w), and $1250 \mathrm{~cm}^{-1}$ (br). Analysis of the liquid by gas chromatography at $168^{\circ} \mathrm{C}$ followed by programming at $5^{\circ} \mathrm{C} / \min$ up to $235^{\circ} \mathrm{C}$ showed the product ratio to be 76% the diacetoxy olefin $17,16 \%$ the acetoxydiene 18 and 6% the unchanged triacetate 16 . An NMR spectrum of 17 was obtained after collection from the column: $\tau 3.9-5.4$ (2 multiplets, 2 olefinic H and $2 O$-acetoxyl H), 7.2-8.6 (series of multiplets with a sharp singlet at $8.02,14$ H).

Pyrolysis of 17. Preparation of 9-Acetoxybicyclo[3.3.1]nona-2,6- (and 2,7-) diene (18). The neat diacetate 17 ($9.8 \mathrm{~g}, 0.042 \mathrm{~mol}$) was added. under a stream of ritrogen at a rate of 12 drops $/ \mathrm{min}$, to a $13-\mathrm{in}$. column of glass beads contained in a 24 -in. 24/40 Pyrex tube. The tube was preheated at $530^{\circ} \mathrm{C}$ by means of a furnace and its bottom was set into a trap which was almost entirely submerged in an ice bath. A brownish-black liquid collected in the trap, and after addition was complete, the hot colımn was washed down dropwise with benzene. After cooling, the columr was thoroughly washed down with ether. The resulting ethereal benzene solution was washed with brine and $5 \% \mathrm{NaOH}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated on the steam bath and then on a rotary evaporator at $80^{\circ} \mathrm{C}$, yielding 5.1 g of a brown liquid. The liquid was distilled giving dienyl acetate $18,3.2 \mathrm{~g}(68 \%)$, bp $80-110$ ${ }^{\circ} \mathrm{C}$ (12 Torr). The bulk of the fraction was contaminated by only trace quantities of other compounds. Collection of the product from the column gave a sample which displayed an ir spectrum that showed characteristic absorptions for olefinic and acetoxyl moieties at 3040 (m), 1730 (s), 1370 (m), $1250\left(\mathrm{~s}, \mathrm{br}\right.$), and $1040 \mathrm{~cm}^{-1}$ (s, out of plane olefinic C-H mode); NMR $\tau 4.45$ (m, 4 H), 5.18 (m, 1 H), 7.0-8.5 (m, 9 H) (sharp singlet at 8.05).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 74.13; $\mathrm{H}, 7.92$. Found: $\mathrm{C}, 73.83 ; \mathrm{H}, 7.89$.
Oxymercuration-Demercuration of Dienyl Acetate 18. A mixture of 1.0 g of 9 -acetoxybicyclo[3.3.1]nona-2,6(7)-diene (18) and 3 g of mercuric acetate in : 2 ml of tetrahydrofuran and 12 ml of water was stirred for 24 h at room temperature. To this was added 24 ml of tetrahydrofuran and 24 ml of 0.5 M sodium borohydride solution in 15% sodium hydroxide. Stirring was continued for 3 h followed by addition of 12 g of sodium chloride. The solution was allowed to stand overnight. The solution was filtered through glass wool and the residue washed with ether. The aqueous layer was separated and extracted with five $20-\mathrm{ml}$ portions of ether. The organic layers were combined, dried over magnesium sulfate, and concentrated. Gas chromatographic analysis showed three products: 21 (15%), 19 (40%), and 20 (45%). The 2 -oxaadamantan- 6 -ol (19) was isolated by column chromatography on an alumina column, $0.24 \mathrm{~g}(24 \%), \mathrm{mp} 254.0-257.0^{\circ} \mathrm{C}$. Yields of other runs varied between 16 and 30%.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ (19): C. 70.10 ; H. 9.15. Found: C. 70.18; H, 9.14.

2-Oxaadamantan-6-one (22). Jones reagent, prepared from 18 g of chromium trioxide, 25 ml of water, and 10 ml of concentrated sulfuric acid, was added dropwise to 0.42 g of the above oxaadamantanol 19 in 25 ml of acetone at $0^{\circ} \mathrm{C}$ until a light orange color appeared through the green precipitate. This was stirred for 15 min to ensure that the orange color remained. After 1.5 g of sodium bicarbonate and 0.3 g of sodium carbonate were added, the stirring was continued for 0.5 h . The solids were removed by filtration and the solvent removed on the rotary evaporator. The product was dissolved in ether and dried
over magnesium sulfate. Removal of the solvent yielded 0.4 g (95\%) of thə oxaadamantanone 22. Analysis by gas chromatography on silicon sil 710 and Carbowax 20 M columns at $200^{\circ} \mathrm{C}$ showed this to be about 98% pure. Infrared spectrum showed a triplet between 1700 and $1730 \mathrm{~cm}^{-1}$ indicating $\mathrm{C}=0$ stretching.
Ar.al. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ (22): $\mathrm{C}, 71.03: \mathrm{H}, 7.95$. Found: $\mathrm{C}, 70.75$; H , 7.89 .

2-Oxa-6-adamantanamine Hydrochloride (23). 2-Oxa-6-adamantanone ($22,0.4 \mathrm{~g}$) was dissolved in 30 ml of 95% ethanol saturated with ammonia. This was hydrogenated in a Parr hydrogenation appara:us with 0.3 g of 10% palladium on carbon and 45 psi hydrogen at $50-55^{\circ} \mathrm{C}$ for 24 h . The solution was cooled and filtered to remove the catalyst. The solvent was removed, leaving an oil. The oil was dissclved in ether with a minimum amount of absolute ethanol. Dry HCl gas was bubbled through the solution which was cooled overnight and filtered. Crystals were vacuum sublimed at $175^{\circ} \mathrm{C}$, then recrystallized from ethanol-ether, giving $0.28 \mathrm{~g}(70 \%)$ of $23, \mathrm{mp} 375-380^{\circ} \mathrm{C}$.

Mass spectrum of 23 had peaks at $m / e 153(\mathrm{M}-\mathrm{HCl}), 152,136(\mathrm{M}$ - $\mathrm{NH}_{4} \mathrm{Cl}$), 92, 70, and 56 (base peak).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{ONCl}: \mathrm{C}, 56.87 ; \mathrm{H}, 8.57$. Found: C, $56.93 ; \mathrm{H}$, 8.57.

2-Oxa-6-adamantanecarboxylic Acid (26). Methylmethoxytriphenylphosphonium bromide $(2.5 \mathrm{~g})^{24}$ was added slowly to a $100-\mathrm{ml}$ three-neck flask containing 5.6 ml of 1.26 M n -butyllithium and 30 ml of anhydrous ether at -10 to $-15^{\circ} \mathrm{C}$ under a nitrogen atmosphere while stirring. Stirring was continued at -10 to $-15^{\circ} \mathrm{C}$ for 1 h . While stirring the suspension looked orange to brown. When the suspended material was allowed to settle, the solution above it was scarlet red. To this, 0.15 g of the oxaadamantanone 22 in 10 ml of ether was added dropwise with stirring under nitrogen atmosphere at -10 to $-15^{\circ} \mathrm{C}$. Stirring was continued overnight at room temperature. Anhydrous zinc chloride was added until the red color disappeared. This enol ether 24 was stirred for 1 h followed by acidification with perchloric acid $.60 .5 \%$). After removal of the solvent, the residue containing the aldehyde 25 was dissolved in reagent acetone and oxidized with Jones reagent. The solvent was removed and 75 ml of water was added. This was \in xtracted with five $20-\mathrm{ml}$ portions of ether. The organic layer was extracted with five $20-\mathrm{ml}$ portions of 5% sodium hydroxide solution. The alkaline phase was acidified with 37% hydrochloric acid, cooled, and extracted with five $20-\mathrm{ml}$ portions of ether. The ethereal phase containing the acid 26 , was dried over magnesium sulfate and concentrated. The crystals, formed upon cooling in a refrigerator, were washed with pentane and sublimed at $125^{\circ} \mathrm{C}$ at 2 Torr. yielding 0.037 $g(20 \%)$ of 26 . Infrared spectrum in chloroform of the enol ether 24 shoued an absorbance at $1690 \mathrm{~cm}^{-1}$ characteristic of an enol ether. The aldehyde 25 showed the characteristic peaks at 2860, 2720, and $1720 \mathrm{~cm}^{-1}$. The acid 26 displayed absorption at $3515,3300-2500$, and $1700 \mathrm{~cm}^{-1}$

Aral. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 65.91; $\mathrm{H}, 7.74$. Found: $\mathrm{C}, 65.90 ; \mathrm{H}, 7.84$.
Acknowledgments. We wish to thank Dr. Kenneth Rinehart for the mass spectrum.

Registry No.-7, 556-48-9; 8, 58512-50-8; 9, 19843-75-5; 10, 41043-88-3; 11, 57438-52-5; 14, 58512-51-9; 16, 58512-52-0; 17, 58512-53-1; 18 (2,7-diene), 58512-54-2; 18 (2,6-diene), 58526-81-1; 19, 58512-55-3; 22, 58512-56-4; 23, 58512-57-5; 24, 58512-58-6; 25, 58512-59-7; 26, 58512-60-0; acetyl chloride, 75-36-5; morpholine, 110-G1-8; acryloyl chloride, 814-68-6; ethyl acetate, 141-78-6; mercuric acetate, 1600-27-7; methylmethoxytriphenylphosphonium bromide, 33670-32-5.

References and Notes

(1) IV. L. Davies. R. R. Grunert, R. F. Haff. J. W. McGahen, E. M. Neumayer, N. Paulshock, J. C. Watts. T. R. Wood, E. C. Hermann, and C. E. Hoffman, Science, 144, 862 (1964).
(2) K. W. Cockran and H. F. Maassab. Fed. Proc., Fed. Am. Soc. Exp. Biol., 23, 387 (1964).
(3) N. Oker-Blom and A. L. Anderson, Eur. J. Cancer. 2, 9 (1966): Chem. Abstr., 70, 1299m (1969)
(4) V. Balode and R. A. Gibadulin, Latr. PSR Zinat. Akad. Vestis, Kim. Ser., 6, 104 (1969): Chem. Abstr., 71, 69093r (1969).
(5) L. A. Cates and R. L. Gallio, J. Pharm. Sci., 63, 1481 (1974)
(6) V. N. Kolmykova. Vopr. Onkol., 14, 89 (1968); Chem. Abstr., 69, 42580u (1968).
(7) B. Prescott, G. Lones, C. Peacock, and G. Caldes, Antimicrob. Ag. Chemother., 275 (1969); Chem. Abstr., 75, 5325t (1971).
(8) M. E. Greig and A. J. Gibbons, Arch. Int. Pharmacodyn. Ther., 182, 364 (1969): Chem. Abstr., 72, 98846q (1970).
(9) Y. K. Ho, M. T. Hakala, and S. F. Zakrezehwski, Cancer Res., 32, 1023 (1972).
(10) W. L. Davies, R. R. Grunert, and C. E. Hoffman, J. Immunol., 95, 1090 (1965).
(11) R. S. Schwab, A. C. England, D. C. Poskanzer, and R. R. Young. J. Am. Mod Assoc., 208, 1168 (1969).
(12) Heteroatom-substituted adamantanes have been reported recently. However, most of them do not have additional functional groups: (a) H. Stetter H. Meissner, and W. Last, Chem. Ber., 101, 2889 (1968); (b) H. Stetter, E. F. Schwartz, Chem. Ber., 101, 2464 (1968); (c) F. Lautenschlaeger. J. Org Chem., 34, 4062 (1969); (d) H. Stetter and K. Heckel, Tetrahedron Lett., 801, 1907 (1972); (e) N. V. Avenna and N. S. Zefirov, J. Chem. Soc., Chem. Commun., 197 (1973).
(13) A. C. Cope, D. L. Nealy, P. Scheiner, and G. Wood, J. Am. Chem. Soc., 87, 3130 (1965).
(14) C. S. Foote and R. B. Woodward, Tetrahedron, 20, 687 (1964).
(15) P. W. Hickmott and J. R. Hargreaves, Tetrahedron, 23, 3151 (1967).
(16) N. F. Firrell and P. W. Hickmott, J. Chem. Soc., 2320 (1968).
(17) S. Moon, J. M. Takakis, and B. H. Waxman, J. Org. Chem., 34, 2951 (1969)
(18) N. V. Averina and N. S. Zefirov, J. Org. Chem. USSR (Engl. Transl.), 5, 1936 (1969).
(19) N. S. Zefirov, V. A. Tartkovskii, and N. V. Averina, J. Org. Chem. USSR (Engl. Transl.), 7, 510 (1971).
(20) J.-H. Liu, G. A. Gauger, and P. Kovacic, J. Org. Chem., 38, 545 (1973)
(21) A. Bowers, T. G. Halsall, E. R. H. Jones, and A. J. Lemin, J. Chem. Soc. 2548 (1953).
(22) A. H. Alberts, H. Wynberg. and S. Stratting. Synth. Commun., 2, 79 (1972)
(23) Melting points were measured on a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra were determined on a Perkin-Elmer 257 grating spectrophotometer in $\mathrm{CHCl}_{3}, \mathrm{CCl}_{4}$, or CS_{2}. A Varian A-60 spectrophotometer was used to record NMR spectra in CCl_{4} using tetramethylsilane as an internal standard. Gas chromatographic analyses were made on a Hewlett-Packard 720 thermal conductivity gas chromatograph Most products were determined on a $4 \mathrm{ft} \times 0.25$ in. silicone rubber column on Chromosorb W. Helium flow rates of $30-40 \mathrm{ml} / \mathrm{min}$ were found optimal Elemental analyses were carried out by Geller Laboratories, Saddle River. N.J.
(24) G. Wittig and A. Schlosser, Chem. Ber., 80, 1376 (1961)

Reactions of Dicarbonyl Compounds with Dimethyl β-Ketoglutarate. 2. Simple Synthesis of Compounds of the [10.3.3]- and [6.3.3]Propellane Series ${ }^{1}$

S. Yang and J. M. Cook*
Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

Received December 30, 1975

Abstract

Reaction of cyclododecane-1,2-dione (4a) or cyclooctane-1,2-dione (4b) with dimethyl β-ketoglutarate (5) at room temperature in aqueous buffer (pH 6.8) provided good yields of tetramethyl[10.3.3]propellane-14,17-dione $13,15,16,18$-tetracarboxylate ($6 \mathbf{a}$) and tetramethyl[6.3.3]propellane-10,13-dione 9,11,12,14-tetracarboxylate ($6 \mathbf{b}$), respectively. Hydrolysis and decarboxylation of $\mathbf{6 a}$ and $\mathbf{6 b}$ furnished the propellanediones $7 \mathbf{a}$ and 7 b . The dione 7 a was converted to [10.3.3]propellane by Wolff-Kishner reduction while Clemmensen reduction of the propellanediones yielded the cyclic substituted bisnoradamantyl alcohols 11 and 12.

Chemistry of propellanes has been given much attention in recent years. ${ }^{2}$ In particular, a large effort has been spent upon the synthesis of propellanes containing small rings and upon the study of the bonding character of their central bond. ${ }^{3}$ On the other hand, no propellanes with medium or large rings ($n>6$) seem to have been prepared, presumably because of difficulties in synthesizing such compounds. However, the approach used by Weiss and Edwards ${ }^{4}$ for the synthesis of diketo derivatives of [4.3.3]- (1) and [3.3.3]propellane (2) through reaction of cyclohexane-1,2-dione and cyclopen-

Scheme I

l, $n=4 ; \mathrm{R}=\mathrm{H}$
2. $n=3 ; \mathrm{R}=\mathrm{H}$

6a. $n=10 ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
6b, $n=6 ; \mathrm{R}=\mathrm{CO}_{\mathbf{2}} \mathrm{CH}_{3}$
7a, $n=10 ; \mathrm{R}=\mathrm{H}$
7b. $n=6: \mathrm{R}=\mathrm{H}$

tane-1,2-dione, respectively, with dimethyl β-ketoglutarate seemed to be capable of extension to medium-ring 1,2 -diketones. This proved indeed to be the case. We wish to report here on the synthesis and properties of several compounds of the [10.3.3]- and [6.3.3]propellane series, including the parent hydrocarbon (3) of the former. ${ }^{5}$

Reaction of 1 mol of cyclododecane-1,2-dione (4a) ${ }^{6}$ with 2 mol of dimethyl β-ketoglutarate (5) in a mixture of methanol and citrate-phosphate buffer (pH 6.8) for 24 h at room temperature gave a precipitate (94%) of tetramethyl [10.3.3]pro-pellane-14,17-dione 13,15,16,18-tetracarboxylate ($6 \mathbf{a}$), mp $156.5-158^{\circ} \mathrm{C}$ (from methanol); high-resolution mass spectrum, calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}, 508.2308$; found, 508.2300 . This product of $1: 2$ stoichiometry was homogenous on TLC with several solvent systems; only one of the several possible stereoisomers seems to have been obtained. Structure 6a is consistent with ir, NMR, and mass spectral data. Three successive losses of 32 units $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ were observed from the parent ion in the mass spectrum of 6 a . This can be formulated to occur as illustrated in Scheme II to generate ketene intermediates. Similar fragmentations have been reported by

Scheme II

Table I. ${ }^{13} \mathrm{C}$ Chemical Shifts for Tetracyclo[6.3.3.0.0 ${ }^{10,13}$]tetradecan-10-ol (11)

11

Types of carbon atoms	Chemical shift, ppm	Types of carbon atoms	Chemical shift, ppm
$3+6$	$26.19 a$	13	49.63
$4+5$	27.76	$11+9$	51.30
$2+7$	28.94	$1+8$	57.10
$12+14$	44.50	10	82.11
a Measured from Me_{4} Si standard.			
and			

Biemann ${ }^{7}$ with cis-crotonic acid methyl ester and are observed quite consistently in our β-keto ester derivatives. A fourth loss of 32 units was also observed but it was of very low intensity.

The tetramethyl tetracarboxylate derivative (6a) was hydrolyzed and decarboxylated in refluxing 6 N hydrochloric acid to furnish an oil in 90% yield which crystallized from methanol, mp $53-55^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. Spectral data unambiguously support structure 7a for this white solid. The alicyclic protons of the 12 -membered ring appeared as a singlet at δ $1.40(20 \mathrm{H})$ in the NMR spectrum, while the cyclopentanone protons were observed as two singlets at $\delta 2.36(4 \mathrm{H})$ and 2.45 $(4 \mathrm{H})$, respectively. The presence of a strong band at 1741 cm^{-1} in the ir and the absence of signals from the methyl ester functions in the NMR further substantiated the structural assignment.

Treatment of [10.3.3]propellane-14,17-dione (7a) with hydrazine and base ${ }^{8}$ furnished [10.3.3]propellane (3) in 54% yield. The compound was crystallized from ether, $\mathrm{mp} 33-35$ ${ }^{\circ} \mathrm{C}$ (sublimes at 750 mmHg); high-resolution mass spectrum calcd for $\mathrm{C}_{18} \mathrm{H}_{32}, 248.2504$; found, 248.2499. The ir spectrum of this compound lacked carbonyl or hydroxyl bands. Two singlets (12 H and 20 H) observed in the NMR at $\delta 1.51$ and 1.38 can be attributed to the cyclopentane and cyclododecane protons, respectively. The cyclopentane protons are somewhat deshielded compared to the cyclododecane protons because of strain in the five-membered rings. ${ }^{9}$ A mixture of cyclopentane and cyclododecane furnished an NMR spectrum identical with that of 3.

Reaction of cyclooctane-1,2-dione (4b) and 5 under conditions similar to those described above provided tetrameth-yl[6.3.3]propellane-10,13-dione tetracarboxylate ($6 \mathbf{b}$) in good yield. Hydrolysis with 6 N hydrochloric acid and a cosolvent (acetic acid) yielded an oil which was crystallized from methanol to furnish [6.3.3]propellane-10,13-dione (7b) in 85% yield, $\mathrm{mp} 80-82^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}$). The similarity between the physical and spectral properties of compounds 7a and 7b confirmed the structural assignment of [6.3.3]propellane-10,13-dione as 7 b .

Several attempts to reduce the [6.3.3]propellane-10,13dione ($7 \mathbf{b}$) to the parent hydrocarbon by Wolff-Kishner reduction ${ }^{8}$ were made. None of these attempts were successful. Only traces of the oxygen-free propellane were observed and the majority of the material isolated was dimeric (see Experimental Section).

Because Wolff-Kishner reduction did not prove successful in the [6.3.3] system, it was hoped that Clemmensen reduction of the carbonyl functions would yield the parent hydrocarbon. Borden and co-workers ${ }^{10}$ had converted 1,5-dimethylbicy-clo[3.3.0]octane-3,7-dione (8) into 1,5-dimethylbicyclo[3.3.0]octane (9) by zinc amalgam reduction in aqueous solution. In addition, a small amount of the bisnoradamantyl
Scheme III

8, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{O}$
13
9, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}_{2}$ 14, $R=H ; X=O$

10, $\mathrm{R}=\mathrm{CH}_{3}$
15, $\mathrm{R}=\mathrm{H}$

derivative 3,7-dimethyltricyclo[3.3.0.0 $0^{3,7}$]octan-1-ol (10) was isolated; the acetate of 10 was the major product on reduction in acetic anhydride. Consequently, this reduction was expected to be straightforward; however, when [6.3.3]propel-lane-10,13-dione was reduced with $\mathrm{Zn}(\mathrm{Hg})$ in aqueous HCl at reflux, a crystalline compound ($\mathrm{mp} 87-88^{\circ} \mathrm{C}$) containing one oxygen atom was isolated in 69% yield (high-resolution mass spectrum, calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}, 206.1670$; found 206.1670). The compound was nonketonic but contained a hydroxy group (ir). Since the NMR spectrum lacked signals from methylene prctons or methine protons next to oxygen the compound appeared to contain a tertiary hydroxy function analogous to compound 10 reported by Borden. ${ }^{10}$ The structure which best fits the spectroscopic evidence is tetracyclo[6.3.3.0.0 $\left.{ }^{10,13}\right]$ tet-radecan-10-ol (11). This structure is strongly supported by ${ }^{13} \mathrm{C}$ NMR (see Table I). The oxygen-substituted tertiary carbon (C-10) appeared at lowest field (82.11 ppm), clearly distinct from the other carbon atoms, while carbon atom 13 was observed at 49.63 ppm . The remaining 12 carbon atoms appeared as six singlets. Each of these singlets represented two carbon atoms because of the symmetry of this part of the molecule as depicted in Table I. ${ }^{11}$ When [10.3.3]propellane-14,17-dione was allowed to react under the same conditions, a 70% yield of tetracyclo[10.3.3.0.0 ${ }^{14,17}$]octadecan-14-ol (12), $\mathrm{mp} 142-143^{\circ} \mathrm{C}$ (from methanol) was realized. The structure was confirmed by comparison with data collected on 11. In addition, the tertiary proton present on C-17 of the tetracyclooctadecanol 12 was observed as a triplet at $\delta 2.09$ in the $22(1-\mathrm{MHz}$ NMR spectrum. The other signals in this spectrum were also in accord with this assignment.

The reduction conditions employed in the work of Borden for conversion of 8 to 9 provided substantial amounts of 1,5 -dimethylbicyclo[3.3.0]octane (9). We never observed any trace of the parent hydrocarbon (3) in our reaction. A plausible meshanism for the formation of the bridge between the two carbon atoms has been proposed; ${ }^{10}$ the zinc-stabilized carbanion (13) resulting from reduction of one carbonyl function of 8 can react intramolecularly with the second carbonyl function to form the $\mathrm{C}(10-13)$ bridge. Our work is in agreement with this postulated mechanism but the higher temperature here may have allowed more interaction between the two carbonyls leading to substantially higher yields of the bridged tetracyclo species 11 and 12 . We then attempted to convert bicyclo[3.3.0]octane-3,7-dione (14) to bisnoradamantyl alcohol (15) at reflux, but obtained only complex mix-
tures of products, none of which appeared to be the desired alcohol 15.
The preferential $1: 2$ stoichiometry observed in the reaction of 1,2 -diketones and dimethyl β-ketoglutarate including $\mathbf{4 a}$ and $\mathbf{4 b}$ can be explained through a sequence suggested by Weiss ${ }^{12}$ and supported by our work. ${ }^{5}$ It is shown for the compounds described in the present paper in Scheme IV. In

this sequence aldol condensation of $4 a$ or $4 b$ and 5 is assumed to give the β-hydroxy ketones 16 and 17 ; the latter would lose one molecule of water to give the 4 -hydroxycyclopenten-2-one derivative (18). Michael addition of a second molecule of 5 would provide 19 which could then lose another molecule of water; and a second Michael reaction (intramolecularly) would generate the observed final products $\mathbf{6 a}$ and $\mathbf{6 b}$.

All attempts to isolate the $1: 1$ intermediates 17 or 18 from the reaction at pH 6.8 have been so far unsuccessful. Even when the reaction was carried out with a $10: 1$ excess of the 1,2-dicarbonyl compound, the product first observed by TLC, or isolated, was the propellanedione 6 a . However, a $1: 1$ adduct entirely analogous to 18 has been obtained already by Japp and Lander ${ }^{13}$ from the reaction of benzil and β-ketoglutaric acid in alcoholic KOH and we have encountered several other compounds of this type. Under the conditions used by Japp and Lander, we have obtained the 1:1 adduct (21) closely related to their cyclopentenolone, from benzil (20) and dimethyl β-ketoglutarate (5). The same compound was prepared independently by White. ${ }^{14}$ When cyclododecane-1,2-dione (4a) was treated with 5 in alcoholic KOH two compounds were

observed by TLC. The less polar one of these was identified as the propellanedione 6a. All attempts to isolate the second, more polar substance have yielded only the propellanedione $\mathbf{6 a}$. We feel that this new compound may be the 4 -hydroxy-cyclopenten-2-one (18) analogous to 21 . A paper which discusses the details of this mechanism and which reports on isolation of 1:1 adducts in related systems is in preparation. ${ }^{15}$ Reaction of $\mathbf{4 a}$ and 5 in methanol with sodium methoxide also provided 6a.

In the buffer system (pH 6.8), the rate of the Michael addition of dimethyl β-ketoglutarate to the 4 -hydroxycyclo-penten-2-one (18) seems to be faster than the formation of 18 itself; consequently, only the adducts of $1: 2$ stoichiometry have been isolated.

We have also investigated reaction of 4 a and 5 under anhydrous acidic conditions. When cyclododecane-1,2-dione (4a) and dimethyl β-ketoglutarate (5) were allowed to react in refluxing benzene in the presence of a small amount of p-toluenesulfonic acid, a colorless compound was isolated in small yield, mp $85-86{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}$); high-resolution mass spectrum calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}, 334.1780$; found, 334.1788 . This is evidently formed from one molecule each of the reactants by elimination of two molecules of water. The NMR of this $1: 1$ adduct is very complex and suggests that extensive rearrangement has occurred during formation of this substance.

It appears that reaction of alicyclic α-dicarbonyl compounds with dimethyl β-ketoglutarate will in general proceed with 1:2 stoichiometry to furnish tetramethylpropellanedione tetracarboxylate derivatives in good yield, and similar results are obtained in alkaline methanol. In contrast to this, the reaction in refluxing benzene appears to give a $1: 1$ adduct, although some rearrangement may take place and in addition, reactions of aromatic α-diketones also yield 1:1 adducts. ${ }^{16}$ At no time did we observe the formation of a propellanedione on reaction of benzil and dimethyl β-ketoglutarate.

Experimental Section

Microanalyses were performed (UWM) on an F \& M Scientific Corp. Carbon, Hydrogen, Nitrogen Analyzer Model 185; some analyses were carried out at the National Institutes of Health, Bethesda, Md. Melting points were taken on a Thomas-Hoover apparatus and are uncorrected. Nuclear magnetic resonance spectra were recorded on Varian T-60, HA-100, and CFT-20 spectrometers. Infrared spectra were taken on a Beckman Acculab-1 instrument, ultraviolet spectra were recorded on a Cary 17 spectrophotometer, and mass spectra were taken on a Finnigan 1015 or AEI MS902 instrument.

Analytical TLC plates used were E. Merck-Brinkmann uv active silica gel on plastic. The spray reagent was composed of 2,4 -dinitrophenylhydrazine, ethanol, and sulfuric acid. The citrate-phosphate buffer (pH 6.8) was prepared by dissolving $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(11.67$ g) and citric acid (3.68 g) in water (900.00 ml).

Preparation of Cyclododecane-1,2-dione (4a) and Cyclooc-tane-1,2-dione (4b). The 1,2-dione 4 a was prepared by the method of Sharpless, ${ }^{8}$ yield 50%, bp $90-94^{\circ} \mathrm{C}(0.8 \mathrm{mmHg})$ [lit. $93-95^{\circ} \mathrm{C}(1$ $\mathrm{mmHg})] .{ }^{6}$ Cyclooctane-1.2-dione (4b) was prepared by the same method, albeit in very low yield. Higher yields of 4 b were obtained by acyloin condensation ${ }^{17}$ followed by oxidation: ${ }^{18} \mathrm{bp} 68-69.5^{\circ} \mathrm{C}(3$ $\mathrm{mmHg})\left[\right.$ lit. $\left.{ }^{19,20} \mathrm{bp} 68.8-69.5^{\circ} \mathrm{C}(3 \mathrm{mmHg})\right]$.

Tetramethyl[10.3.3]propellane-14,17-dione $13,15,16,18$ - Tetracarboxylate (6 a). Cyclododecane-1,2-dione ($5.0 \mathrm{~g}, 0.025 \mathrm{~mol}$) was dissolved in methanol (100 ml) and citrate-phosphate buffer (pH 6.8)
was added until the solution became turbid. A few additional drops of methanol were added to clarify the solution and dimethyl β-ketoglutarate ($8.87 \mathrm{~g}, 0.050 \mathrm{~mol}$) was added all in one portion. After stirring for several hours at room temperature, a white precipitate began to form. The reaction was con-inued for 3 days and then the mixture was filtered. A white, crystalline solid (11.9 g) was isolated by filtration in 94% yield. It was homogenous on TLC ($R_{f} 0.39,1: 9$ ethyl acetate/ benzene). The product was recrystallized from methanol, mp $156.5-158{ }^{\circ} \mathrm{C}$ (unchanged on further recrystallization) and identified as 6a: ir $\left(\mathrm{CHCl}_{3}\right) 2930(\mathrm{C}-\mathrm{H}), 1728$ (ester carbonyl), and $1653 \mathrm{~cm}^{-1}$ (enol form of β-keto ester); uv $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{OH}\right) 246.8 \mathrm{~nm}$; NMR δ $\left(\mathrm{CDCl}_{3}\right) 1.45(20 \mathrm{H}$, broad singlet), 3.68-4.20 (14 H , six singlets of unequal intensity), $1064(1 \mathrm{H}, \mathrm{s}$, enol proton), and $10.72(1 \mathrm{H}$, s. enol proton), both enol protons $\mathrm{D}_{2} \mathrm{O}$ exchangeable; mass spectrum M^{+}m/e 508.2300 (calcd for $\mathrm{C}_{2 \epsilon} \mathrm{H}_{36} \mathrm{O}_{10} .508 .2308$); m/e 508 (49, M^{+}), 490 (27.1, M - 18). 477 (79.2). 476 (1)0, M - 32), 446 (5.8), 444 [50.1, M - ($2 \times$ 32)]. 443 (12.1), $442(-5.8) .414$ (15.1). $412[43.1, \mathrm{M}-(3 \times 32)] .410$ (5.3), 40421.5$), 382(17.8) .399(5.5), 380[6.0 . \mathrm{M}-(4 \times 32)]$, and 300 (4.0).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}$: C, 61.40; H, 7.10. Found: C, 61.62; H, 7.18.
[10.3.3]Propellane-14,17-dione (7a). The tetramethylpropellanedione tetracarboxylate ($6 \mathrm{a}, 5.1 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved in 6 N hydrochloric acid (60 ml) and the solution was refluxed for 6 h . After extraction with chloroform ($5 \times 50 \mathrm{ml}$), washing of the combined organic layers with water, and drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was evaporated under reduced pressure to yield a brown oil. The oil was taken up in hot methanol; on cooling. white crystals formed ($2.5 \mathrm{~g} .90 \%$ yield) of $\mathrm{mp} 53-55^{\circ} \mathrm{C}$: ir $\left(\mathrm{CHCl}_{3}\right) 2915(\mathrm{C}-\mathrm{H}), 2850(\mathrm{C}-\mathrm{H})$, and 1741 cm^{-1} (cyclopentanone $\mathrm{C}=\mathrm{O}$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(20 \mathrm{H}, \mathrm{s}), 2.36(4$ $\mathrm{H}, \mathrm{s})$, and $2.45(4 \mathrm{H}, \mathrm{s})$; mass spectrum $m / e 276\left(100, \mathrm{M}^{+}\right), 248$ (89.6), 233 (18), 220 (73), 218 (31). 205 (14.5), 195 (16.6), 191 (8.3), 177 (16.6) $164(10), 163(20), 149(40), 150(14.5), 135(56.2), 122(67)$, and 121 (68.7).

Anal. Calcd for $\mathrm{C}_{1 \varepsilon} \mathrm{H}_{28} \mathrm{O}_{2}$: $\mathrm{C}, 78.30 ; \mathrm{H}, 10.10$. Found: $\mathrm{C}, 78.10 ; \mathrm{H}$, 10.28 .
[10.3.3]Propellane (3). The propellanedione $7 \mathrm{a}(0.50 \mathrm{~g}, 0.0098 \mathrm{~mol})$ and hydrazine (4.5 g of 95%) were added to a mixture of diethylene glycol and potassium hydroxide pellets (2.4 g). The reaction mixture was slowly heated to $135^{\circ} \mathrm{C}^{8}$ until the potassium hydroxide pellets dissolved; the solution was refluxed for 1 h . The water and excess hydrazine were distilled from the mixture (750 mmHg) until the pot temperature reached $180^{\circ} \mathrm{C}$. The viscous residue was heated for 3 h at $180^{\circ} \mathrm{C}$, cooled to room temperature, and then poured into cold water (40 ml). The aqueous solution was extracted with benzene (5 $\times 25 \mathrm{ml}$), and the combined extracts were washed several times with small portions of water anc dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Partial removal of solvent provided white crystals $(0.24 \mathrm{~g}, 54 \%)$ of 3 with $\mathrm{mp} 33-34^{\circ} \mathrm{C}$ (sublimed) and $R_{/} 0.64$ (benzenel. The spectral data were as follows: ir $\left(\mathrm{CHCl}_{3}\right)$ 2930 and $2860 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{F}_{-}^{-}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38(20 \mathrm{H}, \mathrm{s}$, cyclododecane protons) and $1.5_{-}(12 \mathrm{H}, \mathrm{s}$, cyclopentane protons); mass spectrum $m / e 248$ (100, M^{+}), 220 (51), 205 (50), 203 (4.4), 177 (4.4), 163 (8.5), 149 (20), 135 (53.3), 122 (99), 122 (100); M^{+}at m / e 248.2499; calcd for $\mathrm{C}_{18} \mathrm{H}_{32}, 248.2504$.

Tetramethyl[6.3.3]propellane-10,13-dione 9,11,12,14-Tetracarboxylate ($6 b$). This compound was prepared from $4 b$ under the same conditions as the preparation of 6 a above; however, the yield (9 g) of crystalline $\mathbf{6 b}$ was only $80 \%, \mathrm{mp} 160-163^{\circ} \mathrm{C}$ (from methanol); ir $\left(\mathrm{CHCl}_{3}\right) 2940.2850(\mathrm{C}-\mathrm{H}), 1730$ (ester $\mathrm{C}=\mathrm{O}$) and $1648 \mathrm{~cm}^{-1}$ (enol form of 3 -keto ester): NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.3-1.7(12 \mathrm{H}$, broad multiplet), 3.6-4.0 (14 H . several overlapping singlets of unequal intensity, 4 OCH_{3} and two nonenolized β-keto ester protons); mass spectrum \mathbf{M}^{+} at $m / e 452.1689$; calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{10}, 452.1682$; low-resolution m / e 452 (11.4, M ${ }^{+}$), 420 (8.3), 388 (100), 360 (41), 356 (65.8), 329 (51.5), 328 (54.2), 319 (34), 297 (57.2), 296 (29), 287 (42), 278 (21), 272 (32), 246 (67). 229 (56), 214 (95), 2 C 2 (44): uv $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{OH}\right) 244 \mathrm{~nm}$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{10}$: C, 58.40: H, 6.20. Found: C, 58.13; H. 6.50.
[6.3.3]Propellane-10,13-dione (7b). To a solution of glacial acetic acid (55 ml), concentrated hydrochloric acid (40 ml), and water (20 ml), tetramethyl[6.3.3]propellane-10,13-dione 9,11.12,14-tetracarboxylate $(4.5 \mathrm{~g}, 0.010 \mathrm{~mol}$ was added and the resultant mixture was refluxed for 10 h . A portion of the excess acid was removed under reduced pressure and the residue made alkaline with sodium bicarbonate. The basic solution was next extracted with chloroform (10 $\times 50 \mathrm{ml})$ and the extracts were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of solvent furnished an oil $(1.9 \mathrm{~g}, 85 \%)$ which on dissolution in a small amount of hot methanol provided white crystals of $\mathbf{7 b}, \mathrm{mp} 80-82^{\circ} \mathrm{C}\left(R_{f} 0.15\right.$ in 20% ethyl acetate/benzene): ir $\left(\mathrm{CHCl}_{3}\right)$ $1740 \mathrm{~cm}^{-1}$ (cyclopentanore $\mathrm{C}=\mathrm{O}$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40-1.93(12 \mathrm{H}$,
broad singlet), $2.35(4 \mathrm{H}, \mathrm{s}$, cyclopentanone protons), and $2.38(4 \mathrm{H}$, s . cy=lopentanone protons); mass spectrum $m / e 220\left(100, \mathrm{M}^{+}\right), 192$ (12.5, M -28), $188(43.8), 164[100, \mathrm{M}-(2 \times 28)], 149(52.5), 135(50)$, 136 । 52.5), 123 (50), 121 (52.5), 109 (88), 108 (80), and 107 (75)

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 76.40; H, 9.10. Found: C, 76.45; H, 9.35.
Attempted Reduction of [6.3.3]Propellane-10,13-dione (7b). A. A mixture of $7 \mathbf{b}(0.50 \mathrm{~g}, 0.0022 \mathrm{~mol})$, hydrazine (1.5 g of 95%), diethylene glycol (9.2 ml), and potassium hydroxide pellets (1.2 g) was heated slowly to $146^{\circ} \mathrm{C}$. After the liquid had refluxed (dry ice-acetone cold finger condenser) at this temperature for 1 h , the water and excess hydrazine were distilled from the solution until the pot temperature reac.aed $200^{\circ} \mathrm{C}$. The viscous residue was heated at $200^{\circ} \mathrm{C}$ another 3 h , ccoled to room temperature, and poured into water (20 ml). The solution was extracted with benzene ($8 \times 25 \mathrm{ml}$). The combined extracts were washed several times with small portions of water and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of solvent afforded an oil ($0.2 \mathrm{~g}, R_{f} 0.655$, benzene): ir $\left(\mathrm{CHCl}_{3}\right) 2930$ and $2870 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H})$; mass spectrum $m / e 380\left(29.9, \mathbf{M}_{1}+\right), 376\left(38.4, \mathbf{M}_{2}+\right) .361$ (6.0), 351 (6), 337 (100), 295 (7), 279 (8.5), 232 (19.6), 229 (15), 215 (13). 204 (14.5), 203 (14.5), 192 (2.0), 189 (37.6), 187 (20.5), 173 (13), and 167 (32). This appears to be composed of two dimeric compounds M^{+}at $m / e 380$ and M^{+}at $m / e 376$.
B. When the reaction was repeated using excess hydrazine (5.5 g of 95%), diethylene glycol (200 ml), and potassium hydroxide pellets $(3 \mathrm{~g})$, an oil (0.2 g) was isolated which had $R_{f} 0.47$ (benzene); ir (CHCl_{3}) 293(and $2860 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H})$; mass spectrum $\mathrm{m} / \mathrm{e} 376\left(100, \mathrm{M}^{+}\right) .361$ (12.5), 347 (15), 334 (30), 319 (10), 276 (74), 248 (78), 239 (16), 233 (25), 229 (29), and 220 (59). None of the [6.3.3]propellane was observed in this experiment.

Tetracyclo[10.3.3.0.0 ${ }^{14,17}$]octadecan-14-ol (12). A mixture of zinc $(2 \mathrm{~g})$, mercuric chloride (0.2 g), concentrated hydrochloric acid $(0.1$ ml), and water (2 ml) was stirred for 5 min . The aqueous layer was then decanted to furnish the zinc amalgam. Water (1 ml), hydrochloric acid (4 ml of concentrated), glacial acetic acid (2 ml), and $7 \mathrm{a}(1.0 \mathrm{~g}$, 0.0036 mol) were added to the amalgam and the resulting mixture was refluxed for $20 \mathrm{~h} .{ }^{21}$ The solution was next cooled. decanted into water (30 ml), and refrigerated for 2 days. A white, crystalline solid (0.66 g , 70% । formed which was filtered off, $\mathrm{mp} 142-143^{\circ} \mathrm{C}$ (from methanol). The spectral data are in accord with structure 12: ir $\left(\mathrm{CHCl}_{3}\right) 3460$ (OH) and $2490 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}) ; 220-\mathrm{MHz} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.43(20 \mathrm{H}, \mathrm{m})$, $1.64(4 \mathrm{H}, \mathrm{m}), 1.76(4 \mathrm{H} . \mathrm{m})$, and $2.09(1 \mathrm{H}, \mathrm{t})$; mass spectrum M^{+}at $\mathrm{m} / \mathrm{e} 262.2295$; calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}, 262.2296 ; \mathrm{m} / \mathrm{e} 262\left(100, \mathrm{M}^{+}\right), 233$ (83.3), 220 (75), 244 (20i, 207 (50), 191 (16.6), 177 (25), 163 (50), 151 (45) 149 (66), 135 (100). Solvent of crystallization was tightly bound in the crystals and prec.uded exact analysis.

Tetracyclo[6.3.3.0.0 ${ }^{10,13}$]tetradecan-10-ol (11). The same reduction procedure was employed to convert 7 b to $11 .{ }^{21}$ It furnished a 69% yield (0.52 g) of the alcohol $11: \mathrm{mp} 87-88^{\circ} \mathrm{C}$ (benzene); $R_{f} 0.3$ (me:hylene chloride); ir $\left(\mathrm{CHCl}_{3}\right) 3440(\mathrm{OH})$ and $2925 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.48-1.50(20 \mathrm{H}$, two overlapping singlets) and 1.78-2.2 (1 H, broad multiplet); mass spectrum m/e 206 (43.7), 177 (62.5), 164 (73), 163 (100), 150 (25), 151 (37), 149 (75), 136 (99), 122 (69), and 121 (100); M^{+}at $m / e ~ 206.1670$; calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}, 206.1670$. ${ }^{13} \mathrm{C}$ data are contained in the text.

Reaction of Benzil (20) and Dimethyl β-Ketoglutarate (5) in Potassium Hydroxide/Ethanol ${ }^{13}$ to Yield 2,5-Dicarbome-thoxy-4-hydroxy-3,4-diphenylcyclopent-2-enone (21). To a solution of potassium hydroxide (0.5 g) in ethanol (125 ml of absolute), benzil (10.5 g . 0.05 moll was added with stirring. Dimethyl β-ketoglutarate $(17.4 \mathrm{~g}, 0.10 \mathrm{~mol})$ was then added to the solution and the reaction stirred at room temperature. White crystals formed within several hours and were filtered from the reaction mixture after 20 h . The crystals ($12.8 \mathrm{~g}, 70 \%$) were washed with water and dried: mp $136-140^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) 3460(\mathrm{OH})$ and $1740 \mathrm{~cm}^{-1}$ (ester $\mathrm{C}=0$), M^{+}at $m / e 366$; NMR identical with that of 21 reported by White. ${ }^{14}$

Reaction of Cyclododecane-1,2-dione (4a) with Dimethyl β Ketoglutarate in Potassium Hydroxide/Methanol. Cyclodode-cane-1,2-dione (2.0 g .0 .310 mol) and dimethyl $\boldsymbol{\beta}$-ketoglutarate (0.24 g, 0.0013 mol were dissolved in methanol. Methanolic potassium hydroxide (0.1 g of potassium hydroxide in 20 ml of methanol) was added to the reaction and the solution was stirred continuously for several hours. A new compound. $R_{f} 0.16$ (20% ethylacetate/benzene). was observed on TLC; however. after workup and column chromatography only the propellanedione 6 a with $R_{f} 0.40$ was isolated. No trace of the new compound ($R_{f} 0.16$) could be found after column chromatography or preparative TLC.

Reaction of Cyclododecane-1,2-dione with Dimethyl β-Ketoglutarate in Sodium Methoxide/Methanol. This reaction was carried out as outlined in the preceding experiment: however, sodium methoxide was used in place of potassium hydroxide. ${ }^{22}$ A new com-
pound ($R, 0.70, \mathrm{M}^{+} 392$) precipitated from the solution while the propellanedione 6 a was observed by TLC of the mother liquor. This substance ($R, 0.70$) was the product of reaction of one molecule of the 1,2-dione (4a) with another molecule of 4a since it was also obtained by carrying out the same reaction in the absence of dimethyl β-ketoglutarate. No $1: 1$ adduct of 4 a and 5 could be found.

Acid-Catalyzed Reaction of Cyclododecane-1,2-dione and Dimethyl β-Ketoglutarate in Refluxing Benzene. Cyclodode-cane-1.2-dione (3.0 g .0 .015 mol), dimethyl 3 -ketoglutarate ($5,3.2 \mathrm{~g}$, $0.018 \mathrm{~mol})$. and p-toluenesulfonic acid (200 mg) were dissolved in benzene $(70 \mathrm{ml})$. The solution was refluxed and water (0.4 ml) was removed by means of a Dean-Stark trap. Evaporation of the benzene afforded an oil (6 g) which was found to be a mixture of starting material and a new compound ($R_{f} 0.42$ in 10% ethyl acetate/benzene). The oil was chromatographed on silica gel which furnished a small quantity of the new compound ($0.3 \mathrm{~g}, 6 \%$ yield). This substance was crystallized from methanol to provide white crystals: $\mathrm{mp} 85-86^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCl}_{4}\right) 2940$ and $2870(\mathrm{C}-\mathrm{H}), 1740,1715$ with a shoulder at 1700 cm^{-1} (saturated and unsaturated ester functions); NMR (CDCl_{3}) δ 1.21-1.91 (12 H , broad multiplet), 2.2 ($\mathrm{q}, 2 \mathrm{H}$), 2.8 (t, 2 H), 3.62-3.7 (6 H . two overlapping singlets), $3.95(\mathrm{~s}, 2 \mathrm{H}$), and $6.2(\mathrm{~m}, 2 \mathrm{H})$; mass spectrum M^{+}at m / e 334.1788; calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}$, 334.1773; m/e 334 (100), 306 (14), 302 (57). 291 (816), 276 (20), 275 (100), 274 (40), 270 (1.4), 251 (14), 246)10.7), 245 (15), 231 (15), 228 (16), 219 (23), 218 (24), 205 (34), 203 (34), 192 (35), 191 (61.3), 189 (57), 173 (30), 159 (51), 149 (54), 145 (35), and 131 (65)

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 68.30; H, 7.8. Found: C, $68.00 ; \mathrm{H}, 8.02$. The structure of this compound is still undetermined.

Acknowledgments. We are greatly indebted to Mr. Paul Karges, Mr. William E. Comstock (NHLI), and Dr. Peter P. Roller (NCI) for mass spectra. Our thanks also go to Dr. Robert J. Highet and Mr. Robert B. Bradley for $220-\mathrm{MHz}$ NMR spectra. We gratefully acknowledge a Faculty Research Grant from the Graduate School, University of WisconsinMilwaukee, and a grant from the Research Corporation (to J.M.C.). We wish to thank Mr. Steven H. Bertz (Harvard University) for information on related work. Our special thanks go to Dr. Ulrich Weiss (NIH) for pointing out to us the work in ref 4 and for many stimulating discussions.

Registry No.-3, 58602-52-1; 4a, 3008-41-1; 4b, 3008-37-5; 5, 1830-54-2; 6a, 58602-53-2; 6b, 58602-54-3; 7a, 58602-55-4: 7b, 58602-56-5; 11, 58602-57-6; 12, 58602-58-7; 20, 134-81-6; 21, 16691. 78-4.

References and Notes

(1) Part 1: D. Yang, D. Foerst, J. Oehldrich, and J. M. Cook, J. Org. Chem., 41, 743 (1976).
(2) D. Ginsburg. Acc. Chem. Res., 2, 121 (1969): 5, 249 (1972)
(3) J. V. Silverton, G. W. A. Milne, P. Eaton, K. Nyi, and G. H. Temme III, J. Am Chem. Soc., 96, 7429 (1974); W. D. Stohrer and R. Hoffman, ibid., 94, 779 (1972): P. Eaton and K. Nyi, ibid., 93, 2786 (1971); K. B. Wiberg and G. J. Burgmaier, ibid., 94, 7396 (1972); M. D. Newton and J. M. Schulman, ibid., 94, 4392 (1972): J. J. Dannenberg and T. M. Prociv, J. Chem. Soc., Chem. Commun., 291 (1973).
(4) U. Weiss and J. M. Edwards. Tetrahedron Lett., 4885 (1968)
(5) J. Cook and D. Yang, presented in preliminary form at the 7th Central Regional Meeting of the American Chemical Society, Morgantown, W. Va., 1975, Abstract No. 122.
(6) K. B. Sharpless, R. F. Laven, O. Repic. A. Y. Teranishi, and D. R. Williams, J. Am. Chem. Soc., 93, 3303 (1971): H. Jensen and K. B. Sharpless, J. Org. Chem., 39, 2314 (1974).
(7) K. Biemann, "Mass Spectrometry", McGraw Hill, New York, N. Y., 1974. p 113.
(8) J. H. Liu and P. Kovacic. J. Org. Chem., 38, 543 (1973).
(9) R. M. Silverstein, G. Bassler, and T. Morrill. "Spectrometric Identification of Organic Compounds'", 3d ed, Wiley, New York, N.Y., 1974, p 214; L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry". Pergman Press, Braunschweig. Germany, 1969, p 196.
(10) W. T. Borden and T. Ravindranathan, J. Org. Chem., 36, 4125 (1971).
(11) The assignments of the three methylene signals at high field are tentative
(12) U. Weiss, private communication; also see D. Yang. D. Wickman, M Mueller. J. M. Cook, and Ulrich Weiss, manuscript in preparation.
(13) F. B. Japp and G. D. Lander, J. Chem Soc., 71, 1396 (1897).
(14) D. M. White, J. Org. Chem., 39, 1951 (1974).
(15) J. M. Cook, D. Yang, M. Mueller, D. Wickman, and U. Weiss, manuscript in preparation
(16) Phenanthrenequinone also yields a $1: 1$ adduct on reaction with dimethyl β-ketoglutarate.
(17) N. L. Allinger, "Organic Syntheses", Collect. Vol. IV. Wiley, New York. N.Y., 1963, p 840.
(18) A. T. Blomquist and A. Goldstein in ref 17. p 838.
(19) A. Blomquist and J. Liu. J. Am. Chem. Soc., 75, 2153 (1953)
(20) Our thanks to Professor Sharpless for spectra of authentic samples of both diones 4 a and 4 b .
(21) E. L. Martin, Org. React., 1, 163 (1942).
(22) Mr. Steven Bertz (Harvard University) has carried out this reaction on a related compound (unpublished results).

Photochemical Reactivity of Some Bridgehead Phenyl Ketones ${ }^{1}$

H.-G. Heine* and W. Hartmann
Zentralbereich Forschung, Wissenschaftliches Hauptlaboratorium der Bayer AG, 4150 Krefeld-Uerdingen, Germany

F. D. Lewis ${ }^{* 2 a}$ and R. T. Lauterbach ${ }^{2 b}$

Department of Chemistry, Northwestern University, Evanston, Illinois 60201
Received October 20, 1975

Abstract

The photochemistry of several bridgehead phenyl ketones has been investigated. Bicyclo[2.2.2]octyl, 1-adamantyl, and 1 - and 3-homoadamantyl phenyl ketones undergo efficient photochemical α-cleavage in benzene solution, whereas bicyclo[3.2.1]octyl and bicyclo[2.2.1]heptyl phenyl ketones do not. The rates for cr-cleavage of ketones 1-4 are dependent upon bi- and tricycloalkane structure in a manner similar to that previously reported for the thermolysis of bridgehead peresters. The rate constant for α-cleavage is accelerated for 1 - or 3-homoadamantyl vs. tert-butyl, but retarded by the smaller bicyclic ring systems. The kinetic results are indicative of an early transition state with polar character for photochemical α-cleavage. Quantum yields for product formation are larger for the bridgehead ketones than for pivalophenone owing to a decreased cage effect. The photoreduction of these ketones has also been investigated.

Reliable prediction of reactivity of an entire class of molecules is one of the ultimate goals of the investigation of reaction mechanisms. We have studied the reactivity of phenyl ketones toward photochemical α-cleavage (eq 1) with the

above goal in mind. ${ }^{3-5}$ We have established that the stability of the product free radicals does not correlate with photochemical reactivity. For example, pivalophenone ($\mathrm{R}=$ tert butyl) is an order of magnitude more reactive than deoxybenzoin ($\mathrm{R}=$ benzyl). ${ }^{3}$ We have also found that α substituents capable of stabilizing an adjacent positive charge are far more effective in accelerating α-cleavage than are substituents ca-

Table I. Absorption and Room-Temperature Phosphorescence Data for Bridgehead Ketones
Ketone
${ }^{a}$ Long wavelength absorption maximum in ethanol solution, $23^{\circ} \mathrm{C} . b$ Phosphorescence quantum yield in degassed carbon tetrachloride, $23{ }^{\circ} \mathrm{C}$. c Lifetime of room-temperature emission. d Calculated using the lifetime determined by Stern-Volmer product quenching (Table II).
pable of stabilizing free-radical centers. ${ }^{4,5}$ In order to obtain further information about the photochemical α-cleavage process, the reactivity of six bridgehead bi- and tricycloalkyl phenyl ketones has been investigated. Studies of bridgehead reactivities have provided useful information about the mechanisms of carbonium ion ${ }^{6}$ and free-radical ${ }^{7,8}$ reactions. However, there are no previous reports of photochemical reactivities of bridgehead substrates.

Results

The bridgehead ketones 1-6 were synthesized via the reaction of the known carboxylic acids with phenyllithium or diphenylcadmium. Ketones 1-6 have n, π^{*} absorption and low-temperature emission spectra ($E_{\mathrm{T}}=72 \pm 1 \mathrm{kcal} / \mathrm{mol}$) similar to that of pivalophenone (7 , Table I) and have intersystem crossing quantum yields of 1.0 ± 0.05, as determined by comparison with benzophenone. ${ }^{9}$ Room temperature phosphorescence was observed for ketones 3-6 in highly degassed, purified carbon tetrachloride solution. Phosphorescence quantum yields were measured by comparison to benzophenone ($\Phi=0.015$). ${ }^{5,10}$ Lifetimes were determined either by single photon counting ($\mathbf{4}$ and 5) or by signal-averaged flash kinetics (6). ${ }^{5}$ The emission of ketone 3 was too weak to permit direct lifetime measurement. Radiative lifetime values for ketones 3-6 are intermediate between those for acetophenone $(8,3.7 \mathrm{~ms})$ and benzophenone (10 ms). ${ }^{5}$

Irradiation of ketones 1-4 in degassed benzene results in formation of benzaldehyde, traces of benzil, bi- or tricycloalkane, and phenybi- or tricycloalkane (eq 2). These products

> 1, $\mathrm{R}=$ 3-homoadamantyl
> 2 $\mathrm{R}=1$-homoadamantyl
> 3, $\mathrm{R}=1$-adamantyl
> 4, $\mathrm{R}=1$-bicyclo[22.2]octyl
> 5. $\mathrm{R}=1$-bicyclo[32.1]octyl
> 6. $\mathrm{R}=$ l-bicyclo[221] heptyl
are derived from the benzoyl-alkyl radical pair formed upon α-cleavage (eq 1). Ketones 5 and 6 are relatively inert to photolysis in benzene. Under conditions sufficient for $>90 \%$ conversion of ketones 1 or 2 , ketone 5 is recovered $\gtrsim 90 \%$ unchanged and ketone 6 is recovered quantitatively. Irradiation of $1-4$ in 0.03 M dodecanethiol-benzene results in greatly increased yields of benzaldehyde, owing to efficient scavenging of benzoyl radicals. ${ }^{3}$ Quantum yields for benzaldehyde formation (313-nm irradiation, benzophenone-benzhydrol actinometry) are given in Table II. Triplet lifetimes for ketones 1-4 were determined by the usual Stern-Volmer analysis using naphthalene as quencher both in benzene ($\lambda>330 \mathrm{~nm}$) and in 0.003 M thiol-benzene ($\lambda 365 \mathrm{~nm}$) solutions. The results ob=ained by the two methods are in good agreement. The lifetimes determined in benzene solution for ketone 4 are somewhat shorter than the value obtained by single photon counting in carbon tetrachloride solution (Table I). The longer lifetime is considered to be more accurate in light of the known

Table II. Quantum Yield and Kinetic Data for Bridgehead Ketones

Ketone	Φa	$k_{\mathrm{q}} \tau, \mathrm{M}^{-1}$	τ, s^{d}
1	0.65	$24^{\text {b }}$	4.9×10^{-9}
		25^{c}	5.0×10^{-9}
2	0.74	$230{ }^{\text {b }}$	4.6×10^{-8}
		280^{c}	5.5×10^{-8}
3	0.68	$1500{ }^{\text {b }}$	2.9×10^{-7}
		600^{c}	1.2×10^{-9}
4	0.13	$5800^{\text {b }}$	1.2×10^{-6}
		6500^{c}	1.3×10^{-6}
5	<0.01		
6	0		
$7{ }^{e}$	0.30	447	9.1×10^{-8}

a Quantum yield for benzaldehyde formation in degassed 0.03 M dodecanethiol-benzene solution, 313 nm irradiation. ${ }^{b}$ Slope of linear Stern-Volmer plot ($\lambda 365 \mathrm{~nm}$).
c Slope of linear Stern-Volmer plot $(\lambda>330 \mathrm{~nm})$. ${ }^{d}$ Calculated assuming $k_{\mathrm{q}}=5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. e Data from ref 12 .
ability of benzene to shorten the lifetime of aromatic ketones having lifetimes longer than $1 \mu \mathrm{~s}$. ${ }^{4,11}$
Irradiation of ketones 1-3 in 2-propanol solution results in increased yields of tricycloalkane formation ($55-71 \%$ isolated yields), but none of the products expected for aryl ketone photoreduction. ${ }^{12}$ Ketones 4 and 5 give complex mixtures of α-cleavage products along with the corresponding pinacols and carbinols (eq 3). Photoreduction is the exclusive photochemical reaction for ketone 6 in 2-propanol. Isolated yields of photoreduction products are indicated in eq 3 .

Discussion

For bridgehead ketones 1-4, the only observed primary photoprocess in benzene solution is α-cleavage (eq 1). We have previously demonstrated that quantum yields less than 1.0 for product formation result from cage recombination of the initially formed radical pair (eq 4). ${ }^{13}$ Low concentrations of

thiol (RSH) can efficiently scavenge benzoyl radicals once they have escaped from the solvent cage in which they are formed. Quantum yields for benzaldehyde formation of $0.3-0.5$ have been observed for a number of tert-alkyl and
benzyl phenyl ketones. ${ }^{3-5,12,13}$ Quantum yields for ketones 1-3 (Table II) are significantly higher than these values. The quantum yield for ketone 4 is 0.13 , substantially lower than the values for ketones $1-3$. The lifetime of 4 is sufficiently long ($5.4 \mu \mathrm{~s}$ in CCl_{4}) that quenching by benzene can occur. ${ }^{4,11}$ Since the lifetime of 4 in benzene solution is approximately onefourth as long as in carbon tetrachloride, $\sim 75 \%$ of the excited states are quenched by benzene solvent. The resulting corrected quantum yield for ketone 4 is 0.52 , nearly as large as those for ketones $1-3$. Thus we conclude that α-cleavage is the dominant decay process for ketone 4 in carbon tetrachloride solution.

The higher quantum yields for benzaldehyde formation from ketones $1-3$ vs. pivalophenone ($\Phi=0.3$) indicates that a higher percentage of benzoyl radicals escape from the solvent cage. This decreased cage effect could result from either a decreased rate of radical pair recombination or an increased rate of diffusion. The apparent rate of diffusion out of the cage could increase owing to increased mass of the alkyl radical. ${ }^{14}$ Larger radicals may migrate over longer distances before being slowed down by the frictional resistance of the solvent and beginning their random walk leading to recombination. The failure to observe CIDNP effects for the bridgehead phenyl ketones is in accord with this explanation. ${ }^{15}$ Alternatively, cage recombination may be slower for the bridgehead vs. acyclic radicals since one face of the bridgehead radical is protected from attack by the benzoyl radical. This explanation can be valid only if alkyl radical rotation is not significantly faster than cage recombination or diffusion. We have observed similar rates of cage recombination, diffusion, and alkyl radical rotation for the benzoyl-1-phenylethyl radical pair. ${ }^{13}$

The lifetimes of the bridgehead ketone n, π^{*} triplet states increase with decreased ring size (Tables I, II). Values of $1 / \tau$ relative to that for pivalophenone are given in Table III. Since neither triplet energies nor radiative lifetimes (Table I) are dependent upon alkyl structure we assume that the variation in triplet lifetime reflects a decrease in the rate constant for α-cleavage with decreasing ring size. Only those ketones with lifetimes shorter than 1μ s undergo appreciable α-cleavage in benzene solution. The lifetime of $\mathbf{6}$ in CCl_{4} is almost as long as that of acetophenone (Table I). Thus 6, like acetophenone, would be expected to decay exclusively by radiative and nonradiative pathways to the ketone ground state. The absence of α-cleavage from ketone 5 is less readily explained. The lifetime of ketone 5 is actually shorter than that of 4 , which undergoes moderately efficient α-cleavage in benzene. In view of the apparent photochemical stability of ketone 5 , its short lifetime must be due either to a nondestructive decay pathway or to impurity quenching.
The effect of bridgehead bi- and tricycloalkane structure on reactivity for several types of homolytic and heterolytic reactions are given in Table III. Schleyer ${ }^{16}$ has shown that a linear correlation exists between solvolysis rate constants and the calculated difference in strain energy of the bridgehead

Table III. Bridgehead Reactivities

R			$\begin{aligned} & \mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{R} c \\ & k_{\text {therm }} 300^{\circ} \mathrm{C} \end{aligned}$	RBrd solvolysis
tert-Butyl	1	1	1	1
3-Homoadamantyl	20	15.2		0.5
1-Homoadamantyl	1.8	3.5		
1-Adamantyl	0.33	2.3	4.0×10^{-4}	10^{-3}
1-Bicyclo[2.2.2]octyl	0.017	0.16	5.1×10^{-5}	10^{-6}
1 -Bicyclo[3.2.1]octyl	0.045	0.082	3.7×10^{-5}	10^{-6}
1-Bicyclo [2.2.1]heptyl	0.003	0.0025	2.0×10^{-6}	10^{-13}

${ }^{a}$ This work. ${ }^{b}$ Data from ref 7 , for $R=t e r t$ butyl, $k=3.2 \times 10^{-4} \mathrm{~s}^{-1}$. c Data from ref 7. ${ }^{d}$ Data from ref 6 .

Figure 1. Linear free energy relationship for photochemical α cleavage and perester thermolysis (Table III).
substrates and corresponding carbonium ions. Rüchardt ${ }^{7,8}$ has found a good linear free energy relationship between the rate constants for bridgehead bromide solvolysis and perester thermolysis, the latter reaction being considerably less sensitive to ring strain (Table III). Rüchardt ${ }^{8}$ attributes the variation in bridgehead perester reactivity to polar effects rather than ring strain. In support of this theory, a decrease of perester rate constants with increasing s character of the exocyclic bridgehead bond, as measured by the ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constants of the corresponding polycyclic alkanes, is observed.

Both solvolysis of alkyl bromides ${ }^{6}$ and thermolysis of azoalkanes ${ }^{7,8}$ are subject to large rate retardation, even for 1 adamantyl vs. tert-butyl. These results are consistent with an almost planar transition state possessing considerable angle strain. In contrast, neither photochemical α-cleavage nor perester thermolysis ${ }^{7}$ are subject to substantial retardation even for the bicyclo[2.2.2] substrates. Modest rate enhancements are observed for the homoadamantyl substrates, the effect being larger for the 3 -homoadamantyl substrates. ${ }^{17}$ The linear free energy relationship between ketone α-cleavage and perester thermolysis ${ }^{7}$ is shown in Figure 1. We note that ketone α-cleavage is somewhat more sensitive to bridgehead alkane structure than is perester thermolysis, even though the rate constants for the photochemical reaction are 10^{10} faster. There is evidence that all of the peresters in Table III thermolyze via a one-step mechanism. ${ }^{18}$ Therefore extrapolation of the data in Figure 1 to obtain values of k_{a} for ketones 5 and 6 appears justified. The estimated values of k_{a} for ketones 5 and 6 (10^{4} and $10^{2} \mathrm{~s}^{-1}$, respectively) are substantially lower than typical values for alkyl phenyl ketone nonradiative decay in benzene solution $\left(\sim 3 \times 10^{5} \mathrm{~s}^{-1}\right) .{ }^{12}$ Thus the insignificant α-cleavage of 5 and the complete lack of α-cleavage of 6 are not surprising. In view of the similar effects of structure on reactivity for ketone α-cleavage and perester thermolysis, Rüchardt's postulate of a polar transition state for homolysis may apply to photochemical α-cleavage. A polar transition state is consistent with our previous observations for deoxybenzoin derivatives. ${ }^{4,5}$

Photoreduction does not compete with α-cleavage of ketones 1-3 even in 2 -propanol solvent. Scavenging of the bridgehead free radicals by 2-propanol provides another useful method of preparing the polycyclic hydrocarbons. ${ }^{19}$ If the bridgehead phenyl ketones abstract hydrogen from 2-propanol with rate constants similar to that for pivalophenone ($2.4 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$), ${ }^{12} \sim 5 \%$ photoreduction products would be expected for ketone 3 and $<1 \%$ for ketones 1 and 2. The
lifetimes of ketones 4 and 5 are sufficiently long to allow photoreduction to compete efficiently with α-cleavage. Photoreduction is the exclusive reaction for ketone 6 in 2-propanol, as is the case for acetophenone. ${ }^{12}$

Experimental Section

General procedures for purification of materials, ${ }^{3}$ quantum yield measurements, ${ }^{3}$ Stern-Volmer quenching, ${ }^{3}$ and room temperature phosphorescence lifetime and quantum yield measurements ${ }^{4}$ have been previously described. Product analysis of preparative photolysis mixtures employed a Hewlett-Packard 5700 thermal conductivity gas chromatograph with a $3 \mathrm{~m} \times 2.5 \mathrm{~mm}$ stainless-steel column containing 4\% Apiezon L on DMCA-AW Chromosorb G. Mass spectra were recorded using a EAI Quad 150 spectrometer.

3-Benzoylhomoadamantane (1). To a solution of $68.0 \mathrm{~g}(0.35 \mathrm{~mol})$ of homoadamantane- $\hat{\xi}$-carboxylic acid ${ }^{20}$ in 11 . of absolute tetrahydrofuran at $-60^{\circ} \mathrm{C}$ was added a solution of phenyllithium (1.1 I., 0.76 M ; within 4 h . After additional stirring for 1 h at $20^{\circ} \mathrm{C}$ the reaction mixture was poured onto ice and extracted with ether. The ethereal phase was washed with 5% aqueous NaOH and water and yielded 120 g of viscous residue. Purification by treatment with Girard T^{21} reagent and subsequent distillation yielded 37.6 g of pure 3-benzoylhomoadamantane which was once crystallized from $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{mp} 68^{\circ} \mathrm{C}$; ir (KBr) $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.86(\mathrm{~m}, 17 \mathrm{H}), 7.4(\mathrm{~m}, 3 \mathrm{H}), 7.64$ (m, 2 H). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.99 ; \mathrm{H}, 8.72$. Found: C, 84.7; H, 8.47.

Oxime: mp 213-215 ${ }^{\circ} \mathrm{C}$ (from ethanol). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$: C, 80.25; H, 8.61; N, 5.20. Found: C, 80.1; H. 8.66; N, 5.28.

2,4-Dinitrophenylhydrazone: $\mathrm{mp} 222-223{ }^{\circ} \mathrm{C}$ (from ethanol). Aral. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 66.34 ; \mathrm{H}, 6.03 ; \mathrm{N}, 12.9$. Found: C, 66.45 ; H, 5.94; N, 12.8 .

1-Benzoylhomoadamantane (2). To a solution of $68.0 \mathrm{~g}(0.35 \mathrm{~mol})$ of homoadamantane-:-carboxylic acid ${ }^{20}$ in 1000 ml of absolute tetra. iydrofuran at $-60^{\circ} \mathrm{C}$ was added a solution of phenyllithium (900 m l of ethereal solution, 0.8 M). After stirring for 2.5 h at $20^{\circ} \mathrm{C}$ the reaction mixture was poured onto ice and extracted with ether. Workup as previously described yielded 100 g of residue. Purification by treatment with Girard T^{21} and subsequent distillation yielded after crystallization from $\mathrm{CH}_{3} \mathrm{OH}$ (twice) 40.7 g of pure 1-benzoylhomoadamantane: $\mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$; ir (KBr) $1675 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.83(\mathrm{~m}, 17 \mathrm{H}), 7.4(\mathrm{~m}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.99 ; \mathrm{H}$, 8. ${ }^{2}$. Found: C, 84.85 ; $\mathrm{H}, 8.64$.

Oxime: mp 195-196 ${ }^{\circ} \mathrm{C}$ (from ethanol). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$: C, 80.24; H, 8.61; N, 5.20. Found: C, 80.25; H. 8.91; N, 5.21.

2,4-Dinitrophenylhydrazone: $\mathrm{mp} 238-239^{\circ} \mathrm{C}$ (from ethanol/ benzene). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 66.34; $\mathrm{H}, 6.03$; N. 12.90 . Found: C, 66.8; H, 6.C0; N, 12.85 .

1-(α-Hydroxybenzyl)homoadamantane was prepared by NaBH_{4} reduction of 1 -benzoylhomoadamantane in $\mathrm{CH}_{3} \mathrm{OH}$ at $20^{\circ} \mathrm{C}$. The alcohol did not crystallize. It was distilled bulb to bulb: bp $170^{\circ} \mathrm{C}(0.1$ $\mathrm{mm}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.2(\mathrm{~s}, 5 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 1.0-2.2(\mathrm{~m}, 18 \mathrm{H}$ including OH). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 84.32 ; \mathrm{H}, 9.44$. Found: C , 84.6; H, 9.15.

1-Benzoyladamantane (3) was synthesized from adamantane1 -carbonic acid chloride and diphenylcadmium by the method of Stetter. ${ }^{22}$ Separation of biphenyl was achieved by treatment of the crude ketone mixture with Girard T: ${ }^{21} \mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right)$ $\delta 1.76(\mathrm{~s}, 6 \mathrm{H}), 2.0(\mathrm{~s}, 9 \mathrm{H}), 7.4(\mathrm{~m}, 5 \mathrm{H})$.

1-Benzoylbicyclo[2.2.2]octane (4). A. A mixture of $111.0 \mathrm{~g}(0.72$ $\mathrm{mol})$ of bicyclo[2.2.2]octane-1-carboxylic acid ${ }^{23}$ and $130.0 \mathrm{~g}(1.08 \mathrm{~mol})$ of SOCl_{2} was refluxed for 2 h . Fractional distillation yielded 116.1 g (C4\%) of bicyclo[2.2.2]octane-1-carboxylic acid chloride: bp 101-103 ${ }^{\circ} \mathrm{C}(13 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.5005$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClO}: \mathrm{C}, 62.61 ; \mathrm{H}, 7.54$; $\mathrm{Cl}, 20.58$. Found: C, $62.55 ; \mathrm{H}, 7.67 ; \mathrm{Cl}, 20.90$.
B. According to Stetter ${ }^{22}$ a solution of $115.0 \mathrm{~g}(0.7 \mathrm{~mol})$ of bicy-clo[2.2.2]octane-1-carboxylic acid chloride in 500 ml of benzene was added within 15 min to a $500-\mathrm{ml}$ benzene solution of diphenylcadrium, prepared from a Grignard solution of 1 mol of Mg and 1 mol of phenyl bromide in absolute ether and 0.53 mol of CdCl_{2}. After refluxing the mixture for 2 h ice $/ 2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ was added. The organic layer was separated, washed with $2 \mathrm{~N} \mathrm{NaOH}, 1 \mathrm{~N} \mathrm{HCl}$, and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Crystalline material (134 g) was isolated, which on purification by Girard T treatment, ${ }^{21}$ crystallization, and zone refining yielded 102 g of pure 1-benzoylbicyclo[2.2.2]octane: $\mathrm{mp} 57-58$ ${ }^{\circ} \mathrm{C}$; ir (KBr$) 1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.71(\mathrm{~m}, 13 \mathrm{H}), 7.4(\mathrm{~m} .5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.07$; $\mathrm{H}, 8.47$. Found: $\mathrm{C}, 84.10 ; \mathrm{H}, 8.38$

Oxime: mp 228-229 ${ }^{\circ} \mathrm{C}$ (from ethanol). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$: C, 78.56 ; H, 8.35 ; N, 6.11. Found: C, $78.30 ;$ H, 8.37 ; N, 6.07 .

2,4-Dinitrophenylhydrazone: $m p 248-249{ }^{\circ} \mathrm{C}$ (from ethanol/
benzene). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 63.94; $\mathrm{H}, 5.62 ; \mathrm{N}, 14.21$. Found: C, 63.90; H, 5.70; N, 14.0.

1-(a-Hydroxybenzyl)bicyclo[2.2.2]octane was prepared by NaBH_{4} reduction of 1-benzoylbicyclo[2.2.2]octane in $\mathrm{CH}_{3} \mathrm{OH}$ at 20 ${ }^{\circ} \mathrm{C}$: mp $99-101^{\circ} \mathrm{C}$ (from n-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~m}, 13$ $\mathrm{H}), 1.95(\mathrm{~s}, \mathrm{OH}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$: C, 83.28; H, 9.32. Found: C, 83.15; H, 9.33.

1-Benzoylbicyclo[3.2.1]octane (5). A. Bicyclo[3.2.1]octane-1carboxylic acid ${ }^{24}(147.6 \mathrm{~g}, 0.96 \mathrm{~mol})$ and $160.0 \mathrm{~g}(1.3 \mathrm{~mol})$ of SOCl_{2} were refluxed for 2 h . Fractional distillation yielded 152.3 g (93%) of bicyclo[3.2.1]octane-1-carboxylic acid chloride, bp $75-80^{\circ} \mathrm{C}$ (1.3 mm). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClO}: \mathrm{C}, 62.60 ; \mathrm{H}, 7.53 ; \mathrm{Cl}, 20.59$. Found: C, 62.75; $\mathrm{H}, 7.51 ; \mathrm{Cl}, 20.2$. A small amount of the acid chloride was treated with $\mathrm{CH}_{3} \mathrm{OH}$ and the methyl ester formed analyzed by GC for the presence of 2-carbomethoxybicyclo[2.2.2]octane. The methyl ester formed consisted only of 1 -carbomethoxybicyclo[3.2.1]octane.
B. To a $600-\mathrm{ml}$ benzene solution of diphenylcadmium, prepared from 1.1 mol of Mg and 1.1 mol of phenyl bromide in ether and 0.56 mol of CdCl_{2}, was added within 15 min a solution of $131.4 \mathrm{~g}(0.76 \mathrm{~mol})$ of bicyclo[3.2.1]octane-1-carboxylic acid chloride in 600 ml of benzene. After refluxing for 2 h the mixture was worked up as usual. Unreacted bicyclic acid $(29.0 \mathrm{~g})$ and 175.1 g of ketonic material were obtained. Further purification by treatment with Girard T^{21} and distillation yielded 149.2 g of pure 1-benzoylbicyclo[3.2.1]octane: bp $129-133^{\circ} \mathrm{C}$ (0.4 mm); $n^{20} \mathrm{D} 1.5575$; ir $\left(\mathrm{CHCl}_{3}\right) 1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.7$ (m, 10 H), $2.35(\mathrm{~m}, 1 \mathrm{H}), 7.4$ (m, 3 H), 7.84 (m, 2 H). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.07$; $\mathrm{H}, 8.41$. Found: C, 84.00; $\mathrm{H}, 8.48$.

Oxime: mp 191-192 ${ }^{\circ} \mathrm{C}$ (from ethanol). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$: C, 78.56: H. 8.35; N, 6.11. Found: C, 78.70; H. 8.51; N, 6.03 .

2,4-Dinitrophenylhydrazone: $\mathrm{mp} 217.5-219^{\circ} \mathrm{C}$ (from ethanol). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $6394 ; \mathrm{H}, 5.62 ; \mathrm{N}, 14.21$. Found: C, 64.00; H, 5.60; N, 14.40 .

1-(α-Hydroxybenzyl)bicyclo[3.2.1]octane was prepared by NaBH_{4} reduction of 1-benzoylbicyclo[3.2.1] octane in $\mathrm{CH}_{3} \mathrm{OH}$ at 20 ${ }^{\circ} \mathrm{C}$: $\mathrm{mp} 62-64{ }^{\circ} \mathrm{C}$ (from n-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ i $1.0-2.3(\mathrm{~m}, 13$ $\mathrm{H}), 2.1(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$: C, 83.28; H. 9.32. Found: C, 83.7; H, 9.49.

1-Benzoylbicyclo[2.2.1]heptane (6). To a solution of $91.0 \mathrm{~g}(0.72$ mol) of bicyclo[2.2.1]heptane-1-carboxylic acid ${ }^{25}$ in 1.8 I . of absolute tetrahydrofuran was added within 1 h under nitrogen and stirring a solution of phenyllithium in ether ($1.1 \mathrm{M}, 1.25 \mathrm{I}$.) at $-60^{\circ} \mathrm{C}$. The mixture was stirred for another 1 h at $25^{\circ} \mathrm{C}$ and poured onto ice. Usual workup yielded 11.5 g of unreacted acid and 135.0 g of yellowish oil. Further purification of the impure ketone by treatment with Girard T^{21} and distillation yielded 96.4 g of pure 1-benzoylbicyclo[2.2.1]heptane: $\mathrm{mp} 32-34^{\circ} \mathrm{C}$ (from n-hexane/ether); bp $105-107^{\circ} \mathrm{C}(0.25$ mm); ir $\left(\mathrm{CCl}_{4}\right) 1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.68(\mathrm{~m}, 13 \mathrm{H}), 7.23(\mathrm{~m}$, $3 \mathrm{H}), 7.67$ (m, 2 H). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 83.96 ; \mathrm{H}, 8.05$. Found: C, 83.90; H, 8.14 .

2,4-Dinitrophenylhydrazone: $\mathrm{mp} 174-175{ }^{\circ} \mathrm{C}$ (from ethanol) (lit. $.^{26} \mathrm{mp} 198-199{ }^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 63.15 ; \mathrm{H}, 5.30$; N, 14.73. Found: C, 63.25; H, 5.39; N, 14.6.

1-(α-Hydroxybenzyl)bicyclo[2.2.1]heptane was prepared by NaBH_{4} reduction of 1-benzoylbicyclo[2.2.1]heptane in $\mathrm{CH}_{3} \mathrm{OH}$ at 20 ${ }^{\circ} \mathrm{C}: \mathrm{mp} 99-101{ }^{\circ} \mathrm{C}$ (from n-hexane) (sublimation): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.85-1.75(\mathrm{~m}, 10 \mathrm{H}), 2.10(\mathrm{~s}, \mathrm{OH}), 2.2(\mathrm{~m}, 1 \mathrm{H}), 4.8(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~m}$, 5 H). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.12 ; \mathrm{H}, 8.97$. Found: C, 82.8; H , 8.87 .

Photolysis of Ketones 1-5. Solutions (0.01 M) of 1-5 in benzene were irradiated (Philips HPK $125 \mathrm{~W}, \mathrm{GWCa}$ filter, transparent for $\lambda>330 \mathrm{~nm}$ under nitrogen at mosphere). The disappearance of ketone was followed by GC. After most of ketone 1 had disappeared, the photolyses were stopped and the reaction mixtures analyzed using a combination of GC and mass spectrometer. Yields are reported as uncorrected GC peak areas.

3-Benzoylhomoadamantane (1) gave besides unreacted 1 (5.8\%), benzaldehyde (8.2%), homoadamantane (54.9%), benzophenone (2.8%), and 3 -phenylhomoadamantane (3.5%).

1-Benzoylhomoadamantane (2) gave besides unreacted 2 (8%), benzaldehyde (9.0%), homoadamantane (39.7%), benzophenone (4.2%), and 1-phenylhomoadamantane (34.2\%).

1-Benzoyladamantane (3) gave besides unreacted 3 (50\%), benzaldehyde (10.8%), adamantane (12.8%), benzophenone (1%), and 1-phenyladamantane (25%).

1-Benzoylbicyclo[2.2.2]octane (4) gave besides unreacted 4 ($\sim 90 \%$), bicyclo[2.2.2]octane ($\sim 1 \%$), benzaldehyde ($\sim 1 \%$), benzophenone ($<0.5 \%$), and 1-phenylbicyclo[2.2.2]octane (7%).
l-Benzoylbicyclo[3.2.1]octane (5) gave besides unreacted 5 (59%), bicyclo[3.2.1]octane (traces), benzaldehyde (traces), benzophenone (traces), and acetophenone ($\sim 2 \%$).

Benzaldehyde from photolysis of ketones 1-4 was captured as its 2,4-dinitrophenylhydrazone and identified. For ketone 5 this procedure was unsuccessful; the only 2,4-dinitrophenylhydrazone isolated was the derivative of acetophenone. The hydrocarbons from photolysis of ketones 1-4 were isolated and identified by comparison with authentic samples after being separated from the reaction mixture by chromatography on silica gel with n-hexane, which provided a mixture of polycyclic alkane and its phenyl derivative. The polycyclic hydrocarbon was separated from the phenyl derivative by simple sublimation. Only in the case of photolysis of 1 -benzoyladamantane was the corresponding 1 -phenyladamantane isolated and identified by mixture melting point with an authentic sample. ${ }^{27}$

Photoreduction of 1-Benzoylhomoadamantane (2). A solution of 2.0 g of 1-benzoylhomoadamantane in 200 ml of 2-propanol was irradiated (Philips HPK 125 W , Pyrex) under nitrogen for 20 H . Control by TLC revealed no evidence for the formation of pinacols or 1-(α-hydroxybenzyl)homoadamantane. Evaporation of the solvent yielded a crystalline residue which on chromatography (silica gel) with n-hexane yielded 0.65 g of homoadamantane, mp 248-251 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18}$: C, 87.92: H, 12.08. Found: C, 87.59 ; H, 11.87.

Photoreduction of 3-Benzoylhomoadamantane (1). Ketone (2.0 g) was reduced in 2-propanol as described above. Chromatography yielded 0.74 g of homoadamantane, which proved to be identical by ir spectrum with the material isolated from l-benzoylhomoada mantane irradiation.

Photoreduction of 1-Benzoyladamantane (3). A solution of 2.0 g of 1-benzoyladamantane in 200 ml of 2-propanol was irradiated as described above. Monitoring by TLC showed that there was no formation of 1-(α-hydroxybenzyl)adamantane. ${ }^{28}$ Evaporation of the solvent left a crystalline residue which on chromatography (silica gel elution with n-hexane) yielded 0.8 g of adamantane, identified by GC comparison with an authentic sample. Further elution with more polar solvents yielded no other identifiable products.

Photoreduction of 1-Benzoylbicyclo[2.2.2]octane (4). A solution of 5.35 g of 1-benzoylbicyclo[2.2.2]octane in 250 ml of 2-propanol was irradiated as described above for 24 h . Evaporation of the solvent yielded 4.85 g of brownish crystals which on treatment with 2 -propanol yielded 0.12 g of crystals of unknown structure. mp $230-235^{\circ} \mathrm{C}$ (sublimation). The filtrate was evaporated and residue separated by chromatography on silica gel to yield 1.7 g of pinacols, mp 137-139
${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{2}$: C, 83.67; H, 8.90. Found: C, 83.55; H, 8.77.

Further elution yielded 0.65 g of unreacted 4. Qualitatively it was observed that the ketone even when irradiated in 2-propanol underwent α-cleavage. Bicyclo[2.2.2]octane was found by GC analysis.

Photoreduction of 1-Benzoylbicyclo[3.2.1]octane (5). A solution of 5.35 g of 1-benzoylbicyclo[3.2.1]octane in 250 ml of 2 -propanol was irradiated as described above for 24 h . A precipitate ($0.2 \mathrm{~g}, \mathrm{mp} \mathrm{177-178}$ ${ }^{\circ} \mathrm{C}$, sealed capillary) was separated and the filtrate evaporated. The oily residue (4.55 g) was analyzed for pinacols and secondary alcohol by TLC. Chromatography on silica gel yielded 1.2 g of crystalline pinacols, mp 129-133 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{2}$: C, 83.67; $\mathrm{H}, 8.90$. Found: C, 83.74; H, 8.63.

Further elution yielded 0.78 g of starting material, followed by 0.5 g of 1-(α-hydroxybenzyl)bicyclo[3.2.1]octane, identified by mixture melting point and TLC with an authentic sample. As for ketone 5, the photoreduction gave a complex mixture, α-cleavage products being detected by GC.

Photoreduction of 1-Benzoylbicyclo[2.2.1]heptane (6). A solution of 2.0 g of ketone in 200 ml of 2-propanol was irradiated (Philips HPK 125 W, Pyrex) under nitrogen for 16 h . Evaporation of the solvent yielded a crystalline residue which was separated on silica gel. Eluticn with benzene $/ n$-hexane yielded 1.5 g of pincaols, $\mathrm{mp} 225-240$ ${ }^{\circ} \mathrm{C}$. Further elution with benzene yielded 0.35 g of 1 -(α-hydroxybenzyl)bicyclo[2.2.1]heptane, identified by elemental analysis and by comparison of mixture melting point and ir spectroscopic data with an authentic sample. An attempt was made to separate the diastereomeric pinacols. One isomer was isolated in pure form. mp 233-234 ${ }^{\circ} \mathrm{C}$ (sealed capillary). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 83.54; $\mathrm{H}, 8.51$. Found: C, 83.5; H, 8.50.

When a solution of 2.0 g of ketone in 200 ml of 2-propanol containing 2 ml of piperylene was irradiated under the same conditions, no photoreduction was observed. Similar results were obtained when 1-benzoylbicyclo[3.2.1]octane or -bicyclo[2.2.2]octane were irradiated in 2-propanol containing 2% piperylene.

Acknowledgment. We thank Professors C. Rüchardt and P. v. R. Schleyer for useful information and stimulating discussions.

Registry No.-1,58541-21-2; 1 oxime, 58541-22-3; 12,4-DNPH. 58541-23-4; 2, 58541-24-5; 2 oxime, 58541-25-6; 2 2,4-DNPH, 58541-26-7; 3, 31919-47-8; 4, 58541-27-8; 4 oxime, 58541-28-9; 4 2,4-DNPH, 58541-29-0; 5, 58541-30-3; 5 oxime, 58541-31-4; 5 2,4DNPH, 58541-32-5; 6, 1015-14-1; 6 2,4-DNPH, 58541-33-6; 7, 938-16-9; 8, 98-86-2; homoadamantane-3-carboxylic acid, 21898-91-9; homoadamantane-1-carboxylic acid, 31061-65-1; 1-(α-hydroxybenzyl)homoadamantane, 58541-34-7; adamantane-1-carbonic acid chloride, 2094-72-6; bicyclo[2.2.2]octane-1-carboxylic acid, 699-55-8, bicyclo[2.2.2]octane-1-carboxylic acid chloride, 21891-38-3; 1-(α hydroxybenzyl)bicyclo[2.2.2]octane, 5818-96-2; bicyclo[3.2.1]oc-tane-1-carboxylic acid, 2534-83-0; bicyclo[3.2.1]octane-1-carboxylic acid chloride, 58541-35-8; 1-(α-hydroxybenzyl)bicyclo[3.2.1]octane, 58541-36-9; bicyclo[2.2.1]heptane-1-carboxylic acid, 18720-30-4; 1(α-hydroxybenzyl)bicyclo[2.2.1]heptane, 5818-94-0; homoadamantane, 281-46-9.

References and Notes

(1) Part 8: Photochemical α-Cleavage of Ketones in Solution. Part 7: ref 5.
(2) (a) Camille and Henry Dreyfus Teacher-Scholar, 1973-1978, Alfred P. Sloan Fellow, 1975-1977; (b) PPG Industries Fellow, 1971-1972; National Science Foundation Trainee, 1972-1974.
(3) H.-G. Heine, W. Hartmann, D. R. Kory, J. G. Magyar, C. E. Hoyle, J. K. McVey, and F. D. _ewis. J. Org. Chem., 39, 691 (1974)
(4) F. D. Lewis, C. H. Hoyle, J. G. Magyar, H.-G. Heine, and W. Hartmann, J. Org. Chem., 40, 488 (1975).
(5) F. D. Lewis, R. T. Lauterbach, H.-G. Heine, W. Hartmann, and H. Rudolph. J. Am. Chem. Soc., 97, 1519 (1975).
(6) For a review see R. C. Fort. Jr., in "Carbonium lons", Vol. IV. G. A. Olah and P. v. R. Schleyer, Ed.. Interscience, New York. N.Y.. 1973. Chapter 32.
(7) C. Ruchardt. Angew Chem., Int Ed. Engl., 9, 830 (1970).
(8) C. Ruchardt, "Mechanismen Radikalischer Reaktionen", Forschungsberichte des Landes Nordrhein-Westfalen, No. 247, Westdeutscher Verlag, Opladen, 1975, p 37 ff.
(9) A. A. Lamola and G. S. Hammond. J. Chem. Phys., 43, 2129 (1965).
(10) F. D. Lewis and C. E. Hoyle, Mol. Photochem., 6, 235 (1974).
(11) D. I. Schuster and T. M. Weil, Mol. Photochem., 4, 447 (1972)
(12) F. D. Lewis and J. G. Magyar, J. Org. Chem., 37, 2102 (1972)
(13) F. D. Lewis and J. G. Magyar, J. Am. Chem. Soc., 95, 5973 (1973).
(14) (a) S. T. Koenig and H. Fischer, "Free Radicals"', Vol. 1, J. K. Kochi, Ed.. Wiley, New York, N.Y., 1973, p 157; (b) K. Herwig. P. Lorenz, and C. Rüchardt. Chem Ber., 108, 1421 (1975).
(15) Dr. F. Gerhardt, University of Gottingen, private communication.
(16) R. C. Bingham and P. v. R. Schleyer. J. Am. Chem. Soc., 93, 3189 (1971).
(17) S. A. Godleski, W. D. Graham. T. W. Bentley. P. v. R. Schleyer, and G. Liang, Chem. Ber., 107, 1257 (1974).
(18) C. Ruchardt, private communication.
(19) H. Langhals and C. Rüchardt, Chem. Ber., 108, 2156 (1975).
(20) H. Langhals and C. Rüchardt. Chem. Ber., 107, 1245 (1974).
(21) L. F. Fieser and M. Fieser, "Reagents in Organic Chemistry", Vol. I, Wiley. New York, N.Y., 1967. p 410.
(22) H. Stetter and E. Rauscher, Chem. Ber., 93, 1161 (1960).
(23) C. A. Grob, M. Ohta, E. Renk, and A. Weiss, Helv. Chim. Acta, 41, 1191 (1958).
(24) A. W. Chow, D. R. Jakas, and J. R. E. Hoover, Tetrahedron Lett., 5427 (1966).
(25) W. R. Boehme, J. Am. Chem. Soc., 91, 2762 (1959).
(26) D. B. Denney and R. R. DiLeone. J. Am. Chem. Soc., 84, 4737 (1962).
(27; H. Stetter, M. Schwarz, and A. Hirschhorn, Chem. Ber., 92, 1629 (1959)
(28; P. T. Lansbury and V. A. Pattison, J. Org. Chem., 27, 1933 (1962).

Bridged Polycyclic Compounds. 82. Multiple Mechanisms for Oxymercuration of Some Dibenzobicyclo[2.2.2]octatrienes ${ }^{1}$

Stanley J. Cristol,* John S. Perry, Jr., and Ronald S. Beckley
Department of Chemistry, University of Cclorado, Boulder, Colorado 80.309

Received August 26, 1975

Abstract

Addition of mercuric acetate to 1-methyldibenzobicyclo[2.2.2]octatriene, 1-methoxydibenzobicyclo[2.2.2]octatriene, and 1,4-dimethyldibenzobicyclo[2.2.2]octatriene has been carried out in a variety of solvent systems. With variation in substrate and in reaction conditions, cis addition, trans addition, and addition with rearrangement have been observed. The composition of the product mixtures have been rationalized in terms of these competing reaction paths for oxymercuration.

There has been much recent interest in oxymercuration reactions because of their usefulness in synthesis and their interesting mechanistic possibilities. ${ }^{2}$ It has been suggested that oxymercuration proceeds via mercurinium ions, via concerted additions, and via β-mercuricarbocations, and a good deal of effort has been extended to prove or disprove the intervention of one or more of these intermediates or processes.

It seemed to us that a conservative viewpoint would assume that there are many mechanisms for oxymercuration reactions, just as for other electrophilic addition reactions. Our experience with dibenzobicyclo[2.2.2]octatriene (1) and re-

1
lated compounds suggested that this would be a useful system to investigate, as small modifications of structure or of reaction conditions often lead to mechanistic changes. The results of a portion of our studies are reported in this paper.

Although anti addition to 1 is quite rare, it does occur when onium ion intermediates intervene and are attacked directly
by nucleophiles. Thus addition of arenesulfenyl chlorides proceeds via the sulfonium ions 2 , to give trans addition

2

4

6

3

5

7
products 3. ${ }^{3}$ The fact that anti addition is generally not observed in these systems ${ }^{4.5}$ suggests either that onium ions analogous to 2 , but with other heteroatoms, are often not involved ${ }^{1}$ or that the reactivity toward displacements at the gunwale positions of the boat-form cyclohexane rings is small. Onium ions can then open with rearrangement to [3.2.1] cations, such as 4 , or to bridged cations 5 , which then give rearranged products. This has been noted even when sulfoniumion intermediates are possible. ${ }^{6}$

Concerted bimolecular addition processes lead directly to syn products, exemplified by addition of deuteriodiborane to 1, which gives cis-3-deuteriodibenzobicyclo[2.2.2]octadien2 -ol 6 upon oxidation of the intermediary organoborane. ${ }^{7}$

Open secondary cations of type 7 are of relatively high energy and are rarely observed, ${ }^{7}$ while intermediates of type 4 or 5 are utilized in carbocationic pathways. ${ }^{1}$ The solvolyses of 8 species invariably yield [3.2.1] products 9 through kinetic

8

10

9

11
control. ${ }^{38,9}$ These are sometimes admixed with endo products 10 , and are rapidly converted to equilibrium mixtures with 10. Such mixtures can generally be stereospecifically reisomerized to the [2.2.2] system. Additions follow similar paths, if carbocations are involved, giving [3.2.1] products. Thus additions to 1 of iodine and silver acetate, bromine in acetic acid, chlorine in carbon tetrachloride, and tert-butyl hypochlorite in acetic acid lead to the products 11 with the electrophile X at the syn- 8 position, and the nucleophile Y at the benzylic position.
From such observations, it is clear that product studies may be used to determine addition reaction mechanisms. A reaction giving a cis-[2.2.2] product may be assumed to involve a cyclic mechanism, one giving a trans-[2.2.2] product must involve nucleophilic attack on an onium ion, and a [3.2.1] product establishes the intervention of a carbocation.

Much work has been reported supporting various mechanisms of oxymercuration. Lucas, Hepner, and Winstein ${ }^{10}$ demonstrated reversible complex formation between mercuric ion and olefins. They proposed that the complexes were mercurinium ions and that they were intermediates in oxymercuration reactions, predicting correctly that the stereospecificity noted ${ }^{11}$ in the methoxymercuration of cyclohexene would be that of anti addition. Many examples of anti addition have been since reported; ${ }^{2}$ these seem clearly understandable as products of direct displacement (with inversion) on mercurinium ions. ${ }^{2 c}$ Bach and Richter ${ }^{12}$ presented evidence supporting such a process in which ion formation is fast and reversible, and the rate-determining step is ligand or solvent attack.

While Kitching, Smith, and Wells ${ }^{13}$ were unable to find ${ }^{1} \mathrm{H}$ NMR evidence for stable mercurinium ions, Olah and Clifford ${ }^{14}$ did observe the ${ }^{1} \mathrm{H}$ NMR spectrum of the mercurinium ions formed in superacid solutions at $-30^{\circ} \mathrm{C}$ from 2 methoxyethylmercuric chloride and at $-70^{\circ} \mathrm{C}$ from exo-cis3 -hydroxy-2-norbornylmercuric chloride. Whitham ${ }^{15}$ failed
to find evidence for a mercurinium ion by a trapping experiment involving acid-catalyzed methanol- $\mathrm{H}_{2} \mathrm{O}$ exchange. That experiment is consistent with a rapid equilibration between mercurinium ion and liganded mercuric ion and olefin, or with the nonexistence of mercurinium ions, as are the kinetic data of Halpern ${ }^{16}$ and the experiment of Sokolov, Troitskaya, and Reutov. ${ }^{17}$

Traylor ${ }^{18}$ noted that norbornene and substituted norbornenes add mercuric acetate or the elements of methoxymercuric acetate in a cis-exo fashion, even with large syn- 7 substituents, and proposed a concerted cyclic mechanism. Brown and Kawakami ${ }^{19}$ noted similar results, which they assume ruled out mercurinium ions in the syn-7-methyl case. As 2methylnorbornene gave Markownikoff addition, they proposed that a mercuricarbenium ion must be involved rather than a cyclic process, although experience in Brown's laboratory with hydroboration reactions ${ }^{20}$ seems to have been ignored in this interpretation.

Previous work with 1 indicates the occurrence of at least two mechanisms for oxymercuration. Sokolov ${ }^{21}$ reported that, in acetic acid, oxymercuration of 1 gave only the cis product 12,

while in aqueous acetone both cis and trans addition occurred, giving the acetate 12 and the alcohol 13 in a 70:30 ratio. We have now confirmed these results and have shown that no rearrangement occurred in the reaction in aqueous acetone by reducing the mixture of mercurials with sodium borohydride to the alcohol 14 , without any $9-\mathrm{OH}$ or $10-\mathrm{OH}$ being produced. In acetic acid a cyclic process apparently obtains, while in aqueous acetone there is competition between a cyclic and a mercurinium ion process. The reaction of 15 with mer-

15

16

17
curic acetate in acetic acid, followed by hydrodemercuration with sodium borohydride, gave acetates 16 and 17 in equal amounts. ${ }^{1}$ This result was similarly interpreted as evidence for cyclic processes involving molecular addition of mercuric acetate.

We have now examined the addition of mercuric acetate in
various solvents to 1-methyldibenzobicyclo[2.2.2]octatriene (18). 1-methoxydibenzobicyclo[2.2.2.]octatriene (19), and 1.4-dimethyldibenzobicyclo[2.2.2]octatriene (20).

18

19

20

When addition of mercuric acetate to 18 was carried out in acetic acid and the products isolated as the chloromercurials, cis [2.2.2] addition products 21 and 22 were observed (${ }^{1} \mathrm{H}$

21

23

22

24

NMR) in a $3: 2$ ratio, respectively. This ratio was confirmed by hydrodemercuration of the product which gave a mixture of acetates 23 and 24 in which 23 predominated. Here, then, syn addition occurred, giving both of the anticipated products. We note that the eectrophilic atom adds principally closer to the 9 -methyl substituent, but offer no rationalization for this.

19 was treated with mercuric acetate in acetic acid, and the mixture subjected to hydrodemercuration. The principal (ca. 66%) product was 25 , which again resulted from an addition

(presumably syn) process in which the electrophilic atom attacked the atom closer to the 9 substituent. The minor product was 26 , which may be presumed to be formed via 27 in the
wo-k-up and reduction. With 19 we see the very interesting result that the consequence of attachment of electrophile to one end of a double bond is syn attachment of nucleophile, while the consequence of attachment of electrophile at the other end is a carbenium-ion rearrangement.

With 20, mercuric acetate in acetic acid gave two products, 28-OAc and 29-OAc. when the reaction time was short (1 h).

28

29

30

31

32

With longer times (1 day), the product was largely 28-OAc. The existence of both 28 and 29 was confirmed by reduction to 30 and 31 , along with the olefin 32 . The transformation of 20 to 29 as a substantial product of a short reaction time process indicates that in this system addition leads to a carbenium ion, which gives 29-OAc, about as fast as 20 reacts by a syn process to give 28 -OAc. 29-OAc is unstable to reaction conditions and (see below) reverts to starting olefin and mercuric acetate which again distributes itself between 28 and 29 , ultimately giving principally 28 . It is also possible that some 28 arises via ion 33, in a process analogous to many such rearrangements. ${ }^{22}$

In view of the results in acetic acid, we decided to investigate additions in other solvents and in mixed solvents. With mercuric acetate in 50% aqueous acetone, 18 gave alcohol 34 as the predominant product. Hydrodemercuration of 34 gave the

36
tertiary alcohol 35. That the hydroxyl group was exo was concluded from the fact that addition of methylmagnesium iodide to 26 gave an epimeric product 36. Hydrodemercuration of the product mixture from the addition gave a mixture of 35 (55%) and the [2.2.2] alcohols 37 and 38 (45%, ratio about 1:1).

37

38

40

No alcohol 39 was present. The data do not indicate whether syn or anti addition occurred to give the progenitors of 37 and 38 , so that the processes competing with the carbenium ion rearrangement cannot be defined in this particular case, but clearly several mechanisms are operating.

Oxymercuration of 19 with mercuric acetate in 50% aqueous acetone, followed by hydrodemercuration gave 25 and 26 in about a $1: 1$ ratio. With 20, only the rearranged alcohol $40-\mathrm{Cl}$ was formed, whose structure was confirmed by hydrodemercuration to 41 .

41

42

Addition of mercuric acetate to 18 and 20 was also carried out in 50% aqueous tetrahydrofuran. With 18 , the products identified after hydrodemercuration included alcohols 35,37 , and 38 along with acetates 23 and 24 . With 20 the sole product after hydrodemercuration was the [3.2.1] alcohol 41, the result of a carbocation process.

Oxymercuration of 20 was carried out in a variety of other solvents. In 80% aqueous acetic acid, the only product after hydrodemercuration was the [3.2.1] alcohol 41. In acetic acid-methanol (80:20), the only product after hydrodemercuration was the [3.2.1] ether 42 . When the reaction was carried out in acetic acid-methanol (95:5). the products isolated after reduction were the [3.2.1] ether 42, the [2.2.2] acetate $\mathbf{3 0}$. and olefin 32. When the reaction was carried out in methanol, the products isolated after reduction were the [3.2.1] ether 42 and the [2.2.2] ether 43. Isolation of 43 from the reduction does

43

44
not tell whether the competition under these conditions is between the carbocation process which gives 44 and an anti process giving 45 or between the former and a syn process giving 46. As noted above, anti processes are rare in these dibenzobicyclic systems, although Sokolov ${ }^{21}$ did find such a process in the treatment of 1 with mercuric acetate in aqueous

45

46
acetone mentioned above. That the anti process competes here as well was established by 'H NMR analysis of the mixture of chloromercurial intermediates which clearly contained 44 and 45 and no detectable 46 . Hence the product is the result of an anti ring opening of a mercurinium ion intermediate and not that of a syn addition or of a rearrangement to 44 followed by the normal $[3.2 .1] \rightarrow[2.2 .2]$ rearrangement. ${ }^{22}$

In order to verify the instability of 29-OAc to oxymercuration conditions, addition of mercuric acetate to 20 in acetic acid was carried out and the $28: 29$ ratio was determined at various times. As 20 disappeared, 28 and 29 built up in amount at approximately the same rate (the 28:29 ratio being about 60:40) for about the first hour. After that, the $\mathbf{2 8 : 2 9}$ ratio increased until about 20 h and then remained relatively constant ($28: 29$ ratio being about $85: 15$). Since it was demonstrated that 28-OAc was stable to reaction conditions, the 29-0Ac that was formed reverted to 20 , which then reacted again with mercuric acetate to form $\mathbf{2 8}-\mathrm{OA}$ and $\mathbf{2 9 - 0 A c}$. For this reason. $\mathbf{2 8}$-0Ac was the predominant product observed in earlier experiments, which were carried out for long periods of time.

Conclusions

Analysis of the data presented compels a path in which the first step is a fast, reversible formation of a mercurinium ion (eq 1); ${ }^{23}$ if capture of this species by solvent (eq 2) is relatively

easy, the product isolated is the result of anti addition. If this step is very slow, then one or both of two additional reactions (eq 3 and 4) can occur. The pathways outlined in eq 3 may be

anticipated to occur in polar solvents, in particular when the solvent is relatively nonnucleophilic, and when a relatively stable carbocation is formed. It will be revealed when the product is that of a skeletal rearrangement and is stable under reaction conditions. It may also be occurring in cases where stereospecificity is not seen, although this may also be the result of a competition between the eq 2 and 4 pathways. The extra stability given to cation intermediates by the methyl or methoxy groups in 18, 19, and 20 thus favors carbenium ion intermediates and leads to rearranged products, while none are observed with 1 or with the "unsubstituted" ends of the double bonds in 18 and 19. Finally, a syn-concerted ${ }^{18}$ addition process (eq 4) intervenes when neither the process of eq 2 nor that of eq 3 occurs readily. Just as in all concerted electrophilic additions, it seems likely that in the transition state of eq 4, carbon-electrophile bonding is advanced over carbon-nucleophile bonding ${ }^{24}$ but obviously no carbocationic intermediate is involved. ${ }^{26}$ Thus the differences between the processes represented in eq 1,3 , and 4 are subtle in nature, particularly as the mercuric ion begins to approach the double bond, but it is clear that these differences have profound effects, leading finally to different products.

Our system is one of the few in which rearrangement of the carbon skeleton has been noted to occur during oxymercuration. Although other cases are reported in the literature, all are in strained systems. ${ }^{27-31}$

Experimental Section

${ }^{1} H$ NMR spectra were taken on a Varian A-60A spectrometer in CDCl_{3} solution, unless otherwise indicated, with tetramethylsilane as an internal standard. ${ }^{32}$ Elemental analyses were performed by Galbraith Laboratories. Inc., Knoxville, Tenn.

1-Methyl-trans-7,8-dichlorodibenzobicyclo[2.2.2]octadiene (47). A mixture of $10 \mathrm{~g}(52 \mathrm{mmol})$ of 9 -methylanthracene, 30 ml (0.39 mol) of trans-1,2-dichloroethene, and about 1 g of 4 -tertbutylpyrocatechol was heated for 2 days at $180^{\circ} \mathrm{C}$ in a sealed thickwall Pyrex tube. The contents of the tube were chromatographed on 425 g of activated alumina, followed by elution with Skellysolve B. The product was recrystallized from ethanol to give two crops of large, white needles in 73% yield: $\mathrm{mp} 104-105^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ${ }^{\text {oे }} 7.10-7.50$ (m, 8, aromatic H), 4.19-4.42 (m, 2, H-4 and H-8), 3.93 (d, $1, J=2.8 \mathrm{~Hz}$. $\mathrm{H}-7$) and $2.00 \mathrm{ppm}\left(\mathrm{s}, 3 . \mathrm{CH}_{3}\right)$.

Anal. ${ }^{34}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2}$: C. 70.60: H. 4.88. Found: C. 70.68; H, 4.97.

1-Methyl-cis-7,8-dichlorodibenzobicyclo[2.2.2]octadiene (48). A similar reaction with cis-1,2-dichloroethene gave 48 in 78% yield: $\mathrm{mp} 187-188^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.08-7.53$ (m, 8, aromatic H), 4.40-4.61 ($\mathrm{m}, 2, \mathrm{H}-4$ and $\mathrm{H}-8$), $4.12\left(\mathrm{~m}, 1, \mathrm{H}-7\right.$), and $2.03 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2}$: C, 70.60; $\mathrm{H}, 4.88$. Found: $\mathrm{C}, 70.56 ; \mathrm{H}$, 4.86.

1-Methyldibenzobicyclo[2.2.2]octatriene (18) was prepared by reduction of either 47 or 48 with zinc-copper couple in the usual fashion ${ }^{33}$ for such reductions to give a 79% yield of $18: \mathrm{mp} 98-100^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR δ 6.8-7.4 (m. 9, aromatic H and $\mathrm{H}-8$), 6.56 (d of d, $1, J=7$, $1.5 \mathrm{~Hz} . \mathrm{H}-7$), 5.04 (d of d, $1 . J=6 \mathrm{~Hz} . \mathrm{H}-4$) and $2.12 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. ${ }^{34}$ Calcd for $\mathrm{C}_{1} ; \mathrm{H}_{14}$: C, 93.94; H, 6.46. Found: C, $93.50 ; \mathrm{H}, 6.41$.
trans-7,8-Dichloro-1-methoxydibenzobicyclo[2.2.2]octadiene (50). A mixture of 26.9 g (0.13 mol) of 9 -methoxyanthracene (49), 1.0 g of hydroquinone. and 100 ml of trans-1.2-dichloroethane was heated in a sealed tube at 203° for 1 day. Workup as above for 47 gave 29 g (73\%) of 50: mp 134-135 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.1-7.8$ (m, 8, aromatic H), 4.2-4.4 (m. 3, H-4. H.7. and H-8), and $3.87 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}, 66.89$; H .4 .57 ; $\mathrm{Cl}, 23.28$. Found: C, 67.01: H. 4.60; Cl, 23.38.
cis-7,8-Dichloro-1-methoxydibenzobicyclo[2.2.2]octadiene (51). A similar reaction with cis-1,2-dichloroethene gave $51: \mathrm{mp}$ $169-170{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 7.0-7.8$ (m. 8. aromatic H), 4.40 (broad s, 1 , $\mathrm{H}-4$). 4.57 (broad s, 1, H-7), 4.60 (broad s, 1. H-8), and 3.92 ppm (s, $3, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{1}-\mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C}, 66.89 ; \mathrm{H}, 4.57$. Found: C, 66.73; H . 4.51 .

1-Methoxydibenzobicyclo[2.2.2]octatriene (19). Reduction of 50 (or 51) with zinc-copper couple ${ }^{33}$ gave $80-85 \%$ of 19: mp 174-175 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR í 6.9-7.6 (m, 10, olefinic and aromatic H). 5.05 (d of d, $1, J=5,2 \mathrm{~Hz} . \mathrm{H}-4$), and $3.98 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{1} ; \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 87.18 ; \mathrm{H}, 5.98$. Found: $\mathrm{C}, 87.28 ; \mathrm{H}, 5.83$.
trans-7,8-Dichloro-1,4-dimethyldibenzobicyclo[2.2.2]octadiene (53). A mixture of $32.0 \mathrm{~g}(0.155 \mathrm{~mol})$ of 9,10 -dimethylanthracene .52$),{ }^{3.5} 170 \mathrm{ml}(213 \mathrm{~g}, 2 \mathrm{~mol})$ of trans-1,2-dichlorethene, and 0.5 g of tydroquinone was heated at about $155^{\circ} \mathrm{C}$ in a sealed glass tube for 2 days. Workup as us alal gave $43.8 \mathrm{~g}(93 \%)$ of $53: \mathrm{mp} 135-137^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.0-7.5(\mathrm{~m}, 8$, aromatic H$), 3.80(\mathrm{~s}, 2, \mathrm{H}-7$ and $\mathrm{H}-8)$, and $2.20 \mathrm{ppm}\left(\mathrm{s}, 6, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2}$: C, 71.31; $\mathrm{H}, 5.28 ; \mathrm{Cl}, 23.41$. Found: C, 71.22; H, 5.35, Cl, 23.66.
cis-7,8-Dichloro-1,4-dimethyldibenzobicyclo[2.2.2]octadiene (54) was prepared in a similar fashion from cis-1,2-dichloroethane: $\mathrm{mp} 176-177^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $87.0-7.5$ (m, 8, aromatic H), 4.13 (s, 2, H-7 and $\mathrm{H}-8)$, and $2.0 \mathrm{ppm}\left(\mathrm{s}, 6, \mathrm{CH}_{3}\right)$.

Aral. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2}$: $\mathrm{C}, 71.31 ; \mathrm{H}, 5.28 ; \mathrm{Cl}, 23.41$. Found: C , 71.49; H, 5.36; Cl, 23.46.

1,4-Dimethyldibenzobicyclo[2.2.2]octatriene (20) was prepared by reduction of 53 with zinc-copper couple: ${ }^{33} \mathrm{mp} \mathrm{117-119}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.4(\mathrm{~m}, 8$, aromatic H$), 6.62(\mathrm{~s}, 2$, olefinic H$)$, and 2.12 ppm (s, 6, CH_{3}).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16}$: C, 93.10; H, 6.90. Found: C, $93.21 ; \mathrm{H}$, 6.97.

Addition of Mercuric Acetate to 1-Methyldibenzobicyclo[2.2.2]octatriene (18) in Acetic Acid Solvent. A solution of 327 mg (1.5 mmol) of 18 and $463 \mathrm{mg}(1.45 \mathrm{mmol})$ of mercuric acetate in 15 ml of glacial acetic acid was stirred at room temperature for 3 h . Approximately 360 mg of NaCl was added, and the mixture was stirred for an additional 1 h . Water (35 ml) was added, producing a heavy precipitate, which was filtered 1 h later. The precipitate was washed with water and dried in vacuo to give $677 \mathrm{mg}(91 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture showed some 18 plus the two cis adducts 21 and 22. Planimeter integration of enlarged peaks determined the ratio of 21:22 to be $73 \pm 4: 27 \pm 4$. Repeated recrystallization from acetone-water gave 4 -methyl-cis-8-chloromercuri-7-dihenzohicyclo[z.2.2]octadienyl acetate (21): mp 189.5-191.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR δ $7.0-7.5$ (m, 8. aromatic H), 5.38 (d of d, $0.8 \mathrm{H}, J=8.5,3 \mathrm{~Hz}, \mathrm{H}-7$), 4.69 (d, $0.8 \mathrm{H}, J=3 \mathrm{~Hz}, \mathrm{H}-1), 3.15(\mathrm{~d}, 0.8 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-8), 2.06(\mathrm{~s}, 3$, OCOCH_{3}), and $1.96 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{CLHgO}_{2}$: C, $44.45 ; \mathrm{H}, 3.34$. Found: C, 44.43 H, 332 .

Sodium Borohydride Reduction of the Acetoxymercuration Adducts of 18 . To a mixture of $257 \mathrm{mg}(0.5 \mathrm{mmol})$ of a product mixture similar to that described in the previous paragraph and of 12 mg $(0.3 \mathrm{mmol})$ of sodium borohydride was added 2.0 ml of THF and 2.0 ml of 2 M NaOH . A rapid reaction occurred; the mixture was stirred for 20 min . Some chloroiorm and water were added, and the product was decanted from $89 \mathrm{mg}(89 \%)$ of metallic mercury into 20 ml of water. The product was extracted with three $25-\mathrm{ml}$ portions of chlorofo:m. The chloroform extracts were washed with 25 ml of water and 25 ml of saturated aqueous NaCl and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the chloroform gave -50 mg of an oil. The product was separated on a preparative TLC plate (silica gel G, $20 \times 20 \times 0.25 \mathrm{~cm}$, developed with. 10% ether in benzene), and the entire band of acetate products was collected ($120 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR integration showed it to contain 23 and 24 in a ratio of $71: 29$, in good agreement with the ratios for 21 and 22.

Oxymercuration of 20 in Acetic Acid for 1 h. Hydrodemercuration of $28-\mathrm{Cl}$ and $29-\mathrm{Cl}$ with Sodium Borohydride. A solution of $0.70 \mathrm{~g}(3 \mathrm{mmol})$ of 20 and $1.45 \mathrm{~g}(4.5 \mathrm{mmol})$ of mercuric acetate in 15 ml of glacial acetic acid was stirred for 55 min before 1.0 g (17 mmol) of NaCl was added. The solution was stirred for 5 min before 100 ml of water was added. The precipitate was collected, washed with water, and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 1 day, to give $1.50 \mathrm{~g}(95 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this product, in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, showed the ratio of 28:29 to be $55: 45$ [from multiple integration of the absorptions of $\delta 5.34$ (d, $J=9 \mathrm{~Hz}, \mathrm{H}-7$ of 28 ; and $4.48 \mathrm{ppm}(\mathrm{d}, J=5 \mathrm{~Hz}, \mathrm{H}-1$ of 29)]. Approximately 15% of unreacted 20 remained. The product mixture (1.45 $\mathrm{g}, 2.85 \mathrm{mmol})$ was reduced with $0.20 \mathrm{~g}(5.3 \mathrm{mmol})$ of sodium borohydride in 15 ml of tetrahydrofuran and 15 ml of 2 M NaOH for 20 min . After the usual workup procedure, 0.85 g (about 100%) of an oil was obtained and the ratio of $\mathbf{3 0 : 3 1}$ was found to be $61: 39$ [multiple integrations of the absorptions at $\delta 4.88$ (d of d, $J=9,3 \mathrm{~Hz} . \mathrm{H}-7$ of 30) with that at $4.37 \mathrm{ppm}(\mathrm{d}, ~ J=5 \mathrm{~Hz}, \mathrm{H}-1$ of 31$)$]. Approximately 12% of the mixture was unreacted 20.

Oxymercuration of 20 in Acetic Acid for Long Period of Time. Preparation of $28-\mathrm{Cl}$. A solution of 2.1 g (9 mmol) of 20 and 4.35 g $(14.5 \mathrm{mmol})$ of mercuric acetate in 30 ml of glacial acetic acid was stirred for 19 h before 2.0 g (33 mmol) of NaCl was added. Workup as above, followed by recrystallization from aqueous acetone, gave $3.5<\mathrm{g}(74 \%)$ of 1,4 -dimethyl-cis-8-chloromercuri-7-dibenzobicy-
clo[2.2.2]octadienyl acetate (28): mp 204-205 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 7.18-7.58(\mathrm{~m}, 8$, aromatic H$), 5.34(\mathrm{~d}, 0.65 \mathrm{H}, J=9 \mathrm{~Hz}$, $\mathrm{H}-7$), 3.24 (d, $0.65 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{H}-8$), 2.13 [s, $\left.3, \mathrm{C}(1) \mathrm{CH}_{3}\right], 2.02$ (s, 3 , acetate CH_{3}), and $1.93 \mathrm{ppm}\left[\mathrm{s}, 3, \mathrm{C}(4) \mathrm{CH}_{3}\right]$.

1,4-Dimethyl-7-dibenzobicyclo[2.2.2]octadienyl Acetate (30). To $0.53 \mathrm{~g}(1 \mathrm{mmol})$ of $28-\mathrm{Cl}$ in 10 ml of tetrahydrofuran and 10 ml of $2 \mathrm{M} \mathrm{NaOH}, 0.04 \mathrm{~g}(1 \mathrm{mmol})$ of sodium borohydride was added and the reaction mixture was stirred for 20 min . Usual workup gave 250 mg of an oil, whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated that it was largely 30, with small amounts of 32 and 20 also present. Crystallization and recrystallization from aqueous ethanol gave 30: mp $96-97{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.15-7.50(\mathrm{~m}, 8$, aromatic H$), 4.92$ (d of $\mathrm{d}, 1, J=9,3 \mathrm{~Hz}, \mathrm{H}-7$), 2.33 (d of d. $1, J=14,9 \mathrm{~Hz}, \mathrm{H}-8$ anti), $1.85-2.0(\mathrm{~m}, 9$, bridgehead and acetoxy CH_{3}), and 1.37 ppm (d of d, $1, J=14,3 \mathrm{~Hz}, \mathrm{H}-8$ syn).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 82.19; H, 6.85. Found: C, 83.25; H, 6.65 .
Oxymercuration-Hydrodemercuration of 1-Methoxydibenzobicyclo[2.2.2]octatriene (19) in Acetic Acid. A solution of 10.0 g (43 mmol) of 19 and $27.3 \mathrm{~g}(86 \mathrm{mmol})$ of mercuric acetate in 200 ml of glacial acetic acid was stirred for 2 days before 10.0 g of NaCl and 100 ml of water were added. Workup as above was followed by reduction with sodium borohydride in the normal fashion to give 14.3 g of an oil whose ${ }^{1} \mathrm{H}$ NMR spectrum showed 25 and 26 in a ratio of 2:1.

Oxymercuration of 18 in Acetone-Water. A $550-\mathrm{mg}$ (2.30 mmol) sample of 18 was dissolved in 10 ml of acetone and, with stirring, 10.0 ml of distilled water and 0.5 ml of acetic acid were added. To this mixture was added 829 mg (2.6 mmol) of mercuric acetate. After 23 $\mathrm{h}, 600 \mathrm{mg}$ of sodium chloride was added. The mixture was stirred for 15 min , and the turbid solution poured into 100 ml of water and extracted with three $75-\mathrm{ml}$ portions of chloroform. Appropriate workup followed by recrystallization from chloroform-carbon tetrachloride gave syn-8-chloromercuri-endo-2-methyl-exo-2-dibenzobicyclo[3.2.1]octadienol (34): mp 220.2-221.8 ${ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.5$ (m, 8, aromatic H), $4.10(\mathrm{~d}, 0.8 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-1), 3.48(\mathrm{~d}, 0.8 \mathrm{H}, J=$ $4.5 \mathrm{~Hz}, \mathrm{H}-5), 3.22(\mathrm{t}, 0.8 \mathrm{H}, J=4.2 \mathrm{~Hz}, \mathrm{H}-8$ anti) , $2.52(\mathrm{~s}, 1, \mathrm{OH})$, and $1.55 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClHgO}$: $\mathrm{C}, 43.32 ; \mathrm{H}, 3.21$. Found: $\mathrm{C}, 43.10$; H, 3.14.

Hydrodemercuration of 34 with Sodium Borohydride. Treatment of 34 with sodium borohydride by the general treatment described above gave endo-2-methyl-exo-2-dibenzobicyclo[3.2.1]octadienol (35): mp 122-122.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.5$ (m, 8, aromatic H), $3.90\left(\mathrm{~m}, 1, W_{1 / 2}=7 \mathrm{~Hz}, \mathrm{H}-1\right), 3.29\left(\mathrm{~m}, 1, W_{1 / 2}=7 \mathrm{~Hz}, \mathrm{H}-5\right), 2.53(\mathrm{~m}$, $2, \mathrm{H}-8), 2.15(\mathrm{~s}, 1, \mathrm{OH})$. and $1.50 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 86.40 ; \mathrm{H}, 6.85$. Found: C, 86.19; H. 7.09.
Hydrodemercuration of Products from Oxymercuration of 18 in Acetone-Water with Sodium Borohydride. After a mixture of $291 \mathrm{mg}(1.0 \mathrm{mmol})$ of 18 and $319 \mathrm{mg}(1.0 \mathrm{mmol})$ of mercuric acetate in 4 ml of acetone and 4 ml of water was stirred for $24 \mathrm{~h}, 2.0 \mathrm{ml}$ of acetone and 2.0 ml of 6 M NaOH (aqueous) were added, followed by 38 mg (1.0 mmol) of sodium borohydride. The usual treatment and workup gave an oil (272 mg) from which 44 mg of 35 crystallized and was removed. Multiple integrations of the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CCl}_{4}\right)$ over the regions $\delta 3.3-4.2$ (2 protons for both 37 and 38 and 1 proton for 35) and $2.9-3.2 \mathrm{ppm}$ (1 proton for 35) allowed calculation of the ratio of $37+38: 35$. The mixture consisted of $16 \% 18,46 \% 35$, and 38% $37+38$. The ratio of $\mathbf{3 7 : 3 8}$ could not be determined exactly, but was estimated at about 50:50. Addition of these data indicates that the original oxymercuration mixture showed an 85% reaction of 18 to give a 60:40 mixture of 34 :unrearranged hydroxy mercurials. Approximately 80% of the mercury added to the 8 carbon of 18 .
exo-2-Methyl-endo-2-dibenzobicyclo[3.2.1]octadienol (36). A solution of $3.69 \mathrm{~g}(18 \mathrm{mmol})$ of dibenzobicyclo[3.2.1] octadien 4 -one (26) in 70 ml of anhydrous ether was added to excess methylmagnesium iodide in ether and allowed to stand overnight at room temperature. Normal workup of Grignard reactions led to 36 , which after recrystallization from aqueous ethanol melted at 64-67: ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.5(\mathrm{~m}, 8$, aromatic H$), 3.84(\mathrm{~d}, J=4.1 \mathrm{~Hz} . \mathrm{H}-1), 3.35(\mathrm{~d}, 1, J=$ $4.8 \mathrm{~Hz}, \mathrm{H}-5$), 2.63 (d of d of d, $1, J=12.2,4.8 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, \mathrm{H}-8$ anti), 2.74 (d of $\mathrm{t}, 1, J=11.2,1 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{syn}$), and $1.74 \mathrm{ppm}\left(\mathrm{s}, 4, \mathrm{CH}_{3}\right.$ and OH).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 86.40 ; \mathrm{H}, 6.85$. Found: 86.62; H, 6.91 .
Oxymercuration of 20 in Acetone-Water. Synthesis of endo-2,5-Dimethyl-syn-8-chloromercuri-exo-2-dibenzobicyclo[3.2.1]octadienol ($40-\mathrm{Cl}$). A solution of $2.1 \mathrm{~g}(9 \mathrm{mmol})$ of 20 and 4.35 g (14.5 mmol) of mercuric acetate in 30 ml of acetone, 20 ml of water, and 0.5 ml of glacial acetic acid was stirred for $18 \mathrm{~h} . \mathrm{NaCl}(2.0 \mathrm{~g} .34$ mmol) was added and stirred for 1 h . Workup gave, after recrystallization from chloroform-carbon tetrachloride, $3.60 \mathrm{~g}(82 \%)$ of $40: \mathrm{mp}$ $214-215{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\delta 6.7-7.7$ (m, 8, aromatic H), $6.2(\mathrm{~s}, 1, \mathrm{OH}$),
3.47 (d, $1, J=5 \mathrm{~Hz}, \mathrm{H}-1$), 3.05 (d. $1, J=5 \mathrm{~Hz}, \mathrm{H}-8$ anti), 1.83 (s, 3, C(2) CH_{3}], and 1.5 ppm (s, 3, bridgehead CH_{3}).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{1}-\mathrm{ClHgO}: \mathrm{C}, 44.54 ; \mathrm{H}, 3.50$. Found: $\mathrm{C}, 44.35$; H, 3.52.
endo-2,5-Dimethyl-exo-2-dibenzobicyclo[3.2.1]octadienol (41) was prepared by hydrodemercuration of 40 in the usual fashion: mp $100-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.7-7.6(\mathrm{~m}, 8$, aromatic H), $3.26(\mathrm{~d}, 1, J=4.5$ Hz. H-1), 2.58 (d, $1, J=11 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{syn}$), $2.25(\mathrm{~d}$ of $\mathrm{d}, 1, J=11,4.5 \mathrm{~Hz}$, $\mathrm{H}-8$ anti), $1.17\left(\mathrm{~s}, 3\right.$, bridgehead $\left.\dot{\mathrm{C}} \mathrm{H}_{3}\right)$, and $1.46 \mathrm{ppm}[\mathrm{s}, 3, \mathrm{C}(2)$ CH_{3}].

Oxymercuration of 19 in Acetone-Water. A solution of 0.70 g (3 mmol) of 19 and $2.87 \mathrm{~g}(9 \mathrm{mmol})$ of mercuric acetate in 50 ml of acetone-water ($4: 1$) and 1.5 ml of glacial acetic acid was heated at reflux for 1 day. Addition of $1.0 \mathrm{~g}(47 \mathrm{mmol})$ of NaCl in 120 ml of water and extraction with chloroform was followed by the usual workup. The ${ }^{1} \mathrm{H}$ NMR spectrum showed a mixture of 25 and 26 in a $1: 1$ ratio.

Oxymercuration of 18 in Tetrahydrofuran-Water. A solution of $0.319 \mathrm{~g}(1 \mathrm{mmol})$ of mercuric acetate in 1.0 ml of water was added to a solution of $0.218 \mathrm{~g}(1 \mathrm{mmol})$ of 18 in 1.0 ml of tetrahydrofuran and the reaction mixture was stirred for 21.5 h . Reduction with sodium borohydride, followed by the usual workup, gave a mixture whose ${ }^{1} \mathrm{H}$ NMR spectrum showed about $17 \% 35$ and 21% acetate 33 , with the remainder being alcohols 37 and 38.

Oxymercuration of $\mathbf{2 0}$ in Aqueous Tetrahydrofuran. A solution of $0.70 \mathrm{~g}(3 \mathrm{mmol})$ of 20 and $1.45 \mathrm{~g}(4.5 \mathrm{mmol})$ of mercuric acetate in 30 ml of 50% aqueous tetrahydrofuran to which 1 ml of glacial acetic acid had been added was stirred for $2 \mathrm{~h} . \mathrm{NaOH}(0.5 \mathrm{~g})$ and excess sodium borohydride were added. After the usual workup, the 'H NMR spectrum of the product showed only 20 and 41 in approximately a 1:1 ratio. No 30, 31, or 32 was observed.

Oxymercuration of 1 in Acetic Acid for a Short Time. A solution of $0.20 \mathrm{~g}(1 \mathrm{mmol})$ of 1 and $0.67 \mathrm{~g}(2 \mathrm{mmol})$ of mercuric acetate in 20 ml of glacial acetic acid was stirred for about 19 min before 1.0 g of NaCl was added. The solution was stirred for about 2 min before 100 ml of water was added. Sodium borohydride reduction gave a mixture whose ${ }^{1} \mathrm{H}$ NMR spectrum showed that approximately 30% of 1 had been converted to the acetate of 14 . No rearranged products were observed.

Oxymercuration of $\mathbf{2 0}$ in Acetic Acid-Water (4:1). A solution of $1.00 \mathrm{~g}(4.3 \mathrm{mmol})$ of 20 and $1.75 \mathrm{~g}(5.5 \mathrm{mmol})$ of mercuric acetate in 50 ml of glacial acetic acid-water 14:1) was stirred for 1 day before 2.0 g of NaCl was added. The precipitate was reduced with sodium borohydride. After the usual workup, a ${ }^{1} \mathrm{H}$ NMR spectrum of the product showed it to be exclusively the [3.2.1] alcohol 41.

Oxymercuration of 20 in Acetic Acid-Methanol (4:1). A solution of $5.0 \mathrm{~g}(21.6 \mathrm{mmol})$ of 20 and $10.3 \mathrm{~g}(32.3 \mathrm{mmol})$ of mercuric acetate in 70 ml of an acetic acid-methanol ($4: 1$) mixture was stirred for 15 h before 5.0 g (85 mmol) of NaCl was added. Workup as usual gave 7.7 g (70\%) of syn-8-chloromercuri-endo-2,5-dimethyl-exo-2-dibenzobicyclo[3.2.1]octadienyl methyl ether (44), which, after recrystallization from chloroform-carbon tetrachloride, had mp 185-186 ${ }^{\circ}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ o $6.7-7.0(\mathrm{~m}, 8 \mathrm{H}$, aromatic H), 3.85 $(\mathrm{d}, 0.8 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{H}-1), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.05(\mathrm{~d}, 0.7 \mathrm{H}, J=4.5$ $\mathrm{Hz}, \mathrm{H}-8$ anti), 1.87 [s, $3 \mathrm{H}, \mathrm{C}(2) \mathrm{CH}_{3}$], and $1.95 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}$, bridgehead CH_{3}).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{OHgCl}: \mathrm{C}, 45.69$; $\mathrm{H}, 3.81$. Found: $\mathrm{C}, 45.59$; H, 3.73.
endo-2,5-Dimethyl-exo-2-dibenzobicyclo[3.2.1]octadienyl methyl ether (42) was prepared by sodium borohydride reduction of $44-\mathrm{Cl}$, oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.9-7.5(\mathrm{~m}, 8$, aromatic H), $3.51(\mathrm{~m}, 1 \mathrm{H} . \mathrm{J}=$ $5 \mathrm{~Hz}, \mathrm{H}-1), 3.38\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 2.69(\mathrm{~d}, 1, J=11 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{syn}), 2.20$ (d of d. $1 . J=11,5 \mathrm{~Hz}, \mathrm{H}-8$ anti), $1.75\left[\mathrm{~s}, 3, \mathrm{C}(2) \mathrm{CH}_{3}\right]$, and $1.42 \mathrm{ppm}(\mathrm{s}$, 3 , bridgehead CH_{3}).

Oxymercuration of $\mathbf{2 0}$ in Acetic Acid-Methanol (19:1). A solution of $1.00 \mathrm{~g}(4.3 \mathrm{mmol})$ of 20 and $1.75 \mathrm{~g}(5.5 \mathrm{mmol})$ of mercuric acetate in 50 ml of acetic acid-methanol (19:1) was stirred for 1 day before 1.0 g of NaCl was added. Workup and sodium borohydride reduction gave a product whose ${ }^{1} \mathrm{H}$ NMR spectrum showed 42 (67\%), 30 (22%), and 32 (11%).

Oxymercuration of $\mathbf{2 0}$ in Methanol. A solution of 2.1 g (9 mmol) of 20 and 4.35 g (13.5 mmol) of mercuric acetate in 35 ml of methanol was stirred for 17 h before $1.0 \mathrm{~g}(20 \mathrm{mmol})$ of NaCl and 75 ml of water were added. The precipitate was collected and dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$, yielding 4.1 g of solid product. The ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) of the product mixture indicated that the [2.2.2] addition product had trans stereochemistry ${ }^{32 \mathrm{~b}}$ for the $\mathrm{Hg}-\mathrm{X}$ and OCH_{3} substituents $\left[\delta 4.27 \mathrm{ppm}(. J=3 \mathrm{~Hz}, \mathrm{H}-8)\right.$]. The ${ }^{1} \mathrm{H}$ NMR spectrum also indicated that the acetoxymercurials had been isolated, not the chloromercurials. To 4.0 g (7.6 mmol) of the product dissolved in 20

Table I. Oxymercuration of 1,4-Dimethyldibenzobicyclo[2.2.2]octatriene in Acetic Acid. Effect of Time on Product Composition

	Composition, \%			
Time, h	$\mathbf{2 0}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{2 8 : 2 9}$
0.25	56.4	24.9	18.7	$57: 43$
0.50	47.2	28.2	24.6	$53: 47$
1.0	27.9	38.9	33.3	$54: 46$
2.0	22.7	48.8	28.5	$63: 37$
4.5	14.7	54.2	31.1	$64: 36$
9.0	11.8	65.5	24.7	72.28
21.0	12.5	72.3	15.2	83.17
32.5	9.7	77.0	13.3	8515
44.5	10.8	75.6	13.6	$85: 15$
66.5	9.9	80.1	10.0	$89: 11$

ml of tetrahydrofuran and 20 ml of $2 \mathrm{M} \mathrm{NaOH}, 0.50 \mathrm{~g}(13.2 \mathrm{mmol})$ of sodium borohydride was added and the solution was stirred for 15 min . The solution was decanted from $1.49 \mathrm{~g}(92 \%)$ of metallic mercury and the usual workup gave $2.11 \mathrm{~g}(99 \%)$ of an oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture indicated that ethers 42 and 43 were present in approximately equal amounts. The ethers were separated by high-pressure liquid chromatography on silica gel with 4%, ether in hexanes as elutant. The ${ }^{1} \mathrm{H}$ NMR spectrum of the second ether eluted corresponded with that of 42 . Recrystallization of the first fractions from hexane gave 1,4-dimethyl-7-dibenzobicyclo[2.2.2]octadienyl methyl ether (43): mp 107-108 ${ }^{\circ} \mathrm{C}$; 'H NMR $\overline{\mathrm{j}} 7.0-7.5(\mathrm{~m}, 8$, aromatic H), 3.38 (d of d, $1, J=9,3 \mathrm{~Hz} . \mathrm{H}-7$), $3.20\left(\mathrm{~s}, 3.0 \mathrm{CH}_{3}\right), 2.07$ (d of d. $1, J=11,9 \mathrm{~Hz} . \mathrm{H}-8$ anti), $2.00\left[\mathrm{~s}, 3, \mathrm{C}(1) \mathrm{CH}_{3}\right] .1 .93[\mathrm{~s} .3, \mathrm{C}(4)$ $\mathrm{CH}_{3} \mid$, and 1.47 ppm (d of d. $1, J=11.3 \mathrm{~Hz}, \mathrm{H} .8 \mathrm{syn}$).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{2 n} \mathrm{O}: \mathrm{C}, 86.36 ; \mathrm{H} .7 .57$. Found: C. 86.53; H, 7.66.
Stability of 29-0Ac to Oxymercuration Conditions in Acetic Acid. Olefin $20(2.32 \mathrm{~g}, 10 \mathrm{mmol})$ in 25 ml of glacial acetic acid was added to $3.18 \mathrm{~g}(10 \mathrm{mmol})$ of mercuric acetate in 25 ml of glacial acetic acid at room temperature. Aliquots (5.0 ml) were removed from time to time. $\mathrm{NaCl}(0.5 \mathrm{~g})$ was added to each aliquot and 50 ml of water was added after $1-5 \mathrm{~min}$ of stirring. For the shorter reaction times, the time between NaCl addition and water addition was less. The solid product was then collected. washed with water. and dried on a suction filter. The ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) of the resulting product mixtures were obtained and the product ratios were determined by comparing multiple integrations of the peaks at $\bar{\delta} 6.52$ (H-7 and H-8 of 20) with those at $5.34(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{H}-7$ of 28) and those at 4.48 ppm (d. $J=5 \mathrm{~Hz}, \mathrm{H}-1$ of 29). Results are summarized in Table I .

Stability of 28-OAc to Oxymercuration Conditions in Acetic Acid. A solution of $1.40 \mathrm{~g}(6 \mathrm{mmol})$ of 20 and $3.83 \mathrm{~g}(12 \mathrm{mmol})$ of mercuric acetate in 25 ml of glacial acetic acid was stirred for 24 h and poured into 200 ml of water. The aqueous solution was decanted from the solid product and approximately 0.3 g of the product was dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$. The remainder of the product was redissolved in 20 ml of glacial acetic acid and stirred for 17 h before $2.0 \mathrm{~g}(34 \mathrm{mmol})$ of NaCl was added. The solution was stirred for another $15 \mathrm{~min}, 100$ ml of water was added, and the product was collected, washed with water. and dried. The ' H NMR spectrum $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ of the product (28-OAc) before its reaction with acetic acid indicated that no 20 or 29-OAc were present. The ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) of the product after reaction in acetic acid also indicated no 20 or $29-\mathrm{Cl}$.

1,4-Dimethyl-7-dibenzobicyclo[2.2.2]octadienol (55). To a solution of $10.0 \mathrm{~g}(43 \mathrm{mmol})$ of 20 and $7.45 \mathrm{~g}(197 \mathrm{mmol})$ of sodium borohydride in 110 ml of dry bis(2-methoxyethyl) ether (diglyme) at 0 ${ }^{\circ} \mathrm{C}$. a solution of 10.5 ml (85 mmol) of boron trifluoride etherate in 40 ml of dry diglyme was added over a 2 -h period under a nitrogen atmosphere. The reaction mixture was stirred for another 4 h during which the reaction was allowed to warm to room temperature. Water (25 ml) was cautiously added over 45 min , followed by 40 ml of 10% aqueous NaOH while the solution was cooled to $0^{\circ} \mathrm{C}$. To the solution, 40 ml of 30% hydrogen peroxide was added over a $30-\mathrm{min}$ period and the reaction mixture warmed to room temperature and stirred for 13 h. Normal workup gave $10.6 \mathrm{~g}(98 \%)$ of 55 . Recrystallization from ethanol-water ($1: 1$) gave $9.4 \mathrm{~g}(87 \%)$ of 55 : mp $144-145^{\circ} \mathrm{C}$: ${ }^{\prime} \mathrm{H}$ NMR $\delta 7.0-7.5(\mathrm{~m}, 8$, aromatic H$), 3.75$ (d of d. $1, J=9,3 \mathrm{~Hz}, \mathrm{H}-7$) 2.218 (d of d. $1 . J=13,9 \mathrm{~Hz} . \mathrm{H}-8$ anti), 1.95 (s .3 . bridgehead CH_{3}), 1.88 ($\mathrm{s}, 3$, bridgehead CH_{3}), and 1.22 ppm (d of d. $1, J=13,3 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{syn}$).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 86.40 ; \mathrm{H}, 7.20$. Found: C, 86.57 ; H, 7.29 .
1,4-Dimethyl-7-dibenzobicyclo[2.2.2]octadienyl p-toluenesulfonate (56) was prepared from 55 and p-toluenesulfonyl
chloride in dry pyridine at $0^{\circ} \mathrm{C}$. Workup and recrystallization from ethe:-petroleum ether (bp 60-70 ${ }^{\circ}$) gave 56: mp $89-91^{\circ} \mathrm{C} \mathrm{dec;}{ }^{1} \mathrm{H}$ NMR $\delta 7.1-7.8(\mathrm{~m}, 12$, aromatic H$), 4.62$ (d of d, $1, J=8,3 \mathrm{~Hz}, \mathrm{H}-7$), $2.42 \mathrm{~s}, 3$, bridgehead CH_{3}), 2.12 (d of d, $1, J=14,8 \mathrm{~Hz} . \mathrm{H}-8$ anti), 1.87 (s, 6 , bridgehead CH_{3} and tosylate CH_{3}), and 1.53 ppm (d of d, $1, J$ $=14,3 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{syn}$).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 74.26 ; \mathrm{H}, 5.94$. Found: C, 74.11; H, 6.06

Solvolysis of $\mathbf{5 6}$ in Acetic Acid with Sodium Acetate. Isolation of 2-Methylene-5-methyldibenzobicyclo[3.2.1]octadiene (32). A solution of $3.14 \mathrm{~g}(7.8 \mathrm{mmol})$ of 56 and $0.70 \mathrm{~g}(8.5 \mathrm{mmol})$ of sodium acetate in 60 ml of glacial acetic acid was heated at reflux for 12 h . The mixture was poured in:o 100 ml of benzene and 200 ml of water. Normal workup gave $1.8 \mathrm{~g}(100 \%)$ of olefin 32 , which after recrystallization from ethanol had mp 119-120 ${ }^{\circ}{ }^{1}{ }^{3}$ NMR δ 6.9-7.75 ($\mathrm{m}, 8$, aromatic H), $5.45(\mathrm{~s}, 1 \mathrm{H}$, vinyl H cis to aromatic ring), $5.15(\mathrm{~s}, 1 \mathrm{H}$, trans vinyl H), $4.00(\mathrm{t}, 1 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{H}-5), 2.37(\mathrm{~d}, 2 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{H}-8)$, and $1.8 \mathrm{ppm}\left(\mathrm{s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16}$: C, 93.10; H, 6.90. Found: C, 93.22; H. 6.93.
Acknowledgment. The authors are grateful to the Natior.al Science Foundation for support of this research under Grant GP 8913X.

Registry No.-1, 2734-13-6; 18, 58426-49-6; 19, 58426-50-9; 20, 58426-51-0; 21, 58426-52-1; 26, 2198-06-3; 28-Cl, 58426-53-2; 28-OAc, 58426-54-3; 29-Cl, 58426-55-4; 29-OAc, 58426-56-5; 30, 58426-57-6; 32, 58426-58-7; 34, 58426-59-8; 35, 58426-60-1: 36, 58462-42-3; 40-Cl, 58426-61-2; 41, 58426-62-3; 42, 58426-63-4: 43, 58426-64-5; 44, 58426-65-6; 47, 58426-66-7; 48, 58426-67-8; 49, 2395-96-2; 50, 58426-68-9; 51, 58426-69-0; 52, 781-43-1; 53, 58426-70-3; 54, 58426-71-4: 55, 58426-72-5; 56, 58426-73-6: trans-1,2-dichloroethene, 156-60-5; cis-1,2-dichloroethene, 156-59-2; mercuric acetate, 10507-39-8; 9-methylanthracene, 779-02-2.

References and Notes

(1) Part 81: S. J. Cristol and M. C. Kochansky. J. Org. Chem., 40, 2171 (1975).
(2) For reviews, see (a) W. Kitching. Organomet. Chem. Rev. 3, 61 (1968): (b) C. Chandra, M. S. Muthana, and D. Devaprabhakara. J. Sci. Ind. Res., 30, 333 (1971); (c) D. J. Pasto and J. A. Gontarz, J. Am. Chem. Soc., 93, 6902 (1971).
(3) S. J. Cristol. R. P. Arganbright, G. D. Brindell. and R. M. Heitz. J. Am. Chem. Soc., 79, 6035 (1957).
(4) S. J. Cristol. R. P. Arganbright. and D. D. Tanner. J. Org. Chem.. 28, 1374 (1963).
(5) S. J. Cristol, F. P. Parungo, and D. E. Plorde. J. Am. Chem. Soc., 87, 2870 (1965)
(6) 'a) S J. Cristol. R. Caple, R. M. Sequeira, and L. O. Smith. Jr., J. Am. Chem. Soc., 87, 5679 (1965; (b) S. J. Cristol and B. B. Jarvis, ibid., 88, 3091 (1966).
(7) (a) S. J. Cristol, R.J. Bopp, and A. E. Johnson, J. Org. Chem., 34, 3574 (1969): (b) S. J. Cristol and R. J. Bopp. ibid., 39, 1336 (1974).
(8) W. R. Vaughan and A. C. Schoenthaler. J. Am. Chem. SoC.. 80, 1956 (1958).
(9) (a) S. J. Cristol and R. K. Bly, J. Am. Chem. Soc., 82, 6155 (1960); (b) S. J. Cristol and D. D. Tanner, ibid., 86, 3122 (1964); (c) S. J. Cristol, F. P. Parungo, D. E. Plorde, and K. Schwarzenbach, ibid. 87, 2879 (1965); (d) S. J. Cristol, J. R. Mohrig. and G. T. Tiedeman. J. Org. Chem., 37, 3239 (1972)
(10) H. J. Lucas, F. R. Hepner, and S. Winstein. J. Am. Chem. Soc., 61, 3102 (1939)
(11) G. F. Wright. J. Am Chem. Soc., 57, 1993 (1935).
(12) R. D. Bach and R. F. Richter, J. Am. Chem. Soc., 94, 4747 (1972)
(13) W. Kitching. A. J. Smith, and P. R. Wells, Aust. J. Chem., 21, 2395 (1968).
(14) G. A. Olah and P. R. C ifford, J. Am. Chem. Soc., 93, 1261 (1971).
(15) S. Bentham, P. Chamberlain, and G. H. Whitham. J. Chem. Soc D. 1528 (1970).
(16) J. Halpern and H. B. Tinker. J. Am. Chem Soc., 89, 6427 (1967).
(17) V.I. Sokolov. L. L. Troitskaya, and O. A. Reutov, J. Organomet. Chem., 17. 323 (1969).
(18) (a) T. G. Traylor and A. W. Baker. Tetrahedron Lett., 14 (1959): (b) T. G. Traylor and A. W. Baker, J. Am. Chem. Soc., 85, 2746 (1963); (c) T. T. Tidwell and T. G. Traylor. J. Org. Chem.. 33, 2614 (1968).
(19) H. C. Brown and J. H. Kawakami, J. Am. Chem. Soc., 95, 8665 (1973), and -eferences cited therein.
(20) 4. C. Brown. "Boranes in Organic Chemistry". Cornell University Press. Ithaca. N.Y. 1972. p 265 ft.
(21) V. I. Sokolov. Izv. Akał. Nauk SSSR, Ser. Khim., 1285 (1968)
(22) Zeference 5. and othe- work in this laboratory.
(23) in this discussion, we have no information regarding the numbers of ligands attached to mercuric ion, or the steps in which they are lost. and simply assume at least that one acetate ligand is attached in the whole process
(24) Evidence for the electrophilic nature of the oxymercuration of norbornene is summarized by Traylor. ${ }^{25}$
(25) T. G. Traylor. Acc. Chem. Res., 2, 152 (1969).
(26) A concerted molecular addition such as proposed in eq 4 and a cis ligand nigration. ${ }^{25}$ which may sometimes be considered as an alternative, are in reality not significantly different as they have identical transition states.
(27) H.-P. Loffler and G. Schroder, Tetrahedron Lett., 2119 (1970)
(28) E. J. Corey and R. S. Glass, J. Am. Chem. Soc., 89, 2600 (1967)
(29) K. B Wiberg and Wan-fang Chen, J. Org. Chem., 37, 3235 (1972).
(30) M. S. Newman and M. C. Vander Zwan. J. Org. Chem., 39, 1186 (1974)
(31) G. R. Krow and J. Reilly, J. Org. Chem., 40, 136 (1975).
(32) Structural interpretations of NMR data were made according to (a) S. J

Cristol, J. R. Mohrig, and D. E. Plorde. J. Org. Chem., 30. 1956 (1965); (b) S. J. Cristol, T. W. Russell, J. R. Mohrig, and D. E. Plorde, ibid., 31, 581 (1966).
(33) S. J. Cristol and W. Y. Lim, J. Org. Chem.. 34. 1 (1969)
(34) Sample prepared by Dr G. O. Mayo
(35) S J. Cristol and J. S. Perry. Jr.. Tetrahedron Lett., 1921 (1974)

Bridged Polycyclic Compounds. 83. Steric and Bromine Substituent Acceleration in Bromination Reactions ${ }^{1,2}$

Stanley J. Cristol,* Hans W. Mueller, Walter M. Macintyre, and R. Curtis Haltiwanger
Department of Chemistry, University of Colorado, Boulder, Colorado 80302

Received September 8, 1975

Abstract

Free-radical brominations of a number of bridged compounds (compounds 3-9) have been carried out, with attention paid both to product compositions and to relative reactivities. Each of the compounds had at least one tertiary hydrogen atom at a nonbridgehead position, and reaction occurred exclusively at such positions. A solvent system was devised which scavenged hydrogen bromide rapidly, and competitive brominations were conducted with pairs of compounds. The relative reactivities of the compounds have been rationalized in terms of structural features, and the product compositions have also been discussed.

Some time ago it was reported ${ }^{3}$ that 5 -bromojanusene (1) was more reactive toward free-radical bromination than

1

janusene (2) itself. This seemed to us to be an interesting result, as the usual explanation ${ }^{4}$ for β-activation by bromine, that is, anti-neighboring group participation by bromine in the transition state for hydrogen abstraction, cannot be invoked in this case for obvious geometric reasons. Rather some syn activation process might be inferred, or the ring system itself, which is not without other unusual properties, ${ }^{5}$ might be responsible for the rate enhancement. We therefore undertook the study reported in this paper to see whether or not such syn periplanar activation is a general phenomenon in the abstraction of tertiary hydrogen atoms by bromine atoms.
To this end. we determined to study the relative rates of free-radical bromination of compounds 3-9. With these compounds we would be in a position not only to study the effect of bromine substituents upon the reactivities of vicinal hydrogen atoms, but also the effects of neighboring methyl groups.

Preparation of Reagents. 7-Methyldibenzobicyclo[2.2.2] octadiene (3) ${ }^{6}$ and cis- (4) ${ }^{7}$ and trans-7,8-dimethyldibenzobicyclo[2.2.2]octadiene (5 $)^{7,8}$ had already been de-
scribed. We found it convenient to prepare 4 and 5 by diene syntheses at $225^{\circ} \mathrm{C}$ from anthracene and cis- and trans-2-

3

5

7

9

11

13

4

6

8

10

12

14
butene, respectively. When 4 was prepared in this fashion in a steel pressure autoclave, contamination with 5 was observed. This contamination, which was presumably the result of ferric ion catalyzed olefin isomerization, was eliminated by addition of small amounts of ethylenediaminetetraacetic acid and phthalonitrile to coordinate with the iron.

2-Methyl-2-butene could not be induced to react with anthracene to give 6. Apparently the extra methyl group provides too much steric hindrance to allow reaction. ${ }^{9}$ As 3, 4 , and 5 had been prepared by lithium aluminum hydride reductive displacements on p-toluenesulfonate esters, ${ }^{6-8}$ such a process appeared attractive for 6 as well. To this end, 16, or its epimer, was required. Lithium aluminum hydride reduction of 15^{10} did not proceed well, but conversion of 15 to $17,{ }^{10}$ followed by LiAlH_{4} reduction, gave 16 readily

15

17

19

21

16

18

20

22
and in high purity. Attempts to convert the diol 16 to the bis- p-toluenesulfonate ester by standard procedures led instead to the tetrahydrofuran 18, presumably by base-promoted reaction of the mono esters. The bisbenzenesulfonate ester 19 was prepared by oxidation of the readily prepared bisbenzenesulfinate ester.

Although the reduction of the analogue of 19 without the methyl group (and with p-toluenesulfonoxy groups) proceeds to give 4 in fair yield when special conditions are used, that of 19 led rather to the tetrahydrofuran 18, presumably via attack at sulfur to give the monoester, ${ }^{7}$ rather than at carbon to give the desired reduction product 6 . However, treatment of 19 with ethanolic sodium hydrosulfide gave the tetrahydrothiofuran 20 , which upon treatment with Raney nickel was readily converted to 6 .

The monobromo derivatives (7 and 8) of the dimethyl compounds were prepared by free-radical addition of hydrogen bromide to the olefin 21. The trans isomer 8 predominated over the cis isomer 7 in a ratio of $7: 1$. Ionic addition of hydrogen bromide to 21 gave rearranged products with the dibenzobicyclo[3.2.1]octadiene skeleton, as well as [2.2.2] products. Attempts to prepare 7 and/or 8 by stereospecific syntheses failed. Although 7 and 8 were readily distinguished by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the structures of
these were not readily apparent from these data. X-Ray analysis of the major product (which was readily separated and purified) showed that it was the trans isomer 8.
trans-7-Bromomethyl-8-methyldibenzobicyclo[2.2.2]octadiene (9) was prepared from the alcohol resulting from the reduction of the Diels-Alder adduct ${ }^{12}$ of anthracene and methyl trans-crotonate. Treatment of this alcohol with triphenylphosphine dibromide gave 9.

Methods of Competitive Bromination and Results. In order to measure the relative reactivities of the tertiary hydrogen atoms in the compounds of interest, we compared their rates of disappearance in paired sets ${ }^{13}$ in photobromination reactions. Relative bromination rates will give relative hydrogen abstraction rates only if the reaction in eq 1

$$
\begin{align*}
& \mathrm{RH}+\mathrm{Br} \cdot \stackrel{k_{1}}{\rightleftharpoons} \mathrm{R} \cdot+\mathrm{HBr} \tag{1}\\
& \mathrm{R} \cdot+\mathrm{Br}_{2} \xrightarrow{k_{2}} \mathrm{RBr}+\mathrm{Br} \tag{2}
\end{align*}
$$

is irreversible, that is, $k_{2}\left[\mathrm{Br}_{2}\right] \gg k_{-1}[\mathrm{HBr}]$, or if k_{-1} / k_{2} is identical for all of the alkyl radicals under study, which seems highly unlikely. Furthermore, the reverse reaction in eq 1 may lead to epimerization of 4 and 5 and of 7 and 8 . Indeed such epimerization may be used as a measure of reversibility. Thus, the high reactivity of the radical 22 from 4 w.th hydrogen bromide compared with bromine may be noted from the fact that treatment of 4 with 1 mmol of bromine in 60 mol of carbon tetrachloride give a mixture of 54% of 7 and $8,8-11 \%$ of 4 , and $31-33 \%$ of the trans isomer $5 .{ }^{14}$ Isomerization of 4 to 5 was reduced substantially when $4-6 \%$ of solvent was replaced by a hydrogen bromide scavenger, 2,3 -epoxy-2,3-dimethylbutane, and was almost completely eliminated when ratios of 1 mol of 4,1 of $\mathrm{Br}_{2}, 50$ of CCl_{4}, and 21 of epoxide were used (at 50% bromination, the hydrocarbon mixture contained 97% of 4 and 3% of 5).

For preparative bromination reactions, we found that reversal and attendant isomerization could be lessened substantially by conducting the bromination in the presence of a water layer and using vigorous stirring. In this way the hydrogen bromide was extracted into the aqueous phase and its concentration in the organic solvent was low enough to cut down its competition with bromine for the intermediate radical.

Relative rates of disappearance were measured at $10-11$ ${ }^{\circ} \mathrm{C}$, using ratios of $0.5-1.0 \mathrm{~mol}$ of Br_{2} to 1 of substrate mixture, 36 of CCl_{4}, and 21 of epoxide. After irradiation (tungster lamp), solvents were removed by rotary evaporation, petroleum ether was added, and oxygen-containing substarces were extracted with 85% phosphoric acid. Analysis was by ${ }^{1} \mathrm{H}$ NMR and/or GLC. Data and calculated relative reactivities are given in Table I and in Table II.

Discussion

When the data in Table I are corrected for the number of tertiary hydrogen sites, it becomes evident that the monomethyl derivative 3 and the trans dimethyl derivative 5 have a reactivity ratio of about 2 , and the cis dimethyl compound 4 and the trimethyl compound 6 have one of about 1.5. These pairs differ in having a methyl group which might provide interference with the attacking bromine atom; this effect is small. Presumably in its attack on a hydrogen atom, the bromine atom is not greatly interfered with by the hydrogens of the syn methyl group. On the other hand, the relative reactivities of each tertiary site in 4 to that of 3 of $16: 1$, and the corresponding ratio of that in 6 to those in 5 of $30: 1$, show the relatively large rate enhancement caused by the additional eclipsed methyl group remote from the site of attack. We see no simple rationaliza-

Table I. Data and Results on Photobrominations in a Carbon Tetrachloride-2,3-Dimethyl-2,3-epoxybutane Mixture

Run	Mole ratios		Recovered substrates, ${ }^{a}$ \% of aromatic peaks	Rel reactivity
	Substrates	Br_{2}		
1^{6}	5, 0.55; 3, 0.45	0.50	5, 45.0; 3, 35.6	3:5 $=1.2: 1$
2	5, 0.50; 3, 0.50	0.88	5, 24.0; 3, 24.0	3:5 = 1.0:1
3	4, 0.63; 5, 0.37	0.70	4, 6.4; 5, 34.6	$4: 5=34: 1$
4	4, $0.51 ; 5,0.49$	0.94	4, 2.6; 5, 45.	$4: 5=35: 1$
$5^{\text {b }}$	5, 0.52; 6, 0.48	0.70	5, 48.2; 6, 16.1	$5: 6=14: 1$
6	4, 0.52; 6, 0.48	0.59	4, 14.3; 6, 32.4	$4: 6=3.3: 1$
$7{ }^{\text {b,c }}$	7, 0.21; 8, 0.74	0.79	7, 18.5; 8, 23.0	$8: 7=9.2: 1$
$8{ }^{\text {c }}$	7, 0.21 ; 8, 0.74	0.87	7, 13.5; 8, 5.0	$8: 7=6.1: 1$
$9^{\text {d }}$	8, $0.37 ; 6,0.61$	0.24	8, 14.0; 6, 44.0	$8: 6=3.0$
10^{e}	8, $0.35 ; 6,0.63$	0.30	8, 13.0; 6, 46.0	$8: 6=3.2$
11^{e}	8, 0.556; 9, 0.418	0.59	8, 8.2; 9, 41.0	$8: 9=100: 1^{\prime}$
12	3, 0.497; 9, 0.503	0.53	3, 33.0; 9, 46.5	$3: 9=5.0: 1$

${ }^{a}$ Mixtures of bromides and/or dibromides were also present. ${ }^{b}$ Run stopped before all bromine was consumed. ${ }^{\text {c }}$ This sample contained 5% of an unknown impurity. ${ }^{d}$ This sample also contained 2% of 7 . ${ }^{e}$ This sample also contained 3% of 7. f Value probably has high error; not used for Table II computation.

Table II. Relative Reactivities toward Bromine Atoms (Compound $5 \equiv 1.0)^{a}$

Compd	Rel reactivity	Rel reactivity per tertiary H atom
$\mathbf{3}$	1.1	2.2
4	34.	34.
$\mathbf{5}$	1.0	1.0
6	12.	24.
$\mathbf{7}$	5.	10.
8	37.	74.
$\mathbf{9}$	0.22	0.4^{b}

${ }^{a}$ Estimated reliabilities $\pm 0.25 .{ }^{b}$ Assuming that one of the tertiary hydrogens is preferentially attacked.
tion of these results other than steric acceleration due to back-strain relief. ${ }^{2}$
Rate enhancement might be anticipated ${ }^{16,17}$ when two groups compressed in the initial state move farther apart in the radical formed. As it may be assumed that the angles between groups at the radical site in these radicals (e.g., 22, 23 , and 24) will be greater than tetrahedral, steric accelera-

23

25

24

26
tion should be noted when the transition state is sufficiently advanced along the reaction coordinate. Thus, as observed, 4 should react more rapidly than 3 , and 6 more rapidly than 5.

Steric acceleration of rate by back-strain relief has been noted by Simamura and Mayajima, ${ }^{18}$ who observed that the tertiary equatorial hydrogen atom in 1,1,3,5-tetramethylcyclohexane reacts with alkylperoxy radicals 4.2 times as rapidly as the equivalent hydrogen atom in 1,3,5-trimethylcyclohexane, a result which was ascribed to relief of 1,3 in-
teraction (methyl-methyl greater than methyl-hydrogen) in the hydrogen abstraction reaction. More recently, Abruscata and Tidwell ${ }^{19}$ have ascribed the enhanced decomposition rate of tert-butyl di-tert-butylperoxyacetate over that of tert-butyl peroxyisobutyrate to back-strain relief. These cases, plus those discussed in this paper, put the steric acceleration phenomenon upon a solid base.
The products of bromination of 3 and 6 were, as anticipated, those of reaction at the tertiary site, 25 from 3 and 26 from 6. Although one might anticipate that the product mixtures from 4 and 5 would be identical, as they both arise from the common radical 22, this is not the case, for straightforward reasons. As is noted below and in Table II, bromides 7 and 8 , which have somewhat different reactivities $(8>7)$, are both significantly more reactive than the trans-dimethyl compound 5 , and 8 is also more reactive than the cis-dimethyl compound 4 . This means that when bromination of 4 and 5 are conducted under conditions where substantial bromination occurs, the primary products 7 and 8 are further consumed to give dibromides 10 and 11 and the observed product ratio of $7: 8$ is the result of a complicated composition of formation and disappearance rates. Our data were not precise enough (nor did we conduct experiments of small enough reaction) to enable us to give relative rates of capture of 22 with any degree of precision. However, as may be anticipated from the data in Table II, when 5 was brominated extensively, the product mixture contained much dibromide, some 7 , and only traces of $8 .{ }^{20}$ On the other hand, when the more reactive 4 was brominated, much monobromide was observed in the product with ratios of $8: 7$ as high as $1 .{ }^{20}$ This suggests that 22 is not highly discriminating in its reaction with bromine, and that in the transition state for its reaction to give 7, the steric strain which results between the two eclipsing methyl groups and the hydrogen atom and the entering bromine atom is roughly equal to that in the transition state leading to 8 , resulting from eclipsing strains between methyl and hydrogen and methyl and the entering bromine atom. As no large dipoles are involved, and as bromine and methyl have approximately equal steric requirements, ${ }^{21}$ this result appears reasonable. An amusing consequence of the difference between the sizes of hydrogen and bromine substituents is the large difference in the rates of formation of 22 from 4 and 5 and the small difference in the rates of reaction of 22 to give 7 and 8, processes that appear, without consideration of steric interactions between leaving, entering, and remaining groups, to be almost alike. It would be
useful to check these ideas by bromine abstraction from 7 and 8 with a small radical reagent. These should have very similar reactivities.

Bromination of Monobromo Compounds. The bromination of 7 and 8 , or the bromination of 4 and 5 , led to mixtures of 10 and 11 in which one isomer predominated (7:1). The principal isomer was readily purified; x-ray analysis showed it to be the trans isomer 11.

The product from photobromination of 9 was a mixture of the diastereoisomeric monobromination products 12 and 13 and of the dibromination products 27 . None of the

27

29

28

30
monobromination products 14 (which would result from attack on the tertiary hydrogen atom next to the bromomethyl group) was noted, although attempts to observe it (by ${ }^{1} \mathrm{H}$ NMR analysis, obviously an inprecise tool) in product mixtures were made. Whether this means that the 14 formed was so reactive that it led quantitatively to 27 or, as we feel more likely, ${ }^{22}$ little was formed and 27 came largely from 12 and/or 13 , is not clear. Even if all of the 27 came from 14 it represented less than the amount of 12 and 13 and thus the other tertiary hydrogen was more reactive than that geminal to the bromomethyl group.

As described in the introduction to this paper, our studies were undertaken to see whether the rate enhancement noted with bromojanusene (1) over janusene (2) was a general phenomenon of syn-periplanar activation in the attack on hydrogen by bromine atom. ${ }^{23}$ As the data in Tables I and II show, such expectations were not realized. Thus 7 is only one-third as reactive per hydrogen atom as 4 , rather than more reactive. If one, however, accepts the premise ${ }^{24}$ that the inductive effect of a vicinal bromide should reduce reactivity by a factor of $7-9$, it would appear that the net reduction is made of a slight increase of the sort apparent in 1 coupled with the inductive decrease. The effect of adding a bromine substituent in the trans-dimethyl compound 5 may be seen in the relative reactivities of 5,8 , and 9 . In comparing 8 and 5 , we see, rather than the anticipated ${ }^{24}$ loss of reactivity by a factor of $7-9$, an increase in reactivity by a factor of 74 . We have noted above that the location of a methyl group in the position remote from the site of attack which eclipsed the methyl group in 5 (i.e., to give 6) increases the reactivity by a factor of 34 , and we have ascribed this rate enhancement to steric acceleration. As the effect of bromine-methyl eclipsing in 8 is probably similar to that of the two eclipsed methyl groups in 6 (or in 8), a portion of the rate enhancement must be due to steric acceleration of rate. However, this cannot be the sole factor, as there still remains the fact that 8 is seven times as reactive as 7.

It has been suggested ${ }^{4}$ that there is anchimeric assistance by vicinal bromine in bromine atom attack on β-hydrogen atoms, and evidence favoring this idea continues to accumulate. ${ }^{24.25}$ For this activation to operate most effectively, an anti-periplanar relationship between the activating bromine atom and the hydrogen atom is believed ${ }^{24 \mathrm{~b}}$ to be re-
quired. Under such conditions, activation of over 100 times is noted (and with correction for inductive effect, the activation may be computed ${ }^{24 b}$ to be about 10^{3}). It is known ${ }^{26}$ in ionic systems that anchimeric assistance is reduced or eliminated when the steric relationship between groups is changed from the antiperiplanar relation (dihedral angle of 180°) to that of trans groups in the bicyclo[2.2.2]octadiene system (dihedral angle of 120°), and a similar effect should ${ }^{24 b}$ be noted in radical reactions. Thus the relatively small factor of 7 between 8 and 7 seems consistent with a transition state leading to 28 rather than to the open radical 29 in the reaction of 8 with a bromine atom. ${ }^{27}$

While the steric acceleration component of the rate enhancements is a ground-state effect (in the sense that it is relief of ground-state strain that affects reactivities), the remaining effect, anchimeric assistance, is one arising in the transition state differences between 8 giving 28 (and 29) and 7 giving 29 . The $28 \rightleftarrows 29$ equilibrium and their relative reaction rates with molecules (with hydrogen bromide to give 7 from 29 and 8 from 28 and 29 , and with bromine to g:ve 10 from 29 and 11 from 28 and 29) which pass over similar transition states might show similar phenomena. Indeed this is true. Thus the photobrominations of 7 and/ or 8 give 11 and 10 in a ratio of about $7: 1$, quite similar to the ratio of reactivities of 8 and 7 . Free-radical addition of hydrogen bromide to 21 , which involves bromine atom addition to give the $28 \rightleftharpoons 29$ mixture, then hydrogen transfer to give 7 and 8 , forms these two substances in a $1: 7$ ratio. These results may be compared with those involving the radizal 22 where hydrogen removal to form 22 and bromine transfer to 22 differ considerably in selectivity.

The results with the trans methyl bromomethyl compound 9 (reactivity 40% of that of the trans dimethyl compound 5 , reaction largely geminal to methyl to give 12 and 13 rather than geminal to bromomethyl to give 14 , and substantial amounts of dibromination) are consistent with the concepts outlined above. The reactivity fits that ${ }^{24 \mathrm{~b}}$ of a hydrogen γ to a bromine atom exactly (depression due to the indcctive effect), and lack of the reaction at the tertiary proton geminal to the bromomethyl group indicates the extra depression of β-bromo substituent when no anchimeric assistance is seer. Presumable causes might be conformat:onal difficulties, or deactivation by intramolecular complexing with the aromatic ring. The reactivities to be anticipated for 12,13 , or 14 compared with 9 (as judged by those of 7 and 8 compared with 5) make understandable the fact that substantial amounts of dibromination are seen in the bromination of 9 .

Russell and Brown ${ }^{28}$ have reported that a heterolytic dark reaction may occur with tertiary-alkyl halides. In order to show that such a reaction path did not compete in our systems, we held solutions of bromine, 7 , and 8 in carbon tetrachloride in the dark at reflux for 2 h or at room temperature for 1 day. No 10 or 11 was produced; instead partial rearrangements to bromo derivatives of dibenzobicyclo[3.2.1]octadiene were observed. An alternative path for bromination involving hydrogen bromide eliminationbromine addition ${ }^{29}$ was also considered. However, addition of bromine to 21 (one of the possible elimination products from 7 or 8) gave no 10 or 11; again only [3.2.1] rearrange-ment-addition was observed. ${ }^{20}$ Similarly 30 (anticipated elimination product from 9 or possibility from 7 or 8) gave none of the products observed in the photobromination. ${ }^{20}$ Hence the two paths may be disregarded.

Experimental Section

trans-7,8-Dimethyldibenzobicyclo[2.2.2]octadiene (5). A $0.5-1$. steel autoclave was cooled with dry ice and charged with 35 g (0.21 mol) of anthracene, 0.5 g of 4-tert-butylcatechol, 200 g of dry
ice cooled m-xylene, and $100 \mathrm{ml}(1.5 \mathrm{~mol})$ of liquid trans-2-butene (Phillips). The autoclave was closed and allowed to warm to room temperature. It was then placed in a heating jacket and kept at $220-230^{\circ} \mathrm{C}$ for 6 days. The vessel was then cooled to room temperature, the gases vented, and the m-xylene removed almost completely by rotary evaporation. The crude solids were then dissolved in petroleum ether ($\mathrm{bp} 60-70^{\circ} \mathrm{C}$), and shaken three times with concentrated sulfuric acid, one time each with water, aqueous sodium bicarbonate, and again with water. This sulfuric acid treatment makes unnecessary the usual method of removing unreacted anthracene by reacting it with maleic anhydride and dissolving that adduct by boiling in aqueous sodium hydroxide. The solution was dried, filtered, and concentrated. Recrystallization from petroleum ether gave $36 \mathrm{~g}(76 \%)$ of $5: \mathrm{mp} 93-94{ }^{\circ} \mathrm{C}$ (lit. ${ }^{7.8} 89-92{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCL}_{4}\right) \delta 0.8\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and -8$), 3.82$ (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ and -4), 7.2 (m, 8 H , aromatic H).
cis-7,8-Dimethyldibenzobicyclo[2.2.2]octadiene (4) was prepared in a similar fashion (on anthracene $=40 \mathrm{~g}$ scale) except that cis-2-butene was used and 2 g of ethylenediaminetetraacetic acid and 2 g of phthalonitrile were added to avoid ferric ion catalyzed olefin isomerization. Recrystallization from petroleum ether gave 31.7 g of 4 (60\%): mp $172-173.5^{\circ} \mathrm{C}$ (lit. ${ }^{7} 173-174{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.65\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and -8$)$, $3.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ and -4$), 7.2(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$.
cis-7,8-Bis(hydroxymethyl)-7-methyldibenzobicyclo[2.2.2]octadiene (16). A solution of $23.4 \mathrm{~g}(0.070 \mathrm{~mol})$ of 17^{10} in 130 ml of dry tetrahydrofuran (THF) was added rapidly with stirring to a solution of $4.75 \mathrm{~g}(0.12 \mathrm{~mol})$ of lithium aluminum hydride in 200 ml of THF. The reaction mixture was heated at reflux for 3 h . then cooled and poured onto ice. Workup by careful acidification, ether extraction, evaporation of solvent, and recrystallization from ethyl acetate gave $17.3 \mathrm{~g}(88 \%)$ of 16 : mp $146-148.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) \delta 0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75(\mathrm{~m}, J=9.3,5,2 \mathrm{~Hz}, 1 \mathrm{H}$, H-8), $3.05-3.72(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.16(\mathrm{~m}, 8 \mathrm{H}$, aromatic H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 81.40; $\mathrm{H}, 7.19$. Found: $\mathrm{C}, 81.61 ; \mathrm{H}$, 7.20 .

7-Methyl-7,8-oxydimethyldibenzobicyclo[2.2.2]octadiene (18). Treatment of 16 with p-toluenesulfonyl chloride and tri-nbutylamine under standard ${ }^{30}$ conditions for the preparation of p toluenesulfonate esters led instead to excellent yields of 18: mp $133.5-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06(\mathrm{~m}, J=$ $5.1 .3,1.5 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{H}-8), 3.02-3.98(\mathrm{~m} .6 \mathrm{H}), 7.08(\mathrm{~m}, 8 \mathrm{H}$, aromatic H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 86.99$; $\mathrm{H}, 6.92$. Found: C, 86.93; H , 6.99.
cis-7,8-Bis(benzenesulfonoxymethyl)-7-methyldibenzobicyclo[2.2.2]octadiene (19). A saturated solution of 2 g (7.2 mmol) of 16 in anhydrous ether was prepared at $0^{\circ} \mathrm{C}$ and $1.1 \mathrm{~g}(14 \mathrm{mmol})$ of pyridine was added. Benzenesulfinyl chloride ${ }^{31}$ ($2.8 \mathrm{~g}, 16 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$, and the resulting mixture was kept in a refrigerator overnight. The solid (pyridine hydrochloride) was filtered. and the ethereal solution was washed with dilute acid. dilute base, and water. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and then evaporated to dryness. The resulting mixture of diastereoisomers was oxidized to the sulfonate ester 19 with m-chloroperbenzoic acid using the general procedure of Wilt, Stein, and Wagner. ${ }^{32}$ Recrystallization from ethyl acetate gave pure 19: mp $147-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27(\mathrm{~m}, 1 \mathrm{H} . \mathrm{H}-8), 3.2-4.05(\mathrm{~m}$, 5 H), 4.16 (d. $J=2 \mathrm{~Hz} . \mathrm{H}-4$). $7-8$ (m. 18 H , aromatic H).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 66.41; H. 5.03. Found: C, 66.58; H, 4.96 .

7-Methyl-7,8-thiodimethyldibenzobicyclo[2.2.2]octadiene (20). Small slivers of sodium ($1.65 \mathrm{~g}, 7.1 \mathrm{mmol}$) were added to 100 ml of anhydrous ethanol in a $250 \cdot \mathrm{ml}$, two-neck, round-bottom flask. Anhydrous hydrogen sulfide was bubbled through this medium until saturation. About $3.8 \mathrm{~g}(7.2 \mathrm{mmol})$ of 19 (which was dried by evaporating the benzene from its benzene solution) was then washed into this reaction medium using a minimum of anhydrous ethanol. The solution was refluxed for 3 days, using a condenser fitted with a CaSO_{4} drying tube. The solution was poured into ether and washed with portions of water, aqueous sodium carbonate. and water. The ether layer was dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the ether left 20 , possibly contaminated with traces of 18 . Recrystallization from absolute ethanol gave 20: mp $154-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2-2.8\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-8,-\mathrm{CH}_{2} \mathrm{~S}\right), 3.81$ (s, $1 \mathrm{H}, \mathrm{H}-1), 3.90(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.1(\mathrm{~m}, 8 \mathrm{H}$, aromatic H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~S}$: $\mathrm{C}, 81.97$; H, 6.52. Found: C, 81.86 ; H, 6.52.

7,7,8-Trimethyldibenzobicyclo[2.2.2]octadiene (6). About 1.2 g of the crude thioether 20 was added under nitrogen to an excess of W-7 Raney nickel ${ }^{33}$ in 100 ml of anhydrous ether. Stirring was continued at reflux under nitrogen for 3 h . The nickel (caution! pyrophoric) was removed by filtration through a fritted glass funnel. After the solvent was evaporated, the residue was dissolved in petroleum ether and washed twice with dilute HCl , once with dilute NaHCO_{3}, and then with water. Any cyclic ether 18 was removed by extraction with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ before the other extractions. Recrystallization by evaporation of the petroleum ether gave pure 6: $\mathrm{mp} 89.5-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .0 .76(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.6(\mathrm{~m}, J=7.3,2 \mathrm{~Hz}, 1 \mathrm{H}$. H-8), 3.6 (s, $1 \mathrm{H} . \mathrm{H}-1$), 3.79 (d. $J=2 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{H}-4) .7 .1(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20}$: C, 91.88; H, 8.12. Found: C, 91.71 ; H, 8.08 .
trans-7-Bromomethyl-8-methyldibenzobicyclo[2.2.2]octadiene (9). A solution of $40 \mathrm{~g}(0.16 \mathrm{~mol})$ of trans- 7 -hydroxymethyl8 -methyldibenzobicyclo[2.2.2]octadiene ${ }^{7}$ and $420 \mathrm{~g}(1.6 \mathrm{~mol})$ of triphenylphosphine in 400 ml of dry dimethylformamide was placed in a three-necked flask covered with foil to prevent light from entering. After deaeration with nitrogen, 256 g (1.6 mol) of bromine was added dropwise, with the temperature controlled to below 100 ${ }^{\circ} \mathrm{C}$. Stirring, nitrogen bubbling, and heating at $90^{\circ} \mathrm{C}$ were continued for 5 days. The mixture was then cooled and poured into water. Ether extraction, solvent evaporation, partial dissolution in carbon tetrachloride, and filtration gave a solution of 9 and triphenylphosphine oxide and a solid residue of the oxide. The solution was dried $\left(\mathrm{CaSO}_{4}\right)$ and the solvent distilled off. The residue was chromatographed on silica gel ($1 \mathrm{~kg}, 60-200$ mesh) using petroleum ether-benzene mixtures to elute 9 and retain the oxide. 9 was contaminated with 21 and with 7-methylene-8-methyldibenzobicyclo[2.2.2]octadiene (30). Eluted fractions rich in 9 were dissolved in n-hexane, shaken with concentrated sulfuric acid, and recrystallized from n-hexane. The 9 had $\mathrm{mp} 88.5-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.78\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H} . \mathrm{CH}_{3}\right), 1.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and -8$)$, $3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.82$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.3 (d, $J=2$ $\mathrm{Hz} .1 \mathrm{H}, \mathrm{H}-1$), 7.13 (m. 8 H . aromatic H).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}$: C, 69.02; H, 5.47. Found: C, 69.01; H, 5.60 .

7-Methylene-8-methyldibenzobicyclo[2.2.2]octadiene (30). Compound 30 -enriched fractions of the chromatographed products obtained in the synthesis of 9 were fractionally recrystallized from absolute ethanol until pure 30 was obtained. An analytical sample of 30 had $\mathrm{mp} 98-98.5^{\circ} \mathrm{C}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.88(\mathrm{~d}, J=7$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 4.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.08(\mathrm{~m}, 8 \mathrm{H}$, aromatic H).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15}$: $\mathrm{C}, 93.06 ; \mathrm{H}, 6.94$. Found: $\mathrm{C}, 93.13 ; \mathrm{H}$, 6.98.
trans-7,8-Dibromo-7.8-dimethyldibenzobicyclo[2.2.2]octadiene (11). This compound was prepared by photobromination of either 4 or 5 of a mixture of these. The reaction proceeded badly when conducted in the normal fashion (addition of bromine to 4 or 5 in CCl_{4}), because of the presence of hydrogen bromide which interfered with the reaction of intervening radicals with bromine. The following technique, in which water was used to scavenge the hydrogen bromide, gave good yields of dibromides from which 11 was readily recovered.

A solution of $10 \mathrm{~g}(0.043 \mathrm{~mol})$ of 5 (4 may be used equally well) in 500 ml of CCl_{4} and 1200 ml of water was placed in a 2-1. threeneck round-bottom flask fitted with a mechanical stirrer and a dropping funnel. The flask was cooled to $10^{\circ} \mathrm{C}$ and irradiated with a $1000-\mathrm{W}$ incandescent light bulb. Bromine ($6.9 \mathrm{~g}, 0.043 \mathrm{~mol}$) was added in three portions, with vigorous stirring of the two-phase system and changing the water before each addition, made after the bromine color had substantially faded. The product mixture was investigated by ${ }^{1} \mathrm{H}$ NMR; if conversion to 11 and 10 was less than 95%, additional bromine was added. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the ratio of 11:10 was about $7: 1$, and initial fractional recrystallization from petroleum ether and final recrystallization by solvent evaporation from CCl_{4} gave 11: mp 153-154.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CCl_{4}) $\delta 1.99\left(\mathrm{~s}, 6 \mathrm{H} . \mathrm{CH}_{3}\right), 4.47$ (s, $2 \mathrm{H}, \mathrm{H}-1$ and 4$), 7.18(\mathrm{~m}$. 8 H , aromatic H).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2}$: C, 55.13; H, 4.11. Found: C, 55.26 ; H , 4.24.
cis-7,8-Dibromo-7,8-dimethyldibenzobicyclo[2.2.2]octa-
diene (10) was not isolated from the reaction mixture but its ${ }^{1} \mathrm{H}$ NMR spectrum was inferred from those of enriched mixtures from
the preparation of the trans isomer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.77(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), 4.47 (s, $2 \mathrm{H}, \mathrm{H}-1$ and 4), 7.18 ($\mathrm{m}, 8 \mathrm{H}$, aromatic H).

7,8-Dimethyldibenzobicyclo[2.2.2]octatriene (21). To a mixture of $2.6 \mathrm{~g}(0.042 \mathrm{~mol})$ of zinc powder, 0.5 ml of glacial acetic acid, 2 g of ethylenediaminetetraacetic acid, and 300 ml of anhydrous ether in a $500-\mathrm{ml}$ round-bottom flask equipped with a reflux condenser, $6.5 \mathrm{~g}(0.017 \mathrm{~mol})$ of 10 and 11 (saturated solution in ether) was added with stirring at a rate which sustained gentle reflux. After addition was complete, stirring at reflux was continued for 2 h . The solids were removed by suction filtration, and the solution was washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the ether left almost pure 21, which after recrystallization from 95% ethanol had mp $189.5-190.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.8(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), 4.58 (s, $2 \mathrm{H}, \mathrm{H}-1$ and -4), 6.99 (symmetrical m, 8 H , aromatic H).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16}: \mathrm{C}, 93.06 ; \mathrm{H}, 6.94$. Found: C, 92.89; H , 7.13.

7-Bromo-trans-7,8-dimethyldibenzobicyclo[2.2.2]octadiene
(8). A solution of $1 \mathrm{~g}(4.3 \mathrm{mmol})$ of 21 in purified n-hexane was cooled to $0^{\circ} \mathrm{C}$ and placed in a quartz tube fitted with an inlet tube placed into the solution and a reflux condenser. The tube was irradiated with a GE H-100-A-4T lamp from which the glass envelope had been removed and $13 \mathrm{~g}(0.16 \mathrm{~mol})$ of anhydrous hydrogen bromide was bubbled through the ice-cold solution over a $50-\mathrm{min}$ period. After the addition, the excess hydrogen bromide was flushed out by air or nitrogen bubbling and the ultraviolet light then turned off. The hexane solution was washed with water and the solvent evaporated. A ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the residue was a mixture of 8 and 7 in a $7: 1$ ratio, respectively. Fractional recrystallization from petroleum ether, followed by solvent evaporation from carbon tetrachloride, gave 8: $\mathrm{mp} 95-102{ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR (CCl_{4}) $\delta 1.03$ (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-8$), 1.65 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-7$), $1.72(\mathrm{~m}, J=7,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.39$ (s, $1 \mathrm{H}, \mathrm{H}-1$), 7.1 (m, $\delta \mathrm{H}$, aromatic H).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}$: C, 69.02; H, 5.47. Found: C, 69.04; H, 5.35.

7-Bromo-cis-7,8-dimethyldibenzobicyclo[2.2.2]octadiene (7). Attempts to separate pure 7 from the $7-8$ mixture described above were not successful. However, its ${ }^{1} \mathrm{H}$ NMR spectrum was inferred from enriched mixtures: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.89(\mathrm{~d} . J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-8\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-7\right), 2.72(\mathrm{~m}, J=7,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, 3.8 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4,4.35$ (s, $1 \mathrm{H}, \mathrm{H}-1$), 7.1 (m, 8 H , aromatic H).

Photobromination of trans-8-Bromomethyl-7-methyldibenzobicyclo[2.2.2]octadiene (9). In order to decipher the reaction path of the photobromination of 9 , we treated 9 with bromine at 20 ${ }^{\circ} \mathrm{C}$ on a small scale exactly as described for the competitive reactions. On a larger scale the two-phase method, with water as hydrogen bromide scavenger, described for the preparation of 25 and 26 proved quite useful. Difficulty in separation of products prompted us to rely entirely on ${ }^{1} \mathrm{H}$ NMR spectroscopy for product identification and estimation. Only three groups of ${ }^{1} \mathrm{H}$ NMR product peaks were noted, even when reactions were carried out to different extents or when enriched fractions were prepared by crystallizations. The chemical shifts, splitting patterns, and intensities of these groups of peaks allow the following assignments.
(E)-7-Bromo-8-bromomethyl-7-methyldibenzobicyclo[2.2.2]octadiene (12): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.5-4\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{H}-8\right), 4.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.55(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), \sim 7.1(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$.
(Z)-7-Bromo-8-bromomethyl-7-methyldibenzobicyclo[2.2.2]octadiene (13): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.5-4\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{H}-8\right), 4.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 4.62(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), \sim 7.1(\mathrm{~m}, 8 \mathrm{H}$, aromatic H$)$.

7,8-Dibromo-7-bromomethyl-8-methyldibenzobicyclo[2.2.2]octadiene (27): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.3$ $\left(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.9\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.5$ (s, $1 \mathrm{H}, \mathrm{H}-4), 5.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.25(\mathrm{~m}, 8 \mathrm{H}$, aromatic H).

The $E-Z$ assignment of 12 and 13 must be considered tentative at present. The chemical shifts of the 3 H singlets at 1.48 and 1.65 are strikingly similar so the methyl groups next to the bromines in 8 and 7 , respectively, and this forms the basis for the geometric assignment of 12 and 13 . The methyl group in compound 14 is expected to be a doublet at higher field. The structure of 12 and 13 is confirmed by the 1 H singlet in the bridgehead region with their chemical shifts being very close to the comparable ones of 7 and 8. The required 1 H doublet bridgehhead hydrogens are at surprisingly low fields when compared to the analogous hydrogens in 9. The nonresolvable multiplets at $\delta 2.5-4$ are to be expected for the single bridge hydrogen and two diastereotopic hydrogens $\left(\mathrm{CH}_{2} \mathrm{Br}\right)$
which are coupled with each other. Compounds 14 would give rise to resolvable twin doublets for the diastereotopic hydrogens which could only be coupled with each other as in the case of 27.

The product 27 has the expected two doublets which are characteristic of diastereotopic methylene hydrogens. The methyl group and bridgehead hydrogens should give rise to singlets as observed. The methyl singlet has the identical frequency as the methyl hydrogens in 11 .

The compounds $12,13,27$, and 9 accounted for more than 90% of the aromatic peaks for the scavenged reactions carried out to 50% completion at room temperature.

Competitive Brominations. Most of the necessary details are given in the discussion section and in Table I. The percentages of substrates which were recovered after reaction were determined by dividing the integration per hydrogen of their singlet or doublet bridgehead or methyl ${ }^{1} \mathrm{H}$ NMR peaks (Varian A60-A) by the integration per hydrogen of the aromatic peak total. The product percentages were determined in like manner to serve as a check, and there was agreement within the normal experimental error ($\pm 3 \%$) of such ${ }^{1} \mathrm{H}$ NMR techniques. Although the total percent of remaining 4 and 5 was determined in this way, GLC ($5 \mathrm{ft} \times 0.125 \mathrm{in}$. SE-30 column, $150^{\circ} \mathrm{C}$) had to be used in obtaining their ratio. As GLC did not separate 4 and 5 from their bromide products, the latter had to be removed prior to injection. This was accomplished by treatment of the entire reaction mixture with refluxing ethanolic silver nitrate, subsequent evaporation of the solvent, dissolution in petroleum ether and aqueous ammonia, and extraction of the organic layer with concentrated sulfuric acid. The ratio of 5 to 6 could similarily be determined by GLC and was used as a check on the :atio obtained directly from $60-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. The ratic of 7 to 8 was not obtainable from $60-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectra eith \in. However, the doublet methyl as well as singlet bridgehead hydrogen peaks were completely separated in $100-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (Jeolco PFT-100) spectra. Integration by the cut-and-weigh method afforded the desired zatio.

X-Ray Analyses. As we were unable to prepare 7, 8, 10, or 11 by stereospecific syntheses, and spectroscopic data were ambiguous, \mathbf{x}-ray structure analysis was conducted on one of the isomers of each pair. In both cases the isomer used for the analysis was the one which predominated in the preparations and had methyl groujs shifted downfield in its ${ }^{1} \mathrm{H}$ NMR spectrum from those in the spectrum of the isomer that could not be isolated. The x-ray analusis showed that the major isomers were 8 and 11.

Crystal Data on 7-Bromo-trans-7,8-dimethyldibenzobicyclo[2.2.2]octadiene (8). X-Ray crystal structure analysis of this compound was undertaken in order to determine whether the metryl groups were in the cis or trans configuration. The crystals were obtained from petroleum ether-carbon tetrachloride solution by evaporation. They grew as colorless, transparent needles.

The unit cell was found to be monoclinic with dimensions (standard deviations in parentheses) $a=10.640 \AA(\sigma=0.006 \AA) ; b=$ $9.401 \AA(\sigma=0.003 \AA) ; \mathrm{c}=29.133 \AA(\sigma=0.012 \AA) ; \beta=95.84^{\circ}(\sigma=$ 0.04°). The observed density was $1.43 \mathrm{~g} / \mathrm{cm}^{3}$. Assuming eight molecules of $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}$ per unit cell gives a calculated density of $1.44 \mathrm{~g} /$ cm^{3}. Thus the cell contains eight molecules. Systematically absent spectra were ($h 0 l$) with l odd and ($0 k 0$) with k odd. The space group therefore is $P 2_{1} / c$. Within the limiting sphere of $\mathrm{CuK} \alpha$ radiation there lie 6100 independent reflections. Measurements were made of the intensities of all reflections for which $2 \theta \leq 118^{\circ}$. Of the 4472 in this category only 2516 with intensities exceeding three times background were used in the analysis. The crystal used in the intensity measurements was $0.2 \times 0.25 \times 0.3 \mathrm{~mm}$. No absorption correction was applied $\left[\mu(\mathrm{Cu} \mathrm{K} \alpha)=41.05 \mathrm{~cm}^{-1}\right]$. The data were collected using a Syntex PĨ diffractometer in the $\theta-2 \theta$ scan mode, with a scanning rate of $2 \mathrm{deg} / \mathrm{min}$. The $\mathrm{Cu} \mathrm{K} \alpha$ line was selected using a graphite crystal monochromator.

Structure Determination. The space group $P 2_{1} / c$ has a multiplicity of four and so the asymmetric unit contains two molecules of $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}$. The coordinates of the two bromine atoms were determined from an unsharpened three-dimensional Patterson synthesis. A three-dimensional electron density distribution, calculated using the bromine phases only, gave immediately the positions of the carbon atoms (reliability index, $R=0.44$). Fourier refinement of the structure converged at $R=0.32$. Further refinement was carried out by the block-diagonal least-squares procedure with unit weights and individual isotropic thermal parameters. The least-squares refinement converged at $R=0.17$. At this point it was clear that the two methyl groups were in the trans configuration and the analysis was terminated.

The atomic coordinates of the two crystallographically indepen-

Table III. Fractional Coordinates $\left(\times 10^{4}\right)$ and Isotropic Thermal Parameters ($\times 10^{3}$) Defining the Crystal Structure of 7-Bromo-trans-7,8-dimethyldibenzobicyclo[2.2.2]octadiene ${ }^{\text {a }}$

Atom	x	y	z	u
Br1A	422 (3)	2649 (4)	3501 (1)	101 (1)
BriB	1623 (3)	4118 (3)	6268 (1)	82 (1)
C1A	3025 (20)	1942 (22)	3579 (7)	41 (5)
C2A	4203 (21)	1842 (23)	3321 (7)	45 (6)
C3A	4041 (22)	886 (25)	2945 (7)	52 (6)
C4A	2764 (22)	190 (24)	2887 (8)	50 (6)
C5A	2542 (20)	-456 (21)	3348 (7)	42 (6)
C6A	2677 (20)	495 (21)	3714 (7)	40 (5)
C7A	2024 (23)	2490 (26)	3193 (8)	59 (7)
C8A	1876 (23)	1471 (25)	2775 (8)	56 (6)
C9A	5065 (23)	663 (26)	2679 (7)	61 (7)
C10A	6197 (25)	1438 (27)	2779 (9)	70 (8)
C11A	6314 (25)	2366 (28)	3139 (9)	70 (7)
C12A	5342 (23)	2590 (25)	3412 (8)	56 (6)
C13A	2466 (24)	57 (27)	4165 (8)	65 (7)
C14A	2120 (25)	-1394 (27)	4211 (8)	65 (7)
C15A	1941 (25)	-2225 (28)	3857 (9)	71 (8)
C16A	2148 (24)	-1868 (27)	3398 (8)	63 (7)
C17A	2230 (20)	4181 (23)	3067 (7)	42 (5)
C18A	522 (30)	924 (34)	2622 (10)	97 (9)
C1B	1492 (20)	1709 (22)	5673 (7)	45 (6)
C2B	1996 (21)	211 (23)	5609 (7)	45 (6)
C3B	3295 (20)	126 (22)	5575 (7)	41 (5)
C4B	3926 (20)	1530 (23)	5650 (7)	45 (6)
C5B	3320 (20)	2583 (22)	5308 (7)	45 (6)
C6B	1990 (20)	2684 (22)	5328 (7)	42 (5)
C7B	2244 (22)	2123 (24)	6161 (8)	55 (6)
C8B	3725 (25)	2071 (27)	6166 (9)	70 (7)
C9B	3867 (21)	-1149 (23)	5513 (7)	48 (6)
C10B	3124 (22)	-2386 (25)	5478 (8)	55 (8)
C11B	1848 (22)	-2317 (25)	5518 (8)	56 (6)
C12B	1249 (21)	-1046 (23)	5575 (7)	49 (6)
C13B	1228 (23)	3550 (25)	5026 (8)	54 (6)
C14B	1843 (25)	4357 (28)	4705 (8)	68 (7)
C15B	3118 (23)	4351 (26)	4695 (8)	59 (6)
C16B	3837 (22)	3472 (24)	4981 (7)	52 (6)
C17B	1772 (24)	1269 (26)	6562 (8)	64 (7)
C18B	4447 (30)	3568 (33)	6265 (10)	90 (9)

${ }^{a}$ Standard deviations are given in parentheses. For the temperature factor the exponent has the form $8 \pi^{2}(\sin \theta / \lambda)^{2} u$.
dent molecules are given in Table III. The fact that both molecules have the methyl groups in the trans configuration lends powerful support, if such be needed, to the results of the analysis.

Crystal Data on trans-7,8-Dibromo-7,8-dimethyldibenzobicyclo[2.2.2]octadiene (11). X-ray crystal structure analysis of this compound was undertaken to determine whether the bromine atoms were in a cis or trans configuration. The crystals were obtained from carbon tetrachloride solution by evaporation. They grew as colorless, transparent needles. The unit cell was found to be monoclinic with dimensions (standard deviations in parentheses) $a=12.003 \AA(\sigma=0.004 \AA) ; b=8.043 \AA(\sigma=0.002 \AA) ; c=$ $18.023 \AA(\sigma=0.005 \AA) ; \beta=116.84^{\circ}\left(\sigma=0.02^{\circ}\right)$. The observed density was $1.69 \mathrm{~g} / \mathrm{cm}^{3}$. Assuming four molecules of $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2}$ per unit cell gives a calculated density of $1.68 \mathrm{~g} / \mathrm{cm}^{3}$. The cell therefore contains four molecules. The only systematic extinctions observed were in the class $(0 k 0)$ which was absent with k odd. The space group therefore is either $P 2_{1}$ or $P 2_{1} / \mathrm{m}$.

Within the limiting sphere of $\mathrm{Cu} \mathrm{K} \alpha$ radiation there lie 3550 independent reflections. Measurements were made of the intensities of all reflections for which $2 A \leq 100^{\circ}$. Of the 1733 in this category only 1580 with intensities exceeding three times background were used in the analysis. The crystal used in the intensity measurements was $0.3 \times 0.3 \times 0.5 \mathrm{~mm}$. No absorption correction was applied $\left[\mu(\mathrm{Cu} \mathrm{K} \alpha)=72.53 \mathrm{~cm}^{-1}\right]$. The data were collected using a Syntex $\mathrm{P} \overline{1}$ diffractometer in the $\theta-2 \theta$ scan mode, with a scanning rate of $2 \mathrm{deg} / \mathrm{min}$. The $\mathrm{Cu} \mathrm{K} \alpha$ line was selected by a graphite crystal monochromator.

Table IV. Approximate Fractional Coordinates of the Bromine Atoms in Two Molecules of trans-7,8-Dibromo-7,8-dimethyldibenzobicyclo[2.2.2]octadiene (11)

Atom	x	y	z
Br 1	0.5083	0.2292	0.4583
Br 2	0.8333	0.4375	0.4333
Br 3	0.4700	-0.2292	0.1000
Br 4	0.1833	0.0208	0.0458

Location of Bromine Atoms. An unsharpened Patterson synthesis was computed using all 1580 observed intensities. From this synthesis, approximate coordinates were obtained for the four bromine atoms in one half of the unit cell. These are given in Table IV. The bromine atoms which are closest together are Br 3 and Br 4 and their separation is $4.0 \AA$. If the bromine atoms were to be in a cis configuration in molecules of this type. the distance between two bromine atoms on the same molecule could hardly exceed 3.4 $\AA .{ }^{34,35}$ Therefore it was concluded at this point that the bromine atoms were in the trans configuration. Since the trans configuration of the bromine atoms had been established the analysis was not pursued beyond this point.

Acknowledgment. The authors wish to acknowledge the generous support of this research by the National Science Foundation.

Registry No.-3, $32363-36-3$; 4, 5445-53-4; 5, 5445-54-5; 6, 51229-75-5; 7, 58240-60-1; 8, 58267-52-0; 9, 58240-61-2; 10, 58240-62-3; 11, 58267-53-1; 12, 58240-63-4; 13, 58311-27-6; 16, 58310-897; 17, 5472-28-6; 18, 58240-64-5; 19. 58267-80-4; 20, 58240-65-6; 21, 58240-66-7; 27, 58240-67-8; 30, 58240-68-9: anthracene, 120-12-7; trans-2-butene, 624-64-6; cis-2-butene, 590-18-1; trans-7-hy-droxymethyl-8-methyldibenzobicyclo[2.2.2]octadiene, 58240-69-0.

References and Notes

(1) Part 82: S. J. Cristol, J. S. Perry. Jr., and R. S. Beckley. J. Org. Chem., preceding paper in this issue.
(2) A portion of this work was published as a preliminary communication: S. J. Cristol and H. W. Mueller, J. Am. Chem. Soc., 95, 8489 (1973).
(3) S. J. Cristol, M. A. Imhoff, and D. C. Lewis, J. Org. Chem., 35. 1722 (1970).
(4) (a) W. A. Thaler, J. Am. Chem. Soc., 85, 2607 (1963); (b) P. S. Skell, D L. Tuleen, and P. D. Readio, ibid., 85, 2849 (1963); (c) P. S. Skell and P. D. Readio, ibid., 86, 3334 (1964); (d) J. Traynham and W. Hines, ibid., 90, 5208 (1968).
(5) S. J. Cristol and D. C. Lewis, J. Am. Chem. Soc., 89, 1476 (1967).
(6) E. I. Snyder and R. A. Clement, J. Am. Chem. Soc., 82, 1424 (1960).
(7) H. M. Walborsky, Helv. Chim. Acta, 36, 1251 (1953).
(8) H. Nozaki, H. Kato, and R. Nozori, Tetrahedron, 25, 1661 (1969).
(9) The steric inhibition by methyl groups as well as bromine in the cycloaddition of maleic anhydride to anthracene has been noted. ${ }^{10,11}$
(10) W. E. Bachmann and L. B. Scott, J. Am. Chem. Soc., 70, 1458 (1948).
(11) W. R. Vaughan and K. M. Milton, J. Org. Chem., 16, 1748 (1951).
(12) J. P. Kochansky, Ph.D. Thesis, University of Colorado, 1971.
(13) W. A. Thaler, Methods Free-Radical Chem., 2, 121 (1969).
(14) The relative reactivities of free radicals with different atom-transfer reagents is apparently not well studied or understood. Thus our result with the radical 22 is clearly different from that with the 1-bromo-2-methyl-2-butyl radical, which is reported ${ }^{\text {'5 }}$ to react with bromine much faster than with hydrogen bromide.
(15) K. J. Shea and P. S. Skell, J. Am. Chem. Soc., 95, 283 (1973).
(16) H. C. Brown, H. Bartholomay, Jr., and M. D. Taylor, J. Am. Chem. Soc., 66, 435 (1944).
(17) G. A. Russell and H. C. Brown, J. Am. Chem. Soc., 77, 4031 (1955).
(18) (a) O. Simamura. Top. Stereochem., 4, 1 (1969); (b) S. Mayajima. D.Sc Thesis, Tokyo University, Tokyo, Japan, 1967, reported in ref 18a.
(19) G. J. Abruscata and T. I. Tidwell, J. Am. Chem. Soc., 94, 672 (1972)
(20) Data are given in detail in the Ph.D. Thesis of Hans W. Mueller, University of Colorado, 1974.
(21) L. Pauling. "Nature of the Chemical Bond", Cornell University Press, Ithaca, N.Y., 1940, p 189
(22) Our experience suggests that 14 should not be significantly more reactive than 12 or $\mathbf{1 3}$ and that some should accumulate in the course of the bromination reaction.
(23) The earlier data ${ }^{3}$ were obtained in the absence of hydrogen bromide scavenger, and might therefore be questionable. We have now reinvestigated the photobromination of 2, both with and without 2,3-epoxy-2,3-dimethylbutane scavenger, and note that the presence of the scavenger has only minimal effect upon the relative reactivities of 1 and 2. Thus the original basis upon which this work was begun was confirmed.
(24) (a) P. S. Skell and K. J. Shea, J. Am. Chem. Soc., 94, 6550 (1972); (b) K. J. Shea, D. C. Lewis, and P. S. Skell, ibid., 95, 7768 (1973).
(25) (a) J. G. Traynham, E. E. Green, Y.-S. Lee, F. Schweinsberg, and C.-E. Low, J. Am. Chem. Soc., 94, 6552 (1972); (b) P. S. Skell, R. R. Pavlis, D. C. Lewis, and K. J. Shea, ibid., 95, 6735 (1973).
(26) S. J. Cristol and R. P. Arganbright. J. Am. Chem. Soc., 79, 3441 (1957).
(27) Skell and his co-workers ${ }^{24.25}$ have discussed the question of unsymmetrical and symmetrical bridging and the barrier between bridged and open radicals.
(28) G. A. Russell and H. C. Brown, J. Am. Chem. Soc., 77, 4025 (1955)
(29) M. S. Kharasch, W. Hered, and F. R. Mayo, J. Org. Chem., 6, 818 (1941).
(30) C. S. Marvel and V. C. Sekera, "Organic Syntheses", Collect. Vol. III, E. C. Horning, Ed., Wiley, New York, N.Y., 1955, p 366
(31) F. Kurzer, "Organic Syntheses', Collect. Vol. IV, N. Rabjohn, Ed., Niley, New York, N.Y., 1963, p 937.
(32) J. W. Wilt, R. G. Stein, and W. J. Wagner, J. Org. Chem., 32, 2097 (1967).
(33) H. R. Billica and H. Adkins, Org. Synth., 29, 24 (1949)
(34) I. L. Karle, J. Karle, and K. Britts, J. Am. Chem. Soc., 88, 2918 (1966)
(35) G. L. Hardgrove, L. K. Templeton, and D. H. Templeton, J. Phys. Chem., 72, 668 (1968)

Lanthanide-Induced Chemical Shifts and the Relative Stereochemistry of Multistriatin, 2,4-Dimethyl-5-ethyl-6,8-dioxabicyclo[3.2.1]octane

William E. Gore ${ }^{* 1 a, b}$ and Ian M. Armitage ${ }^{1 c}$
State University of New York, College of Environmental Science and Fcrestry, Syracuse, New York 13210, and Section of Physical Sciences, Yale University School of Medicine New Haven, Connecticut 06510

Received August 2\&, 1975

The ${ }^{1} \mathrm{H}$ NMR spectra of the four diastereomers of multistriatin, 2,4-dimethyl-5-ethyl-6,8-dioxabicyclo[3.2.1]octane ($1 \alpha-\delta$), and of frontalin, 1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane (2), were recorded in the presence of the europium paramagnetic shift reagent d_{27}-tris(2,2 -dimethyl- $6,6,7,7,8,8,8$-heptafluoro-3,5-octanedionato)europium(III) $\left[\left(\mathrm{Eu}(\mathrm{fod})_{3}\right]\right.$. The binding of $\mathrm{Eu}(\mathrm{fod})_{3}$ to each substrate was investigated by comparing observed shift ratios with those calculated for lanthanide atom positions about each of the oxygen atoms in $1 \boldsymbol{\alpha}-\delta$ and in 2 . The calculations indicated that for each of these dioxabicyclo[3.2.1]octanes, substrate binding occurred preferentially at one oxygen atom, and that the location of the lanthanide atom was related to steric hindrance about the two potential binding sites. Comparisons of the observed shift ratios for each isomer of 1 with the calculated shift ratios of all isomers of 1 verified the relative stereochemical assignments for these isomers. A correlation between the shift reagent binding site and the biological activity of $1 \boldsymbol{\alpha}-\delta$ was observed.
α-Multistriatin (1α), a component of the aggregating pheromone of the European elm bark beetle, Scolytus multistriatus, was identified as 2,4-dimethyl-5-ethyl-6,8-dioxabicyclo[3.2.1]octane by spectrometric and synthetic methods. ${ }^{2}$ The previously reported synthesis yielded the four possible diastereomers ($1 \alpha-\delta$), and these isomers were separated by GLC and were characterized by NMR, ir, and MS. ${ }^{3}$ The spectrometric data in combination with a stereospecific synthesis provided evidence for the assignment of the relative stereochemistry of each of the four diastereomers.

1α

1γ

${ }_{1 B}$

1δ

Lanthanide-induced shift (LIS) experiments represented a potential and possibly unique method for testing structural assignments for $1 \boldsymbol{\alpha}-\delta$. The objective of this study was to first evaluate the binding of the shift reagent to $1 \alpha-\delta$ and to $1,5-$ dimethyl-6,8-dioxabicyclo[3.2.1]octane, frontalin (2), and then to compare any definitive evidence relating the structure of the 6,8 -dioxabicyclo[3.2.1] octanes to the previous stereochemical assignments for $1 \alpha-\delta$.

The use of LIS data to test proposed configurations or coniormations has been recently reviewed. ${ }^{4-7}$ In the case of monofunctional substrates, bonding occurs between donor atom (X) on the substrate (S) and the lanthanide metal atom (L), and a set of equilibria exists for $\mathrm{L}, \mathrm{S}, \mathrm{LS}, \mathrm{LS}_{2}$, and perhaps additional species. This bonding situation is essentially the same for a multifunctional substrate if L binds preferentially to one functional group.

Competitive complexing with multiple donor atoms on the substrate molecule has also been reviewed ${ }^{8}$ and is of particular importance in this study of bicyclic ketal structures. Similar donor atoms with identical environments should experience identical L-X bonding, and this expectation has been verified by experiment. However, the lanthanide bonding properties of like functional groups with dissimilar environments can differ. Functional groups usually bond preferentially $(\mathrm{OH}>$ ketones \geq esters $>$ ethers); however, this bonding trend can be altered as a consequence of steric hindrance. Such was the case in a computer-assisted LIS study by Farid et al., who described preferential bonding of tris($2,2,6,6$-tetramethyl3,5 -heptanedionato)europium(III) to an unhindered ether in the presence of a hindered alcohol group. ${ }^{9}$ Selective binding in substrates that contain two dissimilar ether groups has also been reported. ${ }^{8}$

The lanthanide-induced change in chemical shift for proton $\mathrm{H}_{n}\left(\Delta \delta_{n}\right)$ can be calculated from the pseudocontact term of the McConnell-Robertson equation ${ }^{10}$

$$
\begin{equation*}
\Delta \delta_{n}=K\left(3 \cos ^{2} \theta_{n}-1\right) r_{n}{ }^{-3} \tag{1}
\end{equation*}
$$

where θ_{n} is the XLH_{n} angle and r is the LH_{n} distance. ${ }^{5-7}$ Direct application of this equation to the evaluation of the paramagnetic shifts assumes the absence of a contact contribution to the observed chemical shifts and that the LS complex has effective axial symmetry about the L-X bond. Both

Table I. LIS Data for Frontalin (2)

Shift ratios a	Frontalin
$\Delta \delta_{1} / \Delta \delta_{2}$	0.45
$\Delta \delta_{1} / \Delta \delta_{3}$	0.28
$\Delta \delta_{1} / \Delta \delta_{4}$	0.27
${ }^{a}[\mathrm{~L}]=0.016,[\mathrm{~S}]=0.70$.	

assumptions have been shown to apply, particularly in the case of proton shift studies. ${ }^{11-13}$

The $\Delta \delta_{n}$ values can be measured from the $\delta_{n}{ }^{\prime}$ for a single shifted spectrum and δ_{n} for an unshifted spectrum ($\Delta \delta_{n}=\delta_{n}{ }^{\prime}$ $-\delta_{n}$); however, spectra are usually recorded at several [L]/[S] ratios. ${ }^{7}$ One $\Delta \delta_{i}$ value is selected as the reference value, and the remaining $\Delta \delta_{n}$ are related to $\Delta \delta_{i}$ as the shift ratio $\Delta \delta_{i} / \Delta \delta_{n}$ (calcd) for protons j through n for which observed shift values are available.

$$
\begin{equation*}
R=\left[\frac{\left.\left.\Sigma_{n \neq i} w_{n}\right\}\left(\Delta \delta_{i} / \Delta \delta_{n}\right) \text { obsd }-\left(\Delta \delta_{i} / \Delta \delta_{n}\right) \text { calcd }\right\}^{2}}{\Sigma_{n \neq i} w_{n}\left(\Delta \delta_{i} / \Delta \delta_{n}\right) \text { obsd }^{2}}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

The agreement factor R is used to compare the calculated shift ratios and the corresponding observed shift ratios for several different locations of L. This process is continued, usually as a computer operation, and L is moved through all space surrounding X . A minimum R value is associated with those positions of L which give the best agreement. The calculation is described as being "relatively insensitive ($0.2-0.3 \AA$) to assumed lanthanide position or to error in model coordinates, but sensitive to signal assignments and to substrate stereochemistry". ${ }^{5}$

Results and Discussion

The binding of tris(2,2-dimethyl-6,6,7,7,8,8,8-heptaflu-oro- 3,5 -octanedionato)europium(III), $\mathrm{Eu}(\text { fod })_{3}$, to the bifunctional dioxabicyclo[3.2.1]octane ring system was initially investigated with a known compound, frontalin (2), ${ }^{14}$ for

which four observable proton signals could be unambiguously assigned. The $\Delta \delta_{n}$ values for protons $1,2,3$, and 4 were measured, and the $\lrcorner \delta_{i} / \Delta \delta_{n}$ obsd values are given in Table I.

Two separate Cartesian coordinate systems were calculated (for details see Experimental Section) for the atoms in 2 with OA and OB at the origins in systems A and B , respectively. These coordinate systems, depicting the calculated position of the Eu atom, are diagrammed in Figure 1.

The location of L with respect to substrate atoms $\mathrm{H}_{i}-\mathrm{H}_{n}$ was defined with respect to the donor atom (the origin), as shown by the right-handed coordinate system in Figure 2. The $\mathrm{L}-\mathrm{O}$ bond was the assumed magnetic axis for the lanthan-ide-substrate complex, and the length of the L-O bond was \bar{R}. The angle Ω is the $\mathrm{C}_{2}-\mathrm{O}-\mathrm{L}$ bond angle and Φ the dihedral angle between the $\mathrm{C}_{2}-\mathrm{C}_{3}$ and the $\mathrm{L}-\mathrm{O}$ bonds.

The lanthanide SHIFT program executed the calculations for a given test structure. The Eu atom was moved by increments through all possible angles of Ω and Φ for reasonable \bar{R} values (2.6-4.0 \AA for 2) for both coordinate systems. The calculation was thus constrained such that the search for minimum R values was limited to a sphere about the donor

Figure 1. Frontalin (2) in coordinate systems A and B depicting the optimum calculated position of the Eu atom.

Figure 2. Location of the lanthanide atom with respect to the substrate atoms.
atom with a radius equal to the upper limit of the Eu-O bond length. ${ }^{5}$ A set of shift ratios were calculated at each Eu position, and the calculated values were compared to the observed shift ratios. A maximum limit C_{x} for $\Delta \delta_{i} / \Delta \delta_{n}$ calcd $-\Delta \delta_{i} / \Delta \delta_{n}$ obsd was set, and if C_{x} exceeded the limit, the comparison for that Eu position was discarded. When this condition was satisfied, the agreement factor R was calculated.

The R values in combination with the position of the Eu atom relative to the substrate molecule provided a basis for the evaluation of a test structure. Minimum R values were regarded as indicators of relatively good agreement particularly where relatively small values were found for a cluster of Eu positions. The location of the Eu atom was examined, and any positions coincident with other atoms in the substrate were eliminated. The possibility of chance agreement cannot be completely eliminated, particularly when a limited number of proton signals can be observed; however, as our data will demonstrate, these criteria provided a basis for consistent interpretation of the data.

No agreement between calculated and observed shift ratios was obtained for 2 in coordinate system B over the range of R, Ω, and Φ searched, but good agreement ($R<0.06$) was obtained for coordinate system A with $C_{x}=0.05$. Test calculations indicated that, where good agreement was possible, R values were found for several Eu positions (usually clustered about one point) when C_{x} was set equal to 0.2 . The reduction of C_{x} to 0.05 yielded the Eu positions with the lowest R values. As shown in Table II, the lanthanide positions which gave low R values are clustered about $\Omega=114-120^{\circ}, \Phi=160^{\circ}$, and \bar{R} $=3.5-3.9 \AA$.

This result indicated that $\mathrm{Eu}(\mathrm{fod})_{3}$ was bound to OA rather than OB on the exo surface of the five-membered ring, as shown in Figure 1. In this case, preferential bonding was observed in a molecule with endocyclic oxygen atoms. Although the electronic and steric effects related to Eu-O bonding in 2 are difficult to evaluate quantitatively, increased steric hindrance at the OB binding site can be a factor in the preferential bonding of Eu to OA. OA is adjacent to a tertiary and

Table II. Agreement between LIS Data and 6,8-Dioxabicyclo[3.2.1]octane Structures

Test structure and coordinate system	Obsd compd	Ω, deg	Eu location Φ, deg	\bar{R}, \AA	R
Frontalin (2)					
A	(2)	114-120	160	3.5-3.9	0.06
B	(2)		No agreement ${ }^{\text {a }}$		
Multistriatin					
$1 \alpha-\mathrm{A}$	1α	72-78	0-20	4.4-4.8	0.09
$1 \alpha-B$	1α	108-112	220	2.0-2.4	0.08
$1 \beta-\mathrm{A}$	1β	114-126	180-240	2.6-4.4	0.05
$1 \beta-\mathrm{B}$	1β	66-72	20	4.4-5.8	0.10
$1 \gamma-\mathrm{A}$	1γ	96-102	200-240	2.8-4.0	0.07
$1 \%-B$	$1 \boldsymbol{\gamma}$	60-72	20	4.4-4.6	0.10
$10-\mathrm{A}$	1δ	108-150	80-120	3.2-4.4	0.05
10-B	1δ	78	20	5.8	0.10

${ }^{a}$ For all possible angles of Ω and Φ for \bar{R} values of 2.6-4.0 \AA.

Table III. LIS Data for Multistriatin- $\boldsymbol{d}_{\mathbf{3}}$ Isomers, $1 \alpha-\boldsymbol{\delta}$

Shift ratios	$\mathbf{1} \boldsymbol{\alpha}^{a}$	$\mathbf{1} \boldsymbol{\beta}^{b}$	$\mathbf{1} \boldsymbol{\gamma}^{c}$	$\mathbf{1} \boldsymbol{\delta}^{\boldsymbol{d}}$
$\Delta \delta_{1} / \Delta \delta_{2}$	3.02	1.15	2.48	1.96
$\Delta \delta_{1} / \Delta \delta_{3}$	0.45	0.27	0.29	0.41
$\Delta \delta_{1} / \Delta \delta_{4}$	0.50	0.24	0.27	0.49
$\Delta \delta_{1} / \Delta \delta_{5}$	0.57	0.53	0.50	0.89

${ }^{a}[\mathrm{~L}]=0.006,[\mathrm{~S}]=0.046 .{ }^{b}[\mathrm{~L}]=0.003,[\mathrm{~S}]=0.020 .{ }^{c}[\mathrm{~L}]=$ $0.006,[\mathrm{~S}]=0.04 \overline{5} .{ }^{d}[\mathrm{~L}]=0.006,[\mathrm{~S}]=0.052$.
a primary carbon atom while OB is flanked by two tertiary centers, and the approach of the bulky $\mathrm{Eu}(\mathrm{fod})_{3}$ complex to OB should be less favorable than the approach to OA.

This initial experiment demonstrated that selective binding was possible and that good agreement values can be obtained with a monofunctional binding model. Although we would not a priori expect Eu to bind to all 6,8-dioxabicyclo[3.2.1]octanes in the same manner, we were encouraged to apply the LIS calculation to the data obtained from the multistriatin isomers, 1 .

The LIS data were collected for a series of [L]/[S] values for each of the multistriatin isomers, and the data used in the calculation are given in Table III. The $\Delta \delta_{i} / \Delta \delta_{n}$ obsd values for a given compound were constant for [L]/[S] values between 0.1 and 0.5 , with only minor variability observed for small $\Delta \delta_{n}$ values ($1-3 \mathrm{~Hz}$). The chemical shift assignments and the preparation of $4,11,11$-trideuteriomultistriatin ($1 \alpha-\delta-d_{3}$) have been reported. ${ }^{3}$ Methyl groups 1 and 2 appeared as two doublets with similar chemical shifts in 1 , but in $1-d_{3}$, methyl

group 1 appeared as a singlet. Since methyl groups 1 and 2 could be readily distinguished in the D-labeled isomers, $1 \alpha-\delta-d_{3}$ were used in the LIS experiments. Since signals for the three protons at C_{2} and C_{3} were not clearly resolved, they were not used in the LIS calculation. The ethyl group at C_{5} probably exhibits an undetermined degree of hindered rotation. Thus, the coordinates for these CH_{3} protons could not be assigned with confidence, and this resonance was also excluded from the calculation.

The LIS data obtained for $1 \alpha-\delta$ were analyzed in a similar

Figure 3. Structures for the $\mathrm{Eu}(\mathrm{fod})_{3}$-multistriatin complexes depictirg the optimum position of the Eu atom as determined by the LIS calculation.
manner to that described for compound 2. As before, both coordinate systems A and B were treated and structures for the $\mathrm{Eu}(\mathrm{fod})_{3}$-multistriatin complexes which gave the best agreement and the most reasonable Eu-O bond length are shown in Figure 3. In the initial calculation, the $\Delta \delta_{i} / \Delta \delta_{n}$ obsd values for $l \alpha$ were compared to the $\Delta \delta_{i} / \Delta \delta_{n}$ calcd values for $1 \alpha-A$ and $1 \alpha-B$. In like manner, structures $1 \beta, 1 \gamma$, and 1δ in coordinate systems A and B were compared to their respective LIS data. Agreement factor R was printed for $C_{x}=0.2$ in all cases except for 1α. In this case, the observed $\Delta \delta_{2}$ value was very small, thus introducing greater uncertainty in the ratio $\Delta \delta_{i} / \Delta \delta_{2}$ obsd, and it was necessary to increase the value of C_{1} ($\Delta \delta_{1}{ }^{\prime} \Delta \delta_{2}$ obsd $-\Delta \delta_{1} / \Delta \delta_{2}$ calcd) to 1.5. Angles Ω and Φ were varied over all space for \bar{R} values from 2.0 to $5.8 \AA$. Good agreement could be obtained between the $\Delta \delta_{i} / \Delta \delta_{n}$ obsd values for $1 \alpha-\delta$ and the corresponding $\Delta \delta_{i} / \Delta \delta_{n}$ calcd values for the assigned structures (Table II). Similar agreement factors were obtained with both coordinate systems A and B; however, the

Table IV. Comparisons of $1 \alpha-\delta$ LIS Data with Structures $1 \alpha-\delta^{a, b}$

Source of LIS data

	Source of LIS data			
Structure, coordinate system	$\mathbf{1 \alpha}$	1β	$\mathbf{1} \boldsymbol{\gamma}$	1δ
$1 \alpha-\mathbf{B}$	+	0	0	0
$1 \beta-\mathbf{A}$	0	+	0	0
$1 \gamma-\mathbf{A}$	0	0	+	0
$1 \delta-\mathbf{A}$	0	+	0	+

${ }^{a}+=$ agreement; $0=$ no agreement. ${ }^{b}$ Lanthanide positions were varied over all values of Ω and Φ and \bar{R} values from 2.6 to 4.6 \AA. Agreements were based on minimum R values for reasonable structures of the $\mathrm{Eu}(\mathrm{fod})_{3}$-substrate complex.
location of the Eu atom and the R values suggested that $\mathrm{Eu}(\mathrm{fod})_{3}$ bonded preferentially to one of the oxygen atoms (vide infra).
In the case of 1α, a consideration of the \bar{R}, θ, and Φ values for those Eu positions which gave the best agreement between observed and calculated shift ratios indicated that Eu was coordinated to OB. As shown in Figure 3 and Table II, the Eu positions which gave minimum R values were clustered about one point which was over the exo surface of the six-membered ring. The location of the Eu atom was supported by the calculation for coordinate system A , since low R values were obtained for Eu positions coinciding with those obtained for the B system. The Eu-OA bond is nearly collinear with the assumed magnetic axis defined by the Eu-OB bond. Thus, the θ_{n} and r_{n} values (eq 1) in coordinate systems A and B were nearly equal, and these values would give rise to similar calculated shift ratios. In view of the equivalent location of the Eu atom with respect to donor atoms OA and OB , the "more reasonable" \bar{R}, θ, and Φ values associated with system B suggested that the coordination of $\mathrm{Eu}(\mathrm{fod})_{3}$ to 1α occurred primarily to OB.

The results obtained for 1β and 1γ provided an interesting reversal of the $1 \boldsymbol{\alpha}$ bonding situation. Consideration of R values and the $\mathrm{Eu}-\mathrm{O}$ bond distance (\bar{R}) indicated that $\mathrm{Eu}(\mathrm{fod})_{3}$ bonded preferentially to OA in both 1β and $\mathrm{I} \gamma$ (Table II) with the Eu atom located on the endo surface of the five-membered ring (Figure 3). As in the 1α case, the Eu-OA and the Eu-OB bonds were nearly collinear, and low R values were obtained in both coordinate systems with the Eu position in B corresponding exactly to those in A. Calculations for the 1δ isomer gave low R values for a cluster of Eu positions on the exo surface of the five-membered ring in system A , as shown in Table II and Figure 3. For this isomer, however, the Eu-OA and Eu-OB bonds did not coincide and relatively poor agreement and unreasonable \bar{R} values were found in system B. The single Eu position for B was on the exo surface of the five-membered ring, with a relatively long ($5.8 \AA$) Eu-OB bond length. These results suggested that in 1δ, like 1β and $1 \gamma, \mathrm{OA}$ was the primary bonding site for the Eu atom.

In a second series of calculations the agreement between the calculated shift ratios for structures $1 \alpha-\delta$ and the "wrong" LIS data was tested. The best agreement for the 1α data and the 1α structure was obtained with a coordinate system B. Consequently, the calculated shift ratios for $1 \alpha-\mathrm{B}$ were compared to the LIS data for $1 \beta, 1 \gamma$, and 1δ, and, as shown in Table IV, no reasonable agreement values were obtained. For $1 \beta, 1 \gamma$, and 1δ, coordinate systems A gave the best agreement with the 1β, 1γ, and 1δ LIS data, respectively. Calculated shift ratios for 1β-A were therefore compared to the observed shift ratios for $1 \alpha, 1 \gamma$, and 1δ, and likewise structures $1 \gamma-\mathrm{A}$ and 1δ-A were compared to the observed shift ratios for $1 \alpha, 1 \beta$, and 1δ, and for $1 \alpha, 1 \beta$, and 1γ, respectively. The comparisons of the cal-
culated 1δ-A shift ratios and the observed 1β values gave low R values for $\Omega=114-156^{\circ}, \Phi=140-200^{\circ}$, and $\bar{R}=2.6-4.4 \AA$. However, equally good agreement values were obtained for comparison of the observed and calculated shift ratios for 1β and for 1δ and agreement was not found for the comparison of the calculated 1β-A shift ratios and the observed 1δ data. Furthermore, low R values for a cluster of reasonable Eu positions were not found for any of the remaining wrong data comparisons. Thus we conclude that the low R values for the 1δ-A vs. 1β (observed data) comparison represented a coincidental agreement which is not unexpected in view of the statistical nature of the calculation.

The structures assigned to $1 \alpha-\delta$ based on the LIS data are in accord with those determined by other means, ${ }^{3}$ and in each isomer the location of the Eu atom was consistent with the relative stereochemistry of the structure. Only in 1α are methyl groups 1 and 2 both endo and this configuration leaves the exo surface of the six-membered ring relatively unhindered. This unique situation was reflected in the binding of Eu to OB. In the three remaining isomers, at least one methyl group was exo, thus hindering the approach of $\mathrm{Eu}(\mathrm{fod})_{3}$ to OB . This steric hindrance was apparently sufficient to make OA the preferred binding site for $\mathrm{Eu}(\mathrm{fod})_{3}$ in $1 \beta, 1 \gamma$, and 1δ. In 1β and 1γ, methyl group 1 was exo and the calculated position of the Eu atom was on the endo surface of the five-membered ring. This situation was altered in 1δ where methyl group 1 was endo, and $\mathrm{Eu}(\mathrm{fod})_{3}$ occupied a position on the exo surface of the five-membered ring. This result further indicated that stereochemical features of the substrate were reflected in the calculated position of the Eu atom.

Conclusions

We have successfully utilized LIS data to verify the structures of a series of diastereomeric 6,8-dioxabicyclo[3.2.1]octanes. The calculation was selective in relating each set of experimental data with a single structure. The calculated location of the Eu atom was in each case consistent with the structural features of the compound and indicated that Eusubstrate bonding occurred primarily at one site. These results reflected the importance of steric factors in the bonding of $\mathrm{Eu}(\mathrm{fod})_{3}$ to these bifunctional substrate molecules.

An additional feature of this study was the correlation that was observed between the calculated Eu bonding site and the biological activity of $1 \alpha-\delta$. Isomers $1 \alpha-\delta$ had been tested as one component of the aggregating pheromone for S. multistriatus, and naturally occurring 1α was the only isomer that exhibited biological activity. ${ }^{15}$ Molecular geometry and electrostatic effects of odorant molecules are important factors in determining olfactory responses, and current theories of olfaction have related the unique olfactory response elicited by an odorant to the fit of the odorant molecules on receptor sites. ${ }^{16-18}$ Our finding that the fit of 1α on the $\mathrm{Eu}(\mathrm{fod})_{3}$ complex differed from that of $1 \beta, 1 \gamma$, and 1δ paralleled the observation that 1α exhibited unique biological activity. This single comparison of $\mathrm{Eu}(\mathrm{fod})_{3}$ bonding and olfactory responses does not prove a relationship; however, these results indicate that $\mathrm{Eu}(\mathrm{fod})_{3}$ could be mimicking some steric and/or electronic features of the olfactory receptor site.

Experimental Section

Lanthanide Shift Experiments. The NMR spectra were recorded for $1 \alpha-\delta$ in carbon tetrachloride solution in the presence of freshly sublimed d_{27}-tris (2,2 -dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionato)europium (III), $\mathrm{Eu}\left(\mathrm{fod}_{3}{ }_{3}\right.$. The carbon tetrachloride was dried over $4 \AA$ molecular sieves, and all transfers were performed in an inert atmosphere. Samples containing $0.1-1 \mathrm{mg}$ of substrate in 50 μl of solvent were filtered into the inner cell of a coaxial cell (Wilmad, $520-2$), and benzene $-d_{6}(100 \% \mathrm{D})-\mathrm{Me}_{4} \mathrm{Si}$ solution was placed in the outer cell. Spectra for 2 were recorded in CDCl_{3} solution. All spectra were recorded in the Fourier transform mode with a Varian XL-100

NMR spectrometer. Spectra were recorded at four [L]/[S] values for each substrate compound, and δ_{n} values were obtained from the spectra. The $\Delta \delta_{i} / \Delta \delta_{n}$ obsd values were constant within the experimental accuracy of the measurements. The values for 2 and for $1 \alpha-\delta$, which were used in the calculations, are given in Tables I and III, respectively.
Calculations. The coordinates for each atom in each of the substrate structures were calculated with the COORD program. ${ }^{7}$ Two coordinate systems were calculated for each molecule. The origins for systems A and B were $O A$ and $O B$, respectively. The agreement between the observed shift ratios for a given substrate were calculated with the SHIFT program. ${ }^{7}$

Preparation of 4,11,11-Trideuteriomultistriatin Isomers ($1 \boldsymbol{\alpha}-\delta$). A sample of multistriatin (1) was refluxed in $1 \mathrm{M} \mathrm{D}_{3} \mathrm{PO}_{4}-$ tetrahydrofuran solution and worked up according to the previously described method. ${ }^{3}$

Acknowledgments. The authors gratefully acknowledge Drs. R. M. Silverstein and G. T. Pearce for their contributions throughout this research program. We wish to thank Mr. L. L. McCandless and Mr. P. P. Tusa for their assistance in obtaining the NMR spectra and in the LIS computer calculations, respectively: We would also like to acknowledge Dr. J. W. Peacock and Mr. R. A. Cuthbert, U.S. Forest Service, Delaware, Ohio, and Drs. G. N. Lanier and J. B. Simeone, SUNY College of Environmental Science and Forestry, for their assistance in the entomological phases of this project.

Registry No.- $1 \alpha, 54815-06-4 ; 1 \beta, 54832-20-1 ; 1 \gamma, 54832-21-2 ; 1 \mathbf{\delta}$, 54832-22-3; 2, 28401-39-0.

References and Notes

(1) (a) Lederle Laboratories. Pearl River, N.Y. 10965. (b) This work was supported in part by the U.S. Forest Service, the Elm Research Institute, the Rockefeller Foundation, and the College of Environmental Science and Forestry. (c) Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.
(2) G T. Pearce, W. E. Gore. R. M. Silverstein, J. W. Peacock. R. A. Cuthbert, G. N. Lanier, and J. B. Simeone, J. Chem. Ecol., 1, 115 (1975).
(3) W'. E. Gore, G. T. Pearce, and R. M. Silverstein, J. Org. Chem., 40, 1705 (1975).
(4) R B. Lewis and E. Wenkert in "Nuclear Magnetic Resonance Shift Reagents". R. E. Sievers. Ed.. Academic Press. New York. N. Y., 1973, p 99
(5) R E. Davis and M. R. Willcott. III, in ref 4. p 143.
(6) M. R. Willcott, III, and R. E. Davis in ref 4. p 159.
(7) I. M. Armitage, L. D. Hall, A. G. Marshall, and L. G. Werbelow in ref 4, p 313.
(8) A. F. Cockerill, G. L. O. Davies, R. C. Harden, and D. M. Rackham, Chem. Rev., 73, 553 (1973).
(9) S Farid. A. Ateya, and M. Maggio. Chem. Commun., 1285 (1971).
(10) H M. McConnell and R. E. Robertson, J. Chem. Phys., 29, 1361 (1958).
(11) G E. Hawkes, D. Leibfritz, D. W. Roberts, and J. D. Roberts, J. Am. Chem. Soc., 95, 1659 (1973).
(12) I. M. Armitage. L. D. Hall, A. G. Marshall, and L. G. Werbelow. J. Am. Chem. Soc., 95, 1437 (1973).
(13) M. R. Willcott. III, R. E. Davis, and R. W. Holder. J. Org. Chem., 40, 1952 (1975).
(14) G W. Kinzer, A. F. Fentman, T. F. Page, R. L. Foltz, J. P. Vite, and G. B. Pitman, Nature (London), 221, 477 (i969).
(15) W'. E. Gore and G. N. Lanier, unpublished results
(16) For a review of insect olfaction, see M. Jacobson, "Insect Sex Pheromones' ', Academic Press, New York, N.Y., 1972, pp 117-119, and references cited therein.
(17) For a review of olfactory :heories, see H. L. Klopping. J. Agric. Food Chem., 19, 999 (1971).
(18) For a review of the role of geometric and optical isomers in insect pherorrones, see R. M. Silverstein, in "Chemical Control of Insect Behavior: Theory and Application". H. H. Shorey and J. J. McKelvey, Jr., Ed., Wiley, New York, N. Y., in press.

Synthesis of Samandarine-Type Alkaloids and Analogues ${ }^{1,2}$

Yuzuru Shimizu
Department of Pharmacognosy, College of Pharmacy. University of Rhode Island, Kingston, Rhode Island ()2881

Received December 1\&, 1975

Facile stereoselective syntheses of samandarine and its regioiscmers are described.

European salamanders, Salamandra maculosa taeniata and S. maculosa maculosa, are known to secrete alkaloidal venoms from the glands located on the skin, probably for defensive purposes. The chemical structures of these alkaloids had been vigorously investigated by Schöpf and Habermehl's group over a number of years, and the structure of the major alkaloid, samandarine (1), was first established by X-ray crystallography in 1961. ${ }^{3}$

A group of alkaloids represented by samandarine are characterized by the presence of a peculiar 6-aza-8-oxabicyclo[3.2.1]octane ring system in the A ring of steroidal nuclei.

Owing to this peculiar bridged system and the reported neurotoxicity of these naturally scarce substances, the synthesis of samandarine and its analogues has been pursued by several groups. A multistep synthesis of samandarine was first reported by a Japanese group. ${ }^{4}$ A few other attempts to synthesize samandarine and the ring system have also been reported."

Since there are several established ways to introduce an oxygen function at C-16, the major problem inherent in the synthesis of these alkaloids is in the construction of the bridged oxazolidine system with the correct stereochemistry.

In this paper, the author reports a general procedure for the preparation of the bridged oxazolidines from α, β-unsaturated cyclic ketones and a facile, stereoselective formal synthesis of samandarine (1).

22. $\mathrm{R}_{1}=\mathrm{H}_{2} ; \mathrm{R}_{2}=\mathrm{O}$

Figure 1. EI mass spectra of samandarin regioisomers, 7,8 , and $21\left(70 \mathrm{eV}, 220^{\circ} \mathrm{C}\right)$.

The 6-aza-8-oxabicyclo[3.2.1]octane ring system is essentially the hemiaminoacetal (ketal) of the amino alcohol (b) formed by an intramolecular condensation. Therefore, it seemed to be an easy approach to synthesize a δ, ϵ-unsaturated compound of type a and to functionalize the double bond and the group X in an appropriate manner to effect subsequent cyclization (Scheme I). In order to test this approach, the

Scheme I

synthesis of 3,5-epoxy-4a-aza-A-homoandrostan-17 β-ol, a regioisomer of samandarine, was first attempted.

A mixture of testosterone α - and β-exoxides (3), which can be obtained in a high yield by $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}$ treatment of testosterone (2), was allowed to react with p-toluenesulfonylhydrazine in a mixture of methylene chloride and acetic
acid. ${ }^{6}$ The acetylene derivative (4) was obtained in a 70% overall yield from testosterone. Partial hydrogenation of the

4. $\mathrm{R}_{1}=\mathrm{C} \equiv \mathrm{CH} ; \mathrm{R}_{2}=\mathrm{H}$

7, 8
5. $\mathrm{R}_{1}=\mathrm{CH}=\mathrm{CH}_{2} ; \mathrm{R}_{2}=\mathrm{Ac}$

acetylene group of 4 with Lindler catalyst and subsequent acetylation gave the seco olefin (5) in a ca. 80% yield. Reaction of 5 with N, N-dichlorourethane followed by bisulfite and alkali treatment ${ }^{7}$ gave a stereoisomeric mixture of the aziridine derivative (6) ($\left.\nu_{\mathrm{NH}} 3300 \mathrm{~cm}^{-1}\right)$. When the isomeric mixture (6) was heated in $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ on a steam bath for 2 h , it afforded two isomeric chloroform-soluble products, $7, \mathrm{mp} 70-73^{\circ} \mathrm{C}$ (hydrate), and $8, \mathrm{mp} 221-222^{\circ} \mathrm{C}$, with identical compositions of $\mathrm{C}_{1} \subseteq \mathrm{H}_{33} \mathrm{NO}_{2}$. Both 7 and 8 show typical absorptions for oxazolicines ($1050-800 \mathrm{~cm}^{-1}$), no carbonyl absorption in the ir spect:a, and almost identical ${ }^{1} \mathrm{H}$ NMR and mass spectra (Figure 1) except for the difference in the chemical shifts of the 19 -methyl groups. The ABX system seen around $\delta 3.0$ is fully compatible with the structure d . The alternative structure in which the nitrogen and oxygen atom are interchanged was raled out because the chemical shifts indicate that the methylene group is linked to the nitrogen atom. It was fully expected that the aziridine opens in the non-Markownikoff manner. The combined yield of 7 and 8 was ca. 40%. The rest of the products were very polar, and were not extracted with chloroform. This fraction probably consisted of the isomeric carbinolamines, which apparently do not cyclize under the employed condition. ${ }^{8}$

The structures A and B are tentatively assigned to 7 and 8 respectively, for the following reasons. The lower chemical shift of the 19 -methyl group of 8 may be explained by the anisotropic effect of the β-oriented nitrogen group in the structure B . The compound 8 has a bigger coupling constant, $J_{\mathrm{H}_{\mathrm{b}}, \mathrm{F}_{\mathrm{c}},}$, than the isomer 7 in accordance with the implication of the model examination (Table I), although this argument may not be so reliable owing to the uncertain influence of the heteroatoms.

Table I. Expected and Observed ${ }^{1} \mathrm{H}$ NMR Data for 7 and 8

A

B

		Dihedral angles obtained from the models	Expected $J, \mathrm{~Hz}$			Served $J, \mathrm{~Hz}$	$19-\mathrm{CH}_{3}$, ppm
Structure A	$\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}=35^{\circ}$	6.57	6.0				
	$\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}=85^{\circ}$	0	0	0.90			
Structare B	$\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}=25^{\circ}$	8.08	7.0				
	$\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{c}}=95^{\circ}$	0	0	1.07			

For the synthesis of samandarine itself, the same procedure used for the synthesis of 7 and 8 could be applied. However, the preparation of the desired starting compounds, $\Delta^{2}-1$-ones in the A / B cis steroids, is lengthy if not unattainable. Consequently, alternative routes to the $\Delta^{1}-2,3$-seco compound with an appropriate function at $\mathrm{C}-3$ were investigated.

Attempts to convert easily obtainable 2,3 -seco steroids, ${ }^{9}$ lactons 9 or lactam 10 , to the desired $د^{1}-2,3$-seco compound proved to be futile. Dehydration of the seco hydroxy acid 11 and its esters, which can be obtained easily by Baeyer-Villiger oxidation of 17β-hydroxy- 5β-androst- 3 -one, by various methods failed owing to their easy conversion to the sevenmembered lactone 9.

Huisgen reported that under selected conditions, the decomposition of N-nitroso lactams yields ω-unsaturated acids
in addition to the corresponding lactones or hydroxy acids. ${ }^{10}$ The stable N-nitroso compound 12, which was prepared by the treatment of the lactam 10^{11} with sodium nitrite in acetic acid, was subjected to decomposition under various conditions (Scheme II). The major reaction product was always the lac-

Scheme II

tone 9 , or the hydroxy acid 11 if the reaction was carried out under a basic condition. When the decomposition was done in dimethyl sulfoxide, less than a 5% yield of the desired methylene acid (13) was obtained. Meanwhile, successful ring cleavage to construct the 2,3 -seco- 5β-androstane skeleton of samandarine was accomplished by the procedure which Autrey and Scullard had used for the synthesis of corynantheine. ${ }^{12}$ The hydroxymethylene derivative (14) ${ }^{13}$ was treated with 1.3 mol of methyl p-toluenethiosulfate in the presence of potassium acetate in boiling ethanol. ${ }^{14}$ The product isolated after acetylation, in 80% yield, was 17β-acetoxy- 2β-methyl-thioandrostan-3-one (15) (Scheme III). The equatorial 2β configuration was expected for the introduced methylmercapto group, and it was confirmed by the appearance of the axial C-2 hydrogen signal in the ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta 3,46$ (q, $J=6,13 \mathrm{~Hz}$). The reaction of 15 with hydroxylamine chloride in pyridine afforded the oxime 16, in a quantitative yield. The treatment of 16 with p-toluenesulfonyl chloride in refluxing pyridine for 30 min gave a seco nitrile product, 17 , in 65% yield as the sole product. ${ }^{15}$ It is known that steroidal 3-ketones afford about $1: 1$ mixtures of the syn and anti oximes, which upon Beckmann rearrangement give the corresponding isomeric lactams, respectively. It seemed improbable that the presence of the 2β-methylmercapto group occasions the exclusive formation of one isomer, and indeed, the TLC examination showed the presence of two oximes. The apparent loss of directional influence in the Beckmann rearrangement (fragmentation) may be explained either by the equilibration of the oximes under the conditions employed or by a highly favored fragmentation due to the electron-donating methylmercapto group. ${ }^{16}$ Removal of the methylmercapto group in 17 without affecting the double bond or nitrile group was accomplished by treatment with Levin's deactivated Raney Ni. ${ }^{17}$ The methylene nitrile (18) was obtained in $40-65 \%$ yields. The poor yields resulted from the formation of the corresponding saturated nitrile derivative which seemed unavoidable even under highly controlled conditions.

Treatment of 18 with m-chloroperbenzoic acid gave preferentially one epoxide, 19. In prior model examination, the desired $1 R$ epoxide was expected to be the major product, ${ }^{18}$ and this assumption was supported by subsequent successful conversion of 19 to the final product. The non-Markownikoff opening of the epoxide with NaN_{3} in refluxing methylcello-
Scheme III

solve gave the azide 20 in a quantitative yield. The conversion of 20 to the final product, oxazolidine 21, which involves the partial reduction of the nitrile to the aldehyde level, reduction of the azide group to the amine, and hydrolysis of the 17 -acetyl moiety, was accomplished in one step by reduction with NaBH_{4} in refluxing 2-propanol. ${ }^{19}$ Extraction of the reaction mixture with chloroform gave almost pure crystals of 21 in about 60% yield. Recrystallization from acetone gave a specimen, mp 191-193 ${ }^{\circ} \mathrm{C}$, ir 852 and $834 \mathrm{~cm}^{-1}$ (oxazolidine), which was identified with the authentic sample ${ }^{4}$ by mixture melting point, ir, and TLC. The mass spectrum of 21 was practically identical with that of samandarine ${ }^{20}$ (Figure 1). Although a nitrile group is not a normal target of NaBH_{4} reduction, the outcome of the reaction was not entirely unexpected. Under the basic condition in the reduction, the nitrile group formed either cyclic amidine (e) or imino ester (f) which is subject to NaBH_{4} reduction, and concomitant cyclization to the rigid oxazolidine ring prevented further reduction. ${ }^{21}$

Since 21 had already been converted to samandarine (1), which was further modified to samandarone (22) and a samandaridine (23), this work formally represents a new stereoselective synthesis of these alkaloids.

Experimental Section

All melting points were measured on a Kofler block and are uncorrected. Infrared spectra were taken with a Perkin-Elmer Model 458 in specified phases. Mass spectra were taken with a CEC Model 104. NMR spectra were measured with a JEOL HR 60 model.
17β-Acetoxy-4,5-secoandrost-3-en-5-one (5) 17β-Hydroxy4,5 -secoandrost-3-yn-5-one ($4,6160 \mathrm{mg}$) was dissolved in benzene (10 ml) and shaken under H_{2} in the presence of Lindler catalyst (25 mg) and 1 drop of quinoline. After the uptake of 1 mol of H_{2}, the catalyst was filtered off and the solution was washed with dilute HCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was dissolved
in a mixture of pyridine and acetic anhydride (2:1) and was left at room temperature for 12 h . The mixture was poured onto ice and extracted with ether. The ethereal extract was washed with dilute $\mathrm{HCl}, \mathrm{NaHCO} \mathrm{N}_{3}$ solution, and water, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the ether gave a crystalline residue which was crystallized from petroleum ether to prisms (5): mp 73-75 ${ }^{\circ} \mathrm{C}$; ir (Nujol) 1740 $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 1700(\mathrm{C}=\mathrm{O}), 1638$ and $910 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CH}_{2}\right)$; yield 136 mg

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}$: C, 75.68; $\mathrm{H}, 9.70$. Found: $\mathrm{C}, 76.04 ; \mathrm{H}, 9.64$.
17β-Hydroxy-3,4-imino-4,5-secoandrostan-5-one (6). To a solution of 17β-acetoxy- 4,5 -secoandrost-3-en-5-one (5, 1.03 g) in dry benzene (10 ml) was added N, N-dichlorourethane (0.49 g) and the solution was refluxed for 2 h . After cooling, the mixture was diluted with ether and washed with $5 \% \mathrm{NaHSO}_{3}$ solution. After evaporation of the solvent, the residue (1.1 g) was redissolved in a 5% alcoholic KOH solution and heated on a steam bath for 1 h . The reaction mixture was diluted with ether and extracted with $2 \% \mathrm{HCl}$ solution. Basification of the HCl extract with a $5 \% \mathrm{NaOH}$ solution liberated an oily substance which was extracted with chloroform. Evaporation of the chloroform layer afforded a colorless, resinous residue $6(80 \mathrm{mg})$, $m / e 305\left(\mathrm{M}^{+}\right)$, ir (neat) $3500(\mathrm{OH}), 3300 \mathrm{~cm}^{-1}(\mathrm{NH})$.

3,5-Epoxy-4-aza-A-homoandrostan-17-ol (7) and 8. 17 β - Hy -droxy-3,4-imino-4,5-secoandrostan-5-one ($6,400 \mathrm{mg}$) was dissolved in $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{ml})$ and heated at $80^{\circ} \mathrm{C}$ for 2 h . The cooled solution was basified with a $5 \% \mathrm{NaOH}$ solution and extracted with chloroform ($50 \mathrm{ml} \times 3$). Evaporation of the chloroform extract left a residue (85 mg), only two spots on TLC (silica gel, $5 \% \mathrm{MeOH}$ in CHCl_{3}), which was chromatographed on a silica gel column. Elution with 5% meth-anol-chloroform afforded two pure compounds, 7 and 8 in the order of elution. 7: crystals from methanol-water; mp 70-73 ${ }^{\circ} \mathrm{C}$ (hydrated crystals); ir (Nujol; 3450, 3300, 1047, 1018, and $895 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 0.74\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.79(1 \mathrm{H}, \mathrm{d}, J$ $=10 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{q}, J=6,10 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{t}, 17-\mathrm{H})$, and 4.42 ppm ($1 \mathrm{H}, \mathrm{m}$); mass spectrum (Figure 1).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}-\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.55 ; \mathrm{H}, 10.28 ; \mathrm{N}, 4.33$. Found C, 70.55 ; H, 10.70; N, 4.37.

8: from CHCl_{3}; mp $221-222{ }^{\circ} \mathrm{C}$; ir (Nujol) 3460, 3310, 1020, 1005 , 900 , and $878 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ N.MR $\delta\left(\mathrm{CDCl}_{3}\right) 0.74\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.07(3$ $\left.\mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.75$ (1 H, d, $\left.J=10 \mathrm{~Hz}\right), 3.14(1 \mathrm{H}, \mathrm{q}, J=7,10 \mathrm{~Hz}), 3.61$ ($1 \mathrm{H}, \mathrm{t}$), and $4.44 \mathrm{ppm}(1 \mathrm{H}, \mathrm{m})$; mass spectrum (Figure 1).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$: $\mathrm{C}, 74.71 ; \mathrm{H}, 10.23 ; \mathrm{N}, 4.59$. Found: C , 74.65; H, 10.06; N, 4.34.

17 β-Acetoxy- \boldsymbol{N}-nitroso-3-aza- \boldsymbol{A}-homo- 5β-androstan-4-one (12). 17 β-Acetoxy-3-aza- A-homo- 5β-androst-4-one (11, 1 g) was dissolved in an $1: 1$ mixture of acetic anhydride and acetic acid (50 ml), and $\mathrm{NaNO}_{2}(300 \mathrm{mg})$ was added to the mixture under stirring at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the mixture was poured onto ice, and the yellow, crystalline precipitate was collected by filtration and washed with water. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-2$-propanol gave a yellow prism: $\mathrm{mp} 146-148{ }^{\circ} \mathrm{C}$; ir (Nujol) 1745 (acetate), 1710 ($\mathrm{C}=0$), $1540 \mathrm{~cm}^{-1}$ (NO); yield 920 mg .

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $67.71 ; \mathrm{H}, 8.66 ; \mathrm{N}, 15.04$. Found: C, 67.54; H. 8.55; N. 15.00.
17β-Hydroxy-2,3-seco-5 β-androst-1-en-3-oic Acid (13). The nitrosolactam $12(500 \mathrm{mg})$ was dissolved in dimethyl sulfoxide (50 ml) and heated at $80^{\circ} \mathrm{C}$ for 2 h . Evolution of nitrogen was observed during this period. The reaction mixture was diluted with ether and washed thoroughly with water, and then extracted with $5 \% \mathrm{NaHCO}_{3}$ solution. After acidification with dilute HCl , the acidic compound was extracted with ethyl acetate. Evaporation of the solvent left an acidic fraction (21 mg), which was saponified with $5 \% \mathrm{NaOH}$ solution. After usual workup, the hydroxycarboxylic acid, 13, was obtained and recrystallized from ethyl acetate, $\mathrm{mp} 183-186^{\circ} \mathrm{C}$, ir (Nujol) $3400(\mathrm{OH})$, $1700(-\mathrm{COOH})$, and $910 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, which was identical with a specimen obtained by hydrolysis of 18 .
17β-Acetoxy- 2β-methylthio- 5β-androstan-3-one (15). To a boiling solution of 17β-hydroxy-2-hydroxymethylene- 5β-androst3 -one ($14,1.0 \mathrm{~g}$) in 10 ml of ethanol containing KOAc (1.0 g) was added a solution of methy: p-toluenethiosulfate (635 mg) in ethanol (10 ml). The solution was heated for an additional 10 min . After addition of water, the mixture was reduced in volume under vacuum and extracted with ether. The ethereal solution was washed with dilute NaOH solution and water, dried, and evaporated to dryness. The glassy residue was then acetylated by the usual method. Recrystallization of the acetate from methanol gave prisms of $15: \mathrm{mpl} 190-192^{\circ} \mathrm{C}$: ir (KBr) 1735,1248 (acetate), $1690 \mathrm{~cm}^{-1}(3 \mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.82(3 \mathrm{H} . \mathrm{s}) 1.04(\S \mathrm{H}, \mathrm{s}) .2 .04(3 \mathrm{H}, \mathrm{s}) 2.10(3 \mathrm{H}, \mathrm{s}), 3.46(1 \mathrm{H}, \mathrm{q}, J=$ 6. 12 Hz), $4.60 \mathrm{ppm}(1 \mathrm{H} . \mathrm{m})$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 69.79 ; \mathrm{H}, 9.05 ; \mathrm{S}, 8.39$. Found: C, 70.07: H, 9.12; S, 8.63.

17 β-Acetoxy- 2β-methylthio- 5β-androstane-3-ketoxime (16). 17β-Hydroxy-2 β-methylthio- 5β-androstan-3-one $(15,150 \mathrm{mg}$) was heated with hydroxylamine hydrochloride (200 mg) in pyridine on a steam bath for 1 h . After addition of water to the mixture, precipitated crystals were collected and recrystallized from methanol-water to prisms, 16: mp180-183 ${ }^{\circ} \mathrm{C}$; ir (KBr) 3270 (NO-H), 1730 (acetate), $1660 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{N}$); yield 137 mg .
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{NS}: \mathrm{C}, 67.13 ; \mathrm{H}, 8.96 ; \mathrm{N}, 3.56 ; \mathrm{S}, 8.14$. Found: C, 67.05; H, 8.98, N, 3.42; S, 8.34.

17 β-Acetoxy-2-methylthio-2,3-seco-5 β-androst-1-ene-3-nitrile (17). The oxime $16(300 \mathrm{mg})$ was dissolved in pyridine (6 ml) containing p-toluenesulfonyl chloride (450 mg). The solution was refluxed for 30 min under N_{2}. The resulting reaction mixture was diluted with ether and washed with water. Evaporation afforded a residue (280 mg) which was chromatographed on silica gel (17 g). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave crystals (185 mg), which were recrystallized from methanol, 17: $\mathrm{mp} 105-107^{\circ} \mathrm{C}$; ir (Nujol) $2250(\mathrm{C} \equiv \mathrm{N}), 1730$ (acetate), $1570 \mathrm{~cm}^{-1}$ ($-\mathrm{SC}=\mathrm{C}$).

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 70.36 ; \mathrm{H}, 8.86 ; \mathrm{N}, 3.73 ; \mathrm{S}, 8.54$. Found: C, 70.44; H, 8.95; N, 3.41; S, 8.71.
17β-Acetoxy-2,3-seco- 5β-androst-1-ene- 3 -nitrile (18). The thioenol ether $17(130 \mathrm{mg})$ was heated with deactivated Raney Ni^{17} $(1.3 \mathrm{ml})$ in methanol (30 ml) under reflux for 1.5 h . The catalyst was removed by filtration and the filtrate was evaporated to dryness. Crystallization from isopropyl ether gave needles: mp 147-148 ${ }^{\circ} \mathrm{C}$; ir (Nujol) $2250(\mathrm{C} \equiv \mathrm{N}), 1740$ (acetate), $1640,924 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 76.55 ; \mathrm{H}, 9.48$; N, 4.25. Found: C, 74.54; H, 9.30; N, 4.12.
($1 R$)-1,2-Epoxy-17 β-acetoxy-2,3-seco-5 β-androstane-3-nitrile (19). The seco olefin $17(100 \mathrm{mg})$ was dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ containing m-chloroperbenzoic acid ($200 \mathrm{mg}, 70 \%$ pure) and was left at room temperature for 48 h . The reaction mixture was diluted with sodium sulfite solution, NaHCO_{3}, and water. Evaporation of ether gave a crystalline residue, which was recrystallized from methanol and $\mathrm{H}_{2} \mathrm{O}$ to needles: mp $134-135^{\circ} \mathrm{C}$; ir (Nujol) $2250(\mathrm{C} \equiv \mathrm{N}), 1750$ (acetate), 1060, and $1030 \mathrm{~cm}^{-1}$; yield 81 mg .

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}$: $\mathrm{C}, 73.00 ; \mathrm{H}, 9.05 ; \mathrm{N}, 4.05$. Found: C, 73.02; H, 9.21; N, 3.85.
17β-Acetoxy-2-azido-1-hydroxy-2,3-seco- 5β-androstane-3nitrile (20). The epoxide 19 (100 mg) was dissolved in methyl Cellosolve $: 5 \mathrm{ml}$) containing $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{ml}), \mathrm{NaN}_{3}(150 \mathrm{mg})$, and $\mathrm{NH}_{4} \mathrm{Cl}$ $(8.5 \mathrm{mg})$. The mixture was heated under reflux for 1.5 h . Dilution of the mixture with $\mathrm{H}_{2} \mathrm{O}$ separated crystals (101 mg), which were recrystallized from ether-isopropyl ether to prisms (20): mp 191 ${ }^{\circ} \mathrm{C}$ (sinters at $178{ }^{\circ} \mathrm{C}$); ir (Nujol) $3480(\mathrm{OH}), 2770(\mathrm{C} \equiv \mathrm{N}), 2110$ ($-\mathrm{N}_{3}$), and $1735 \mathrm{~cm}^{-1}$ (acetate).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, $65.26 ; \mathrm{H}, 7.82 ; \mathrm{N}, 14.50$. Found: C, 65.46; H, 7.90; N, 14.49.

1,4-Epoxy-3-azahomo-5 β-androstan-17 β-ol (21). To a solution of the azide $20(20 \mathrm{mg})$ in 2-propanol (1 ml) was added $\mathrm{NaBH}_{4}(10 \mathrm{mg})$ and the mixture was heated at $90^{\circ} \mathrm{C}$ under N_{2} for 16 h . After evaporation of the solvent, the residue was dissolved in 5 ml of water and extracted with CHCl_{3} several times. Evaporation of the extract gave a crystalline mass which showed only one spot on TLC (silica gel, 15\% $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$). Recrystallization from methanol gave prisms [mp $191-193^{\circ} \mathrm{C}$; ir (KBr) $3420(\mathrm{OH}), 3320(\mathrm{NH}), 1115,1060,1015,852$, $834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta \mathrm{CDCl}_{3}$) 0.76 ($3 \mathrm{H}, \mathrm{s}$), $0.86(3, \mathrm{H}, \mathrm{s}), 3.00(3 \mathrm{H}, \mathrm{m})$, $3.66(1 \mathrm{H}, \mathrm{t})$, and $4.19 \mathrm{ppm}(1 \mathrm{H}, \mathrm{q})$], which was identified with an authentic sample sent by Dr. Oka by mixture melting point, TLC, ir, and mass spectra (Figure 1).

Acknowledgment. The author wishes to thank Drs. S.

Hara and K. Oka, Tokyo College of Pharmacy, for the comparison sample.

Registry No.-1, 467-51-6; 4, 17541-44-5; 5, 58673-15-7; 6, 58673-16-8; 7, 58673-17-9; 8, 58673-18-0; 11, 21522-17-8; 12, 58673-19-1; 13, 58673-20-4; 14, 52129-23-4; 15, 58673-21-5; 16, 38623-74-4; 17, 38623-75-5; 18, 38623-76-6; 19, 38623-77-7; 20, 38623-78-8; 21, 25484-32-6.

References and Notes

(1) A part of the preliminary account of this work was published as a communications: Y. Shimizu, Tetrahedron Lett., 2919 (1972).
(2) This work was partly supported by Sea Grant Program, University of Rhode Island.
(3) C. Schopf. Experientia, 17, 285 (1961); E. Wolfel, C. Schopf, G. Weitz, and G. Habermehl, Chem. Ber., 94, 2361 (1961)
(4) S. Hara and K. Oka, J. An. Chem. Soc., 89, 1041 (1967); Tetrahedron Lett., 1987 (1969).
(5) G. Eggart, C. Pascual, and H Wehrli, Helv. Chim Acta, 50, 2362 (1967); H. Franke and R. Partch. J. Med Chem., 9, 643(1966): M. H. Benn and R. Shaw. J. Chem. Soc., Chem Commun., 288 (1973).
(6) J. Schreiber, D. Felix. A. Eschenmoser, M. Winter, F. Gautschi, K. H. Schulte-Elte, E Sundt, G. Ohloff, J. Kalvoda, H. Kaufmann, P. Wieland, and G. Anner, Helv. Chim. Acta, 50, 2101 (1967); M Tanabe, D. F. Crowe, R. L. Dehn, and G. Detre. Tetrahedron Lett., 3739 (1967).
(7) T. A. Foglia and D. Swern, J. Org. Chem., 31, 3625 (1966); 32, 75 (1967).
(8) The participation of the neighboring keto group may be a factor affecting the Markownikoff opening of the aziridine ring.

(9) (a) E. Caspi. Y. Shimizu, and S. N. Balasubrahmayam, Tetrahedron, 20, 1271 (1964): (b) S. Hara and N. Matsumoto. Yukugaku Zasshi, 85, 48 (1965).
(10) R. Huisgen and J. Reinertshofer, Justus Liebigs Ann. Chem., 575, 174, 197 (1952).
(11) S. Hara, K. Oka, and Y. Ike, Chem. Ind. (London), 832 (1967): S Hara and K. Oka, Japanese Patent $712^{\circ} .868$
(12) R. L. Aturey and P. W. Scullard, J. Am. Chem. Soc., 90, 4924 (1968).
(13) R. O. Clinton, R. L. Clarke, R. W. Stonner, A. J. Manson, K. F. Jennings, and D. K. Phillips. J. Org. Chem., 27, 2800 (1962)
(14) Cf. R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A J. Ives, and R. B. Kelly, J. Chem. Soc., 1131 (1957).
(15) This traditional use of tosyl chloride and pyridine was found by Autrey and Scullard to be not so satisfactory. ${ }^{12}$ In this case, however, it gave the best result.
(16) A cyclic mechanism was proposed for the fragmentation reaction by Autrey and Scullard [J Am. Chem. Soc., 90, 4924 (1968)]. However, in view of the fact that compounds having no sulfur atom also undergo the fragmentation. the formation of a stabilized carbonium ion seems to be the promotive factor. See R. K. Hill and D. A. Cullison, J. Am. Chem. Soc., 95, 2923 (1973).
(17) A. V. McIntosh, Jr. E. M. Meinzer, and R. H. Levin, J. Am. Chem. Soc., 70, 2955 (1948); A. V. Mclntosh, Jr., A. M. Searey. E. M. Meinzer, and R. H' Levin, ibid., 71, 3317 (1949).
(18) Owing to the sterical hindrance of the C-11 hydrogens. 19-methyl and α-oriented substituent at the $\mathrm{C}-5$, the conformation of the olefin is in a position similar to that of a Δ^{1} - 5α-steroid, whose epoxidation occurs exclusively from the α sice.
(19) The reduction was also tried by LiAlH_{4} and its various alkoxy derivatives with little success, probably owing to the formation of insoluble complexes.
(20) G. Habermehl and G. Spiteller, Justus Liebigs Ann Chem., 706, 213 (1967).
(21) An analogy is found in the reduction of anhydroajmaline oxime to ajmaline with LiAlH 4 . in which the formation of carbinolamine and Bredt's rule restriction of its dehydrat on to quaternary Schiff base prevents further reduction. F. A. L. Anet, D. Chakravarti, Sir R. Robinson, and E. Schlittler. J. Chem Soc., 1242 (1954)

Clemmensen Reduction of 2-Acetylfluorene. Pathways for the Formation of 2,3-Di(2-fluorenyl)butane and Its Homologues

Masahiro Minabe,* Masaaki Yoshida, ${ }^{\dagger}$ Minoru Fujimoto, ${ }^{\dagger \dagger}$ and Kazuo Suzuki
Department of Industrial Chemistry, Faculty of Engineering, Utsunomiya University, Ishiicho, Utsunomiya 321-31, Japan

Received November 4, 1975

Abstract

The Clemmensen reduction of 2 -acetylfluorene gave not only 2 -ethylfluorene but also 2 -(α-hydroxyethyl)fluorene, 2 -vinylfluorene, cis- and trans-2,3-di(2-fluorenyl)-2-butene, meso- and dl-2,3-di(2-fluorenyl)butane, 2,3-di(2-fluorenyl)-2,3-butanediol, 3,3-di(2-fluorenyl)-2-butanone, and 3,3-di(2-fluorenyl)-2-butanol. The confirmation of these compounds was achieved by established syntheses. The Clemmensen reduction of 2 -acetylfluorene may proceed through the corresponding carbinol, 2 -(α-hydroxyethyl)fluorene, to the normal reduction product, 2-ethylfluorene.

The Clemmensen reduction of 2-acetylfluorene (1) ${ }^{1.2}$ has been reported by Campbell and Wang ${ }^{3}$ to yield only 2 -ethylfluorene (2) ${ }^{4-6}$ in 45% yield.

The present paper deals with the reinvestigation of this reduction and 1 was found to form not only $2(76 \%)$ but also intermediary compounds, 2 -(α-hydroxyethyl)fluorene (3) ${ }^{7}$ and 2 -vinylfluorene (4), ${ }^{6-8}$ and the related dimeric products, namely $2,3-\mathrm{di}(2$-fluorenyl) $-2,3$-butanediol (5), 3,3-di(2 -fluo-renyl)-2-butanone (6), 3,3-di(2-fluorenyl)-2-butanol (7), cis(8a) and trans-2,3-di(2-fluorenyl)-2-butene (8b), and meso(9a) and $d l-2,3-\mathrm{di}(2$-fluorenyl)butane (9b). The structural proof for these compounds was confirmed by authorized syntheses.

Scheme I

8

0
These results suggest, on the grounds of the formation of intermediaries 3 and 4 , that the reduction sequence of 1 may differ somewhat from the conventional concept of the Clemmensen reduction; ${ }^{9}$ generally, the reaction cannot proceed

[^1]through the corresponding carbinol since the carbinol itself is not reduced.

The reduction of 1 gave, in addition to 2 , a pair of cis, trans isomers, 8 a and 8 b , and diastereomers of 9 a and 9 b . The formation of these isomers provides some interesting stereochemical information, because the recent studies of the Clemmensen reduction have rarely observed such abnormal products as these stereoisomers.

Sequence of the Formation of 2-Ethylfluorene (2) by the Clemmensen Reduction of 2-Acetylfluorene (1). The reduction of 1 and its homologues was carried out in xylene using amalgamated zinc and hydrochloric acid according to the method described in Organic Reactions. ${ }^{9}$ These results are summarized in Table I.

At an initial stage of the reduction, 1 yielded $2,3,4,5,6,9 \mathrm{a}$, and 9 b . Carbinol 3 was also reduced to 2 accompanied by small amounts of $9 a$ and $9 b$ as easily as in the case of 1 . The Clemmensen reduction of olefin 4 afforded 2, but the yield of 2 was smaller than that from 1. Additionally, the deuteriocarbinol, 2 -(α-hydroxyethyl)fluorene- $\mathrm{C}_{\alpha}, O-d_{2}$, was converted into 2 ethylfluorene $-C_{\alpha^{-}} d$ and meso- and $d l-2,3-\mathrm{di}(2$-fluorenyl) bu-tane- $C_{2}, C_{3}-d_{2}$ under similar reaction conditions, as Scheme II shows.

These findings are explained by assuming that the carbinol 3 is one of the important intermediates in the Clemmensen reduction of 1 . The sequence of the formation of $2,3,4$, and 9 is presumed as Scheme III. Carbinol 3 may be formed from

9 (B)

Table I. Clemmensen Reductions of 2-Acetylfluorene (1) and Its Homologues

Reactant	Reaction time, h	P-oducts, \%							Recovd, \%
		2	5	6	Ea	8b	9 a	9b	
1^{a}	0.5	55.2	12.2				0.9	0.7	24.3
1	48	76.3		0.5	1.5	1.2	6.1	5.8	
2	48								97.5
$3^{\text {b }}$	48	75.3					4.4	3.6	
$4^{\text {c }}$	48	27.5							35.6
5	48	0.8		30.5	18.5	4.2	1.1	2.3	24.8
$6^{\text {d }}$	30				2.7	5.4			85.0
7	48				0.6	1.3	0.8	0.7	89.5
8 a	48					1.0	1.0		93.4
8 b	48				1.9			3.1	93.1
9 a	48								92.9
9b	48								95.8

${ }^{a}$ Trace amounts of 3,4 , and 6 were confirmed by ir and VPC. ${ }^{b}$ A trace amount of 4 was confirmed by VPC. ${ }^{c}$ Low quantity of 2 may be due to the formation of polymeric products. ${ }^{8 d}$ A trace amount of 7 was confirmed by LPC.

1 through the coordinated ion (A) ${ }^{10}$ and 3 is converted easily via another intermediate ion (B) to 2 and 9 . An experiment using the deuterio compound would negate the equilibrium between A and B. A part of 2 can be obtained from 4 which is produced via β-hydride transfer of B to 1 .

Nakabayashi described, ${ }^{11}$ supporting the concept of Brewster, ${ }^{12}$ that phenyl methyl carbinol and styrene were not intermediates to ethylbenzene by the Clemmensen reduction of acetophenone, because both were not reduced under the similar conditions. On the other hand, fluorenol and its homologues have been reported ${ }^{13}$ to be obtained by the same reduction of the corresponding fluorenones.

The high stability of fluorenol may be due to the steric hindrance of the 1 and 8 positions in fluorenol and the conjugation effects in such a rigid structure, which are much different from those of the mobile structure such as phenyl methyl carbinol. The effects in 3 would be between those of fluorenol and phenyl methyl carbinol. ${ }^{14}$

Dimeric Products by the Clemmensen Reduction of 2-Acetylfluorene (1). The Clemmensen reduction of 1 afforded 5, 6, 7, 8, and 9 as minor products, as shown in Scheme IV.

Pinacol 5 may be formed through the coordinated ion A. There is an equilibrium between A and 5 which lies nearly to 5 , because a small amount of 2 has been confirmed in the reduction of 5 . The pinacol 5 would yield 9,8 , and 6 by reduction, by dehydroxylation, and by pinacol-type transformation with the 2 -fluorenyl migration, respectively. Pinacolone 6 is hydrogenated to alcohol 7; 7 gives 8 and 9 by the WagnerMeerwein (or retropinacol) rearrangement.

The dimeric final product 9 is afforded by reduction of 5 and 8, by the Wagner-Meerwein transformation of 7, and by
coupling of the intermediate ion (B) with ion $\mathrm{Fl}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)$ $\mathrm{OH}_{2}{ }^{+}$and/or with 2-(α-chloroethyl)fluorene ${ }^{15}$ (Scheme III).

Formations and Reactions of the Dimeric Compounds. A pair of diastereomers with $\mathrm{mp} 306-308^{\circ} \mathrm{C}(9 \mathrm{a})$ and with mp $234-235{ }^{\circ} \mathrm{C}(\mathbf{9 b})$ were obtained by the Clemmensen reduction of 1 . Both isomers were also formed by the reactions of 2 (α-Eromoethyl)fluorene (10) with Mg and with LiAlH_{4} and by treatment of 6 with hydriodic acid in acetic acid. Hydrogenations of 8 a and 8 b gave 9 a and 9 b , respectively, by cis addition, analogous to the formation of meso- and $d l$-diphenylbutane. ${ }^{16}$ The chemical shifts of the methine and methyl protons in the NMR spectrum of 9 a are observed at higher fields than those of the isomeric $\mathbf{9 b}$. These findings are consistent with the assignment of 9 a to the meso isomer and 9b to $d l-2,3-d i(2$-fluorenyl)butane, by similar consideration to diphenylbutane isomers. ${ }^{17}$

Compounds of $\mathrm{mp} 144-145^{\circ} \mathrm{C} \operatorname{dec}$ (8a) and of $\mathrm{mp} 287-288$ ${ }^{\circ} \mathrm{C} \operatorname{dec}(8 \mathbf{b})$ were obtained by reduction of 1 with $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in dry tetrahydrofuran (THF). ${ }^{18}$ Maximum absorption in the $u v$ spectrum of $\mathbf{8 b}$ shifts to longer wavelength and the intensity increases compared to $8 \mathbf{a}$. The NMR chemical shift of the methyl groups in $8 \mathbf{b}$ appears at higher field than that of $8 \mathbf{a}$. Photochemical isomerization of $8 \mathbf{a}$ afforded isomeric $\mathbf{8 b}$. From this evidence, the isomers are assigned to be cis- (8a) and trans-2,3-di(2-fluorenyl)-2-butene ($8 \mathbf{b}$), similar to the case of dimethylstilbene, ${ }^{17}$ as shown in Scheme V.

Scheme V

8a

9 a

9b

The oxidation of 8 a with osmic acid afforded 5 which has also been obtained under a short reduction period of 1 (Table I). The pinacol 5 was obtained by the reaction of di(2-fluoren $\quad \mathrm{l})$ glyoxal with MeMgI , by photoreduction of 1 in $\mathrm{Et}_{3} \mathrm{~N}-$ ethanol, and by reductions of 1 with $\mathrm{NaOH}-\mathrm{Zn}$ and with $\mathrm{TiCl}_{4}-\mathrm{Zn} .{ }^{18}$ Further, 5 gave 1 by $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation.

The corresponding pinacolone 6 was given by the reaction of 5 with polyphosphoric acid or $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acetic acid. The oxidation of 6 yielded 3,3-di(2-fluorenoyl)-2-butanone, di(2flucrenoyl) ketone, ${ }^{20}$ and fluorenone-2-carboxylic acid. ${ }^{21}$ Corsequently, the pnacolone 6 is established as the compound formed by the migration of the 2-fluorenyl group in 5 ; the isomer due to methyl group migration is shown to be absent in these experiments.

The hydrogenation of 6 afforded 7 , which gave, of course, $\mathbf{9 a}$ and $\mathbf{9 b}$ by reaction with hydriodic acid.

Experimental Section

All the melting points are uncorrected.
The ir spectra were recorded on a IR-G spectrophotometer (Japan Spectroscopic Co., Ltd.), as KBr pellets. The LPC data were obtained on a FLC-150 liquid-phase chromatograph (Jasco) attached a column JASCOSIL WC-01, using a $1: 1$ mixture of methylene chloride and isooctane as carrier. The measurements of uv spectra were run with a ORD/UV-5 optical rotatory dispersion recorder (Jasco) at scanning speed of $1.8 \mathrm{~s} / \mathrm{nm}$ in isooctane.

The NMR spectra were obtained with a JNM-C60HL spectrometer (Japan Electron Optics Laboratory Co., Ltd.), using Me $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference. The VPC analyses were run with a JGC-1100FP gas chromatograph (JEOL), using a $1-\mathrm{m}$ column containing 10% Silicone SE-30 on Chromosorb WAW ($80-100$ mesh) for dimeric products or a $20-\mathrm{cm}$ column containing 10% PEGA on Diasolid M (80-100 mesh) for monomeric compounds. The mass spectra were measured with a RMU-6E apparatus (Hitachi, Ltd.) by means of a direct inlet system.
Clemmensen Reduction of 2-Acetylfluorene (1) and Its Homologues. General Procedure. Amalgamated zinc was prepared just before its use according to the procedure of Martin ${ }^{9}$ from 10 g of zinc turnings, 14 ml of 10% aqueous mercuric chloride, and 1 ml of concentrated hydrochloric acid.
A solution of 0.01 mol of reactant and 200 ml of xylene was refluxed with the foregoing amalgamated zinc and 20 ml of 6 N hydrochloric acid. A $5-\mathrm{ml}$ portion of concentrated hydrochloric acid was added every 6 h during the heating period.
After the mixture was allowed to cool to room temperature, the solution was decanted from any unchanged amalgam, and the residue was washed with a small amount of xylene. The washings and the reaction solutions were combined, and the organic layer was separated from the aqueous layer, washed with water until neutral, dried over calcium chloride (a trace part of it was analyzed by means of VPC and LPC), and evaporated to dryness.
The residue after evaporation was separated and purified by combination of vacuum sublimation, alumina-column chromatography, and recrystallization.
Clemmensen Reduction of 2-(α-Hydroxyethyl)fluorene$\boldsymbol{C}_{a}, \mathbf{O}-\boldsymbol{d}_{2}$. Deuteriocarbinol (100 mg) obtained by LiAlD_{4} reduction of 1 was treated in the manner described above to give 2 - $(\alpha$-deuterioethyl)fluorene (66%) and trace amounts of meso- and dl-2,3-di-deuterio-2,3-di(2-fluorenyl)butane.
2-Acetylfluorene (1) was synthesized by a method similar to that of Bachmann and Sheehan: ${ }^{1}$ yield 92%; mp 131-132 ${ }^{\circ} \mathrm{C}$ (recrystallized from ethanol); ir $\left(\nu_{\mathrm{C}}=0\right) 1672 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 2.50\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 3.77$ ($\mathrm{s},>\mathrm{CH}_{2}$), and $7.12-7.91 \mathrm{ppm}$ (m , aromatic H).
The alcoholic mother liquor gave 2,7-diacetylfluorene: ${ }^{22}$ yield 1\%; $\mathrm{mp} 179.5-180^{\circ} \mathrm{C}$; ir ($\left.\nu \mathrm{C}=0\right) 1672$ and $1662 \mathrm{~cm}^{-1}$; mass spectrum m/e $250\left(\mathrm{M}^{+}\right), 235,207,192$, and 165 ; NMR (benzene- d_{6}) $\delta 2.23\left(\mathrm{~s}, 2-\mathrm{CH}_{3}\right)$, 3.34 ($\mathrm{s},>\mathrm{CH}_{2}$), and 7.12-7.90 ppm (m, aromatic H).

2-(α-Hydroxyethyl)fluorene (3). ${ }^{7}$ The foregoing $1(25 \mathrm{~g}$) was hydrogenated in benzene (500 ml) using Raney nickel ($\mathrm{W}-7,30 \mathrm{~g}$) as a catalyst at room temperature: yield 94%; mp $140-141^{\circ} \mathrm{C}$ (from cyclohexane); ir (ν_{OH}) $3320 \mathrm{~cm} .^{-1}$
The same carbinol was also obtained by reduction of $1(5 \mathrm{~g})$ with sodium amalgam (50 g) in ethanol (500 ml), yield $4.4 \mathrm{~g}(88 \%)$.
2-Vinylfluorene (4). A. A finely powdered mixture of 13.9 g of 3 , 3.0 g of KHSO_{4}, and 1.5 g of copper powder was sublimed in vacuo at $180-190^{\circ} \mathrm{C}$, according to the method of Berkovic: ${ }^{23}$ yield $5.7 \mathrm{~g}(45 \%)$; mp 137-139 ${ }^{\circ} \mathrm{C}$; mass spectrum $m / e 192\left(\mathrm{M}^{+}\right)$and 165 ; $\mathrm{NMR}^{8}\left(\mathrm{CCl}_{4}\right)$ $\delta 3.64\left(\mathrm{~s},>\mathrm{CH}_{2}\right), 5.12(\mathrm{~d}$, trans $-\mathrm{Fl}-\mathrm{C}=\mathrm{CH}$), $5.61(\mathrm{~d}$, cis $-\mathrm{Fl}-\mathrm{C}=\mathrm{CH})$, 6.63 ($\mathrm{q} . \mathrm{F} \mid \mathrm{HC}=$), and $7.00-7.60 \mathrm{ppm}$ (m , aromatic H).
B. A $2.7-\mathrm{g}$ portion of 10 in 40 ml of freshly distilled N, N-dimethylformamide was refluxed with 1.3 g of KCN and 1.79 g of CuCN for 24 h , yield 74\%.
2-(α-Bromoethyl)fluorene (10). Alcohol $3(6.3 \mathrm{~g}$) was treated with dry HBr in acetic acid (180 ml) at $20^{\circ} \mathrm{C}$. The deposited material was filtered, washed with water, dried, and recrystallized from hexane to give 10: yield $6.2 \mathrm{~g}(76 \%)$; $\mathrm{mp} 99-100^{\circ} \mathrm{C}$ dec; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.98(\mathrm{~d}$, $-\mathrm{CH}_{3}$), $3.64\left(\mathrm{~s},>\mathrm{CH}_{2}\right), 5.13(\mathrm{q},>\mathrm{CH}-$), and $7.09-7.64 \mathrm{ppm}(\mathrm{m}$, aromatic H).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}$: $\mathrm{C}, 65.95 ; \mathrm{H}, 4.80$. Found: $\mathrm{C}, 66.12 ; \mathrm{H}, 4.84$.
meso-and dl-2,3-Di(2-fluorenyl) butane (9). A. Grignard Reaction of 10 . A solution of bromide $10(5.46 \mathrm{~g})$ in 120 ml of THF was added dropwise for 20 min into 80 ml of THF containing magnesium $(2.2 \mathrm{~g})$, and the mixture was refluxed for 2 h . The resulting solution was evaporated to dryness and decomposed with dilute hydrochloric
acid. The precipitate was sublimed in vacuo at $100^{\circ} \mathrm{C}$ to afford 0.50 $\mathrm{g}(13 \%)$ of $2, \mathrm{mp} 99-100^{\circ}$. The unsublimable part was recrystallized from pyridine to give $1.28 \mathrm{~g}(33 \%)$ of $9 \mathrm{a}, \mathrm{mp} 306-308^{\circ} \mathrm{C}$, and 0.60 g (16%) of $9 \mathrm{~b}, \mathrm{mp} 234-235^{\circ} \mathrm{C}$.
Mass spectrum of $9 \mathbf{a} \mathrm{~m} / \mathrm{e} 386\left(\mathrm{M}^{+}\right), 369,205,193$ (base peak), 178, and 165; NMR (pyridine- d_{5}) $\delta 1.18\left(\mathrm{~d}, 2-\mathrm{CH}_{3}, J=6 \mathrm{~Hz}\right), 2.98 \mathrm{im}^{24}$ $2>\mathrm{CH}-$), 3.88 (s, $2>\mathrm{CH}_{2}$), and $7.12-7.98 \mathrm{ppm}$ (m , aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26}$: C, 93.22 : $\mathrm{H}, 6.78$. Found: $\mathrm{C}, 93.27 ; \mathrm{H}, 6.53$.
Mass spectrum of $9 \mathrm{~b} m / \mathrm{m} 386\left(\mathrm{M}^{+}\right), 352,193$ (base peak), 178, and 165 ; NMR (pyridine- d_{5}) $\delta 1.35\left(\mathrm{~d}, 2-\mathrm{CH}_{3}\right), 3.09\left(\mathrm{~m}{ }^{24} 2>\mathrm{CH}-\right.$), 3.71 ($\mathrm{s}, 2>\mathrm{CH}_{2}$), and $7.21-7.98 \mathrm{ppm}$ (m, aromatic H). Anal. Found: C, 93.04; H, 6.90
B. Reduction of 10 with LiAlH_{4}. Lithium aluminum hydride (0.57 g) suspended in THF (150 ml) was added to a solution of $10(5.46 \mathrm{~g})$ in THF (100 ml), and the resulting solution was refluxed for $9 \mathrm{~h} ; 0.62$ $\mathrm{g}(16 \%)$ of $9 \mathbf{a}, 0.93 \mathrm{~g}(24 \%)$ of 9 b , and $0.71 \mathrm{~g}(18 \%)$ of 2 were isolated.
C. Rearrangement of 6 . A mixture of $6(2.0 \mathrm{~g})$, hydriodic acid (1.5 $\mathrm{ml})$, and red phosphorus (1.0 g) in acetic acid (50 ml) was heated for 24 h to give $9 \mathrm{a}(0.89 \mathrm{~g}, 46 \%), 9 \mathrm{~b}(0.21 \mathrm{~g}, 11 \%)$, and $6(0.26 \mathrm{~g}, 13 \%)$. In addition, a trace amount of 7 was confirmed by means of LPC.
2,3-Di(2-fluorenyl)-2,3-butanediol (5). A. Reduction of 1 with $\mathrm{Zn}-\mathrm{NaOH}$. A mixture of $1(10.4 \mathrm{~g})$, ethanol (300 ml), zinc dust (30 g), water (9 ml), and $\mathrm{NaOH}(20 \mathrm{~g})$ was refluxed for 7 h . The reaction mixture was poured into 2000 ml of water and the organic precipitate was recrystallized from pyridine to afford $5.4 \mathrm{~g}(52 \%)$ of $5: \mathrm{mp} 278-279$ ${ }^{\circ} \mathrm{C}$ dec (picrate $\mathrm{mp} 163-164{ }^{\circ} \mathrm{C} \mathrm{dec}$); ir ($\left.\nu_{\mathrm{OH}}\right) 3550 \mathrm{~cm}^{-1}$; mass spectrum $m / e 418\left(\mathrm{M}^{+}\right), 384,369,357$ (base peak), 208, 193, and 165; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 1.41\left(\mathrm{~s}, 2-\mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 2>\mathrm{CH}_{2}\right), 4.85(\mathrm{~s}, 2-\mathrm{OH})$, and $7.07-8.55 \mathrm{ppm}$ (m , aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 86.09$; H, 6.26. Found: C, 86.34; H, 6.26 .
Complex with 2,4,7-trinitrofluorenone, mp 224-226 ${ }^{\circ} \mathrm{C} \mathrm{dec}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2} \cdot 2\left(\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{~N}_{3}\right)$: $\mathrm{C}, 64.12 ; \mathrm{H}, 3.46 ; \mathrm{N}, 8.01$. Found: C, 63.83; H, 3.49; N, 8.03.
A mixture of $1(3.5 \mathrm{~g})$, zinc dust $(10 \mathrm{~g}), \mathrm{NH}_{4} \mathrm{Cl}(0.7 \mathrm{~g})$, and water (12 ml) in ethanol (100 ml) was treated in a manner similar to that described above to give $5(2.2 \mathrm{~g}, 61 \%)$.
B. Reduction of 1 with $\mathrm{TiCl}_{\mathbf{4}}-\mathbf{Z n}$. Ketone $1(2.1 \mathrm{~g})$ was reduced according to the direction of Mukaiyama et al., ${ }^{18}$ and gave $5(1.6 \mathrm{~g}$, 78\%).
C. Photoreduction of 1 in $\mathrm{Et}_{3} \mathrm{~N}$-Ethanol. Ketone 1 (6.3 g) in a mixture of ethanol (300 ml) and $\mathrm{Et}_{3} \mathrm{~N}(54 \mathrm{ml})$ was irradiated using a $100-\mathrm{W}$ high-pressure mercury lamp at $53^{\circ} \mathrm{C}$ for 2 h in an atmosphere of nitrogen according to the method of Davidson et al.; 254.1 g (65\%) of 5 was obtained.
D. Reaction of MeMgI with $\mathbf{D i}(2$-fluorenyl)glyoxal. MeMgI (prepared from 0.25 g of Mg and 1.42 g of MeI in dry ether) was allowed to react with di(2 -fluorenyl)glyoxal (300 mg) in dry benzene $(60 \mathrm{ml})$ to yield pinacol $5(233 \mathrm{mg}, 72 \%)$.
E. Oxidation of $8 \mathbf{a}$ with Osmic Acid. A mixture of $8 \mathbf{a}(384 \mathrm{mg})$, $\mathrm{OsO}_{4}(300 \mathrm{mg})$, pyridine (0.4 ml), and ether (50 ml) was left for 45 h at room temperature under an inert atmosphere, evaporated to dryness, and chromatographed in benzene on alumina. The black adsorption band on the column was extracted with pyridine. The filtrate was treated with aqueous sodium sulfite to give 0.15 g (36%) of 5 .
Reaction of 5 with $\mathrm{Pb}(\mathbf{O A c})_{4}$. A solution of $5(0.88 \mathrm{~g})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}(1.2 \mathrm{~g})$ in absolute acetic acid $(200 \mathrm{ml})$ was stirred at $29^{\circ} \mathrm{C}$ for $3.5 \mathrm{~h} ; 0.71 \mathrm{~g}(86 \%)$ of 1 and $0.07 \mathrm{~g}(8 \%)$ of 5 were obtained.
3,3-Di(2-fluorenyl)-2-butanone (6). A $100-\mathrm{ml}$ portion of acetic acid containing 0.53 g of 5 and 1.3 g of polyphosphoric acid was refluxed for 6 h . After cooling, the reaction mixture was poured into 500 ml of water and the precipitate was purified by means of aluminacolumn chromatography in benzene and recrystallization from ethanol to afford $0.43 \mathrm{~g}(86 \%)$ of $6: \mathrm{mp} 156-157^{\circ} \mathrm{C}$ dec; ir ($\nu \mathrm{C}=0$) $1705 \mathrm{~cm}^{-1}$; mass spectrum $m / e 400\left(\mathrm{M}^{+}\right), 357,342,191,178,165$, and 43 ; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.00\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s},-\mathrm{COCH}_{3}\right), 3.87\left(\mathrm{~s}, 2>\mathrm{CH}_{2}\right)$, and 7.08-7.90 ppm (m, aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 89.96$; H, 6.04. Found; C, $90.25 ;$ H, 5.89 .
The residue of the filtration of the hot ethanolic solution gave 2,3-di(2-fluorenyl)-1,3-butadiene in 1.5% yield: $\mathrm{mp} 272-274{ }^{\circ} \mathrm{C}$; mass spectrum $m / e ~ 382\left(\mathrm{M}^{+}\right), 368,352,191$, and 165 . Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{22}$: $\mathrm{C}, 94.20 ; \mathrm{H}, 5.80$. Found: $\mathrm{C}, 94.31 ; \mathrm{H}, 5.74$.
Oxidation of $3,3-\mathrm{Di}(2$-fluorenyl)-2-butanone (6). A mixture of $6(1.0 \mathrm{~g})$ and $\mathrm{KMnO}_{4}(11 \mathrm{~g})$ in acetone (70 ml) was refluxed for 2 h to yield $1.04 \mathrm{~g}(97 \%)$ of 3,3 -di(2-fluorenoyl)-2-butanone: mp 195 - $196{ }^{\circ} \mathrm{C}$; ir ($\nu \mathrm{C}=0$) 1717 and $1705 \mathrm{~cm}^{-1}$; mass spectrum $\mathrm{m} / \mathrm{e} 428\left(\mathrm{M}^{+}\right), 385,370$, and 179; NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$) $\delta 2.05\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s},-\mathrm{COCH}_{3}\right)$, and 7.20-7.75 ppm (m, aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 84.09$; H, 4.70. Found: C, 84.20; H, 4.69.
A solution of $6(2.0 \mathrm{~g})$, sodium dichromate (20 g), a few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$, and acetic acid (60 ml) was refluxed for $3.5 \mathrm{~h} ; 0.68 \mathrm{~g}(35 \%)$ of
di(2-fluorenoyl) ketone, ${ }^{20} \mathrm{mp} 298-299^{\circ} \mathrm{C}, 0.13 \mathrm{~g}(6 \%)$ of 3,3-di(2-fluorenoyl)-2-butanone, $\mathrm{mp} 195-196^{\circ} \mathrm{C}$, and $0.05 \mathrm{~g}(2 \%)$ of fluo-renone-2-carboxylic acid, ${ }^{21} \mathrm{mp} 338^{\circ} \mathrm{C}$ dec, were separated.

3,3-Di(2-fluorenyl)-2-butanol (7). Butanone 6 (15.3 g) in benzene $(250 \mathrm{ml})$ was hydrogenated under an atmospheric pressure of hydrogen using Raney nickel catalyst ($\mathrm{W}-7,15 \mathrm{~g}$) at room temperature. The reaction mixture was filtered, the filtrate was evaporated to dryness, the residue was recrystallized from cyclohexane, and the crystal was dried in vacuo at $95-105^{\circ} \mathrm{C}$ for 10 h to afford $13.5 \mathrm{~g}(88 \%)$ of 7: mp 134-135 ${ }^{\circ} \mathrm{C} \mathrm{dec}$; ir (ν_{OH}) $3570 \mathrm{~cm}^{-1}$: mass spectrum m/e 402 $\left(\mathrm{M}^{+}\right), 384,357,341$, and 165 ; NMR (pyridine-d $\left.{ }_{5}\right) \delta 1.35\left(\mathrm{~d},-\mathrm{CH}_{3}\right), 1.98$ (s, $-\mathrm{CH}_{3}$), $3.75\left(\mathrm{~s}, 2>\mathrm{CH}_{2}\right), 5.04$ (quintet. $>\mathrm{CH}-$), $6.05(\mathrm{~d},-\mathrm{OH})$, and 7.13-7.92 ppm (m. aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 89.51$; H. 6.51. Found: C, 89.31; H, 6.41.
cis- and trans-2,3-Di(2-fluorenyl)-2-butene (8). A. Reduction of 1 with $\mathrm{TiCl}_{\mathbf{4}}-\mathbf{Z n}$. Ketone $1(2.1 \mathrm{~g})$ was reduced with $\mathrm{TiCl}_{4}(2.8 \mathrm{~g})$ and zinc (2.0 g) in THF (100 ml); ${ }^{18} 1.48 \mathrm{~g}(76 \%)$ of $8 \mathrm{a}, \mathrm{mp} \mathrm{144-145}{ }^{\circ} \mathrm{C}$ dec (from ethanol), and $0.28 \mathrm{~g}(15 \%)$ of $8 \mathbf{b}, \mathrm{mp} 287-288^{\circ} \mathrm{C} \mathrm{dec} \mathrm{(from}$ pyridine), were obtained.

Mass spectrum of $8 \mathbf{a}: m / e 384\left(\mathrm{M}^{+}\right.$. base peak), 369, 354, 218, 203, 193, 191, 179, and 165; NMR (pyridine- d_{5}) $\delta 2.23$ (s, $2-\mathrm{CH}_{3}$), 3.62 (s, $2>\mathrm{CH}_{2}$), and $7.02-7.79 \mathrm{ppm}\left(\mathrm{m}\right.$, aromatic H); uv $\lambda_{\text {max }} 271 \mathrm{~nm}$ (log ϵ 4.658). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24}: \mathrm{C}, 93.71 ; \mathrm{H}, 6.29$. Found: $\mathrm{C}, 93.89 ; \mathrm{H}$, 6.19.

Mass spectrum of $\mathbf{8 b}$: $m / e 384\left(\mathrm{M}^{+}\right), 369,354,192$, and 165 ; NMR (pyridine- d_{5}) $\delta 2.11\left(\mathrm{~s}, 2-\mathrm{CH}_{3}\right), 3.93\left(\mathrm{~s}, 2>\mathrm{CH}_{2}\right)$, and $7.07-8.02 \mathrm{ppm}$ (m. aromatic H); uv $\lambda_{\text {max }} 278 \mathrm{~nm}(\log \epsilon 4.671)$. Anal. Found: C, 93.84; H, 5.99.
B. Reaction of 7 with $\mathbf{H}_{2} \mathbf{S O}_{4}$. Carbinol $7(3.2 \mathrm{~g})$ in benzene (25 ml) containing a few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was refluxed for 1 h to afford $\mathbf{8 b}$ (2.22 g, 73%).

Hydrogenation of 2,3-Di(2-fluorenyl)-2-butene (8). Cis butene $8 \mathbf{a}(100 \mathrm{mg})$ in benzene (100 ml) was stirred with Raney nickel (W-4, $10 \mathrm{~g})$ at $50^{\circ} \mathrm{C}$ for 3 h to give $87.4 \mathrm{mg}(87 \%)$ of 9 a .

Trans isomer $8 \mathbf{b}(500 \mathrm{mg}$) was treated with Raney nickel (25 g) in the manner described above to yield 9 b ($196 \mathrm{mg}, 39 \%$) and recovery of $\mathbf{8 b}$ ($166 \mathrm{mg}, 33 \%$).

Photoisomerization of cis-2,3-Di(2-fluorenyl)-2-butene (8a). Cis butene 8a (226 mg) in benzene (100 ml) was irradiated using a $100-$ W high-pressure mercury lamp for $18 \mathrm{~h} ; 169 \mathrm{mg}(75 \%)$ of 8 b was isolated.

Oxidation of trans-2,3-Di(2-fluorenyl)-2-butene (8b). A suspension of $8 \mathbf{b}(384 \mathrm{mg})$ in acetone (20 ml) was refluxed with KMnO_{4} $(1.4 \mathrm{~g})$ for 30 h . The reaction mixture was worked up as usual to give 2-acetylfluorenone ${ }^{26}$ ($186 \mathrm{mg}, 41 \%$), mp $160-161.5^{\circ} \mathrm{C}, 2$-(2-fluo-renoyl)-3-(2-fluorenyl)-2-batene ($9.5 \mathrm{mg}, 2 \%$), $\mathrm{mp} 244-245{ }^{\circ} \mathrm{C}, 2,3$ -di(2-fluorenoyl)-2-butene ($14 \mathrm{mg}, 4 \%$), mp $280-281^{\circ} \mathrm{C}$. and recovery ($113 \mathrm{mg}, 30 \%$) of $\mathbf{8 b}$.

Ir of 2-(2-fluorenoyl)-3-(2-fluorenyl)-2-butene ($1 \mathrm{C}=0$) $1706 \mathrm{~cm}^{-1}$; NMR (benzene- d_{6}) $\delta 1.90\left(\mathrm{~s}, 2-\mathrm{CH}_{3}\right), 3.52\left(\mathrm{~s},>\mathrm{CH}_{2}\right)$, and 6.96-7.74 ppm (m, aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 90.42 ; \mathrm{H}, 5.57$. Found: C, 90.27; H, 5.82.

Ir of 2,3-di(2-fluorenoyl)-2-butene ($\nu_{\mathrm{C}}=0$) $1710 \mathrm{~cm}^{-1}$; NMR (benzene $-d_{6}$) $\delta 1.70\left(\mathrm{~s}, 2-\mathrm{CH}_{3}\right)$ and $7.01-7.62 \mathrm{ppm}$ (m, aromatic H). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 87.35; $\mathrm{H}, 4.89$. Found: C, 87.56; H, 4.91.

Friedel-Crafts Reaction of Fluorene with Oxalyl Chloride. A 1.5-g portion of oxalyl chloride was added dropwise to a mixture of fluorene (3.32 g) and $\mathrm{AlCl}_{3}(2.0 \mathrm{~g})$ in carbon disulfide (40 ml). and the resulting mixture was refluxed for 1 h .

Upon treatment in an usual manner, the reaction mixture was evaporated to dryness and chromatographed in benzene-ethanol (9:1) on alumina; di(2-fluorenyl)glyoxal $(0.47 \mathrm{~g}, 12 \%), \mathrm{mp} 262.5-263^{\circ} \mathrm{C}$, $\mathrm{di}\left(2\right.$-fluorenyl) ketone $(0.57 \mathrm{~g}, 16 \%), \mathrm{mp} 281-281.5^{\circ} \mathrm{C}$, and ethyl flu-orene-2-carboxylate $(0.47 \mathrm{~g}, 10 \%), \mathrm{mp} 86-87^{\circ} \mathrm{C}$, were isolated.

Ir of di(2-fluorenyl)glyoxal ($\nu \mathrm{C}=0$) $1653 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 87.02; $\mathrm{H}, 4.69$. Found: C, $87.04 ; \mathrm{H}, 4.42$.
Ir of di(2-fluorenyl) ketone ($\nu \mathrm{C}=0$) $1642 \mathrm{~cm}^{-1}$; mass spectrum m / e 358 (M^{+}), 193, and 165. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 90.47$; $\mathrm{H}, 5.0 €$. Found: C, 90.52; H, 5.07.
Ir of ethyl fluorene-2-carboxylate ($\nu_{\mathrm{C}}=0$) $1692 \mathrm{~cm}^{-1}$; mass spectrum $m / e 238\left(\mathrm{M}^{+}\right), 223,210,209,193$, and 165; NMR (CCl_{4}) $\delta 1.40(\mathrm{t}$, $\left.-\mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s},>\mathrm{CH}_{2}\right), 4.32\left(\mathrm{q},-\mathrm{CH}_{2}\right.$), and $7.16-8.10 \mathrm{ppm}$ (m, aromatic H). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 80.64; $\mathrm{H}, 5.92$. Found: $\mathrm{C}, 80.3<$; H. 5.94.

Di(2-fluorenyl) Ketone. The Friedel-Crafts reaction of fluorene $(3.2 \mathrm{~g})$ with fluorene-2-carbonyl chloride (4.3 g) using $\mathrm{AlCl}_{3}(6.5 \mathrm{~g})$ in carbon disulfide (80 ml) afforded di(2-fluorenyl) ketone, yield 6.4 J (97\%), mp 281-281.5 ${ }^{\circ} \mathrm{C}$.
Oxidation of the ketone with KMnO_{4} gave di(2-fluorenoyl) ketone ${ }^{20}$ (88%), mp 298-299 ${ }^{\circ} \mathrm{C}$, mass spectrum m/e 386 (M^{+}).

Registry No.-1, 781-73-7; 2, 1207-20-1; 3, 20371-86-2; 4, 10473-10-6; 5, 58473-47-5; 5 complex with 2,4,7-trinitrofluorenone, 58473-48-6; 6, 58473-49-7; 7, 58473-50-0; 8a, 58473-51-1; 8b, 58473-52-2; 9a, 58473-53-3; 9b, 58473-54-4; 10, 42914-77-2; 2,7-diacetylfluorene, 961-27-3; 2,3-di(2-fluorenyl)-1,3-butadiene, 58473-55-5; 3,3-di(2-fluorenoyl)-2-butanone, 58473-56-6; di(2-fluorenyl) ketone, 5534:-69-0; fluorenone-2-carboxylic acid, 784-50-9; 2-acetylfluorenone, 42136-05-0; 2-(2-fluorenoyl)-3-(2-fluorenyl)-2-butene, 58473-57-7; 2,3-di(2-fluorenoyl)-2-butene, 58473-58-8; di(2-fluorenyl)glyoxal, 58473-59-9; di(2-fluorenyl) ketone, 55341-67-8; ethyl fluorene-2carboxylate, 58473-60-2.

References and Notes

(1) W. E. Bachmann and I. C. Sheehan, J. Am. Chem. Soc., 62, 2687 (1940).
(2) E. F. Ray and G. Rieveschl, Jr., "Organic Syntheses", Collect. Vol. III, Wiley, New York, N.Y., 1955, p 23.
(3) N. Campbell and H. Wang, J. Chem. Soc., 1513 (1949).
(4) E. Sawicki, J. Am. Chem. Soc., 76, 2269 (1954).
(5) J. D. Dickinson and C. Eaborn, J. Chem. Soc., 2337 (1959).
(6) J. F. Cairns and W. J. Hickinbottom, J. Chem. Soc., 867 (1962).
(7) D. T. Mowry, M. Renoll, and W. F. Huber, J. Am. Chem. Soc., 68, 11C5 (1946).
(8) J. F. Yanus and J. M. Pearson, Macromolecules, 7, 716 (1974).
(9) E. L. Martin, Org. React., 1, 155 (1942).
(10) T. Nakabayashi, J. Am. Chem. Soc., 82, 3900 (1960).
(11) T. Nakabayashi, J. Am. Chem. Soc., 82, 3906, 3909 (1960).
(12) J. H. Brewster, J. Am. Chem. Soc., 76, 6361, 6364, 6368 (1954).
(13) A. S. Harris, E. N. White, and D. McNeil, J. Chem. Soc., 4216 (1955); K. Suzuki, Bull. Chem. Soc. Jpn., 35, 735 (1962); K. Suzuki, T. Maeda, N. Nawa, and Y. Soda, ibid., 35, 1299 (1962); K. Suzuki, M. Fujimoto, M. Murakami, and M. Minabe, ibid., 40, 1259 (1967).
(14) M. Poutsma and F. Wolthuis, J. Org. Chem., 24, 875 (1959).
(15) 2-(α-Chloroethyl)fluorene may be formed in the Clemmensen reducticn (see ref 14) and 9 is obtained by the coupling reaction of the chloride ard B. However, the presence of the chloride could not be established.
(16) F. von Wessely and H. Welleba, Ber., 74, 777 (1941).
(17) A. A. Bothner-By and C. Naar-Colin, J. Am. Chem. Soc., 84, 743 (1962).
(18) T. Mukaiyama, T. Sato, and J. Hanna, Chem. Lett., 1041 (1973).
(19) N. Inamoto, S. Masuda, Y. Nagai, and O. Simamura, J. Chem. Soc., 1433 (1963).
(20) K. Dziewonski and M. Panek, Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Mati. Nat., Ser. A, 745 (1927); Cnem. Abstr., 23, 3888 (1928).
(21) F. E. Ray and G. Rieveschl, J. Am. Chem. Soc., 65, 836 (1943).
(22) N. Ishikawa and T. Ozawa, J. Synth. Org. Chem. Jpn., 17, 553 (1959).
(23) S. Berkovic, Isr. J. Chem., 1, 1 (1963).
(24) Since these compounds were slightly soluble in most organic solvents, the spin pattern of these methine protons could not be clarified.
(25) R. S. Davidson, P. F. Lambath, and F. A. Younis, J. Chem. Soc. C, 2203 (1969).
(26) T. Sulzberg and R. J. Sotter, J. Org. Chem., 35, 2762 (1970)

New and Effective Reagents for 1,4 Reduction of α, β-Unsaturated Ketones, LiAlH_{4} - CuI and Its Reactive Species $\mathrm{H}_{2} \mathrm{AlI}$

E. C. Ashby,* J. J. Lin, and R. Kovar

School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
Received August 26, 1975

Abstract

Conjugate reduction of six enones by the new reagent $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ has been studied. The optimum conditions for conjugate reduction depend on the ratio of $\mathrm{LiAlH}_{4}: \mathrm{CuI}:$ enone, temperature, solvent, and reaction time involving contact of LiAlH_{4} and CuI before the enone is added. Enone I can be reduced in quantitative yield and 100% regioselectivity in 1 h or less when the ratio of $\mathrm{LiAlH}_{4}: \mathrm{CuI}$:enone is $1: 4: 1$, the solvent is THF , and the temperature is $0^{\circ} \mathrm{C}$. The enones II-VI also can be reduced in high yield and 100% regioselectivity. Reduction of enones I and III with $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ proceeds with 100% regioselectivity; however, the yields are lower (66 and 34%, respectively) compared to the results obtained with the $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ reagent. The reagent $\mathrm{LiAlH}_{4}-\mathrm{FeCl}_{3}$ was found to be ineffective for conjugate reduction. The new reagents $\left(\mathrm{LiAlH}_{4}-\mathrm{CuI}\right.$ and $\left.\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}\right)$ show different stereoselectivity than LiAlH_{4} toward 4-tert-butylcyclohexanone and 3,3,5-trimethylcyclohexanone. Compared with $\mathrm{LiAlH}_{4}-\mathrm{CuI}$. related reagents $\left(\mathrm{LiAlH}_{4}-\mathrm{CuCl}, \mathrm{LiAlH}_{4}-\mathrm{HgI}_{2}\right.$, and $\mathrm{LiAlH}_{4}-\mathrm{HgCl}_{2}$) show less regioselectivity in enone reduction; however, the reagent $\mathrm{AlH}_{3}-\mathrm{CuI}$ is as effective in conjugate reduction as $\mathrm{LiAlH}_{4}-\mathrm{CuI} . \mathrm{H}_{2} \mathrm{AlI}$ has been found to be the reactive species of the reagents $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ and $\mathrm{AlH}_{3}-\mathrm{CuI}$. The compounds $\mathrm{H}_{2} \mathrm{AlX}$ and $\mathrm{HAlX} \mathrm{X}_{2}$ where $\mathrm{X}=\mathrm{I}$, Br , and Cl were synthesized independently and were evaluated as conjugate reducing agents.

Catalytic hydrogenation ${ }^{1}\left(\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}\right)$ and dissolving metal reduction ${ }^{2}$ (Na -aqueous NH_{3}) are the most common methods for effecting conjugate reduction of enones. The shortcomings of these methods are mainly inconvenience and in many cases low yields. Recently, LiCuRH^{3} and $\mathrm{KB}(\text { sec- }-\mathrm{Bu})_{3} \mathrm{H}^{4}$ have been reported as effective reagents for conjugate reduction of enones. However, in the former case the reagent is quite difficult to prepare whereas in the latter case only 1,2 reduction is observed when β substituents are present in the enone. A method of accomplishing conjugate reduction of α, β-unsaturated carbonyl compounds by the use of an easily prepared reagent would indeed be very useful.

It is well known that LiAlH_{4} favors 1,2 reduction of enones. ${ }^{5}$ On the other hand, the reactivity of LiAlH_{4} can be substantially modified by the addition of metal salts. In this connection $\mathrm{LiAlH}_{4}-\mathrm{AlCl}_{3}{ }^{6}$ has found unusual applicability in epoxide reductions, $\mathrm{LiAl}\left(\mathrm{OCH}_{3}\right)_{3} \mathrm{H}-\mathrm{CuI}^{7}$ can effect reductive removal of halo and mesyloxy groups, and $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}{ }^{8}$ has been found to be an excellent coupling reagent. Since LiAlH_{4} is commercially available and convenient to handle as a standardized solution in ether or THF, its ability, in admixture with certain metal halides e.g., $\mathrm{CuI}, \mathrm{CuBr}, \mathrm{CuCl}$, $\mathrm{TiCl}_{3}, \mathrm{HgI}_{2}, \mathrm{HgCl}_{2}$, and FeCl_{3}, to effect conjugate reduction of enones was studied.

Results and Discussion

The enone 2,2,6,6-tetramethyl-trans-4-hepten-3-one (enone I) was chosen as a representative enone for this study (eq 1). Reaction products were identified by NMR and compared with authentic samples. Yields were determined by GLC using an internal standard.

(1.4 reduction product)
(1,2 reduction product)
The effect of $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ on enone I has been studied in detail and the results are shown in Table I. Since LiAlH_{4} (runs 1 and 2) and $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ (catalytic amount of CuI , run 3) give
mostly 1,2 reduction, the 1,4 reduction product is assumed to arise from a species other than LiAlH_{4}. We have studied a wide variety of stoichiometric ratios of $\mathrm{LiAlH}_{4}: \mathrm{CuI}$:enone (runs 4-19) and have found that a ratio of 1:4:1 gives the best results under the conditions that LiAlH_{4} and CuI are allowed to react before the addition of enone. At this stoichiometric ratio enone I was reduced in quantitative yield and 100% regioselectivity to the conjugate reduction product in THF at $0^{\circ} \mathrm{C}$ when the reaction was allowed to proceed for 1 h . Stoichiometry relating the reactive species to ketone is important (runs 14-16) since a significant amount of enone is recovered unreacted when the LiAlH_{4} :CuI:enone ratio is 1:4:4 or 1:4:2. When the $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ ratio is $1: 1$ or $1: 2$ a significant amount of 1,2 product or unreacted ketone or both are observed (runs 4-11).
When LiAlH_{4} and CuI are mixed at $0^{\circ} \mathrm{C}$ in THF a deep black color immediately results with some gas evolution. It was found that $\sim 3 \min$ reaction time is required (runs 17-19) for all of the LiAlH_{4} to be consumed so that no 1,2 reduction product is observed. Reaction of the active reagent with the enone appears to be over in $30-60 \mathrm{~min}$.
Temperature studies clarify the stability of the $\mathrm{LiAlH}_{4} \mathrm{CuI}$ reagent. No reaction between LiAlH_{4} and CuI occurs at -78 ${ }^{\circ} \mathrm{C}$ (run 26), slow reaction at $-20^{\circ} \mathrm{C}$ with some 1,2 reduction and recovered enone (run 27), and partial decomposition of the active reagent at room temperature (run 28). When LiAlH_{4} and CuI were mixed at $0^{\circ} \mathrm{C}$ and then cooled to -78 ${ }^{\circ} \mathrm{C}$, no reaction took place as evidenced by complete recovery of the enone (run 26). On the other hand, generation of the active reagent at $0^{\circ} \mathrm{C}$ followed by cooling to $-20^{\circ} \mathrm{C}$ before enone addition (run 27) resulted in 84% reaction with 100% regioselective formation of the conjugate reduction product. Since 10% ketone was recovered, it is clear that reduction of the substrate at $-20^{\circ} \mathrm{C}$ has no advantage over reduction at $0^{\circ} \mathrm{C}$. On the other hand, when the reagent was generated at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature, 67% conjugate reduction product was observed with 29% recovery of the ketone. Apparently enough of the reagent decomposes at room temperature that a substantial amount of the starting material is recovered. It appears then, that the optimum temperature for generation of the reagent and addition of the substrate is $0^{\circ} \mathrm{C}$.

The optimum conditions (1:4:1 stoichiometry, $0^{\circ} \mathrm{C}$, THF) have been applied to other enones (III, IV, V, and VI). The yields are generally high and the regioselectivity is 100%. However, the slower reaction rate for cis enone II and the

Table I. Reduction of Enones with $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ in THF

Expt	Enone	Molar ratio			Temp. ${ }^{\circ} \mathrm{C}$	Enone. \% recovered	Products, $\%^{\circ}$		
		LiAlH_{4}	CuI	Enone ${ }^{\text {J }}$			1.4	1,2	
0									
1		1.0	0	4.0	0	12	3	83	
2	I	1.0	0	1.0	0	0	0	99	
3	I	0.42	0.01	1.0	0	0	7	92	
4	I	1.0	1.0	$2.0{ }^{\text {c }}$	0	0	40	50	
5	I	1.0	1.0	1.0	0	0	64	27	
6	I	1.0	1.0	0.5	0	0	49	~ 44	
\bigcirc	I	1.0	2.0	$4.0^{\text {c }}$	0	54	46	6	
8	I	1.0	2.0	$2.0{ }^{\text {c }}$	0	6	81	9	
9	I	1.0	2.0	$2.0{ }^{\text {c.d }}$	0	0	58	34	
10	I	1.0	2.0	$2.0{ }^{\text {c }}$	RT	62	38	<1	
11	I	1.0	2.0	1.0	0	0	95	6	
12	I	1.0	2.0	0.5	0	0	82	~ 1	
13	I	1.0	3.0	1.0	0	0	87	7	
14	I	1.0	4.0	4.0	0	69	26	0	
15	I	1.0	4.0	$4.0{ }^{\text {e }}$	0	20	21	59	
16	I	1.0	4.0	2.0	0	21	69	0	
17	I	1.0	4.0	$1.0^{\text {c }}$	0	0	82	7	
18	I	1.0	4.0	$1.0{ }^{\prime}$	0	0	69	16	
19	I	1.0	4.0	1.0	0	0	99	0	
20	I	1.0	4.0	$1.0^{\text {d }}$	0	0	78	20	
21	I	1.0	4.0	$1.0{ }^{\text {c }}$	RT	0	63	24	
22	I	1.0	4.0	1.0	RT	47	34	<1	
23	I	1.0	4.0	4.0	-30	47	38	7	
24	\pm	1.0	4.0	1.0	-20	0	88	11	
25	I	1.0	4.0	1.0	-78	0	0	93	
26	I	1.0	4.0	1.0	$0 \rightarrow-7 \mu^{\mu}$	101	0	0	
27	I	1.0	4.0	1.0	$0 \rightarrow-2 \sim^{R}$	10	84	0	
28	I	1.0	4.0	1.0	$0 \rightarrow \mathrm{RT}^{\boldsymbol{h}}$	29	67	~ 1	
29	cis (II)	1.0	4.0	1.0	0	33	40	0	
0									
30	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underset{\text { (III) }}{\mathrm{C}=} \stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CCH}_{3}$	1.0	4.0	1.0	0	3	66	~ 1	
31	$\mathrm{CII}_{3} \mathrm{O}$	1.0	4.0	0.5	0	8	70	0	
32	 (IV)	1.0	4.0	1.0	0	0	97	0	
33	 (V)	1.0	4.0	1.0	()	0	78	0	
	$\mathrm{H} \quad \mathrm{H} \quad \stackrel{\mathrm{O}}{\\|}$								
34	$\mathrm{PhC}=\underset{(\mathrm{VI})}{\mathrm{C}}-\mathrm{CPh}$	1.0	4.0	1.0	0	0	101	0	

${ }^{a}$ Product is based on ketone used. Reaction time for all reactions is $30-60$ min. counted from ketone addition. ${ }^{b}$ All reaction mixtures were stirred for 3 min between $\mathrm{L}_{\mathrm{iAlH}}^{4}$ addition and ketont addition. except when noted. ${ }^{\mathrm{c}} \mathrm{LiAlH}_{4}$ was added rapidly, stirred for 1 min , then the ketone added dropwise. ${ }^{d} \mathrm{Et}_{2} \mathrm{O}$ was used instead of $\mathrm{THF} .{ }^{〔} \mathrm{LiAlH}_{4}$ was added to the ketone-CuI mixture. ${ }^{\prime}$ Same as c. but interval was $10 \mathrm{~s} .{ }^{g} \mathrm{LiAlH}_{4}$ was added at $0^{\circ} \mathrm{C}$. ke:one was added at -78 or $-20^{\circ} \mathrm{C}$. ${ }^{h}$ Stirred at RT for 10 min before ketone addition.
observation of no reaction with cyclohexenone and 3,3,5-trimethylcyclohexenone suggests to us a mechanism involving

A
a six-center transition state (A). It is more difficult for the rigid cyclohexenone systems, cis enones, and trans enones possessing disubstitution at the 3 carbon of the enone to accommodate such a transition state (A) and hence these kinds of compounds should react more slowly:

Reduction of enones I and III (Table II) with $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ was found not to be as effective as reduction with $\mathrm{LiAlH}_{4}-\mathrm{CuI}$. A; might have been expected, the most effective ratio of $\mathrm{LiAlH}_{4}: \mathrm{TiCl}_{3}$ was different from that found for $\mathrm{LiAlH}_{4}-\mathrm{CuI}$. Also one might expect that the optimum reaction temperature would be different since the reactive titanium species would

Table II. Reduction of Enones with $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ in THF

Expt	Enone	Molar ratio			Temp, ${ }^{\circ} \mathrm{C}$	Reaction time	Enone recovered	Products, \%	
		LiAlH_{4}	TiCl_{3}	Enone				1.4	1,2
35	I	2.0	1.0	1.0	0	1 h	0	12	70
36	I	1.0	1.0	1.0	0	1 h	0	13	53
37	I	1.0	2.0	1.0	0	1 h	0	46	24
38	I	1.0	3.0	1.0	0	1 h	0	29	34
39	I	1.0	1.0	1.0	RT	10 min	0	53	0
40	I	1.0	1.0	1.0	RT	30 min	0	63	0
41	I	1.0	1.0	1.0	RT	1 h	0	58	0
42	I	1.0	1.0	1.0	RT	1.5 h	0	55	0
43	I	1.0	1.0	1.0	RT	12 h	0	53	0
44	I	2.0	2.0	1.0	RT	1 h	0	66	0
45	I	2.0	1.0	1.0	RT	1 h	0	63	0
46	I	2.0	1.0	1.0	Reflux	1 h	0	60	0
47	I	4.0	4.0	1.0	RT	8 h	0	46	0
48	I	1.0	2.0	1.0	RT	1 h	0	29	~ 1
49	I	1.0	2.0	1.0	RT	8 h	0	35	0
50	I	1.0	2.0	1.0	$\mathrm{RT} \rightarrow \mathrm{O}^{g}$	1 h	0	35	~ 1
51	I	3.0	4.0	1.0	RT	1 h	0	18	25
52	I	1.0	3.0	1.0	RT	1 h	0	14	0
53	I	3.0	1.0	1.0	RT	1 h	0	28	41
54	I	2.0	2.0	$1.0{ }^{\prime}$	RT	10 min	0	6	31
55	III	1.0	1.0	1.0	$\mathrm{RT} \rightarrow 0^{g}$	1 h	~ 1	34	0
56	III	1.0	2.0	1.0	$\mathrm{RT} \rightarrow 0^{g}$	1 h	~ 2	18	0
57	III	2.0	2.0	$1.0{ }^{\text {i }}$	RT	1 h	0	33	0
58	III	2.0	2.0	1.0^{\prime}	RT	1 h	9	0	25

${ }^{i}$ Same as f in Table I but 60 min .

Table III. Reduction of Enone I with $\mathrm{LiAlH}_{4}-\mathrm{HgI}_{2}$, $\mathrm{LiAlH}_{4}-\mathrm{HgCl}_{2}$, or $\mathrm{LiAlH}_{4}-\mathrm{CuCl}$ in THF

Expt	Molar ratio			Enone Temp, recovered, ${ }^{\circ} \mathrm{C}$ \%		Products	
	LiAlH_{4}	HgI_{2}	Enone			1,4	1,2
59	1.0	1.0	1.0	0	0	65	22
60	1.0	1.5	1.0	0	0	86	8
61	1.0	2.0	1.0	0	0	93	5
62	1.0	4.0	1.0	0	75	8	0
		HgCl_{2}					
63	1.0	1.0	1.0	0	0	46	56
64	1.0	1.5	1.0	0	42	32	17
		CuCl					
65	1	4	1	0	55	32	4

be expected to have different stability and different reactivity characteristics compared to the copper reagent. It appears that optimum results are obtained using a $\mathrm{LiAlH}_{4}: \mathrm{TiCl}_{3}:$ enone ratio of $1: 1: 1$ at room temperature for 30 min (yield 63%). Lower reaction temperatures ($0^{\circ} \mathrm{C}$) for enone I produced a substantial amount of 1,2 reduction product and a wide variation in reactant stoichiometry and reaction time seemed to have either little or adverse effect on the desired results.

Reduction of enone III with $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ was correspondingly slower than that observed for $\mathrm{LiAlH}_{4}-\mathrm{CuI}$. The best conditions of stoichiometry, temperature, and reaction time were similar to that observed for enone I except that the yields were lower ($\sim 33 \%$).
LiAlH_{4} was allowed to react with FeCl_{3} at $-78^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$, and room temperature followed by addition of enone I. In no case did the enone react.
Two other metal salts, Hgl_{2} and HgCl_{2}, were also admixed with LiAlH_{4} (Table III). The regioselectivity was dependent on the ratio of $\mathrm{LiAlH}_{4}: \mathrm{HgX}_{2}$ and also on the halide. When the metal halide was changed from HgI_{2} to HgCl_{2} the unusual regioselective is lost corresponding to the same trend observed when the salt is changed from CuI to CuCl .

Since $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ and $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ produced a species in solution different than either of the reactants, and gave 100% regioselectivity, it was decided to evaluate these reagents as stereoselective reducing agents. Both $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ and $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ were allowed to react with 4 -tert-butylcyclohexanone (VII) and 3,3,5-trimethylcyclohexanone (VIII) in THF. The results of Table IV show that both reagents give considerably more equatorial attack compared to LiAlH_{4} and that the $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{3}$ reagent gives considerably more equatorial attack compared to the $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ reagent on both ketones.

The unusual effectiveness of the reagent $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ for conjugate reduction of the enones encouraged us to study the nature of this reagent in solution. We found that the reactive intermediate is $\mathrm{H}_{2} \mathrm{AlI}$ and not CuH or $\mathrm{CuAlH}_{4}{ }^{9}$ Equation 2 explains the observation of a black precipitate and gas evolution when this reaction is carried out. The compound $\mathrm{H}_{2} \mathrm{AlI}$ was synthesized independently and was found to produce the same results as observed with $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ (1:4) (run 75). Actually, after most of these studies were complete, we found that the $1: 4$ ratio of $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ is not necessary. When the mixing period for LiAlH_{4} and CuI was changed from 3 to 20 \min (runs 11 and 73) we found that the enone was reduced in 98 and 100% regioselectivity.

$$
\begin{equation*}
\mathrm{LiAlH}_{4}+2 \mathrm{CuI} \rightarrow \mathrm{H}_{2} \mathrm{AlI}+\mathrm{LiI}+\mathrm{Cu}^{\circ}+\mathrm{H}_{2} \tag{2}
\end{equation*}
$$

Since $\mathrm{H}_{2} \mathrm{AlI}$ was found to react just as the reagent $\mathrm{LiAlH}_{4}{ }^{-}$ CuI , it was decided to evaluate other halogenoaluminum hydrides. We prepared ${ }^{10}$ the series H_{2} AlI, HAlI ${ }_{2}, \mathrm{H}_{2} \mathrm{AlBr}$, $\mathrm{HAlBr}_{2}, \mathrm{H}_{2} \mathrm{AlCl}$, and HAlCl_{2} expecting that for steric reasons the HAlX_{2} compounds would be more regioselective than the $\mathrm{H}_{2} \mathrm{AlX}$ compounds and that the regioselectivity of the reduction would decrease as the steric requirement of the hydrogen decreases ($\mathrm{I}>\mathrm{Br}>\mathrm{CI}$). It is clear from Table V that indeed the iodo compounds are more selective than the bromo or chloro compounds and that HAlX_{2} compounds are also highly regioselective. However, owing to the steric requirement of HAlI_{2} the reaction with enone I is much slower com-

Table IV. Stereoselective Reduction of 4-tert-Butylcyclohexanone (VII) or 3,3,5-trimethylcyclohexanone (VIII) with $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ and $\mathrm{LiAlH}_{\mathbf{s}}-\mathrm{TiCl}_{3}$ in THF

Expt	Ketone	Molar ratio			Conditions	Ketone recovered. \%	Rel yield. \%		Mass balance
		LiAlH_{4}	CuI (or TiCl_{3})	Ketone			ax OH	eq OH	
67	VII	1.5	0	1.0	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	0	8	92	~ 100
68	VII	.. 0	4.0 (CuI)	1.0	$0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	0	29	71	~ 100
69	VII	2.0	$1.0\left(\mathrm{TiCl}_{3}\right)$	1.0	RT, 1 h	0	70	30	81
70	VIII	-. 5	0	1.0	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	0	80	20	~ 100
71	VIII	- 0	4.0 (Cul)	1.0	$0^{\circ} \mathrm{C} .1 \mathrm{~h}$	0	85	15	~ 100
72	VIII	-. 0	$1.0\left(\mathrm{TiCl}_{3}\right)$	1.0	RT, 1 h	0	97	3	74

Table V. Reduction of Enone I with the Reagents $\mathrm{LiAlH}_{4}-\mathrm{CuI}, \mathrm{AlH}_{3}-\mathrm{CuI}, \mathrm{H}_{2} \mathrm{AlI}, \mathrm{HAlI}_{2}, \mathrm{H}_{2} \mathrm{AlBr}, \mathrm{HAlBr}_{2}, \mathrm{H}_{2} \mathrm{AlCl}$, and $\mathbf{H A l C l}_{2}$ in THF

${ }^{d} \mathrm{Ett}_{2} \mathrm{O}$ solvent. ${ }^{\text {J }}$ The mixing period of $\mathrm{LiAlH}_{4}-\mathrm{CuI}$ or $\mathrm{AlH}_{3}-\mathrm{CuI}$ was 20 min before enone addition.
pared to $\mathrm{H}_{2} \mathrm{AlI}$ and hence HAlI_{2} is not as attractive a reagent. Because HAlI_{2} reacts so slowly the regioselectivity suffers slightly probably owing to the small equilibrium amount of AlH:: expected in THF solutions of HAlI_{2}.

Experimental Section

Materials and Techniques. Manipulations of air-sensitive compounds were performec under nitrogen in a glove box ecuipped with a recirculating system described elsewhere. ${ }^{11}$ THF and $\mathrm{Et}_{2} \mathrm{O}$ were distil ed from NaAlH_{4} and LiAlH_{4}, respectively, prior to use. LiAlH_{4} solutions were prepared by refluxing LiAlH_{4} (Alfa Inorganics) in THF for at least 24 h followed by filtration through a fritted glass funnel in a tox. The clear solution was standardized for aluminum content by. EDTA. CuI (Fisher) was purified by dissolving it in saturated potassium iodide solution followed by treatment with decolorizing charcoal, filtration, and precipitation by dilution with water. The purified CuI was collected and washed with absolute $\mathrm{FtOH}_{\mathrm{t}} \mathrm{OH}$ and dry $\mathrm{Et}_{2} \mathrm{O}$ in the drybox. Ar.hydrous ferric chloride (Fisher sublimed) titanium trichloride (Alfa), mesityl oxide (Eastman), 4-tert-butylcyclohexanone (Friton), 3.3.5-trimethylcyclohexanone (Chemical Samples Co.) and enones IV, V. and VI (Aldrich) were used without further purification. 2.2.6.6-Tetramethyl-trans-4-hepten-3-one |sublimed. $4.7^{\circ} \mathrm{C}(.5-10 \mathrm{mmHg})$) was prepared as previously describきd. ${ }^{12}$ Mercuric iodide and chloride were dried by heating at $90-100^{\circ} \mathrm{C}$ under vacuum for 4 h and standard THF solu:ions of these salts were prepared in the drybox. The reagent H_{2} All was obtained by adding $\mathrm{I}_{2}-\mathrm{THF}$ sol ation to $\mathrm{AlH}_{3}-\mathrm{THF}$ at $<0^{\circ} \mathrm{C}$. The resulting solid was then filtered and washed carefully with THF. ${ }^{10}$ The HAlI_{2}, $\mathrm{H}_{2} \mathrm{AlCl}$. and HAlCl_{2} reagents were prepared by following literature
methods. ${ }^{10}$ The ratio of $\mathrm{H}: \mathrm{Al}$ was satisfied for each haloalane within experimental error.
Reduction Procedure. A $10-\mathrm{ml}$ Erlenmeyer flask with a Teflon coated magnetic stirring bar was dried in an oven and allowed to cool under nitrogen flush. $\mathrm{CuI}, \mathrm{CuCl}, \mathrm{TiCl}_{3}$, or FeCl_{3} (ca. 2 mmol) was transferred to the flask in the drybox: it was sealed with a rubber septum, removed from the tox. and connected by means of a needle to a nitrogen-filled manifold equipped with a mineral oil filled bubbler. THF or $\mathrm{Et}_{2} \mathrm{O}$ so.vent 14 ml) was introduced into the reaction vessel and temperatures regulated by ice-water $\left(0^{\circ} \mathrm{C}\right)$, dry ice-acetone $\left(-78^{\circ} \mathrm{C}\right)$. or dry. ice-carbon tetrachloride $\left(-20^{\circ} \mathrm{C}\right)$. A known concentration of LiAlH_{4} solution was then added to the slurry. On addition a deep black color is immediately produced with gas evolution except in the case of CuI at $-78^{\circ} \mathrm{C}$. After an indicated period. enone with internal standard. $n-\mathrm{C}_{12} \mathrm{H}_{26}$, was added dropwise. After the designated reaction time the reaction mixture was quenched with a minimum of distilled water and the resulting solution dried over MgSO_{4}. Analysis of the product and yield data was obtained by GI.C. using a $15-\mathrm{ft} 109$ Carbowax 20 M on Chromosorb W . Aut hentic samples were used to identify the retention times of the 1.4 and 1,2 reduction products.

Reduction of 4 -tert-butylcyclohexanone and 3.3.5-trimethyleyclohexanone was carried out by a similar procedure as described for the enone. Product yields were also determined by GLC.

Acknowledgment. Support of this work by the donors of the Petroleum Research Fund. administered by the American Chemical Society, and the Aluminum Company of America is gratefully acknowledged.

Registry No.-I, 20859-13-6; II, 29569-89-9; III, 141-79-7; IV, 565-62-8; V, 625-33-2; VI, 94-41-7; VII, 98-53-3; VIII, 873-94-9; $\mathrm{LiAlH}_{4}, 16853-85-3 ; \mathrm{AlH}_{3}, 7784-21-6 ; \mathrm{H}_{2}$ AlI, $58602-50-9 ; \mathrm{HAlI}_{2}$, 58602-51-0; $\mathrm{H}_{2} \mathrm{AlCl}, 14644-71-4 ; \mathrm{HAlCl}_{2}$, 13497-97-7; CuI, 7681-65-4; $\mathrm{TiCl}_{3}, 7705-07-9 ; \mathrm{HgI}_{2}, 7774-29-0 ; \mathrm{HgCl}_{2}, 7487-94-7 ; \mathrm{CuCl}, 7758-89-6$.

References and Notes

(1) R. L. Augustine et al., J. Org. Chem., 34, 1074 (1969)
(2) H. O. House, "Modern Synthetic Reactions", W. A. Benjamin, Menlo Park. Calif., 1972, p 173.
(3) (a) R. K. Boeckman, Jr., and R. Michalak, J. Am. Chem. Soc., 96, 1623
(1974): (b) S. Masamune, G. S. Bates, and P. E. Georghiou, ibid., 96, 3686 (1974).
(4) B. Ganem, J. Org. Chem., 40, 146 (1975).
(5) H. C. Brown and H. M. Hess, J. Org. Chem., 34, 2206 (1969)
(6) E. C. Ashby anc B. Cooke, J. Am. Chem. Soc., 90,1625 (1968), and references cited therein.
(7) S. Masamune, P. A. Rossy, and G. S. Bates. J. Am. Chem. Soc., 95, 6452 (1973).
(8) J. E. McMurry and M. P. Fleming. J. Am. Chem. Soc., 96, 4708 (1974).
(9) To be reported in more detail shortly.
(10) D. L. Schmidt and E. E. Flagg, Inorg. Chem., 6, 1262 (1967).
(11) E. C. Ashby and R. D. Schwartz, J. Chem. Educ., 51, 65 (1974).
(12) H. O. House and P. D. Weeks, J. Am. Chem. Soc., 97, 2770 (1975).

A Study of the Stork Reductive Cyclization of Steroidal Acetylenic Ketones in Aprotic Media with the Naphthalene Anion Radicals

Suresh K. Pradhan,* Tarur V. Radhakrishnan, and Raman Subramanian
Pharmaceutical Section, Bombay University, Department of Chemical Technology, Bombay 400.019, India

Received February 9, 1976

Abstract

Reductive cyclization of steroidal acetylenic ketones was achieved in THF or DME with $\mathrm{C}_{10} \mathrm{H}_{8} \cdot{ }^{-} \mathrm{M}^{+}$. From 4,5-secocholest-3-yn-5-one (1a) the allylic alcohol 3 -methylene- A-norcholestan-53-ol (2a) is the sole product. With this reagent no overreduction occurs. Recovery of starting material was proved to be due to competitive enolate ion formation. Ratio of reductive cyclization to recovery varied with solvent and counterion as well as with substrate. In a series of 4,5 -secocholestan- 5 -ones the substituent at 10α was varied from $-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{CH}(1 a)$ and $-\left(\mathrm{CH}_{2}\right)_{2}$. $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}(25)$ to $-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}(\mathbf{l c})$. The observed ratios were 2.3, 8.2, and 0.7 , respectively. In each cas the cyclization was regiospecific leading exclusively to an exo double bond. Kinetic control was established when 25 showed the same stereoselectivity as the others and gave an $\mathrm{A}: \mathrm{B}$ cis product. The formation of different products from 25 and Ic eliminated allene intermediates. With 1c the stereochemistry of addition across the acetylene was syn:anti equal to $52: 48$. This shifted to $>80 \%$ syn for 5 e. Based on available data, a mechanism is proposed. Electron is transferred preferentially, though reversibly, by $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ to the ketone group to give a ketyl radical ion. In the next slow step, this attacks the acetylene intramolecularly, as a radical and not as a nucleophile. Equilibration of the resulting vinyl radical with its isomer precedes reduction and protonation to the allyloxy anion precursor of the cyclized product. The initial addition across acetylene is syn. This follows from the change in syn:anti ratio to 70:30 when $l \mathbf{c}$ is added to excess reducing agent.

The reductive cyclization of γ-ethynyl ketones to allylic alcohols with alkali metals in liquid ammonia was first reported by Stork. ${ }^{1}$ In a slightly modified form, this reaction was used for making interesting A-nor sterols. ${ }^{2}$ The reaction was found to be stereoselective. Thus, the only products obtained from 4,5 -secocholest- 3 -yn- 5 -one (1a) were 3 -methylene- A -norcholestan-5 β-ol (2a) and 3-methyl- A-norcholest-3-ene (3a). The latter was a product of overreduction. With $\mathrm{NH}_{4} \mathrm{Cl}$ as a proton source, 3a was the only product. With $t-\mathrm{BuOH}$ under carefully controlled conditions, mixtures of 2a and 3a resulted. Even under these conditions, $1 \mathbf{b}$ gave only $\mathbf{3 b}$.

It was expected that overreduction could be avoided with a milder reducing agent used in combination with an aprotic medium. When preliminary work ${ }^{3}$ indicated that naphthalene sodium in THF could serve the purpose, a deeper study into

la, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{1}$;
b. $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{OH}$
c. $\mathrm{R}=\mathrm{Me}: \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$

3a. $\mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$ b. $\mathrm{R}^{\prime}=\mathrm{OH}$

4

5a. $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$ b. $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{OH}$ c, $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{OMe}$ d, $\mathrm{R}=\mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$ e, $\mathrm{R}=\mathrm{D}, \mathrm{R}^{\prime}=\mathrm{C}_{8} \mathrm{H}_{17}$
several aspects of this reaction was undertaken and is the subject of the present report. ${ }^{4}$

A solution of the acetylene ketone la in THF or DME was
titrated with the dark green concentrated solution (0.6 N) of the naphthalene radical anion ($\mathrm{C}_{10} \mathrm{H}_{8^{-}}{ }^{-}, \mathrm{M}^{+}$) in THF or DME to a faint green end point. Each mole of sterol la required 2.0 $\pm 0.2 \mathrm{~mol}$ of reagent and gave $70 \% \mathbf{2 a}$ and $30 \% \mathbf{1 a}$. It was a very clean reaction amenable to semiquantitative evaluation. Hence the effect on the yield of changes in counterion and solvents could be studied. The results are given in Table I.

Electron transfer from sodium using naphthalene as a catalyst could also be achieved leading to formation of $2 a$ in 90% yield. However, the reaction was much slower. Details of the catalytic use of naphthalene are given in the Experimental Section. The rest of this article is concerned only with the very fast reactions which took place on titration with preformed reagent. The yields of 2 a were not noticeably affected by reversing the mode of addition or by lowering the temperature to $0^{\circ} \mathrm{C}$.
Recovery of 30% starting material could be reconciled with consumption of 2 mol of reagent by taking into account the dual behavior of the aromatic radical ions first noted by Scott. ${ }^{5}$ They reduce halides by electron transfer but the same reagents act exclusively as strong bases when they react with alcohols. It was obvious that this dual behavior is being demonstrated in a $7: 3$ ratio with the steroidal substrate. Proton abstraction leads to dianion 4 which regenerates starting material on workup. Formation of the enolate ion was confirmed by adding excess methyl iodide prior to workup. In this case, 2 a was accompanied by the 6,6 -dimethyl derivative $5 \mathrm{a}^{7}$ to the exclusion of 1 a . The removal of proton from acetylene was confirmed by quenching with deuterioacetic acid.
Reductive cyclization with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ was carried out successfully with three distinct types of acetylene ketones. In every case, stereochemistry was established and has yielded information having a significant bearing on the mechanism of this reaction.
Terminal $\boldsymbol{\gamma}$-Ethynyl Ketones. Results with la are given in Table I. The 17β-hydroxy compound $\mathbf{I b}$ was of special interest since it had given only the overreduction product $\mathbf{3 b}$ under protic conditions. ${ }^{2}$ With naphthalene sodium 2 b was the only product but separation from 1 b was not possible. Addition of methyl iodide prior to workup gave 2 c and $5 \mathrm{c} .{ }^{8}$ The desired $2 \mathbf{b}$ was more conveniently obtained starting from the acetylene dione 6 as shown in Scheme I. All these cycli-

Scheme I

zations were stereoselective, leading to $\mathrm{A}: \mathrm{B}$ cis products, and regiospecific, giving only a five-membered ring.
Cyclization of the 0,6 -dimethyl derivative $\mathbf{5 a}$ was of interest in view of steric hindrance at and nonenolizability of the ke-

Table I. Effect of Solvent and Counterion on the Reaction of la with $\mathrm{C}_{10} \mathrm{H}_{8}{ }^{-}$

Counter- ion	Sol- vent a	$\mathbf{2 a}$	$\mathbf{1 a}^{\boldsymbol{b}}$	Counter- ion	Sol- vent	$\mathbf{2 a}$	$\mathbf{1 a}^{\boldsymbol{b}}$
K^{+}	THF	69^{c}	30	$\mathrm{~K}^{+}$	DME	64^{c}	35
Na^{+}	THF	69	27	Na^{+}	DME	65	31
Li^{+}	THF	42	45	Li^{+}	DME	38	50

${ }^{a} 0.6 \mathrm{~N}$ reagent was used. ${ }^{b}$ Recovery via enolate ion 4. ${ }^{c}$ Percentage yields are given based on weights of material isolated by column chromatography.
tone group. Reaction of 5 a with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ gave $60 \% 12$ and 40% 11. ${ }^{9}$ The latter could also be obtained by borohydride reduction of 5 a . The structure and stereochemistry of 12 were determined as shown in Scheme II. ${ }^{10}$ The stereochemistry of 12

Scheme II

was indicated by NMR to be the same as in 2a but was independently confirmed since substitution so close to the reacting center could have altered it. The proof consists of stereospecific conversion to 17 having an $\mathrm{A}: \mathrm{B}$ trans junction as confirmed by its "negative Cotton effect". ${ }^{11}$ In this cyclization, there was no recovery of starting material, lending support to the view that survival of ketone from reductive cyclization or reduction is due to enolate ion formation.
The possibility of determining the stereochemistry of addition across the acetylene was opened up by a comparison of the NMR of 12 and 2a. The exocyclic methylene in the former gave two broad singlets at $\delta 4.98$ and 5.25 whereas the latter gives a multiplet at $\$ 5.1 \mathrm{ppm}$. The deshielding of one of the exo protons in the dimethyl series was particularly marked in the epoxidation products. In the NMR of 15 the two protons were at $\delta 2.75$ and 3.48 as compared to $\delta 2.96$ and 3.00 , respectively, in the unmethylated compound. ${ }^{2}$
The deshielding is ascribed to steric compression ${ }^{12}$ since models showed close proximity of the α-methyl at C-6 to the exo hydrogen cis to $\mathrm{C}-5$. This information was put to use by replacing the acetylenic hydrogen in 5 a by deuterium to give 5 e prior to reductive cyclization. The deuterated 12 produced in this reaction was analyzed by NMR for deuteration at the vinylic position. It could be estimated that $0.8-0.75$ atoms of deuterium were present at the exo position cis to $\mathrm{C}-2$, while $0.0-0.2$ were at the position cis to $\mathrm{C}-5$. Even this approximate estimation allows the conclusion that, in this case, addition across the acetylene is predominantly syn. The other product of this reaction, 11, was free from deuterium. The significance of the finding is discussed below.

Nonterminal $\boldsymbol{\gamma}$-Ethynyl Ketones. The methyl acetylene ketone lc was prepared from 4 -methylcholest-4-en-3-one and treated with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ to give only two spots on TLC. One corresponded to starting material but addition of methyl iodide prior to workup led to its conversion to the 6,6-dimethyl derivative 5 d . The other spot had an R_{f} value quite distinct from that of 23 (the major borohydride product of $1 \mathbf{c}$). It represented a mixture of two compounds obtained in 42% yield. These $(18 a+18 b)$ could not be separated but structure and configuration could be assigned on the basis of work summarized in Scheme III.

The spectral evidence for the structure of 19 was quite conclusive. Conversion of 20 and 21 individually to the same diol 22 on LiAlH_{4} reduction established that the stereochemistry at the A:B ring junction was the same in 18a, 18b, 20, 21 and 22. NMR comparison of these with closely related compounds of established structures ${ }^{2}$ with particular reference to the chemical shift of the 19 -methyl confirmed that the $A: B$ ring junction must be cis in all. Hence $18 a$ and $18 b$ must be stereoisomeric around the double bond. It was essential to determine the relative amounts of the two isomers and if possible their stereochemistry. Since epoxidation yields were quantitative, it could be assumed that information about the relative amounts of 20 and 21 could be extrapolated back. Since 20 and 21 could be separated, it was possible to establish that the isomeric alcohols $18 a$ and $18 b$ were in the proportion of $58(\pm 3): 42(\pm 3)$. Thus, substantial quantities of both isomers are being produced. Hence there is only marginal preference for syn or anti addition across the acetylene in this case. This significant finding is not dependent on correct assignment of configuration to 18 a and 18 b . A tentative assignment is possible because the methyl doublet in 21 can be expected to be downfield relative to that in 20 because of steric compression. The major isomer has this doublet at $\delta 1.28$ in the NMR whereas the minor one has it at $\delta 1.50 \mathrm{ppm}$. Hence, it can be tentatively concluded that syn addition across the
acetylene to give 18 a is marginally preferred to anti addition giving 18 b .

The reaction is, however, regiospecific in that no sixmembered ring formation is detected. ${ }^{13}$ Compound $1 \mathbf{c}$ was converted into the borohydride reduction product 23 on the one hand and the ketal 24 on the other. Both of these were subjected independently to reductive cyclization conditions to obtain evidence for acetylene reduction. They were both quantitatively recovered.

Terminal δ-Ethynyl Ketone. The homologous acetylene ketone 25 was required for distinguishing between kinetic and thermodynamic control. It was made by isomerization of $1 \mathbf{c}$. The isomerization was carried out by NaNH_{2} generated in situ by bubbling NH_{3} gas into $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ in THF ${ }^{14}$ till the color was discharged. The THF was replaced by toluene and then refluxed. Yields of the rearranged product 25 were not satisfactory. Suspecting fragmentation, we protected the ketone as the ketal 24 prior to isomerization. The yield of 25 im proved. Cyclization of this with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$ gave $89 \% 26$ and 11% 25. The structure 26 is consistent with spectral data whereas its stereochemistry was established by direct correlation ${ }^{15}$ as shown in Scheme IV. The diol 30 is identical with one of the

two cis diols obtained by the action of OsO_{4} on 4-methylcho-lest-4-ene.

The cyclization of $\mathbf{2 5}$ is highly stereoselective giving exclusively an $\mathrm{A}: \mathrm{B}$ cis product. In common with the other systems, it also shows regiospecificity.

Discussion

From the preparative point of view, the reductive cyclizations reported here are extensions of the reaction discovered by Stork. The present reagent offers several advantages, the foremost being that no overreduction takes place. The stereochemical findings give an insight into the mechanism and are hence briefly summarized here. Reductive cyclization of the 5 -keto sterols invariably gave an $\mathrm{A}: \mathrm{B}$ cis junction with the double bond exo to ring A. The stereochemistry of addition across the acetylene could be studied in only two cases. The disubstituted γ-ethynyl compound 1c gave a mixture of syn and anti addition in the ratio of $58(\pm 3): 42(\pm 3)$. With the terminal 6,6-dimethyl derivative $\mathbf{5 e}$ the estimation was less accurate but syn addition was not less than 80% and may be higher. The incoming hydrogen comes in syn in spite of the fact that, in the final product, it is under considerable steric compression.

Any mechanism that seeks to explain the transformation of an acetylene ketone to an allyloxy anion has to consider the sequence of addition of two electrons and a proton or one electron and a hydrogen atom. The species produced at each stage, particularly the ones prior to and following the $\mathrm{C}-\mathrm{C}$
bond formation, have to be identified. In an aprotic medium proton abstraction is restricted to the relatively nonacidic solvent and to the substrate itself. The mechanism under these conditions need not be the same as the mechanism in liquid ammonia. Observation of the same stereoselectivity does imply some similarities, but, because of the doubt, data from liquid ammonia studies are used here only in a supplementary sense.

It is possible to cut across many possibilities because the result of reaction of $\mathbf{l c}$ strongly favors the intermediacy of a cyclized vinyl radical. The formation of substantial amounts of both isomers $18 a$ and 18 b from 1 c taken in conjunction with the shift towards syn addition observed with 5 e is best accounted for in terms of the equilibrium shown in Scheme V. ${ }^{16}$

Equilibration is expected to be almost complete because of the temperature ${ }^{17}$ and the mode of addition. Conversion of the two vinyl radicals to the corresponding carbanions followed by protonation by solvent accounts for the products. Since vinyl carbanions are not expected to equilibrate under the reaction conditions ${ }^{16 \mathrm{~b}}$ the ratio of the isomeric carbanions is expected to be retained in the protonated product in spite of the considerable steric compression under which the newly introduced proton finds itself in one of the isomers.

The cyclized vinyl radical contains only one electron more than the substrate. Hence, cyclization must occur after one electron has been transferred to the acetylenic ketone. Since electron transfers are often reversible, the question arises as to whether the cyclization step is also reversible and that only the vinyl carbanion formation and protonation is irreversible. This point was settled by the formation of $\mathrm{A}: \mathrm{B}$ cis compound exclusively in the reaction of 25 . By analogy with 4 -keto steroids, ${ }^{18}$ the $\mathrm{A}: \mathrm{B}$ trans isomer of $\mathbf{2 6}$ should be stable relative to 26 and hence reversibility at the cyclization stage should have yielded at least some trans compound. In A-nor sterols the cis junction is more stable. However, since the environment of the ketone in $1 \mathrm{a}, 1 \mathrm{lb}, 1 \mathrm{c}$, and 25 is identical, it is reasonable to conclude that kinetic control is operating in all cases leading to a 5β-ol derivative.

The distinctly different compounds isolated in the reaction of 25 and 1 c form the basis of another useful conclusion. Allenes are not being formed in spite of the strong base present. ${ }^{19}$ The above two compounds should give the same allene. If this had occurred, then either starting material recovered or
products formed in one set should have been contaminated with the other set. This did not happen nor was any allene detected.

It follows that either the acetylene or the ketone receives an electron (or alkali metal atom) from the reagent and the resulting radical ion attacks the other uncharged functional group. For the reductive cyclizations using metal and liquid ammonia, Stork has tentatively proposed that the acetylene rad cal ion is formed followed by nucleophilic attack on the ketone. Lansbury has questioned this interpretation ${ }^{20}$ and believes that a nucleophilic attack on the acetylene by the radical ion formed from the ketone is more probable. The latter explanation requires that exclusive anti addition should take place across the acetylene. ${ }^{21}$ The data for the aprotic cyclization are contrary to this expectation.

The crucial consideration is whether there is a substantial preference for electron transfer to one of the two functional groups. Preferential attack on the ketone would be expected from reduction potentials. ${ }^{22}$ However, in solution, such considerations may not be entirely valid in view of the observations reported in an excellent paper on reduction of acetylenes by House. ${ }^{17}$ Formation of species such as $-\mathrm{C}(\mathrm{Na})=\mathrm{C}$ - is easier than would be anticipated on the basis of reduction potentials. $B o: h$ ketones and isclated acetylenes (but not acetylides) are reduced by the blue solutions of alkali metals in ammonia or in HMP. ${ }^{17}$ Since the alkali metal naphthalenes are much less powerful reducing agents, it was hoped that with these, evidence of selectivity might be obtained. Several studies are reported in the literature on use of these reagents for reduction of diaryl and monoaryl acetylenes ${ }^{23}$ but no studies on isolated acetylenes or ketones are reported ${ }^{24}$ except for an interesting study on δ-keto esters. ${ }^{25}$

The question of whether the acetylene was capable of accepting an electron from naphthalene sodium in THF was resolved by attempting the reduction of the alcohol 23 and the ketal 24. These consumed 1.0 ± 0.2 and $0.0 \pm 0.2 \mathrm{~mol}$ of the reagent only and were quantitatively recovered. ${ }^{26}$ The dialkyl acetylene was chosen because failure to reduce a terminal acetylene could have been ascribed to proton abstraction leading to an acetylide ion incapable of reduction. The possibility that carbanion formation by abstraction of a proton from the carbon adjacent to the above acetylene is also ruled out by the titration values as well as the total recovery.

In contrast to the acetylene, the nonenolizable ketone $\mathbf{5 a}$ reacts completely giving the reductively cyclized product 12 ard the reduced alcohol 11. The behavior of the enolizable ketones in 6 is illustrated by Scheme I which ascribes the apparent recovery of some of the ketones to enolate ion formation. It follows that none of the ketones escape attack by the reagent.

The conclusion that the ketone accepts electrons in preference taken in conjunction with the findings discussed below leads to the proposal given in Scheme VI.

Here k_{1} and k_{3} represent rates of two simultaneous reactions between the same two reactants. Since both reactions involve the 5 -keto group, the immediate environment of which is identical in $25,1 \mathrm{a}$, and 1 c , the ratio $k_{1}: k_{3}$ would be expected to be nearly the same for these three compounds. In the event of k_{1} representing a slow rate-determining step for product formation the ratio of product to recovery should have been the same for $25,1 \mathrm{a}$, and 1 c . The actual ratios are, however, 8.2, 2.3 , and 0.7 , respectively. Thus the slow step in product formation must be k_{2}, which involves a $\mathrm{C}-\mathrm{C}$ bond formation, with the ratios apparently reflecting the factors affecting the cyclization step. The equilibrium in the preceding step involves electron transfer. These are known to be fast and are certainly faster than proton abstraction. ${ }^{27}$

Scheme VII is an extension of Scheme VI to a hindered nonenolizable ketone. Only in this case is the uncyclized 5

Scheme VI

Scheme VII

hydroxy compound formed. This is accounted for by making the reasonable assumption that the rate of cyclization of the fully substituted hindered ketone is much less than in the nonhindered series. The rate of acetylide formation then becomes competitive. Radical cyclization at the acetylide ion is not expected. Hence the intermediate is diverted to the alcohol. This is borne out by deuteration studies. The deuterated $5 \mathbf{e}$ in which the hydrogen attached to the sp carbon has been replaced by deuterium gives the undeuterated alcohol 11. By the same token product 12 derived from this compound should have been 100% monodeuterated. However, 20-25\% undeuterated compound was produced indicating that some reversal of acetylide formation must be occurring by proton abstraction from solvent.

In all the above cases a remarkable regiospecificity was observed. The exo olefins were formed exclusively. Intramolecular radical attack on acetylenes to give exclusively exo products has been reported. ${ }^{28} \mathrm{~A}$ possible explanation for the observed regiospecificity may be that the transition state for cyclization may resemble starting material. Overlap of the orbital at C-5 with a p orbital on one of the sp carbons could lead to an incipient ring. In the larger of the two possible in-
cipient rings the other sp carbon has to be accommodated within the ring whereas in the smaller incipient ring the sp carbon would be outside. Hence sufficient energy differences should exist so that the endo olefins, in six- or seven-membered rings, do not form in competition with the exo olefins. ${ }^{29}$

One interesting aspect of the mechanism is that, except for dimerization and reduction to dianion, there are no proven analogies for radical trapping of a radical ion. Because of this, the possibility that protonation at the oxygen precedes cyclization was considered. Proton abstraction from the substrate cannot account for the yield of 89% in the cyclization of $\mathbf{2 5}$ and the amount of naphthalene sodium consumed. So proton abstraction from solvent was the remaining possibility. A test of this was required under similar conditions. Assuming that the anion of cholesterol would be a stronger base than the above radical ion, ${ }^{27}$ cholesterol was treated with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{M}$ under the conditions of the above experiments and excess methyl iodide was added subsequently. The amount of cholesteryl methyl ether produced indicated the minimum amount of alcohol that failed to abstract proton from the solvent. This was concentration, solvent, and counterion dependent. The results are given in Table II. Proton abstraction is very little with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~K}$ in DME. Yet yields in cyclization are quite high as seen in Table I. Hence prior protonation does not appear to be a condition for cyclization. ${ }^{30}$

Whereas a satisfactory picture has emerged about the mechanism of the reductive cyclization, the same is not true about the effect of solvent and counterion on this reaction which is summarized in Table I. The limited data can only be amenable to a highly speculative interpretation. A plausible one, conductive to further testing, is herein offered. The slight superiority of THF over DME could be due to the encroachment of proton catalyzed cyclization occurring to a small extent in the former but not the latter, the proton being provided by the solvent. Data in Table II show that this occurs more readily in THF than DME. The significant drop in yields of cyclization with naphthalene lithium solutions as compared to sodium and potassium ones could be due to the former being superior at proton abstraction thereby giving an increased rate of enolate ion formation and hence more recovery of starting material. Naphthalene lithium is in fact preferred over the others for a number of reactions involving proton abstraction from carbon. ${ }^{31}$ The actual species involved is not

Table II. Variations in Yield of Methyl Ether of Cholesterol ${ }^{\text {a }}$

Reagent	$\mathrm{Li}^{+} \mathrm{Nap}^{-}{ }^{-}, \mathrm{THF}$	Li ${ }^{+}$Nap ${ }^{-}$, DME	$\mathrm{Na}^{+} \mathrm{Nap}^{-}, \mathrm{THF}$	$\mathrm{Na}^{+} \mathrm{Nap}^{-}$, DME	$\mathrm{K}^{+} \mathrm{Nap}^{-}{ }^{-}$, THF	K^{+}Nap. ${ }^{-}$, DME
Normality	$0.60 \quad 0.35$	$0.70 \quad 0.41$	$0.70 \quad 0.40$	$0.75 \quad 0.45$	$0.71 \quad 0.50$	$0.78 \quad 0.56$
\% ether ${ }^{\text {b }}$	$38 \quad 30$	$83 \quad 59$	$43 \quad 33$	$91 \quad 78$	$58 \quad 45$	$96 \quad 89$

${ }^{a}$ Cholesterol was titrated with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{M}$ in DME/THF and after decolorization, excess methyl iodide was added. ${ }^{b}$ This value is based on cholesteryl methyl ether isolated by column chromatography. The other component was cholesterol. Total material accounted for was $95 \pm 3 \%$.

Table III. Catalytic Effect of Naphthalene on Reaction of Sodium ${ }^{s}$ with la in THF/DME

Solvent	Catalyst b	2a	3a	1a	Solvent	Catalyst ${ }^{\text {b }}$	2a	3a	1a
THF	0.0 mol	38^{c}	6	50	LME	0.0 mol	$43^{\text {c }}$	8	41
THF	0.2 mol	72		23	LME	0.2 mol	83		
THF	0.4 mol	80		15	LME	0.4 mol	90	11	
THE									

${ }^{a}$ Slow reaction, time $5.5 \mathrm{~h} .{ }^{b}$ Moles of catalyst relative to 1 mol of $1 \mathrm{a} .{ }^{\text {c }}$ Percentage yields.
known but the dianion formed by disproportionation of $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Li}$ is a strong candidate.

Experimental Section

General. Infrared spectra were obtained with a Perkin-Elmer Model 21 double beam spectrophotometer. Uv spectra were recorded on a Beckman DB spectrophotometer. NMR spectra were obtained with a Varian $\mathrm{A}-60$ spectrometer in CCL_{4} or CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Optical rotations were determined in chloroform at room temperature with a Carl-Zeiss Winkel spectropolarimeter. Melting points were determined on a standard melting point apparatus and are uncorrected. THF or DME were purified for all purposes by refluxing initially with sodium or with KOH and alumina followed by another distillation from $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$. In all cases, standard grade alumina was used for chromatographic separation unless otherwise stated.

All reactions as well as column chromatography were followed by TLC using microslides with detection by exposure to iodine vapors. Unless otherwise stated, the reactions were worked up as follows. The mixtures were poured into water and extracted twice with ether, and the combined ether extract was washed with dilute HCl followed by water till neutral and dried over anhydrous sodium sulfate.

Preparation and Estimation of Naphthalene Sodium. In a thoroughly cleaned and dry $250-\mathrm{ml}$ two-necked flask was taken 100 ml of freshly purified THF or DME. This was stirred magnetically and $9.6 \mathrm{~g}(75 \mathrm{mmol})$ of freshly crystallized and dried naphthalene was added under nitrogen atmosphere. Freshly cut sodium ($2.9 \mathrm{~g}, 130$ mmol) was added to this solution in relatively small pieces maintaining throughout a positive nitrogen atmosphere. The solution became green in about 15 min and stirring continued for 3 h thereafter. A narrow-mouthed bent glass tube connected with a buret was then inserted below the surface of the reagent. The buret was flushed with nitrogen and kept under nitrogen atmosphere and could be filled with the reagent by application of greater pressure of nitrogen on the surface of the reagent in the flask. Titrations and reactions were carried out by addition under nitrogen atmosphere to a magnetically stirred solution of sterol. This reagent was estimated by addition to a solution of 386 mg (1 mmol) of cholesterol in 4 ml of THF till the solution became faint green. It was observed that 1.6 ml of the reagent was consumed indicating that a 0.6 N solution had been obtained. This was found to be reproducible over several experiments. Exactly identical procedure was followed for preparing $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Li}$ and $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~K}$.
The following experiment describes in detail the use of this reagent for reductive cyclization. The same procedure was followed for all other reductive cyclizations, the only difference being that excess methyl iodide was added prior to workup when trapping of the enolate was desired.

Reductive Cyclization of 4,5-Secocholest-3-yn-5-one (1a) with Naphthalene Sodium. Solution of naphthalene sodium was added under nitrogen atmosphere to a well-stirred solution of 384 mg (1 mmol) of la in 5 ml of THF at room temperature till a faint green end point. It was found that 2.1 mmol of the reagent was required. The faint color discharged by itself in about 10 min after turning off nitrogen. The reaction mixture was worked up in the usual way and chromatographed on alumina. Sufficient pentane was used to elute all the naphthalene. Use of benzene/pentane gave 104 mg of the un-
reacted material followed by 263 mg of 3 -methylene- A-norcholes-tan- 5β-ol (2 a). On crystallization from aqueous methanol this had mp $57-58^{\circ} ;[\alpha] \mathrm{D}+20^{\circ}$ (c 0.12) (lit. $\left.{ }^{2} \mathrm{mp} 58^{\circ},[\alpha] \mathrm{D}+20^{\circ}\right)$. It was identical with an authentic sample in its ir and NMR.
The yields of 2 a were not noticeably affected by reversing the mode of acdition or by lowering the temperature to $0^{\circ} \mathrm{C}$.
The reductive cyclization of la was carried out in an identical fashion using DME as solvent. The result of this experiment as well as th.ose with $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~K}$ and $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Li}$ in THF and DME are given in Table I.

Reductive Cyclization of la with Na in THF/DME with and without Naphthalene. To $384 \mathrm{mg}(1 \mathrm{mmol})$ of 1 a in 8 ml of THF or DME 92 mg (4 mg -atoms) of Na metal and specific amounts of naphthalene were added and stirred at room temperature for 5.5 h under a nitrogen atmosp.aere. No green color was observed throughout the experiment except for a faint green color on the metal surface. The solution was then filtered to remove sodium and washed with dry ether and from the combined filtrates solvent was removed under vacuum to leave a residue which was chromatographed. The results are given in Table III. The yields of 1a, 2a, and 3a are based on the actual weights of the compounds obtained on chromatography.

Naphthalene Sodium/Methyl Iodide on la (Trapping of Enolate Ion). A stirred solution of $384 \mathrm{mg}(1 \mathrm{mmol})$ of la in 5 ml of DME was titrated to a faint green end point with a DME solution of naphthalene sodium and immediately 0.08 ml (1.3 mmol) of methyl iodide in 4 ml of DME was added and the mixture stirred for 10 min . It was then poured into water and extracted with ether after neutralizing. The ether extract was washed with sodium thiosulfate solution and then with water and finally dried over anhydrous sodium sulfate. Removal of ether under vacuum and chromatography as usual gave 128 mg of an oily material which was formulated as $6 \alpha, 6 \beta$-dimethyl-$4,5$-secocholest-3-yn-5-one (5a). It has [$\alpha] \mathrm{D}-3^{\circ}$ (c 0.13); ir (CCL_{4}) 3305 ($\equiv \mathrm{CH}$), $2110(-\mathrm{C} \equiv \mathrm{C}-), 1690 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR ($\left.\mathrm{CCl}_{4}\right) \delta 0.76(3 \mathrm{H}$, $\mathrm{s}, \mathrm{C}-18$ methyl), $1.03,1.04$, and 1.06 (C-19 and C-6 methyls). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}: \mathrm{C}, 84.40 ; \mathrm{H}, 11.72$. Found: C, 84.13; H, 11.43.

This was followed by 235 mg of cyclized alcohol 2a.
Similar results were obtained when DME was replaced by THF. Disubstitution at the 6 position was confirmed by NMR of 11 and its acetate in both of which the $\mathrm{C}-5 \mathrm{H}$ is a singlet.
$6 \alpha, 6 \beta$-Dimethyl-4,5-secocholest-3-yn-5 $\mathbf{6}$-ol (11). To a solution of 410 mg (1 mmol) of acetylenic ketone 5 a in 8 ml of methanol was added $185 \mathrm{mg}(5 \mathrm{mmol})$ of NaBH_{4} in one portion. The reduction was complete in about $4 \mathrm{~h} ; 10 \%$ acetic acid was added dropwise till the solution became slightly acidic. This was then extracted with ether and washed with a solution of sodium bicarbonate and then with water. The ether was dried over anhydrous sodium sulfate and then distilled off under vacuum to yield a thick mass which was chromatographed on alumina. Elution with 1:1 hexane-benzene gave 20 mg of an oil. It had $[\alpha] \mathrm{D}+2^{\circ}(c 0.11)$; ir (CCl_{4}) $3590(\mathrm{OH}), 3310(\equiv \mathrm{CH})$, $2121 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. It was not further characterized.

Further elution gav 350 mg of the crystalline $6 \alpha, 6 \beta$-dimethyl4,5 -secocholest- 3 -yn- 5 -ol (11). This had mp $76-77{ }^{\circ} \mathrm{C}$ when crystall:zed from methanol: [α] $\mathrm{D}+4^{\circ}$ ($c 0.13$); ir $\left(\mathrm{CCl}_{4}\right) 3580(\mathrm{OH})$, 3310 $(\equiv \mathrm{CH}), 2120 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 0.95 ($9 \mathrm{H}, \mathrm{s}, \mathrm{C}-19$ and C-6 methyls), 3.08 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C}-5 \mathrm{H}$). Anal. Calcd for $\mathcal{C}_{29} \mathrm{H}_{50} \mathrm{O}: \mathrm{C}, 84.07 ; \mathrm{H}, 12.08$. Found: C. $83.87 ; \mathrm{H}, 12.26$.

Reduction with LiAlH_{4} in ether gave the same compound.
Acetylation of 11 with acetic anhydride in refluxing pyridine gave the corresponding acetate in quantitative yield. It had $\mathrm{mp} 68^{\circ} \mathrm{C}:[\alpha] \mathrm{D}$ $-20^{\circ}(\mathrm{c} 0.12)$; ir $\left(\mathrm{CCL}_{4}\right) 3400(\equiv \mathrm{CH}), 2150(\mathrm{C} \equiv \mathrm{C}), 1770 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR (CCL) $\delta 0.73$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 0.96 ($9 \mathrm{H} . \mathrm{s}, \mathrm{C}-19$ and C-6 methyls), $2.10\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right), 4.5$ (1 H. s. C-5 H. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$: C, 82.50; H, 11.40. Found: C, 82.27; H, 11.21.

Oxidation of 412 mg of 11 with CrO_{3} and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ overnight at room temperature gave 350 mg of 5 a.

Naphthalene Sodium on 17β-Hydroxy-4,5-secoandrost-3-yn5 -one (1 b). Following the literature ${ }^{2}$ procedure Ib was synthesized and 288 mg of it was treated with naphthalene sodium as described above. Chromatography yielded 260 mg of a mixture of $\mathbf{1 b}$ and $\mathbf{2 b}$ as judged by ir and NMR. Various attempts to separate the mixture failed. The mixture could be estimated to contain $55 \% 2 \mathrm{~b}$ by NMR.

Naphthalene Sodium/Methyl Iodide on 17β-Hydroxy-4,5-secoandrost-3-yn-5-one (1b). Titration of a solution of 288 mg (1 mmol) of 1 b in 5 ml of DME followed by addition of $0.25 \mathrm{ml}(4 \mathrm{mmol})$ of methyl iodide after workup and chromatography gave 117 mg of $6 \alpha, 6 \beta$-dimethyl-17 β-methoxy-4,5-secoandrost-3-yn-5-one (5c). It had $[\alpha] \mathrm{D}-3^{\circ}(\mathrm{c} 0.10)$; ir $\left(\mathrm{CCl}_{4}\right) 3305(\equiv \mathrm{CH}), 2120(\mathrm{C} \equiv \mathrm{C}), 1692(\mathrm{C}=\mathrm{O})$, $1450,1385,1370,1100,1030 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 075(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.0, 1.03, and 1.08 (C-19 and C-6 methyls $1,3.28$ ($3 \mathrm{H}, \mathrm{s}$, OCH_{3}). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2}$: C, $79.95 ; \mathrm{H}, 10.37$. Found: $\mathrm{C}, 80.15$; H, 10.12 .

Further elution with benzene-pentane gave 139 mg of crystalline 3 -methylene-17 β-methoxy- A-norandrostan- 5β-ol (2c). It had mp $151-152^{\circ} \mathrm{C}$ when crystallized from methanol; $|\alpha| \mathrm{D}+21^{\circ}(c 0.12)$; ir $\left(\mathrm{CCl}_{4}\right) 3580(\mathrm{OH}), 890 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.25(3 \mathrm{H}, \mathrm{s}$, OCH_{3}). $4.98\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right.$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}: \mathrm{C}, 78.94 ; \mathrm{H}$, 10.51. Found: C, 78.80; H, 10.40.

Preparation of 4,5-Secoandrost-3-yne-5,17-dione (6). To a stirred solution of 4 ml of pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 400 mg of chromium trioxide. To this 400 mg of $I \mathbf{b}$ in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and left overnight. The reaction mixture was worked up to yield after chromatography 380 mg of 4.5 -secoandrost-3-yne-5,17-dione (6). It had mp 118-120 ${ }^{\circ} \mathrm{C}$; ir (Nujol) 3315 ($\equiv \mathrm{CH}$). 2125 (C $\equiv \mathrm{C}$). 1740 and $1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl). 1.10 (3 H, s, C-19 methyl). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$: C. 79.68: H. 9.15. Found: C, 79.92; H, 8.87.

Naphthalene Sodium on 4,5-Secoandrost-3-yne-5,17-dione (6). A solution of 286 mg (1 mmol) of acetylenic diketone 6 in 4 ml of THF was titrated with naphthalene sodium in THF. Workup and chromatography on alumina gave 65 mg of the unreacted starting material, followed by 130 mg of 3 -methylene- 4 -norandrostan- 53 -ol-17-one (7a). It had $\left[\alpha \mid \mathrm{D}+20^{\circ}(\mathrm{c} 0.11)\right.$; ir $\left(\mathrm{CCl}_{4}\right) 3550(\mathrm{OH}) .1740(\mathrm{C}=0), 900 \mathrm{~cm}^{-1}$ $\left(=\mathrm{CH}_{2}\right)$. The last fraction gave 68 mg of the cyclized diol 2 b . It had mp $188^{\circ} \mathrm{C}$: $\left[\alpha \mid \mathrm{D}+22^{\circ}\right.$ (c 0.13) $\left[\mathrm{lit.}^{2} \mathrm{mp} 188-189^{\circ} \mathrm{C},[\alpha \mid \mathrm{I})+22^{\circ}\right.$ (c $0.12)$]. and had ir and NMR identical with that of an authentic sample. Sodium borohydride reduction of 7a gave 2 b .
Naphthalene Sodium on $6 \alpha, 6 \beta$-Dimethyl-4,5-secocholest-3-yn-5-one (5a). Preformed naphthalene sodium in DME was added to $205 \mathrm{mg}(0.5 \mathrm{mmol})$ of the above acetylenic ketone 5 a in 3 ml of I)ME till a faint green end point. By estimation, it was found that 0.9 mmol of the reagent was consumed. The reaction mixture was worked up as usual and chromatographed on alumina. Elution with pentane, after removal of naphthalene, gave 123 mg of 3 -methylene- $6 \mathrm{cr}, 6 \beta$ -dimethyl- A-norcholestan- 5β-ol (12). It was crystallized from aqueous methanol. It had mp $49-51^{\circ} \mathrm{C}:[\alpha] \mathrm{D}+8^{\circ}$ (c 0.14): ir $\left(\mathrm{CCl}_{4}\right) 3610(\mathrm{OH})$, $900 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2}\right)$; NMR (CCL_{4}) $\delta 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.06. 1.13 (C-19 and C-6 methyls). 4.98 (1 H.s), and $5.25(1 \mathrm{H} . \mathrm{s})\left(=\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O} ; \mathrm{C}, 84.07$; H, 12.08. Found: C. 83.97: H. 11.90 .

Further elution gave 79 mg of 11 identical in all respects with the borohydride reduction product reported earlier.

Similar experiments with naphthalene sodium in THF added to 410 mg (1 mmol) of $\mathbf{5 a}$ in 5 ml of THF gave after workup and chromatography 238 mg of 12 and 162 mg of 11.

For the sake of comparison, the reductive cyclization of $\overline{\mathrm{Da}}$ was at tempted by the liquid ammonia procedure. A solution of 410 mg (1 mmol) of the dimethyl acetylenic ketone $\mathbf{5 a}$ in 8 ml of THF was added to 20 ml of liquid ammonia. To the stirred mixture was added 69 mg (3 mg -atoms) of freshly cut sodium. followed by 1.5 ml of dry $t-\mathrm{BuOH}$. After 6 min . the reaction was quenched by adding methanol. Ammonia was evaporated and the ether soluble portion was chromatographed on silica gel. Elution with hexane gave 370 mg of an oil. It had NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.73$ (3 H . s. C-18 methyl). 1.03, 1.1, 1.26 (C-19 and C-6 methyls), 1.78 ($3 \mathrm{H} . \mathrm{s}, \mathrm{C}-3$ methyl). On the spectral evidence it is tentatively formulated as $3.6 \alpha, 6 \beta$-trimethyl- A-norcholest- 3 -ene (13).

3,6 $6,6 \beta$-Trimethyl-A-norcholesta-1,3-diene (14). To a solution of 207 mg of $6 \alpha, 6 \beta$-dimethyl tertiary alcohol 12 in 20 ml of acetone was added 28 mg of p-toluenesulfonic acid and the mixture was stirred under nitrogen atmosphere. The starting material completely disappeared in about 30 min . Workup and chromatography over alumina gave 185 mg of $3.6 \alpha .68$-trimethyl- 4 -norcholesta-1,3-diene (14). It was crystallized from chloroform-methanol and had $\mathrm{mp} 76-77^{\circ} \mathrm{C}$; $[a \mid \mathrm{D}$ 0°; uv $\lambda_{\text {max }}(E t O H) 245 \mathrm{~nm}(63800)$; ir $\left(\mathrm{CCl}_{4}\right) 2860,1460,1380,1360$ cm^{-1}; NMR (CCl_{4}) $\delta 0.66$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), $0.80,1.04,1.16$ (C-19 and C-6 methyls), 2.0 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-3$ methyl), 5.9 and $6.1(2 \mathrm{H}, \mathrm{AB}$ q, J $=5.5 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{48}: \mathrm{C}, 87.88: \mathrm{H}, 12.12$. Found: $\mathrm{C}, 87.49$, H, 11.90 .
β-Epoxide of 3-Methylene-6 $\alpha, 6 \beta$-dimethyl-A-norcholestan$\mathbf{5 \beta - o l}$ (15 from 12). To 206 mg of the tertiary allylic alcohol 12 was added 10 ml of 0.75 N perbenzoic acid in chloroform and the mixture was kept overnight at $5^{\circ} \mathrm{C}$. The solution was extracted with CHCl_{3} after dilution with water and washed with solutions of potassium iodide, sodium thiosulfate, sodium bicarbonate, and finally water. The CHCl_{3} extract was dried by passing over anhydrous sodium sulfate and concentrated in vacuo. Crystallization from aqueous acetone gave 120 mg of the epoxide 15. It had $\mathrm{mp} 163-164^{\circ} \mathrm{C}:|a| \mathrm{D}+4^{\circ}(\mathrm{c} 0.13)$; ir $\left(\mathrm{CCl}_{4}\right) 3.59(\mathrm{OH}), 1465,1380.912 \mathrm{~cm}^{-1}$: NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.73(3 \mathrm{H}, \mathrm{s}$, C-18 methyl), 1.04 ($9 \mathrm{H}, \mathrm{s}, \mathrm{C}-19$ and C-6 methyls), 2.75 and 3.48 (2 H , $\mathrm{AB} \mathrm{q}, J=5 \mathrm{~Hz}$). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}: \mathrm{C}, 80.93 ; \mathrm{H}, 11.62$. Found: C, 80.68; H, 11.40 .

Another crop (45 mg) of 15 was obtained from the mother liquor.
$3 \alpha, 6 \alpha, 6 \beta$-Trimethyl-A-norcholestane- $3 \beta, 5 \beta$-diol (16). To a solution of 215 mg of the epoxy alcohol 15 in 20 ml of dry ether was added 500 mg of LiAlH_{4} and the mixture was refluxed for 3 h . A saturated solution of aqueous sodium potassium tartarate was added slowly and the product was ether extracted. Removal of ether under vacuum gave 150 mg of an oily material which was crystallized from aqueous methanol. It was formulated as $3 \alpha, 6 \alpha, 6 \beta-$ trimethyl $-A$-nor-cholestane-3p,5s-diol (16). It had mp $95{ }^{\circ} \mathrm{C} ;|r| \mathrm{D}+13^{\circ}$ (c 0.14); ir $\left(\mathrm{CCl}_{4}\right) 3.510(\mathrm{OH}), 1460,1380,1090,1030 \mathrm{~cm}^{-1}:$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.74$ ($3 \mathrm{H} . \mathrm{s}, \mathrm{C}-18$ methyl). 1.06. 1.11 (C-19 and C-6 methyls). 1.6 ($3 \mathrm{H} . \mathrm{s}$. C-3 methyl). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{2}: \mathrm{C}, 80.56 ; \mathrm{H} .12 .04$. Found: C. 80.21: H. 11.71 .

5a, $6 \boldsymbol{\alpha}, 6 \boldsymbol{\beta}$-Trimethyl-A-norcholestan-3-one (17). To 216 mg of the diol 16 was added 16 ml of 5% methanolic HCl and the mixture was refluxed for about 15 min . The reaction mixture was cooled, neut ralized by adding dilute bicarbonate solution, and extracted with ether. Fther was removed under vacuum and the resulting residue chromatographed on alumina. Elution with $1: 1$ hexane-benzene gave 165 mg of $5 \alpha .6 \alpha, 63$-trimethyl- A-norcholestan-3-one (17). Crystallization from aqueous methanol gave $\mathrm{mp} 68-70^{\circ} \mathrm{C}$: $|\mathrm{c}| \mathrm{D}-43^{\circ}$ (c 0.10): ir $\left(\mathrm{CCl}_{4}\right) 1760 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$: NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.08. 1.10 (C-19. C-5, and C. 6 methyls); $\left[\left.a\right|_{\text {:3.5. }}-306^{\circ},[\alpha]_{4.36}-125^{\circ}\right.$. $[\alpha]_{546}-58^{\circ},[\alpha]_{578}-49^{\circ} .|\alpha|_{589}-45^{\circ}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}: 8.8 .99$: H. 12.15. Found: C, 83.68: H. 12.00 .

Deuterium Exchange on $6 \alpha, 6 \beta$-Dimethyl-4,5-secocholest-3-yn-5-one. A solution of 412 mg of dimethyl acet lenic ketone 5 a in NaOI - $\mathrm{I}_{2} \mathrm{O}$ (prepared by adding a few pieces of sodium to $\mathrm{D}_{2} \mathrm{O}$) was refluxed on a water bath, using 5 ml of THF as solvent, under a positive nitrogen atmosphere for 0.5 h . The reaction mixture was worked up by petroleum ether extractions followed by washings with $\mathrm{D}_{2} \mathrm{O}$. The petroleum ether solution was passed through a fine filter to get a clear solution which was then concentrated and dried. By repeating the process a couple of times, complete deuterium exchange, as determined by disappearance of ir absorption at $3310 \mathrm{~cm}(\equiv \mathrm{CH})$, was achieved to give 390 mg of 5 e : ir $\left(\mathrm{CCl}_{4}\right) 2590(\equiv \mathrm{CD}), 2125(\mathrm{C} \equiv \mathrm{C})$. $1690 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Naphthalene Sodium on Monodeuterated Acetylenic Ketone (5e). A solution of preformed naphthalene sodium in THF was added to a solution of 413 mg of monodeuterated acetylenic ketone $\mathbf{5 e}$ in 5 ml of THF till a faint green end point. The color was allowed to discharge by itself after which the reaction mixture was worked up by extractions with petroleum ether (bp $40-60^{\circ} \mathrm{C}$) followed by $\mathrm{I}_{2} \mathrm{O}$ washings. Petroleum ether was concentrated in vacuo and chromatographed over silica gel. Elution with pentane gave initially 240 mg of the reductively cyclized product. Later fractions gave 162 mg of $6 \alpha, 6 \beta$-dimethyl-4.5-secocholest-3-yn-5 - ol (11) which had ir (CCl ${ }_{4}$) $3590(\mathrm{OH}), 3310(\equiv \mathrm{CH}), 2120 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$. The peak at $2.590 \mathrm{~cm}^{-1}$ ($\equiv \mathrm{CD}$) was completely absent. Its NMR was identical with that of undeuterated 11 showing that the $5 a-H$ had not been replaced by deuterium.

The reductively cyclized product, on the other hand. contaihed considerable monudeuterated compound accompanying some undeuterated material. A careful comparison by NMR of the areas under the curve with the undeuterated 12 at the vinylic position indicated
that the singlet at $\delta 5.25$ integrated for $0.8-1.0$ protons and the relative areas at $\delta 5.25: 4.98$ were 4:1.

4-Methyl-4,5-secocholest-3-yn-5-one (1c). 4-Methylcholest4 -en-3-one was prepared from cholestenone by treating with potassium tert-butoxide and methyl iodide in tert-butyl alcohol. ${ }^{35}$ This was then epoxidized by addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ at a pH of about 12. The resulting 4,5 -epoxy-4-methylcholestan-3-one was converted to 1 c as follows. To a solution of $1 \mathrm{~g}(2.5 \mathrm{mmol})$ of the above epoxy ketone in 250 ml of ethanol was added a solution of 470 mg of tosylhydrazine in 50 ml of ethanol. The reaction mixture was refluxed for 3-4 h. The alcohol was removed under vacuum and the resulting brown residue extracted with ether. The ether layer was washed with a solution of sodium bicarbonate, followed by water washings and dried over anhydrous sodium sulfate. Removal of ether gave a brown, gummy mass which was chromatographed over alumina. Elution with $1: 1$ hexanebenzene gave 650 mg of methyl acetylenic ketone 1 c . It was an oil and had $[\alpha] D+29^{\circ}(c 0.12)$; ir $\left(\mathrm{CCL}_{4}\right) 2120(\mathrm{C} \equiv \mathrm{C}), 1700(\mathrm{C}=\mathrm{O}), 1460,1365$, $1265,1070,970,940 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.76$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.08 (3 H.s, C-19 methyl). 1.65 ($3 \mathrm{H}, \mathrm{s},-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}: \mathrm{C}, 84.35$: H. 11.63. Found: C, $84.02 ; \mathrm{H}, 11.29$.

Naphthalene Sodium on 4-Methyl-4,5-secocholest-3-yn-5-one (1c). A solution of 398 mg of 4 -methyl- 4,5 -secocholest- 3 -yn-5-one in 5 ml of THF was titrated with naphthalene sodium in THF till a faint green color developed. The reaction mixture was worked up as usual, chromatographed on alumina, and eluted with pentane to remove all the naphthalene. Increasing the polarity by taking 10% benzene in pentane gave 220 mg of the unreacted starting material lc followed by 160 mg of the more polar mixture of stereoisomeric 3-ethylidene-A-norcholestan- 5β-ols $(18 \mathbf{a}+18 b)$. This mixture could not be separated and had $[\alpha] \mathrm{D}+28^{\circ} \mathrm{C}(\mathrm{c} 0.13)$; ir $\left(\mathrm{CCl}_{4}\right) 3500(\mathrm{OH}), 1450,1375$, 1020, 978, $935,912,885 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}: \mathrm{C}, 83.90 ; \mathrm{H}$, 12.07. Found: C, 83.56; H, 12.41 .

Naphthalene Sodium/Methyl Iodide on 4-Methyl-4,5-seco-cholest-3-yn-5-one (Ic). A solution of naphthalene sodium in DME was added to a well-stirred solution of $398 \mathrm{mg}(1 \mathrm{mmol})$ of acetylenic ketone lc in 5 ml of DME till a faint green end point, and immediately $0.09 \mathrm{ml}(1.3 \mathrm{mmol})$ of methyl iodide was added. The reaction mixture was stirred for the next 10 min , poured into water, neutralized, and ether extracted. The ether solution was then washed with a solution of sodium thiosulfate and finally with water. Removal of ether gave a gum which was chromatographed over silica gel and eluted with 1:1 hexane-benzene. Initial fractions gave 210 mg of $4,6 \alpha, 6 \beta$-trimethyl-4,5-secocholest-3-yn-5-one (5d). It had $[\kappa] \mathrm{D}-2^{\circ}(c \quad 0.14)$; ir $\left(\mathrm{CCl}_{4}\right)$ $2120(\mathrm{C} \equiv \mathrm{C}), 1695(\mathrm{C}=\mathrm{O}), 1580 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.68(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.0, 1.15 (C-19 and C-6 methyls), $1.76\left(3 \mathrm{H}, \mathrm{s},-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}: \mathrm{C}, 84.45 ; \mathrm{H}, 11.81$. Found: C, 84.19; H, 11.60 .

Later fractions gave 160 mg of the cyclized compounds 18 a and 18 b .
Conversion of the Cyclized Tertiary Alcohols (18a and 18b) to Ketone (19). To a solution of $190 \mathrm{mg}(0.5 \mathrm{mmol})$ of tertiary allylic alcohol ($18 \mathbf{a}$ and $18 \mathbf{b}$) in 20 ml of acetone containing 2-3 drops of water was added a solution of 2 mg of p-toluenesulfonic acid in 2 ml of acetone with constant stirring under nitrogen atmosphere. After 1 h the reaction mixture was worked up and chromatographed over alumina. Elution with benzene gave initially an isomeric alcohol which had $\left[\alpha \mid \mathrm{D}+55^{\circ}(c 0.10)\right.$. Later fractions gave the other isomeric alcohol which had $[\alpha] D+41^{\circ}(c 0.11)$.

To a stirred solution of 1 ml of pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 100 $\mathrm{mg}(1 \mathrm{mmol})$ of chromium trioxide. To this $100 \mathrm{mg}(0.25 \mathrm{mmol})$ of the isomeric alcohol, $[\alpha] \mathrm{D}+55^{\circ}$, in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and left overnight. The reaction mixture was worked up as described elsewhere and chromatographed on alumina. Elution with benzene gave 60 mg of ketone 19. It was crystallized from methanol-acetone and had mp $93-95{ }^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}+98^{\circ}$ (c 0.12); uv $\lambda_{\text {max }}(\mathrm{EtOH}) 257 \mathrm{~nm}(\epsilon 15000)$; ir $\left(\mathrm{CCl}_{4}\right) 1700(\mathrm{C}=\mathrm{O}) .1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}): \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.70(3 \mathrm{H}, \mathrm{s}$, C-18 methyl), 1.01 ($\mathrm{C}-19$ methyl). $2.04\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COCH}_{3}\right.$) shows no vinyl hydrogen. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}, 81.45$: $\mathrm{H}, 11.08$. Found: C, 81.58; H, 11.34.

Similar oxidation of the alcohol, $[\alpha] \mathrm{D}+41^{\circ}$, gave the same ketone (19).
β-Epoxides of 18 a and $\mathbf{1 8 b}$. To 180 mg of the stereoisomeric allylic alcohols ($18 \mathbf{a}$ and 18 b) was added 8 ml of 0.77 N perbenzoic acid in chloroform and the mixture was left overnight at $5^{\circ} \mathrm{C}$. It was worked up as described earlier and chromatographed over alumina. Elution with benzene gave initially 68 mg of 21 which crystallized readily from methanol. It had mp $108-110^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}+11^{\circ}(\mathrm{c} 0.11)$; ir (KBr) 3400 , 2880, 1450, 1370, $1025 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.71$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 0.97 (C-19 methyl), $1.5(3 \mathrm{H} . \mathrm{d}, J=6 \mathrm{~Hz})$, and $3.11(1 \mathrm{H}, \mathrm{q}, J=6$ $\mathrm{Hz})\left[-\mathrm{CH}(\mathrm{O}) \mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{2}$: C, 80.71; H. 11.61. Found: C, 80.47: H. 11.35.

Later fractions gave 92 mg of $\mathbf{2 0}$ which was crystallized from
methenol. It had mp $96-98^{\circ} \mathrm{C}[\alpha] \mathrm{D}+10^{\circ}(c 0.13)$; ir (KBr) 3390, 2880, $1450,1370,1025 \mathrm{~cm}^{-1}$: NMR (CCl_{4}) $\delta 0.70$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.01 (3 H, s, C-19 methyl), $1.28(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz})$, and $3.11(1 \mathrm{H}, \mathrm{q}, J=6$ $\mathrm{Hz})\left[-\mathrm{CH}(\mathrm{O}) \mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{2}: \mathrm{C}, 80.71 ; \mathrm{H}, 11.61$. Found: C, 80.79; H, 11.39.
$3 \boldsymbol{\alpha}$-Ethyl-A-norcholestane-3 $\beta, 5 \beta$-diol (22). To a solution of 104 mg (025 mmol) of the epoxy tertiary alcohol 20 in 50 ml of dry ether was added 400 mg of LiAlH_{4} and the mixture was refluxed for 3 h . After the addition of aqueous sodium potassium tartrate, the product was extracted with ether, dried, and concentrated under vacuum to yield a residue which was chromatographed over alumina. Elution with $:: 1$ benzene-ether gave 80 mg of the diol 22 . On crystallization from methanol, it had mp $113-114^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}-6^{\circ}(\mathrm{c} 0.13)$; ir (KBr) 3400 $\mathrm{cm}^{-1}(\mathrm{OH})$; NMR (CDCl_{3}) $\delta 0.65(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl) and $1.0(\mathrm{C}-19$ methyl). [The corresponding 3α-methyl- A-norcholestane- $3 \beta, 5 \beta$-diol has NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.65$ (C-18 methyl) and 1.00 (C-19 methyl)]. ${ }^{2}$ Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{2}$: C, 80.32; H, 12.03. Found: C, $80.15 ; \mathrm{H}, 11.87$.

Reduction of 21 under the above conditions gave the same diol 22 as confirmed by identity of melting point, [α]D, ir, and NMR.

4-Methyl-4,5-secocholest-3-yn-5 α - and -5 β-ols and 5-Ketal (24) from lc. To a solution of 396 mg (1 mmol) of methyl acetylenic ketone cc in 20 ml of methanol was added $111 \mathrm{mg}(3 \mathrm{mmol})$ of sodium borohydride in one portion. The reaction mixture was worked up as described earlier and chromatographed over alumina. Elution with 1:1 hexane-benzene gave 160 mg of 4-methyl-4,5-secocholest-3-yn-5 α-ol. It had mp $87-88^{\circ} \mathrm{C} ;[\alpha] \mathrm{L}_{\mathrm{C}}+32^{\circ}$.

La-er elutions gave 210 mg of 4-methyl-4,5-secocholest-3-yn-5 8 -ol (23). It had $\mathrm{mp} 78-80^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}+12^{\circ}$ (c 0.12). (The configurations of these compounds have been tentatively assigned on the basis of their rotat.ons.)
To a solution of $990 \mathrm{mg}(2.5 \mathrm{mmol})$ of 1 c in 50 ml of dry benzene was added 50 mg of p-toluenesulfonic acid and 248 mg (4 mmol) of ethylene glycol. The flask was attached to a Dean-Stark unit and water was azeotroped out. Workup and chromatography gave 740 mg of 4-methyl-4,5-secocholest-3-yne-5-ketal (24).

Naphthalene Sodium on 23 and 24. A solution of naphthalene sodicm in THF was added to a solution of 398 mg (1 mmol) of 23 in 5 ml of THF till a faint green end point. By estimation, it was found that 1.0 mmol of the reagent was consumed. Workup and chromatography as in earlier experiments gave 388 mg of starting material 23.

Acdition of 3 mmol of the reagent to $398 \mathrm{mg}(1 \mathrm{mmol})$ of 23 and stirring for 25 min gave after workup and chromatography 390 mg of the starting material 23.

A solution of naphthalene sodium in THF was added to a solution of $104 \mathrm{mg}(0.25 \mathrm{mmol})$ of the ketal 24 in 3 ml of THF till a faint green end point. It took up 0.1 mmol of the reagent. Workup and chromatography gave 100 mg of the starting material 24. Repetition of the above experiment with $134 \mathrm{mg}(0.25 \mathrm{mmol})$ of 24 by adding 0.5 mmol of the reagent and stirring for 25 min gave, after workup and chromatcography, 101 mg of the starting ketal 24.

4a,5-Seco-A-homocholest-4(4a)-yn-5-one (25). Sodamide ${ }^{14}$ was prepared by bubbling ammonia into a solution of 0.6 N naphthalene sodium externally cooled in an ice bath till the color changed from green to greyish. This solution was practically free of sodium. Ammonia was then displaced by nitrogen and the resulting turbid solution was added in fivefold excess to a solution of 196 mg of methyl acetylenic ketone 1 c in 30 ml of dry toluene. The mixture was refluxed for 12 h and allowed to cool to room temperature. Aqueous HCl was added slowly to make it acidic and then the mixture was stirred for 20 min . The two layers were separated and the aqueous layer was saturated with brine solution and extracted with ether. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. Removal of solvent and chromatography over alumina gave, after naphthalene, 280 mg of an oily mixture which was not identified.

Later elutions gave 30 mg of the isomerized acetylenic ketone $\mathbf{2 5}$ as shown by ir and by formation of Ag salt. Its constants are given below.

To obtain better yields of the isomerized ketone 25, the above experiment was repeated with the ketal 24. Sodamide prepared as described in the previous reaction was added in excess in a solution of 600 mg (1.4 mmol) of ketal 24 in 80 ml of dry toluene and refluxed for 12 h Workup and chromatography as before gave 400 mg of the isomerized ketal. This ketal was dissolved in 5 ml of THF, treated with 10 ml of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, and left overnight. Workup and chromatography gave 300 mg of $4 \mathrm{a}, 5-\mathrm{sec}-A$-homocholest-4(4a)-yn-5-one (25) as an oil: ir $\left(\mathrm{CCl}_{4}\right) 3310(\cong \mathrm{CH}), 2210(\mathrm{C} \equiv \mathrm{C}), 1709 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; NMR (CC-4) $\delta 0.75$ (3 H. s, C-18 methyl), 1.08 (C-19 methyl). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}: \mathrm{C}, 84.35$: F, 11.63. Found: C, 84.10; H, 11.29.

4-Methylenecholestan-5 β-ol (26). A solution of preformed naphthalene sodium in THF was added to a stirred solution of 198 $\mathrm{mg}(0.5 \mathrm{mmol})$ of the acetylenic ketone 25 in 3 ml of THF to a faint green end point. Approximately 2 mmol of the reagent was consumed per millimole of the starting material. Workup and chromatography over alumina and eluting with pentane gave 20 mg of the unreacted starting material 25. Increasing the polarity of the eluent gave 160 mg of 4 -methylenecholestan -58 -ol (26). It had $[\alpha] \mathrm{D}+21^{\circ}(c 0.11)$ but could not be crystallized: ir $\left(\mathrm{CCl}_{4}\right) 3510(\mathrm{OH}), 910 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2}\right)$; NMR (CCl_{4}) $\delta 0.70$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.03 (C-19 methyl), 4.96 (2 $\mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}$).
4α-Methylcholestane- $4 \beta, 5 \beta$-diol (30) from 4-Methylcholest3 -en- 5β-ol (28). To $100 \mathrm{mg}(0.25 \mathrm{mmol})$ of the allylic alcohol 28^{15} was added 4 ml of 0.77 N perbenzoic acid in chloroform and the mixture was left overnight at $5^{\circ} \mathrm{C}$. Workup and crystallization from methanol gave 72 mg of the epoxide 29. It had mp 113-114 ${ }^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}+46^{\circ}(c$ 0.13); ir (KBr) $3340(\mathrm{OH}), 1030 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 0.97 (C-19 methyl), 1.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-4$ methyl), 3.18 (1 H , broad s, C-3 H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{2}$: C, 80.71; H, 11.61. Found: C, 80.30; H, 11.70.

To a solution of $104 \mathrm{mg}(0.25 \mathrm{mmol})$ of the epoxy alcohol 29 in 50 ml of dry ether was added 400 mg of LiAlH_{4} and the mixture was refluxed for 3 hr . Workup and crystallization from methanol gave 70 mg of 4α-methylcholestane- $4 \beta, 5 \beta$-diol (30). It had mp 163 - $164{ }^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}+8^{\circ}$ (c 0.11); ir (KBr) $3400 \mathrm{~cm}^{-1}(\mathrm{OH})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.65$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 0.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-19$ methyl), 1.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-4$ methyl). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{2}: \mathrm{C}, 80.32 ; \mathrm{H}, 12.03$. Found: C, $80.18 ; \mathrm{H}, 11.67$.
The same diol 30 was produced along with an isomer by treating 300 mg of 4 -methylcholest-4-ene ${ }^{3}$ (obtained by $\mathrm{LiAlH}_{4} / \mathrm{AlCl}_{3}$ reduction of 4-methylcholest-4-en-3-one) dissolved in 25 ml of ether with a solution of 300 mg of OsO_{4} in 2.5 ml of pyridine and working up after 40 h .
Conversion of 26 via Epoxide 27 to Diol 30. To 100 mg (0.25 mmol) of the tertiary allylic alcohol 26 was added 4 ml of 0.77 N perbenzoic acid in chloroform and the mixture was left overnight at $5^{\circ} \mathrm{C}$. Workup and crystallization from aqueous methanol gave 72 mg of the corresponding epoxide 27. It had mp $110-112{ }^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}+7^{\circ}$ (c 0.12); ir (KBr) $3350 \mathrm{~cm}^{-1}(\mathrm{OH})$; NMR ($\left.\mathrm{CCl}_{4}\right) \delta 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.0 (C-19 methyl), $2.69(1 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}$), and $3.12(1 \mathrm{H}, \mathrm{d}$ of d, $J=$ 5 and 1.5 Hz$)\left[-(\mathrm{O}) \mathrm{CH}_{2}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{2}: \mathrm{C}, 80.71 ; \mathrm{H}, 11.61$. Found: C, 80.57; H, 11.72.
To a solution of $104 \mathrm{mg}(0.25 \mathrm{mmol})$ of the above epoxy tertiary alcohol 27 in 50 ml of dry ether was added 400 mg of LiAlH_{4} and the mixture was refluxed for 3 h . Workup of the reaction mixture followed by crystallization from methanol gave 70 mg of 30 identical in its melting point, $[\alpha \mid \mathrm{D}$, ir, and NMR with that prepared in the previous experiment.

O-Methylation of Cholesterol with Methyl Iodide and Naphthalene Sodium. A solution of naphthalene sodium in DME was added to a stirred solution of $386 \mathrm{mg}(1 \mathrm{mmol})$ of cholesterol in 5 ml of DME to a faint green end point, followed by the immediate addition of $0.08 \mathrm{ml}(1.3 \mathrm{mmol})$ of methyl iodide in 3 ml of DME. The reaction mixture was worked up as usual and chromatographed on silica gel. Elution with pentane followed by more polar mixtures with benzene gave after naphthalene 330 mg of 3β-methoxycholest- 5 -ene. It had mp $78{ }^{\circ} \mathrm{C}$ (lit..$^{36} \mathrm{mp} 84^{\circ} \mathrm{C}$); NMR ($\left.\mathrm{CCl}_{4}\right) \delta 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-18$ methyl), 1.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-19$ methyl), $3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-3 \mathrm{H}$), $3.26(3 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{OCH}_{3}\right), 5.26(1 \mathrm{H}, \mathrm{m}, \mathrm{C}-6 \mathrm{H})$.

The methylation was carried out both in THF and in DME. The proportion of the methyl ether formed varied with solvent as well as the concentration of the reagent.
Similar methylations using naphthalene lithium and naphthalene potassium were also carried out. The results are given in Table II.
Acknowledgment. We wish to thank Ciba-Geigy Research Centre and Hindustan Lever Research Centre for NMR spectra and the former for microanalysis. We are grateful to Dr. W. W. Conover of Stanford University for the $360-\mathrm{MHz}$ NMR spectrum.

Appendix

Additional evidence which strongly supports the mechanism given in Schemes V and VI has now been obtained. Reverse dropwise addition of $1 \mathbf{c}$ in THF to naphthalene sodium in THF gave a $70(\pm 3): 30(\pm 3)$ ratio of $18 \mathbf{a}: 18 \mathbf{b}$. This means that initial addition across the acetylene is syn and the corresponding vinyl radical is trapped by reduction to vinyl carbanion before it equilibrates to the extent that it does in
normal addition. This is to be expected because of the excess of reducing agent present during the reverse addition. This dependency of ratio $18 \mathbf{a}: 18 \mathrm{~b}$ on mode of addition would not be expected if there was equilibration at the vinyl carbanion stage. This possibility had been considered unlikely because of the results of vinyl halide reductions with naphthalene sodium. ${ }^{32}$

It also became essential to put the configurational assignment of $18 a$ and $18 b$ on a stronger footing. This has been done using $360-\mathrm{MHz}$ NMR. ${ }^{33}$ Decoupling with the vinyl hydrogen showed that the methyl of the ethylidene group of the major isomer occurs at $\delta 1.60$ and has a distinctly smaller band-width at half height than the methyl at $\delta 1.75$ due to the minor isomer. In the structure $\mathbf{1 8 b}$ assigned to the latter, the methylene at C-2 is trans tc the methyl and hence greater homoallylic coupling ${ }^{34}$ is to be expected.

Registry No.-la, 21489-86-1; lb, 17541-44-5; 1c, 58502-98-0; 2c, 58502-99-1; 5a, 58503-00-7; 5c, 52091-54-0; 5d, 58503-01-8; 5e, 58503-02-9; 6, 52091-60-8; 7a, 58503-03-0; 11, 58503-04-1; 11 acetate, $58512-16-6 ; 12,58503-05-2 ; 13,58503-06-3$; 14, 58503-07-4; 15, 58503-08-5; 16, 58503-09-6; 17, 58503-10-9; 18a, 58503-11-0; 18b, $58503-12-1 ; 19,2 \leq 298-82-6 ; 20,58503-13-2 ; 21,58503-14-3 ; 22$, 58503-15-4; 23, 58503-16-5; 235α analogue, 58526-09-3; 24, 58503-17-6; 25, 58503-18-7; 26, 58503-19-8; 27, 58503-20-1; 28, 58503-21-2; 29, 58503-22-3; 30, 58503-23-4; naphthalene sodium, 3481-12-7; naphthalene potassium, 4216-48-2; naphthalene lithium, 7308-67-0; 4,5-epoxy-4-methylcholestan-3-one, 58526-10-6; tosylhydrazine, 539-44-6; cholesterol, 57-88-7; methyl iodide, 74-88-4; 3ß-methoxy-cholest-5-ene, 1174-92-1.

References and Notes

(1) G. Stork, S. Malhotra, H. Thompson, and M. Uchibayashi, J. Am. Chem. Soc., 87, 1148-1149 (1965).
(2) S. K. Pradhan, and V. M. Girijavallabhan, Steroids, 13, 11-20 (1969).
(3) N. Y. Zachariah, unpublished work from Regional Research Laboratory, Hyderabad.
(4) (a) Presented in fart at Symposium on "Reaction Mechanisms in Organic Chemistry" at the 62 nd session of the Indian Science Congress. New Delhi, 1975; (b) partly abstracted from Ph.D. Dissertation of R. Subramanian. CSIR Fellow, University of Bombay, 1974.
(5) N. D. Scott, J. F. Walker, and V. L. Hansley, J. Am. Chem. Soc., 58, 2442-2444 (1936).
(6) For recent references, see L. L. Miller, J. Chem. Educ., 48, 168-173 (1971); N. L. Holy and J. D. Marcum, Angew. Chem., Int. Ed. Engl., 10, 115-124 (1971).
(7) (a) The mass spectrum of this gave no molecular ion peak. The highest peak at $m / e 360$ was formed by loss of 52 due to an extremely facile McLafferty rearrangement. An equally facile loss of 52 mass units was found with 1a. (b) Disubstitution at C-6 was confirmed by NMR of 11 obtained by NaBH_{4} reduction of 5 a.
(8) The O-methylation was examined further. See Table II
(9) Only the overreduction product of 12 was obtained using $\mathrm{Na}-\mathrm{NH}_{3}-t-\mathrm{BuOH}$.
(10) Spectral evidence is given in the Experimental Section. All partial formulas given henceforth refer to cholestane derivatives.
(11) D. Curotti and A. Romeo, Gazz. Chim. Ital., 95, 992-996 (1965).
(12) B. V. Cheney, J. Am. Chem. Soc., 90, 5386-5390 (1968). For a recent example, see S. K. Pradhan and V. M. Girijavallabhan, Chem. Commun., 644-645 (1970).
(13) Reductive cyclization is not restricted to exo olefin formation. This is demonstrated by successful cyclization of cyclodecyn-6-one with $\mathrm{Li}_{\mathrm{i}} \mathrm{NH}_{3}$: R. J. Balf, B. Rac, and L. Weiler, Can. J. Chem., 49, 3135-3142 (1971).
(14) Sodamide formation has not been independently proved. Sodium hydride formations on buכbling hydrogen has been established. S. Bank and T. A. Lois. J. Am. Chem. Soc., 90, 4505-4506 (1968).
(15) We thank V. B. Thaker for a sample of 28. The 5β configuration of this is based on its method of preparation and on its specific rotation. It has $[\alpha] \mathrm{D}$ $+102^{\circ}$, which compared with cholest-3-en-5 β-ol, $[\alpha] \mathrm{D}+94^{\circ}$, whereas cholest-3-en-5 $\alpha-3$ has $[\alpha] \mathrm{D}-14^{\circ}$ [A. Nickon and W. L. Mendelson, Can. J. Chem., 43, 1419-1428 (1965)].
(16) The radicals are assumed to be nonlinear with a relatively low energy barrier to inversion. (a) See review by L. A. Singer, Sel. Org. Transform., 2, 239-268 (1972); (b) G. D. Sargent and M. W. Browne, J Am. Chem Soc., 89, 2788-2790 (1967).
(17) H. O. House and E. F. Kinloch, J. Org. Chem., 39, 747-755 (1974), and references cited therein.
(18) H. B. Henbest and T. I. Wrigley. J. Chem. Soc., 4596-4604 (1957).
(19) W M. Moore anc D. G. Peters, J. Am. Chem. Soc., 97, 139-144 (1975).
(20) P. T. Lansbury, T. R. Demmin, G. E. DuBois, and V. R. Haddon, J. Am. Chem. Soc., 97, 394-403 (1975). See note 15 on p 402.
(21) Review by S. I. Philler and R. Tanaka, Sel. Org. Transform., 1, 143-238 (1970).
(22) $E_{1 / 2}$ for substituted acetylenes is estimated to be more negative than -3.0 V (vs. SCE) by House (ref 17) while that for acetone is -2.1 V according to C. L. Perrin, Prog. Phys. Org. Chem., 3, 165-316 (1965).
(23) D. A. Dadley and A. G. Evans, J. Chem. Soc. B, 418-422 (1967); D. A.

Dadley and A. G. Evans, ibid., 107-111(1968); A. Rainis and M. Szwarc J. Am. Chem. Soc., 96, 3008-3010 (1974).
(24) There appear to be no reports of reactions with α, β-unsaturated ketones either. Preliminary work in our laboratory indicates formation of roughly equal amounts of saturated ketone and pinacol.
(25) C. D. Gutsche. I. Y. C. Tao, and J. Kozma. J. Org. Chem., 32, 1782-1790 (1967)
(26) It is worth noting that no intramolecular nucleophilic attack by the alkoxide on the acetylene takes place under the reaction conditions.
(27) S. Bank and B. Bockrath, J. Am. Chem. Soc., 93, 430-437 (1971).
(28) J. K. Crandall and D. J. Keyton, Tetrahedron Lett., 1653-1656 (1969), report cyclization of 5 -undecynyl radical to hexylidene cyclopentane. The ϵ dodecynyl radical failed to cyclize. Successful cyclization to 26 must reflect primarily the greater stability of the radical ion. though greater rigidity in the steroid molecule may also contribute.
(29) It is not implied that endo double bond formation is prohibited. Hence there is no contradiction with results reported in ref 13
(30) A proton abstracted from the solvent by the radical ion is expected to be removed from circulation very rapidly by the vinyl carbanion or the reagent.
(31) K. Suga, S. Watanabe, and T. Suzuki, Can. J. Chem., 46, 3041-3045 (1968); S. Watanabe. K. Suga, T. Fujita, and K. Fujiyoshi, Chem. Ind. (London), 1811 (1969).
(32) Observations by G. D. Sargent and M. W. Browne, J. Am. Chem. Soc., 89, 2788 (1967), taken in sonjunction with those of A. J. Fry and M. Mitnick. J. Am. Chem. Soc., 91, 6207 (1969).
(33) The NMR was done in a Bruker HX-360 instrument at Stanford University. We are grateful to Dr . H. J. Ringold for arranging the determination.
(34) R. R. Fraser, Can. J. Chem., 38, 549 (1960).
(35) -. J. Ringold and S. K. Malhotra, J. Am. Chem. Soc., 84, 3402-3403 (1962).
(36) I. M. Klotz, J. Am. Chem. Soc., 66, 88-89 (1944).

Nucleophilic Additions to Aldehydes and Ketones. 2. ${ }^{1}$ Reactions of Heterocyclic Aldehydes with Hydroxide Ions

W. J. Scott, W. J. Bover, ${ }^{3}$ K. Bratin, ${ }^{4}$ and P. Zuman*2
Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676

Received July 30, 1975

Three groups of heterocyclic carboxaldehydes can be distinguished according to their reactivity toward hydroxide ions: to the first group belong nonhydrated five-membered heterocyclic aldehydes (derivatives of furan, thiophene, and N -substituted pyrrole) which add hydroxide ions to the carbon-oxygen double bond in a similar way as benzaldehydes. The second groups consists of pyrrole and indole derivatives where in alkaline media the NH group dissociates before the formyl group is attacked. Hydrated aldehydes (pyridine, thiazole, and imidazole derivatives) belonging to the third group show dissociation of the geminal diol. Equilibrium constants of these three types of zeactions were measured spectrophotometrically. Most of the aldehydes studied undergo electrooxidation as geminal diol anions which was followed polarographically. Ring substituents and the nature of the heteroatom affect the values of equilibrium constants and half-wave potentials. In indole and pyrrole derivatives a specific interaction between the formyl group and the heterocycle is indicated.

In previous work ${ }^{5}$ an acidity scale J_{-}has been developed to be used in strongly alkaline media for reactions involving addition of hydroxide ions. Some meta- and para-substituted benzaldehydes have been used as indicators for characterizing acidity of aqueous sodium hydroxide solutions. By means of this scale thermodynamic equilibrium constants for hydroxide ion additions to other meta- and para-substituted benzaldehydes were determined. ${ }^{1}$ Corresponding $\mathrm{p} K$ values were correlated with Hammett substituent constants σ by means of a reaction constant $\rho=2.76[r=0.994, S$ (est) 0.012$]$. Later Greenzaid ${ }^{6}$ also measured spectrophotometrically the ratio of concentrations of the anion of the geminal diol to that of the free aldehydic form. The concentration of an unspecified hydroxide was used in calculation of equilibrium constants of the reaction 1

$$
\begin{equation*}
\mathrm{ArCHO}+\mathrm{OH}^{-} \stackrel{K}{\rightleftharpoons} \mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-} \tag{1}
\end{equation*}
$$

instead of acidity functions and the activity term $y_{\mathrm{ArCH}}^{\left(\mathrm{O}^{-}\right) \mathrm{OH}}{ }^{\prime} y_{\mathrm{ArCHO}^{2}} y_{\mathrm{OH}^{-}}$was neglected. This approach restricted the study to solutions of the unspecified base below 1.5 M and this in turn limited the investigation to compounds with electronegative substituents. Reported values could have been considered as practical equilibrium constants, provided that ionic strength was kept constant. As this was not the case, the values reported by Greenzaid ${ }^{6}$ correspond for each compound to another ionic strength and hence can be considered only as "crude practical constants". Correlation of these approximate values for the limited group of monosubstituted and some disubstituted benzaldehydes accessible to measurement with Hammett substituent constants σ greater than zero, gave $\rho=2.24$ ($r=0.982$). The susceptibility of benzaldehydes to substituent effects for hydroxide addition is similar to that for methoxide addition, reported recently. ${ }^{7}$

The anion of the geminal diol has been proved ${ }^{8}$ to be the electroactive form in the electrooxidation of benzaldehydes in alkaline media. Rate constants for the addition of the hydroxide ion and the reverse reaction obtained from polarographic data on benzaldehyde oxidations were about 1.5 orders of magnitude larger than values for 3 - and 4 -chlorobenzaldehydes measured by stopped-flow technique. ${ }^{9}$ This difference might reflect different reaction conditions used, but also may be caused by the effect of the electric field in the vicinity of the electrode. Another electrochemical method, based on constant potential electrolysis of the corresponding aromatic acid at a rotating disc electrode at pH 6.2 , was proposed. ${ }^{10}$ The rate constants found ${ }^{10}$ for 3 -chlorobenzaldehyde which are seven to eight orders of magnitude smaller than those above were attributed to loss of water rather than OH^{-}. Since pH dependence of these constants has not been studied, it is not possible to comment on their attribution, but the value of the equilibrium constant, indicating that about 50% of 3 chlorobenzaldehyde exists in hydrated form, is clearly doubtful.

In this contribution both the studies of the equilibria involving addition of hydroxide and the electrooxidation of the aldehydic group are extended to heterocyclic compounds bearing an aldehydic group. Attention is being paid to the role of the nature of the heterocyclic ring and effect of substituents as well as to competitive reactions.

Experimental Section

Chemicals and Solutions. Fural, 5-methylfural, 5-hydroxymethylfural, 2 -thiophenecarboxaldehyde, 3 -methyl-2-thiophenecartoxaldehyde, 5 -bromo- 2 -thiophenecarboxaldehyde, 2 -pyrrolecartoxaldehyde, N-methyl-2-pyrrolecarboxaldehyde, 3 -indolecarboxaldehyde, N-benzyl- 3 -indolecarboxaldehyde, N-ethyl- 3 -carbazolecarboxaldehyde, and 3-cinnolinecarboxaldehyde (Aldrich Chemical Co.), N-phenyl-2,5-dimethyl-3-pyrrolecarboxaldehyde

Table I. Oxidation Half-Wave Potentials and Equilibrium Constants of Addition of Hydroxide Ions to Nonhydrated Heterocyclic Aldehydes

Registry no.	Aldehyde	$\lambda_{\text {max }}, \mathrm{nm}$	$\begin{gathered} \epsilon \times 10^{-3} \\ \text { l. } \mathrm{mol}^{-1} \mathrm{~cm}^{-1} \end{gathered}$	$\mathrm{p} K^{\prime a}$	$\begin{gathered} \lambda_{\text {meas, }}{ }^{b} \\ \text { nm } \end{gathered}$	Δ^{c}	$E_{1 / 2}{ }^{d}$ V vs. SCE	
							5.0 M NaOH	$\begin{aligned} & 1.0 \mathrm{M} \\ & \mathrm{NaOH} \end{aligned}$
98-01-1	Fural	278	13.6	14.75	277	-1.09	-0.36	-0.24
620-02-0	5-Methylfural	293	15.8	15.65	293	-1.40	$-0.37{ }^{\text {e }}$	-0.22
698-63-5	5-Nitrofural	227	6.8	11.82	290	-1.08	-0.37	
		310	11.0					
67-47-0	5-Hydroxymethylfural	230	2.0	f	f	f	f	f
		280	14.8					
98-03-3	2-Thiophenecarboxalde-	264	23.0	15.21	290	-1.01	$-0.45{ }^{e}$	-0.30
	hyde	292	16.0					
4701-17-1	5-Bromo-2-thiophenecarb-	270	5.0	14.64	302	-0.98	-0.47	-0.39
	oxaldehyde	302	12.0					
5834-16-2	3-Methyl-2-thiophenecarb-	280	13.0	15.75	282	-1.08	-0.34	-0.22
1192-58-1	1-Methyl-2-pyrrolecarb-	255	2.0	≈ 17.5	293	g	-0.23	-0.20
	oxaldehyde	293	16.0					
83-18-1	1-Phenyl-2,5-dimethyl-3-	260	8.5	≈ 16.0	260	g	h	h
	pyrrolecarboxaldehyde	303	5.0					
7570-45-8	N-Ethyl-3-carbazolecarb-	233	21.0	13.95	233	-0.94	-0.22	-0.14
	oxaldehyde	242	18.0		276			
		276	24.0		293			
		293	18.0					
		335^{i}	10.0					
58503-24-5	N-Ethyl-3-carbazolecarb-	248	≈ 4.0	j	j	j	-0.22	-0.14
	oxaldehyde geminal	275	≈ 4.0					
	diol anion	300	12.0					
		350	$10 . \mathrm{C}$					
10511-51-0	N-Benzyl-3-indolecarbox-	248	7.0	j	j	j	j	j
	aldehyde	263	≈ 4.0					
		305	8.0					

${ }^{a} \mathrm{p} K^{\prime}=\mathrm{p} K+\mathrm{p} K_{\mathrm{w}} ; K=\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]\left[\mathrm{OH}^{-}\right] .{ }^{b}$ Wavelength at which the absorbance was measured for calculation of K. ${ }^{c} \Delta=$ slope of the plot of $\log [\operatorname{ArCHO}] /\left[\operatorname{ArCH}(O H) \mathrm{O}^{-}\right]$vs. acidity function $J_{-}{ }^{d}$ Polarographic half-wave potential of the anodic oxidation wave. ${ }^{e}$ Polarographic curve shows a maximum. ${ }^{f}$ Fast competitive homogeneous chemical reaction in alkaline media prevented measurement. ${ }^{\text {g O }}$ Only part of dissociation curve experimentally accessible. ${ }^{h}$ No anodic wave observed before potential of mercury dissolution. ${ }^{i}$ Wide band. ${ }^{j}$ Reacts in alkaline media, but does not add OH^{-}to CHO .
(Eastman Kodak), 5-nitrofural (Pfalz and Bauer), 2-indolecarboxaldehyde, and 1-methyl-2-imidazolecarboxaldehyde (kindly donated by Professor F. Popp, Clarkson College of Technology, Potsdam, N.Y.), 2-imidazolecarboxaldehyde, 2-thiazolecarboxaldehyde, and 2-benzothiazolecarboxaldehyde (kindly donated by Professor H. Lund, Aarhus University, Denmark) were freshly distilled, recrystallized, or sublimated. Purity was checked by gas-liquid chromatography. Stock solutions (0.01 M) of these aldehydes were prepared freshly in 96% ethanol.

Sodium hydroxide solutions were prepared from 0.1 and 1.0 M Baker reagent grade Dilut-it standardized solutions and from 50\% Baker Analyzed sodium hydroxide containing less than 0.03% carbonate, shown to be 18.86 M by standardization with potassium acid phthalate. These standards, kept carbonate free, were diluted under nitrogen with distilled freshly boiled water cooled in a nitrogen stream.

All buffers used for $\mathrm{pH}<12$ were prepared from reagent grade chemicals.

Apparatus. Electronic spectra were recorded by means of a Unicam SP-800A recording spectrophotometer (Pye-Unicam, Cambridge, England). Cells (10 mm) were placed in a thermostated compartment and temperature maintained at $25 \pm 0.01^{\circ} \mathrm{C}$.

Polarographic current-voltage curves (dc) were obtained with a Model 174 polarographic analyzer (Princeton Applied Research, Princeton, N.J.) in connection with a Hewlett-Packard 7004B X-Y recorder. The capillary used had in 1 M potassium chloride at 0.0 V (SCE) the following characteristics: rate of flow $m=1.9 \mathrm{mg} / \mathrm{s}$, drop time $t_{1}=3.4 \mathrm{~s}$ at $h=65 \mathrm{~cm}$.

A modified Kalousek cell was used with a spectroscopic grade carbon rod immersed in 5 M sodium hydroxide as a separated reference cathode. ${ }^{11}$ To minimize the effect of polarization of the reference cathode, the current-voltage curves were recorded from negative to positive potentials.
pH measurements were carried out with a Sargent-Welch Model NX pH meter with a Sargent S-30072-15 combination glass electrode
as well as with a Radiometer electrode G-202B for measurements in alkaline region.

Procedures. For recording of the uv spectra an aliquot of the stock solution was added to an aqueous solution of a buffer or of sodium hydroxide so that the final aqueous solution contained $1 \times 10^{-4} \mathrm{M}$ aldehyde and 1% ethanol.

For each aldehyde spectra were recorded in buffers of varying pH or in sodium hydroxide solutions of varying concentration. For each aldehyde 10-15 spectra were recorded in solutions chosen so as to straddle the $\mathrm{p} K$ value. Spectra were always recorded within 2 min after mixing the solutions and then again after 5 min to check for any changes with time.
Polarographic anodic waves were recorded in 5 and 1 M sodium hydroxide solutions containing $2 \times 10^{-4} \mathrm{M}$ aldehyde and 2% ethanol. Solutions for polarographic electrolysis were freshly prepared from stock solutions and the curves were checked for any changes with time.

Evaluation of Equilibrium Constants. To evaluate the equilibrium constant K corresponding to reaction 1 in most cases the decrease of the absorbance of the free carbonyl form was followed. The values of wavelengths used are given for individual compounds in Tables I-III. In some cases the geminal diol anion has shown an absorbance (corresponding to aromatic system deprived of the conjugation with the carbonyl group) the increase of which was followed (cf. Table I-III). The ratio [ArCH(OH)O $\left.{ }^{-}\right] /[\mathrm{ArCHO}]$ was found at a given wavelength from $\left(A_{0}-A\right) /\left(A-A_{r}\right)$ where A_{0} is the absorbance due to pure carbonyl form (measured at sufficiently low sodium hydroxide concentration or in a buffer of sufficiently low pH), A_{r} absorbance of the pure geminal diol anion $\operatorname{ArCH}(\mathrm{OH}) \mathrm{O}^{-}$(measured at so high pH or sodium hydroxide concentration that conversion can be regarded as complete), and A absorbance of the solution in the acidity range between the two extremes.

The value of $\log \left(\left[\operatorname{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]\right)$ was then plotted against pH or J_{-}function. ${ }^{5}$ For all aldehydes studied this plot was found linear with a slope (Δ) given in Tables I and III. The value of

Table II. Oxidation Half-Wave Potentials and Dissociation Constants of Heterocyclic Aldehydes Bearing on NH Group

Registry no.	Aldehyde	$\lambda_{\text {max }}, \mathrm{nm}$	$\begin{gathered} \epsilon \times 10^{-3} \\ \text { l. } \mathrm{mol}^{-1} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\mathrm{p} K_{\mathrm{N}}{ }^{\text {a }}$	$\begin{gathered} \lambda_{\text {meas }}^{N}, b \\ \mathrm{~nm} \end{gathered}$	$\mathrm{p} K^{\prime c}$	$\begin{gathered} \lambda_{\text {meas }},{ }^{d} \\ \text { nm } \end{gathered}$	$E_{1 / 2},{ }^{e} \mathrm{~V}$ vs. SCE	
								$\begin{gathered} 5 \mathrm{M} \\ \mathrm{NaOH} \end{gathered}$	$\begin{gathered} 1 \mathrm{M} \\ \mathrm{NaOH} \end{gathered}$
1003-29-8	2-Pyrrolecarboxalde-	250	≈ 3.0	13.65	293	>17		-0.22	-0.18
	hyde	293	16.0		315				
58503-25-6	2-Pyrrolecarboxalde-	265	≈ 1.0					-0.22	-0.18
	hyde iminate anion	315	22.0						
19005-93-7	2-Indolecarboxalde-	235	13.0	14.00	310	$>17 \prime$		-0.40	-0.29
	hyde	310	23.0		335				
58503-26-7	2-Indolecarboxalde-	247	18.0					-0.40	-0.29
	hyde iminate anion	335	24.0						
487-89-8	3-Indolecarboxalde-	244	13.0	12.33	324	>16		h	h
	hyde	261	13.0	$12.36{ }^{\text {g }}$					
		300	14.0						
58503-27-8	3-Indolecarboxalde-	265	22.0					h	h
	hyde iminate anion	324	22.0						
10111-08-7	2-Imidazolecarboxalde-	215	4.0	10.08^{i}	285		310	-0.21	-0.18
	hyde	287	5.0	$10.34{ }^{i}$	315				
58503-28-9	2-Imidazolecarboxaldehyde iminate anion	310	8.0			≈ 13.5			

${ }^{a} K_{\mathrm{N}}=\left[\mathrm{HetN}^{-}\right]\left[\mathrm{H}^{+}\right] /[\mathrm{HetNH}] .{ }^{b}$ Wavelength at which the absorbance was measured for calculation of $K_{\mathrm{N}} \cdot{ }^{c} \mathrm{p} K^{\prime}=\mathrm{p} K+\mathrm{p} K_{\mathrm{w}}$; $K=\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]\left[\mathrm{OH}^{-}\right] .{ }^{d}$ Wavelength at which absorbance was measured for calculation of $K_{\mathrm{CHO}}{ }^{-}{ }^{e}$ Polarographic half-wave potential of the anodic oxidation wave. f In 4 M NaOH change of the solution and development of yellow coloration observed, but no time change found in $10 \mathrm{M} \mathrm{NaOH} .{ }^{g}$ Reference $10{ }^{h}$ No anodic wave observed before potential of mercury dissolution. ${ }^{i}$ Overall equilibrium constants, aldehydic group is present in equilibrium at least 70% in hydrated form.

Table III. Oxidation Half-Wave Potentials and Dissociation Constants of the Geminal Diol Group of Some Hydrated Heterocyclic Aldehydes

Registry no.	Aldehyde	$\lambda_{\text {max }}, \mathrm{nm}$	$\begin{gathered} \epsilon \times 10^{-3} \\ \text { I. } \mathrm{mol}^{-1} \mathrm{~cm}^{-1} \end{gathered}$	$\mathrm{p} K_{\mathrm{s}}{ }^{\text {a }}$	$\lambda_{\text {meas }}{ }^{\text {b }}$	$د^{c}$	$E_{1 / 2},{ }^{d} \mathrm{~V}$ vs. SCE	
							$\begin{gathered} 5 \mathrm{M} \\ \mathrm{NaOH} \end{gathered}$	$\begin{gathered} 1 \mathrm{M} \\ \mathrm{NaOH} \end{gathered}$
10200-59-6	2-Thiazolecarboxalde-	237	0.3	11.2^{e}	295	-1.00	-0.38	-0.31
	hyde	295	0.4					
6639-57-2	2-Benzothiazolecarboxaldehyde	217	18.0	10.7 f	315	-1.30	-0.55	-0.48
		255	7.0					
		296	2.0					
51073-57-5	3-Cinnolinecarboxal dehyde	229	36.0	$11.95{ }^{\text {g }}$	250	-1.00	-0.38	-0.33
		250	18.0					
		285	3.0					
		325	4.0					
	2-Imidazolecarboxal dehyde iminate anion	310	8.0	$\approx 13.5{ }^{\text {i }}$	310	-0.98	-0.21	-0.18
13750-81-7	N-Methyl-2-imidazolecarboxaldehyde	223	0.4	$13.50{ }^{\prime}$	289	-1.20	-0.23	-0.14
		289	1.3					

${ }^{a}$ Overall equilibrium constant, $K_{\mathrm{s}}=\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right]\left[\mathrm{H}^{+}\right] /\left([\mathrm{ArCHO}]+\left(\mathrm{ArCH}(\mathrm{OH})_{2}\right]\right) .{ }^{b}$ Wavelength at which the absorbance was measured for calculation of $K_{\mathrm{s} \cdot}{ }^{c}{ }^{\wedge}=$ slope of the plot of $\log [\mathrm{ArCHO}] /\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right]$vs. acidity function $J_{-}{ }^{d}$ Polarographic half-wave potential of the anodic oxidation wave. ${ }^{e}$ About 80% hydrated form. 'About 90% hydrated. ${ }^{g}$ Strong hydration. ${ }^{h}$ See also Table II. ${ }^{i}$ At least 70% hydrated form. ${ }^{j}$ Weak hydration.
pH or J_{-}where $\left.\log \left(\mid \mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]\right)$ was equal to zero was considered equal to $\mathrm{p} K$.

A completely analogous procedure was applied to determination of values $\mathrm{p} K_{\mathrm{N}}$ corresponding to equilibrium 2:

$$
\begin{equation*}
\overbrace{\mathrm{NH}}+\mathrm{OH}^{-} \rightleftharpoons \bigcap_{\mathrm{N}^{-}}+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{equation*}
$$

In most cases both the decrease of the absorbance of the parent compound and the increase of the absorhance of the iminate ion (often stronger) was followed at wavelengths given in Table II.

Half-Wave Potentials. Measurements of half-wave potentials were made relative to that of the unsubstituted benzaldehyde as an internal standard the waves of which were recorded prior to and after recording of each series of waves. Values of half-wave potentials of benzaldehyde were taken ${ }^{13}$ as -0.29 V in 1 M sodium hydroxide and
as - 1.44 V in 5 M sodium hydroxide, both expressed against SCE. Examples of polarographic curves are given in Figure 1.

Results and Discussion

Classification of Systems. Heterocyclic aldehydes studies can be divided into three groups: to the first two groups belong five-membered "neutral" aldehydes with an excess of π electrons; ${ }^{12}$ to the third five- and six-membered "basic" aldehydes with a π-electron deficiency.
Formyl groups of aldehydes belonging to the first two groujs show little hydration at lower pH values, in a way as most of the substituted benzaldehydes. ${ }^{13}$ Values of molar absorptivities and their independence of solvent (when aqueous, DMF and $\mathrm{Me}_{2} \mathrm{SO}$ solutions were compared) as well

Figure 1. Anodic waves of heterocyclic aldehydes. 1 M sodium hydroxide, $2 \times 10^{-4} \mathrm{M}$ aldehyde, 2% ethanol. Compounds (half-wave potentials vs. SCE): (1) 2 -thiophenecarboxaldehyde (-0.30 V); (2) 2-thiazolecarboxaldehyde (-0.31 V); (3) 2-benzthiazolecarboxaldehyde (-0.48 V); (4) benzaldehyde (-0.29 V). Curves recorded from -0.75 V (vs. Carbon rod in 5 M sodium hydroxide) to positive potentials, rate of scanning $200 \mathrm{mV} / \mathrm{min}$.
as the height of polarographic reduction and oxidation waves indicate that less than 10% of these compounds in neutral or slightly acidic media exists in the geminal diol $\left(\mathrm{ArCH}(\mathrm{OH})_{2}\right)$ form.

The division of the first two groups is based on the nature of their acid-base properties. To the first group are assigned aldehydes which in strongly alkaline media add a hydroxide ion to the aldehydic group according to reaction 1 , in a similar way as benzaldehydes. ${ }^{5}$ Derivatives of furan and thiophene belong to this group as well as those derivatives of pyrrole which bear an alkyl or aryl group on the heterocyclic nitrogen.

To the second group belong such heterocyclic aldehydes where the attack of hydroxide ion in alkaline solution occurs preferentially on the heterocycle and results in the dissociation of the $\mathrm{N}-\mathrm{H}$ bond. This group is represented by pyrrole and indole derivatives with an unsubstituted NH group. These compounds show thus the same type of acid-base properties as other indole and pyrrole derivatives. ${ }^{14}$

To the third group belong thiazole, imidazole, and pyridine derivatives which exist in aqueous solutions in an equilibrium in which a considerable fraction of the aldehyde is present in the hydrated form.

Differentiation between CHO and NH Reactions. Distinction between the type of reaction in these two groups of carboxaldehydes is possible on the basis of their spectral behavior: compounds belonging to the first group show with increasing hydroxide concentration a decrease of the absorption band in the $250-300-\mathrm{nm}$ region as corresponds to the shift of equilibrium 1 in favor of the geminal diol anion. Reaction of the compounds belonging to the second group with bases yielding iminate anions-pyrrolate or indolate-is manifested by an appearance of a new absorption band at longer wavelength and with greater molar absorptivity than shown by the neutral molecule.

The change in spectra observed for systems involving formation of a geminal diol anion is due to an annihilation of conjugation between the aromatic ring and the carbonyl group. The resulting adduct-the geminal diol anion-is either practically transparent in the $250-300-\mathrm{nm}$ range or shows a considerably weaker absorption band due to the transition involving only the π electrons of the aromatic ring.

The shift toward longer wavelength when compared with the conjugate acid and the increase in absorptivity accompanying the formation of the iminate ion resembles behavior
of carbanions and carbanion enolates, where the effect is usually interpreted as due to the participation of the electrons of the unit charge in the conjugated system. Nevertheless, we have recently shown ${ }^{15}$ that electronic spectra can be observed for anions containing only σ bonds and indicated that such spectra might involve photolysis and formation of hydrated electrons. Attempts are being made to prove or exclude such a possibility for iminate ions.

An alternative possibility for differentiation of proton abstraction from hydroxide ion addition would be to distinguish whether the dependence of the value of ratio of the concentrations of the conjugate acid and base fits better the H_{-}or the J_{-}acidity scales. ${ }^{5}{ }^{5} 16$ Nevertheless, significant differences between the two scales are observed at so high sodium hydroxide concentrations that this diagnostic tool cannot be practically applied to the study of most of the presently studied systems.

Evaluation. Equilibrium constants for reactions of nonhydrated aldehydes resulting in addition of the hydroxide ion are summarized in Table I, those for aldehydes where dissociation of the NH group occurs first in Table II. Halfwave potentials of anodic waves are also included.

For all compounds reported in Table I a decrease of the ArCO absorption band was observed, indicating addition of OH^{-}ions with the exception of N-benzyl-3-indolecarboxaldehyde, which undergoes a different reaction. Formation of a new band at longer wavelengths (at 315 nm) indicated the possibility of carbanion formation. For all aldehydes, where measurement of the ratio $\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]$ was possible over a sufficiently wide range of sodium hydroxide concentration, the plot of $\log \left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right] /[\mathrm{ArCHO}]$ as a function of J_{-}values was found linear. This allows the conclusion that all these aldehydes add hydroxide ion in a simple reversible reaction, as has been proved for substituted benzaldehydes. ${ }^{5,13}$ Consecutive or competitive reactions like the Cannizzaro reaction or ring opening do not affect values in Table I. The slope of the aforementioned linear plot (Δ) varies for the majority of compounds studied between -0.94 and -1.09 (Table I) indicating that the application of the J_{-} acidity scale for these compounds is permissible. Deviations in the value of Δ (Table I) observed for methyl-substituted compounds (5 -methylfural and 3-methyl-2-thiophenecarboxaldehyde) might be due to steric effects, but further data on larger alkyl groups and dependence on position would be needed before they can be discussed in more detail. Reversibility of the reaction has been proved in all instances by recovery of the aldehyde after acidification.

In addition to the rapidly established equilibrium corresponding to reaction 1 , all furan derivatives have shown a considerably slower, consecutive reaction, fastest for 5 -hydroxymethylfural. The nature of this process, considered to be a Cannizzaro or ring opening reaction, is under investigation.

Study of dissociation following reaction 2 (Table II) presented no complications, with the exception of the 2 -imidazolecarboxaldehyde, which was present in the aqueous solutions also in hydrated form and will be discussed in the next section. Where comparison with literature was possible (i.e., for 3 -indolecarboxaldehyde) agreement of our and reported ${ }^{14}$ data was good.

Anodic waves of aldehydes which form the electroactive ${ }^{8}$ geminal diol anion (Table I) correspond to oxidation of the aldehyde with formation of the corresponding carboxylic acid. Electrolysis products of the iminates (Table II) were not identified and the process involved is further studied.

Hydrated Aldehydes. Aldehydes derived from "basic" or π-deficient heterocyclic rings are strongly hydrated. The most typical representatives of this group. pyridinecarboxaldehydes, have been studied in sufficient detail ${ }^{17-19}$ and were
not thus included in this investigation. Quinolinecarboxaldehydes ${ }^{17}$ are more strongly hydrated both in the protonated and uncharged form than the corresponding pyridinecarboxaldehydes. For thiazole- and imidazolecarboxaldehydes information about the position of the hydration-dehydration equilibria is rather scarce. 5-Imidazolecarboxaldehyde is estimated ${ }^{20}$ to be about 50% hydrated in the protonated form and less in the uncharged form. 2-Imidazolecarboxaldehyde ${ }^{21,22}$ and its N-alkyl derivatives ${ }^{22}$ are more strongly hydrated than the 5 isomer. For 2 -thiazolecarboxaldehyde stronger hydration of the cationic form than that of the free molecule is observed, ${ }^{17}$ both being stronger than that for 5imidazolecarboxaldehyde. Estimates from our spectral data (Table III) indicate that for the unprotonated forms of 2thiazole, 2 -benzothioazole, and 2 -imidazole $70-90 \%$ of the aldehyde is in equilibrium present in hydrated form, whereas 1-methyl-2-imidazolecarboxaldehyde is only slightly, if at all, hydrated.

The reported value of $\mathrm{p} K_{\mathrm{s}}$ (Table III) has different physical meaning for thiazole and imidazole derivatives. For thiazolecarboxaldehydes the overall acid-base reaction involves only the aldehydic group and eq 3 is operating (in the pH range studied, above pH 9):

The measured value K_{s} is related to the equilibrium constant of the addition of hydroxide ions (K) and to the dissociation constant of the hydrated form (K_{1}) by the expression $K_{\mathrm{s}}=K_{\mathrm{w}} K K_{1}\left(K+K_{1}\right)$ and to the dehydration constant $K_{\text {deh }}$ $=[\mathrm{ArCHO}] /\left[\mathrm{ArCH}(\mathrm{OH})_{2}\right]$ by relation $K_{\mathrm{s}}=K_{1} /\left(1+K_{\text {deh }}\right)$. If, as indicated by the estimate of the hydration, $K_{\text {deh }} \ll 1$, then the measured value K_{s} is practically equal to K_{1}. The value of $\mathrm{p} K_{\mathrm{s}} \approx 11.2$ found for the two thiazole derivatives is of the same order of magnitude as values of dissociation constants of other compounds bearing the hydrated aldehydic group in the vicinity of an electronegative grouping (e.g., $\mathrm{p} K_{1}$ about 10.0 for chloral ${ }^{23}$ and trifluoroacetophenone ${ }^{24}$ and 11.4 to 12.15 for the three pyridinecarboxaldehyde N -oxides ${ }^{18}$).

For 2-imidazolecarboxaldehyde dissociation of the NH group (Table II) and of the geminal diol (Table III) compete according to eq 4.

Formation of a new, more intense band at 310 nm in the pH range $9-11$ indicates that paths $2 \mathrm{a}, 2 \mathrm{~b}$, and also $3 \mathrm{a}, 3 \mathrm{~b}$ are not main contributors. The measured value of $\mathrm{p} K_{\mathrm{N}}$ (Table II) is thus affected primarily by equilibria 1 a and 4 a . Consequently, the second acid-base process ($\mathrm{p} K_{\mathrm{s}}$ in Table III) corresponds predominantly to equilibria lb and 4 b . For evaluation of relative contribution of path 1 and 4 information on position of hydration-dehydration equilibria both in neutral molecules and in imidazolate ions is essential.

Anodic waves of the hydrated aldehydes (Table III) resembled those obsered for pyridinecarboxaldehydes ${ }^{25}$ and correspond probably to the same process, i.e., oxidation of the geminal diol anion to carboxylic acid.

Structural Effects. Any comparison of structural effects on values of equilibrium constants and half-wave potentials (Tables I-III) must be carried out only inside of each of the specified groups, as only inside each of the groups the processes involved are analogous and hence the values measured comparable. This restricts the number of comparable compounds so that no attempt has been made to apply linear free energy or other theoretical treatment.

For addition of hydroxide ions to nonhydrated aldehydes (Table I) introduction of electropositive substituents into furan and thiophene rings results in an increase in $\mathrm{p} K^{\prime}$ value, whereas electronegative substituents exert opposite effect. This is the same direction as observed for substituted benzaldehydes ${ }^{13}$ and indicates a positive value of the reaction constant ρ. The difference in reactivity between fural and 2-thiophenecarboxaldehyde is relatively small, but both these aldehydes are considerably more reactive toward OH^{-}addition than N -substituted 2-pyrrolecarboxaldehydes. Extension of the condensed aromatic system in the carbazole derivative results in a marked shift in favor of the adduct.

Effect of substituents on the half-wave potentials of both furan and thiophene derivatives is small (Table I). Oxidation of 2-thiophenecarboxaldehydes occurs at somewhat more negative potentials (indicating easier oxidation) than that of fural and its derivatives. Half-wave potentials of 2 -thiophenecarboxaldehyde are very close to those of benzaldehyde (Figure 1), indicating a similar level of interaction between the aromatic ring and the side chain.

Both N -substituted 2-pyrrolecarboxaldehydes and the carbazole derivative are oxidized at more positive potentials than furan and thiophene derivatives. The difference between N -substituted pyrrole and carbazole derivatives is relatively small, indicating that the conjugation extending effect of the

annelled rings is counterbalanced by another effect. The latter may be an effect of most suitable orientation at the electrode surface in the course of the electrode process, which the rigid carbazole derivative cannot achieve.

The value of $\mathrm{p} K_{\mathrm{N}}$ for 3-indolecarboxaldehyde ${ }^{14}$ has been shown to deviate from $\mathrm{p} K_{\mathrm{N}^{-}}$o plot, even when σ_{p}^{-}. CHo was used. When the value of $\mathrm{p} K_{\mathrm{N}}$ for 2-indolecarboxaldehyde (Table II) was correlated with $\sigma_{p \cdot \text { Сно }}^{-}, \sigma_{m-\text { Сно, or }}\left(\sigma_{p}+\right.$ $\left.\sigma_{m}\right)_{\mathrm{CHO}} / 2$, a small deviation in the same direction as for the 3 -formyl derivative was observed. This clearly indicates a type of interaction between the formyl group and the indole ring, different from the interaction between the aniline ring and the aldehydic groups as expressed in the value of $\sigma_{p-\text {-но }}^{-}$

Specific interaction, not expressed by substituent constants, between the aldehydic group and the heterocycle is shown also by the comparison of the effect of an annelled benzene ring. Whereas $\mathrm{p} K_{\mathrm{N}}$ value for the unsubstituted pyrrole is 0.54 units larger than that for indole, ${ }^{14}$ the effect of the annelled benzene ring on $\mathrm{p} K$ values of 2-carboxaldehydes is just opposite (Table II): the $\mathrm{p} K_{\mathrm{N}}$ value for the pyrrole derivative is 0.35 units smaller than that of the indole compound. In addition to the type of interaction observed for the 3-indolecarboxaldehyde ${ }^{14}$ which would be in pyrrole even stronger than in indole (assuming comparable values of reaction constant ρ), it is impossible for the 2 -carboxaldehydes to rule our direct interaction between the formyl group and the heterocyclic nitrogen.

The interaction between the formyl group and the indole ring, which increases the reactivity toward the OH^{-}attack on the NH group, seemingly decreases the reactivity of the formyl group to oxidation. This is shown by the absence of electroactivity of 3 -indolecarboxaldehyde. Smallerlinteraction is shown by the 2 -indolecarboxaldehyde, the electroactivity of which has not been impaired. Also the increase in the reactivity toward oxidation from pyrrole to indole derivative (Table II) is in the expected direction. Available data for these compounds do not allow us to distinguish if the changes in potentials are due to changes in formation of the electroactive geminal diol anion, in the electron transfer, or the hydrogen abstraction and more detailed analysis must be postponed.

All these results, nevertheless, indicate interaction between the formyl group and the indole ring, stronger for the 3 isomer than for the 2 isomer. Nevertheless, as such interaction operates not only in the 3 isomer, but also in the 2 -carboxal-
dehyde it is indicated that the explanation by enol formation, offered for 3 -carboxaldehyde, ${ }^{14}$ might not be complete.

Presence of a unit negative charge on the heterocyclic ring decreases reactivity toward the hydroxide attack on the carbonyl group in a similar way as N -substitution. This follows from comparison of $\mathrm{p} K^{\prime}$ values in Table II with values for N -substituted pyrrole derivatives (Table I).

For hydrated aldehydes the small effect of the annelled benzene ring in the thiazole derivatives as well as of N-methyl substitution in 2-imidazolecarboxaldehyde on values of $\mathrm{p} K_{\mathrm{s}}$ (Table III) is probably due to the absence of conjugation in both the predominating geminal diol and its anion.

On the other hand, the ease of oxidation is increased by the added benzene ring in the 2-benzothiazolecarboxaldehyde and decreased by N -methylation in the imidazole derivative, as follows from comparison of polarographic half-wave potentials (Table III). As such change cannot reflect the position of the equilibrium yielding geminal diol anion, it must be caused by structural effects either on the electron transfer or hydrogen abstraction.

References and Notes

(1) Paper by W. J. Bover and P. Zuman. J. Chem. Soc., Perkin Trans. 2, 786 (1973), should be considered part 1 of this series
(2) To whom correspondence should be addressed.
(3) Western Publishing Co. Fellow, 1972-1973.
(4) NSF Trainee, 1973
(5) W. J. Bover and P. Zuman. J. Am. Chem. Soc., 95, 2531 (1973).
(6) P. Greenzaid. J. Org. Chem.. 38, 3164 (1973); no reference to our earlier work was made in Greenzaid's paper.
(7) M. Crampton, J. Chem. Soc., Perkin Trans. 2, 185 (1975).
(8) W. J. Bover and P. Zuman, J. Electrochem. Soc., 122, 368 (1975).
(9) P. E Sorensen, private communication, Copenhagen, 1974.
(10) R. G. Barradas, O. Kutowy, and D. W. Shoesmith. Can. J. Chem., 52, 1635 (1974).
(11) W. J. Bover, J. Electrochem. Soc., 120, 33c (1973).
(12) A. Albert. "Heterocyclic Chemistry", Athlone Press, London. 1959
(13) W. J. Bover and P. Zuman, J. Chem. Soc., Perkin Trans. 2, 786 (1973).
(14) G. Yagil, Tetrahedron, 23, 2855 (1967).
(15) P. Zuman and W. Szafranski, Angew. Chem., in press.
(16) C. H. Rochester, "Acidity Functions". Academic Press, New York, N.Y., 1970.
(17) E. Laviron, Bull. Soc. Chim. Fr., 2325 (1961)
(18) É. Laviron and R. Gavasso. Talanta, 16, 293 (1969).
(19) S. Cabani, P. Gianni, and E. Matteoli, J. Phys. Chem., 76, 2959 (1972), and references cited therein.
(20) É. Laviron, Bull. Soc. Chim. Fr., 2840 (1961).
(21) P. Iversen and H. Lund. Acta Chem. Scand., 21, 279 (1967).
(22) P. Foumari, P. de Cointet, and E. Laviron, Bull. Soc. Chim. Fr., 2438 (1968).
(23) R. P. Bell, Adv. Phys. Org. Chem., 4, 1 (1966).
(24) R. Stewart and J. D. van Dyke. Can. J. Chem., 48, 3961 (1970).
(25) J. Volke, J. Electroanal. Chem., 10, 344 (1965).

Nucleophilic Additions to Aldehydes and Ketones. 3. ${ }^{1}$

Reactions of Ortho-Substituted Benzaldehydes and

 Their Polarographic OxidationsJames H. Sedon ${ }^{2}$ and P. Zuman*
Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676

Received July 30, 1975

Abstract

Ortho-substituted benzaldehydes add in strongly alkaline media hydroxide ions in a reversible, rapidly established equilibrium reaction, in which an anion of the geminal diol $\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right]$is formed. Extrapolation to zero ionic strength and use of acidity function J_{-}made it possible to determine thermodynamic equilibrium constants for benzaldehydes bearing both electropositive and electronegative substituents. Correlation of $\mathrm{p} K_{\mathrm{a}}$ with $\sigma_{o} . \mathrm{x}$ and dissociation constants of benzoic acids were explained by similarity in structures of the geminal diol anion and carboxylate ion or the transition state in ester hydrolysis. Structural effects on polarographic half-wave potentials of anodic waves indicated quantitative or qualitative changes in the heterogeneous portion of the electrode process, seemingly involving the hydrogen abstraction step $\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-} \rightleftharpoons \mathrm{ArCOOH}+2 \mathrm{e}+\mathrm{H}^{+}\right]$.

Previously ${ }^{1,3}$ the acidity scale J_{-}for reactions involving addition of hydroxide ion in strongly alkaline media has been used for determination of thermodynamic values of equilib-
rium constants for additions to meta- and para-substituted benzaldehydes ${ }^{3 a}$ as well as to some heterocyclic aldehydes. ${ }^{1}$ In this paper the study was extended to some ortho-substi-

Table I. Spectral Properties and Equilibrium Constants \boldsymbol{K} for the Addition of Hydroxide Ions to Benzaldehydes Substituted in Ortho Position by X

No.	X	Registry no.	$\begin{gathered} \lambda_{\max }, \\ \mathrm{nm} \end{gathered}$		$\mathrm{p} K^{a}$ (overlap)	$\mathrm{p} \bar{K}^{d}$	$\mathrm{p} K^{\prime e}$ (overlap)	$\begin{gathered} \mathrm{p} K^{\prime f} \\ \left(J_{-\mathrm{plots})}\right. \end{gathered}$	$د^{B}$	$\mathrm{p} K_{\mathrm{COOH}{ }^{h}}$	$\sigma_{p \cdot} \mathbf{X}^{j}$	$\sigma_{n-\mathrm{x}^{k}}$
1	$\mathrm{OC}_{2} \mathrm{H}_{5}$	613-69-4	257	9800	$+1.18^{\text {b }}$		$15.18^{\text {b }}$	15.30	0.12	4.21	-0.25	-0.35
2	COO^{-}	58502-59-3	255	7700	$+1.14^{\text {b }}$		$1.5 .14^{\text {b }}$	15.31	0.17	5.51	+0.13	
3	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	6502-22-3	262	14200	$+0.99^{\text {b }}$		$14.99^{\text {b }}$	15.21	0.22	3.64	-0.20	
4	OCH_{3}	135-02-4	257	10500	+0.96 ${ }^{\text {b }}$		$14.96{ }^{\text {b }}$	15.15	0.19	4.09	-0.27	-0.39
5	H	100-52-7	250	12800	+0.90 ${ }^{\text {b }}$		$14.90^{\text {b }}$			4.19	0.00	0.00
6	CH_{3}	529-20-4	260	11700	$+0.86{ }^{\text {b }}$	+1.03	$14.86{ }^{\text {b }}$	15.10	0.24	3.92	-0.17	-0.17
7	I	26260-02-6	258	6700	-0.33 ${ }^{\text {c }}$		$13.67^{\text {c }}$	13.83	0.16	2.66	+0.27	+0.21
8	Cl	89-98-5	254	8800	$-0.36{ }^{\text {c }}$	-0.41	$13.64{ }^{\text {c }}$	13.81	0.17	2.92	+0.23	+0.20
9	Br	6630-33-7	256	8800	$-0.41^{\text {c }}$		$13.59{ }^{\text {c }}$	13.80	0.21	2.85	+0.23	+0.21
10	F	446-52-6	246	12300	$-0.44{ }^{\text {c }}$		$13.56{ }^{\text {c }}$	13.78	0.22	3.27	+0.06	+0.24
11	CF_{3}	447-61-0	246	8800	$-0.59^{\text {c }}$		$13.41^{\text {c }}$	13.45	0.04		+0.55	
12	NO_{2}	552-89-6	260	12800	-1.11^{c}	-1.03	$12.89{ }^{\text {c }}$	13.01	0.12	2.21	+0.78	+0.80

${ }^{a} K=C_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}-} / C_{\mathrm{ArChO}} C_{\mathrm{OH}}-\times y_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}} / y_{\mathrm{ArChO}} y_{\mathrm{OH}^{-}}{ }^{b}$ Values obtained by overlap procedures using compounds 7-12 as reference. ${ }^{c}$ Values obtained by extrapolation to zero ionic strength. ${ }^{d} \bar{K}=C_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}}-/ C_{\mathrm{ArCHO}} C_{\mathrm{OH}}{ }^{-}$; nonthermodynamic values reported by Greenzaid. ${ }^{4 e} \mathrm{p} K^{\prime}=\mathrm{p} K+\mathrm{p} K_{\mathrm{w}} . /$ Values of $\mathrm{p} K_{\mathrm{a}}$ obtained by means of J_{-}acidity function. ${ }^{8}$ Difference between values obtained by means of J_{-}and the overlap procedure. ${ }^{h}$ Dissociation constants of corresponding benzoic acids in water at 25 ${ }^{\circ} \mathrm{C}$. ${ }^{j}$ Hammett substituent constants. ${ }^{k}$ Taft substituent constants based on ester hydrolysis.

Figure 1. The uv spectra of $1 \times 10^{-4} \mathrm{M} n$-chlorobenzaldehyde at 25 ${ }^{\circ} \mathrm{C}$ in aqueous (1% ethanol) sodium hydroxide solutions of the following molar concentrations: $2,0.01 ; 3,0.05 ; 4,0.1 ; 5,0.2 ; 6,0.4 ; 7,0.6$; $8,1.0 ; 9,2.0 ; 10,5.0$. Curve 1 phosphate buffer, pH 10 .
tuted benzaldehydes. Greenzaid ${ }^{4}$ reported crude practical equilibrium constants for three monosubstituted ortho benzaldehydes. It was attempted to compare thermodynamic values of equilibrium constants with his data and to include a wider variety of both electropositive and electronegative substituents than could be studied by Greenzaid, whose treatment made it impossible to study solutions containing more than 1.5 M base.

As it has been proved ${ }^{5}$ that the geminal diol anion is the reactive species in electrooxidation of benzaldehydes in alkaline media and a linear relationship between the polarographic half-wave potentials ${ }^{6}$ and Hammett substituent constants σ has been confirmed for meta- and para-substituted benzaldehydes, the electrooxidation of ortho-substituted benzaldehydes and the effect of the nature of the substituent have been investigated as well.

Experimental Section

Chemicals. Benzaldehydes used were commercial products (AIdrich Chemical Co.. Milwaukee, Wis.), freshly redistilled or recrystallized. Their purity was checked by gas-liquid chromatography. Stock solutions (0.01 M) of these aldehydes were prepared freshly each day in 96% ethanol. The origin of sodium hydroxide and preparation of solutions was the same as in part 2 of this series. ${ }^{\text {. }}$

Apparatus. Spectrophotometric and polarographic equipment used was the same as in part $2 .{ }^{1}$ The capillary used had in 1 M potassium chloride at 0.0 V (vs. SCE). rate of flow $m=2.2 \mathrm{mg} \mathrm{s}^{-1}$ and drop time $t_{1}=3.1 \mathrm{~s}$ at height of mercury column $h=6.5 \mathrm{~cm}$.

Procedures. Recording of the uv spectra, polarographic curves, and measurement of half-wave potential was carried out as described in part $2 .{ }^{1}$ The logarithmic analysis of polarographic curves was carried out by current measurement obtained with curves recorded at a slow rate of scanning ($1 \mathrm{mV} / \mathrm{s}$) to prevent hysteresis effects.

Evaluation of Equilibrium Constants. To determine the value of equilibrium constant K for reaction 1

$$
\begin{equation*}
\mathrm{ArCHO}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-} \tag{1}
\end{equation*}
$$

absorbance in the region between 250 and 280 mn was measured. The anions of the geminal diols formed in reaction 1 are for the majority of benzaldehydes studied practically transparent in this wavelength region (Figure 1), with the exception of o-nitrobenzaldehyde. Absorbance in this wavelength region is thus for most aldehydes a linear function of the concentration of the free aldehydic form. Molar absorptivity coefficients of these forms were obtained in buffers pH 10 where formation of the anion can be neglected (Figure 1). For o-nitrobenzaldehyde the decrease of the absorption band at 260 nm was accompanied by an increase of a band at 335 nm corresponding to the absorption of the nitrobenzene portion of the geminal diol anion with a resulting isosbestic point at 311 nm . As no change in the absorbance at 260 nm in 5 and 10 M sodium hydroxide was observed, this value was taken for the residual absorbance.

Values of the ratio $C_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}} / C_{\mathrm{ArCHO}}$ were obtained by means of eq 2

$$
\begin{equation*}
C_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}} / C_{\mathrm{ArCHO}}=\left(A_{0}-A\right) /\left(A-A_{\mathrm{r}}\right) \tag{2}
\end{equation*}
$$

where A_{0} is the absorbance of the aldehyde form $\mathrm{ArCHO}, A_{\mathrm{r}}$ the residual absorbance of the anion $\operatorname{ArCH}(\mathrm{OH}) \mathrm{O}^{-}$(practically zero for all derivatives except o-nitzo), and A the absorbance of the solution at any given sodium hydroxide concentration (all measured at a given wavelength)

Results

Thermodynamic values of equilibrium constants of reaction 1 were obtained in three different ways.

For compounds 7-12 (Table I) where the value of $\mathrm{p} K$ is less than zero, values of $\log \left(C_{\mathrm{ArCH}(\mathrm{OH})^{-}} / C_{\mathrm{ArCHO}}\right)-\log C_{\mathrm{OH}^{-}}$ were plotted against COH^{-}. Extrapolation of such linear plots to zero ionic strength (i.e., to $\mathrm{COH}_{\mathrm{OH}^{-}}=0$) gave thermodynamic values of K (Table I).

For benzaldehydes $1-6$ with $p K$ values greater than zero the overlap procedure ${ }^{8}$ was used. Because of the large gap between pK values of compounds $7-12$ and $1-6, \mathrm{p} K$ values for the latter were used successively as a reference value $p K$ for each of the compounds 7-12. Averages of these values are reported in Table I.

To convert measured equilibrium constants (K) for hydroxide ion addition to a more conventional scale for hydrogen

Table II. Polarographic Half-Wave Potentialsa (vs. SCE) of Benzaldehydes Substituted in Ortho Position by X in Sodium Hydroxide Solutions of Varying Molarity

X	0.01 M	0.03 M	0.1 M	0.3 M	1.0 M	3.0 M	5.0 M	7.0 M	$\underset{\text { (overlap) }}{\mathrm{p}^{\prime h}}$	$\begin{gathered} \mathrm{d} E_{1 / 2 /} / \\ d J_{-}^{\prime} \end{gathered}$
F	-0.146	-0.156	-0.192	-0.251	-0.275	-0.327	-0.342		13.56	-0.068
Cl	-0.130	-0.162	-0.213	-0.251	-0.291	-0.339	-0.330		13.64	-0.077
Br	-0.154	-0.183	-0.221	-0.257	-0.305	-0.348	-0.346		13.59	-0.071
I	-0.140	-0.186	-0.208	-0.273	-0.273	-0.300	-0.327		13.67	-0.076
CF_{3}						-0.147	-0.227		13.41	
NO_{2}	-0.176	-0.191	-0.216	-0.243	-0.269	-0.271	-0.304	-0.298	12.89	-0.044
OCH_{3}		-0.129	-0.146	-0.166	-0.202	-0.219	-0.274	-0.286	14.96	-0.050
$\mathrm{OC}_{2} \mathrm{H}_{5}$			-0.125	-0.145	-0.178	-0.192	-0.257	-0.274	15.18	-0.054
CH_{3}			-0.134	-0.157	-0.214	-0.287	-0.343	-0.357	14.86	-0.096
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$			-0.150	-0.189	-0.253	-0.325	-0.432		14.99	-0.101
COO^{-}						-0.150	-0.180	-0.217	15.14	-0.11)3
H			-0.193	-0.230	-0.295	-0.393	-0.454	-0.450	14.90	-0.114

${ }^{\text {a }}$ Half-wave potentials measured against a carbon rod cathode, expressed relative to the half-wave potential of the unsubstituted benzaldehyde for which the values vs. SCE have been reported. ${ }^{5}{ }^{b} \mathrm{p} K^{\prime}$ values determined by the overlap procedure (Table I). ${ }^{\text {c }}$ Slope of the linear portion of the $E_{1 / 2} J_{-}$plot in the J_{-}region where the half-wave potentials are shifted to more negative values with increasing J_{-}(Table III).

Figure 2. Values of $\log \left(C_{\mathrm{SH}} / C_{\text {SHOH }}{ }^{-}\right)$determined from spectrophotometric results plotted against the J_{-}scale: 1 , o-nitrobenzaldehyde; 2, o-trifluoromethylbenzaldehyde; 3, o-iodobenzaldehyde; 4, o-tolualdehyde; 5, o-ethoxybenzaldehyde.
ion abstraction ($\mathrm{p} K^{\prime}$), the expression $\mathrm{p} K^{\prime}=\mathrm{p} K+\mathrm{p} K_{\mathrm{w}}$ was used.

Alternatively, it was possible to use acidity function J_{-} established by means of meta- and para-substituted benzaldehydes ${ }^{3 b}$ using eq 3 .

$$
\begin{equation*}
\mathrm{p} K^{\prime}=J_{-}-\log \left(C_{\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}_{-}} / C_{\mathrm{ArCHO}}\right) \tag{3}
\end{equation*}
$$

Systems which follow eq 3 must show a linear dependence of $\log \left(C_{\mathrm{ArCH}}(\mathrm{OH}) \mathrm{O}-/ C_{\mathrm{ArCHO}}\right)$ on J_{-}with a unit slope. Experimental values for ortho benzaldehydes gave linear plots (Figure 2) with slopes varying between 0.92 and 1.07 . From the intercept of these linear plots at 50% conversion when $\mathrm{p} K^{\prime}$ $=J_{-}$values of $\mathrm{p} K^{\prime}$ were obtained and are given in Table I.

The fulfillment of eq 3 indicates that all compared orthosubstituted benzaldehydes undergo the same type of nucleophilic addition (or acid/base) reaction as the meta- and para-substituted ones. No time change of spectra which would indicate a consecutive or side reaction was observed. The reversibility of the interaction with hydroxide ions was confirmed by partial acidification of the alkaline solution which produced the spectrum of the free aldehyde.

Polarographic anodic waves of the 12 ortho-substituted benzaldehydes studied corresponded to a two-electron oxi-

Figure 3. Dependence of half-wave potentials (mV vs. SCE) of substituted benzaldehydes on pH and acidity function $J_{-}: 1 . o$-bromobenzaldehyde; 2,o-nitrobenzaldehyde; 3, o-tolualdehyde.
dation process. ${ }^{5,9}$ The limiting currents of these waves when corrected for the changes in viscosity ($i_{\text {corr }}=i_{\text {meas }} \times \eta^{1 / 2}$) were independent of sodium hydroxide concentration in the range 0.01 to 7 M . Half-wave potentials (Table II) were a function of pH and J_{-}. The $E_{1 / 2}-J_{-}(\mathrm{pH})$ plot shows two linear sections (Figure 3), shift at lower J_{-}and independence at higher J_{-}values. The intersection of the two linear parts was observed at J_{-}values somewhat larger than the $\mathrm{p} K^{\prime}$ value. The slope $\mathrm{d} E_{1 / 2} / \mathrm{d} J_{-}$depends considerably on the nature of the substituent (Table II). Waves of o-carboxybenzaldehyde were measurable only at concentrations of sodium hydroxide higher than about 3 M ; in the same region of strongly alkaline solutions the oxidation of o-trifluoromethyl derivative was also indicated, but the resulting wave was too indistinct for measurement.

Logarithmic analysis of the wave shape (Figure 4) gave linear plots of varying slope (Table III). No attempts have been made to study the anodic waves of ortho benzaldehydes at lower pH values by means of pulse polarography so that no information is available on shifts of half-wave potentials or the change in wave height in this pH region.

Discussion

Equilibria. Attempts to correlate quantitatively structural effects of ortho substituents on rates and equilibria can be

Figure 4. The logarithmic analysis of the rising portion of the anodic wave of ortho-substituted benzaldehydes. The value of $\log \left(i / i_{\mathrm{d}}-i\right)$ plotted against potential in volts: $1, o$-tolualdehyde; $2, o$-bromobenzaldehyde; 3, o-fluorobenzaldehyde; 4, o-iodobenzaldehyde.

Table III. Electrochemical Data for Oxidation of Benzaldehydes Substituted in Ortho Position by X Obtained in Alkaline Solutions

X	$\begin{aligned} & \mathrm{d} E_{1 / 2 /} \\ & \mathrm{d} J_{-}, \mathrm{V} \end{aligned}$	$\begin{gathered} \beta n_{\mathrm{a}}^{a} \\ (0.058) / \\ \mathrm{d} E_{1 / 2} / \mathrm{d} J_{-} \end{gathered}$	$\begin{gathered} \mathrm{d} E / \mathrm{d} \log \\ \left(i / i_{\mathrm{d}}-i\right), \\ \mathrm{V} \end{gathered}$	$\beta n_{\mathrm{a}}{ }^{b}$ (0.058)/ $\mathrm{d} E / \mathrm{d} \log$ $\left(i / i_{d}-i\right)$
F	0.068	0.85	0.060	0.97
Cl	0.077	0.75	0.046	1.26
Br	0.071	0.82	0.039	1.49
I	0.076	0.76	0.036	1.61
NO_{2}	0.044	1.32	0.032	1.81
OCH_{3}	0.050	1.16	0.038	1.53
$\mathrm{OC}_{2} \mathrm{H}_{5}$	0.054	1.07	0.035	1.66
CH_{3}	0.096	0.60	0.041	1.41
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	0.101	0.57	0.037	1.56
COO^{-}	0.103	0.56		
H	0.114	0.51	0.059	0.98

${ }^{a}$ Values obtained from shifts of half-wave potentials with sodium hydroxide concentration. ${ }^{b}$ Values obtained from the slope of current-voltage curves.
classified into four categories: (a) attempts to correlate the rate or equilibrium constants of ortho-substituted compounds with Hammett substituent constants for corresponding para substituents ($\sigma_{p . \mathrm{x}}$); (b) attempts to correlate such constants with a multiparameter equation, treating the ortho effects as additive to the polar effects; (c) attempts to correlate such constants with a special set of ortho-substituent constants (σ_{0}.x $)$; (d) attempts to correlate them with equilibrium or rate constants for another reaction of ortho-substituted compounds.

The first approach is based on the qualitative assumption that electronic effects in para and ortho positions are not substantially different. The small difference between the role of the inductive effect in various positions on the benzene ring relative to the reactive center has been demonstrated, ${ }^{10}$ so that the above assumption seems to equal the plausible conclusion that the resonance effect in para and ortho positions are not substantially different. Deviations from the $\log K_{o} . \mathrm{x}-\sigma_{p . \mathrm{x}}$ plot can then be interpreted as one of the proximity effects due to steric hindrance of coplanarity, direct field effect, or effect of the large steric requirements of the ortho substituent.

The second approach assumes the additivity of steric effects and is thought to be confirmed by apparently improved correlation resulting from the introduction of a second term in a linear free energy relationship. It seems that even statisticians have problems with deciding what is a measure of better correlation when a further adjustable parameter is included,
and hence, even when a statistical proof was offered, ${ }^{11}$ it does not seem to be possible to decide with certainty whether the improvement of the correlation is apparent or real. Moreover, the assumption of general additivity of steric effects does not seem to be plausible, as direct interactions of adjacent groups will depend also on the size, steric requirements, polarizability, and charge of the reactive center-not only of the substituent.

The same type of arguments apply also to the introduction of a special set of ortho-substituent constants. This presumes that the inductive, resenance, and polar effects of the ortho group are additive and that the relative size of the steric group will be independent of the reaction series and analogous to the steric effect operating in the series chosen as reference.

The limitation of the fourth type of application is that correlation between equilibrium constants is restricted to reaction series where both the structures of the starting materials and of the products (and hence also of the transition states) were similar in both series compared. The similarity in structures in starting materials and products in both series is the key to the limits of such application. It seems that the differences in structures of the starting material and product may be relatively small for this application to be successful. It seems difficult to predict how small these differences can be, but even when such $\log K^{1}{ }_{o-\mathrm{X}}-\log K^{2}{ }_{6}$ - X correlations are successful, their use will be restricted to a narrow range of reactions and universality-one of the main advantages of the linear free energy treatments-will be lost.

The values of $\mathrm{p} K^{\prime}$ for reaction 1 ('Table I) show acceptable correlation with $\sigma_{p . \mathrm{X}}$ constants for $\rho=3.50(r=0.92$ for 11 compounds). This indicates that steric effects in the addition of hydroxide ions to benzaldehydes are not predominant when compared with electronic effects. The only substantial deviation from the linear $\mathrm{p} K^{\prime}-\sigma_{p-\mathrm{x}}$ plot was observed for the COO^{-}grouping, which shows a $\mathrm{p} K^{\prime}$ value 1.5 larger than predicted by the $\mathrm{p} K^{\prime}-\sigma_{0 . x}$ plot and similar to values obtained for branched o-alkyl or alkoxy derivatives. As even branched alkyl groups do not show any substantial steric effect on the $\mathrm{p} K^{\prime}$ values, it can be concluded that the deviation results from the effect of aldehydic group on the carboxylate group rather than vice versa. Assumption of steric hindrance of coplanarity of the phenyl and carboxylate groups resulting in a loss of resonance interaction would explain why the change in $\mathrm{p} K^{\prime}$ value due to an o-COO- group is comparable to that caused by o- $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ or o-OR groups. Nevertheless, the competing effect of the negative unit charge cannot be excluded.

The correlation of $\mathrm{p} K^{\prime}$ with $\sigma_{o-\mathrm{x}}$ constants derived from the study of ester hydrolysis is comparable, with $\rho=2.1$ and $r=$ 0.93 . This might indicate that the steric requirements in the transition state in ester hydrolysis [e.g., in $\operatorname{ArC}\left(\mathrm{O}^{-}\right)(\mathrm{OH}) \mathrm{OR}$] are comparable with those in the addition product [Ar-$\left.\mathrm{C}\left(\mathrm{O}^{-}\right)(\mathrm{OH}) \mathrm{H}\right]$.

Best correlation has been nevertheless obtained for comparison of $\mathrm{p} K^{\prime}$ values of benzaldehydes with $\mathrm{p} K_{\mathrm{COOH}}$ of ortho-substituted benzoic acids (Figure 5). Slope 1.25, $r=$ 0.96 , was obtained for :en compounds (for $0-\mathrm{CF}_{3}$ no $\mathrm{p} K_{\mathrm{COOH}}$ was found). The value for the ortho-carboxylate derivative was again observed to deviate. The $\mathrm{p} K^{\prime}$ value was about one $\mathrm{p} K$ unit smaller than predicted by the $\mathrm{p} K^{\prime}-\mathrm{p} K_{\text {СООн }}$ plot. In this case it is nevertheless impossible to distinguish whether the deviation is caused predominantly by the steric hindrance in the benzaldehyde or by specific mutual interaction of the carboxylate groups in the second dissociation step of the ophthalic acid. When the values for polysubstituted benzaldehydes reported by Greenzaid ${ }^{4}$ (except for the 2,6 -disubstituted ones) were included (Figure 5) the slope 1.34 and r $=0.97$ were obtained. The effect of 2,6 disubstitution mentioned by Greenzaid ${ }^{4}$ is probably due to a steric hindrance to coplanarity of the aldehydic group with the phenyl ring.

Greenzaid ${ }^{4}$ first reported the linearity of the $\log K^{\prime}-\log$

Figure 5. Dependence of $p K^{\prime}$ values for the addition of hydroxide ions to benzaldehydes on $\mathrm{p} \mathrm{K}_{\mathrm{COOH}}$ values for the corresponding benzoic acids. No. 1-12: our measurements, monosubstituted benzaldehydes, numbering see Table I; no. 13-20, values reported by Greenzaid ${ }^{4}$ for 13, o-tolualdehyde; 14, o-chlorobenzaldehyde; $15,2,4$ dichlorobenzaldehyde; 16, o-nitrobenzaldehyde; 17, 2,6-dichlorobenzaldehyde; 18, 2-chloro-4-nitrobenzaldehyde; 19, 2-chloro-5-nitrobenzaldehyde; 20, 2,4 dinitrobenzaldehyde.
$K_{\text {COOH }}$ plot for a limited range of substituents, but did not attempt to offer an explanation of the reasons for this correlation. We assume that the basis is the similarity in the steric requirements of the acid $[\mathrm{ArC}(=\mathrm{O}) \mathrm{OH}$ and $\mathrm{ArC}(=\mathrm{O}) \mathrm{H}]$ and the conjugate base $\left[\mathrm{ArC}(=0) \mathrm{O}^{-}\right.$and $\left.\mathrm{ArCH}\left(\mathrm{O}^{-}\right) \mathrm{OH}\right]$ forms. Any future correlation can be expected only for structurally closely related series.

The differences between our values and the three values reported for monosubstituted ortho derivatives by Greenzaid (Table I) are small for the strongly electronegative, somewhat larger for the more electropositive substituents. This reflects the narrower range of hydroxide concentration over which Greenzaid ${ }^{4}$ was able to carry out measurements.

Differences between our values obtained by the overlap procedure and based on J_{-}function reflect differences in the choice of "anchoring" compounds, which were compounds $7-12$ in the overlap procedure, m - and p-nitro- and cyanobenzaldehydes in the definition of J_{-}acidity function. Even when the relative values are reliable to $\pm 0.03 \mathrm{pK}$ units, the absolute accuracy is not better than $\pm 0.1 \mathrm{pK}$ unit.

Electrooxidation. Based on a wide range of reaction series it was possible to prove repeatedly ${ }^{6}$ that shifts of polarographic half-wave potentials with structure can be correlated with empirical substituent constants in a way analogous to treatments of rate or equilibrium constants. Conditions necessary for such treatment is that mechanism of all compared processes remains identical, that the transfer coefficient obtained from the shape of waves is either the same for all compounds compared or a linear function of the substituent constant involved. Furthermore, all the half-wave potentials compared must be either pH independent, the slope $\mathrm{d} E_{1 / 2} /$ dpH must be practically the same, or the slope must be a linear function of the particular substituent constant.

All these conditions are well fulfilled for half-wave potentials of meta- and para-substituted benzaldehydes. Consequently, a linear $E_{1 / 2-\sigma_{m, p-x}}$ plot was observed. ${ }^{5}$ For orthosubstituted benzaldehydes the values of the transfer coefficient β obtained either from the wave shape or from the
$E_{1 / 2} J_{-}$plots varied widely for the substituents studied and were not a simple function of substituent constants $\sigma_{p-\mathrm{X}}$ or $\sigma_{o-\mathrm{x}}$. It is thus not surprising that no linear relationship has been found between the half-wave potentials and either σ_{p}.x, $\sigma_{o . \mathrm{x}}$, or $\mathrm{p} K_{\mathrm{COOH}}$ values.

The overall number of electrons transferred, the region of potentials in which the anodic waves were observed, and the shape of the $E_{1 / 2}-\mathrm{pH}\left(J_{-}\right)$plots for ortho-substituted compounds were similar to those observed for meta- and parasubstituted benzaldehydes. It is thus possible to conclude that the overall reaction scheme of the electrooxidation is in both cases similar and that the anion of the geminal diol [Ar$\mathrm{CH}(\mathrm{OH}) \mathrm{O}^{-}$] is the electroactive form.

Nevertheless, the considerable differences in the values of transfer coefficients indicate differences in the electrode process proper. The values of βn_{a} (Table III) not only vary according to the procedure used in obtaining them, but show variations even inside each group. These differences are smaller for values of βn_{a} obtained by logarithmic analysis of polarographic waves (Table III), where the majority of the compounds gives βn_{a} between 1.49 and 1.66, the exception being the unsubstituted compound ($\beta n_{a}=0.98$), o-F (0.97), $o-\mathrm{Cl}(1.26)$, and $o-\mathrm{NO}_{2}$ (1.81). Larger variability of the value of βn_{a} obtained from shifts of $E_{1 / 2}$ with J_{-}seems to indicate formation of three groups: ortho halogens ($\beta n_{\mathrm{a}}=0.75-0.85$), ortho-alkyl substituted compounds together with unsubstituted benzaldehyde ($0.51-0.60$), and $o-\mathrm{COO}^{-}$and the remaining $o-\mathrm{OCH}_{3}, o-\mathrm{OC}_{2} \mathrm{H}_{5}$, and $o-\mathrm{NO}_{2}$ (1.07-1.32). The greater sensitivity of the values obtained from $E_{1 / 2} J_{-}$plots seems to indicate that the difference among the ortho derivatives and between the ortho and meta/para derivatives is probably in the hydrogen abstraction step ${ }^{5}\left[\mathrm{ArCH}(\mathrm{OH}) \mathrm{O}^{-}\right.$ $\left.\Rightarrow \mathrm{ArCOOH}+2 \mathrm{e}+\mathrm{H}^{+}\right)$. Nevertheless, until it is better understood why for some electrode processes the values of βn_{a} (or αn_{a}) obtained from shape and half-wave potential shifts are identical whereas for others (like benzaldehyde oxidations) different, ${ }^{12}$ such conclusions must remain tentative.

Conclusions

The good structural correlations found for $\mathrm{p} K_{\mathrm{a}}$ values and the hydroxide addition reaction and the poor ones found for half-wave potentials of ortho-substituted benzaldehydes indicate that the complication is in the heterogeneous rather than homogeneous component of the electrode process. The indication that steric effects can affect a heterogeneous process at the electrode surface more deeply than a homogeneous process in the solution (even when in a layer adjacent to the electrode) can contribute to investigations of heterogeneous electrode processes.

References and Notes

(1) Part 2: W. J. Scott, W. J. Bover, K. Bratin, and P. Zuman, J. Org. Chem. preceding paper in this issue.
(2) Taken in part from the B.S. Thesis of J. H. Sedon, Clarkson College of Technology, 1974
(3) (a) W. J. Bover and P. Zuman, J. Chem. Soc., Perkin Trans. 2, 786 (1973) (b) W. J. Bover and P. Zuman, J. Am. Chem. Soc., 95, 2531 (1973).
(4) P. Greenzaid, J. Org. Chem., 38, 3164 (1973)
(5) W. J. Bover and P. Zuman, J. Electrochem. Soc., 122, 368 (1975).
(6) P. Zuman, "Substituent Effects in Organic Polarography", Plenum Press, New York, N.Y., 1967
(7) W. J. Bover, J. Electrochem. Soc., 120, 33c (1973)
(8) C. H. Rochester, "Acidity Functions'", Academic Press, New York, N.Y., 1970, p 16.
(9) (a) J. Volke, J. Electroanal. Chem., 10, 344 (1965); (b) O. Manousek and J. Volke, ibid., 43, 365 (1973)
(10) O. Exner. Collect. Czech. Chem. Commun., 31, 65 (1966)
(11) (a) M. Charton, Prog. Phys. Org. Chem., 8, 235 (1971); (b) J. Shorter in "Advances in Free Energy Relationships", N. B. Chapman and J. Shorter, Ed., Plenum Press, New York, N.Y., 1972, p 72
(12) H. J. Gardner and L. E. Lyons, Rev. Pure Appl. Chem., 3, 115 (1951)

Reaction of \mathbf{N}, \mathbf{N}-Dimethyl-2-triorganosilylethylamines with Benzyne

Yoshiro Sato,* Yasuchika Ban, Toyohiko Aoyama, and Hideaki Shirai
Faculty of Pharmaceutical Sciences, Nagcya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

Received December 30, 1975

Abstract

Reaction of N, N-dimethyl-2-triorganosilylethylamines (la-d) with benzyne, produced from o-fluorobromobenzene and n-butyllithium, gave N-methyl- N-triorganosilylmethylanilines (2a-d). 1-methyl 3,3-disubstituted ben$z o[d]$-1,3-azasilolines ($\mathbf{3 b}$-d), N, N-dimethylaniline (5), and triorganovinylsilanes ($6 \mathbf{a}-\mathbf{d}$). It was revealed that the cyclization giving 3 was induced in the presence of excess n-butyllithium. The reaction mechanism also is discussed.

In our earlier paper ${ }^{1}$ dealing with the reaction of β-triorganosilylethylammonium iodides with n-butyllithium, it was shown that 1,4 -anionic rearrangement of the triorganosilyl groups from carbon to carbon occurred in the ylide intermediates to give N-triorganosilylmethylamines. Ammonium

ylides can be formed by the reaction of tertiary amines with benzynes or carbenes, as well as by treatment of quaternary ammonium salts with strong bases. ${ }^{2}$ The present paper describes the reaction of N, N-dimethyl-2-triorganosilylethylamines (1) with benzyne produced by the reaction of o-fluorobromobenzene with n-butyllithium.

Scheme I

1

Addition of o-fluorobromobenzene to a mixture of N, N. dimethyl-2-trimethylsilylethylamine (1a) and 3 mol of n butyllithium, upon workup, gave N-methyl- N-trimethylsilylmethylaniline (2a), N,N-dimethylaniline (5), and trimethylvinylsilane ($6 \mathbf{a}$). Their yields are shown in Table I. Formation of 2 a is regarded as a result of the 1,4 -anionic rearrangement of the trimethylsilyl group in an ylide intermediate (11) produced by proton transfer from the first betaine intermediate (9) (path b in Scheme II), and 5 and 6 could be the Hofmann elimination products through another betaine intermediate (10) (path a).

However, a similar treatment of N, N-dimethyl-2-tri-
phenylsilylethylamine ($1 \mathbf{d}$) with benzyne gave an unexpected amine ($\mathbf{3 d}$) with a small amount of the expected rearrangement product, N-methyl- N-triphenylsilylmethylaniline (2d). Elemental, NMR, and mass spectral analyses of $3 \mathbf{d}$ suggested its structure as 1 -methyl-3,3-diphenylbenzo[d]-1,3-azasiloline. Lithium aluminum hydride reduction of the methiodide (7) of $3 \mathbf{d}$ gave a high yield of o-methyldiphenylsilyl- N, N-di-

methylaniline (4c), which was identical with an authentic sample prepared by reaction of o-bromo- N, N-dimethylaniline with methyldiphenylchlorosilane in the presence of n-butyllithium. In a previous paper ${ }^{3}$ we showed that $\mathrm{SiCH}_{2}-\mathrm{N}^{+}$bonds were cleaved more readily by lithium aluminum hydride reduction than $\mathrm{CH}_{3}-\mathrm{N}^{+}$bonds in 1,2,3,4-tetrahydrobenzo[d]-1,3-azasiline methiodides.

The reaction of N, N-dimethyl-2-dimethylphenylsilylethylamine (1b) or N, N-dimethyl-2-methyldiphenylsilylethylamine (lc) with benzyne also gave N-methyl- N-di-methylphenyl- (or methyldiphenyl-) silylmethylaniline (2b or $2 \mathbf{c}$) and 1,3,3-trimethyl- (or 1,3-dimethyl-3-phenyl-) ben-zo[d]-1,3-azasiloline ($\mathbf{3 b}$ or $\mathbf{3 c}$), respectively. Compound $\mathbf{3 b}$

proved identical with one of the reaction products between (3-chlorophenyl)methylaminomethyldimethylsilane (8) and phenyllithium.

It is improbable that the cyclization product (3) is produced directly from the betaine (9) or ylide (11) intermediate. The presence of excess n-butyllithium used should cause the formation of 3 . In fact when the reaction was carried out using an equimolar amount of n-butyllithium, a small amount of 3d was obtained instead of an increase in the yield of 2 d . Elevation of the reaction temperature from -50 to $-10^{\circ} \mathrm{C}$ induced again an increase in the yield of $\mathbf{3 d}$ and a decrease in $2 \mathbf{d}$.
It is known that metalation of N, N-dimethylaniline by n-butyllithium takes place at the ortho position, ${ }^{4}$ and that cyclization of 4 -triphenylsilylbutyllithium to 1,1 -diphenylsilolane occurs at $-25^{\circ} \mathrm{C}$ with elimination of phenyllithium. ${ }^{5}$ On the basis of these experimental results, it seemed reasonable to assume that the cyclization reaction giving 3 proceeded via the rearrangement product (2). However, no reaction was observed between $2 \mathbf{d}$ and n-butyllithium under the reaction condition.

Table I. Reaction Products of $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-triorganosilylethylamines (1a-d) with Benzyne

	R^{1}	R^{2}	R^{3}	Reaction conditions			Yield, ${ }^{\text {a }}$ \%					$\begin{gathered} 1 \\ \text { (recovery) } \end{gathered}$
				$\underset{\text { mol }}{n-\mathrm{BuLi}}$	$\begin{gathered} \text { Temp, } \\ { }^{\circ} \mathrm{C}, \end{gathered}$	Time, h						
							2	3	4	5	6	
a	Me	Me	Me	3	-50 to -55	6	33.6	0	0	15.1	9.1	7.5
							(36.3)			(16.4)	(9.9)	
b	Ph	Me	Me	3	-50 to -55	6	24.7	18.6	0	6.6	7.0	27.5
							(34.1)	(25.8)		(9.1)	(9.7)	
c	Ph	Ph	Me	3	-50 to -55	6	5.0	24.0	6.7	9.3	10.0	23.5
							(6.6)	(31.8)	(8.8)	(12.2)	(13.1)	
d	Ph	Ph	Ph	3	-50 to -55	6	5.1	24.6	0	20.0	25.9	17.8
							(6.2)	(29.8)		(24.0)	(31.4)	
				1	-50 to -55	6	29.7	Trace	0	37.5	49.6	12.7
							(33.9)			(46.8)	(56.7)	
				1	-10 to -15	3	Trace		0	40.9	55.5	9.1
								(21.4)		(41.3)	(55.9)	
				$3^{\text {b }}$	-50 to -55	6	35.1	8.1	0	30.7	20.2	22.5
							(45.3)	(10.5)		(39.6)	(26.0)	

${ }^{a}$ Yields in parentheses are based on unrecovered $1 .{ }^{b}$ This reaction was carried out by addition of n-butyllithium, contrary to the other reactions, to a mixture of 1 d and o-fluorobromobenzene.

When 3 mol of n-butyllithium was added, contrary to the above-mentioned procedures, to a mixture of 1d and o-fluorobromobenzene, the yield of 2 d was increased but 3 d was decreased (see Table I). This result suggests that the presence of excess n-butyllithium is required at the initial stage of the reaction but not the final stage for the formation of 3 .

The formation of 3 may proceed by the following steps. Deprotonation by excess n-butyllithium takes place in part of the first intermediate (9), in which the betaine carbanion is presumably stabilized by coordination with the silicon atom, to give the second intermediate (12). Subsequently 12 is

converted into the third intermediate (13) by silyl rearrangement with loss of ethylene. Then the cyclization reaction of 13 gives 3 with elimination of phenyllithium. When an equimolar amount of n-butyllithium was employed at $-10^{\circ} \mathrm{C}$, this phenyllithium could be available as the deprotonating agent from 9 to 12.

Scheme II

If the postulated reaction path is reasonable, the third intermediate (13a) having no phenyl substituent on the silicon atom, which is converted into 2a by addition of water, should have remained in the reaction mixture, because an alkyl substituent is not easily cleaved from silicon by nucleophilic reagents. ${ }^{6}$ Addition of carbon dioxide to the reaction mixture from la with benzyne gave o-(N-methyl- N-trimethylsilylmethylamino) benzoic acid (14), which produced o-(dimethylamino) benzoic acid (15) upon acid hydrolysis.

In the reaction of dimethylaminomethylphenylsilanes (16) with benzyne, a new rearrangement of the silyl group toward the anion in betaine (17) was observed in our laboratory. ${ }^{7}$ In spite of the fact that a similar rearrangement might be possible in the first intermediate (9), none or at best small amounts of the rearrangement products, o-triorganosilyl- N, N-dimeth-

16

ylanilines (4), were isolated. The low contribution of this reaction path (path d) could be explained by the rate of $1,5 \mathrm{re}$ arrangement of the silyl group being slower than 1,4 rearrangement (path b and c), as suggested by West ${ }^{8}$ on the basis of the studies of $\mathrm{N}, \mathrm{N}^{\prime}$-anionic silyl rearrangement in N -silylated ethylenediamine and propylenediamine.

Experimental Section

NMR spectra were recorded using a JNM-MH-100 (JEOL) spectrometer employing tetramethylsilane as internal standard. Ir spectra were taken on an IRA-2 (Jasco) spectrometer. Mass spectra were recorded using a M-52 (Hitachi) spectrometer. GLC analyses were performed on JGC-750FID and JGC-1100FID (JEOL) chromatographs using stainless steel columns with a nitrogen flow rate of 50 $\mathrm{ml} / \mathrm{min}$. Quantitative analysis of the reaction mixtures was carried out by the internal standard method. Fractional distillation was accomplished by a GKR-50 (Büchi) Kugelrohr distillation apparatus. All boiling points and melting points are uncorrected. n-Butyllithium, 15% in hexane, was obtained from Nakarai Chemicals Ltd., Kyoto. Ether and THF were dried by distillation from lithium aluminum hydride just prior to use.
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-dimethylphenylsilylethylamine (1b). A solution of dimethylphenylsilyllithium ${ }^{9}$ prepared from dimethylphenylchlorosilane (25.6 g .0 .15 mol) and lithium clippings (3.1 g .0 .45 g -atom) in THF (150 ml) was added to an ice-cold solution of 2 dimethylaminoethyl chloride ($6.46 \mathrm{~g}, 0.06 \mathrm{~mol}$) in THF (50 ml). After 15 h of stirring at room temperature, the reaction mixture was hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The THF layer was separated and the aqueous layer was extracted with ether. The combined organic layer was concentrated, and the residue was extracted with $5 \% \mathrm{HCl}$. The acid extract was neutralized with potassium carbonate and extracted with ether. Distillation of the ethereal extract gave 5.30 $\mathrm{g}(42.6 \%)$ of 1 b : bp $129-131^{\circ} \mathrm{C}(30 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.28(\mathrm{~s}, 6$, SiCH_{3}), 0.90-1.12 (m. 2, SiCH_{2}), 2.20 (s, 6. NCH_{3}), 2.20-2.42 (m, 2, NCH_{2}), $7.18-7.60\left(\mathrm{~m}, 5\right.$, aromatic H): picrate, $\mathrm{mp} 135-137^{\circ} \mathrm{C}$ (recrystallized from ethanol).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}$: C, 49.53; $\mathrm{H}, 5.54 ; \mathrm{N}, 12.84$. Found: C, 49.71: H, 5.58; N, 12.10 .
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-methyldiphenylsilylethylamine (1c). In a manner similar to that described for $\mathbf{I b}$, methyldiphenylsilyllithium [prepared from methyldiphenylchlorosilane ($27.9 \mathrm{~g}, 0.12 \mathrm{~mol}$) and lithium clippings ($2.5 \mathrm{~g}, 0.36 \mathrm{~g}$-atom) ${ }^{10}$ and 2-dimethylaminoethyl chloride ($7.44 \mathrm{~g}, 0.07 \mathrm{~mol}$) were treated in THF (200 ml) giving 13.00 $\mathrm{g}(67.0 \%)$ of 1 c : bp $110-114^{\circ} \mathrm{C}(0.06 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.56(\mathrm{~s}, 3$, SiCH_{3}), 1.20-1.44 (m, 2, SiCH_{2}), 2.16 (s, 6, NCH_{3}), 2.24-2.50 (m, 2, $\mathrm{NCH}_{\mathrm{z}}$), 7.24-7.66 (m, 10, aromatic H); oxalate, mp 164-166 ${ }^{\circ} \mathrm{C}$ (recrystallized from ethanol;-

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Si}$: C, 63.48; H, 7.01; $\mathrm{N}, 3.90$. Found: C, 63.42; H, 6.93; N, 3.93.

Reaction of $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-trimethylsilylethylamine ${ }^{1}$ (1a) with Benzyne. A. A solution of o-fluorobromobenzene ($2.31 \mathrm{~g}, 13$ mmol : in ether (10 ml) was added within 5 min to a mixture of $1 \mathrm{a}(1.74$ $\mathrm{g}, 12 \mathrm{mmol}$) and n-butyllithium ($25 \mathrm{ml}, 39 \mathrm{mmol}$) in ether (60 ml) at $-50 \mathrm{t})-55^{\circ} \mathrm{C}$. After 6 h of stirring at the same temperature, the mixture was hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ below -40 ${ }^{\circ} \mathrm{C}$ and extracted with ether. The ether layer was extracted with 5% HCl .

The HCl extract was reutralized with potassium carbonate and extracted with ether. The ethereal extract (basic part) was analyzed by GLC using a $3 \mathrm{~mm} \times 1 \mathrm{~m}$ column filled with 30% Tergitol NP-35, programed from 60 to $200^{\circ} \mathrm{C}$ at $6^{\circ} \mathrm{C} / \mathrm{min}$. The chromatogram showed the presence of N-methyl- N-trimethylsilylmethylaniline ($2 \mathrm{a}, 33.6 \%$), N, N-dimethylaniline ($5,15.1 \%$), and unchanged la (7.5%). Samples of the products were isolated by fractional distillation and identified with cuthentic samples, respectively. Compound 2a, bp $115-118^{\circ} \mathrm{C}$ $(15 \mathrm{~mm})\left[\right.$ lit. $\left.{ }^{1} \mathrm{bp} 112-118^{\circ} \mathrm{C}(13 \mathrm{~mm})\right]$.

From the ether layer (neutral part), trimethylvinylsilane ($6 \mathbf{a}, 9.1 \%$) was detected and determined by GLC analysis (30% dioctyl sebacate, $3 \mathrm{~mm} \times 3 \mathrm{~m}$).
B. The above benzyne reaction was repeated. After 6 h of stirring, carbon dioxide was bubbled into the reaction mixture at -60 to -70 ${ }^{\circ} \mathrm{C}$ for 1 h , and then it was extracted with $5 \% \mathrm{NaOH}$. Dimethyl sulfate $(3.8 \mathrm{~g} .30 \mathrm{mmol})$ was added to the NaOH extract at room temperature. After 3 h of stirring, the mixture was extracted with ether. The ethereal extract was dried, concentrated, and distilled to give 90 mg (3.0\%) of methyl o-(N-methyl- N-trimethylsilylmethylamino) benzoate: bp $150-155^{\circ} \mathrm{C}(12 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.10\left(\mathrm{~s}, 9, \mathrm{SiCH}_{3}\right), 2.80(\mathrm{~s}, 2$, $\left.\mathrm{NCH}_{2}\right), 2.92\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.96\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.68-7.80(\mathrm{~m}, 4$, aromatic H); ir (neat) $1720 \mathrm{~cm}^{-1}$

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Si}$: C, 62.11; H, 8.42; N, 5.57. Found: C, 61.89: H, 8.20; N, 5.31.

Methylo-(N-methyl- N-trimethylsilylmethylamino)benzoate (50 $\mathrm{mg}, 0.2 \mathrm{mmol}$) was dissclved in $30 \% \mathrm{HCl}-\mathrm{EtOH}(20 \mathrm{ml})$, and the mixture was heated unde: reflux for 12 h . After the addition of water (70 ml), the reaction mixture was made alkaline with $20 \% \mathrm{NaOH}$ and washed with ether. The aqueous solution was neutralized with 10% HCl and extracted with chloroform to give 10 mg (30\%) of o-(dimethylamino) benzoic acid (15).

Reaction of 1 b with Benzyne. In a similar manner as described for $1 \mathbf{a}, o$-fluorobromobenzene $(1.93 \mathrm{~g}, 11 \mathrm{mmol}), 1 \mathrm{~b}(2.07 \mathrm{~g}, 10 \mathrm{mmol})$, and n-butyllithium ($21 \mathrm{ml}, 33 \mathrm{mmol}$) were allowed to react in ether $(60 \mathrm{ml})$, and the reaction mixture was treated. GLC analysis (10% PEG-20M, $3 \mathrm{~mm} \times 1 \mathrm{~m}$, programmed from 80 to $250^{\circ} \mathrm{C}$ at $6^{\circ} \mathrm{C} / \mathrm{min}$) of the basic part showed the presence of $\mathbf{2 b}$ (24.7%). $\mathbf{3 b}$ (18.6%). 5 (6.6%), and unchanged $1 \mathrm{~b}(27.5 \%)$. Samples of the products were isolated by fractional distillation and characterized as follows.

1,3.3-Trimethylbenzo[d]-1,3-azasiloline (3b): bp 120-125 ${ }^{\circ} \mathrm{C}(28$ mm); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.22\left(\mathrm{~s}, 6, \mathrm{SiCH}_{3}\right), 2.64\left(\mathrm{~s}, 2, \mathrm{NCH}_{2}\right), 2.88(\mathrm{~s}, 3$, NCH_{3}), 6.44-6.88 and 7.12-7.48 (m, 4, aromatic H).
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NSi}$: C. 67.73 ; $\mathrm{H}, 8.53 ; \mathrm{N}, 7.90$. Found: C, 67.45. H, 8.40; N, 7.85 .
N-Methyl- N-dimethy phenylsilylmethylaniline (2b): bp 151-153 ${ }^{\circ} \mathrm{C}(6 \mathrm{~mm}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.34\left(\mathrm{~s}, 6, \mathrm{SiCH}_{3}\right), 2.82\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.06$ (s, 2, NCH ${ }_{2}$), 6.50-6.76 and 7.04-7.64 (m, 10, aromatic H).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NSi}$: C, 75.23 ; $\mathrm{H}, 8.29$; $\mathrm{N}, 5.48$. Found: C, 75.10, H, 8.11; N, 5.30.

From the neutral part, dimethylphenylvinylsilane ($6 \mathrm{~b}, 7.0 \%$) was detected and determined by GLC analysis (10% PEG-20M, $3 \mathrm{~mm} \times$ 1 m).
Reaction of $1 \mathbf{c}$ with Benzyne. In a similar manner as described for la, o-fluorobromobenzene ($1.93 \mathrm{~g}, 11 \mathrm{mmol})$, Ic $(2.69 \mathrm{~g}, 10 \mathrm{mmol})$, and n-butyllithium ($21 \mathrm{ml}, 33 \mathrm{mmol}$) were allowed to react in ether $(60 \mathrm{ml})$, and the reaction mixture was treated. Distillation of the basic part gave $5(9.3 \%$) and unchanged lc (23.5%). GLC analysis (10% Siliccne AN-600. $3 \mathrm{~mm} \times 1 \mathrm{~m}$, programed from 110 to $250^{\circ} \mathrm{C}$ at 6 $\% / \mathrm{min}$) of the neutral part showed the presence of $2 \mathbf{c}(5.0 \%), \mathbf{3 c}$ (24.0\%). 4c (6.7%), and methyldiphenylvinylsilane ($6 \mathbf{c}, 10.0 \%$) (Compounds 2c, 3c, and $4 \mathbf{c}$ were not extracted with $5 \% \mathrm{HCl}$.) Samples
of the products were isolated by fractional distillation and characterized as follows.

1,3-Dimethyl-3-phenylbenzo[d]-1,3-azasiloline (3c); bp $80-82^{\circ} \mathrm{C}$ $(0.03 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.64$ (s, $3, \mathrm{SiCH}_{3}$), $2.80\left(\mathrm{~s}, 2, \mathrm{NCH}_{2}\right), 2.90$ ($\mathrm{s}, 3, \mathrm{NCH}_{3}$), 6.44-6.80 and 7.12-7.68 (m, 9, aromatic H).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{1 ;} \mathrm{NSi}: \mathrm{C}, 75.26 ; \mathrm{H}, 7.16 ; \mathrm{N}, 5.85$. Found: C, 75.11; H, 6.89; N, 5.79

0 -Methyldiphenylsilyl- $N . N$-dimethylaniline (4c): bp $140-145^{\circ} \mathrm{C}$ (0.07 mm); mp $67-70^{\circ} \mathrm{C}$ (recrystallized from hexane); NMR (CDCl_{3}) $\delta 0.84\left(\mathrm{~s}, 3, \mathrm{SiCH}_{3}\right), 2.28\left(\mathrm{~s}, 6, \mathrm{NCH}_{3}\right), 6.96-7.72(\mathrm{~m}, 14$, aromatic H$)$

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NSi}$: C, 79.44; H. 7.30; N, 4.41. Found: C, 79.30; H, 6.99; N, 4.16.
N-Methyl- N-methyldiphenylsilylmethylaniline (2c): bp 147-149 ${ }^{\circ} \mathrm{C}(0.07 \mathrm{~mm})$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.60\left(\mathrm{~s}, 3, \mathrm{SiCH}_{3}\right), 2.72\left(\mathrm{~s}, 3 . \mathrm{NCH}_{3}\right)$, 3.38 (s, 2, NCH 2), 6.52-6.80 and $7.04-7.72$ (m, 15, aromatic H).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NSi}$: C, 79.44; H, 7.30; N, 4.41. Found: C, 79.26; H, 7.58; N, 4.43.

Reaction of $\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-triphenylsilylethylamine ${ }^{1}$ (Id) with Benzyne. A. In a similar manner as described for la, o-fluorobromobenzene ($1.93 \mathrm{~g}, 11 \mathrm{mmol}$), Id ($3.32 \mathrm{~g}, 10 \mathrm{mmol}$), and n-butyllithium ($21 \mathrm{ml}, 33 \mathrm{mmol}$) were allowed to react in ether (60 ml), and the reaction mixture was treated. Distillation of the basic part gave 5 (20.0\%) and unchanged 1d (17.8\%). GLC analysis (10% Silicone AN-600, $3 \mathrm{~mm} \times 1 \mathrm{~m}$, programmed from 150 to $300^{\circ} \mathrm{C}$ at $6^{\circ} \mathrm{C} / \mathrm{min}$) of the neutral part showed the presence of $\mathbf{2 d}(5.1 \%), 3 \mathrm{~d}(24.6 \%)$, and triphenylvinylsilane ($6 \mathbf{d}, 25.9 \%$) (compounds 2 d and 3 d were not extracted with $5 \% \mathrm{HCl}$). Samples of the products were isolated by fractional distillation and characterized as follows.

1-Methyl-3,3-diphenylbenzo[d]-1,3-azasiloline (3d): bp 120-125 ${ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$; $\mathrm{mp} 92-93{ }^{\circ} \mathrm{C}$ (recrystallized from hexane); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.96\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.10\left(\mathrm{~s}, 2, \mathrm{NCH}_{2}\right), 6.50-6.76$ and $7.12-7.80$ ($\mathrm{m}, 14$, aromatic H); mass spectrum m/e $301\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NSi}$: C, 79.68; H, 6.35; N, 4.65. Found: C, 79.10; H, 6.13; N, 4.53.
.N-Methyl-. N -triphenylsilylmethylaniline (2d): bp $150-165{ }^{\circ} \mathrm{C}(0.01$ mm) $\mathrm{mp} 73-74^{\circ} \mathrm{C}$ (lit. ${ }^{1} \mathrm{mp} 73-74^{\circ} \mathrm{C}$).
B. The above reaction was repeated using an equimolar amount of n-butyllithium to give 2d (29.7\%), 3d (trace), $\mathbf{5}$ (37.5\%), 6d (49.6\%), and unchanged 1 d (12.7\%).
C. The benzyne reaction described above for \mathbf{B} was :epeated at -10 to $-15^{\circ} \mathrm{C}$. After 3 h of stirring. the reaction mixture was treated giving 2d (trace), 3d (21.2\%), 5 (40.9%), 6d (55.5\%), and unchanged Id (9.1\%).
D. n-Butyllithium ($18 \mathrm{ml}, 28 \mathrm{mmol}$) was added slowly over a $3-\mathrm{h}$ period to a mixture of $1 \mathbf{d}(2.98 \mathrm{~g}, 9 \mathrm{mmol})$ and o-fluorobromobenzene $(1.75 \mathrm{~g}, 10 \mathrm{mmol})$ in ether (45 ml) at -50 to $55^{\circ} \mathrm{C}$. and stirring was continued for 3 h . The reaction mixture was treated giving $\mathbf{2 d}(35.1 \%)$, 3d (8.1\%), 5 (30.7%), 6d (20.2%), and unchanged 1d (22.5%).

1,1-Dimethyl-3,3-diphenylbenzo[d]-1,3-azoniasiloline Iodide (7). A mixture of $3 \mathrm{~d}(0.13 \mathrm{~g}, 0.44 \mathrm{mmol})$ and methyl iodide (3 ml) in acetone (20 ml) was heated at $40-50^{\circ} \mathrm{C}$ for 15 h . After removal of the acetone, the residue was recrystallized from ethanol to give 0.18 g (90.9%) of $7, \mathrm{mp} 187-188^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22}$ INSi: C, $56.89 ; \mathrm{H}, 5.00 ; \mathrm{N}, 3.16$. Found: C, 56.78; H, 5.03; N, 3.06.

Lithium Aluminum Hydride Reduction of 7. A mixture of 7 (0.18
$\mathrm{g}, 0.4 \mathrm{mmol}$) and lithium aluminum hydride $(0.1 \mathrm{~g}, 2.6 \mathrm{mmol})$ in THF (20 ml) was heated under reflux for 2 h . After the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the THF layer was separated and the aqueous layer was extracted with ether. The combined organic layer was dried and concentrated. Recrystallization of the residue from hexane gave 0.12 g (94.5\%) of $4 \mathrm{c}, \mathrm{mp} 68-70^{\circ} \mathrm{C}$.
\boldsymbol{o}-Methyldiphenylsilyl- $\mathbf{N}, \boldsymbol{N}$-dimethylaniline (4c). n-Butyllithium ($5 \mathrm{ml}, 7.8 \mathrm{mmoli}$ was added to a solution of $o-$ bromo $-N, N$ dimethylaniline $(1.56 \mathrm{~g}, 7.8 \mathrm{mmol})$ in ether $(40 \mathrm{ml})$ at $0-10^{\circ} \mathrm{C}$, and stirring was continued for 2.5 h at the same temperature. Then to the mixture was added a solution of methyldiphenylchlorosilane (1.63 g. 7 mmol) in ether (10 ml) at room temperature. After 3 h of heating under reflux, the reaction mixture was hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The ethereal extract was dried and concentrated. Recrystallization of the residue from hexane gave $1.03 \mathrm{~g}(41.5 \%)$ of $4 \mathrm{c}, \mathrm{mp} 68-70^{\circ} \mathrm{C}$.

1,3,3-Trimethylbenzo[d]-1,3-azasiloline (3b). A solution of phenyllithium (33 mmol) in ether (20 ml) was added to a boiling solution of (3 -chlorophenyl)methylaminomethyldimethylsilane ($8,6.40$ $\mathrm{g}, 30 \mathrm{mmol}$) in ether (130 ml). After 2 h of heating, the reaction mixture was hydrolyzed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. Distillation of the extract gave $2.10 \mathrm{~g}(40 \%)$ of 3 b , which was identified by spectroscopic comparison with the sample obtained by the reaction of $\mathbf{l b}$ with benzyne.
Acknowledgment. The authors are grateful to the ShinEtu Chemical Industry Co., Ltd., for a generous gift of chlorosilanes.

Registry No.-la, 23138-94-5; 1b, 58617-49-5; 1b picrate, 58617-61-1; 1c, 58617-50-8; 1c oxalate, 58617-62-2; 1d, 58617-51-9; 2b, 58617-52-0; 2c, 58617-53-1; 3b, 58617-54-2; 3c, 58617-55-3; 3d, 58617-56-4; 4c, 58617-57-5; 7, 58617-58-6; 8, 58617-59-7; 14 methyl ester, 58617-60-0; dimethylphenylsilyllithium, 3839-31-4; methyldiphenylsilyllithium, 3839-30-3; benzyne, 462-80-6; o-bromo- N, N dimethylaniline, 698-00-0; methyldiphenylchlorosilane, 144-79-6.

References and Notes

(1) Y. Sato, Y. Ban, and H. Shirai, J. Chem. Soc., Chem. Commun. 182 (1974): J. Organomet. Chem, in press.
(2) A. R. Lepley and A. G. Giumanini in "Mechanisms in Molecular Migrations" Vol. 3. B. S. Thyagarajan. Ed., Wiley-Interscience. New York, N. Y.. 1971. pp 297-431.
(3) Y. Sato, Y. Fukami, and H. Shirai, J. Organomet. Chem. 78, 75 (1974).
(4) A. R. Lepley, W. A. Khan. A. B. Giumanini, and A. G. Giumanini, J. Org Chem. 31, 2047 (1966)
(5) D. Wittenberg and H. Gilman., J. Am. Chem. Soc.. 80, 2677 (1958).
(6) C. Eaborn and W. R. Bott in "Organometallic Compounds of the Group IV Elements". Vol. 1. "The Bond to Carbon". Part 1. A. G. MacDiarmid, Ed., Marcel Dekker. New York. N.Y.. 1968, p 359.
(7) Y. Sato, T. Toyo'oka, T. Aoyama, and H. Shirai, J. Chem. Soc. Chem. Commun., 640 (1975).
(8) R. West. Pure Appl. Chem., 19, 291 (1969).
(9) M. V. George. D. J. Peterson, and H. Gilman, J. Am. Chem. Soc., 82, 403 (1960).
(10) H. Gilman, D. J. Peterson, and D. Wittenberg, Chem. Ind. (London), 1479 (1958).

Formation of Vinylsilanes and Allylsilanes in Thermal Elimination Reactions of Esters of $\boldsymbol{\beta}$-Hydroxyalkyltrimethylsilanes

Francis A. Carey* and J. Richard Toler
Department of Chemistry, University of Virginia, Charlottesville. Virginia 22901

Received November 2ป, 1975

Abstract

Thermolysis of esters of B-hydroxyalkyltrimethylsilanes $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ was investigated as a route to the synthetically useful vinylsilanes $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{CHSiMe}_{3}$. A survey of product composition vs. leaving group for esters of 2-trimethylsilylmethyl-2-adamantanol (1a) revealed exclusive alkene formation with a good leaving group and exclusive vinylsilane formation with a poor leaving group. Methanesulfonate ester If decomposed under the conditions of its formation to give a 91% yield of methyleneadamantane (2). Thermolysis of 2-trimethylsilylmethyl-2adamantyl N-phenylcarbamate (1b) at $160^{\circ} \mathrm{C}$ produced 2 -(trimethylsilylmethylene)adamantane (3) in 94% yield. Mixtures of 2 and 3 were obtained with other leaving groups. The vinylsilane 1-trimethylsilyl-3.3-dimethyl-1-butene (9) was obtained in 72% yield on thermolysis of 1 -trimethylsilyl-3,3-dimethyl-2-butyl.N-phenylthiocarbamate (4c). Mixtures of vinylsilanes and allylsilanes were obtained from esters which could eliminate in two directions. Thermolysis of 1-trimethylsilylmethyl-1-cyclohexyl N-phenylcarbamate (5b) or S-methyl xanthate (5d) gave the allylic silane 1-(trimethylsilylmethyl)cyclohexene (12) as the major product. Thermolysis of 1-trimethylsilyl-3-phe-nyl-2-propyl N-phenylthiocarbamate ($6 \mathbf{c}$) at $125^{\circ} \mathrm{C}$ produced trans-1-trimethylsilyl-3-phenyl-1-propene (13) and trans-1-phenyl-3-trimethylsilyl-1-propene (14) in comparable amounts. Mixtures of the vinylsilane 15 and the allylsilane 16 were produced when 1 -trimethysilyl-2-octanol (7a) was subjected to the Chugaev elimination sequence. trans- β-Styryltrimethylsilane was obtained in 43% yield on thermolysis of 1-phenyl-2-trimethylsilylethyl N-phenylcarbamate ($\mathbf{8 b}$), along with the product of ion-pair return, N-(1-phenyl-2-trimethylsilylethyl)aniline (18, 33\%). The results are discussed in terms of ion-pair intermediates. Stabilization of the developing carbonium ion by car-bon-silicon hyperconjugation requires the trimethylsilyl substit cent to be anti to the leaving group. Retention of trimethylsilyl in the product is believed to occur because deprotonation of the carbonium ion by the anion of the leaving group is faster than rotation around the $C(\alpha)-C(\beta)$ bond with poorer (more basic) leaving groups. The ease of decomposition as a function of substrate structure (tertiary $>$ secondary) and formation of ion-pair return prod. ucts from $\mathbf{8 b}$ and 8 c are consistent with this interpretation.

The readily available β-hydroxyalkyltrimethylsilanes, formed by addition of trimethylsilylmethylmagnesium chloride to aldehydes and ketones, ${ }^{1}$ would appear to be useful substrates for the synthesis of vinylsilanes if methods could be developed to control the mode of their decomposition. Elimination reactions of β-functional organosilanes usually proceed with cleavage of the silicon-carbon bond to afford alkenes. ${ }^{2}$ The few cases where vinylsilanes are produced are either heterogeneous reactions or are limited in terms of general applicability. ${ }^{3}$

Considerable recent interest has been shown in reactions of vinylsilanes directed toward synthetic applications. Potential utility in the synthesis of alkenes, ${ }^{4}$ aldehydes, ${ }^{5}$ ketones, ${ }^{6}$ vinyl halides, ${ }^{7}$ and in the annelation of ketones ${ }^{8}$ has been demonstrated. Most of these efforts, as well as many mechanistic studies, ${ }^{9}$ have focused on lightly substituted vinylsilanes.

The work reported here describes a study of the thermal decomposition of various esters of some β-hydroxyalkyltrimethylsilanes, performed with a view toward determining the factors which influence the relative proportions of vinylsilane and alkene formed. It was also hoped that such a study would provide a basis for developing a general method for converting β-hydroxyalkyltrimethylsilanes to vinylsilanes. ${ }^{10}$

Results

The β-hydroxyalkylsilanes utilized in this study were all prepared by addition of trimethylsilylmethylmagnesium chloride to the appropriate aldehyde or ketone and are listed in Table 1 .

The system chosen for most detailed study was 2 -trimeth-ylsilylmethyl-2-adamantanol (1a). Elimination reactions in this system can lead only to methyleneadamantane (2) and 2-(trimethylsilylmethylene)adamantane (3), thereby simplifying analysis of the product mixtures and interpretation of the results.

The elimination reactions of the esters $\mathbf{l} \mathbf{b}-\mathbf{f}$ derived from

la. $\mathrm{X}=\mathrm{OH}$
b. $\mathrm{X}=\mathrm{OC}(\mathrm{O}) \mathrm{NHPh}$
c. $\mathrm{X}=\mathrm{OC}(\mathrm{S}) \mathrm{NHPh}$
d. $\mathrm{X}=\mathrm{OC}(\mathrm{S}) \mathrm{SCH}_{i}$
e. $\mathrm{X}=\mathrm{OSO}_{2} \mathrm{NHCO}_{2} \mathrm{CH}_{3}$
f. $\mathrm{X}=\mathrm{OSO}_{2} \mathrm{CH}_{3}$
la were strikingly dependent on the nature of the leaving group.

Treatment of the anion of la (generated with n-butyllithium.) with methanesulfonyl chloride afforded directly on workup a 91% yield of methyleneadamantane (2) as the exclusive product.

Conversion of la to its crystalline N-phenylcarbamate $\mathbf{1 b}$ was effected by treatment of its alkoxide ion with phenyl isocyanate. Pyrolysis of the N-phenylcarbamate at $160^{\circ} \mathrm{C}$ and distillation of the resulting liquid, followed by dilute acid extraction of aniline from the distillate. gave a 94% yield of the pure vinylsilane 3. The vinylsilane was characterized by its NMR, ir, and mass spectra and elemental analysis (see Experimental Section for details).

Table I. β-Hydroxyalkyltrimethylsilanes Obtained by Addition of Trimethylsilylmethylmagnesium Chloride to Aldehydes and Ketones

	β-Hydroxyalkyl- trimethylsilane, Carbonyl compd	Purified $R_{1} \mathrm{R}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{SiMe}_{3}$
yield, \%		

Other thermal elimination sequences, Chugaev (xanthate ester), ${ }^{11}$ Burgess (N-carbomethoxysulfamate ester), ${ }^{12}$ and N-phenylthiocarbamate ester pyrolysis, were also examined and gave results intermediate between the two extremes with mixtures of 2 and 3 being produced. These results are summarized in Table II. Except in the case of the N-phenylcarbamate ester, the esters derived from la could not be isolated but underwent decomposition to 2 and 3 under the conditions of their formation. The ratio 2:3 appears to parallel leaving group abilities, with greater proportions of the vinylsilane 3 being produced as the leaving group becomes poorer.

Encouraged by the efficient synthesis of 3 from 1 b , the thermolyses of esters of other β-hydroxyalkyltrimethylsilanes (4a-8a) were investigated. With the relationship between vinylsilane and alkene formation established by the study of esters of 1a, extending the investigation to other systems was done with the objective of broadening the scope of vinylsilane synthesis. The reaction conditions used were those judged to have the best chance of success and no attempt was made to isolate the alkenes formed in competition with the vinylsilanes. Indeed, most of the alkenes are sufficiently volatile to present problems in isolation under the reaction and workup conditions employed.

The N-phenylcarbamate (4b) of 1-trimethylsilyl-3,3-dimethyl-2-butanol was more stable to thermolysis than 1 b and significant quantities of diphenylurea were produced along with a 28% yield of trans-1-trimethylsilyl-3,3-dime-thyl-1-butene (9) after 30 h at $200^{\circ} \mathrm{C}$. Thermolysis of the more labile N-phenylthiocarbamate 4c proved more satisfactory. The crystalline N-phenylthiocarbamate was sufficiently stable to be isolated, but underwent smooth decomposition at $140^{\circ} \mathrm{C}$ to give the vinylsilane 9 in 72% yield. None of the cis vinylsilane could be detected by NMR analysis.

The reactions of the corresponding esters of 1 -trimeth-ylsilylmethyl-1-cyclohexanol (5a) are more complicated in that an allylic silane (1-trimethylsilylmethylcyclohexene, 12)

Table II. Product Composition from Elimination Reactions of 2-Trimethylsilylmethyl-2-adamantyl Esters

Compd	X	Conditions	Yield of product, \%u	
			2	3
1b	OC(O)NHPh	No solvent, $160{ }^{\circ} \mathrm{C}$		94
1 c	OC(S)NHPh	THF, $25{ }^{\circ} \mathrm{C}$		$73^{\text {b }}$
1 d	$\mathrm{OC}(\mathrm{S}) \mathrm{SCH}_{3}$	THF, $25{ }^{\circ} \mathrm{C}$		44
		Toluene $110^{\circ} \mathrm{C}$	$(28)^{c}$	(70) ${ }^{\text {c }}$
1 l	$\mathrm{OSO}_{2} \mathrm{CH}_{3} \mathrm{OSO}_{2}$	Toluene, $110{ }^{\circ} \mathrm{C}$ THF, $25{ }^{\circ} \mathrm{C}$	$\mathrm{Cl}_{91}{ }^{\text {c }}$	39) ${ }^{\text {c }}$

a Isolated yields of purified product. ${ }^{b}$ Determined by GLC to contain 3% of $2 .{ }^{c}$ Analytical yield determined by GLC vs. an internal standard.
can be formed as well as the vinylsilane (1-trimethylsilylmethylenecyclohexane, 11) and the alkene (methylenecyclohexane, 10).

As was the case with $1 \mathbf{b}$ and $4 \mathbf{c}$, high conversion to siliconcontaining products was observed in the thermolysis of the N-phenylcarbamate $\mathbf{5 b}$. The combined yield of the vinylsilane 11 and the allylic silane 12 was 93%. The allylic silane predominated over the vinylsilane by a ratio of $87: 13$. An identical ratio of 12 to 11 was obtained by the Chugaev route via 5 d, but the isolated yield was reduced to 63%. The two isomeric products 11 and 12 could not be separated by GLC and their ratio was determined by NMR analysis of the areas of the two trimethylsilyl resonances.

The yield of silicon-containing products decreased to 48\% (quantitative GLC analysis vs. an internal standard) when the Burgess reagent was used with 5a. Isolation of this product revealed it to be exclusively the allylic silane 12 , which was characterized by satisfactory analyses for C, H, and Si , and NMR and mass spectra consistent with the proposed structure (see Experimental Section).

The thermal elimination reactions of esters of 1-trimeth-ylsilyl-3-phenyl-2-propanol (6a) and 1-trimethylsilyl-2-octanol (7a) were similar to those of $5 a$ in that allylic silanes were formed in addition to the desired vinylsilanes. Thermolysis of N-phenylcarbamate $6 \mathbf{c}$ at $125^{\circ} \mathrm{C}$ for 1 h , followed by distillation and preparative GLC separation of the products, gave trans-1-trimethylsilyl-3-phenyl-1-propene (13) and trans-1-phenyl-3-trimethylsilyl-1-propene (14). The approximate

yields were 45 and 38%, respectively. The GLC analysis indicated that a third component was present in less than 10% yield, but it was not isolated and identified.

The Chugaev process applied to 7 a was effective in the sense that a 72% conversion to silicon-containing products occurred, but the elimination was not highly regioselective. The ratio of vinylsilane to allylsilane was somewhat variable in separate

experiments and ranged from $2 / 1$ to $3 / 1$. The vinylsilane was identified as trans-1-trimethylsilyl-1-octene (15) on the basis of its NMR spectrum and analysis. The allylic silane could not be isolated, but its presence was inferred from the NMR spectrum of the product.
Application of ester thermolyses to the synthesis of β-styryltrimethylsilane was complicated by the formation of side products characteristic of ion-pair return processes. Thus, the N-phenylcarbamate $\mathbf{8 b}$ on heating yielded, in addition to a 43% yield of the desired trans-1-phenyl-2-trimethylsilylethene (17), a 33% yield of N -(1-phenyl-2-trimethylsilylethyl)aniline

8a. $\mathrm{X}=\mathrm{OH}$
17
b. $\mathrm{X}=\mathrm{OCl}(\mathrm{OHHPh}$
43%
18. $\mathrm{Y}=\mathrm{NHPh} 33 \%$
d. $\mathrm{X}=\mathrm{OC}(\mathrm{S}) \mathrm{SCH}_{3}$
19. $\mathrm{Y}=\mathrm{SCH}_{\mathrm{b}} 25 \%$
(18). The Chugaev procedure via 8 d gave no isolable quantities of 17 . The only product identified was the methyl thioether 19 , isolated in 25% yield.

Discussion

The most significant observation in this study is that elimination reactions of esters of β-hydroxyalkyltrimethylsilanes can be controlled to proceed with complete $\mathrm{C}-\mathrm{SiMe}_{3}$ cleavage or complete $\mathrm{C}-\mathrm{H}$ cleavage simply by varying the leaving group. Elimination reactions involving $\mathrm{C}-\mathrm{SiMe}_{3}$ cleavage of β-functional organosilanes, both polar and thermal four-center, are common and well documented. ${ }^{2}$ Retention of silicon in the elimination product, over the range of substrates reported here, is without precedent. Syntheses of vinylsilanes in preparatively useful amounts can be accomplished by thermolysis of N-phenylcarbamates or N phenylthiocarbamates if the elimination reaction can proceed in only one direction. This is best evidenced by the conversion of 1 b to 3 in 94% yield and $4 c$ to 9 in 72% yield.
Ester thermolysis is not a general route to vinylsilanes, however, because the reactions are not highly regioselective. When elimination can occur in more than one direction, mixtures of vinylsilane and allylic silane are produced. This limitation is most clearly seen in the case of esters of $5 a$ where the allylic silane 12 was the major product.

The reactions appear to be highly stereoselective, favoring the formation of trans vinylsilanes. This conclusion is only tentative, however, inasmuch as the analysis was by NMR on purified materials and small amounts of cis vinylsilanes, if formed, may have escaped detection.

In order to rationalize the dependence of vinylsilane vs. alkene formation on the leaving group, as is evident from the data in Table II, we envision as the critical step formation of an ion-pair intermediate. Deprotonation of the carbonium ion yields vinylsilane; desilylation yields alkene. The species acting as the base is either the anion of the leaving group or some species derived from the leaving group. For example, in thermolysis of N-phenylcarbamates the base could be either $\mathrm{PhNHCO}_{2}{ }^{-}$or PhNH^{-}. Previous work in thermal elimination reactions of esters has established the importance of ion-pair

intimate ion-pair
intermediates and has shown that it is the counterion (rather than an external base; which abstracts the proton from the carbonium ion. ${ }^{13}$

Developing cationic character at the carbon β to silicon will be facilitated by hyperconjugative electron release from the $\mathrm{C}(\beta)-\mathrm{Si}$ bond in the transition state. ${ }^{14}$ Hyperconjugative stabilization of this type is believed to be most effective when the trimethylsilyl group and the leaving group are anti to each othe..$^{2 a}$

The ion pair generated from such a transition state will have the anion of the leaving group oriented at the opposite face of the $\mathrm{R}_{1} \mathrm{CR}_{2}$ plane from the trimethylsilyl group. If the anion is strongly basic, deprotonation will be fast relative to motion within the ion pair and vinylsilane will be formed. If the anion is more weakly basic, deprotonation will be slowed relative to rotation about the $\mathrm{C}(\alpha)-\mathrm{C}(\beta)$ bond, the trimethylsilyl group and the anion will be brought into closer proximity, and desilylation can occur. For the case of the methanesulfonate este: 1f, decomposition under the conditions of its formation may proceed by attack by chloride ion at the trimethylsilyl group during the ionization process. ${ }^{2 b}$

The poorer leaving groups examined in this study are also the more basic. The transition state for a poorer leaving group will appear later alcng the reaction coordinate, cationic character will be more highly developed, and the geometric reqtirement for carbon-silicon hyperconjugation more pronounced. This factor also favors vinylsilane formation relative to alkene formation.
While the above discussion was presented in the context of viny Isilane formation, exactly the same argument applies to allylsilane formation Insufficient evidence is available to assess the factors which influence the vinylsilane to allylsilane ratio. The tendency for formation of one or the other is not particularly pronounced. Thermolysis of $\mathbf{6 c}$ produces almost equal amounts of vinylsilane 13 and allylsilane 14. Vinylsilane 15 predominates over allylsilane 16 by $2-3 / 1$ on thermolysis of $\mathbf{7 d}$. The vinylsilane'allylsilane ratio from 5 b and 5 d was $1 / 7$, but here the tendency for formation of double bonds endocyclic to six-membered rings seems to be the most important factor.
Support for the ion-pair mechanism can be found among several observations. The pattern of reactivity relative to substrate structure and leaving group ability parallels that observed in reactions which proceed through carbonium ion intermediates. The tertiary and sterically compressed ${ }^{15} 2$ -trimethylsilylmethyl-2-adamantyl N-phenylthiocarbamate lc underwent spontaneous decomposition at $25^{\circ} \mathrm{C}$ while the secondary N-phenylthiocarbamates 4 c and 6 c were stable enough to be isolated, and required temperatures of $125-140$ ${ }^{\circ} \mathrm{C}$ to effect rapid elimination.
The side products 18 and 19 obtained from thermolysis of the benzylic esters 8 b and 8 c are typical nucleophilic substitution products associated with ion-pair return.
In agreement with ts postulated involvement in stabilizing the transition state =or ionization, the presence of a 3 -trimethylsilyl substituent exerts an accelerating effect on these est $\in \mathrm{r}$ thermolyses. The N-phenylcarbamates $\mathbf{1 b}, \mathbf{4 b}, \mathbf{5 b}$, and 8b underwent smooth elimination at temperatures in the ranje $120-200^{\circ} \mathrm{C}$. Conditions for thermolysis of alkyl carbamate esters to alkenes are usually in the range $325-350^{\circ} \mathrm{C}$ for kinetic studies in the gas phase ${ }^{16}$ and $230-300{ }^{\circ} \mathrm{C}$ for preparative work in condensed phases. ${ }^{17}$ Similarly, the S-methyl xanthate pyrolyses oocurred at lower temperatures than those reported for Chugaev eliminations in the literature. ${ }^{11}$

Experimental Section

Nuclear magnetic resonance (NMR) spectra were recorded on JEOL PS-Fourier transform, Varian HA-100, and Hitachi PerkinElmer R-20 spectrometers in CDCl_{3} or CCl_{4} and chemical shifts are reported in parts per million (δ) from internal tetramethylsilane. Infrared spectra (ir) were obtained on a Perkin-Elmer 337 grating spectrophotometer as KBr disks for solids and pressed films for liquids and were calibrated with either the 1601 - or the $907-\mathrm{cm}^{-1}$ band of polystyrene. Melting points are corrected and were measured on a Thomas-Hoover apparatus. Boiling points are uncorrected. Mass spectra were obtained using a Hitachi Perkin-Elmer RMU-6E spectrometer at an ionizing potential of 70 eV . Gas chromatography was carried out on a Varian Aerograph $90-\mathrm{P} 3$ with a thermal conductivity detector. Peak areas were determined with a disc integrator.
Elemental microanalyses were performed by Alfred Bernhardt, Engelskirchen, West Germany, and by Atlantic Microlab, Inc., Atlanta, Ga .
All reactions involving air-sensitive compounds were carried out in an atmosphere of dry nitrogen. Tetrahydrofuran was distilled from calcium hydride and stored over molecular sieves 4 A under argon or nitrogen. n-Butyllithium in n-hexane was purchased from Alfa Inorganics.
β-Hydrox yalkyltrimethylsilanes. The addition of trimethylsilylmethylmagnesium chloride to carbonyl compounds in tetrahydrofuran was performed as described by Peterson. ${ }^{1 \mathrm{~b}}$
2-Trimethylsilylmethyl-2-adamantanol (1a) was obtained in 89% yield, $\mathrm{mp} 48-55^{\circ} \mathrm{C}$, and purified by recrystallization from absolute ethanol ($\mathrm{mp} 58.5-59.5^{\circ} \mathrm{C}$): ir (KBr) $3520,3455,1245,855$, and $837 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.08$ (s, $\left.9, \mathrm{SiMe}_{3}\right), 1.1\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Si}\right)$, and 1.5-2.2 (m, 14. ring H): mass spectrum m/e (rel intensity) 223 (13), 220 (10), 205 (35), 151 (15), 148 (63), 75 (100), and 73 (53).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}: \mathrm{C}, 70.52 ; \mathrm{H}, 10.99 ; \mathrm{Si}, 11.78$. Found: C , 70.61; H, 10.94; Si, 11.53.

1-Trimethylsilyl-3,3-dimethyl-2-butanol (4a) was prepared by addition of the Grignard reagent prepared from $10.5 \mathrm{~g}(85 \mathrm{mmol})$ of chloromethyltrimethylsilane to $7.9 \mathrm{~g}(92 \mathrm{mmol})$ of pivaldehyde. After distilling at $26^{\circ} \mathrm{C}(1$ Torr), $10.34 \mathrm{~g}(73 \%)$ of 4 a was obtained: ir (thin film) $3505(\mathrm{OH}), 2955,2900,2870,1248,862$, and $838 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.07\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right), 0.68$ and $0.73\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{ABM}\right.$ system), 0.88 (s, $9, t-\mathrm{Bu}$), 1.3 (s, 1.0 OH), and $3.4(\mathrm{~d}, \mathrm{~d}, ~ J=4,10 \mathrm{~Hz}, 1$, CHOH); mass spectrum m / e (rel intensity) 117 (44), 75 (60), 73 (100), 57 (26), and 41 (38).
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{OSi}$: $\mathrm{C}, 62.00 ; \mathrm{H}, 12.72 ; \mathrm{Si}, 16.11$. Found: C , 61.90; H, 12.63; Si, 15.92.

1-Trimethylsilylmethylcyclohexanol (5a). The addition of trimethylsilylmethylmagnesium chloride to cyclohexanone has been reported without details. ${ }^{1 b}$ We obtained 5 a in 86% yield after sublimation ($\mathrm{mp} 35-36.5^{\circ} \mathrm{C}$): ir (KBr) $3300,1246,864$, and $838 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.08\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right), 0.88\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{Si}\right), 1.04(\mathrm{~s}, 1, \mathrm{OH})$, and 1.4 [br s, $\left(\mathrm{CH}_{2}\right)_{5}$]; mass spectrum m / e (rel intensity) 186 (5), 171 (3), 168 (3), 153 (3), 96 (10), 91 (27), 81 (26), 75 (90), 73 (100), and 54 (58).

1-Trimethylsilyl-3-phenyl-2-propanol (6a) was isolated in 35% yield after distillation: bp $62^{\circ} \mathrm{C}$ (0.17 Torr) ; ir (neat) $3445(\mathrm{~m}, \mathrm{OH})$, 1246 (s), 853 and 838 (s, SiMe_{3}), 743 (m), and $698 \mathrm{~cm}^{-1}$ (s); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~s}, 5$, aromatic), $4.0(\mathrm{~m}, 1, \mathrm{CHO}), 2.8(\mathrm{~m}, 2, \mathrm{AB}$ part of ABM system, PhCH_{2}), $1.63(\mathrm{~s}, 1, \mathrm{OH}), 0.98\left(\mathrm{~d}, 2, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Si}\right)$, and 0.17 ($\mathrm{s}, 9, \mathrm{SiMe}_{3}$); mass spectrum m / e (rel intensity) $208(<1)$, 190 (1), 189 (1), 175 (1), 119 (5), 118 (13), 117 (56), 92 (19), 91 (20), 75 (54), 74 (12), and 73 (100).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20}$ OSi: C. 69.17: H. 9.67: Si, 13.48. Found: C, 69.41; H, 9.78; Si, 13.49.

1-Trimethylsilyl-2-octanol (7a) was isolated in 80% yield after distillation at atmospheric pressure (bp $156-168^{\circ} \mathrm{C}$): ir (neat) 3360 , 2960. 2930, 2860, 1248, 858. and $836 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.0(\mathrm{~s}, 9$, $\left.\mathrm{Me}_{3} \mathrm{Si}\right), 0.5-1\left(\mathrm{~m} .5, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right) .1-1.5\left(\mathrm{~m} .10, \mathrm{CH}_{2}\right.$), 1.6 ($\mathrm{s}, 1, \mathrm{OH}$), and $3.4-3.7$ ($\mathrm{m}, \mathrm{I}, \mathrm{CHOH}$); mass spectrum m / e (rel intensity) 189 (4), 169 (4), 147 (4), 118 (8), 117 (73). 75 (97). and 73 (100).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{OSi}$ C, 65.27 ; H. 12.95; Si, 13.88. Found: C, 65.20; H. 12.72; Si. 13.85 .

1-Phenyl-2-trimethylsilylethanol (8a) has been described by Hauser and Hance ${ }^{1 \mathrm{~b}}$ (bp 103-104 ${ }^{\circ} \mathrm{C}, 3$ Torr). The material we obtained crystallized on standing, mp $27.5-29.5^{\circ} \mathrm{C}$.

Reaction of 2-Trimethylsilylmethyl-2-adamantanol (la) with Methanesulfonyl Chloride. A solution containing $2.0 \mathrm{~g}(8.4 \mathrm{mmol})$ of 1 a in 30 ml of purified tetrahydrofuran was cooled to $-30^{\circ} \mathrm{C}$ and $8.4 \mathrm{mmol}(4.2 \mathrm{ml}$ of a 2.0 M solution in n-hexane) of n-butyllithium was added. After $10 \mathrm{~min} .0 .97 \mathrm{~g}(8.4 \mathrm{mmol})$ of methanesulfonyl chloride was added via syringe and the solution stirred at $25^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with 60 ml of ether. washed with
three $50-\mathrm{ml}$ portions of saturated ammonium chloride solution, and dried over magnesium sulfate. Evaporation of the solvent left 1.44 g of crude product which was examined by NMR. No vinylsilane was present. The product was taken up in 5 ml of pentane, passed through a short column of neutral alumina, and the column washed with 50 ml cf pentane. The pentane was evaporated tolleave $1.14 \mathrm{~g}(91 \%)$ of metnyleneadamantane (2), mp $134-136{ }^{\circ} \mathrm{C}$ (lit. $135.8-136.5^{\circ} \mathrm{C}$), ${ }^{18}$ identified further by comparing its NMR spectrum with that reported.
Isolation of 2-(Trimethylsilylmethylene)adamantane (3) from Chugaev Reaction of $1 \mathbf{a}$. A solution of $7.25 \mathrm{~g}(0.03 \mathrm{~mol})$ of 1 a in 50 ml of tetrahydrofuran was cooled to $-5^{\circ} \mathrm{C}$ and treated successively with $13.2 \mathrm{ml}(0.03 \mathrm{~mol})$ of n-butyllithium in n-hexane and $11.55 \mathrm{~g}(0.15$ mol) of carbon disulfide. After stirring at $25^{\circ} \mathrm{C}$ for 4 h , the solution was zooled to $-5^{\circ} \mathrm{C}$ and $8.6 \mathrm{~g}(0.06 \mathrm{~mol})$ of iodomethane added. The solution was then stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The solvent was evaporated and the residue partitioned between 100 ml of ether and 100 ml of saturated ammonium chloride solution. The aqueous layer was extracted with 100 ml of ether and the combined ether solutions dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed on 88 g of silica gel (column prepared in n-pentane) and eluted with 240 ml of n-pentane to afford 5.39 g of product identified by NMR as a $3: 1$ mixture of 2-(trimethylsilylmethylene)adamantane (3) and methyleneadamantane (2). The composition was determined by integration of the respective vinyl proton signals of $3(\delta 4.96)$ and $2(\delta 4.48)$.
A portion $(2.93 \mathrm{~g})$ of the mixture was purified by chromatography on a column prepared from 50 g of silica gel, 12 g of silver nitrate, and 2.5 g of Celite. ${ }^{19}$ Elution with dichloromethane gave $1.57 \mathrm{~g}(44 \%)$ of 3 as a colorless liquid: ir (neat) 3040 (\mathbf{w}, vinyl C-H), 2955 (sh), 2910, $2855,1620,1245,895.861$. and $841 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.13$ (s. 9 . $\mathrm{Me}_{3} \mathrm{Si}$), 1.9 (br s, 12, ring H), 2.2-2.8 (m, 2, allylic H), and 4.96 (s, 1, viny: H); mass spectrum m / e (rel intensity) 221 (6), 220 (17). 206 (23), 205 (100). 73 (17), and 59 (24).
Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{Si}: \mathrm{C}, 76.28 ; \mathrm{H}, 10.97 ; \mathrm{Si}, 12.74$. Found: C , 76.34: H, 10.86; Si, 12.54 .

Reaction of la with Phenyl Isothiocyanate. 2-Trimethysilyl-methyl-2-adamantanol ($1 \mathrm{a}, 3.1 \mathrm{~g}, 13 \mathrm{mmol}$) dissolved in 80 ml of dry tetrehydrofuran was cooled to $-30^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. Then 7.2 ml (13 mmol) of a 1.8 M solution of n-butyllithium in n-hexane was added slowly keeping the temperature at or below $-30^{\circ} \mathrm{C}$. The solution was stirred for 40 min before phenyl isothiocyanate ($1.7 \mathrm{~g}, 13 \mathrm{mmol}$) was added slowly. The reaction mixture stood for 22 h at room temperature. Workup was carried out by adding 100 ml of dichloromethane and then extracting the dichloromethane solution twice with $100-\mathrm{ml}$ portions of saturated ammonium chloride. After drying $\left(\mathrm{MgSO}_{4}\right)$ the solvent was removed on a rotary evaporator to leave 4.1 g of crude product. This was subjected to dry column chromatography on silica gel using a mixture of hexanes as solvent. There was obtained from the highest R_{f} band ($0.6-1.0$) $2.1 \mathrm{~g}(73 \%)$ of viny silane 3 which was analyzed by GLC to be 95% pure. The only impurity apparent in the GC analysis and by NMR was methy leneadamantane (2).

Preparation of 2-Trimethylsilylmethyl-2-adamantyl \mathbf{N} Phenylcarbamate (1b). In the same manner, $10.0 \mathrm{~g}(42 \mathrm{mmol})$ of 1 a was converted to its alkoxide with n-butyllithium and allowed to react with 5.0 g (42 mmol) of phenyl isocyanate. The crude product, a solid (15.6 g), was recrystallized from a dichloromethane- n -hexane ($1: 5$) solution to give $11.7 \mathrm{~g}(78 \%)$ of $1 \mathrm{~b}, \mathrm{mp} 140.5-142{ }^{\circ} \mathrm{C}$ dec. The analytical sample was obtained by recrystallization from ether: mp 154.5-155 ${ }^{\circ} \mathrm{C}$ dec; ir (KBr) 3330 (s. NH), 1695 ($\mathrm{s}, \mathrm{C}=0$) and $859 \mathrm{~cm}^{-1}$ (m. SiMe_{3}); NMR (CDCl_{3}) $\delta 7.03-7.39$ (m, 5 , aromatic), 6.49 (br. 1. NH), 1.58-2.56 (br m, 14, adamantyl), 1.75 (s. 2, - $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$), and 0.09 (s, 9, SiMe_{3}).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}$: C, 70.54; H, 8.74; N. 3.92; Si, 7.85. Fourd: C, 70.47; H, 8.67; N. 4.04; Si, 7.92.
Thermolysis of 1 b . A $100-\mathrm{ml}$ round-bottom flask fitted with a short-path distillation head and containing $7.1 \mathrm{~g}(19.9 \mathrm{mmol})$ of 1 b was placed in an oil bath preheated to $165^{\circ} \mathrm{C}$. Gas was evolved as the ester melted. The resulting liquid was distilled (0.1 Torr) to give 6.1 g of ε clear, colorless mixture of two liquids. The distillate was taken up ir n-pentane (50 ml), extracted with three $50-\mathrm{ml}$ portions of 2 N HCl , washed with 50 ml of water, and dried $\left(\mathrm{MgSO}_{4}\right)$. The pentane was ϵ vaporated to leave $4.1 \mathrm{~g}(94 \%)$ of vinylsilane 3 , the NMR of which was identical with that of the analytical sample described above, except for the presence of a trace of pentane as the only impurity.

Reaction of la with Burgess' Reagent. Analysis by Gas Chromatography. To a solution containing $200 \mathrm{mg}(0.84 \mathrm{mmol})$ of (cartoxysulfamoyl) triethylammonium hydroxide inner salt methyl ester ${ }^{12}$ in 20 ml of toluene at reflux was added $153 \mathrm{mg}(0.64 \mathrm{mmol})$ of 1 a in 3 ml of toluene. After 16 h at reflux, the reaction mixture was
cooled and extracted with two $10-\mathrm{ml}$ portions of saturated ammonium chloride. Analysis of the product was carried out using a $10 \mathrm{ft} \times 0.25$ in. 20% SE- 30 on Chromosorb W column at $178^{\circ} \mathrm{C}$ at a helium flow rate of $40 \mathrm{ml} / \mathrm{min}$. Cyclociodecene was added as an internal standard and the areas of the peaks corrected by calibration with known mixtures. The analytical yields determined by three separate experiments were vinylsilane 3, 39% and methyleneadamantane $2,51 \%$.

Anaiysis of Chugaev Reaction of la by Gas Chromatography. The reaction was carried out as described previously but on a smaller scale (0.64 mmol) and analyzed as in the preceding experiment. The analytical yields were vinylsilane $3,70 \%$, and methyleneadamantane 2, 28\%.
Preparation of 1 -Trimethylsilyl-3,3-dimethyl-2-butyl N Phenylcarbamate (4b). Conversion of 9.1 g (52 mmol) of $4 \mathbf{a}$ to its N-phenylcarbamate was carried out as described previously for the synthesis of $1 \mathbf{b}$ from la. The crude product (15.5 g) was recrystallized from ether-pentane (1:5) to give $11.6 \mathrm{~g}(76 \%)$ of 4 b : $\mathrm{mp} 75.5-77.5^{\circ} \mathrm{C}$; ir (KB-) $3410(\mathrm{NH}), 1720(\mathrm{C}=\mathrm{O}), 1535,1450,1370,1320,1250,1230$. $1220,1069,950,858,840.750$, and $690 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.07$ (s, 9, $\mathrm{SiM}_{e_{3}}$), 0.84 (d, 2, $J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SiMe}_{3}$), 0.94 ($\mathrm{s}, 9, t-\mathrm{Bu}$), 4.88 (d. $\mathrm{d}, \mathrm{l}, \mathrm{CH}), 6.54$ (br, 1, NH), and 6.96-7.52 (m, 5, aromatic).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 65.48$; $\mathrm{H}, 9.27$; N, 4.77; Si, 9.57. Found: C, 65.50; H, 9.18: N, 4.82; Si, 9.83.

1-Trimethylsilyl-3,3-dimethyl-2-butyl \mathbf{N}-phenylthiocarbamate (4c) was prepared in a similar manner from 4 a using phenyl isothiocyanate. The purified material, $\mathrm{mp} 117-118^{\circ} \mathrm{C}$, was ohtained in 79% yield after recrystallization from n-pentane: ir (KBr) 3180 (NH), 2970, 1530, 1390, 1246, 1224, 1204, 1172, 1151, 1061, 1016, 863. $836,7 \leqslant 0$, and $693 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.13\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right), 1.0(\mathrm{~s}, 9$, t - Bu), 0.9-1.12 (m, 2, $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$), 5.71 (d, d, 1, CHO), 7.04-7.47 (br, 5, arom), 8.35-8.9 (br, 1. NH). The analytical sample was obtained by further recrystallization from n-pentane, mp $118.5-119.5^{\circ} \mathrm{C}$ dec.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NOSSi}$: $\mathrm{C}, 62.08 ; \mathrm{H}, 8.79$; $\mathrm{N}, 4.52 ; \mathrm{S}, 10.36$; Si, 9.07. Found: C, 62.31; H, 8.94; N, 4.51; S, 10.53; Si, 9.24.
Thermolysis of 4 c . A $25-\mathrm{ml}$ round-bottom flask fitted with a short path distillation head and containing $6.42 \mathrm{~g}(20.7 \mathrm{mmol})$ of 4 c was heatec (oil bath) while cooling the distillation receiver in an ice-salt bath. Decomposition occurred on melting (bath temperature $120^{\circ} \mathrm{C}$). The temperature was maintained at $120^{\circ} \mathrm{C}$ for 20 min , then the temperature increased to $140^{\circ} \mathrm{C}$ and vacuum applied to the system resulting in the distillation of a clear, colorless liquid containing two phases. The distillate was taken up in 100 ml of pentane and extracted with two $25 \cdot \mathrm{ml}$ portions of 2 N hydrochloric acid followed by 25 ml of water. The pentane was removed by distilling through a Vigreux column and the product purified by distillation at atmospheric pressure. The yield of trans-1-trimethylsilyl-3,3-dimethyl-1-butene (9) was 2.32 g (72%), bp $132-134^{\circ} \mathrm{C}$ (reported bp $128-130^{\circ} \mathrm{C}$). The ir. NMR, and mass spectra corresponded to those reported. ${ }^{10 \%} .20$

Thermolysis of $4 \mathbf{b}$ was slow even at $200^{\circ} \mathrm{C}$. After $30 \mathrm{~h} 11.61 \mathrm{~g}(40$ mmoll of $\mathbf{4 b}$ gave $1.73 \mathrm{~g}(28 \%)$ of 9 along with 15% of N, N^{\prime}-diphenylurea (1.32 g).

Preparation and Thermolysis of 1-Trimethylsilylmethyl-1cyclohexyl N-Phenylcarbamate (5b). The N-phenylcarbamate was prepared from $6.6 \mathrm{~g}(35 \mathrm{mmol})$ of 5 a and phenyl isocyanate exactly as des aribed previously for the preparation of $1 \mathbf{b}$. The crude product $(11.4 \mathrm{~g})$ was recrystallized from pentane to give $5.3 \mathrm{~g}(49 \%)$ of 5 b : mp $81-82{ }^{\circ} \mathrm{C}$; ir (KBr) 3305 (s, NH), 1690 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1234 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), and $842 \mathrm{~cm}^{-1}\left(\mathrm{~m}, \mathrm{SiMe}_{3}\right) ;$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.12-7.59$ (m,5, aromatic), 6.62 (br, 1, NH), 1.32-2.60 (br, 12, cyclohexyl and - $\mathrm{CH}_{2} \mathrm{Si}$), and 0.16 (s, 9, SiMes).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 66.84 ; \mathrm{H}, 8.91$; $\mathrm{N}, 4.58 ; \mathrm{Si}, 9.19$. Found: C, 66.82; H, 8.97; N, 4.73; Si, 9.35.

Thermal decomposition of $5.02 \mathrm{~g}(16.4 \mathrm{mmol})$ of 5 b was carried out as described for 1 b . The bath temperature was $113-125^{\circ} \mathrm{C}$. After distillation at 0.05 Torr and extraction with ether and $2 \mathrm{~N} \mathrm{HCl}, 2.58$ $g(93 \%)$ of a mixture of 11 and 12 was obtained. Analysis of the mixture by NMR was performed by integration of their respective trimethylsilyl signals. The NMR spectrum of 11 has been reported. ${ }^{10 \mathrm{~d}}$ Characterization of 12 is described below. The ratio $11 / 12$ was $13 / 87$.

Characterization of 1-Trimethylsilylmethylcyclohexene (12). Methyl(carboxylsulfamoyl)triethylammonium hydroxide inner salt ${ }^{12}$ ($3.57 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in 60 ml of dichloromethane and added to an ice-cooled solution of $2.64 \mathrm{~g}(14.1 \mathrm{mmol})$ of 5 a in 30 ml of dichloromethane. The solution was allowed to warm to room temperature for 5 min , extracted with two $100-\mathrm{ml}$ portions of water, and d:ied over magnesium sulfate. Evaporation of the solvent left 4.57 g of a mixture containing a liquid and a solid. The liquid (1.28 g) was removed by pipet and determined to be a $3: 2$ mixture of 12 and methylenecyclohexane (10) by NMR. Preparative GLC separation on a 1)-ft 20% Silicone Fluoro QF-1 column at $166^{\circ} \mathrm{C}$ afforded a pure
sample of 12: ir (neat) $2940,2860,2845,1245,1170,920,860,845$, and $695 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.05\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right), 1.38$ (br s, $2, \mathrm{SiCH}_{2}$), $1.4-2.1$ ($\mathrm{m}, 8$, ring protons), 5.15 ($\mathrm{br} \mathrm{s}, 1$, vinyl H); mass spectrum m / e 168, 73 (base peak).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Si}$: $\mathrm{C}, 71.34 ; \mathrm{H}, 11.97$; $\mathrm{Si}, 16.68$. Found: C, 71.31; H, 11.94; Si, 16.90.

Chugaev Reaction of 1-Trimethylsilylmethyl-1-cyclohexanol (5a). The procedure followed was similar to that used for $1 \mathbf{a}$. The experiment was carried out on 7.2 g (38.5 mmol) of 5 a . The crude product was heated at $160^{\circ} \mathrm{C}$ (oil bath) for 30 min and separated by dry column chromatography on 350 g of silica gel. There was obtained $4.08 \mathrm{~g}(63 \%)$ of material ($R_{f} 0.6-1.0$) analyzed by NMR to be a mixture of 11 (13%) and 12 (87%).

The vinylsilane 11 was isolated from the mixture by the following procedure which is based on its much slower rate of epoxidation than the allylsilane 12 . A sample $(0.314 \mathrm{~g}, 1.87 \mathrm{mmol})$ of the product was treated with $0.378 \mathrm{~g}(1.87 \mathrm{mmol})$ of $85 \% \mathrm{~m}$-chloroperoxybenzoic acid in 12 ml of dichloromethane at -14 to $-24^{\circ} \mathrm{C}$ for 12 h . The solution was extracted with four $10-\mathrm{ml}$ portions of saturated sodium bicarbonate, then with 10 ml of brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product (0.289 g) was subjected to preparative GLC on a $10-\mathrm{ft} 20 \%$ SE- 30 column at $158^{\circ} \mathrm{C}$. Three peaks were collected having retention times of $5.5,7.7$, and 9.2 min . The product with the longest retention time was identified as 11 by comparing its NMR and ir spectra with those reported. ${ }^{10 \mathrm{~d}}$ The products with retention times of 5.5 and 7.7 min are 2-methylenecyclohexanol and its corresponding trimethylsilyl ether formed by epoxidation and cleavage of 12.

Preparation and Thermolysis of 1-Trimethylsilyl-3-phenyl2 -propyl \boldsymbol{N}-Phenvlthiocarbamate ($\mathbf{6 c}$). The preparation of ester $6 \mathbf{c}$ from 5.0 g (24 mmol) of $\mathbf{6 a}$ and phenyl isothiocyanate was similar to those described previously. The crude product (9.9 g) was recrystallized from a mixture of ether and pentane (1:10) to give 6.1 g of $\mathbf{6 c}$ as off-white crystals, $\mathrm{mp} 103.5-104.5^{\circ} \mathrm{C}$. The analytical sample was obtained from an additional recrystallization from diethyl ether-n-pentane ($1: 10$) as fine white needles: $\mathrm{mp} \mathrm{105.5-106}{ }^{\circ} \mathrm{C}$; ir (KBr) 3210 (m, NH), 1545 (s), 1214 (s), 1168 (s), 1021 (s), 852 and 836 (m, SiMe $)_{3}$), and $738 \mathrm{~cm}^{-1}(\mathrm{~s}) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.61-8.30(\mathrm{br}, 1 \mathrm{NH}), 7.27(\mathrm{~s}, 10$, aromatic), $5.95\left(\mathrm{~m}, 1,-\mathrm{CH}_{2} \mathrm{O}\right), 3.11\left(\mathrm{~m}, 2, \mathrm{PhCH}_{2-}\right), 1.19(\mathrm{~m}, 2$, $\mathrm{CH}_{2} \mathrm{Si}$), and $0.14\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25}$ NOSSI: C, 66.42; H, 7.33; N, 4.08; S, 9.33; Si, 8.17. Found: C, 66.56 ; H, 7.45; N, 4.05; S, 9.15; Si, 8.09.

The thiocarbamate $6 \mathbf{c}(5.8 \mathrm{~g}, 17 \mathrm{mmol})$ was placed in a $25-\mathrm{ml}$ round-bottom flask which was then fitted with a reflux condenser and a drying tube. The flask was heated to $125^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was worked up by adding 50 ml of n-pentane and extracting with two $50-\mathrm{ml}$ portions of 2 N hydrochloric acid followed by one $50-\mathrm{ml}$ portion of water. The pentane layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave 3.5 g of crude product. The crude product was vacuum distilled and the fraction of bp $49-53^{\circ} \mathrm{C}(0.13$ Torr) collected, $2.7 \mathrm{~g}(84 \%)$. This fraction was determined to be a mixture of three components with retention times of $7.0,7.9$, and 9.5 min in the ratio $50: 8: 42$, respectively, by analytical GLC at $170^{\circ} \mathrm{C}$ on a $10-\mathrm{ft} 20 \% \mathrm{SE}-30$ on Chromosorb W column. Preparative GLC at 135° was performed and the two major components collected. The product with the shortest retention time was the vinylsilane 13: ir (neat) 1619 (w), 1608 (w), 1247 (s), 990 (m), 864 (s), 837 (s), and $696 \mathrm{~cm}^{-1}$ (s); NMR (CDCl_{3}) $\delta 7.16$ (br s, 5 , aromatic), 6.05 (doublet of triplets, $1, J=4.8$ and 16.0 $\left.\mathrm{Hz} . \mathrm{PhCH}_{2} \mathrm{CH}=\right), 5.70(\mathrm{~d}, 1 . J=16.0 \mathrm{~Hz},=\mathrm{CHSi}), 3.41(\mathrm{~d}, 2, J=4.8$ $\mathrm{Hz}, \mathrm{PhCH}_{2-}$), and 0.07 ($\mathrm{s}, 9, \mathrm{SiMe}_{3}$); mass spectrum m / e (rel intensity) 190 (15), 175 (23), 117 (7), 116 (7), 115 (11), 93 (15), 91 (4), 77 (11), 75 (10), 74 (11), 73 (100), 65 (14), 59 (43), 45 (18), and 43 (15).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$: C, 75.72; H, 9.53; Si, 14.75. Found: C, 75.52; H, 9.41; Si, 14.64.

The product with the longest retention time was the allylsilane 14, identified by comparing its ir, NMR, and mass spectra with those reported in the literature. ${ }^{21}$

Preparation and Thermolysis of 1-Trimethylsilyl-2-octyl S-Methyl Xanthate (7d). The procedure employed was similar to that used for la except that in this case the xanthate was sufficiently stable to be isolated as a light yellow liquid. From $5.00 \mathrm{~g}(24.8 \mathrm{mmol})$ of 7 a was obtained $6.91 \mathrm{~g}(95 \%)$ of 7 d : NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.10\left(\mathrm{~s}, 9 . \mathrm{SiMe}_{3}\right)$. $0.5-2(\mathrm{~m}, 15), 2.58\left(\mathrm{~s}, 3, \mathrm{SCH}_{3}\right), 5.5-5.9(\mathrm{~m}, 1, \mathrm{CHO})$.

Elimination occurred on distilling through a short-path apparatus (bath temperature $216{ }^{\circ} \mathrm{C}$) to give $3.29 \mathrm{~g}(72 \%)$ of product. This material was predominantly trans-1-trimethylsilyl-1-octene (15) as evidenced by its $100-\mathrm{MHz}$ NMR spectrum, which exhibited signals for the vinyl protons consistent with this structure. The vinyl H at $\mathrm{C}(1)$ appeared as a doublet $(J=18 \mathrm{~Hz})$ at $\delta 5.5$ and the vinyl proton at $\mathrm{C}(2)$ appeared as a doublet of triplets $(J=18.6 \mathrm{~Hz})$ at $\delta 5.95$. An additional multiplet at $\delta 5.25$ was present corresponding to a smaller,
but undetermined, amount of an impurity presumed to be 1-tri-methylsilyl-2-octene (16). ${ }^{22}$

A pure sample of 15 was obtained by treating 15.7 g of a similar reaction mirture with 17.4 g of m-chloroperorybenzoic acid in dichloromethane (180 ml) for 11 h . Workup and distillation at 0.01 Torr afforded 3.0 g of a fraction (bp $30-37^{\circ} \mathrm{C}$) which by NMR was cleanly 15: NMR (CCL $\left.{ }_{4}\right) \delta 0.16\left(\mathrm{~s}, 9, \mathrm{SiMe}_{3}\right), 0.6-1.6\left(\mathrm{~m}, 11, \mathrm{C}_{5} \mathrm{H}_{11}\right), 2.1(\mathrm{~m}, 2$, $\left.\mathrm{CH}_{2} \mathrm{C}=\right), 5.6(\mathrm{~d}, 1, J=18 \mathrm{~Hz}=\mathrm{CHSiMe}), 6.0(\mathrm{~d}, \mathrm{t}, 1 . J=18.6 \mathrm{~Hz}$. $\mathrm{HC}=\mathrm{CHSiMe}_{3}$)

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{Si}: \mathrm{C}, 71.65 ; \mathrm{H}, 13.12$; $\mathrm{Si}, 15.23$. Found: C , 71.54: H, 13.14; Si, 15.15.

Preparation and Thermolysis of 1-Phenyl-2-trimethylsilylethyl \mathbf{N}-Phenylcarbamate (8b). By the usual procedure 15.2 g (78 mmol) of 8 a was converted to its N-phenylcarbamate. The crude product (25.4 g) was recrystallized from absolute ethanol to afford $11.3 \mathrm{~g}(46 \%)$ of $8 \mathbf{b}: \mathrm{mp} 89.5-90.5^{\circ} \mathrm{C}$; ir (KBr) 3270 (s, NH), 1690 (s, $\mathrm{C}=\mathrm{O}$), 1309 ($\mathrm{s}, \mathrm{C}-\mathrm{N}$). 1240 (s br, C-O), 876 (s, SiMe), and $849 \mathrm{~cm}^{-1}$ ($\mathrm{s}, \mathrm{SiMe}_{3}$); NMR (CDCl_{3}) $\delta 6.91-7.47$ (m, 10, aromatic), 6.60 (br. 1. NH), 5.84 (doublet of doublets, $1, J=7.0$ and 8.4 Hz , methine), 1.37 (d, $1 . J=7.0 \mathrm{~Hz}$) and $1.33(\mathrm{~d}, 1, J=8.4 \mathrm{~Hz}$) (both methylene), and -0.10 (s. 9, SiMe 3).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}$: C, 68.97; H, 7.40; $\mathrm{N}, 4.47$; Si, 8.96. Found: C. 68.89; H, 7.52; N, 4.53; Si, 8.94.

A flask containing $11.16(35.6 \mathrm{mmol})$ of 8 b was placed in an oil bath preheated to $197^{\circ} \mathrm{C}$. The carbamate melted rapidly with gas evolution. After heating for 15 min the resulting liquid was cooled and filtered (removing 0.18 g of N, N^{\prime}-diphenylurea) and washed with 20 ml of 2 N HCl . Addition of the hydrochloric acid caused the precipitation of a large amount of white hydrochloride salt. This was removed by filtration, dried under vacuum, then shaken vigorously with 150 ml of 20% sodium hydroxide and 200 ml of diethyl ether. The ether layer was washed with 100 ml of water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give $3.2 \mathrm{~g}(33 \%)$ of 1-phenyl- N -phenyl-2-trimethylsilylethylamine (18) as a white solid, $\mathrm{mp} 56-58^{\circ} \mathrm{C}$. The analytical sample was recrystallized from diethyl ether-n-pentane: mp $58-59^{\circ} \mathrm{C}$; ir (KBr$) 3420$ (s, NH). 1602 (s), 1505 (s). 1320 (s, C-N), 1246 (s). 868 (s, SiMe $)_{3}$). 846 (s, SiMe_{3}), 750 (s), 704 (s), and $693 \mathrm{~cm}^{-1}$ (s): NMR (CDCl_{3}) $\delta 6.38-7.43$ (m, 10. aromatic), 4.44 ($\downarrow, 1, J=7.0 \mathrm{~Hz}, \mathrm{PhCHN}$), 4.00 (br, 1, NH), 1.19 (d, $2, J=7.0 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$), and 0.01 ($\mathrm{s}, 9, \mathrm{SiMe}_{3}$); mass spectrum m/e (rel intensity) 269 (11), 182 (12), 177 (22), 165 (14), 150 (25), 104 (11), 93 (14), and 73 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NSi}$: $\mathrm{C}, 75.78$; $\mathrm{H}, 8.60 ; \mathrm{N}, 5.20 ; \mathrm{Si}, 10.42$. Found: C, 75.82; H, 8.63; N, 5.15; Si, 10.36.

The ether solution of that portion of the thermolysis product which did not dissolve in the 2 N hydrochloric acid and which was not precipitated as the hydrochloride salt was extracted once more with 10 ml of 2 N hydrochloric acid to ensure that all of the amines had been removed. The ether solution was washed with 10 ml of water. dried $\left(\mathrm{MgSO}_{4}\right)$, and the ether removed by distillation at atmospheric pressure. The residue was distilled and $2.7 \mathrm{~g} \mathrm{(43} \mathrm{\%)}$ of trans-B-trimethylsilylstyrene (17) was collected. bp $45-46^{\circ} \mathrm{C}(0.25$ Torr) [lit. $80-83^{\circ} \mathrm{C}\left(3\right.$ Torr). ${ }^{10 \mathrm{~b}} 98^{\circ} \mathrm{C}(10.5 \mathrm{Torr})^{23}$]; the ir ${ }^{10 \mathrm{~b}}$ and NMR ${ }^{10 \mathrm{f}}$ corresponded to those reported.

Chugaev Reaction Applied to 8a. When the Chugaev process was carried out on 10.5 g (50 mmol) of 8 a according to the usual procedure and the crude residue distilled at 0.005 Torr, 2.6 g of a fraction, bp $56-61{ }^{\circ} \mathrm{C}$, was obtained. This fraction was identified as 1 -methyl-thio-1-phenyl-2-trimethylsilylethane (19) and was obtained in a 25% yield: ir (neat) 3045 (w). 2970 (m), 2930 (m). 1730 (w), 1610 (w). 1500
 $726(\mathrm{~m}), 720(\mathrm{~m}) .710(\mathrm{~m})$, and $699 \mathrm{~cm}^{-1}(\mathrm{~s}): \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{br}$ $\mathrm{s}, 5$, aromatic), $3.90\left(\mathrm{t}, 1 . J=8.2 \mathrm{~Hz}, \mathrm{CHSCH}_{3}\right.$), $1.95\left(\mathrm{~s}, 3,-\mathrm{SCH}_{3}\right), 1.39$ (d. $2, J=8.2 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$). and 0.16 (s, $9 . \mathrm{SiMe}_{3}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{SSi}$: C, 64.21; H. 8.98; S, 14.29; Si, 12.52 . Found: C. 64.27; H. 8.74: S, 14.10; Si, 12.32.

Acknowledgments. Acknowledgment is made to the do-
nors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work. In addition, J.R.T. was an NDEA Title IV Fellow during the period 1971-1974.
Registry No.-1a, 58540-98-0; 1b, 58540-99-1: 1c, 58541-00-7; Id, 58541-01-8; le, 58541-02-9; If, 58541-03-0; 3, 58541-04-1; 4a, 58541-05-2; 4b, 58541-06-3; 4c, 58541-07-4: 5a, 55287-96-2; 5b, 58541-08-5; 6a, 58541-09-6; 6c, 58541-10-9; 7a, 58541-11-0; 7d, 58541-12-1; 8a, 17993-97-4: 8b, 58541-13-2; 12, 58541-14-3; 13, 58541-15-4; 15, 57365-47-6; 18, 58541-16-5; 19, 58541-17-6; methanes alfonyl chloride, 124-63-0; phenyl isothiocyanate, 103-72-0.

References and Notes

(1) (a) C. R. Hauser and C. R. Hance, J. Am. Chem. Soc. 74, 5091 (1952): (b) D. J. Peterson. J Org. Chem., 33, 780 (1968).
(2) (a) A. W. P. Jarvie, Organomet Chem. Rev.. Sect. A. 6, 153 (1970): (b) P F. Hudrlik and D. Jeterson. J. Am. Chem. Soc. 97, 1464 (1975)
(3) (9) H. Gilman. D. Aoki, and D. Wittenberg. J. Am. Chem. Soc. 81, 1107 (1959): (b) I. M. T. Davidson. M. R. Jones, and C. Pelt. J. Chem. Soc. B. 937 (1967): (c) W. K. Musker and G. L. Larson. J. Am. Chem Soc. 91.514 (1969): (d) C. Eaborn and R. W. Bott in "Organometallic Compounds of the Group IV Elements". Vol I. Part I. A. G. MacDiarmid. Ed., Marcel Dekker. Hew York. N.Y.. -968. pp 380-386.
(4) (a) T. H. Chan, E. Shang, and E. Vinokur, Tetrahedron Lett., 1137 (1970): (J) T. H. Chan and E. Chang, J. Org. Chem., 39, 3264 (1974): (c) I. Fleming and A. Pearce. J Chem. Soc., Chem. Commun., 633 (1975): (d) K. Utimoto, M. Kitai, and H. Nozaki. Tetrahedron Left., 2825 (1975): (e) J.-P. Pillot. J. Dunoges. and R. Calas. Bull. Soc. Chim. Fr., 2143 (1975).
(5) G. Stork and E. Colvin. J. Am. Chem. Soc.. 93, 2080 (1971)
(6) (a) B.-T. Grobel and D Seebach. Angew Chern.. Int. Ed Engl. 13, 83 (1974): (כ) R. K. Boeckman, Jr.. and K. J. Bruza. Tetrahedron Lett., 3365 (1974)
(7) F. B. Miller and T. Reichenbach, Tetrahedron Lett., 543 (1974)
(8) (a) G. Stork and B. Ganem. J. Am. Chem. Soc., 95, 6152 (1973): (b) G. Stork and M. E. Jung. ib.d. 3682 (1974): (c) R. K. Boeckman. tr. ibid. 95, 6867 (1973): 96, 6179 , 1974): (d) G. Stork and J Singh. ibid., 96, 6180 (1974)
(9) (a) G. R. Buell. R. Corriu. C. Guerin. and L. Spialter, J. Am Chem Soc. 92, 7424 (1970): (b) VJ. P. Weber. R. A. Felix. A. K. Willard, and K. E. Koenig. Tetrahedron Lett. 4701 (1971): (c) K. E. Koenig and W. P. Weber, ibid.. 2533 (1973): (d) K. E. Koenig and W. P. Weber. J. Am. Chem. Soc., 95. 3416 (1973): R. F. Cunico. J. Organomet. Chem.. 60, 219 (1973): (e) K. Yamamoto, K Shinohara. T. Ohuchi, and M. Kumada. Tetrahedron Lett. 1153 (1974).
(10) For syntheses of vinylsilanes see ref 4-8 and (a) H. Sakurai. K Nishiwaki. and M. Kira. Tetranedron Lett. 4193 (1973); (b) D. Seyferth. L. G Vaughn. and R. Suzuki. J. Organomet. Chem., 1, 437 (1964); (c) ref 3d. Chapter 2; (d) B. Martel and M. Varache, J. Organomet. Chem.. 40, C53 (1972): (e) E. Stork, M. E. Jung, E. Colvin, and Y. Noel. J. Am. Chem Soc., 96, 3684 (1974): (f) J. J. Eisch and M. W. Foxton, J. Org. Chem. 36, 3520 (1971).
(11) For reviews see (a) C. H. DePuy and R. W. King. Chem. Rev., 60. 431 (1960): (b) H. R. Nace. Org React. 12, 58 (1962): (c) W. H. Saunders. Jr.. and A. F. Cockerill. "Mechanisms of Elimination Reactions". Wiley-Interscience, New York. N. Y.. 1973. Chapter VIII
(12) E. M. Burgess. H. R. Penton. Jr., and E. A. Taylor. J. Org. Chem., 38, 26 (-973)
(13) P. S. Skell and W. L. Hall. Jr., J. Am. Chem. Soc. 85, 2851 (1963)
(14) (a) T G. Traylor. W Hamstein. M. J. Berwin. N A Clinton. and R S Braun. J Am. Chem. Soc.. 93, 5715 (1971); (b) L. H. Sommer and G. A. Baughman. ibid. 83, 3346 ($1 \leq 61$).
(15) J L. Fry. E. M. Engler, and P. v. R. Schleyer. J. Am. Chem Soc., 94, 4628 (-972).
(16) (a) H. Kwart and J. Slutsky. J. Chem. Soc., Chem. Commun., 552 (1972): (b) N. J. Daly and F. Ziolkowski, ibid., 911 (1972): (c) N J Daly and F. Ziolkowski. Aust. J. Chem., 24, 2541 (1971).
(17) (c) E. Dyer and G. C. Wright. J. Am Chem. Soc., 81, 2138 (1959): (b) A F McKay and G. F. Vavasour. Can. J. Chem.. 31, 688 (1953)
(18) R C. Fort. Jr., and P. V. R. Schleyer. J. Org. Chem., 30, 789 (1965)
(19) E Block and H. W Orf. J. Am. Chem. Soc. 94, 8438 (1972)
(20) W. P. Weber. A. K. Willard. and H. G Boettger. J. Org. Chem. 36, 1620 (1971).
(21) (a) J Slutsky and H Kwart. J. Am. Chem. Soc., 95. 8678 (1973): (b) R G Jones. P. Partington. W J. Rennie, and R. M. G Roberts. J Organomet Chem. 35. 291 (1372).
(22) The ratio of 15/16 was determined in a separate experiment to de $2: 1$
(23) L. H. Sommer. D.- Bailey. G M. Goldberg. C E Buck. T. S Bye. F J Evans, and F. C. Whitmore. J. Am. Chem Soc.. 76, 1613 (1954).

Addition of Halogens to Vinylcylopropanes

Dale F. Shellhamer.* David B. McKee, and Charles T. Leach

Department of Chemistry, Point Loma College (Formerly Pcsadena College), San Diego, California 921 (16
Received November 19, 1975

Abstract

The halogenation of vinylcyclopropane (11 and 2-cyclopropylpropene (4) with chlorine, bromine. methyl hypochlorite ($\mathrm{CH}_{3} \mathrm{OCl}$), iodobenzene dichloride (IBD), and trichloroamine (NCl_{3}) is reported. A comparison of the product distribution from these halogenating reagents with 1 and 4 under ionic and radical corditions is used to distinguish between radical or cationic intermediates in these reactiors. Chlorine, bromine, and NCl_{3} react with 4 by an ionic process while IBD reacts primarily by a radical process. When 4 is treated with $\mathrm{CH}_{3} \mathrm{OCl}$ the reaction proceeds by an ionic or radical mechanism depending on the reaction conditions. Apparently these reagents tend to react with vinylcyclopropanes by an ionic process because a very stable cyclopropylcarbinyl cation intermediate can be formed.

The addition of electrophiles ${ }^{1}$ and radical addends ${ }^{2}$ to vinylcyclopropanes is an area of current interest. It has been demonstrated that reactions which proceed through cyclopropylcarbinyl cation intermediates ${ }^{1 f}$ give predominantly cyclopropyl products under conditions of kinetic control. ${ }^{\text {lc, } 3}$

When product formation is reversible, equilibration leads to formation of the thermodynamically more stable homoallyl isomer owing to relief of strain energy in the cyclopropane ring. ${ }^{1 c}$ Radical additions to vinylcyclopropanes proceed through classical cyciopropylcarbinyl and homoallyl intermediates. ${ }^{2,4}$ Since at equilibrium the homoallyl radical is favored over the cyclopropylcarbinyl radical, ${ }^{2 c, 4}$ a decrease in

the concentration of the radical chain transfer agent will cause an increase in the amount of ring-opened products. These criteria have been used to confirm the presence of radical intermediates in the cyclopropylcarbinyl system. ${ }^{2 b}$

In this study we investigated the halogenations of vinylcyclopropane (1) and 2-cyclopropylpropene (4) with chlorine, bromine, methyl hypochlorite, iodobenzene dichloride (IBD), and trichloroamine $\left(\mathrm{NCl}_{3}\right)$. It seemed to us that a comparison of the product distribution from the reaction of these halogenating reagents with 1 and 4 under various conditions would provide information about the intermediates in these reactions. A survey of the literature reveals that halogenation of vinylcyclopropanes has not been investigated thoroughly; only a product ${ }^{1 \mathrm{f}}$ and kinetic ${ }^{19}$ study have appeared for the bromination of 1 under ionic conditions. The chlorinations of 1 and 4 have not been reported. Chlorine, ${ }^{5}$ bromine, ${ }^{5}$ and iodobenzene dichloride ${ }^{6}$ are known to react by an ionic or radical process under the appropriate reaction conditions. Alkyl hypochlorites react with olefins by an ionic process in protic solvents. ${ }^{7}$ The literature contains no unequivocal evidence for an ionic addition of alkyl hypochlorites to olefins in aprotic solvents. ${ }^{\text {th }, 8}$ A radical process is involved when trichloroamine is treated with olefins ${ }^{9 \mathrm{a}}$ and dienes. ${ }^{9 \mathrm{~b}}$ There is one reported case of an ionic process participating in the reaction of NCl_{3} with olefins ${ }^{9 a}$ when a stable cation is formed.

Results and Discussion

In 1952 Slobodin ${ }^{1 e}$ reported that bromination of vinylcyclopropane 1 gave products $2 \mathbf{a}$ and $3 \mathbf{a}$ in a ratio of $3: 2$, respectively. During our investigation of the halogenations of vinycyclopropanes we found the product ratio for the bromination of 1 to be $6: 1$ by NMR analysis (Table I). ${ }^{10.11}$ When 1 was treated with chlorine a similar ratio of products was observed. ${ }^{12}$ This large preference for the 1,2 products is con-

1

2
a. $\mathrm{X}=\mathrm{Br}$
b. $\mathrm{X}=\mathrm{Cl}$
sistent with a cyclopropylcarbinyl cation ${ }^{1 c, 3}$ intermediate and is in agreement with the open-cation intermediate proposed by Tidwell and Yates ${ }^{1 \mathrm{a}}$ for the bromination of 1 .

Bromination of 4 gives 1,2 and 1,5 products, while the chlorination of 4 gives substitution and 1,2 products but no 1,5 products. ${ }^{13}$ The substitution products, 8 and 9 , in the

chlorination of 4 are also consistent with an ionic but not a radical mechanism since formation of these products via a radical intermediate would involve transfer of a hydrogen atom. It appears that product 10 is formed by addition of HCl to 4 since direct treatment of 4 with HCl under the reaction conditions resulted in rapid formation of 10.

Table I. Halogenation of Vinylcyclopropanes 1 and 4

Run	Solvent	Mole fraction 1 or 4	Reaction ${ }^{a}$ conditions	Halogenating reagent ${ }^{b}$	Percent products ${ }^{\text {c }}$						
					From 1		From 4				
					2	3	5 or 7	6 or 12	8	9	10
1	$\mathrm{C}_{5} \mathrm{H}_{12}$	0.020	O_{2}, dark	Br_{2}	91	9	84	16			
2	CCl_{4}	0.020	O_{2}, dark	Br_{2}	86	14	83	17			
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.020	O_{2}, dark	Br_{2}	89	11	83	17			
4	Ether	$0.094^{\text {d }}$		Br_{2}	86	14					
5	CCl_{4}	0.020	N_{2}, uv	Br_{2}			85	15			
6	CCl_{4}	0.500	N_{2}, uv	Cl_{2}			34		16	28	22
7	$\mathrm{C}_{5} \mathrm{H}_{12}$	0.020	O_{2}, dark	Cl_{2}	91^{e}	9	33		14	47	6
8	CCl_{4}	0.020	O_{2}, dark	Cl_{2}			33		13	38	16
9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.020	O_{2}, dark	Cl_{2}	90^{e}	10	32		19	21	28
10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.006^{\prime}	O_{2}, dark	IBD			44	32	9	7	8
11	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.035{ }^{\prime}$	N_{2}, uv	IBD			52	48			
12	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.012^{\prime}	N_{2}, uv	IBD			43	57			
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.006{ }^{\prime}$	N_{2}, uv	IBD			34	66			
14	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0.003{ }^{\prime}$	N_{2}, uv	IBD			28	72			
15	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1.5 \times 10^{-3 /}$	N_{2}, uv	IBD			24	76			
16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$7.5 \times 10^{-4 /}$	N_{2}, uv	IBD			20	80			
17	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.020	O_{2}, dark	NCl_{3}			52		20	28	
18	CCl_{4}	0.020	O_{2}, dark	NCl_{3}			50		18	32	
19	CCl_{4}	0.050	N_{2}, uv	NCl_{3}			50		22	28	
20		Neat	N_{2}, uv	NCl_{3}			46		20	34	

${ }^{a}$ The uv light was from a 275-W General Electric sunlamp. ${ }^{b}$ Vinylcyclopropanes 1 and 4 were used in excess (ca. 10-40\%). Neat bromine was added to the reaction mixture at $-15^{\circ} \mathrm{C}$. A slow stream of N_{2} or O_{2} was ased as a carrier gas to transport Cl_{2} into the reaction mixture at $-15^{\circ} \mathrm{C}$. A 6.0 M solution of 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to IBD dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$. NCl_{3} was added dropwise as a 0.34 M solution in CCl_{4} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{\text {c }}$ Product composition was determined by NMR analysis on an average of at least three runs. ${ }^{d}$ Conditions under which Slobodin carried out the bromination of 1 ; see ref 1e. ${ }^{\text {e }}$ Similar ratios were obtained by VPC. See ref 20. / Mole fraction IBD in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The data in Table I show that when 4 is treated with chlorine under ionic conditions (low mole fraction olefin, O_{2} as an inhibitor, dark) or radical conditions (high mole fraction olefin, O_{2} removed by N_{2}, and ultraviolet illumination) there is little change in the product distribution. This suggests that a radical intermediate is not involved in the chlorination of vinylcyclopropanes. Apparently the radical pathway does not compete effectively when chlorine is treated with vinylcyclopropanes because a very stable cyclopropylcarbinyl cation intermediate is formed.

Therefore, we turned our attention to halogenating reagents that might be more likely to react with vinylcyclopropanes by a radical mechanism. When 4 is treated with methyl hypochlorite under ionic conditions, in methylene chloride, products $7,8,9$, and 13 are formed in a slow reaction. This appears to be the first reported case of an ionic process for the reaction of methyl hypochlorite with olefins in an aprotic solvent. Apparently the ionic process is competitive because a very stable cyclopropylcarbinyl cation intermediate can be formed. However, when the reaction is carried out under radical conditions a fast reaction gives only anti-Markownikoff products
$4+\mathrm{CH}_{3} \mathrm{OCl} \frac{\mathrm{O}_{2} \text { dark }}{0^{\circ} \mathrm{C}}$

Table II. Reaction ${ }^{a}$ of Methyl Hypochlorite with Vinylcyclopropane 4 under Radical Conditions at $0^{\circ} \mathrm{C}$

Mole fraction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$			Product composition	
$\mathrm{CH}_{3} \mathrm{OCl}^{b}$	$\mathbf{4}$		$\mathbf{1 4}$	$\mathbf{1 5}$
0				
0.08	Neat		100	
0.03	0.2	85	15	
0.03	0.1	80	20	
0.03	0.02	66	34	
0.03	0.002	58	42	

${ }^{a}$ Yields are $60-75 \%$ obtained by NMR integration using benzene as an internal standard. ${ }^{b}$ The methyl hypochlorite in methylene chloride was added dropwise to the olefin under nitrogen and ultraviolet illumination.

14 and 15. Further support for a radical intermediate is obtained from the following dilution experiment. As the concentration of the clefin is decreased, the amount of 1,5 product is increased (Table II). These results show that there is an equilibrium of the cyclopropylcarbinyl and homoallyl intermediates which is consistent only with a radical process.

The chlorination of 4 with iodobenzene dichloride (IBD) gave primarily products 7 and 12 from a molecule induced homolysis reaction. A radical process was confirmed by a dilution experiment (Table I, runs 11-16). We were unable to inhibit the radical pathway completely using oxygen as the inhibitor as indicated by the large amount of 1,5 product 12 when 4 was treated with IBD under ionic conditions (Table I, run 10). ${ }^{14}$

When 4 is treated with trichloroamine, products 7, 8 , and 9 are apparently formed by an ionic rather than a radical mechanism (Table I, runs 17-20). Formation of 8 and 9 is not consistent with a radical process since it would involve loss of a hydrogen atom from a radical intermediate. Apparently
products 8 and 9 are formed by loss of a proton from a cyclopropylcarbinyl cation intermediate to generate hydrogen chloride. Additional support for an ionic process comes from the absence of the 1.5 product (12), the insignificant change in product distribution as the concentration of the reagents is decreased iruns 19 and 20), and from the similar product distributions for the addition of chlorine and NCl_{3} to 4 . In the case of NCl_{3}, product 10 is probably not formed because the hydrogen chloride, which is generated during the reaction, reacts with NCl_{3} to form ammonium chloride. ${ }^{15} \mathrm{We}$ assume that the reaction of NCl_{3} with 4 proceeds by an ionic mechanism because a very stable cyclopropylcarbinyl cation intermediate can be formed. This agrees with Kovacic's observation ${ }^{9 a}$ of a large ionic component for the reaction of NCl_{3} with olefins such as isobutylene and norbornene which are also able to form stable cation intermediates.

Experimental Section

General. Vinylcyclopropane (1) was prepared by the pyrolysis of 1 -cyclopropylethyl S-methyl xanthate as reported by Overberger. ${ }^{16}$ 2-Cyclopropylpropene (4) was prepared by dehydration of dimethylcuclopropylcarbinol over sulfuric acid. ${ }^{17}$ All other reagents and solvents were obtained commercially. Neat bromine was added from a small capillary dropper to magnetically stirred solutions. Chlorine was condensed in a calibrated capillary tube, and then allowed to distill into a stream of carrier gas (N_{2} or O_{2}) which was bubbled into the reaction mixture. The initial reaction mixture contained an excess ($10-40 \%$) of 1 or 4 . Control experiments show that the 1,2 products are stable under the reaction conditions. Removal of the solvent and excess olefin was carried out on a rotary evaporator at room temperature and the product composition was determined by NMR analysis. The sields were determined by adding $30 \mu \mathrm{l}$ of a 1.0 M solution of benzene, toluene, or 1.2 -dichloroethane in CCl_{4} as an internal standard to the crude products dissolved in ca. $300 \mu \mathrm{l}$ of CCl_{4}. Nuclear magnetic resonance spectra were obtained on a Varian T-60A spectrometer and the infrared spectra were recorded on a Perkin-Elmer 3337 spectroptotometer. The VPC analysis was accomplished on a Hewlett-Packard 5750 flame ionization chromatograph. Collection of products by VPC was accomplished on an F and M 700 chromatograph. The following columns were used: column $\mathrm{A}, 6 \mathrm{ft} \times 0.25 \mathrm{in}$. stainless steel column of 5% SE-30 on 60/80 Chromosorb W; Column B. $12 \mathrm{ft} \times 0.2 \mathrm{i}$ in. 10% Carbowax 20 M on Chromosorb W

Reaction of Bromine with 1 . To $38 \mathrm{mg}(0.56 \mathrm{mmol})$ of 1 in a weighed amount of solvent (Table II at $-15^{\circ} \mathrm{C}$ was added ca. $25 \mu \mathrm{I}$ of neat bromine. The solvent was removed at room temperature on a rotary evap rator and an NMR spectra recorded to obtain the yield (ll() $)_{\text {Q }}$) and pr sduct ratios (Table I). These NMR solutions were found to he stable at room temperature for several days. Several analytical runs were combined and short-path distillation gave $2 \mathrm{a}, \mathrm{bp} 45-47^{\circ} \mathrm{C}$ $(0.75 \mathrm{~mm})$, with the following spectral properties: ir $\left(\mathrm{CCl}_{4}\right) 3090$ (c$\mathrm{C}_{3} \mathrm{H}_{5}$), $2940(\mathrm{C}-\mathrm{H}), 1440(\mathrm{C}-\mathrm{H}), 1130,1015\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 925 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CCl}_{4}\right)$) $0.30-1.0(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~m}, 1 \mathrm{H}), 3.6-4.0(\mathrm{~m}, 3 \mathrm{H})$. The 1,5 product (3a) was not obtained free of 2a by distillation. When 2a was analyzed by t'PC a mix:ure. ca. 50:50. of 2 a and 3a was obtained. ${ }^{10}$ The retention times for 2 a and 3 a were 14 and 25 min . respectively, on column A at $75^{\circ} \mathrm{C}$.

Isomerization of 2a to 3a. To a $70-\mathrm{mg}(0.31 \mathrm{mmol})$ mixture of 2a and $3 \mathrm{a}(8: 1$. respectively) in 0.3 ml of reagent acetone at romm temperature was added 1.5 mg of $\mathrm{ZnBr}_{2} .{ }^{12}$ After 2 h the reaction mixture was poured into 1.0 ml of water, extracted with three portions of met hylene chloride, and dried over MgSO_{4}. The solvent was removed at reduced pressure. and a bulb-to-bulh distillation of the clear oil at 0.5 mm with an oil bath maintained at $60^{\circ} \mathrm{C}$ gave $50 \mathrm{mg}(72 \%)$ of a clear oil with the same VPC retention time as reported above for 3a on column A. The following spectra were obtained: ir (CCl_{4}) 3030, 2970. 1670, and $1430(\mathrm{C}-\mathrm{H}), 1255,1200,965(\mathrm{C}-\mathrm{H}), 930 \mathrm{~cm}^{-1}$; NMR $\left.\left(\mathrm{CCl}_{4}\right) \delta 2.63 \cdot \mathrm{~m}, 2 \mathrm{H}\right), 3.38(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~m}$, $2 \mathrm{H})$.

Reaction of Bromine with 4. The bromination was carried out on ca. $6(1)-\mathrm{mg}$ samples as described above. The yield (90%) and the product ratios were determined by NMR. A preparative reaction was carried out by adding $8.6 \mathrm{~g}(0.054 \mathrm{~mol})$ of bromine dropwise to 4.92 $g(0.06 \mathrm{~mol})$ of 4 in $12 . \mathrm{i} \mathrm{ml}$ of pentane. The reaction mixture was maintained at $-15^{\circ} \mathrm{C}$ in an isopropyl alcohol bath by adding dry ice to the alcohol bath as needed. The solvent was removed on a rotary evaporator. and distillation ${ }^{18}$ gave $5\left(\mathrm{hp} 41.0-41.5^{\circ} \mathrm{C} .0 .5 \mathrm{~mm}\right)$ with the following spectral properties: ir (neat) $3090\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right.$), $3000(\mathrm{C}-\mathrm{H})$,

1440 and $1370(\mathrm{C}-\mathrm{H}), 1230,1120,1065,1020\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 895,620,590$, and $565 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.30-0.85(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H})$, 1.75 (s, 3 H), 3.94 (s, 2 H .

Isomerization of 5 . To $3.63 \mathrm{~g}(0.015 \mathrm{~mol})$ of 5 in 15 ml of acetone was added 50 mg of $\mathrm{ZnBr}_{\underline{2}} .{ }^{12}$ The reaction mixture was stirred at room temperature for 30 min at which time it was poured into 50 ml of water. The products were isolated as described above for 3a. An NMR spectra of the crude oil showed that the products $6-(Z)$ and $6-(E)$ were formed in a $3: 7$ ratio, respectively. ${ }^{19}$ Distillation gave $3.00 \mathrm{~g}(82 \%)$ of a mizture of $6-(Z)$ and $6-(E)\left(\mathrm{bp} 64-67^{\circ} \mathrm{C}, 0.65 \mathrm{~mm}\right.$) with the following properties: ir (neat) 3010 (C-H), $2960(\mathrm{C}-\mathrm{H}) .1660(\mathrm{C}=\mathrm{C})$. $1445(\mathrm{C}-\mathrm{H}), 1270,1205.750(\mathrm{C}-\mathrm{H}) .610 \mathrm{~cm}^{-1} ;$ NMR ($\left.\mathrm{CCl}_{4}\right) \delta 1.80$ and 1.87 .two quartets, $J=0.6$ and 1.1 Hz , respectively, 3 H), $2.62(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H})$.
Chlorination of Vinylcyclopropane 1 . The reactions were carried out at $-15{ }^{\circ} \mathrm{C}$ in the darix in a solution which was 0.02 mole fraction in $1(60-70 \mathrm{mg})$. Chlorine (20μ) $)$ was distilled into a stream of oxygen and was bubbled into the reaction mixture. Analysis by VPC on column A at $55^{\circ} \mathrm{C}$ gave prcducts 2 b and 3 b with retention times of 8.0 and 16 min , respectively. ${ }^{2 n}$ Analysis of the crude mixture by NMR showed that the products were formed in 40% yield and that the product ratios were similar to those obtained by VPC (Table I). The products were obtained pure by VPC collection on column A, and the following spectral properties were recorded: 2b, ir $\left(\mathrm{CCl}_{4}\right) 3090$ (c$\left.\mathrm{C}_{3} \mathrm{H}_{\mathrm{j}}\right), 2960(\mathrm{C}-\mathrm{H}), 144 \mathrm{C}(\mathrm{C}-\mathrm{H}), 1180,1050,1020\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 950,920$, $900 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.30-0.90(\mathrm{~m} .4 \mathrm{H}), 0.95-1.3(\mathrm{~m}, 1 \mathrm{H}), 3.2-3.9$ $(\mathrm{m}, 3 \mathrm{H}) ; \mathbf{3 b}, \mathrm{ir}\left(\mathrm{CCl}_{4}\right) £ 010(\mathrm{C}-\mathrm{H}), 2960(\mathrm{C}-\mathrm{H}) .1630(\mathrm{C}=\mathrm{C}) .1440$ (C-H), 1250, $970 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}):$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.57$ (m, 2 H). 3.52 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .4 .00(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~m}, 2 \mathrm{H})$.

Isomerization of 2 b . To a $25-\mathrm{mg}(0.18 \mathrm{mmol})$ mixture of $\mathbf{2 b}$ and $\mathbf{3 b}$ ($8: 1$, respectively) in 0.3 ml of reagent acetone was added 15 mg of $\mathrm{ZnCl}_{2} .^{12}$ After 1.5 h the products were isolated as described above for the :somerization of 2a. Bulb-to-bulb distillation of the product at 10.0 mm with an oil bath maintained at $60^{\circ} \mathrm{C}$ gave 20 mg of a clear oil with the same VPC retention time and spectra as reported above for $\mathbf{3 b}$.

Reaction of Chlorine with 4. A. Ionic Conditions. The chlorination was carried out on ca. 60 mg (0.02 mole fraction) of 4 as described above for the chlorination of 1 . The yields (32%) and product ratios were determined by NMR. Several of the analytical runs were combined and the products zollected by preparative VPC. Product 7 was collect on column A and had a retention time of 9.0 min at $42^{\circ} \mathrm{C}$. The 1,2-dichloride 7 had the following spectral properties: ir (neat) 3090 (c- $\mathrm{C}_{3} \mathrm{H}_{5}$), $2980(\mathrm{C}-\mathrm{H}), 1 \leq 50(\mathrm{C}-\mathrm{H}), 1430,1370(\mathrm{C}-\mathrm{H}), 1135,1080,1020$ $\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 905,825,785.705 \mathrm{~cm}^{-1}$: NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.35-0.70(\mathrm{~m}, 4 \mathrm{H})$, 1.2 rii $_{i}(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}$, § H) $3.74(\mathrm{~s}, 2 \mathrm{H})$. Products 8,9 , and 10 had retention times of 11,15 , and 9 min . respectively. on column B at 62 ${ }^{\circ} \mathrm{C}$ and gave the following spectral properties: 8 , ir $\left(\mathrm{CCl}_{4}\right) 3085$ (c$\mathrm{C}_{3} \mathrm{H}_{5}$), $3010(\mathrm{C}-\mathrm{H}) .2930(\mathrm{C}-\mathrm{H}) .1640(\mathrm{C}=\mathrm{C}), 1440$ and $1370(\mathrm{C}-\mathrm{H})$, $120.5,1075,1020\left(\mathrm{c}_{\left.\left.-\mathrm{C}_{5} \mathrm{H}_{5}\right), 925.905 .815 \mathrm{~cm}^{-1} \text {. NMR (CCL }\right) ~ \delta 0.35-0.70}\right.$ $(\mathrm{m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 5.78(\mathrm{p}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}) ; 9$, ir $\left(\mathrm{CCl}_{4}\right) 3085\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{\mathrm{E}}\right) 3010(\mathrm{C}-\mathrm{H}), 2970(\mathrm{C}-\mathrm{H}), 1640(\mathrm{C}=\mathrm{C})$, $1445(\mathrm{C}-\mathrm{H}), 1425(\mathrm{C}-\mathrm{H}), 1260,1020\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 905(\mathrm{C}-\mathrm{H}), 710 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.40-0.83(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, 2 H), $4.79(\mathrm{~m}, 1 \mathrm{H}), 5.00$ (dd. $J=1.7$ and 0.9 Hz .1 H): 10 , ir (neat) 308.5 (c-C $\mathrm{C}_{3} \mathrm{H}_{5}$), $2960(\mathrm{C}-\mathrm{H}), 1450$ and $1360(\mathrm{C}-\mathrm{H}), 1290,1260,1230,1150$, $1113,1020\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 955,885,780.655$, and $595 \mathrm{~cm}^{-1}$. in reasonable agreement with the Raman spectrum ${ }^{21}$ reported for 10 ; NMR (CCl_{4}) $\delta 0.40-0.60(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~m} .1 \mathrm{H}), 1.52$ (s, 6 H).
B. Radical Conditions. Reactions were carried out at $-15^{\circ} \mathrm{C}$ on a sclution which was 0.50 mole fraction in $4(2.50 \mathrm{mg}$ of 4 in 300 mg of CCl_{4}). Oxygen was removed by bubbling nitrogen gas through the reaction mixture for ca. 3 min . The reaction flask was illuminated with a $2^{7} 5$-W General Electric lamp. Chlorine (20μ) was distilled into the stream of nitrogen carrier gas. The crude reaction mixture was analyzed by NMR as described ebove (30% yield). and found to contain products 7, 8, 9, and 10 in a ratio of 2.1:1.0:1.8:1.4, respectively.
Isomerization of 7 . To $70 \cdot \mathrm{mg}$ of dichloride 7 in 0.5 ml of reagent acetone was added 50 mg oi fused $\mathrm{ZnCl}_{2}{ }^{12}$ After 30 min at room temperature the reaction mixture was poured into 15 ml of water and the products were isolated as described above for the isomerization of $2 a$. An NMR spectra of the crude oil showed that the products $12-(Z)$ and $12-(E)$ were form.ed in a ratio of $1: 5$. respectively. ${ }^{19}$ Distillation gave $0.560 \mathrm{~g}(80 \%)$ of the mixture ($\mathrm{bp} 73-76{ }^{\circ} \mathrm{C}$, at 8.0 mm) with the following spectral properties: ir (neat) 3010 (C-H). 2960 $(\mathrm{C}-\mathrm{H}), 1660(\mathrm{C}=\mathrm{C}), 1440$ and $1380(\mathrm{C}-\mathrm{H}), 1290.1260,1160.1080 .940$. $910,830,810.790,720680 \mathrm{~cm}^{-1}$: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.78$ and 2.00 (two quartets, $J=0.8$ and 1.0 Hz . respectively, 3 H). 2.53 (q. $J=6.8 \mathrm{~Hz}$. 2 H), 3.46 ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$). 3.97 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$), $5.55(\mathrm{~m} .1 \mathrm{H})$.

Reaction of Hydrochloric Acid with 4 . To 820 mg of 4 in 30 ml
of methylene chloride at $-15^{\circ} \mathrm{C}$ was bubbled HCl gas for 1 min . The reaction mixture was allowed to warm to room temperature and the solvent was then removed on a rotary evaporator. Analysis of the crude mixture by NMR showed only 10 and unreacted 4 . Distillation gave 660 mg of pure 10 [bp $45-47^{\circ} \mathrm{C}, 60 \mathrm{~mm}$ (lit. ${ }^{22} 104-105^{\circ} \mathrm{C}, 760 \mathrm{~mm}$)] with the properties reported above.

Isomerization of 10 . To 600 mg of 10 in 2.0 ml of anhydrous ether was added 50 mg of fused $\mathrm{ZnCl}_{2} .{ }^{12}$ The reaction mixture was stirred for 5 h at $25^{\circ} \mathrm{C}$. Workup as described for the isomerization of 2 a above gave pure 11 [bp $82-83^{\circ} \mathrm{C}, 100 \mathrm{~mm}$ (lit. ${ }^{22} 131-133^{\circ} \mathrm{C}, 760 \mathrm{~mm}$)] with the same spectral properties reported for 5 -chloro-2-methyl-2-pentene. ${ }^{22}$

Reaction of Methyl Hypochlorite with 4. A. Ionic Conditions. Oxygen was bubbled through a solution of $585 \mathrm{mg}(7.15 \mathrm{mmol})$ of 4 in 13.5 ml of anhydrous methanol at $0^{\circ} \mathrm{C}$ for 2 min . To this stirred solution, under an oxygen atmosphere, in the dark, was added dropwise 4.0 ml of a 1.4 M methyl hypochlorite solution in methylene chloride. The reaction mixture was poured into 100 ml of ice water, extracted with methylene chloride, and dried over MgSO_{4}. The yield by NMR analysis of the crude mixture using benzene as an internal standard showed the products to be formed in 75% yield. The product ratios were 1.0:1.2:5.0 for 8,9 , and 13, respectively. Distillation gave pure 13 ($\mathrm{bp} 70-72^{\circ} \mathrm{C}, 24 \mathrm{~mm}$) with the following spectral properties: ir (neat) $3080\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right), 2950(\mathrm{C}-\mathrm{H}), 1460$ and $1375(\mathrm{C}-\mathrm{H}), 1100(\mathrm{C}-\mathrm{O})$, $1013\left(\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$, and $750 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.20-0.60(\mathrm{~m}, 4 \mathrm{H})$, $0.7-1.1$ (m, 1 H), $1.05(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (s, 2 H). A similar reaction was carried out at $25^{\circ} \mathrm{C}$ for 3 h in methylene chloride as the solvent. The solvent was removed on a rotary evaporator at room temperature. Analysis by NMR showed the product ratio for $7,{ }^{23} 8$, 9, and 13 to be 1:5:4:5, respectively. Product $13(100 \mathrm{mg})$ was found to be stable when treated with 30 mg of fused ZnCl_{2} in 0.3 ml of anhydrous ether at $25^{\circ} \mathrm{C}$ for 48 h .
B. Radical Conditions. Reactions of methyl hypochlorite under radical conditions were carried out at the mole fractions of 4 in methylene chloride listed in Table II. To $655 \mathrm{mg}(8.0 \mathrm{mmol})$ of neat 4 at $0^{\circ} \mathrm{C}$. under nitrogen and ultraviolet illumination, was added 4.0 ml of a 0.08 mole fraction (1.4 M) methyl hypochlorite solution in methylene chloride. The solvent was removed at reduced pressure and NMR analysis showed only product 14. Product 15 was also formed when the reaction was carried out under dilute conditions (Table II). Distillation gave pure $14(76 \%)\left(\mathrm{bp} 56-60^{\circ} \mathrm{C}, 20 \mathrm{~mm}\right)$: ir (neat) 3080 (c- $\mathrm{C}_{3} \mathrm{H}_{5}$), $2950(\mathrm{C}-\mathrm{H}), 1450$ and $1380(\mathrm{C}-\mathrm{H}), 1270,1105(\mathrm{C}-\mathrm{O}), 1015$ (c-C3 H_{5}), 815, and $760 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.30-0.70(\mathrm{~m}, 4 \mathrm{H}) .0 .9-1.2$ ($\mathrm{m}, 1 \mathrm{H}$). $1.46(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H})$.

Isomerization of $14 . \mathrm{To} 0.500 \mathrm{~g}$ of 14 in 1.0 ml of anhydrous ether was added 60 mg of fused $\mathrm{ZnCl}_{2} .{ }^{12}$ The reaction mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$ and then isolated as described above for the isomerization of 2a. Analysis by NMR on the crude mixture showed 15-(Z) and $15-(E)$ to be formed in a ratio of $1: 4$, respectively. ${ }^{19}$ Distillation gave 0.405 g of the mixture $15-(Z)$ and $15-(E)(81 \%)\left(\mathrm{bp} 115-121^{\circ} \mathrm{C}\right.$, 25 mm): ir (neat) $3000(\mathrm{C}-\mathrm{H}) .2940(\mathrm{C}-\mathrm{H}), 1440$ and $1430(\mathrm{C}-\mathrm{H}), 1295$, $1190,1110,1095,790,765,715$, and $660 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.63$ and 1.76 (br singlets, 3 H) $, 2.53(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .3 .20(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{brs}, 2 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of Iodobenzene Dichloride with 4. A. Ionic Conditions. The reaction mixture $[0.006$ mole fraction $4(3.0 \mathrm{mmol})$ in methylene chloride as solvent] was prepared at $0^{\circ} \mathrm{C}$, in the dark, under O_{2}, as described for the ionic reaction of methyl hypochlorite above. IRD (0.9 mmol) was added as a solid. The reaction mixture was allowed to come to room temperature and then stirred under an oxygen atmosphere for 20 h . Removal of the solvent on a rotary evaporator at room temperature followed by NMR analysis showed the products $(70 \%) 7,{ }^{23} 8,9,10$, and 12 to be formed in a ratio of 6.3 : 1.3:1.0:1.1:4.6, respectively
B. Radical Conditions. The reactions were carried out under the radical conditions described for the reaction of methyl hypochlorite to 4 above. To IBD (3.0 mmol) in methylene chloride at $25^{\circ} \mathrm{C}$ (mole fractions given in Table I) was added 0.5 ml of a 6.0 M solution of 4 in methylene chloride. The reaction mixture was stirred for ca. 3 min and the solvent was removed as described above. Analysis by NMR gave yields of ca. 75\%. The product ratios ${ }^{23}$ for each dilution are given in Table I.

Reaction of Trichloroamine with 4 . To $265 \mathrm{mg}(3.2 \mathrm{mmol})$ of 4 in methylene chloride or carbon tetrachloride (mole fraction 4 given in Table I) at $-15^{\circ} \mathrm{C}$ was added dropwise 2.7 ml of a 0.34 M solution of NCl_{3} in methylene chloride or carbon tetrachloride. The reaction was carried out under the ionic and radical contions described above. The solvent was removed at room temperature on a rotary evaporator after all the NCl_{3} was added. Analysis by NMR on the crude mixture showed yields of ca. 95%. The product ratios ${ }^{23}$ are given in Table I.

Acknowledgment. Partial support for this work was provided by the Atlantic Richfield Oil Co., Los Angeles, Calif., and Sigma Xi

Registry No.-1, 693-86-7; 2a, 58673-27-1; 2b, 58673-28-2; 3a, 58673-29-3; 3b, 58673-30-6; 4, 4663-22-3; 5, 58673-31-7; (Z)-6, 58673-32-8; (E)-6; 58673-33-9; 7, 58673-34-0; 8, 5296-54-8; 9, 4216:-98-8; 10, 58673-35-1; 11, 7712-60-9: (Z)-12, 58673-36-2; (E)-12, 58673-37-3; 13, 5867.3-38-4; 14, 58673-39-5; (Z)-15, 58673-40-8; (E)-15, 58673-41-9; bromine, 7726-95-6; chlorine. 7782-50-5; methyl hypochlorite, 593-78-2; hydrochloric acid, 7647-01-0); iodobenzene dichloride, 932-72-9; trichloroamine, 10025-85-1.

References and Notes

(1) (a) D. G. Garratt, A. Modro, K. Oyama. G. H. Schmidt, T. T. Tidwell, and K Yates. J. Am. Chem. Soc., 96, 5295 (1974); (b) G. A. Olah. P. W. Westerman. and J. Nishimura, ibid.. 96, 3548 (1974): R. Riegel. G. B. Hagar. and B. L. Zenitz, ibid., 68, 2562 (1946): (c) P. K. Freeman, F. A. Raymond, and M. F. Grostic. J. Crg. Chem., 32, 24 (1967): P. K. Freeman. M. F. Grostic. and F. A. Raymons, ibid. 30, 771 (1965): (d) D. J. Pasto and R. J. Rogido. Tetrahedron Lett., 713 (1973); R. T. Gray and H. E. Smith, Tetrahedron, 25, 3161 (1969): P. R. Brook and J. M. Harrison, J. Chem. Soc., Perkin Trans. i. 778 (1974): T. J. Barton and R. J. Rogido. J. Chem Soc. Chem Commun. 878 (1972): S. Sarel, A. Felzenstein and J. Yovell, ibid., 859 (1973): F. Effenberger and O. Gerlach, Chem. Ber., 107, 278 (1974): F. Effenberger and W. Podszum, Angew. Chem., Int. Ed. Engl., 8, 976 (1969); S. Sarel, J. Yovell, and M. Sarel-Imber, ibid., 7, 577 (1968), and references cited therein: (e) Ya. M. Slobodin and I. Z. Egenburg. Zh. Org. Khim.. 5, 1315 (1969): Chem. Abstr., 71, 90898 (1969); Ya. M. Slobodin and I. N. Shokhor. Zh. Obshch. Khim, 22, 195 (1952); Chem. Abstr. 46, 10112c (1953); (f) for a discussion of the bonding in the cyclopropylcarbinyl cation intermediate see ref 3b ard H. C. Brown and E. N. Peters. J. Am Chem. Soc. 97. 1927 (1975): G. A. Olah and G. Liang. ibid., 97, 1920 (1975), and references cited therein
(2) (a) E. S. Huyeser and L. R. Munson, J. Org. Chem.. 30, 1436 (1965): (b) P. K. Freeman, M. F. Grostic, and F. A. Raymond. ibid., 36, 905 (1971): S. J. Cristol and R. V. Earbour. J. Am. Chem. Soc., 90, 2832 (1968), and ref-e-ences cited therein.
(3) ($=$) For example. Richey and Richey [J. Am. Chem. Soc. 88, 4971 (1966)] found that acid-catalyzed exchange of the hydroxyl group of methylcycopropylmethanol is about 10^{3} times faster than formation of rearranged products: and dehydration of 2-cyclopropyl-2-propanol gives 2-cyclopropylpropene ${ }^{17}$ in good yield. In fact, most of the solvolysis data for hormoallyl derivatives can be explained on the basis of a cyclopropylcarbinyl cation intermediate. (b) Fcr a discussion see "Carbodium lons". Vol. III, G. A. Olah and P. V. R. Schleyer. Ed., Wiley-Interscience. New York. N. Y.. 1974. Cnapters 23. 24. and 25. (c) M. Hanack. Suom. Kemistil. 39, 93 (1966): M. Hanack and H. J. Schneider. Angew Chem., Int. Ed. Engl. 6, 666 (1967) S.Jivolysis of 4-methyl-3-penten-1-ol tosylate gives 2 -cyclopropylpropene: J. B Rogan. J. Org. Chem., 27, 3910 (1962). For a review in the steroid system. see N. L. Wendler in "Molecular Reartangements". Part 2. P. de Mayo. Ed.. Interscience. New York, N. Y., 1964. Chapter 16. The homoallyl cation collapses without activation in the gas phase to the bisected cyctopropylcarbinyl cation; see W. H. Hehre and P. C. Hiberty. J. Am. Chem $S x$., 94,5917 ($1 \subseteq 72$)
(4) W. J. Hehre, J. Am. Chem. Soc., 95, 2643 (1973)
(5) M. L. Poutsma. J. Org. Chem., 31, 4167 (1966): V. L. Heasley and S. K. Taylor, ibid., 34, 2779 (1969); V. L. Heasley. G. E. Heasley. S. K. Taylor. and C. L. Frye, ibic.. 35, 2967 (1970).
(6) (a) D. Tanner and G. Gidiey, J. Org. Chem., 33, 38 (1968), and references ci:ed therein; (b) V. L. Heasley, G. E. Heasley, and K. D. Rold, ibid., in press.
(7) (a) J. M. Geneste and A. Kergomard, Bull. Soc. Chim. Fr., 479 (1963); C Walling and R. T. Clark, J. Org. Chem., 39, 1962 (1974); (b) M. Anbar and D Ginsburg. Chem. Rev., 54, 925 (1954).
(8) C. Walling. L. Heaton. and D. Tanner, J. Am. Chem. Soc., 87, 1715 (1965) Recent experimens at this institution show that ca. 30% of the products are derived from an ionic pathway when styrene is treated with methyl hypochlorite in nitrobenzene as solvent: V. Heasley, G Heasley, and R. Skidgel. unpublished results. An apparent ionic reaction has been reported when polyfluoroalk $\boldsymbol{f} \mid$ hypochlorites are treated with olefins: L. R. Anderson et al.. J. Org. Chern., 35, 3730 (1970).
(9) (a) K. W. Field and ${ }^{\circ}$ Kovacic, J. Org. Chem., 36, 3566 (1971), and refererces cited therein; (b) V L. Heasley and G. E Heasley, unpublished results.
(10) Rearrangement of :he 1.2 products to the 1.4 products was substantial in the VPC even when on column injection, or when a glass-lined injector oven was used.
(11) Slobodin" treated the reaction mixture 2a and 3a with base and obtained cyclopropylacetylene in 94% yield. Because of the high yield. Slobodin assumed that both 2a and 3a reacted to give cyclopropylacetylene. We reseated this reaction and found that cyclopropylacetylene was formed in high yield from 2a, but no volatile products were found when 3a was treated with base under the same conditions.
(12) Stuctural assignments of the products are based on their spectral properies and rearrangement of the 1.2 products to the 1.5 products with zinc salts. For rearrangement of cyclopropylcarbinyl alcohols and 1.2 -dihalides with zinc salts. see M Julia. Y. Noel, and R. Guegan. Bull. Soc Chim. Fr. 3742 (1968): M Julia and Y. Noel, ibid., 3749. 3756 (1968): A. N. Pudovik Zh. Obshch. Khim. 19, 1179 (1949): Chem Abstr. 44, 1005 (1950).
(13) A arge amount of substitution products is observed in the chlorination but not the bromination of isoprene: G. D. Jones. N. B. Telertiller. C. F. Raley. and J. R. Runyon. J. Org. Chem., 33, 2946 (1968): V. L. Heasley. G. E.

Heasley, R. A. Loghry, and M. R. McConnell, ibid., 37, 2228 (1972).
(14) Heasley ${ }^{\text {Gb }}$ found that 2,6 -dimethyl-4-fert-butylphenol was a better inhibitor than oxygen for the reaction of IBD with cyclopentadiene. We were unable to use organic inhibitors since they interfered with the product analysis by NMR, and the dichloride 7 could not be analyzed by VPC. ${ }^{10}$
(15) W. A. Noyes, J. Am. Chem. Soc., 42, 2173 (1920).
(16) C. G. Overberger and A. E. Borchert, J. Am. Chem. Soc., 82, 4896 (1960)
(17) R. V. Volkenburg, K. W. Greenlee, J. M. Derfer, and C. E. Boord, J. Am Chem. Soc., 71, 172 (1949).
(18) Distillation was discontinued after about one-third of the product distilled because of extensive decomposition in the distilling flask.
(19) The configurations of the E and Z isomers were assigned on the basis of their NMR spectra. The chemical shift of a methyl group in a trisubstituted
olefin generally resonate about 0.1 ppm downfield when the methyl group is in a cisoid configurat on relative to the vinyl hydrogen. The allylic coupling of the methyl group with the vinyl hydrogen is generally larger in the cisoid configuration by approximately $0.3-0.6 \mathrm{~Hz}$. See L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry' , 2d ed, Pergamon Press, Elmsford, N.Y., 1969, pp 225 and 316.
(20) Rearrangement of $2 b$ to $3 b$ during the analysis by VPC was less than 1% when the sample was injected directly onto the column.
(21) T. A. Favorskaya, T. V. Gulyaeva, and E. S. Golovacheva, Zh. Obshch. Khim., 23, 2014 (1953).
(22) S. Julia, M. Julia, and L. Brasseur, Bull. Soc. Chim. Fr., 1634 (1962).
(23) Control experiments st owed that 7 was stable under the reaction conditions.

Kinetics of the Hydrolysis of Fluoromethyl Methyl Ether in Neutral to Alkaline Solution ${ }^{1 a}$

Fritz C. Kokesh*lb
The Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Guelph. Guelph, Ontario, Canada N1G 2W1
Jack Hine*
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Received Septembe: 11, 1975

The kinetics of the hydrolysis of fluoromethyl methyl ether have been determined in aqueous solution at $25^{\circ} \mathrm{C}$ in the pH range $7-13$ by following the rate of release of hydrogen ions. The reaction is simple first order with $k=$ $1.6-2.1 \times 10^{-3} \mathrm{~s}^{-1}$ and shows no mass law e.fect in the presence of 0.1 M NaF . The mechanisms of hydrolysis consistent with these facts are discussed and compared to those for chloromethyl methyl ether, bis(chloromethyl) ether, and glycosyl halides.

As a part of a study of the stepwise mechanisms of carbonyl group addition-elimination reactions, we initiated a study of the kinetics of the hydrolysis of fluoromethyl methyl ether (FME). In particular, we had hoped to establish the relative reactivities of various nucleophiles toward the methoxymethyl cation as a model for nucleophilicity toward a protonated carbonyl group. In the limited study reported here this goal has not been realized, and further work has been postponed at least temporarily because of the demonstrated carcinogenic nature of the related chloromethyl methyl ether, which is used as the starting material for the preparation of the title compound, and the possible toxicity of FME itself. ${ }^{2}$ However, since there are no reports (known to us) of quantitative studies of the hydrolysis of simple α-fluoroalkyl ethers, these results are of interest for comparison with the hydrolysis of chloromethyl methyl ether, ${ }^{3}$ and with the chemical ${ }^{4}$ and enzymatic ${ }^{5}$ hydrolyses of glycosyl fluorides.

Experimental Section

Preparation and Characterization of Fluoromethyl Methyl Ether. The method of preparation is that of Via, ${ }^{6}$ and is similar except for solvent to that described by Tullock and Coffman. ${ }^{7}$ A total of 70 $\mathrm{g}(0.9 \mathrm{~mol})$ of chloromethyl methyl ether (Eastman) was added over a period of 12 h to a refluxing suspension of $82 \mathrm{~g}(2 \mathrm{~mol})$ of sodium fluoride (Baker analytical reagent, powder form) in 500 ml of purified ${ }^{8}$ acetonitrile. A small distillation head was mounted atop the reflux condenser, and the low-boiling FME collected with a dry ice cooled Dewar condenser, with the collection flask also cooled by dry ice. About 25 ml of a water-white product was collected in this way, then transferred to and sealed in Pyrex ampules, and stored at -20 or -70 ${ }^{\circ} \mathrm{C}$. The above operations were carried out with a nitrogen atmosphere.

The product thus cbtained is very temperature sensitive. If the ether was allowed to stand (in a sealed vessel) at $0^{\circ} \mathrm{C}$ for a short time, the color of the product changed to yellow and then deep red. Even at $-20^{\circ} \mathrm{C}$ the material in the ampules took on a yellow color (unless a small amount of triisopropylamine had been added). Furthermore,
attempts to use a "cow" type distilling receiver resulted in decomposition of the product and deposition in the receiver of a white solid (uncharacterized, but probably paraformaldehyde).
The FME used in the analyses and in the kinetics experiments described below was redistilled in a trap-to-trap manner at atmospheric pressure under nitrogen, with the receiver cooled with liquid nitrogen and the pot in ice. In some cases a small amount of triisopropylamine was added to the pot since this seemed to aid the distilation. The redistilled ether was stored at $-70^{\circ} \mathrm{C}$. For the kinetic studies described belcw, a solution of FME in anhydrous methanol was prepared by adding 5 ml of dry ice chilled methanol to about 1.5 ml of redistilled FME and was stored at $-78^{\circ} \mathrm{C}$ in a $14 / 20$-stoppered heavy-walled test tube.

The purity of the redistilled FME was checked by GLC and ${ }^{1} \mathrm{H}$ NMR analyses. With en Aerograph Hy-Fy gas chromatograph, which has a hydrogen-flame detector, we found that we could obtain excellent resolution of reactants and products using a $5 \mathrm{ft} \times 0.125$ in. colunn of 15% XF-1150 on 60-80 Chromosorb W at room temperature. Samples were introduced by using a dry ice cooled $10-\mu$ l Hamilton syringe to quickly take an aliquot of ether from a dry ice-acetone cooled flask and inject it into the chromatograph. The redistilled FME yielded four well-resolved peaks that in order of increasing retention time had relative areas of $15: 3: 1: \sim 0.1$. The first peak is assumed to $b \in d u e$ to FME. The second and third peaks have retention times identical with those of dimethoxymethane and acetone, respectively. Tre fourth peak was not assigned, but it was demonstrated that this peak was not due tc chloromethyl methyl ether, acetonitrile, or methanol. GLC analysis of the chloromethyl methyl ether starting material showed that it contained a small amount of a contaminant w.th the same retention time as dimethoxymethane. The acetone in the product probably arose from the opening of the flask containing the fluoro ether while it was suspended in a dry ice-acetone bath, since it did not come from the cooling of the syringe.

The ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of the redistilled FME plus $\mathrm{Ne}_{4} \mathrm{Si}$ in a tightly stoppered heavy-walled NMR tube was obtained at about $-50^{\circ} \mathrm{C}$ using a Varian A-60 NMR spectrometer. The spectrum is consistent with the structure of FME, and indicates very small amounts of dimethoxymethane and acetone contaminants. Observed peaks were assigned as follows: A singlet at $\delta 2.17$ was increased in size b;y the addition of acetone and is therefore assigned to hydrogens of
acetone. Singlets at $\delta 3.43$ and 4.73. relative areas 3.08 , were assigned to the methyl and methylene hydrogens of dimethoxymethane by comparison with the peak positions in the spectrum of an authentic sample of this compound. A singlet at $\delta 3.65$ and a doublet $(J=60 \mathrm{~Hz})$ centered at $\delta 5.45$, relative areas 1.48 , were assigned to the methyl and methylene hydrogens of FME. The observed coupling constant is consistent with a geminal ${ }^{19} \mathrm{~F}_{-}{ }^{1} \mathrm{H}$ coupling, e.g., in β-fluoroethanol for geminal ${ }^{19} \mathrm{~F}_{-}{ }^{1} \mathrm{H}$ coupling $J=46.7 \mathrm{~Hz}{ }^{9}$ On the basis of these assignments, the composition of the redistilled ether is 201:13.5:1 FME:dimethoxymethane:acetone. The FME is thus about 95% pure, and contains no detected impurity that would be expected to interfere with the kinetic studies.
Other Reagents. Sodium perchlorate was Smith "anhydrous", which was ground into small lumps and dried at $130^{\circ} \mathrm{C}$ for $4 \mathrm{~h}^{10}$ before weighings. Although 0.5 M solutions of sodium fluoride and 1.0 M solutions of sodium perchlorate were slightly basic; titration with standard HCl indicated an insignificant (for our purposes) basic contaminant. A 0.481 M formaldehyde solution was prepared by dissolving (by heating to $80^{\circ} \mathrm{C}$ under nitrogen) 73 g (0.083 mol) of trioxane in 100 ml of $0.001 \mathrm{M} \mathrm{HClO}_{4}$, and diluting this solution to 500 ml . Basified aliquots of the formaldehyde were treated with iodine, and the iodine consumed in formaldehyde oxidation determined by comparison of the thiosulfate titre with that for an iodine blank. ${ }^{11}$ Baker analytical reagent grade iodine (" $100.0 \% \mathrm{I}_{2}$ ") was used as a primary standard to standardize sodium thiosulfate solution prepared from Fisher Certified A.C.S. grade $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

Procedure for Kinetic Runs. A " $25-\mathrm{ml}$ " three-neck flask with $14 / 20 \boldsymbol{j}$ joints was used as the reaction flask. The center neck held one of the special stoppers described below, and the outer necks held glass and reference electrodes, which were positioned so that their tips were about 0.75 in . from the bottom of the flask. Even with the electrodes and a $1-\mathrm{in}$. Teflon-coated stirring bar in place, the capacity of the flask was about 35 ml . The flask was immersed to the necks in a shallow constant-temperature bath maintained at $25 \pm 0.2^{\circ} \mathrm{C}$ that sat atop a magnetic stirrer and was also stirred with a $1-\mathrm{in}$. magnet. With this apparatus very rapid stirring speeds were possible.

The pH of the reaction solution was monitored using a Beckman Research Model pH meter, and Beckman No. 39004 Type E-2 glass and No. 39071 fiber-junction calomel reference electrodes. Using these same electrodes but a Beckman Zeromatic pH meter, a change in pH from 13.00 to 11.7 caused by rapid addition of a small aliquot of ~ 10 M HCl to a rapidly stirred solution of 0.1 M NaOH is limited by the response time of the meter ($\sim 5 \mathrm{~s}$). At pH 's >7 we observed no interference by fluoride ion. During a kinetic run the pH of the unbuffered reaction solution was continuously monitored by using a LeedsNorthrup Speedomax H Model S strip-chart recorder with a chart speed of $0.5 \mathrm{in} . / \mathrm{min}$. The chart could be read with a precision of about 0.002 pH units, and readings obtained from the recorder agreed with those obtained directly from the meter with a maximum deviation of 0.05 pH units.
In order to allow convenient transfer by syringe of aliquots of the methanolic FME solution, we constructed gas-cooled septum stoppers. A $14 / 35 \$$ inner joint, 10 cm long, was cut to the dimensions of a $14 / 20$ joint using a glass saw, so that the bottom of the joint was left flat. A 0.125 in. thick Teflon disk with a $1.5-\mathrm{mm}$ center hole was fastened with epoxy cement inside the joint and flush with the end, and then a silicone-rubber GLC septum fastened to the bottom of the joint with "Silastic Clear Sealer" (a Dow-Corning product). A small side arm through which cold nitrogen could be admitted was added about 0.5 in . above the top of the joint. One of these stoppers was used in the reaction flask, and another in the stock solution flask. Nitrogen gas cooled in a 0.25 in . i.d. $\times 10 \mathrm{ft}$ copper coil immersed in liquid nitrogen was passed through the stoppers in order to cool a $1.0-\mathrm{ml}$ or a $50-\mu \mathrm{l}$ syringe during transfers of the stock solution. The temperature within the stopper could be brought as low as $-100^{\circ} \mathrm{C}$.
To make a run, the pH meter and electrodes were first checked with a series of standard buffers. Then the reaction flask was charged with 30.0 ml of a solution of sodium hydroxide and sodium fluoride or perchlorate. and the solution stirred to allow it to come to temperature equilibrium. Cold nitrogen gas was started flowing through the stoppers in the reaction flask and fluoro ether stock solution flask. The pH recorder was started and standardized at $\mathrm{pH}=\log \left[\mathrm{OH}^{-}\right]^{0}$ - 14.00, and after a steady baseline was reached, an aliquot of the methanolic fluoro ether was added and the nitrogen turned off. The pH was monitored until it no longer continued to change.

For the hydrolyses in 0.1 M sodium hydroxide, $0.80-85 \mathrm{ml}$ of the methanolic FME solution was added to 30.0 ml of a solution 0.10 M in sodium hydroxide and 0.10 M in either sodium fluoride or sodium perchlorate. Addition of the ether solution to the sodium hydroxide caused an immediate drop in pH of $0.04-0.06$ units, which is equiva-
lent to $9-13 \%$ of the total acid released and which is probably a result of partial solvolysis of the FME in the stock solution. Useful data were obtained after allowing 1 min for the pH vs. time slope to stabilize. For the run in $10^{-3} \mathrm{M}$ sodium hydroxide. the addition of $17 \mu \mathrm{l}$ of the FME solution to the hydrolysis solution caused an immediate pH drop of $\sim J .4$ units, which amounts to about 50% of the total acid released. Useful data were obtained after allowing 1 min for the pH vs. time slope to stabilize.

Results

Since the overall stoichiometry of the hydrolysis of FME is

$$
\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{2}(\mathrm{OH})_{2}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{F}^{-}
$$

the =ate of the hydrolysis can be obtained from the change in pH of the reaction solution with time. Under the basic conditions used up to 30% of the formaldehyde will be present as the hemiacetal with methanol, and therefore at basic pH 's acid dissociation of formaldehyde hydrate and hemiacetal must be allowed for, ard at lower pH's the protonation of fluoride ion taken into account. Depending on the pH of the hydrolysis medium two sligatly different methods were used, both of which are based on the preparation of standard curves of pH vs. extent of reaction.

For hydrolyses in solutions that were initially 0.1 M in sodium hydroxide, values of the apparent pH , i.e. pH uncorrected for sodium ion response, were converted into degree of reaction by using a standard curve that was obtained by measuring the apparent pH's of a series of "synthetic reaction solutions". That is, we prepared solutions of sodium hydroxide, sodium fluoride, formaldehyde, and methanol such that

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]_{\text {stoich }}=0.1-\alpha} \\
{\left[\mathrm{F}^{-}\right]=0.1+\alpha} \\
{\left[\mathrm{CH}_{2}(\mathrm{OH})_{2}\right]_{\text {stoich }}=\alpha} \\
{\left[\mathrm{CH}_{3} \mathrm{OH}\right]_{\text {stoich }}=0.5+\alpha}
\end{gathered}
$$

where the subscript "stoich" indicates that the concentrations are stoichiometric or concentrations by mixing, and α is a parameter that represents the amount of FME hydrolysis, and equals $\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{0}-\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{t}$. The apparent pH of each of these synthetic reaction solutions was measured, and plotted vs. $\log \left[\mathrm{O}_{-}^{-}\right]_{\text {stoich. }}$. The curvature of the plot at the higher pH 's is that expected as a result of sodium ion response of the glass electrode and dissociation of formaldehyde hydrate and methoxymethylcarbinol. Using an expanded-scale version of this plot for the hydrolysis of FME in 0.1 M sodium hydroxide, the apparent pH at a given time was converted into a value of $\left[\mathrm{OH}^{-}\right]_{\text {stoich }}$, and the plots of $\ln \left(\left[\mathrm{OH}^{-}\right]_{\text {stoich }}-\right.$ $\left.\left[\mathrm{OH}^{-}\right]^{\infty}{ }_{\text {stoich }}\right)$ vs. time prepared. Such plots for three experiments are shown in Figures 1 and 2. The first-order rate constants for FME hydrolysis obtained from the slopes of these plots are shown in Table I.

A similar method was used for the single run where the initial $\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M}$. A $30-\mathrm{ml}$ aliquot of the sodium hy-droxide-sodium fluoride solution was titrated potentiometrically with 0.0160 M hydrochloric acid using a buret graduated to 0.02 ml , and an expanded scale titration curve plotted. The experimental apparent pH values at various times obtained in the kinetic experiment were converted into ml_{t} values, and $\ln \left(\mathrm{ml}_{\infty}-\mathrm{ml}_{t}\right)$ plotted vs. time.

Measurements of the rate of FME hydrolysis in more acidic solutions does not seem possible using the above method with the glass electrode since in these solutions the electrode response becomes erratic, probably because of the presence of $\mathrm{HF}_{2}{ }^{-}$ion, which a-tacks the electrode.

We have so far discussed only the overall stoichiometry of FME hydrolysis. Actually this hydrolysis is a multistep process that can be written

Figure 1. Plot of $\ln \left(\left[\mathrm{OH}^{-}\right]_{\text {stoich }}-\left[\mathrm{OH}^{-}\right]^{\infty}{ }_{\text {stoich }}\right)$ vs. time for kinetic run where $\left[\mathrm{OH}^{-}\right]^{0}{ }_{\text {stoich }}=0.1 \mathrm{M}$ and $\left[\mathrm{F}^{-}\right]^{0}=0.1 \mathrm{M}$.

Figure 2. Plot of $\ln \left(\left[\mathrm{OH}^{-}\right]^{t}{ }_{\text {stoich }}-\left[\mathrm{OH}^{-}\right]^{\infty}{ }_{\text {stoich }}\right)$ vs. time for two kinetic runs where $\left[\mathrm{OH}^{-}\right]_{\text {stoich }}^{0}=0.1 \mathrm{M},\left[\mathrm{F}^{-}\right]^{0}=0$, and $\left[\mathrm{ClO}_{4}^{-}\right]=0.1$ M . The upper line has been displaced upward by one \ln unit.

$$
\begin{gather*}
\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} \underset{\stackrel{\rho_{1}}{=}}{\stackrel{k_{1}}{2}} \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{F}^{-} \tag{1}\\
\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH} \underset{j j_{2}}{\stackrel{k_{2}}{\rightleftharpoons}} \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{OH} \tag{2}\\
\mathrm{CH}_{2} \mathrm{O}\left(+\mathrm{H}_{2} \mathrm{O}\right) \stackrel{k_{3}}{\stackrel{3}{=}} \mathrm{CH}_{2}(\mathrm{OH})_{2} \tag{3}
\end{gather*}
$$

The use of standard curves to convert apparent pH to extent reaction involves the implicit assumption that reactions 2 and 3 are at equilibrium. We have examined this assumption in detail using computer modeling. The rate constants for reactions 2 and 3 are available in the literature. From Bell and Evans, ${ }^{13}$ at $25^{\circ} \mathrm{C} \beta_{3}=1.6 \times 10^{3}\left[\mathrm{OH}^{-}\right]+5.1 \times 10^{-3}$, and thus since $K_{\text {hyd }}=2 \times 1\left(1^{3}=\left[\mathrm{CH}_{2}(\mathrm{OH})_{2}\right] /\left[\mathrm{CH}_{2} \mathrm{O}\right],{ }^{14} k_{3}=3.2 \times\right.$ $10^{6}\left[\mathrm{OH}^{-}\right]+10\left(\mathrm{~s}^{-1}\right)$. From Le Hénaff, ${ }^{15}$ at $20^{\circ} \mathrm{C} k_{2}=1.51 \times$ $10^{3}\left[\mathrm{OH}^{-}\right]+1.42 \times 10^{-3}$ and $K_{\text {hemi }}=32=\left(\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}\right]\right.$. $\left.\left[\mathrm{H}_{2} \mathrm{O}\right]\right) /\left(\left[\mathrm{CH}_{2}(\mathrm{OH})_{2}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]\right)$; thus $\beta_{2}=\left(1.74 \times 10^{6}\left[\mathrm{OH}^{-}\right]\right.$ $+1.64)\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left(\mathrm{s}^{-1}\right)$. We will use these same values for 25 ${ }^{\circ} \mathrm{C}$, and will treat $\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ as a constant $=0.5 \mathrm{M}$, which is the concentration obtaired by mixing 0.8 ml of methanol and 30

Figure 3. Plot of $\ln \left(\mathrm{ml}_{\infty}-\mathrm{ml}_{\ell}\right)$ vs. time for kinetic run where $\left[\mathrm{OH}^{-}\right]^{0}$ stoich $=10^{-3} \mathrm{M}$ and $\left[\mathrm{F}^{-}\right]^{0}=0.199 \mathrm{M}$.

Table I. First-Order Rate Constants (s^{-1}) for Hydrolysis of Fluoromethyl Methyl Ether at $25^{\circ} \mathrm{C}$

$[\mathrm{F}]^{0}, \mathrm{M}$	$\left[\mathrm{OH}^{-}\right]_{\text {sto ch }}^{0}, \mathrm{M}$	$\left[\mathrm{OH}^{-}\right]_{\text {stoich }}^{\infty}, \mathrm{M}$	$k, \mathrm{~s}^{-1}$
0.100	$0.10(1$	7.08×10^{-3}	1.92×10^{-3}
0^{a}	0.100	1.57×10^{-2}	1.56×10^{-3}
0^{a}	0.100	1.70×10^{-2}	1.61×10^{-3}
0.199	0.001	1.8×10^{-7}	2.06×10^{-3}
$a\left[\mathrm{NaClO}_{4}\right]=$	0.100 M.		

ml of reaction solution. Using the methods of Rodiguin and Rodiguina ${ }^{16}$ we obtained expressions for the concentrations of $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{O}$, and $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ as a function of time, k_{1} to k_{3}, and β_{1} to β_{3}. Using $k_{1}=1.67 \times 10^{-3}$ s^{-1} and $\beta_{1}=0,\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{0}=0.1 \mathrm{M}$, and $\left[\mathrm{OH}^{-}\right]=0.1-$ $\left(\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{0}-\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{t}\right)$ we found that even when $\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}\right]^{t}$ dropped to $10^{-7} \mathrm{M}$ the ratios $\left[\mathrm{CH}_{2}(\mathrm{OH})_{2}\right] /$ $\left[\mathrm{CH}_{2} \mathrm{O}\right]$ and $\left[\mathrm{CH}_{2}(\mathrm{OH})_{2}\right] /\left[\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}\right]$ were equal to the equilibrium ratios. Thus, for the hydrolysis of FME under the conditions described here step 1 is definitely rate limiting. It is interesting to note that a similar modeling of the hydrolysis of chloromethyl methyl ether using $k_{1}=1.0 \times 10^{3}\left(\mathrm{~s}^{-1}\right)$ and $\left[\mathrm{OH}^{-}\right]=$constant $=1.1 \mathrm{M}$ shows that for this compound steps 2 and 3 would not be at equilibrium.

Discussion

We have found that in $0.1-2 \times 10^{-7} \mathrm{M}$ sodium hydroxide, the hydrolysis of FME is kinetically first order in fluoro ether on.y. These results can be accommodated by an SN1 mechanism of hydrolysis, eq 4

$$
\begin{gather*}
\stackrel{\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F} \xrightarrow{\text { r.d. }} \mathrm{CH}_{3} \mathrm{OCH}_{2}^{+}+\mathrm{F}^{-}}{\mathrm{CH}_{3} \mathrm{OCH}_{2}^{+}+\left(\mathrm{H}_{2} \mathrm{O} \text { or } \mathrm{OH}^{-}\right) \rightarrow\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}\right.} \\
\left.=\mathrm{CH}_{2}(\mathrm{OH})_{2}+\mathrm{CH}_{3} \mathrm{OH}\right)+\mathrm{H}^{+}+\mathrm{F}^{-}
\end{gather*}
$$

wh.ere an intermediate resonance-stabilized methoxymethyl cation is formed and then captured by water or hydroxide ion, but not by fluoride ion. Such a mechanism would be analogous to that for the acid-catalyzed hydrolysis of formals and acetals. ${ }^{17}$ Our results are also consistent with an SN 2 mechanism, eq 5

$$
\begin{align*}
\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{~F}+\mathrm{H}_{2} \mathrm{O} & \xrightarrow{\text { r.d. }} \\
& \left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{OH}\right. \tag{5}\\
& \mathrm{CH}_{2}\left(\mathrm{OH}_{2}+\mathrm{CH}_{3} \mathrm{OH}\right)+\mathrm{H}^{+}+\mathrm{F}^{-}
\end{align*}
$$

in which water but not hydroxide ion directly displaces fluoride ion from the fluoro ether.

As noted in the introduction. if the mechanism were SN1 we had hoped to see a fluoride ion mass-law effect ${ }^{18}$ that would allow relative nucleophilicities toward the methoxymethyl cation to be determined. This hope was based on the fact that the methoxymethyl cation is relatively stable and therefore might be selective in reacting with nucleophiles, and on the special stability of a geminal oxygen-fluorine grouping ${ }^{19}$ that would result from fluoride ion return to re-form FME. However, attack on the cation by water or hydroxide ion has a similar driving force. and dominance by the latter nucleophiles may also be aided by the strong solvation expected for a small ion like fluoride. In acetone-water solvents, fluoride also fails to compete with water for triphenylcarbonium ion. ${ }^{20}$ However, better nucleophiles like hydroxylamine and semicarbazide have been used to capture the dimethoxybenzyl cation [$\mathrm{PhC}{ }^{+}\left(\mathrm{OCH}_{3}\right)_{2}$] formed by acid-catalyzed hydrolysis of trimethyl orthobenzoate. ${ }^{21}$ The lower rate of hydrolysis of FME in the presence of sodium perchlorate is probably a specific salt effect since it seems unlikely that perchlorate ion could compete with water for the capture of methoxymethyl cation. ${ }^{22}$

Both SN1 and SN2 mechanisms of α-halo ether solvolysis have been demonstrated. Jones and Thornton ${ }^{3}$ have studied the solvolysis of chloromethyl methyl ether in a variety of solvents, including aqueous ethanol, acetone, and dioxane, and have concluded on the basis of the effect of solvent polarity (as measured by the Winstein-Grunwald m value) on rate, and substituent and solvent deuterium isotope effects, that a "SN1-like" mechanism of solvolysis operates. Ballinger et al. ${ }^{23}$ had earlier arrived at a similar conclusion for solvolyses in ethanol and ethanol-ether mixtures on the basis that although added ethoxide ion caused a rate acceleration (much in excess of that caused by chloride or perchlorate ion) due to a parallel SN2 reaction, the magnitude of the acceleration was not so great as would be expected if the uncatalyzed solvolysis were SN2-like. Salomaa has compared the effect of structure on the hydrolysis of dialkoxymethanes and alkoxymethyl esters with that for the solvolyses in ethanol or ethanol-dioxane of alkoxymethyl chlorides and concluded that all three occur via alkoxymethyl cation intermediates. ${ }^{24}$ Extrapolation of the results of Jones and Thornton ${ }^{3}$ for solvolysis of chloromethyl methyl ether in aqueous dioxane to pure water yields $k=6 \times$ $10^{3} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$, which is at least 3.5×10^{6} times larger than the rate constant for unimolecular dissociation of FME. This leaving group effect can be compared to $k_{\mathrm{RCl}} / k_{\mathrm{RF}}=1 \times 10^{6}$ for tritylhalide solvolysis in 85% acetone at $25^{\circ} \mathrm{C}$ and $k_{\mathrm{RC}} / k_{\mathrm{RF}}$ $=1 \times 10^{5}$ for tert-butyl halide solvolysis in 80% ethanol at 25 ${ }^{\circ} \mathrm{C} .{ }^{25}$

Tou et al. ${ }^{26}$ have studied the hydrolysis of bis(chloromethyl) ether, which because of the second chlorine hydrolyzes sufficiently slowly to be studied in pure water. The kinetics of the hydrolysis were studied in 1 and $2 \mathrm{M} \mathrm{NaOH}, 1$ and 3 M HCl , and in pure water; in each case the hydrolysis was first order in ether only, and the rate constant for all conditions reasonably constant at about $2 \times 10^{-2} \mathrm{~s}^{-1}$. However, large changes in the parameters ΔS^{\ddagger} and E^{\ddagger} accompanied the changes of reaction medium. Thus between 2 M NaOH and 3 M HCl , νS^{\ddagger} increased from -35.2 to -3.82 eu , and E^{\ddagger} increased from 8.96 to $18.6 \mathrm{kcal} / \mathrm{mol}$. Tou et al. interpreted these results to mean that the reaction mechanism changes from $\mathrm{S}_{\mathrm{N}} 1$ at high basicity to SN2 at high acidity. In the latter case they suggested that hydroxide ion displaces chloride ion from the protonated substrate. Such a mechanism seems unlikely since even if the acid dissociation constant of the protonated ether is $10^{5} \mathrm{M}$, which assumes that bis(chloromethyl) ether is as basic as dimethoxymethane can be estimated to be, ${ }^{27}$ the second-order rate constant for attack of hydroxide ion on the prownated ether must be $10^{17} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. which greatly exceeds
the diffusion-controlled limit for recombination of hydroxide ions and protons, $1.4 \times 10^{11} \mathrm{M} \mathrm{s}^{-1} .{ }^{28}$

The results fo-simple α-haloalkyl ethers can be compared to those for glyousyl halides. The hydrolyses of a variety of glycopyranosyl fluorides have been found by Barnett ${ }^{4}$ to be catalyzed by both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}. but no uncatalyzed reaction was reported. Hydrogen ion catalysis is att ributed to assisted leaving of fluoride ion in an SN1 manner to yield a carbonium ion, which is captured by water to yield free sugar. In hydroxide ior solution, however, the reaction is S 2 2 like and results from attack of hydroxide ion or the C-6 hydroxyl (if there is one) at the carbon bearing fluorine. For four gly$\cos \boldsymbol{l}$ fluorides that have the $\mathrm{C}-2$ hydroxyls cis to the fluorine, at the minimum hydroxide ion concentration of 0.2 M and 20 ${ }^{\circ} \mathrm{C}, k=7.46-37.8 \times 10^{-5} \mathrm{~s}^{-1}$, and so for these glycosyl fluorides the uncatalyzed reaction is at least five times slower than with fluoromethyl methyl ether. (Use of the hydrogen ion catalyzed data does not lead to a different estimate.) For β -D-glucopyranosyl fluoride, in which the C-2 hydroxyl is trans to the fluorine, there is a rate acceleration relative to the α anomer of a few thousand fold, which is attributed to neighboring group participation by the hydroxyl. Various glycosyl flucrides are also hydrolyzed by enzymes whose normal funstion is hydrolysis ${ }^{5}$ or phosphorolysis ${ }^{29}$ of di- or polysaccharides. By contrast to glycosyl fluorides in methanol tetra-O-methyl-(x-I)-glucopyranosyl and mannopyranosyl chlorides solvolyze by an SN1 mechanism, and added methoxide ion leads t.) only a relatively small rate increase. ${ }^{30}$

Registry No.-FME, 460-22-0.

References and Notes

(1) (a) This research was supported in part by National Science Foundation Grant GP 7629 b) Part of this work was carried out while F C.K was the holder of a U.S Public Heath Service Predoctoral Fellowship (1965-1969).
(2) B. L. Van Duuren. S. Laskin, and N. Nelson. Chem. Eng News. 55 (March 27. 1972), and references cited therein.
(3) T. C. Jones and E R. Thornton. J Am. Chem. Soc. 89, 4863 (1967)
(4) J. E. G Barnett. Cartohydr. Res. 9, 21 (1969)
(5) (a) J E G Barnett. W. T. S. Jarvis, and K A Munday. Biochem. J., 105, 669 (1967): (b) for brief review see J. E. G. Barnett. Int J Biochem., 6, 321 (1975)
(6) F A Via, personal communication, 1968
(7) C. W. Tullock and D D. Coffman. J Org. Chem., 25, 2016 (1960).
(8) By distillation fron $\mathrm{P}_{2} \mathrm{O}_{5}$ according to "Techniques in Organic Chemistry". Vol VII. 2d ed. Weissberger el al., Ed., Interscience. New York. N Y., 1955. p 435
(9) W W. Simons and M Zanger, "The Sadtler Guide to NMR Spectra". Sadtler Research Laboratories. Philadelphia, Pa., 1972. Spectrum No 108. p 116.
(10) "Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry". Supplement II, Part I. p 607
(11) JF Walker. "F Jrmaldehyde", 3d ed, Reinhold, New York, N Y. 1964. p 489
(12) D. A. Skoog and D. M. West, "Fundamentals of Analytical Chemistry", 1st ed. Holt, Rinehat and Winston, New York, N. Y., 1963. p 487
(13) R. P. Bell and P. G Evans, Proc. R. Soc. London, Ser A. 291, 297 (1966)
(14) R P. Bell, Adv Ohys Org Chem., 4, 1 (1966)
(15) P. Le Henaff. C R Acad. Sci., 262, 1667 (1966)
(16) N M. Rodiguin and E. N. Rodiguina. "Consecutive Chemical Reactions". Van Nostrand. Princeton, N J., 1964
(17) E. H. Cordes. Prog. Phys Org Chem.. 4, 1 (1967)
(18) J. Hine. "Physical Organic Chemistry", 2d ed. McGraw-Hill. New York, N.Y., 1962. p 131
(19) J Hine and F E. Rogers. J Am Chem. Soc., 90, 6701 (1968). Cf. J. Hine, "Structural Effects on Equilibria in Organic Chemistry." Interscience. New York. N.Y.. 1975, Chapter 1, and references cited therein
(20) C. G Swain. C. B Scott, and K H Lohmann. J Am Chem Soc 75. 136 (1953)
(21) J. G Fullington and E. H Cordes. J. Org Chem., 29, 970 (1964)
(22) However. glycos:l perchlorates have been isolated from reaction of glycosyl halides and silver perchlorate under anhycrous conditions: K Igarashi. J. Irisawa. and T Honma. Carbohydr Res., 39, 213 (1975)
(23) P. Ballinger. P B D de la Mare. G Kohnstam, and B M. Prestr, J Chem. Soc. 3641 (1955)
(24) P Salomaa. Suom Kemistil B. 33, 11 (1960)
(25) C. G Swain and C B Scott. J Am Chem Soc. 75, 246 (1953)
(26) J. C. Tou. L. B. Westover. and L F. Sonnabend. J Phys Chem. 78, 1096 (1974).
(27) C A Bunton anj R H De Wolfe. J Org Chem.. 30, 1371 (1965)
(28) M Eigen. Angew Chem., Int Ed Engl. 3, 1 (1964)
(29) A. M Gold and M. P Osber. Biochem Biophys Res Commun. 42, 469 (1971).
(30) A J Rhind-Futt and C. A Vernon, J. Chem Soc., 4637 (1960) Cl B Capon. Chem Rev.. 69. 407 (1969).

Insertion of Fluoro Olefins into Carbon-Hydrogen Bonds to Yield 1:1 Adducts and Dehydrofluorination of the Adducts

Borzoo Modarai
Department of Chemistry, Arya Mehr University of Technology, Tehran, Iran

Received October 28, 1975

Abstract

Tetrafluoroethylene and trifluoroethylene gave $1: 1$ adducts with isobutane under the influence of heat and in the absence of crganic or inorganic initiators. Hexafluoropropene ar.d chlorodifluororrethane gave $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{CHFCF}_{3}$. Attempts tc prepare 1:1 adducts between tetrafluoroethylene and chlorodifluoromethane resulted in cyclic dimerization of the tetrafluoroethylene. Dehydrofluorination of the adducts so obtained by means of solid potassium hydroxide affc.rded the corresponding fluoro o.efins. NMR and mess spectral data are reported.

The investigation of radical additions to fluoro olefins other than tetrafluorjethylene and hexafluoropropene has been relatively little studied. Such investigations have mainly concerned reactions in which either a carbon-carbon bond or a carbon-hydrogen bond is formed together with a bond between carbon and a heteroatom. ${ }^{1,2}$ Few reactions involving the simultaneous formation of both carbon-carbon and carbonhydrogen bonds have been reported. These almost always involve the use of radical initiation catalysts such as tert-butyl peroxide, sodium peroxide, and azobisisobutyronitrile with the formation of predominantly telomeric products. ${ }^{3-11}$ The reaction between fluoro olefins and alcohols has been investigated by Dedek and co-workers, who report the formation of $1: 1$ adducts between alcohols and chlorotrifluoroethylene under the influenee of γ irradiation (${ }^{60} \mathrm{Co}$ source). ${ }^{12-15}$

In the present work hexafluoropropene, tetrafluoroethylene, and trifluoroethylene have been found to insert into the carbon-hydrogen bonds of hydrocarbons such as chlorodifluorcmethane and isobutane under the influence of heat alone ($260-310^{\circ} \mathrm{C}$) to give good yields of $1: 1$ adducts (Scheme I). The conditions of thermal reactions are largely dependent

Scheme I

$\mathrm{RH}-\mathrm{CF}_{2} \mathrm{CFX} \xrightarrow{د}$

RCF $_{2} \mathrm{CHFX}^{2}$	$+\quad \mathrm{HCF}_{2} \mathrm{CFRX}$			
I, R	$=\mathrm{CF}_{2} \mathrm{Cl} ; \mathrm{X}=\mathrm{CF}_{3} \quad$ Ia, $\mathrm{R}=\mathrm{CF}_{2} \mathrm{Cl} ; \mathrm{X}=\mathrm{CF}_{3}$			
II, R	$=\mathrm{Me}_{3} \mathrm{C} ; \mathrm{X}=\mathrm{F} \quad$ IIIa, $\mathrm{R}=\mathrm{Me}_{3} \mathrm{C} ; \mathrm{X}=\mathrm{H}$			
III, R	$=\mathrm{Me}_{3} \mathrm{C} ; \mathrm{X}=\mathrm{H}$			
IV, R	$=\mathrm{CF}_{2} \mathrm{Cl} ; \mathrm{X}=\mathrm{F}$	\quad		
:---	:---			

upon the nature of the fluoro olefin employed. The operational temperatures and pressures are restricted because fluoro olefins can be dimerized individually to fluorinated cyclobutanes under the influence of heat. Hence tetrafluoroethylene reactions are generally confined to the temperature limits between 200 and $230^{\circ} \mathrm{C}$. Hexafluoropropene and trifluoroethylene reactions proceed favorably at temperatures in the range $260-320^{\circ} \mathrm{C}$.
Tetrafluoroethylene gave only a moderate conversion (20\%) to 1,1,2,2-tetrafluoro-3,3-dimethylbutane (II) in the reaction with isobutane (ca. 1.5 atm) at $210^{\circ} \mathrm{C}$. Lower conversions ($5-9 \%$) to the structural isomers $1,1,2$ - and 1,2,2-trifluoro3,3 -dimethylbutane (III and IIIa) were obtained from a reaction between trifluoroethylene and isobutane even under higher reaction pressures (ca. 8 atm) and at temperatures in the range $210-280^{\circ} \mathrm{C}$. This lower reactivity of trifluoroethylene can be rationaized in terms of lower $\mathrm{C}-\mathrm{C} \pi$ bond strengths of olefins containing vicinal fluorines.

The yields of III and IIIa were optimized (33\%) by carrying out the reaction at elevated pressure (ca. 80 atm) at $280^{\circ} \mathrm{C}$. In this way minor quantities of some low-boiling liquid product and an appreciable quantity of high-boiling telomers
were also obtained. The formation of telomers was partially inhibited when the mole ratio of hydrocarbon to fluoro olefin was increased from 3:1 to 6:1 (pressure ca. 134 atm), with a significant increase in the conversion to $1: 1$ adduct. Changing the mole ratios may not be the sole factor for the increased yie.d of the adducts, since the pressure is also much higher. Analysis by NMR and GLC showed the isomer ratios as 55:45 of III:IIIa.

The isomeric pair was separated from the reaction mixture by careful fractionat:on, and the two isomers were then separated by preparative GLC. The characteristic NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$) of compounds III, IIIa, and II are shown in Table I.

Chlorodifluoromethane reacted readily with hexafluoropropene at $275-280^{\circ} \mathrm{C}$ under moderate pressures (ca. 8 atm) in the absence of any initiation catalyst, giving a relatively high yield of $1: 1$ adduct involving the carbon-hydrogen bond. The straight-chain adduct, 1-chloro-1,1,2,2,3,4,4,4-octafluorobutane (I), was separated from a complex reaction mixture by careful fractionation. The isomeric product (Ia) was obtained in only 2% yield.

When chlorodifluoromethane was heated at $210^{\circ} \mathrm{C}$ in the presence of tetrafluoroethylene at pressures in the range 1-112 atm, no 1-chloro-1,1,2,2,3,3-hexafluoropropane (IV) was obtained. Cyclic dimerization of the olefin occurred at elevated pressures or temperatures.

Dehydrofluorination of Fluoro Hydrocarbons. Fluorocarbon olefins cannot be made directly from hydrocarbon olef̈ins by treatment with fluorine or a reactive high-valency metal fluoride, since these methods lead to addition of fluorine across $\mathrm{C}=\mathrm{C}$ bonds. Among the general methods reported for their preparation are dehydrofluorination reactions which are uscally achieved thermally, ${ }^{16}$ catalytically, ${ }^{17-24}$ or by aqueous alkali elimination. ${ }^{25,26}$ It seemed feasible to attempt HF elimination by the use of potassium hydroxide under anhydrcus conditions. Tr.us a good yield (93\%) of cis- and trans1 -chloroheptafluorobut-2-ene (Ib) was obtained when I was heated at $60-70^{\circ} \mathrm{C}$ in vacuo in the presence of anhydrous, powdered potassium hydroxide (Scheme II). Heating above

Scheme II

I	Kон	$\mathrm{CF}_{2} \mathrm{ClCFCFCF}_{3}+\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{CFCF}_{2}$
		Ib (cis and trans)
II		$\mathrm{Me}_{3} \mathrm{CCFFFF}_{2}$
	$\xrightarrow{1}$	IIb
III		Me, CCFCHF
IIIa		$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCFCHF} \\ \text { IIIb } \\ \mathrm{Me}_{3} \mathrm{CCHCF}_{2} \\ \text { IIIc } \end{gathered}$
		(cis and tran

Table I. NMR Parameters of the 1:1 Adducts

Compd	Chemical shifts, ${ }^{a}$ ppm								Coupling constants, $J_{\text {HFFFF }}{ }_{\text {gem }}, \mathrm{Hz}^{\text {a }}$			
	$\delta \mathrm{CF}_{2}$	$\delta \mathrm{CHF}_{2}$	$\delta \mathrm{CHF}$	$\delta \mathrm{CH}_{2} \mathrm{~F}$	$\delta \mathrm{CF}_{3}$	$\delta \mathrm{CHF}_{2}$	$\delta \mathrm{CHF}$	$\delta \mathrm{CH}_{2} \mathrm{~F}$	CHF_{2}	CHF	$\mathrm{CH}_{2} \mathrm{~F}$	CF_{2}
$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCHFC}- \\ \mathrm{HF}_{2} \end{gathered}$		50.0 (d)	130.2 (d)			0.98 (t)	2.69 (d)		50.8	46.2		
$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCF}_{2}- \\ \mathrm{CH}_{2} \mathrm{~F} \end{gathered}$	42.2			160.4 (t)				2.25 (d)			47.7	
$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCF}_{2}- \\ \mathrm{CHF}_{2} \end{gathered}$	46.4	54.2 (d)				0.81 (t)			53.4			
$\begin{gathered} \mathrm{CF}_{2} \mathrm{ClCF}_{2}- \\ \mathrm{CHFCF}_{3} \end{gathered}$	$\begin{aligned} & \text { 43.0, } \\ & 51.0 \end{aligned}$		136.2 (d)		-1.6		1.83 (d)			44.0		284.0

Table II. NMR Parameters of the Fluoro Olefins

Compd	Chemical shifts, ${ }^{\text {a }}$ ppm									Coupling constants, $J, \mathrm{~Hz}$					
	$\delta \mathrm{CF}_{\mathrm{a}}$	$\delta \mathrm{CF}_{\mathrm{b}}$	$\delta \mathrm{CF}_{\mathrm{x}}$	$\delta \mathrm{CF}_{2}$	$\delta \mathrm{CF}_{3}$	$\delta \mathrm{CH}$	$\delta \mathrm{CMe}_{3}{ }^{\text {e }}$	J_{HF}	J_{HF}	$J_{\mathrm{F}_{a} \mathrm{~F}_{\mathrm{b}}}$	$J_{\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{x}}}$	$J_{\mathrm{F}_{\mathrm{b}} \mathrm{F}_{\mathrm{z}}}$	$J_{\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{y}}}$	$J_{F_{b} \mathrm{~F}_{\mathrm{y}}}$	$J_{F_{x} F_{y}}$
$\mathrm{Me}_{3} \mathrm{CCF}_{\mathrm{b}}-\mathrm{CHF}_{\mathrm{a}} \text { (cis) }$	-94.2^{c}	-63.4^{c}				-0.47^{c}	-5.84	74.68	19.74	11.28					
$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCH} \\ \mathrm{CF}_{\mathrm{a}} \mathrm{~F}_{\mathrm{b}} \end{gathered}$	-11.0^{e}	-11.0^{e}				-0.16	-5.84								
$\begin{gathered} \mathrm{Me}_{3} \mathrm{CCFF}_{\mathrm{x}}- \\ \mathrm{CF}_{\mathrm{B}} \mathrm{~F}_{\mathrm{b}} \end{gathered}$	$-27.8{ }^{\text {c }}$	$-43.2{ }^{\text {c }}$	$-99.8{ }^{\text {c }}$				-5.14			85.0	45.0	110.0			
$\underset{y_{2} \mathrm{~F}_{2} \mathrm{CClCF}_{\mathrm{b}}}{ } \mathrm{CF}_{\mathrm{a}} \mathrm{CF}_{3}$	-61.0f	$-68.0{ }^{\text {f }}$		$19.0^{\text {g }}$	11.0^{h}					8.5	9.59	8.46	5.08	12.69	16.36
$\stackrel{{ }_{\mathrm{y}} \mathrm{~F}_{2} \mathrm{CClCF}_{\mathrm{b}}}{\mathrm{CF}_{\mathrm{a}} \mathrm{CF}_{3_{\mathrm{x}}}(\operatorname{tr}}$	-76.8^{f} s)	-83.0 f		$17.6^{\text {R }}$	7.0^{h}					137.6	20.30	7.33	11.28	29.33	1.0

$70^{\circ} \mathrm{C}$ resulted in the formation of undesirable side products. Optimum yield was obtained when a solid-gas phase, rather than solid-liquid phase, was maintained. There was little evidence for the formation of the isomeric olefin, 4 -chloro-heptafluorobut-1-ene (Ic). The isomeric ratio of Ib was found to be cis:trans, 44:56.

Dehydrofluorination of I with 80% aqueous potassium hydroxide gave only a low yield of the corresponding cis and trans olefins (Ib). The unreacted fluorobutane was difficult to extract from the reaction mixture.

The cis and trans isomers of Ib showed four regions of absorption in their ${ }^{19} \mathrm{~F}$ NMR spectra which are presented in Table II.

A good yield (71%) of the isomeric olefins 1,2 -difluoro-3,3-dimethylbut-1-ene (cis- and trans-IIIb) and 1,1-di-fluoro-3,3-dimethylbut-1-ene (IIIc) was obtained when a mixture of III and IIIa was treated similarly, with dry KOH at $80-85^{\circ} \mathrm{C}$. The major products were the cis isomer of IIIb and IIIc. The trans isomer of IIIb was obtained in small yield.

Above $95{ }^{\circ} \mathrm{C}$ considerable charring occurred which decreased the total yield of the fluoro olefins. An increased yield of the cis isomer of IIIb, at the expense of IIIc, was observed at temperatures above $85^{\circ} \mathrm{C}$.

The cis isomer of IIIb showed two regions of absorption in its ${ }^{19}$ F NMR spectrum, whereas IIIc exhibited only a complex $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}$ absorption (Table II). The mass spectrum of the cis isomer of IIIb showed significant ions at $m / e 120\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{2}{ }^{+}\right.$, $14.2 \%)$ and $105\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~F}_{2}{ }^{+}, 100 \%\right)$. The most abundant ion at ($\mathrm{P}-15$) was due to allylic cleavage. This allylic cleavage was also observed in the mass spectra of IIIc and the trans isomer of IIIb.

1,1,2,2-Tetrafluoro-3,3-dimethylbutane (II) was more resistant toward dehydrofluorination than III and IIIa. Therefore a higher temperature and a longer reaction time
were necessary. A low (21%) conversion to the corresponding olefin (IIb) together with a small amount of an unidentified procuct was obtained.

The ${ }^{19} \mathrm{~F}$ NMR spectrum (Table II) of IIb showed three regions of absorption. The F_{a} absorption was broad, probably owing to "through space" coupling with the $\mathrm{Me}_{3} \mathrm{C}$ group. Sim:larly the absorption peak due to the $\mathrm{Me}_{3} \mathrm{C}$ group was complex owing to "through space" HF coupling. The mass spectrum of IIb exhibited the most abundant ion in ($\mathrm{P}-15$) due to allylic cleavage, which is accord with that of IIIc and IIIb. The mass spectrum of the minor reaction product showed $m / e 120\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{2}{ }^{+}, 15.2 \%\right)$ and $105\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~F}_{2}{ }^{+}, 100 \%\right)$.

The dehydrofluorination reactions described reveal more about the general characteristics of this type of process for the preparation of fluoro olefins. The results indicate that the ease of dehydrofluorination is I > III \simeq IIIa $>$ II. Compounds III and IIIa form 43% of the cis olefin whereas only 3% of the trans isomer is formed. Along these lines Buxton and Tatlow, ${ }^{25}$ in their preparation of pentafluorocyclobutene from hexafluorocyclobutane, report that HF is eliminated preferentially from the two adjacent CHF groups, the flanking CF_{2} groups being more resistant to removal of fluorine.

The new fluoro olefins which have been obtained are being currently investigated for their polymerizability.

Experimental Section

NMR spectra were recorded on Perkin-Elmer R10 or R20 spectrometers operating at $60\left({ }^{1} \mathrm{H}\right)$ or $56.46 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$. In certain cases a Varian Associates HA-100 spectrometer operating at $100\left({ }^{1} \mathrm{H}\right)$ and $94.12 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$ was employed. Mass spectra were obtained using an AEI MS 902 double-focusing instrument. Infrared spectra were recorded on Perkin-Elmer spectrophotometers (Models 137 and 257). Volatile samples (gases and liquids with adequate vapor pressures at rocm temperature) were examined in a gas cell ($10-\mathrm{cm}$ path length). A Pye 104 gas-liquid chromatograph was used for the analysis of
liquids. Gaseous mixtures were analyzed on a Perkin-Elmer Model 451. Yields are calculatec based on olefins consumed.

Preparation of 1,1,2-Trifluoro-3,3-dimethylbutane (III) and 1,2,2-Trifluoro-3,3-dimethylbutane (IIIa). A. Isobutane (19.2 g, 331 mmol) and trifluorot thylene ($9.05 \mathrm{~g}, 110 \mathrm{mmol}$) were sealed in vacuo into a $250-\mathrm{ml}$ Hastalloy-lined autoclave and heated with rocking at $280^{\circ} \mathrm{C}$ for 96 h . The volatile product was transferred to a conventional vacuum system via an external trap cooled to $-78^{\circ} \mathrm{C}$ (dry ice-methanol) and distilled in vacuo through traps cooled successively to $-23\left(\mathrm{CCl}_{4}\right.$ slush $),-78$, and $-196^{\circ} \mathrm{C}$. The product which condensed at $-196{ }^{\circ} \mathrm{C}$ was shown by ir spectroscopy and GLC (using a $2 \cdot \mathrm{~m}$ dinonyl phthalate column $\mathrm{a}: 60^{\circ} \mathrm{C}$) to be isobutane ($15.6 \mathrm{~g}, 269.5 \mathrm{mmol}$, 81.2% recovery).

The product which condensed at $-78^{\circ} \mathrm{C}$ was combined with the contents of the external trap (6.7 g) and fractionated up a NesterFaust column to give a licuid mixture (0.81 g). bp $40-80^{\circ} \mathrm{C}$ (unidentified), a mixture (5.2 g). bp $86-88^{\circ} \mathrm{C}$, of III ($2.75 \mathrm{~g}, 19.6 \mathrm{mmol}, 17.8 \%$ yield), and IIIa ($2.5 \mathrm{~g}, 17.8 \mathrm{mmol}, 15.2 \%$ vield), and a higher boiling liquid residue (0.41 g). The high boiling product which remained in the autoclave (5.0 g) was shown by NMR to be telomers and was not examined further.
B. Isobutane ($37.9 \mathrm{~g}, 654 \mathrm{mmol}$) and trifluoroethylene $(19.05 \mathrm{~g}, 110$ mmol) were heated at $280^{\circ} \mathrm{C}$ for 96 h in a $250-\mathrm{ml}$ Hastalloy-lined autoclave to give isobutane ($32.7 \mathrm{~g}, 564 \mathrm{mmol}, 83.6 \%$ recovery), trifluoroethylene (trace amount by GLC), III ($4.0 \mathrm{~g}, 28.5 \mathrm{mmol}, 26 \%$ yield): NMR (Table I); mass spectrum m/e $140\left(\mathrm{M}^{+}\right)$.
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~F}_{3}$: C, 51.42; $\mathrm{H}, 7.85$. Found: $\mathrm{C}, 51.36 ; \mathrm{H}, 7.90$.
IIIa ($3.2 \mathrm{~g}, 22.8 \mathrm{mmol}, 21 \%$ yield): NMR (Table I); mass spectrum m/e $140\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~F}_{3}$: C, 51.42; H. 7.85. Found: C, 51.39; H, 7.80.
A high-boiling autoclave residue (2.4 g . telomers) was also obtained.
Preparation of 1,1,2,2-Tetrafluoro-3,3-dimethylbutane (II). Tetrafluoroethylene ($3.3 \mathrm{~g}, 33 \mathrm{mmol}$) and isobutane ($5.7 \mathrm{~g}, 99 \mathrm{mmol}$) were sealed in vacuo into a 3.5-l. Pyrex bulb and heated at $210^{\circ} \mathrm{C}$ for 96 h to give isobutane ($4.8 \mathrm{~g}, 86.2 \mathrm{mmol}, 84 \%$ recovery), tetrafluoroethylene ($1.6 \mathrm{~g}, 16 \mathrm{mmol}, 48 \%$ recovery), perfluorocyclobutane (0.39 g. $1.98 \mathrm{mmol}, 12 \%$ yield), and II ($1.04 \mathrm{~g}, 6.6 \mathrm{mmol}, 60 \%$ yield): bp 83 ${ }^{\circ} \mathrm{C}$; NMR (Table I); mass spectrum $m / e 158\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{4}: \mathrm{C}, 45.56 ; \mathrm{H}, 6.32$. Found: $\mathrm{C}, 45.60 ; \mathrm{H}, 6.40$.
Preparation of 1-Chloro-1,1,2,2,3,4,4,4-octafluorobutane (I). Hexafluoropropene ($0.67 \mathrm{~g}, 4.5 \mathrm{mmol}$) and chlorodifluoromethane $(1.16 \mathrm{~g}, 13.5 \mathrm{mmol})$ were sealed in vacuo into a $300-\mathrm{ml}$ Pyrex ampule and heated at $280^{\circ} \mathrm{C}$ for 4 days to give hexafluoropropene $(0.20 \mathrm{~g}, 1.4$ $\mathrm{mmol}, 30 \%$ recovery), chlorodifluoromethane ($1.0 \mathrm{~g}, 11.7 \mathrm{mmol}, 86 \%$ recovery), and I ($0.32 \mathrm{~g} .1 .4 \mathrm{mmol}, 58 \%$ vield) : bp $44.5^{\circ} \mathrm{C}$; NMR (Table I); mass spectrum m/e 238, 236 (M^{+}).

Anal. Calcd for $\mathrm{C}_{4} \mathrm{HClF}_{8}$: C, 20.29; H. 0.42. Found: C, 20.32: H, 0.50.
About 2% of the isomer 1-chloro-1,1,2,3,3-pentafluoro-2-trifluoromethy!propane (Ia) was detected by NMR. Other complex mixtures $(0.41 \mathrm{~g})$ were also obtained.

Reaction between Tetrafluoroethylene and Chlorodifluoromethane. Tetrafluoroethylene ($10 \mathrm{~g}, 100 \mathrm{mmol}$) and chlorodifluoromethane (54.5 g .630 mmol) were sealed in vacuo into a $250-\mathrm{ml}$ Hastalloy-lined autoclave and heated with rocking at $210^{\circ} \mathrm{C}$ for 96 h. The volatile product was transferred to a conventional vacuum system and distilled in vacuo through traps cooled successively to -78 , -95 (toluene slush), and $-196^{\circ} \mathrm{C}$ to give chlorodifluoromethane (quantitative recovery), perfluorocyclobutane ($9.2 \mathrm{~g}, 46 \mathrm{mmol}, 92 \%$ yield), and a liquid procuct (trace) which did not appear to be 1 -chloro-1,1,2,2,3,3-hexafluoropropane (IV) by GLC-mass spectroscopy $12-\mathrm{m}$ Phasesep at $100-170^{\circ} \mathrm{C}$). No $\mathrm{C}_{2} \mathrm{~F}_{4}$ was recovered.

The above experiment was repeated several times, taking various mole ratios of hydrocarbon to olefin (varying pressures), and in all cases perfluorocyclobutane was obtained as the sole product.

Preparation of 1 -Chloroheptafluorobut-2-ene (cis- and trans-Ib). A. A two-necked round-bottom flask was fitted with a gas inlet tube and a condenser surmounted by a cold-finger condenser and an external trap kept at $-78^{\circ} \mathrm{C}$. I ($1.1 \mathrm{~g}, 4.6 \mathrm{mmol}$) was bubbled in a stream of nitrogen through an excess of $80 \%(\mathrm{w} / \mathrm{v})$ aqueous potassium hydroxide at about $80^{\circ} \mathrm{C}$ contained in the flask. On completion of the addition, the cold finger was allowed to attain room temperature and the apparatus was purged with nitrogen. The organic product collected in the external trap was transferred to a conventional vacuum system. Analysis by ir and GLC ($2-\mathrm{m}$ Piasesep at $80-150^{\circ} \mathrm{C}$) confirmed the presence of the cis isomer of $\mathrm{Ib}(1) .11 \mathrm{~g}, 0.51$ $\mathrm{mmol} .10 \%$ yield $)$ and the trans isomer of $\mathrm{Ib}(0.12 \mathrm{~g} .0 .55 \mathrm{mmol}, 11 \%$ yield). Only a trace amount of I was recovered.
B. I ($0.61 \mathrm{~g}, 2.58 \mathrm{mmol}$) and anhydrous, powdered potassium hydroxide $(6.4 \mathrm{~g})$ were heated in vacuo ($1.50-\mathrm{ml}$ Pyrex ampule) at $60-70$ ${ }^{\circ} \mathrm{C}$ for 30 min . It was imperative not to increase the temperature about
$70^{\circ} \mathrm{C}$. The volatile product was then transferred to a vacuum system and shown by GLC ($2-\mathrm{m}$ Phasesep column at $80-150^{\circ} \mathrm{C}$) to contain $\mathrm{I}(0.03 \mathrm{~g}, 0.12 \mathrm{mmol}, 4 \%$ recovery $)$ and the cis isomer of $\mathrm{Ib}(0.25 \mathrm{~g}, 1.15$ $\mathrm{mmol}, 40.9 \%$ yield): ir (vepor) $5.58 \mathrm{~cm}^{-1}(\mathrm{~s})(\mathrm{C}=\mathrm{C}$); NMR (Table II); mass spectrum m / e (rel intensity) $218\left(\mathrm{M}^{+}, 6.3\right), 216\left(\mathrm{M}^{+}, 20.6\right), 199$ ($\mathrm{M}-\mathrm{F}, 5.9$), 197 ($\mathrm{M}-\mathrm{F}, 18.9$), $181(\mathrm{M}-\mathrm{Cl}, 100), 149\left(\mathrm{M}-\mathrm{CF}_{3}\right.$. 28.8), 147 ($\mathrm{M}-\mathrm{CF}_{3}, 78.5$), 131 ($\mathrm{M}-\mathrm{CF}_{2} \mathrm{Cl}, 96.7$).

Anal. Calcd for $\mathrm{C}_{4} \mathrm{ClF}_{7}$: C, 22.22. Found: $\mathrm{C}, 22.3$.
Trans isomer of $\mathrm{Ib}(0.32 \mathrm{~g}, 1.48 \mathrm{mmol}, 52.1 \%$ yield): ir (vapor) 5.79 $\mathrm{cm}^{-1}(\mathrm{~s})(\mathrm{C}=\mathrm{C})$; NMR (Table II); mass spectrum m / e (rel intensity) $218\left(\mathrm{M}^{+}, 5.6\right), 216\left(\mathrm{M}^{+}, 17.6\right), 199(\mathrm{M}-\mathrm{F}, 3.7), 197(\mathrm{M}-\mathrm{F}, 12.2), 181$ ($\mathrm{M}-\mathrm{Cl}, 99.7$), $149\left(\mathrm{M}-\mathrm{CF}_{3}, 16.8\right), 147\left(\mathrm{M}-\mathrm{CF}_{3}, 51.8\right), 131(\mathrm{M}-$ $\mathrm{CF}_{2} \mathrm{Cl}, 100$).

Anal. Calcd for $\mathrm{C}_{4} \mathrm{ClF}_{7}$: C, 22.22. Found: C, 22.3.
Preparation of 1,2-Difluoro-3,3-dimethylbut-1-ene (IIIb) and 1,1-Difluoro-3,3-dimethylbut-1-ene (IIIc). A mirture of III and IIIa $10.59 \mathrm{~g}, 4.2 \mathrm{mmol}$) and anhydrous, powdered potassium hydroxide $(12 \mathrm{~g})$ were heated in vazuo ($100-\mathrm{ml}$ Pyrex ampule) at $80-85^{\circ} \mathrm{C}$ for 90 min . The volatile prouuct was transferred to a vacuum system. This process was repeated three times. The volatile product was then separated by preparative GLC (2-m Phasesep at $150^{\circ} \mathrm{C}$) and shown to contain starting materials III and IIIa ($0.15 \mathrm{~g}, 1.07 \mathrm{mmol}, 25 \%$ recovery) and IIIc ($0.11 \mathrm{~g}, 0.91 \mathrm{mmol}, 25.2 \%$ yield): ir (vapor) 3.35 (s) (C-H stretch), $5.75 \mathrm{~cm}^{-1}(\mathrm{~s})(\mathrm{C}=\mathrm{C})$; NMR (Table II); mass spectrum m / e (rel intensity) $120\left(\mathrm{M}^{+}, 20.5\right), 105\left(\mathrm{M}-\mathrm{CH}_{3}, 100\right), 77\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right.$, 31.5), 65 ($\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}, 19.8$), $59\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}, 21\right), 57\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{HF}_{2}, 6.7\right.$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{1 \mathrm{C}} \mathrm{F}_{2}$: C, 60.0; $\mathrm{H}, 8.3$. Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 8.2$.
Cis isomer of IIIb ($0.19 \mathrm{~g}, 1.5 \mathrm{mmol}, 43 \%$ yield): ir (vapor) 3.31 (s) (C-H stretch), $5.84 \mathrm{~cm}^{-1}$ (s) $(\mathrm{C}=\mathrm{C}$); NMR (Table II); mass spectrum m / e (rel intensity) $120\left(\mathrm{M}^{+}, 14.2\right), 105\left(\mathrm{M}-\mathrm{CH}_{3}, 100\right), 77\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right.$, 38.7 , $59\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}, 9.8\right), 57\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{HF}_{2}, 6.6\right.$).

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{1}\left(\mathrm{~F}_{2}: \mathrm{C}, 60.0 ; \mathrm{H}, 8.3\right.$. Found: $\mathrm{C}, 59.9 ; \mathrm{H}, 8.4$.
Trans isomer of IIIb ($(1.013 \mathrm{~g}, 0.1 \mathrm{mmol}$, ca. 3% yield): ir (vapor) 3.39 (s) ($\mathrm{C}-\mathrm{H}$ stretch), $5.70 \mathrm{~cm}^{-1}$ (s) $(\mathrm{C}=\mathrm{C}$); mass spectrum m / e (rel intensity) $120\left(\mathrm{M}^{+} .9 .4\right), 105\left(\mathrm{M}-\mathrm{CH}_{3}, 3.2\right), 77\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}, 21.1\right), 59$ ($\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}, 4.2$), $57\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{HF}_{2}, 1.8\right), 43\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~F}, 100\right)$.

Preparation of 1,1,2-Trifluoro-3-3-dimethylbut-1-ene (IIb). II ($1.0 \mathrm{~g}, 6.38 \mathrm{mmol}$) anc anhydrous, powdered potassium hydroxide $(6.55 \mathrm{~g})$ were heated in vacuo at $155^{\circ} \mathrm{C}$ for 20 h to give a liquid mixture $(0.85 \mathrm{~g})$ which was shown by GLC (using a $2-\mathrm{m}$ Phasesep column at $160^{\circ} \mathrm{C}$ or a 2-m dinonyl phthalate column at $60^{\circ} \mathrm{C}$) to contain II (0.62 $\mathrm{g}, 3.92 \mathrm{mmol}, 62 \%$ recovery) and IIb ($0.18 \mathrm{~g}, 1.3 \mathrm{mmol}, 21 \%$ conversion, 54% yield): ir (vapor) $5.65 \mathrm{~cm}^{-1}$ (s) ($\mathrm{C}=\mathrm{C}$); NMR (Table II); mass spectrum $m / e\left(R e l\right.$ intensity) : $38\left(\mathrm{M}^{+}, 16.0\right), 123\left(\mathrm{M}-\mathrm{CH}_{3}, 100\right), 95$ ($\mathrm{M}-\mathrm{C}_{2} \mathrm{~F}, 26.1$), $88\left(\mathrm{M}-\mathrm{CF}_{2}, 10.5\right), 77\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}, 17.4\right), 73(\mathrm{M}-$ $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}_{2}, 23.7$), $69\left(\mathrm{M}-\mathrm{CF}_{3}, 10.4\right), 59\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}_{2}, 26.6\right), 57(\mathrm{M}-$ $\mathrm{C}_{2} \mathrm{~F}_{3}, 13.4$), $39\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~F}_{3}, 12.0\right), 32\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~F}_{2}, 62.0\right)$.

Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{9}{ }^{7} 3$: $\mathrm{C}, 52.17 ; \mathrm{H}, 6.52$. Found: $\mathrm{C}, 52.1 ; \mathrm{H}, 6.6$.
A product (ca. 0.05 g), mass spectrum $m / e 120\left(\mathrm{M}^{+}\right)$, corresponding to $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{2}$ was also obtained which was not further investigated.

Acknowledgment. Thanks are due to the University of Manchester Institute of Science and Technology for providing laboratory space and facilities, and to Professor R. N. Haszeldine and Dr. F. Rowland for valuable discussions.

Registry No.-I, 53005-36-0; cis-Ib, 58384-33-1; trans-Ib, 583E4-34-2; II, 354-75-6; IIb, 58384-35-3; III, 58384-36-4; IIIa, 58384-37-5; cis-IIIb, 58384-38-6; trans-IIIb, 58384-39-7; IIIc, 58384-40-0; isobutene. 75-28-5; trifluoroethylene, 359-11-5; tetrafluoroethylene. 116-14-3; hexafluoropropene, 116-15-4; chlorodifluoromethane, 75-45-6.

References and Notes

(1) R. N. Haszeldine, J. Cnem. Soc., 3761 (1953)
(2) British Patent 746510 (1963); Chem. Abstr., 51, 17982 (1957)
(3) W. E. Hanford, U.S. Patent 2411158 (1946).
(4) W. E. Hanford. U.S. Peztent 2411159 (1946).
(5) W. E. Hanford. U. S. Patent 2433844 (1948).
(6) W. E. Hanford, U.S. Patent 2443003 (1948).
(7) W. E. Hanford and J. F. Roland, U.S. Patent 402157 (1948).
(8) British Patent 583 874 (1947).
(9) R M. Joyce. U.S. Patent 2593628 (1951).
(10) R. M. Joyce. U.S. Patent 2562547 (1951).
(11) P. L. Barrick. U.S. Patent 2540088 (1951).
(12) A. A. Beer. P. A. Zagorets. V. F. Inozemtsev, G. S. Povkh, and A. I. Popov. Neftekimiya, 2, 617 (1962).
(13) V. Dedek and F. Liska, Collec!. Czech. Chem. Commum., 32, 4297 (1967).
(14) V. Dedek and J. Fikar, Collecr. Czech. Chem. Commum., 34, 3778 (1969).
(15) H. Muramatsu. K. Inuka, and T. Uida, Bull. Chem. Soc. Jpn., 40, 903 (1967); H. Muramatsu. H. Kimoto. and K. Inukai. ibid., 42, 1155 (1969).
(16) P. R. Austin, D. D. Coffman, H. H. Hoehn, and M. S. Raasch. J. Am. Chem. Soc., 75, 4834 (1953).
(17) R. Rowland, unpublished reports.
(18) S. Okazaki and S. Toyoda, Kogyo Kagaku Zasshi, 73, 478i (1970); Chem. Abstr., 73, $70190 t$ (1970)
(19) L. E. Gardner, U.S. Patent 3607955 (1971).
(20) L. E. Gardner, U.S. Patent 3432 562, (1969).
(21) L. E. Gardner, U.S. Patent 3456025 (1969).
(22) S. Okazaki and M. Komata, Kogyo Kagaku Zasshi, 73, 473 (1970); Chem. Abstr., 73, 446?6m (1970).
(23) B. Tatsutani, I. K obayashi, and K. Yamamoto, Japanese Patent 7711729 (1972); Chem. Abstr., 77, $49106 t$ (1972).
(24) K. Hirayama, K. Nakauo, and T. Mitsui, Japanese Patent 7235667 (1972); Chem. Abstr., 78, 29209w (1973).
(25) M. W. Buxton and J. C. Tatlow, J. Chem. Soc., 1177 (1954).
(26) D. Sianesi and R. Fontanelli, Ann. Chim. (Rome), 55, 850 (1965).

Organometallic Chemistry. 12. Proton and Carbon-13 Nuclear Magnetic Resonance Study of Arenemercurinium Ions, the Intermediate Complexes of Aromatic Mercuration

George A. Olah,* Simon H. Yu, and David G Parker
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received November 25, 1975

Arenemercurinium ion complexes were prepared and studied by proton and carbon-13 NMR spectroscopy. It is concluded that the complexes are involved in fast exchange.

Electrophilic substitution reactions of aromatic compounds proceed via a mechanism involving intermediates of the types $1-3 .{ }^{2}$

Mulliken outer π complex

2
π complex
(benzonium ion)

3
σ complex (benzenium ion)

Protonated arenes (arenium ions 3) have been extensively studied, ${ }^{3}$ but relatively little information is available regarding intermediates with other electrophiles. The heptamethyl 4 and heptaethylbenzenium ions are known from NMR studies, ${ }^{4}$ and also from an x-ray crystallographic investigation of 4. ${ }^{5}$ Recently, direct observation of long-lived σ-complexes in

4

5

6
nitration ${ }^{6,7}(5)$ and chlorination ${ }^{7}(6)$ of hexasubstituted benzenes was also reported.

Although the existence of π-bonded aronium ions 2 is suggested by chemical evidence, they have never been observed as reaction intermediates. We have reported the preparation of bridged π complexes of olefin-mercurinium ions and have investigated them by NMR spectroscopy. ${ }^{8}$ We considered, therefore, that a similar study of arenemercurinium ions might yield information on intermediate π-bonded complexes. Previously π-bonded complexes (of type 1) have been proposed for the mercurinium complexes of hexasubstituted benzenes from ${ }^{1} \mathrm{H}$ NMR studies, ${ }^{9}$ while a σ complex was considered consistent with the complicated ${ }^{1} \mathrm{H}$ NMR spectrum obtained for the related pentamethylbenzenemercurinium ion. ${ }^{9}$

We now wish to report the results of our investigations by
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy of the intermediate complexes in aromatic mercurations.

Results and Discussion

Aromatics were mercurated using either mercuric trifluoroacetate or methylmercury acetate with excess fluorosulfuric acid in SO_{2} solution. ${ }^{9}{ }^{1} \mathrm{H}$ NMR parameters of the intermediate arenemercurinium complexes so formed are summarized in Tajle I. In the ${ }^{1} \mathrm{H}$ NMR spectrum of monosubstituted benzerium ion complexes the ortho and meta protons show an AB-type quartet, the meta protons being further split by coupling with the para proton to give a doublet of doublets. Comparable spectra were obtained when m-methylanisole, 1,2,4-trimethoxbenzene, and pentamethylbenzene were mercurated. The observed spectra show some similarity to thase obtained for monosubstituted ethylenearenium and benzenium ions (Table II). ${ }^{10}$ Upon comparison, the ortho and meta protons of the mercurinium ion complexes are slightly shielded, the para proton more so, than the protons of the analogous arenium ions. However, the ${ }^{1} \mathrm{H}$ NMR spectra obtained from the mercurinium ion complexes of benzene, m xylene, mesitylene, and 1,3,5-trimethoxybenzene are similar to those of the uncomplexed parent arenes except that the protons of the former show slight deshielding. No shifts characteristic of benzenium ions were observed.

Table III summarizes the ${ }^{13} \mathrm{C}$ NMR data for the arenemercurinium ion complexes investigated. For the arenemercurinium ions derived from monosubstituted benzenes, the ${ }^{13} \mathrm{C}$ NMR spect:a show shifts characteristic of arenium ions. Upon complexation, ipso and ortho carbons become more deshielded, meta carbons are slightly deshielded, whereas shielding is observed for the para carbon. However, the shifts for the mercurinium complexes are not as large as for the corresponding ethylenearenium and arenium ions (Table II). On the other hand, unlike the corresponding arenium ions, the carbon- 13 spectra of the mercurinium complexes of benzene, m-xylene, and mesitylene show symmetries related to their parent hydrocarbons, but not the arenium ions.

Based on the evidence of chemical shift data alone the possibility of the formation of σ complexes cannot be completely ruled out. The deshielding of the para proton and carbon in the monosubstituted complexes relative to the

Table I. ${ }^{3} \mathrm{H}$ NMR Spectral Data of Arenemercurinium Ions in SO_{2} Solution ${ }^{a}$

Arene	Ion registry no.	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	Other protons	Coupling constants, Hz	Temp, ${ }^{\circ} \mathrm{C}$
Benzene	58747-09-4	8.33							-60
		(s)							
Toluene	58747-08-3	$\begin{array}{r} 8.23 \\ (\mathrm{~d}) \end{array}$	$\begin{aligned} & 8.73 \\ & (\mathrm{dd}) \end{aligned}$	$\begin{array}{r} 7.47 \\ (\mathrm{t}) \end{array}$			$\mathrm{CH}_{3}, 3.00$ (s)	$\begin{aligned} & J_{2 ; 3}=7.5 \\ & J_{3,4}=5.5 \end{aligned}$	-70
Anisole	58747-07-2	7.44	8.00	7.03			$\mathrm{OCH}_{3}, 4.07$ (s)	$J_{2,3}=7.8$	-40
		(d)	(dd)	(t)				$J_{3.4}=6.3$	
Fluorobenzene	58747-10-7	7.97 (dd)	$\begin{gathered} 8.67 \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & 7.23 \\ & (\mathrm{um}) \end{aligned}$				$\begin{gathered} J_{\mathrm{H}_{2}}-\mathrm{F}= \\ 22.0 \end{gathered}$	
								$J_{2,3}=8.5$	-70
m-Xylene	58747-06-1	$\begin{aligned} & 7.97 \\ & (\mathrm{um}) \end{aligned}$		$\begin{aligned} & 7.38 \\ & (\mathrm{dd}) \end{aligned}$	$\begin{array}{r} 8.47 \\ \text { (t) } \end{array}$		$\mathrm{CH}_{3}, 2.77$ (s)	$\begin{aligned} J_{4 \cdot 5} & =6.4 \\ J_{2,4} & =1.4 \end{aligned}$	-60
p-Methylanisole	58747-05-0	$\begin{array}{r} 7.43 \\ (\mathrm{~s}) \end{array}$		6.83 (d)	$\begin{aligned} & 8.10 \\ & (\mathrm{dd}) \end{aligned}$	$\begin{gathered} 7.32 \\ (\mathrm{~d}) \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{3}, 2.71(\mathrm{~s}) \\ & \mathrm{OCH}_{3}, 4.07(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & J_{4,5}=6.0 \\ & J_{5,6}=8.0 \end{aligned}$	-60
Mesitylene $\begin{aligned} & (1,3,5-\text { tri- } \\ & \text { methyl- } \\ & \text { benzene) } \end{aligned}$	58747-15-2	$\begin{array}{r} 7.37 \\ (\mathrm{~s}) \end{array}$					$\mathrm{CH}_{3}, 2.80$ (s)		-60
$\begin{aligned} & 1,3,5-\mathrm{Tri}- \\ & \text { methoxy- } \\ & \text { benzene } \end{aligned}$	58747-13-0	$\begin{array}{r} 6.03 \\ (\mathrm{~s}) \end{array}$					$\mathrm{OCH}_{3} 3.83$ (s)		-40
$\begin{aligned} & \text { 1,2,4-Tri- } \\ & \text { methoxy- } \\ & \text { benzene } \end{aligned}$	58747-14-1		7.43 (d)	7.33 (d)		7.80 (d)	$\begin{aligned} & \mathrm{OCH}_{3}, 4.57(\mathrm{~s}, \\ & \left.3 \mathrm{H}^{2}\right) \\ & \mathrm{OCH}_{3}, 4.60(\mathrm{~s}, \\ & 6 \mathrm{H}) \end{aligned}$	$J_{5,6}=8.0$	-40
$\begin{aligned} & 1,2,3,4,5- \\ & \text { Penta- } \\ & \text { methyl- } \\ & \text { benzene } \end{aligned}$	58747-12-9					$\begin{array}{r} 6.63 \\ (\mathrm{~s}) \end{array}$	$\begin{gathered} \mathrm{CH}_{3}, 2.67(\mathrm{~s}, \\ 9 \mathrm{H}) \\ \mathrm{CH}_{3}, 2.43 \\ (\mathrm{~s}, 6 \mathrm{H}) \end{gathered}$		-60

${ }^{a}$ Chemical shifts in δ (ppm) refer to external Me_{4} Si capillary. The multiplicities are given in parentheses: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet; u, unsolved.

Table II. Comparison of the Monosubstituted Arenemercurinium Ion Complexes with the Corresponding
Ethylenearenium and Arenium Ions ${ }^{a, b}$

Compd	${ }^{1} \mathrm{H}$ NMR Data			${ }^{13} \mathrm{C}$ NMR Data			
	H_{o}	H_{m}	H_{p}	C_{i}	C_{0}	C_{m}	C_{p}
$+\stackrel{+}{\mathrm{H}} \mathrm{O} O O C \mathrm{~F}_{a}$	8.23	8.73	7.47	169	135	148	90
	8.48	9.43	5.05	201	139	181	49
	8.05	8.36		183	138	174	64
$+\stackrel{+}{\mathrm{H}} \mathrm{~g} O 0 \mathrm{CCF}$	7.44	8.00	7.03	193	118	139	105
	$\begin{aligned} & 7.5 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 9.0 \end{aligned}$	4.5	193	$\begin{aligned} & 129 \\ & 123 \end{aligned}$	$\begin{aligned} & 169 \\ & 176 \end{aligned}$	42
	7.47	8.12		170	123	174	49

${ }^{a}$ Data of ethylenearenium and arenium ions are obtained from ref $10 . b o$, ortho; m, meta; p, para, i, ispo refer to the substituent.

Table III. ${ }^{13}$ C NMR Spectral Data of Arenemercurinium Ion Complexes ${ }^{a, b}$

Arene	C_{1}	C_{2}	C_{3}	C_{4}	C	Other carbon
Benzene	$\begin{gathered} 133.2 \\ (128.6) \end{gathered}$					
Toluene	$\begin{gathered} 168.6 \\ (137.8) \end{gathered}$	$\begin{gathered} 134.8 \\ (129.3) \end{gathered}$	$\begin{gathered} 147.7 \\ (128.5) \end{gathered}$	$\begin{gathered} 90.1 \\ (125.6) \end{gathered}$		$\begin{array}{cc} \mathrm{CH}_{3} & 24.2 \\ (21.2) \end{array}$
Anosole	$\begin{array}{r} 192.6 \\ (158.9) \end{array}$	$\begin{gathered} 118.4 \\ (113.2) \end{gathered}$	$\begin{gathered} 139.0 \\ (128.7) \end{gathered}$	$\begin{aligned} & 105.2 \\ & 119.8 \end{aligned}$		$\mathrm{OCH}_{3} \begin{gathered} 57.0 \\ (54.7) \end{gathered}$
Fluorobenzene ${ }^{\text {c }}$	$\begin{gathered} 176.6 \\ (163.8) \end{gathered}$	$\begin{gathered} 123.5 \\ (114.6) \end{gathered}$	$\begin{gathered} 152.2 \\ (130.3) \end{gathered}$	$\begin{gathered} 87.8 \\ (124.3) \end{gathered}$		
m-Xylene	$\begin{gathered} 169.6 \\ (137.5) \end{gathered}$	$\begin{gathered} 136.0 \\ (130.1) \end{gathered}$		$\begin{gathered} 106.5 \\ (126.4) \end{gathered}$	$\begin{gathered} 149.7 \\ (128.3) \end{gathered}$	$\mathrm{CH}_{3} \quad 23.0$
Mesitylene	$\begin{gathered} 171.0 \\ (137.4) \end{gathered}$	$\begin{gathered} 116.1 \\ (127.1) \end{gathered}$				$\mathrm{CH}_{3} \underset{(21.0)}{22.97}$

a All chemical shifts in $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$ are referred to the external $\mathrm{Me}_{4} \mathrm{Si}$ capillary. The chemical shifts of free arene are given in parenthesis for comparison. b The complexes generated with $\left.\mathrm{Hg}_{(}^{\prime} \mathrm{CF}_{3} \mathrm{COO}\right)_{2}$ siow trifluoromethyl carbon at $\delta 114.2$ (q , $J_{\mathrm{C}-\mathrm{F}}=283.8 \mathrm{~Hz}$) and carbonyl carbon at $\delta 161.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=42.9 \mathrm{~Hz}\right) . c J_{\mathrm{C}_{1}-\mathrm{F}}=283.5, J_{\mathrm{C}_{2}-\mathrm{F}}=21.8, J_{\mathrm{C}_{3}-\mathrm{F}}=15$, and $J_{C_{4}}-F=0 \mathrm{~Hz}$.

Table IV. $J_{\mathrm{C}-\mathrm{H}}$ Coupling Constants (Hz) of Benzene, Fluorobenzene, and Mesitylene and Their Mercurinium Ion Complexes

		$J_{\mathrm{C}-\mathrm{H}}(\pm 5 \mathrm{~Hz})$	
		Parent arene	Mercurinium complex
Benzene		158	172
Mesitylene		154	165
Fluorobenzene	C_{o}	155^{a}	176
	C_{m}	163	173
Anisole	C_{p}	161	163
	C_{o}	159	173^{b}
	C_{m}	159	177
	C_{p}	162	177

${ }^{a}$ T. F. Page, Jr., Mol. Phys., 13, 523 (1967). b Chromium tricarbonyl complex from ref 13.
methylene protons and carbon in the corresponding arenium ions could be due to the effect of anistropy of the carbonmercury bond. The "symmetric" spectra obtained for complexed benzene, m-xylene, etc., should then be explained by a fast inter-and/or intramolecular exchange of σ complexes.

However, measurement of $J_{\mathrm{C}-\mathrm{H}}$ coupling constants should differentiate between the two types of complex. If σ complexes are formed, the $J_{\mathrm{C}-\mathrm{H}}$ coupling of the carbon at the site of mercuration should show a pronounced decrease in accordance with transformation from sp^{2} to sp^{3} hybridization. The $J_{\mathrm{C}-\mathrm{H}}$ coupling constants for the complexes of benzene, fluorobenzene, and mesitylene together with those for the parent arenes and anisolechromium tricarbonyl are given in Table IV. No pronounced decrease of $J_{\mathrm{C}-\mathrm{H}}$ coupling of the carbon at the site of mercuration upon complexation argues against the formation of σ complexes as the sole stable species observed. Recently a number of arene mercurous complexes were prepared, and the structure of these complexes, in analogy to those of similar argentous complexes, were shown by ${ }^{13} \mathrm{C}$ NMR to be molecularly bonded π complexes with fast bond shifts. ${ }^{11}$

For these complexes both shielded and deshielded shifts (in comparison with the parent substrate) were observed for the ring carbons. $\mathrm{Hg}_{2}{ }^{2+}$ shows a greater deshielding effect, attributed to its greater Lewis acidity compared to Ag^{+}. The shifts observed for the mercurinium ions of the present study are sufficiently cifferent from those of either the Ag^{+}or $\mathrm{Hg}_{2}{ }^{2+}$ complexes, arguing against a similar structure. Furthermore, if the mercuriniam complexes were π-bonded Mulliken-type outer complexes or similar to the arene cluster $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes, ${ }^{12,13}$ a uniform downfield shift for all carbons relative to the free arene would be expected. This is contrary to what is observed, and thus the present data are inconsistent with the formation of π-bonded arenemercurinium ions. The best description for the arene mercurinium ion complexes is a rapid exchange of σ and π complexes.

Such a rapid exchange is consistent with the reversibility and selectivity o! aromatic mercuration reactions. At the same time data do not completely rule out an equilibrating σ-complexed system, in which the π-bridged complexes are only transition states.

Experimental Section

Mercuric trifluoroacetate and methylmercury acetate were purchased from Aldrich Chemical Co., and used without further purificat:on. Fluorosulfuric acid was distilled before use.
Preparation of Complexes. An SO_{2} solution at $-78{ }^{\circ} \mathrm{C}$ of the parent arene was added, with vigorous stirring (vortex mixer), to a SO_{2} solution containing excess $\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2} \mathrm{Hg}$ or $\mathrm{CH}_{3} \mathrm{COOHgCH}_{3}$ and $\mathrm{FSO}_{3} \mathrm{H}$, also at $-? 8^{\circ} \mathrm{C}$. This solution was then transferred to a precooled NMR probe for examination. Identical NMR spectra were obtained regardless of the other ligand or Hg . However, fluorobenzene was only mercurated by $\left(\mathrm{CF}_{3} \mathrm{C} 0 \mathrm{O}\right)_{2} \mathrm{Hg}-\mathrm{FSO}_{3} \mathrm{H}$.
${ }^{1} \mathrm{H}$ NMR were recorded on a Varian A56/60 instrument fitted with
a variable temperature probe. ${ }^{13} \mathrm{C}$ NMR were recorded on a Varian XL-100 instrument fitted with a broad band decompling and variable temperature probe.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

Registry No.-Benzene, 71-43-2; toluene, 108-88-3; anisole, 100-66-3; fluorobenzene, 462-06-6; m-xylene, 108-38-3; p-methylanisole, 104-93-8; mesitylene, 108-67-8; 1,3,5-trimethoxybenzene, 621-23-8; 1,2,4-trimethoxybenzene, 135-77-3; 1,2,3,4,5-pentamethylbenzene, 700-12-9; mercuric trifluoroacetate, 13257-51-7; methylmercury acetate, 108-07-6; fluorosulfuric acid, 7789-21-1.

Supplementary Material Available. ${ }^{1} \mathrm{H}$ NMR spectra of anisoleand m-xylenemercurinium ions and ${ }^{13} \mathrm{C}$ NMR spectra of fluoroben-zene- and anisolemercurinium ions (4 pages). For simplicity signals due to the counteranion were deleted. Ordering information is given on any current masthead page.

References and Notes

(1) Part 11: G. A. Olah, G. Liang, and S. H. Yu, J. Org. Chem., in press.
(2) (a) G. A. Olah, Angew. Chem., Int. Ed. Engl., 12, 173 (1973); (b) P. Rys, P Skrabal, and H. Zollinger, ibid., 11, 874 (1972); (c) G. A. Olah, Acc. Chem Fes., 4, 240 (1971); (d) J. H. Ridd, ibid., 4, 248 (1971).
(3) (a) G. A. Olah. R. H. Schlosberg, R. D. Porter, Y. K. Mo, D. P. Kelly, and G. C. Mateescu. J. Am. Ctiem. Soc., 94, 2034 (1972), and references cited therein; (b) D. M. Brouwer, E. L. Mackor, and C. Maclean in "Carbonium lons"', Vol. II, G. A. Olah and P. v. R. Schleyer, Ed., Wiley-Interscience, New York, N.Y., 1970.
(4) (a) N. C. Baenziger and A. D. Nelson, J. Am. Chem. Soc., 90, 6602 (1968); (b) G. A. Olah, R. J. Spear, G. Messina, and P. W. Westerman, ibid., 97, 4051 (1975).
(5) W. E. Doering. M. Saunders, H. A. Boynton, J. W. Earhart, E. F. Wadleg, W. R. Edwards, and G. Laber, Tetrahedron, 4, 178 (1958).
(6) G. A. Olah, H. C. Lin, and D. A. Forsyth, J. Am. Chem. Soc.. 96, 6098 (1974).
(7) G. A. Olah, H. C. Lin, and Y. K. Mo., J. Am. Chem. Soc., 94, 3-67 (1972).
(8) (a) G. A. Olah and S. H. Yu. J. Org. Chem., 40, 3638 (1975); (b) G. A. Olah and P. R. Clifford. J. Am. Chem. Soc., 95, 6067 (1973); 93, 1261. 2320 (1971).
(9) V. I. Sokolos, V. V. Bashilov, and O. A. Reutov. Dokl. Akad. Nauk SSSR. 197, 101 (1971).
(10) (a) G. A. Olah and R. D. Porter, J. Am. Chem. Soc., 93, 6877 (1971); (b) G. A. Olah and Y. K. Mo. J. Org. Chem., 38, 353 (1973); (c) ibid., 38, 3212 (1973).
(11) P. A. W. Dean, D. G. Ibbott, and J. B. Stothers, Can. J. Chem., in press.
(12) B. E. Mann, Chem. Commun., 976 (1971); J. Chem. Soc., Dalton Trans., 2012 (1973).
(13) G. M. Bodner and L. J. Todd, Inorg. Chem., 13, 360 (1974).

Consecutive Decomposition Modes for m-Trifluoromethylphenylcopper in Ether ${ }^{1}$

Theodore Cohen* and Mordecai D. Treblow
Department of Chemistry, University of Pittsburgh, Pittsburgh, Penasylvan:a 15260

Received November 7, 1975

Abstract

The decomposition of m-trifluoromethylphenylcopper in reflıxing ether, both in the absence and presence of benzalacetophenone, has been monitored by withdrawing samples from time to time and quenching with $\mathrm{D}_{2} \mathrm{O}$. During the first phase of the decomposition, $3,3^{\prime}$-bis(trifluoromethyl)biphenyl (biaryl) sproduced in both cases and, in the presence of the enone, conjugate addition occurs as well; this is the first reported case of a simple conjugate addition of an organocopper in the absence of lithium or magnes:um salts. When approximately one-half of the organocopper has been consumed, the above behavior ceases and the remainder of the organocopper is converted to benzotrifluoride by removal of hydrogen from the solvent; such hydrogen removal was demonstrated by performing the decomposition in perdeuteriotetrahydrofuran and noting that the benzotrifluoride produced was monodeuterated to the extent of 46%. It is believed that the organocopper exists in these solvents as a cluster compound which splits out aryl groups pairwise, in competition with conjugate addition, until an intermediate such as $\mathrm{Ar}_{4} \mathrm{Cu}_{3}$ is reached; the latter then reacts with solvent by one of a number of possible mechanisms. which are discussed.

Results

While attempting to study one aspect of the mechanism of the Ullmann biaryl synthesis, ${ }^{2}$ we made the intriguing observation that during the course of decomposition of m-trifluoromethylphenylcopper (1$)^{3}$ in ether solvents, the nature of the process changes markedly from the beginning to the end of the reaction. If this decomposition is carried out in refluxing ether and samples are withdrawn and quenched with water at various times, the quantities of benzotrifluoride (2, arene) in the quenched samples decrease and those of $3,3^{\prime}$-bis(trifluoromethyl)biphenyl (3, biaryl) increase until after about 6 h when the quantities of the two compounds cease changing.

However, it was soon found that those deceptively simple results mask quite surprising changes in the course of the reaction which start at about the time the quantities of products in the quenched samples become constant. This was ascertained by repeating the reaction, quenching the withdrawn samples with $\mathrm{D}_{2} \mathrm{O}$, and determining the yields in the quenched samples of biaryl (3) and arene (2) as well as the deuterium content of the latter (by combined gas chromatography-mass spectrometry); this procedure allows a distinction to be made between benzotrifluoride (ArH) which is present in the unquenched sample and that (ArD) which arises upon quenching
the reaction mixture, presumably by protonation of an organocopper compound.

The first three columns of Table I indicate the raw data from such an experiment. The zero hour sample was withdrawn as soon as possible after the ether solution of arylcopper (1) and the gas chromatographic standard, durene, was removed from the glove oox ${ }^{4}$ in which it was prepared and before heat was applied. It is again seen that during the interval between 5 and 20 h , the quantities of biaryl and arene in the quenched samples become constant but that a substantial percent of the arene is monodeuterated and is thus derived from unreacted arylcoэper; that is to say, even though reaction appears to cease some time between 5 and 20 h , a large amount of the arylcopper is still present. The fourth column indicates that, although there are some fluctuations in our material balance, owing mainly to the difficulty in sampling a mixture that becomes heterogeneous after a few hours (see below), the

Table I. Decomposition of m-Trifluoromethylphenylcopper in Refluxing Ether ${ }^{\text {a }}$

	Quantities present in quenched samples, mmol^{b}			Derived quantities, mmol		
Time, h	$\mathrm{Ar}_{2}{ }^{\text {c }}$	Arene ${ }^{d}$ (\% D)	Total ${ }^{\text {e }}$	ArCu present	ArH present	$\begin{gathered} \mathrm{Ar}_{2} \\ \text { formed } f \end{gathered}$
0	0.08	1.56 (83)	1.72	1.29	0.27	0
2.5	0.22	1.50 (74)	1.94	1.11	0.39	0.14
5.0	0.40	0.91 (64)	1.71	0.58	0.33	0.32
20.0	0.57	0.84 (30)	1.98	0.25	0.59	0.49
47.5	0.54	0.89 (1)	1.97	0.01	0.88	0.46
77	0.53	0.95 (0)	2.01	0	0.95	0.45
120	0.55	0.93 (0)	2.03	0	0.93	0.47

${ }^{a}$ Solutions were prepared by dissolving 500 mg of m-trifluoromethylphenylcopper in 35 ml of ether. ${ }^{b}$ Quantities determined by gas chromatography utilizing as an internal standard durene, which was present during the reaction. ${ }^{c} \mathrm{Ar}=m$ $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \cdot{ }^{d}$ Benzotrifluoride. ${ }^{e} \mathrm{mmol}$ arene +2 (mmol biaryl). f After the zero time sample was withdrawn.
total quantity of aryl groups accounted for remains reasonably constant. The quantity of arylcopper present at each time is simply derived by multiplying the total quantity of arene in the quenched samples by the fraction ArD; these quantities are in the fifth column of Table I. The quantity of arene which is present at any time in the reaction mixture before quenching is then the total arene after quenching minus the quantity of arylcopper present and these quantities are in column 6. In the last column, the yields of biaryl (3) at various times are listed; they are calculated by subtracting the small quantity (0.08 mmol) of biaryl which is present as a contaminant when the arylcopper is first dissolved in the ether from the quantity of biaryl present at each time. Some arene (0.27 mmol) is present soon after the arylcopper is dissolved in the ether; a part of this may have been present as a contaminant in our sample of arylcopper, which was somewhat tacky, and the remainder may be formed by protolysis of the arylcopper by traces of moisture in the system.

The most striking feature of Table I is the fact that the formation of biaryl essentially ceases some time between 5 and 20 h , long before all of the arylcopper is consumed. The remaining arylcopper is thenceforth converted slowly to arene (2).

Organocopper(I) compounds frequently add to enones ${ }^{5-7}$ although attempts to add 1 mol of an arylcopper to an enone in the absence of lithium or magnesium halides have heretofore resulted in failure. ${ }^{5,6,8-10}$ Nevertheless, we have found that m-trifluoromethylphenylcopper does add to an excess of benzalacetophenone in ether solution in competition with self-coupling. When this reaction was monitored as in the
previous case, the reaction course was found to be quite analogous to that without added benzalacetophenone. The results of this experiment (Table II), and two similar ones (one of them using aqueous DCl instead of $\mathrm{D}_{2} \mathrm{O}$ alone as the quench), which exhibited the same behavior pattern, clearly indicate that conventional organocopper behavior is manifested for less than 20 h ; that is to say, the yields of biaryl and conjugate addition product (4) remain constant after 20 h . On the other hand, unconventional behavior, the conversion to arene, does not occur to any appreciable extent until toward the end of the $20-\mathrm{h}$ interval, but this reaction is essentially the only one undergone by the organocopper after 20 h . Furthermore, at the end of 20.5 h , the biaryl (3) and benzalacetophenone addition product (4) account for almost one-half of the 1.53 mmol of arylcopper present at time zero $(2 \times 0.25$ mmol of biaryl +0.21 mmol of addition product $=0.71 \mathrm{mmol}$).

$$
\begin{aligned}
& \mathrm{ArCu}+\mathrm{PhCH}=\mathrm{CHCOPh} \stackrel{\text { ether }}{\longrightarrow} \\
& \qquad \begin{array}{c}
\mathrm{ArH}+\underset{\mathrm{Ar}_{2}}{ }+\mathrm{Ph}(\mathrm{Ar}) \mathrm{CH}-\mathrm{CH}_{2} \mathrm{COPh} \\
2
\end{array} 3
\end{aligned}
$$

Since completely deuterated diethyl ether was unavailable to us, the source of the hydrogen which replaces the metal was probed by performing the decomposition of m-trifluoromethylphenylsopper (1) in refluxing perdeuteriotetrahydrofuran. Preliminary experiments in undeuterated THF using $\mathrm{D}_{2} \mathrm{O}$ quenches established that at this higher temperature, the reaction proceeded more rapidly and that the final ratio (0.34) of arene to biaryl was far lower than that (1.7) in the ether experiment, but that the broad features of the reaction were the same; biaryl production virtually ceased before the arylcopper was consumed and after that point arene production was essentially the only reaction occurring. Because of the expense of perdeuteriotetrahydrofuran, the decomposition was performed on a far smaller scale than those in the above experiments and the solution was more concentraved. After the organometallic had been dissolved in the solvent and the solution removed from the glove box, a sample was withdrawn and quenched with $\mathrm{D}_{2} \mathrm{O}$ to produce benzotrifluoride (2) with an ArD content of 76%; thus, the quantity of benzotrifluoride present at zero time was somewhat higher than those of the previous experiments (for example, in a small-scale experiment in THF, 90% of the arene produced upon quenching the zero time sample with $\mathrm{D}_{2} \mathrm{O}$ was monodeuterated; see also Tables I and II); this is probably due to the presence of more moisture in the labeled THF which was used directly from the ampule in which it was supplied. The reaction was followed by quenching withdrawn samples with $\mathrm{H}_{2} \mathrm{O}$. The ArD content of the benzotrifluoride produced when reaction was complete was 46%. Although the small quantities used in this experiment precluded an accurate estimate of the

Table II. Decomposition of \boldsymbol{m}-Trifluoromethylphenylcopper in the Presence of Benzalacetophenone in Refluxing Ether ${ }^{\text {a }}$

Time, h	Compounds present in quenched samples, $\mathrm{mmol}^{\text {b }}$				Derived quantities, mmol		
	$\mathrm{Ar}_{2}{ }^{\text {c }}$	Arene ${ }^{\text {d }}$ (\% D)	Addn product ${ }^{e}$	Total f	Ariou present	ArH present	Ar_{2} formed ${ }^{\text {g }}$
0	0.08	1.79 (85)	0	\bigcirc	1.53	0.26	0
2.5	0.17	1.36 (81)	0.13	-. 82	1.10	0.25	0.09
5.0	0.25	1.04 (78)	0.17	-. 71	0.81	0.23	0.17
20.5	0.33	0.82 (66)	0.21	-. 69	0.54	0.28	0.25
46	0.34	0.80 (30)	0.22	1.70	0.24	0.56	0.26
79	0.34	0.85 (2)	0.20	1.73	0.02	0.83	0.26
116	0.31	$0.68(0)^{h}$	0.23	-. 53	0	$0.68{ }^{h}$	0.23

${ }^{a-d}$ As in Table I. ${ }^{e}$ 1,3-Diphenyl-3-(m-trifluoromethylphenyl) propanone (4). ${ }^{f}$ mmol arene $+\mathrm{mmol} 4+2$ (mmol biaryl). ${ }^{g}$ After the zero time sample was withdrawn. ${ }^{h}$ Arene lost owing to evaporation during the long heating period.
percent conversion to benzotrifluoride of the arylcopper present at time zero, one can be confident that most, if not all, of the benzotrifluoride produced after time zero resulted from deuterium transfer from the solvent to the aryl groups since the 54% of undeuterated arene present at the end of the reaction can easily be accounted for as that which was present at time zero, presumably from hydrolysis of the organocopper. In fact, it can be calculated that if the percent conversion to arene of arylcopper present at time zero in the labeled THF were the same as that (10.4%) in the large scale more dilute run using predried THF, the percent ArD in the benzotrifluoride would be only $25 \% ;{ }^{11}$ it thus appears that somewhat more arene and less biaryl result from decomposition of the arylcopper in the isotopic experiment.

Some interesting visual observations were made during the course of all the reactions described above. The original brownish black solution turned green after about 2 h (in the ether runs) and, after about 1 h further, copper plating was observed. After about 2 h more, a brown precipitate began to form.

Discussion

As part of their elegant work on the structures and selfcoupling reactions of fluorinated arylcoppers, Cairncross and Sheppard ${ }^{3}$ made the fascinating observation that m-trifluoromethylphenylcopper (1), which is octameric in benzene solution, undergoes pairwise loss of aryl groups in the form of biaryl (3) and that metallic copper does not appear until about one-half of the arylcopper is decomposed to biaryl. Furthermore, they were able to isolate the green intermediate $\mathrm{Ar}_{6} \mathrm{Cu}_{8}$. Eventually, virtually all of the arylcopper is converted to biaryl.

$$
\mathrm{Ar}_{\varepsilon} \mathrm{Cu}_{8} \longrightarrow \mathrm{Ar}_{2}+\mathrm{Ar}_{6} \mathrm{Cu}_{8} \longrightarrow \underset{\mathrm{Ar}_{2}+\mathrm{Ar}_{4} \mathrm{Cu}_{8} \longrightarrow 2 \mathrm{Ar}_{i}+8 \mathrm{Cu}}{ }
$$

Their discovery provides an excellent basis for a rationalization of our own otherwise bewildering results. It appears likely that the cluster compound which exists in ether also splits out biaryl stepwise in competition with adding to benzalacetophenone, when the latter is present. However, some intermediate, present when about one-half of the aryl groups have been consumed ($\mathrm{Ar}_{4} \mathrm{Cu}_{8}$ if the original compound is octameric in ether), decomposes in a different way to yield arene by interaction with the solvent. The green color which develops fairly early in our decomposition reactions may very well correspond to the complex $\mathrm{Ar}_{6} \mathrm{Cu}_{8}$ isolated by Cairncross and Sheppard. ${ }^{3}$ This finding is a rather remarkable demonstration of the different behavior of which arylcoppers in different states are capable and it suggests possibly interesting properties or organocopper compounds in which the average oxidation level of the metal is between 0 and 1 .

Four different general modes of transfer of hydrogen from the ether solvent to the aryl group can be envisioned. (1) A proton abstraction by the arylcopper appears somewhat unlikely in view of the finding by Whitesides (footnote 21 of ref 12) that alkylcoppers are not sufficiently basic to abstract protons from diethyl ether; alkylcoppers would be expected to be far more basic than arylcoppers. However, this route cannot be completely ruled out since our present state of knowledge about species such as $\mathrm{Ar}_{4} \mathrm{Cu}_{8}$ is negligible. (2) Abstraction of hydrogen from the ether by nascent copper and subsequent reaction of the copper hydride with the arylcopper. An analogy for the last step is available from the work of Whitesides et al. on the decomposition of alkylcoppers. ${ }^{13}$ However, we know of no precedents in copper chemistry for the hydrogen removal step, although Tamura and Kochi, ${ }^{14}$ in order to account for the production of excess alkane during decomposition of alkylmanganese compounds, have speculated that an active form of manganese may be capable of
dehydrogenating THF to form a manganese hydride. (3) An oxidative addition of a CH bond of the ether to the arylcopper(I) could provide an arylcopper(III) hydride (5) which, by reductive elimination (path a), could yield arene and an organocopper (6). ${ }^{15,16}$ Another mole of arene would then be produced by reaction of the arylcopper with copper hydride which would readily be lost from 6. Alternatively, the same

products could be formed from 5 by heterolytic cleavage of the bond between the ether moiety and copper (path b) with either concerted abstraction of the β proton by the aryl group (oxidative elimination ${ }^{17}$) or formation of a carbonium ion (oxidative solvolysis ${ }^{17}$) and subsequent abstraction of the β proton. The oxidative addition of alkyl and aryl CH bonds to various transition metals has ample precedent. ${ }^{18}$ (4) The form of organocopper present during the latter part of the reaction may decompose to aryl radicals which can abstract hydrogen atoms from the ether. The $\alpha-\mathrm{CH}$ bonds of ethers are quite labile toward hydrogen atom removal. ${ }^{19}$ While Cairncross and Sheppard ${ }^{3}$ found no evidence for attack of aryl radicals on the benzene solvent during the decomposition of m-trifluoromethylphenylcopper, it may be either that coordination of ether with the organometallic changes the reactivity pattern or that the formation of radicals is reversible and that if no particularly low energy reaction path is available to the aryl radicals, they recombine with copper leading eventually to biaryl. A number of examples are available of radical decomposition of alkylcoppers and in several cases the alkyl radicals remove hydrogen atoms from the ether solvent; ${ }^{20}$ this mode of decomposition is particularly prevalent in the case of alkylcoppers lacking β-hydrogen atoms, although the possibility has recently been raised that alkylcoppers in general may decompose by a radical pathway. ${ }^{21}$ The radical pathway 4 has the best precedents but pathway 3 is more consistent with the apparent absence of aryl radicals during the decomposition of 1 in benzene.

In summary, a cluster compound of m-trifluoromethylphenylcopper appears to lose aryl groups by self-coupling and by conjugate addition to an enone until an intermediate species is reached. The latter organometallic does not undergo the above reactions but instead a hydrogen of the ether solvent replaces the copper to form benzotrifluoride; further work would be required to elucidate the nature of this latter reaction. This work provides the first example of the simple conjugate addition of an organocopper in the absence of lithium or magnesium salts.

Experimental Section

General. Routine infrared spectra were taken on a Beckman IR-8 spectrophotometer; when spectra were needed below $625 \mathrm{~cm}^{-1}$, a Beckman IR-10 or IR-12 spectrophotometer was used. Nuclear magnetic resonance spectra were determined on a Varian T-60 spectrometer. Chemical shift data are reported in $\delta(\mathrm{ppm})$ units relative to tetramethylsilane. For purity checks on deuterated reagents, weighed amounts of 1,4 -dioxane or chloroform were used as appro-
priate standards. Mass spectra were recorded on a LKB-9000 combined gas chromatograph-mass spectrometer; high-resolution mass spectra were determined on an AEI MS-9 spectrometer using a direct insertion probe at 70 eV .

Gas-liquid partition chromatographic (GLC) analyses were performed on a Hewlett-Packard 5750 gas chromatograph using a Disc Instruments No. 229 Series D Disc chart integrator or on a Varian Aerograph 1860-3 gas chromatograph with a No. 204 Disc chart integrator. These instruments were equipped with flame ionization detectors. Stainless steel columns ($10 \mathrm{ft} \times 0.125 \mathrm{in}$.) were used. The flow rate of air was approximately $360 \mathrm{ml} / \mathrm{min}$ and of hydrogen about $52 \mathrm{ml} / \mathrm{min}$; nitrogen carrier gas flow rates ($\mathrm{ml} / \mathrm{min}$) were 50 for the 3% OV-17 on 100/120 mesh Gas Chrom Q (column A), 22 for the 10% Carbowax 20M on 60/80 mesh Chromosorb W (B), and 47 for the 3% OV-225 on 100/120 mesh Gas Chrom Q (C). Absolute yields were calculated from peak areas using durene as internal standard. Calibration curves of three points were constructed utilizing flame response factors obtained with authentic samples. The identities of all reaction products of which authentic samples were available were checked by comparison of their retention times by coinjection on two GLC columns as well as of their mass spectra.

The percent of monodeuteriobenzotrifluoride in labeled samples of arene was determined from the relative peak heights ${ }^{22}$ in the combined GLC-mass spectrogram at 15 eV utilizing column B.

Drybox work was performed in a Labconco fiberglass controlled atmosphere glove box. The prepurified nitrogen was passed through a tube of copper turnings, heated $\left(450^{\circ} \mathrm{C}\right)$ in a tube furnace, and a column of Drierite. The usual precautions for handling air and moisture sensitive organometallic compounds were observed. ${ }^{23}$ The apparatus in which the organocopper was used was assembled and charged with the reagents in the glove box and was then removed to the bench where the dry nitrogen atmosphere was maintained.

Reagents and Solvents. Durene, m-iodobenzotrifluoride, magnesium, and tetrahydrofuran- d_{8} (Norell Chemical Co.) were used directly as obtained from commercial sources. m-Bromobenzotrifluoride (Pierce Chemical Co.) was also used as supplied; it is known to contain ca. 2% of the para isomer which cannot be removed by distillation through a spinning band column. ${ }^{26}$ Benzalacetophenone (chalcone, Eastman and J. T. Baker) was recrystallized from ethanol, $\operatorname{mp} 59.0-59.5^{\circ} \mathrm{C}$. Copper powder (Valimet 1107, formerly Englehard Magna 1107) was activated ${ }^{28}$ with 0.24 M aqueous ammonia. 1,4Dioxane was heated at reflux over lithium aluminum hydride, distilled at $101{ }^{\circ} \mathrm{C}$, and stored under nitrogen over 5 A molecular sieves. Deuterium chloride solution was prepared by adding deuterium oxide to benzoyl chloride ($1: 2$ mole ratio) and distilling under nitrogen. Deuterium oxide- d_{2} (Stohler Isotope Chemicals, 99.8% D) purity checks (NMR vs. dioxane standard) were performed on various bottles and ranged from 99.2 to 99.9% D. Diethyl ether (J. T. Baker, anhydrous reagent), was heated at reflux over lithium aluminum hydride for several hours and distilled under nitrogen. Tetrahydrofuran (Fisher certified) was heated at reflux with lithium aluminum hydride for several hours, distilled under nitrogen, bp $66^{\circ} \mathrm{C}$, and stored in the drybox for use in organocopper reactions.

3,3'-Bis(trifluoromethyl)biphenyl (3). This compound was prepared by an Ullmann coupling of m-iodobenzotrifluoride according to the procedure of Petit and Tatlow. ${ }^{24}$ The product distilled at atmospheric pressure at $242.0-243.5^{\circ} \mathrm{C}$ (lit. $.^{24} \mathrm{bp} 237-240^{\circ} \mathrm{C}$). GLC analysis indicated greater than 99% purity: NMR $\left(\mathrm{CCl}_{4}\right) 7.5-7.8 \mathrm{ppm}$ (m); ir 1343, 1325, 1306, 1253, 1168, 1130, 1099, 1078, 1047, 795, and $702 \mathrm{~cm}^{-1}$; mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $291\left[16,(\mathrm{P}+1)^{+}\right]$, 290 (base, P^{+}), 271 (15, $\mathrm{P}^{+}-\mathrm{F}$), 207 (20), 206 (19), 205 (21), 179 (68), 177 (72), 145 ($8, \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{6}{ }^{2+}$ or $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{3}{ }^{+}$), 99 (11), 74 (13), 59 (20).

3-(m-Trifluoromethylphenyl)-3-phenylpropiophenone (4). This compound was prepared by the method used by Holmberg and Axberg ${ }^{25}$ to prepare 3,3-diphenylpropiophenone. A solution of 5.20 $\mathrm{g}(25.0 \mathrm{mmol})$ of benzalacetophenone in dry ether $(40 \mathrm{ml})$ was added dropwise during 50 min to the Grignard reagent prepared from 1.41 $\mathrm{g}(62.5 \mathrm{mmol})$ of m-bromobenzotrifluoride, and $1.50 \mathrm{~g}(61.8 \mathrm{mmol})$ of magnesium in 30 ml of dry ether. The addition rate was controlled so as to maintain the mixture at reflux $\left(34-36^{\circ} \mathrm{C}\right)$ and the mixture was heated at reflux for an additional 20 min . The reaction products were poured into a mixture of ice water and hydrochloric acid and the resulting mixture was extracted with ether. The ether extract was washed with saturated solutions of sodium bicarbonate and sodium chloride. Concentration of the dried ether extract gave a brown oil which was twice recrystallized from ethanol-benzene (5:3) to give a \tan solid: $\mathrm{mp} 60.7-62.0^{\circ} \mathrm{C}$; ir $\left(\mathrm{CCl}_{4}\right) 3100-3030(\mathrm{ArCH}), 1690(\mathrm{C}=\mathrm{O})$, $1330\left(\mathrm{CF}_{3}\right), 1130 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CCl}_{4}\right) \delta 6.8(\mathrm{~m}, \mathrm{ArH}), 4.9(\mathrm{t}, \mathrm{CH})$, and $3.7 \mathrm{ppm}\left(\mathrm{d}, \mathrm{CH}_{2}\right)$; mass spectrum (70 eV) m/e (rel intensity) 354 (24 , $\left.\mathrm{P}^{+}\right), 336(11), 335\left(10, \mathrm{P}^{+}-\mathrm{F}\right), 236(10), 235\left(63, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}^{+} \mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right)$,

171 (10), 166 (16), 165 (23), 106 (25), 105 (base, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$), 77 (80, $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$), 51 (10); high-resolution mass spectrometric molecular weight calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}, 354.1231$; found, 354.1224.
m-Trifluoromethylphenylcopper (1). The compound was prepared according to the method of Cairncross and Sheppard. ${ }^{3,26}$ A fou--neck $100-\mathrm{ml}$ round-bottom flask was fitted with a condenser with nitrogen inlet, a thermometer, a dropping funnel with pressure equalizing arm, ard a filtering assembly consisting of a medium sintered glass filter followed by an adapter to a vacuum stopcock leading to ε one-neck 0 -ring receiving flask.

After magnesium ($0.97 \mathrm{~g}, 40 \mathrm{mmol}$) had been charged to the flask, the oven-dried assembled apparatus was further dried by flame while being purged with nitrogen; a solution of 9.0 g (40 mmol) of m bromobenzotrifluoride in 40 ml of anhydrous distilled ether was added dropwise during $0.5-0.75 \mathrm{~h}$ to the magnesium with magnetic stirring at a rate which allowed the mixture to reflux gently. The mixture was heated at reflux for a total time of 1 h from the start of the addition anc then cooled to $0^{\circ} \mathrm{C}$. A solid addition tube containing $6.3 \mathrm{~g}(44$ mrrol) of purified copper(I) bromide ${ }^{27}$ was substituted for the thermoneter under increased nitrogen flow; the contents were added in portions in a few minutes. After being stirred for 0.5 h at $0^{\circ} \mathrm{C}$, the mixture was slowly treated over 0.75 h with 15 ml of dry distilled dioxane, and enough cold ether was added to fill the flask (ca. 40 ml). The mixture was filtered in vacuo by inverting the entire apparatus while the filter assembly and receiving flask were being cooled. The solid was washed with an ice-cold solution of ether (40 ml) and dioxane (5 ml) in three portions over $1-1.5 \mathrm{~h}$.
The filtrate was evaporated first on a flash evaporator using a Sargent-Welch Duo-Seal pump (no. 1399) with two traps in Dewar flasks filled with liquid nitrogen. When the distillation flask was cooled in slush baihs of 2-propanol/dry ice and 1,2-dichloroethane/ liquid nitrogen $\left(-35^{\circ}\right), 0.6-2.0 \mathrm{~mm}$ pressure was obtained and the buls of the solvent was stripped off in 3-4 h . The last 10 ml of solvent, including dioxane, was removed on a vacuum line at ca. $10^{-5} \mathrm{~mm}$ using suc cessively the above two slushes followed by an ice bath for 4 h to yield a sticky, brownish black solid. The evacuated flask was taken into the glove box and the contents packed as weighed samples (usually 0.50 g) in vials sealed with Parafilm and stored in a closed jar in a Dewar flask of dry ice. Samples were removed for use singly by renroving a vial from the jar in a nitrogen-filled glove bag, then quickly returning the jar o? samples to the Dewar. The best yield was 52% but not all the mass of solid could be scraped from the flask. The product was characterized and its purity determined in the following manner. A sample of m-trifluoromethylphenylcopper, which had been stored $\left(-78^{\circ} \mathrm{C}\right)$ for 6 months, was dissolved in dry ether and treated with deuterium oxide in a glove bag under nitrogen. The dried ether extract was analyzed by ccmbined GLC-mass spectrometry. By far the major peak was deuteriobenzotrifluoride: MS (15 eV) m/e 148 (7.7), 147 (base, $\mathrm{DC}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-$), 146 (7.7). The arene was calculated ${ }^{22}$ to be 98% monodeuterated. The gas chromatogram also showed that the arylcopper was contaminated with a few percent of dioxane, and minute traces of m-bromobenzotrifluoride, a chlorobenzotrifluoride, and biaryl; all were identified by mass spectrometry.

Some dry $m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cu}$ was exposed to air upon which the brownish black solid was transformed to green crystals. Anal. (Alfred Bernhardt) $\mathrm{Cu}, 36.03 ; \mathrm{Mg}, 0.0$ (limit 0.2%). The $\mathrm{Cu} / \mathrm{Mg}$ atomic ratio is at least 70/1; Cairncross ${ }^{26 \mathrm{a}}$ found 101/1, 117/1.

The infrared spectrum of 1 in the $2000-200-\mathrm{cm}^{-1}$ region was determined as follows. By the use of Nujol which had been deoxygenated by passing nitrogen through it, a sample of $\left(m-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{8} \mathrm{Cu}_{8}$ of kncwn high purity was mulled in a glove box between KBr plates; the edges of the plates were wrapped with Parafilm. The sample was placed in a desiccator along with a sample mulled between polypropylone plates similarly wrapped. The spectra of both samples were determined as soon as possible with a nitrogen atmosphere in the sample compartment. The polypropylene plates were used in the ranges $95-260 \mathrm{~cm}^{-1}$ (Beckman IR-11) and $200-400 \mathrm{~cm}^{-1}$ (Beckman IR-12); the KBr plates were used in the range $400-2000 \mathrm{~cm}^{-1}$ (Beckman IR-12). Spectrum: 1583 (m), 1456 (s), 1446 (sh), 1366 (m), 1348 (sh), 1324 (s), 1309 (s), 1179 (sh), 1140 (s,br), 1130 (sh), 1095 (s), 1082 (s), 1049 (s), 992 (m), 933 (m), 897 (m), 892 (m), 878 (m), 874 (sh), $864(\mathrm{sh}), 797(\mathrm{~s}), 706(\mathrm{~m}), 678(\mathrm{~s}), 666(\mathrm{~m}), 642(\mathrm{~m}), 614(\mathrm{~m}), 344,278$ cm^{-1}.

Decomposition of m-Trifluoromethylphenylcopper in the Absence and Presence of Benzalacetophenone in Ether. Initial exploratory experiments were performed with solutions of the organocopper and benzalacetophenone in ether. Samples were withdrawn from time to time and quenched with $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$. The final quantitative reactions were performed as follows. In a glove box, a $50-\mathrm{ml}$ thr ee-neck flask equipped with a serum cap, a condenser mounted
with a gas inlet tube containing a stopcock, and, in those experiments with benzalacetophenone, an addition funnel was charged with 500 $\mathrm{mg}(2.40 \mathrm{mmol})$ of 1 and a solution of $67.2 \mathrm{mg}(0.500 \mathrm{mmol})$ of durene in 35 ml of ether. The flask was removed from the glove box but maintained under a nitrogen atmosphere, magnetic stirring was started, and the first $1.5-\mathrm{ml}$ sample was withdrawn by syringe through the septum. The solution was heated to reflux, when the timing began. Other $1.5-\mathrm{ml}$ samples were withdrawn from time to time. Each sample was injected into 2 ml of ice-cold $\mathrm{D}_{2} \mathrm{O}$, and the mixture was stirred for 15 min under nitrogen and extracted with four $6-8 \cdot \mathrm{ml}$ portions of ether. The dried (magnesium sulfate) ether extract was stored in capped vials at $-20^{\circ} \mathrm{C}$ within a closed jar containing Drierite. The visually observed changes which occurred during the reaction are described in the Results. The same procedure was used for the decompositions in the presence of benzalacetophenone, except that an ethereal solution of $2.00 \mathrm{~g}(9.60 \mathrm{mmol})$ of the latter was added by the addition funnel; the total volume of ether was also 35 ml . The experiment was done in triplicate; in one run, DCl in $\mathrm{D}_{2} \mathrm{O}$ was used for the quench and it was necessary to wash the ether extracts with aqueous sodium bicarbonate and saturated saline solution before drying.

Decomposition of 1 in Tetrahydrofuran. The large-scale run was performed in the same manner as that in ether except that 35 ml of THF was used instead of the ether. The zero hour sample contained 0.10 mmol of biaryl and 1.98 mmol of arene which contained 92% ArD. The following are the results of analyses of samples withdrawn at the stated times after refluxing commenced [time, mmol of biaryl, mmol of arene (\% ArD)): $0.5 \mathrm{~h}, \mathrm{C} .24,1.57$ (89%); $1.5 \mathrm{~h}, 0.49,1.33(85 \%) ; 3 \mathrm{~h}$, $0.97,0.35$ (41\%); $18.5 \mathrm{~h}, . .01,0.31$ (0\%); $45 \mathrm{~h}, 1.05,0.34(0 \%)$. The small-scale runs in THF and perdeuterio-THF were performed in similar fashion except that $27 \mathrm{mg}(0.20 \mathrm{mmol})$ of durene, 100 mg (0.48 mmol) of arylcopper, and 2 g of THF were used. In the experiment with unlabeled solvent, $\mathrm{D}_{2} \mathrm{O}$ quenches were used. In the experiment with labeled solvent, the zero hour sample (0.3 ml) was quenched with $\mathrm{D}_{2} \mathrm{O}$ and subsequent samples with $\mathrm{H}_{2} \mathrm{O}$. Extractions of the quenched samples were performed ir. centrifuge tubes. with centrifugation being used to break the emulsions. The yields of products were somewhat erratic but, in general, the usual trends were observed. In the labeled case, the zero hour sample contained arene which was 76% monodeuterated and the $3-5.5-$, and 18 -h samples were 43,46 , and 46% monodeuterated, respectively.

Acknowledgments. We thank the National Science Foundation for partial support of this work (Research Grant GP 22955 and Science Development Grant GU 3184i. We are very grateful to Dr. Allan Cairncross for providing the procedure for synthesizing m-trifluoromethylphenylcopper and some analytical data on this compound. We thank Drs. Ronald Berninger and John Wood and Mr. John Naworal for recording the mass spectra, Mr. James Boal for determining the exact molecular weight of the conjugate addition product, and

Mr. Monroe Snider for recording the infrared spectrum of the organometallic.

Registry No.-1, 18206-44-5; 3,580-82-5; 4, 58540-91-3; benzalacetophenone, 94-41-7; ether, 60-29-7.

References and Notes

(1) Taken in part from the Fh.D. Thesis of Mordecai D. Treblow, University of Pittsburgh, 1972. Presented in part at the Sixth International Conference on Organometallic Chemistry. University of Massachusetts, Aug 1973, Abstract No. 211.
(2) T. Cohen and T. Poeth, J. Am. Chem. Soc., 94, 4363 (1972); A. H. Lewin and T. Cohen, Tetrahedron Lett., 4531 (1965).
(3) A Caimcross and W. A. Sheppard, J. Am. Chem. Soc., 93, 247 (1971).
(4) This arylcopper is quite sensit ve to oxygen and moisture. ${ }^{3}$
(5) G. H. Posner. Org. React., 19, 1 (1972).
(6) A. E. Jukes, J. Organomet. Chem., 12, 290 (1974)
(7) J. F. Normant, Synthesis, 63 (1972).
(8) No monomeric addition produst could be detected from the reaction of phenylcopper with benzalacetophenone: A. E. Jukes, S. S. Dua, and H. Gilman, unpublished studies cited in ref 6.
(9) H. Gilman, R. G. Jones, and L. A. Wood, J. Org. Chem., 17, 1630 (1952).
(10) N. T. Luong-Thi and H. Riviere, Tetrahedron Lett., 1579, 1583 (1970); 587 (1971).
(11) Let $X=$ the fraction of ArD in the benzotrifluoride of the last quenched sample: let $Y=\mathrm{mmol}$ of ArH present at zero time; let $Z=\mathrm{mmol}$ of ArCu present at zero time. Then $Z /(Y+Z)=0.76$ and $Z=3.17 Y ; 0.104 Z /(Y$ $+0.104 Z=X=0.25$. The 0.104 is the assumed fraction of arylcopper, present at time zero, which is converted to arene by reacting with the solvent.
(12) G. M. Whitesides, E. J. Janek, and E. R. Stedronsky, J. Am. Chem. Soc., 94, 232 (1972).
(13) G. M. Whitesides, E. R. Stedronsky, C. P. Casey, and J. San Filippo, Jr., J. Am. Chem. Soc., 92, 1426 (1970).
(14) M. Tamura and J. Kochi, J. Organomet. Chem., 29, 111 (1971).
(15) For extensive references to oxidative additions to copper(I), organocopper(III) intermediates, and reductive eliminations of the latter, see T. Cohen, J. Wood, and A. G. Dietz, Tetrahedron Lett., 3555 (1974); T. Cohen and J. G. Tirpak, ibid., 143 (1C75).
(16) An analogous process would be possible if the arylcopper were in a lower oxidation state than 1 .
(17) J. K. Kochi in "Free Radicals". Vol. 1, J. K. Kochi, Ed., Wiley. New York, N.Y., 1973. p 661
(18) G. W. Parshall, Acc. Chem. Res., 8, 113 (1975)
(19) T. Cohen, R. J. Lewarchik, and J. Z. Tarino, J. Am. Chem. Soc., 96, 7753 (1974), and references cited therein.
(20) Reference 6, p 245.
(21) J. K. Kochi, Acc. Cherr. Res., 7, 351 (1974).
(22) K. Biemann, "Mass Spectrometry: Organic Chemical Application", McGraw-Hill, New York, N.Y.. 1962, pp 223-227.
(23) D. F. Shriver, "The Manipulation of Air-Sensitive Compounds", McGraw-Hill, New York, N.Y.. 1969
(24) M. R. Petit and J. C. Tallow, J. Chem. Soc., 1071 (1954).
(25) G. A. Holmberg and J. Axberg. Acta Chem. Scand., 17, 967 (1963).
(26) (a) Private communication from Dr. A. Cairncross; (b) A. Cairncross and W. A. Sheppard, U.S. Patent 3700693 (1972).
(27) G. B. Kauffman and L. A. Teter, Inorg. Synth., 7, 9 (1963).
(28) A. H. Lewin. M. J. Zouko W. H. Rosewater, and T. Cohen, Chem. Commun. 80 (1967)

Methanolysis Products of Dichloro(1,5-cyclooctadiene)palladium(II) in the Presence of Bases and of Its Methoxy Adducts ${ }^{1}$

Curtis B. Anderson, * B. J. Burreson, and J. T. Michalowski
Department of Chemistry, University of California, Santa Barbara, Santa Barbara, California 93106

Received November 17, 1975

When di- μ-chloro- and di- μ-methoxidobis(2 -methoxycyclooct- - -enyl)dipalladiumiII) were refluxed in methanol with and without added bases and when dichloro(1,5-cyclooctadiene)palladium(II) was re:luxed in methanol with added bases, complex mixtures of products were obtained comprising 4 -cyclooctenyl methyl ether and $2,4-, 2,5-$, $3,5-$ - and 1.5 -cyclooctadienyl methyl ethers as well as 4 -cyclooctenone. Products were identified, and mechanisms are discussed.

Dichloro(1,5-cyclooctadiene)palladium(II) (1) and the methoxy adduct derived from it, di- μ-chlorobis(2-methoxy-cyclooct-5-enyl)dipalladium(II) ($2-\mathrm{Cl}$), were reported by Chatt and Vallarino in 1957. ${ }^{2}$ Although many other adducts of

1,5-cyclooctadiene have been made and some of their reactions studied, ${ }^{3}$ the nature of the organic oxidation products has been given only scant attention. ${ }^{4}$ In this report the complex mixtures of organic oxidation products formed when dichloro(1,5-

Table I. Percentage Yield of Products from Methanolysis of (Cyclooctadiene)palladium chloride (1),
Di- μ-chlorobis(2 -methoxycyclooct-5-enyl)dipalladium(II) (2-Cl), and
Di- μ-methoxidobis(2-methoxycyclooct-5-enyl)dipalladium(II) (2-OMe) in Refluxing Methanol ($\left.68{ }^{\circ} \mathrm{C}\right)^{a}$

Reaction conditions: compd (mmol), base (mmol), reaction duration, h									Total organic	$\begin{aligned} & \text { Total } \\ & \text { Pd } \end{aligned}$	$\begin{gathered} \mathrm{COD}- \\ \mathrm{PdCl}_{2} \\ \text { re- } \\ \text { covered } \end{gathered}$
2-Cl (0.94), none	12.4	<0.1	1.6	0.8	1.8	6.4	1.8	22.3	52.1	53.4	44.6
5	(23.3)		(3.0)	(1.5)	(3.4)	(11.8)	(3.4)	(51.2)	(97.6)	(98.5)	
$\underset{5}{2-\mathrm{Cl}}(0.91), \mathrm{Na}_{2} \mathrm{CO}_{3}(9.4)$	4.1	0	39.2	14.7	27.3	11.2	0.1	5.1	96.6	99.0	0
$2-\mathrm{OMe}(0.81)$, none	6.9	<0.1	43.6	22.0	15.4	5.5	0	6.4	99.8	97.5	0
1 (2.44), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (3.05)	2.7	0.6	15.5	5.7	10.8	13.2	0.2 (0.3)	12.8^{b}	61.5	66.0	34.0
${ }^{5}$	(4.2)	(0.9)	(23.3)	(8.6)	(16.3)	(20.3)	(0.3)	(19.4)			
$\begin{aligned} & 1(2.03), \mathrm{Na}_{2} \mathrm{CO}_{3}(9.4) \\ & \\ & \hline \end{aligned}$	4.3	0	36.8	11.5	18.5	16.4	<0.1	$12.0{ }^{\text {b }}$	99.0	100.0	0
$\begin{aligned} & 1(3.36), \mathrm{NaOMe}(3.5) \\ & 1 \end{aligned}$	7.4	0.7	$52.3{ }^{\text {c }}$	18.7	9.5	4.7	0	6.4	99.7	99.0	0
1 (3.4), NaOMe (3.5)	<0.1	<0.1	40.0	56.0	<0.1	<0.1	<0.1	<0.1	96.0	100.0	0
1 (2.0), NaOMe (4.1)	1.1	1.2	55.8	27.3	8.4	2.8	0	3.2	99.8	98.5	0
1											
1 (1.95), NaOMe (5.9)	0	1.6	60.4	36.3	1.6	<0.1	0	<0.1	99.9	97.5	0
1											
1 (2.2), NaOMe (8.7)	0	0.2	58.0	41.0	0.3	0.3	0	<0.1	99.7	100.0	0
1											

${ }^{a}$ All reaction solutions were in 15 ml of MeOH . Values in parentheses are based on the amount of complex which reacted where reaction was not complete. b In two early experiments, cyclo دct- 4 -enone was not observed, but 1 , 5 -cyclooctadienyl ether was (retention time, 67 min). In later experiments, only the cyclooctenone could be found. c In this experiment, the 2,4-dinitrophenylhydrazone of formaldehyde was obtained in 51% vield.
cyclooctadiene)palladium(II) (1) and its methoxy adduct, 2, are refluxed in methanol will be described.

The cyclooctadiene palladium chloride complex, 1 , is prepared by precipitating it from a solution of sodium tetrachloropalladate(II) and 1,5-cyclooctadiene in methanol. The methoxy-palladium chloride adduct, $2-\mathrm{Cl}$, can be formed by stirring the diene complex in methanol with sodium carbonate. Reaction with 1 equiv of sodium methoxide might seem a reasonable alternate method, ${ }^{5}$ but with this system we found that a di- μ-methoxido-methoxy adduct was formed, di- μ-methoxidobis(2-methoxycyclooct-5-enyl)dipalladium(II) (2-OMe).

Dichloro(1,5-cyclooctadiene)palladium(II) (1), which is only slightly soluble in methanol does not react when a suspension is stirred and refluxed $\left(68^{\circ} \mathrm{C}\right)$ for 10 h . Less than 0.1% decomposed. When this diene complex is refluxed in methanol with various added bases, palladium metal is precipitated quantitatively as a mirror and small particles within 1-3 h .

When the adduct $2-\mathrm{Cl}$ is refluxed in methanol without added base, hydrogen chloride is formed as the reaction proceeds in addition to palladium metal and organic products. This hydrogen chloride reacts with the unreacted adduct $2-\mathrm{Cl}$ converting it to diene complex 1 which is stable in refluxing methanol in the presence of hydrogen chloride. As can be seen in Table I, after 5 h , a 53% yield of palladium was found and a 45% yield of 1 was recovered. In the presence of sodium carbonate $2-\mathrm{Cl}$ gives no 1 (Table I), but like the methoxido adduct 2-OMe gives palladium and oxidized products. In the
rest of the experiments in Table I, 1 was stirred with base in methanol until the yellow color of 1 disappeared and then was refluxed for the times stated.

The organic product mixtures were analyzed by gas chro-ma-ography. The percentage yields of products from these reactions are listed in Table I. The organic products were identified by comparison of the gas chromatograph retention time and the NMR, ir, and uv spectra of collected peaks with those of samples synthesized in independent ways. The organic products from the methanolysis reactions were $1,5-$ cyc-ooctadiene, cyclooctyl methyl ether, 4-cyclooctenyl methyl ether, 2,4-cyclooctadienyl methyl ether, 2,5-cyclooctadienyl methyl ether, 3,5-cyclooctadienyl methyl ether, cyclooctanone, 4 -cyclooctenone, and palladium metal. All of these products, excəpt 1,5-cyclooctadienyl methyl ether, which is discussed later, were found to be stable in methanol in the presence of hydrogen chloride, sodium carbonate, sodium methoxide, and 1 fcr the reaction times. The syntheses of these compounds will be found in the Experimental Section. The organic product yields were calculated by adding a calibrated internal standard. Total palladium metal was measured by filtering the reaction solution and weighing.

The methanolysis products arise from two primary reactions of the methoxypalladium adduct: (1) the reductive cleavage of the carbon-palladium σ bond by complexed alcohol yielding a monoenyl ether and (2) the β-elimination of HPdX yielding a dienyl ether. The very minor amount of saturated compounds probably arise from the hydrogenation of the double bond by palladium hydride formed in situ. Formation of 1,5 -cyclooctadiene may be explained by the deoxypalladatior of the adduct which is minor in the solvolysis of the methoxy adduct.

The reductive cleavage product is 4 -cyclooctenyl methyl ether. Tsuji ${ }^{6}$ noted that degradation of the methoxy adduct, 2-Cl, with methoxide yielded 4-cyclooctenyl methyl ether and that a similar $\mathrm{r} \in$ ductive cleavage of di- μ-chlorobis(8-dieth-oxycarbonylmethyl-4-cyclooctenyl)dipalladium(II) by ethoxide in ethanol yielded 4 -cyclooctenyl malonate. The ethanol was presumed to be oxidized to acetaldehyde which was not
isolated. Base and ethanol has been used as a reducing agent for producing hydridoplatinum complexes. ${ }^{7}$

When the diene complex, 1 , was solvolyzed in methanol with excess sodium carbonate, the 4 -cyclooctenyl methyl ether isolated (36.8% yield, see Table I) by gas chromatography showed a parent peak in the mass spectrum at $m / e 140$. The methyl ether from the solvolysis in methanol- d_{1} was collected and the mass spectrum showed the parent peak at $m / e 140$ which is the same as in the undeuterated methanol from above. The $\mathrm{P}: \mathrm{P}+1$ ratio was within experimental error of the value calculated on the basis of the natural abundance of isotopes. The same reaction of the diene complex, 1 , in methanol- d_{4} gave 4-cyclooctenyl methyl ether with the parent peak at $m / e 144$ demonstrating that this product contained four deuterium atoms. Three of the deuterium atoms must be on the methyl group as the methoxy adduct $2-\mathrm{Cl}$ was prepared in situ, and one was introduced at C-2 from the methanol- d_{4} methyl group in the reductive cleavage reaction.

In another experiment, when the reaction product solution (after filtering off the palladium metal) was treated with 2,4-dinitrophenylhydrazine reagent, a yellow solid was formed. This turned out to be the 2,4-dinitrophenylhydrazone of formaldehyde by melting point and mixture melting point, and the yield of this 2,4-dinitrophenylhydrazone corresponded to the yield of 4-cyclooctenyl methyl ether. A mechanism for this reductive cleavage of the carbon-palladium σ bond by complexed alcohol can be formulated as shown, $3 \rightarrow 4 \rightarrow 5$.

3

5
The reacting species in methanol is not the binuclear adduct di- μ-chlorobis(2-methoxycyclooct-5-enyl)dipalladium (2-Cl), because it is largely solvolyzed in methanol solution yielding a methanol coordinated palladium species, $3 .{ }^{8}$ Base removes a proton giving a methoxidopalladium intermediate, 4. That this methoxidopalladium intermediate is the reactive species is suggested by the increasing yield of 4-cyclooctenyl methyl ether with increasing base strength. Compare data in Table I for reactions with no base (and hence in the presence of developing HCl) with those with added sodium carbonate and with added sodium methoxide. With no base present, the yield of 4 -cyclooctenyl methyl ether is only 3%, but in the presence
of base the yield increases to $37-60 \%$. However, in sodium methoxide, the complex must be almost all the methoxidopalladium species 4 because increasing the sodium methoxide concentration makes only a small increase in the monoenyl ether.

The β-elimination of HPdX from 2 yields dienyl ethers (Table I). The 4 -cyclooctenone obtained is formed from a β-elimination of the adduct yielding 1,5 -cyclooctadienyl methyl ether (7) which in the presence of acid or palladium(II) converts to the 4 -cyclooctenone. In early experiments with base present the vinyl ether 7 was observed instead of the ketone, but in later runs only the unsaturated ketone was found. The vinyl ether was identified by the ir and NMR spectra of the collected GC peak as well as by the observation that addition of aqueous acid converted it to 4 -cyclooctenone. We were unsuccessful in preparing this compound by another route, no doubt because of the large strain energy of the cyclooctadiene system. ${ }^{9}$ The reason that it could not be isolated in later experiments could be isomerization in the gas chromatograph despite efforts to prevent it. Thus, the total percentage of products to or through dienyl ethers (including 4 -cyclooctenone) ranges from 71.3% of the oxidized organic product in acidic solution to 38% in basic solution (see Table I).

As pictured $3 \rightarrow 6$, a cis β-elimination of HPd from the trans adduct leads to a 1,5 -cyclooctadienyl ether 7 which in acidic

solution would form 4 -cyclooctenone. A trans β-elimination of the elements of HPdX could only result from a cis adduct, but also should be base catalyzed, since the base would be able to assist in pulling off the hydrogen trans to the palladium to give the dienyl product. However, the data do not support this because much more 4 -cyclooctenone is formed in acidic solution with no added base (see Table I). The isomerization by β-elimination-addition (see below) will not lead to vinyl ether unless the adduct was originally trans (or unless the olefin moiety is free from the palladium at some stage). Thus, vinyl ether and hence 4 -cyclooctenone arise via cis β-elimination of HPdX from a trans adduct.

A cis β-elimination of HPd from 2 would also be expected to form the 2,5 -cyclooctadienyl methyl ether. Although the 2,5-dienyl ether is stable in refluxing methanol in the presence of acid or bases or 1 for these reaction times, other dienyl ethers are found besides. Consequently it is proposed that intermediate olefin hydridopalladium species readd and undergo elimination leading to the other dienyl ethers as shown below ($2 \rightarrow 8,9,10$). Such elimination-addition has been proposed before for olefin isomerization by $\mathrm{Pd}^{\mathrm{II}} .^{10}$

Although the rearrangement of dienyl ethers is easily rationalized, the reason for the relative amounts of each isomer is not obvious. In the literature the 3,5 -cyclooctadienyl derivatives appear to be more stable than the 2,4-inasmuch as

8
2,4-will thermally isomerize to $3,5-{ }^{11}$ Probably the differences in the product yields can be attributed to the different reactivities of the various reactive intermediates which would be present under the different reaction conditions ($3-\mathrm{Cl}, 3-\mathrm{OCH}_{3}$, and $4-\mathrm{Cl}$) and of the hydrido intermediates $5-\mathrm{Cl}, 6-\mathrm{Cl}$, and $6-0 \mathrm{Me}$.

Another anomaly is that the product composition of the reactions in the presence of sodium carbonate does not change when they are refluxed longer than needed to give a quantitative yield of palladium. This is not the case for the reactions with added sodium methoxide. Even though the yield of palladium is within experimental error of quantiative, the ether product distribution changed under continued reflux.

As pointed out earlier, if there is insufficient sodium carbonate to neutralize product hydrogen chloride, 1 will be formed. The hydrogen chloride arises as follows:
$(\mathrm{COD}) \mathrm{PdCl}_{2}+2 \mathrm{MeOH} \rightarrow$
$(\mathrm{CODOMe}) \mathrm{PdCl}(\mathrm{MeOH})+\mathrm{HCl}$

$(\mathrm{CODOMe}) \mathrm{PdCl}(\mathrm{MeOH}) \rightarrow$ products $+\mathrm{Pd}+\mathrm{HCl}$

In Table I where one might think 3.05 mmol of sodium carbonate should neutralize 2.44 mmol of 1 , it can be seen that 1 mol of sodium carbonate only neutralizes 1 mol of hydrogen chloride. Apparently sodium bicarbonate does not neutralize the hydrogen chloride so that it cannot react with the intermediates to form 1. Furthermore, in Table I where the ratio of 1 to sodium methoxide is $1: 1$, the reaction goes quantitatively to palladium (0) and oxidized organic products instead of yielding a 50% yield of 1 back again. The only conclusion we can draw is that hydridopalladium species do not decompose to metal immediately, but are relatively long lived, more so in the sodium methoxide reactions than in those with carbonate. Perhaps related is the ease of reduction of carbonate phosphine platinum complexes. ${ }^{12}$

A final anomaly is the observation that although some cyclooctadiene is formed in some reactions, nevertheless the yield of palladium is essentially quantitative. Note that deoxymetalation of 2 would lead to cyclooctadiene and palladium(II) (no oxidation-reduction). The facts can, however, be explained as the result of deoxymetalation of a species like 5 , the hydridopalladium adduct, which would deoxypalladate to cyclooctadiene and palladium and hydrogen chloride ultimately.

Experimental Section

Chloro Complexes. Dichloro(1,5-cyclooctadiene)palladium(II) (1) was prepared by Chatt's method: $\mathrm{mp} 210^{\circ} \mathrm{C}$ dec (lit. ${ }^{2} 205-210^{\circ} \mathrm{C}$
dec); NMR spectral resonances at 6.48 (multiplet, 4 protons) and 2.80 pprr ($\mathrm{m}, 8$ protons); uv spectrum $\lambda_{\text {max }} 347.5 \mathrm{~nm}(\epsilon 1680)$ in chloroform. Di- μ-chlorobis(2-methoxycyclooct-5-enyl)dipalladium(II) ($2-\mathrm{Cl}$): mp $150-155^{\circ} \mathrm{C} \mathrm{dec}\left(\right.$ lit. $^{2} 136-140^{\circ} \mathrm{C} \mathrm{dec}$); NMR (chloroform) 1.60 (m, 1), $2.00(\mathrm{~m}, 4), 2.40(\mathrm{~m}, 4), 3.21(\mathrm{~s}, 3), 3.60(\mathrm{~m}, 1), 5.70 \mathrm{ppm}(\mathrm{m}, 2)$; uv spectrum $\lambda_{\text {max }} 325 \mathrm{~nm}(\epsilon 3430)$ in chloroform.

Di- μ-methoxido(2-methoxycyclooct-5-enyl)dipalladium(II) (2-OMe). To a solution of $1.50 \mathrm{~g}(0.0268 \mathrm{~mol})$ of sodium methoxide in 50 ml of methanol cooled to $-20^{\circ} \mathrm{C}$ was added $3.00 \mathrm{~g}(0.011 \mathrm{~mol})$ of 1 . After a few minutes, a white solid formed which was filtered, washed with methanol, and dried to yield $2.60 \mathrm{~g}(90 \%)$ of $2-\mathrm{OMe}, \mathrm{mp}$ $110-120^{\circ} \mathrm{C}$ dec.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Pd}_{2}$: C, 43.42; $\mathrm{H}, 6.56 ; \mathrm{Pd}, 38.46$. Found: $\mathrm{C}, 43.17$; $\mathrm{H}, 6.74$; $\mathrm{Pd}, 38.22$. NMR spectrum (chloroform) 1.5 (m, 1), $2.00(\mathrm{~m}, 4), 2.60(\mathrm{~m}, 4), 3.22(\mathrm{~s}, 3), 3.28(\mathrm{~s}, 3), 3.60(\mathrm{~m}, 1), 5.20 \mathrm{ppm}(\mathrm{m}$, 2); Lv (chloroform) $\lambda_{\text {max }} 315.0 \mathrm{~nm}(\epsilon 3510)$.

Solvolysis Method. A weighed sample of the complex was added to a solution of sodium methoxide or a slurry of sodium carbonate in 15 ml of methanol. The mixtures were stirred at room temperature until the yellow color of the diene complex disappeared, and then the mixtures were heated at reflux for the times given in Table I. After cool.ng, the palladium black was filtered off on a sintered glass funnel, washed with methanol and water, and dried to constant weight. The organic products in Table I were analyzed by GC using a $3 \mathrm{~m} \times 0.25$ in. column of 20% Carbowax 4000 on non-acid-washed $60 / 80$ mesh Chromosorb W operated at $100^{\circ} \mathrm{C}$ and 13 psi. Under these conditions the retention times are as follows: 1,5 -cyclooctadiene, 15 min ; cyclooctyl methyl ether, 36 min ; 4 -cyclooctenyl methyl ether, 39 min ; 2,4-cyclooctadienyl methyl ether, 40.5 min ; 2,5 -cyclooctadienyl methyl ether, 50.5 min ; 3,5-cyclooctadienyl methyl ether, 52 min ; cyclooctanc ne, $94 \mathrm{~min} ; 4$-cyclooctenone, 106 min . Percentages of products were obtained by using a calibrated internal standard, 1,5 -cyclooctadiəne. The GC peaks were cut out and weighed. Thermal response differences were taken into account in calculating yields.

Ir two early experiments, cyclooct-4-enone was not observed among the products of methanolysis in the presence of sodium carbonate (Table I). Instead, a peak was observed at a retention time of 67 min . Treatment of the product mixture with a drop of dilute sulfuric acid caused the $67-\mathrm{min}$ peak to disappear and the appearance of the 4cyclooctenone peak at 106 min . The 67 -min peak is thought to be the 1 -methoxy-1,5-cyclooctadiene. A weak, possibly impure NMR spectrum of the collected peak showed resonances at $\delta 5.9,5.1,3.7$, and 2.4 pprr. The ir spectrum of the collected peak showed absorptions at 170 (s), 1670 (m), besides 3010 (m), 2940 (vs), 2850 (s), 1475 (s), 1100 cm^{-1} (vs).

Ir experiments where the yield of formaldehyde was measured (Table I), the reaction solution after GC analysis was added to 2,4dinitrophenylhydrazine solution prepared according to the instructions of Shriner, Fuson, and Curtin. ${ }^{13}$ The solid 2,4-dinitrophenylhydrazone was chromatographed and recrystallized, 0.34 g (51\%), $\mathrm{mp} 166-168{ }^{\circ} \mathrm{C}$ (lit..$^{13} \mathrm{mp} 166^{\circ} \mathrm{C}$). A mixture melting point with an authentic sample was not depressed.

4-Cyclooctenyl Methyl Ether. 4-Cyclooctenol ${ }^{14}$ ($2 \mathrm{~g}, 0.016 \mathrm{~mol}$) was added to sodium hydride ($1 \mathrm{~g}, 0.22 \mathrm{~mol}$) 54% in mineral oil suspended in dimethylformamide and stirred for 1 h . Methyl iodide (3 $\mathrm{g}, 0.321 \mathrm{~mol}$) was added slowly, and the mixture was stirred for 1 h . Water was added dropwise with stirring. The mixture was extracted with ether. After drying and concentrating the ether solution, the product was distilled $1.7 \mathrm{~g}(76 \%)$, bp $45-47^{\circ} \mathrm{C}(4 \mathrm{~mm})$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.67$; $\mathrm{H}, 11.50$. Found: $\mathrm{C}, 77.67$; H, 11.75. NMR spectrum $\delta 1.5-1.9(\mathrm{~m}, 6), 1.9-2.4$ centered at $2.1(\mathrm{~m}, 4)$, 3.18 (s, 3), 3.2 (m, 1), 5.5 ppm (broad m, 2).

Cyclooctyl Methyl Ether. The saturated ether was prepared from commercially available cyclooctanol by the method as described above: bp $58-60^{\circ} \mathrm{C}(5 \mathrm{~mm})$ [lit. ${ }^{15} \mathrm{bp} 76-77^{\circ} \mathrm{C}(18 \mathrm{~mm})$]; NMR spectrum $\delta 1.55(\mathrm{~m}, 14), 3.12(\mathrm{~s}, 3), 3.10 \mathrm{ppm}(\mathrm{m}, 1)$.

4 -Cyclooctenone. A 10% solution of $4 \mathrm{~g}(0.032 \mathrm{~mol})$ of 4 -cyclooctencl ${ }^{14}$ in pyridine was added to $4.5 \mathrm{~g}(0.045 \mathrm{~mol})$ of chromium trioxide in 45 ml of pyridine and stirred for 24 h . Water was added, and the mixture was extracted with ether. The ether solution was washed with water and 10% hydrochloric acid, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and concentrated. Distillation gave $2 \mathrm{~g}(50 \%)$ of the ketone: bp $50-53^{\circ} \mathrm{C}(2 \mathrm{~mm})$; NMR spectrum $\delta 1.4$ (broad $\mathrm{m}, 10$), $2.2 \mathrm{ppm}(\mathrm{m}, 4)$; ir spectrum $3020(\mathrm{~m})$ 2940 (s), 2850 (m), 1710 (vs), 1475 (m), 1340 (m), $740 \mathrm{~cm}^{-1}$ (m). 2,4 Din trophenylhydrazone was made and purified by column chromatography, mp 187-189 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} 194-196^{\circ} \mathrm{C}$).

2,4-Cyclooctadienyl Methyl Ether. 2,4-Cyclooctadienyl acetate was prepared by Cope's method, ${ }^{17}$ bp $50-55{ }^{\circ} \mathrm{C}(0.3 \mathrm{~mm})$ [lit. ${ }^{17} 56-57$ $\left.{ }^{\circ} \mathrm{C}(0.6 \mathrm{~mm})\right]$. To a solution of $2 \mathrm{~g}(0.012 \mathrm{~mol})$ of 2,4 -cyclooctadienyl acetate dissolved in dry dimethylformamide was added $1.5 \mathrm{~g}(0.033$
mol) of sodium hydride 54% in mineral oil. After stirring for 1 h , methyl iodide ($9 \mathrm{~g}, 0.064 \mathrm{~mol}$) was added slowly, and sti:ring was continued for 1 h . Water was added dropwise, and the mixture was extracted with ether. The ether solution was washed with water and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. After evaporation of ether, the residue was distilled, bp $40-43^{\circ} \mathrm{C}(2 \mathrm{~mm}), 0.7 \mathrm{~g}(42 \%)$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, 78.40; H, 10.31. NMR spectrum $\delta 1.1-1.9(\mathrm{~m}, 4), 1.9-2.2(\mathrm{~m}, 2), 3.21(\mathrm{~s}, 3), 3.90$ ($\mathrm{m}, 1$), 5.3-6.0 ppm (m, 4).
2,5- and 2,6-Cyclooctadienyl Acetate. Method A. A suspension of $70 \mathrm{~g}(0.22 \mathrm{~mol})$ of mercuric acetate, $30 \mathrm{~g}(0.28 \mathrm{~mol})$ of 1,5 -cyclooctadiene, and 50 ml of acetic acid was refluxed for 3 h , producing metallic mercury. The brown solution was decanted from the mercury, and 300 ml of ether added. The ether solution was extracted with water and saturated sodium bicarbonate solution, dried, and concentrated. The residue was distilled, bp $75-77^{\circ} \mathrm{C}(2 \mathrm{~mm})$, giving 21 g (58%) of a mixture of $7 \% 2,5$ - and $93 \% 2,6$-cyclooctadienyl acetate by GC reak areas. The peaks were separated by GC.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, $72.26 ; \mathrm{H}, 8.49$. Found for the 2,5 isomer: $\mathrm{C}, 72.17 ; \mathrm{H}, 8.66$. For the 2,6 -isomer: $\mathrm{C}, 72.43 ; \mathrm{H}, 8.75$.

Method B. A mixture of $30 \mathrm{~g}(0.28 \mathrm{~mol})$ of 1,5 -cyclooctadiene and $40 \mathrm{~g}(0.22 \mathrm{~mol})$ of N-bromosuccinimide in 200 ml of carbon tetrachloride was refluxed with a catalytic amount of $2,2^{\prime}$-azobis- 2 methylpropionitrile for about 5 h . The succinimide was filtered off, and the solution was washed with hot water and saturated sodium carbonare solution and dried over sodium carbonate. After the solvent was removed under reduced pressure, the residue was dissolved in 50 ml of acetic acid. Silver acetate ($37 \mathrm{~g}, 0.22 \mathrm{~mol}$) suspended in 200 ml of acetic acid was added slowly with cooling and stirring. The silver bromide was filtered off and 300 ml of ether was added to the solution which was then washed with water and aqueous sodium bicarbonate and dried. After the solvent was removed, the residue was distilled, bp $62-68{ }^{\circ} \mathrm{C}(1 \mathrm{~mm})$, giving $24 \mathrm{~g}(65 \%)$ of a mixture of $30 \% 2,5$ - and 70% 2,6-cyclooctadienyl acetates.

2,5- and 2,6-Cyclooctadienol. A mixture of 20.0 g (0.12 mol) of 93% 2,6- and 7% 2,5-cyclooctadienyl acetate was added to 15 g of sodium hydroxide dissolved in 200 ml of methanol and refluxed for 1 h . The mixture was neutralized with dilute hydrochloric acid and extracted with ether. After drying and removal of the ether, the residue was distilled, giving $13.6 \mathrm{~g}(91 \%)$, bp $70-78^{\circ} \mathrm{C}(1 \mathrm{~mm})$, of a mixture of 89% $2,6-$ and $11 \% 2,5$-cyclooctadienols as determined by GC. The isomers were separated by GC.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 77.36 ; \mathrm{H}, 9.74$. Found for 2,6 isomer: C , $77.21 ; \mathrm{F}, 9.86$. For the 2,5 isomer: C, 77.59 ; $\mathrm{H}, 9.89$.

2,5- and 2,6-Cyclooctadienyl Methyl Ethers. A mixture of 2,5and 2,6 -cyclooctadienol ($10.0 \mathrm{~g}, 0.08 \mathrm{~mol}$) was added slowly to 200 ml of ether containing $10 \mathrm{~g}(0.17 \mathrm{~mol})$ of a 40% sodium dispersion (5μ) in xylene. The mixture was stirred for 1 h , whereupon $20 \mathrm{~g}(0.14 \mathrm{~mol})$ of methyl iodide was added. After the mixture was stirred for 12 h and refluxed for 2 h , methyl alcohol was added dropwise consuming the excess sodium. More ether was added, and the solution was washed with water and dried. After the ether was removed, the residue was distilled giving $7.9 \mathrm{~g}(72 \%)$, bp $42-45^{\circ} \mathrm{C}(2 \mathrm{~mm})$, of a mixture of 86% 2,6 - and $14 \% 2,5$-cyclooctadienyl methyl ether by GC. The isomers were separated by GC.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found for the 2,5 isomer: $\mathrm{C}, 77.9 € ; \mathrm{H}, 10.07$. For the 2,6 isomer: $\mathrm{C}, 78.07 ; \mathrm{H}, 10.13$. NMR spectrum for 2,5 $\delta 1.00-1.70(\mathrm{~m}, 2), 1.70-2.10(\mathrm{~m}, 2), 2.70-2.90(\mathrm{~m}, 2), 3.21$ (s, 3), 4.00-4.50 (m, 1), 5.05-5.80 ppm (m, 4); for 2,6 $\delta 1.80-2.80(\mathrm{~m}$, $6), 3.21(\mathrm{~s}, 3), 4.50(\mathrm{~m}, 1), 5.40 \mathrm{ppm}(\mathrm{m}, 4)$.

3,5-Cyclooctadienyl Acetate. Employing the method of Crandall, ${ }^{11} 10 \mathrm{~g}(0.093 \mathrm{~mol})$ of 1.3 -cyclooctadiene and $10 \mathrm{~g}(0.09 \mathrm{~mol})$ of selenium dioxide in 60 ml of acetic acid were refluxed for 13 h . After 150 ml of uater was added, the solution was neutralized with sodium carbonate and steam distilled. The distillate was extracted with ether.

After the ether solution was dried, the ether was removed and the residue was distilled, giving $4.8 \mathrm{~g}(31 \%)$ of the 3,5 -acetate, bp 63-65 ${ }^{\circ} \mathrm{C}(2 \mathrm{~mm})$. If this reaction was terminated after 4 h , the product was 2,4 -cyclooctadienyl acetate, $5.2 \mathrm{~g}(33 \%)$, bp $69-72^{\circ} \mathrm{C}(3 \mathrm{~mm})$ [lit. ${ }^{17}$ $\left.56-57^{\circ} \mathrm{C}(0.6 \mathrm{~mm})\right]$. Mercuric acetate oxidation of 1,3 -cyclooctadiene gave similar results. The 3,5 -acetate was also obtained by brominating cyclooct-4-enyl acetate with N-bromosuccinimide (as described above) and eliminating the elements of hydrogen bromide by treating the bromocyclooct-4-enyl acetate with magnesium hydrogen orthophosphate trihydrate in dimeth.ylformamide at $80^{\circ} \mathrm{C}$ for 36 h . NMR spectrum for 3,5 isomer $\delta 1.70(\mathrm{~m}, 2), 2.30(\mathrm{~m}, 4), 1.98(\mathrm{~s}, 3), 4.75(\mathrm{~m}$, 1), $5.70 \mathrm{ppm}(\mathrm{m}, 4)$.

3,5-Cyclooctadienyl Methyl Ether. Cycloocta-3,5-dienyl acetate $(2 \mathrm{~g}, 0.012 \mathrm{~mol})$ in 10 ml of ether was added dropwise to $1 \mathrm{~g}(0.026 \mathrm{~mol})$ of lithium aluminum hycride in 25 ml of ether, and the mixture was stirred for 30 min . Water was added dropwise until the excess hydride had reacted. After 10 ml of saturated ammonium chloride solution was added, the ether solution was separated, washed with water, and dried. After the ether was removed, the alcohol was etherified in procedure similar to that above for the cyclooct-4-enyl methyl ether. The ether product distilled, bp $40-42^{\circ} \mathrm{C}(1 \mathrm{~mm})$, giving $1.2 \mathrm{~g}(72 \%)$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21$; $\mathrm{H}, 10.21$. Found: C, $78.23 ; \mathrm{H}$, 10.34. NMR spectrum $\delta 1.44-2.20(\mathrm{~m}, 2), 2.20-2.50(\mathrm{~m}, 4), 3.22(\mathrm{~s}, 3)$, 3.20-3.40 (m, 1), 5.40-5.80 ppm (m, 4).

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work.

Registry No.-1, 12107-56-1; 2-Cl, 12096-15-0; 2-OMe, 58384-26-2; 7, 58343-31-0; 8, 58343-32-1; 9, 58343-33-2; 10, 58343-34-3; 4-cyclooctenyl methyl ether, 13366-81-9; 4-cyclooctenol, 4277-34-3; methyl iodide, 74-88-4; cyclooc:yl methyl ether, 3637-63-6; cyclooctanol, 696-71-9; 4-cyclooctenone, 6925-14-0; 2,4-cyclooctadienyl acetate, 10095-82-6; 2,5-cyclooctadienyl acetate, 23346-41-0; 2,6-cyclooctadienyl acetate, 23346-42-1; 1,5-cyclooctadiene, 111-78-4; 2,5-cyclooctadienol, 10054-74-7; 2,6-cyclooctadienol, 10017-18-2; 2,6-cyclooctadienyl methyl ether, 16538-86-6; 3,5-cyclooctadienyl acetate, 10095-81-5.

References and Notes

(1) Presented in part at the First Chemical Congress of the North American Continent, Mexico City, Mexico, Dec 1975.
(2) J. Chatt. L. M. Vallarino, and L. M. Venanzi, J. Chem. Soc., 2496, 3413 (1957)
(3) P. M. Maitlis, "The Organic Chemistry of Palladium", Vol. I, Academic Press, New York, N Y., 1971. pp 74-103, 159-168.
(4) R. G. Schultz, J. Organomet. Chem., 6, 435 (1966).
(5) M. Green and R. I. Hancock, u. Chem. Soc. A, 2054 (1970).
(6) J. Tsuji and H. Takahashi, J. Am. Chem. Soc., 90, 2387 (1968)
(7) For example, J. Chatt and B. L. Shaw. Chem. Ind. (London), 290 (1961); J. Chem. Soc., 5075 (1962).
(8) Unpublished work of M. E. Munemo and C. B. Anderson.
(9) N. L. Allinger and J. T. Sprague, J. Am. Chem. Soc., 94, 5734 (1972)
(10) Reference 3, p 93; Vol. I, pp 127-142; R. Cramer and R. V. Lindsay, J. Am. Chem. Soc., 88, 3534 (1966).
(11) J. K. Crandall and L. H. Chang. J. Org. Chem., 32, 532 (1967).
(12) D. M. Blake and R. Mersecchi, Chem. Commun., 1045 (1971); D. M. Blake and C. M. Leung, Inorg Chem., 11, 2879 (1972); C. Eaborn, A. Pidcock, and B. R. Steele, J. Chem. Soc., Dalton Trans., 809 (1975).
(13) R. L. Shriner, R. G. Fuson, and D. Y. Curtin, "The Systematic Identification of Organic Compounds'", 5th ed. Wiley, New York, N.Y., 1965.
(14) A. C. Cope and P. E. Peterson J. Am. Chem. Soc., 81, 1643 (1959); J. K. Crandall, D. B. Banks, R. A. Colyer, R. J. Watkins, and J. P. Arsington, J. Org. Chem. 33, 423 (1968).
(15) J. K. Stille and R. A. Morgan, J. Am. Chem. Soc., 88, 5135 (1966).
(16) N. Heap and G. H. Whitham, J. Chem. Soc. B, 164 (1966).
(17) A. C. Cope, S. Moon. C. H. Park, and G. L. Woo. J. Am. Chem. Soc., 84, 4865 (1962)

Additions and Cycloadditions of Cyclopentadienyl Metal Compounds to Benzyne

Gary R. Buske ${ }^{1 a}$ and Warren T. Ford ${ }^{* 1 b}$
The Roger Adams Laboratory, Department of Chemistry, University of I'linois, Urbana, Illinois 61801

Received August 12, 1975

Abstract

Cyclopentadienyllithium, -sodium, and -potassium add to benzyne. generated from metal amides and chlorobenzene in tetrahydrofuran (THF), to form phenylcyclopentadiene (3) in low yiflds. In contrast, cyclopentadienylmagnesium halides (CpMgX), trimethylsilylcyclopentadiene, and trimethylstannylcyclopentadiene (CpSnMe_{3}) cycloadd to benzyne, generated from o-bromofluorobenzene and magnesium in THF, to give 7 -benzonorbornadienyl metal compounds (2). The major product from CpSnMe_{3}, however, is o-fluorotrimethylstannylbenzene. In the presence of 2 equiv of hexamethylphosphoramide, CpMgBr and benzyne produce both 2 and 3 . The results suggest a σ-bonded structure for the CpMgX which cycloadds to benzyne.

Benzyne is a highly reactive dienophile in $[2+4]$ cycloadditions, undergoes [$2+2$] cycloadditions, is very susceptible to nucleophilic additions, participates in the ene reaction, and inserts into carbon-hydrogen bonds. ${ }^{2}$ It cycloadds to both cyclopentadiene and cyclopentadienylmagnesium bromide ($1 \mathrm{~d}, \mathrm{CpMgBr}$) in refluxing tetrahydrofuran (THF) to give benzonorbornadiene (4) in 66 and 21% yields, respectively. ${ }^{3}$ Deuterolysis after the CpMgBr reaction leads to 4 with 0.91 atom excess deuterium located exclusively in the anti- 7 position, implying that cycloaddition produces 7 -benzonorbornadienylmagnesium bromide (2, M $=\mathrm{MgBr}) .{ }^{4}$ Benzyne also cycloadds to methyl-, 1,3 -di-methyl-, trimethylsilyl-, and tert-butylcyclopentadienes and to the corresponding cyclopentadienylmagnesium chlorides to give substituted benzonorbornadienes. ${ }^{5}$

To determine whether the structure of CpMgBr which cycloadds to benzyne is σ - (monohapto) or π - (pentahapto) bonded, we have studied reactions of benzyne with a variety of other metallocyclopentadienes (1). If σ-bonded CpMgBr is the reactive species, the cycloaddition is a common Diels-Alder reaction of a 5 -metallocyclopentadiene, whereas if π-bonded CpMgBr is the reactive species, the reaction is a highly unusual cycloaddition of a delocalized cyclopentadienyl anion to benzyne.

Results

Benzyne was generated from o-bromofluorobenzene and magnesium turnings in THF for reactions of cyclopentadienylmagnesium, silicon, and tin compounds, and from chlorobenzene and either lithium 2,2,6,6-tetramethylpiperidide, sodium amide, or potassium amide for reactions of cyclopentadienylalkali compounds. Although many other methods of benzyne generation are known, ${ }^{2}$ the methods chosen appeared to be the most compatible with metallocyclopentadienes.

The products from these metallocyclopentadienes and benzyne are shown in Table I. Treatment of ferrocene with benzyne generated by the organomagnesium route gave no detectable phenylcyclopentadiene (3) or benzonorbornadiene (4) and left much unreacted ferrocene. We usually tried to identify only 2-4. The low yields are probably due to (a) other reactions of benzyne, such as formation of biphenylene and triphenylene, ${ }^{6}$ (b) reactions of benzyne with the adducts, and (c) instability of phenylcyclopentadiene (3). The 1,4-diphenylcyclopentadiene and pentaphenylcyclopentadiene isolated from the CpNa reactions are examples of further reactions of 1:1 adducts with benzyne. Upon standing overnight after GLC isolation, 3 dimerized or polymerized. Since the efficiencies of its polymerization while standing in THF prior to GLC isolation, and its depolymerization in the injection port of the gas chromato-

la, $M=\mathrm{Li}(\mathrm{CpLi})$
b, $\mathrm{M}=\mathrm{Na}(\mathrm{CpNa})$
c, $M=K(\mathrm{CpK})$
d, $\mathrm{M}=\mathrm{MgX}(\mathrm{CpMgX})$
e, $\mathrm{M}=\mathrm{SiMe}_{3}\left(\mathrm{CpSiMe}_{3}\right)$
f, $\mathrm{M}=\mathrm{SnMe}_{3}\left(\mathrm{CpSnMe}_{3}\right)$

4

3
graph, are not known, yields of 3 are only lower limits. On the other hand, products 2 and 4 listed in Table I were quite stable to the isolation conditions and could be detected if present in vields of $\geq 0.05 \%$ by GLC-mass spectrometry. The varied methods of benzyne generation must also affect the yields.

Reaction of CpSnMe_{3} and benzyne produced benzonorbornadiene (4), o-fluorotrimethylstannylbenzene (5), and anti-7-trimethylstannylbenzonorbornadiene ($2, \mathrm{M}=$ antiSnMe_{3}). Although 4 and 5 could not be separated by preparative GLC, they were identified by GLC-mass spectrometry, elemental analysis, and ${ }^{1} \mathrm{H}$ NMR as an 8.3:91.7 mixture. Displacement of cyclopentadienide from CpSnMe_{3} by o-fluorophenylmagnesium bromide, the intermediate which leads to benzyne, ${ }^{2}$ is analogous to the trarismetalations of allyl- and vinylstannanes with lithium alkyls which prcduce allyl- and vinyllithium. ${ }^{7}$ Reaction of benzyne with the displaced CpMgBr may account for the small amount of 4 produced. The configuration of $2(\mathrm{M}=$ ant:- SnMe_{3}) was established by ${ }^{1} \mathrm{H}$ NMR experiments whish detected long-range coupling between the syn-7 proton and vinyl protons. ${ }^{8-10}$

Discussion

Most of the reactivity differences in Table I may be attributed to a fundamental structural difference between al-

Table I. Reactions of Metallocyclopentadienes and Benzyne

Reactant	\% yield $^{\text {a }}$		
	2	4	$3^{\text {b }}$
CpLi		0	3.9
$\mathrm{CpNa}{ }^{\text {c }}$		0	9.9 ${ }^{\text {d }}$
CpK		0	0.9
CpMgBr^{e}		21-29	0
$\mathrm{CpMgCl}-\mathrm{HMPA}$		0.24	1.1
$\mathrm{CpSiMe}_{3}{ }^{\text {i }}$	52		0
$\mathrm{CpSnMe}{ }^{\text {g }}$	1.9	3.6	0

${ }^{a}$ Determined by GLC and based on equimolar amounts of CpM and the benzyne precursor. Of products 2 only the $\mathrm{M}=\mathrm{SiMe}_{3}$ and $\mathbf{M}=\mathrm{SnMe}_{3}$ compounds withstand hydrolysis. ${ }^{b}$ Yields of 3 are lower limits because of its instability (see text). ${ }^{c}$ Also isolated were 1,4-diphenylcyclopentadiene (2.1%) and pentaphenylcyclopentadiene (1.7\%). ${ }^{d}$ A tenfold excess of CpNa gave 3 in 80% yield (ref 26). ${ }^{e}$ References 3 and 4. ${ }^{f}$ Reference 5. ${ }^{B}$ Also isolated was ofluorotrimethylstannylbenzene (32.1\%).
kali cyclopentadienides on the one hand and CpSiMe_{3} and CpSnMe_{3} on the other. Solid-phase ir spectra of CpLi CpNa , and $\mathrm{CpK}^{11 a, \mathrm{~b}}$ and ir and uv spectra of CpLi and CpNa in THF solutions ${ }^{11 \mathrm{c}}$ support pentahapto structures in which the metal is located near the C_{5} axis of the cyclopentadienide. As 1 M THF solutions employed here, the alkali cyclopentadienides should consist of ion aggregates. CpSiMe_{3} at room temperature is a mixture of $3 \% 1-, 7 \% 2-$ and $90 \% 5$-substituted ${ }^{12} \sigma$-bonded isomers, ${ }^{13-15}$ which cycloadd to benzyne in 52% yield to produce $16 \% 1-, 12 \% 2-$, 2% syn-7-, and 70% anti-7-trimethylsilylbenzonorbornadienes. ${ }^{5} \mathrm{CpSnMe}_{3}$ has been shown by electron diffraction, ${ }^{16}$ ir, ${ }^{14}$ NMR, ${ }^{17}$ and mass spectroscopic ${ }^{13}$ methods to be σ bonded also. Excluding cyclopentadienylmagnesium compounds the reactivity pattern is clear: ionic pentahapto metallocyclopentadienes undergo nucleophilic addition to benzyne to produce phenylcyclopentadiene, while covalent monohapto metallocyclopentadienes cycloadd to produce metallobenzonorbornadienes. Ferrocene has a pentahapto structure ${ }^{18}$ but is too weakly nucleophilic to add to benzyne under our conditions.
What is the structure of the cyclopentadienylmagnesium halide which cycloadds to benzyne? Gas-phase electron diffraction ${ }^{19}$ and solid-phase x-ray diffraction ${ }^{20}$ studies indicate $D_{5 h}$ or $D_{5 d}$ symmetry for dicyclopentadienylmagnesium ($\mathrm{Cp}_{2} \mathrm{Mg}$), and an x -ray crystal structure of the tetraethylethylenediamine solvate of CpMgBr shows that the metal atom lies near the cyclopentadienide C_{5} axis. ${ }^{21}$ Although solid- and gas-phase structures are not necessarily the same as structures in solution, ir and uv spectra of $\mathrm{Cp}_{2} \mathrm{Mg}, \mathrm{CpMgCl}$, and CpMgBr in THF also support pentahapto structures. ${ }^{11 \mathrm{c}}$ It is possible that as much as $5-10 \%$ of a monohapto CpMgX could exist in equilibrium with the pentahapto species in THF solution (eq 1) and not be de-

tected by ir or uv. From the reactivity pattern observed for the other metallocyclopentadienes, we propose that the CpMgX which cycloadds to benzyne is σ bonded.
In the presence of 2 equiv of hexamethylphosphoramide (HMPA) CpMgCl and benzyne produced traces of both 3 and 4 , and after deuterolysis the benzonorbornadiene contained excess deuterium according to its mass spectrum. The high affinity of HMPA for magnesium is known to increase greatly the ionic character of organomagnesium
compounds. ${ }^{22}$ HMPA could shift the equilibrium of eq 1 far to the left, which would inhibit cycloaddition of the σ-bonded form and give CpMgCl properties similar to those of alkali cyclopentadienides.

The stereospecificity of benzyne addition to CpMgX can be explained readily by reaction of the σ-bonded isomer. Methyl, trimethylsilyl, and trimethylstannyl groups at the 5 position of cyclopentadiene all produce predominantly anti-7-substituted benzonorbornadienes, presumably because of steric hindrance between the substituents and benzyne in the transition states leading to the corresponding syn isomers. A magnesium halide group with its THF solvation shell is certainly more bulky than a methyl group and may be even larger than trimethylsilyl and trimethylstannyl groups. Therefore benzyne prefers to cycloadd to the side of the cyclopentadiene opposite the magnesium to form anti-7-benzonorbornadienylmagnesium halide. Deuterolysis with retention of configuration then produces exclusively benzonorbornadiene-anti-7-d.

Indenylmagnesium bromide in THF also cycloadds to benzyne to produce 9,10 -dihydro-9,10-methanoanthracene. ${ }^{4,23}$ Isoindenylmagnesium halide (6) is required to ex-

6
plain this result with a σ-bonded intermediate. In metalloindenes the rates of [1,2] metallotropic shifts are known to increase in the order $\mathrm{H}<\mathrm{Si}<\mathrm{Ge}<\mathrm{Sn} .{ }^{24}$ Although the highly endothermic conversion of indene to isoindene by a [1,5] sigmatropic hydrogen shift proceeds readily only at $>200^{\circ} \mathrm{C},{ }^{25}$ the conversion of indenylmagnesium halide to 6 might occur readily by a [1,2] metallotropic shift. Indeed, the trimethylsilyl analogue of 6 has been trapped in a Diels-Alder reaction with tetracyanoethylene at room temperature. ${ }^{24 a}$ Also in agreement with our proposal of cycloaddition of benzyne to a σ-bonded metalloindene is the failure of indenyllithium and indenylsodium to form cycloadducts with benzyne. ${ }^{26}$

Experimental Section

General. Microanalyses were performed by J. Nemeth and associates. Infrared spectra were obtained either as a thin film between sodium chloride plates with a Perkin-Elmer Model 237B instrument or as a potassium bromide pellet with a Beckman IR-12 instrument. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Varian T-60, A-60A A-56/60, or HA-100 spectrometers with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard except with compounds containing tin. The HA-100 equipped with a Hewlett-Packard Model 200ABR audio oscillator was used for decoupling experiments. Routine mass spectra were recorded on a Varian-MAT CH-5 mass spectrometer. GLC-mass spectrometry experiments were performed with a 6-ft 3% SE-30 on 100/120 Gas Chrom Q glass column on a Varian-MAT CH-7 mass spectrometer equipped with a Varian Model 2700 gas chromatograph. GLC analyses were performed on a $0.125 \mathrm{in} . \times 4 \mathrm{ft} 20 \%$ Apiezon L on $60 / 80$ Chromosorb W column with a helium flow of $20 \mathrm{ml} / \mathrm{min}$ on a Hewlett-Packard Model 700 instrument equipped with a thermal conductivity detector. Product yields were determined relative to an n-alkane internal standard without correction for thermal conductivity differences. Preparative GLC separations were performed on a Varian Model A-90-P instrument using a 0.25 in. $\times 10 \mathrm{ft} 10 \%$ SE- 30 on $60 / 80$ Chromosorb W column with a helium flow of $60 \mathrm{ml} / \mathrm{min}$. All reactions were performed with dry glassware under a dry nitrogen atmosphere.

Materials. The o-bromofluorobenzene (Aldrich), chlorotrimethylstannane (Aldrich), magnesium turnings (Baker), sodium amide (Fisher), $n-\mathrm{BuLi}$ in hexane (titrated as 2.31 M , Alfa), and 3.1 M ethylmagnesium chloride in ether (Alfa) were used as obtained. The chlorobenzene (Fisher), 2,2,6,6-tetramethylpiperidine (Aldrich), and hexamethylphosphoramide (Aldrich) were distilled from calcium hydride under nitrogen. Cyclopentadiene was prepared by cracking its dimer immediately before use. Tetrahydrofu-
ran was distilled under nitrogen from sodium benzophenone ketyl just before use.

Cyclopentadienyllithium (1a) and Benzyne. A solution of 3.3 g (50 mmol) of cyclopentadiene and 7.77 g (55 mmol) of $2,2,6,6-$ tetramethylpiperidine in 30 ml of THF was added dropwise over a period of 30 min to 104 mmol of n-butyllithium in hexane at -78 ${ }^{\circ} \mathrm{C}$. A white precipitate formed during the addition. After the mixture had warmed to room temperature, the solvent was removed under vacuum and replaced with 30 ml of THF. The white solid dissolved. The solution was heated to reflux, and 5.63 g (50.0 mmol) of chlorobenzene in 20 ml of THF was added dropwise over a period of 40 min . Reflux was continued for 1 h . Solid $\mathrm{NH}_{4} \mathrm{Cl}(10$ g) was added to the cooled solution, 15 min later 200 ml of water was added cautiously, and the solution was acidified with concentrated HCl . The phases were separated, and the aqueous phase was extracted with three portions of ether. The combined organic phases were extracted with two $200-\mathrm{ml}$ portions of 1 N HCl , two $200-\mathrm{ml}$ portions of $5 \% \mathrm{NaHCO}_{3}$, and 200 ml of saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated on a rotary evaporator. GLC analysis at $200^{\circ} \mathrm{C}$ using $n-\mathrm{C}_{17} \mathrm{H}_{36}$ as an internal standard showed a 3.9% yield of phenylcyclopentadiene (3) identified as described in the CpNa reaction which follows. Several small peaks of retention time similar to that of benzonorbornadiene (4) were observed, but were proven not to be 4 by GLC-mass spectrometry.

Cyclopentadienylsodium (1b) and Benzyne. A solution of 6.6 $\mathrm{g}(0.10 \mathrm{~mol})$ of cyclopentadiene in 25 ml of THF was added dropwise with stirring to $8.19 \mathrm{~g}(0.21 \mathrm{~mol})$ of sodium amide in 35 ml of THF at 25°. After stirring for 1 h the mixture was heated to reflux, and $11.25 \mathrm{~g}(0.10 \mathrm{~mol})$ of chlorobenzene in 30 ml of THF was added dropwise over a period of 45 min . Reflux was maintained for 1 h more, the mixture was neutralized with 12 g of solid $\mathrm{NH}_{4} \mathrm{Cl}$, and 2 h later water was added cautiously. The mixture stood overnight. After acidification with HCl the phases were separated and the aqueous phase was extracted with three portions of ether. The combined organic phases were extracted with two $200-\mathrm{ml}$ portions of 1 N HCl , two $200-\mathrm{ml}$ portions of $5 \% \mathrm{NaHCO}_{3}$, and 200 ml of saturated NaCl and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed on a rotary evaporator. Addition of CCl_{4} to the residual oil gave 0.27 g of red-brown precipitate which was recrystallized from ethanol to yield $0.23 \mathrm{~g}(1.06 \mathrm{mmol}, 2.1 \%)$ of 1,4 -diphenylcyclopentadiene: mp $155-159{ }^{\circ} \mathrm{C}$ (lit. mp 156, ${ }^{27 \mathrm{a}} 158-158.5,{ }^{27 \mathrm{~b}} 155.5-157^{\circ} \mathrm{C}^{27 \mathrm{c}}$); ir (KBr) $3070(\mathrm{~m}), 1500(\mathrm{~m}), 1452(\mathrm{~m}), 920(\mathrm{~m}), 754(\mathrm{~s})$, and $695 \mathrm{~cm}^{-1}(\mathrm{~s})$; mass spectrum (70 eV) m/e (rel intensity) 220 (2), 219 (19), 218 (100), 217 (27), 216 (7), 215 (19), 203 (16), 202 (26), 115 (14); calcd for $\mathrm{C}_{17} \mathrm{H}_{14},(\mathrm{P}+1) / \mathrm{P}=18.7 \%$, $(\mathrm{P}+2) / \mathrm{P}=1.75 \%$. The ${ }^{1} \mathrm{H}$ NMR spectrum agreed with that in the literature. ${ }^{27 c}$
The CCl_{4} filtrate was distilled and $1.41 \mathrm{~g}(9.92 \mathrm{mmol}, 9.9 \%)$ of phenylcyclopentadiene (3) was collected at $115-120{ }^{\circ} \mathrm{C}$ (0.2 Torr) [lit. bp $73^{\circ} \mathrm{C}\left(5\right.$ Torr) ${ }^{26}{ }^{2} 180-220^{\circ} \mathrm{C}(760 \text { Torr })^{28}$]. Neat liquid 3 dimerized or polymerized upon standing overnight. A pure sample was obtained by preparative GLC at 230° : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.05$ $(\mathrm{m}), 3.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 6.08(\mathrm{~m}), 6.33(\mathrm{~m}), 6.48(\mathrm{~m}), 6.75(\mathrm{~m})$, 7.0-7.5 (broad m). The relative peak areas at 3.05-3.23, 6.08-6.75, and $7.0-7.5$ were $2: 3: 5$. The relative peak areas at 3.05 and 3.23 were $4: 3$, tentatively assigned to the methylene protons of 2 phenylcyclopentadiene and 1-phenylcyclopentadiene, respectively. This ${ }^{1} \mathrm{H}$ NMR spectrum agrees with a previous report. ${ }^{26}$ Mass spectrum (70 eV) m/e (rel intensity) 143 (53), 142 (94), 141 (100), 116 (20), 115 (98), 89 (25), 69.5 (33), 57.6 (26), 51 (23), 38 (35).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10}: \mathrm{C}, 92.91 ; \mathrm{H}, 7.09$. Found: $\mathrm{C}, 92.76 ; \mathrm{H}$, 6.99. The distillation residue was dissolved in dichloromethane and filtered through a short silica gel column. Distillation of solvent left an oil which was crystallized from methylene chloridehexane to give $0.16 \mathrm{~g}(0.348 \mathrm{mmol}, 1.7 \%)$ of $1,2,3,4,5$-pentaphenylcyclopentadiene: mp 243-254 ${ }^{\circ} \mathrm{C}$ (lit. mp 244-246, ${ }^{29 \mathrm{a}}$ 258-259 ${ }^{\circ} \mathrm{C}^{29 \mathrm{~b}}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.90(\mathrm{~s}, 1 \mathrm{H}), 6.9-7.4$ (broad m, 25 H); mass spectrum (70 eV) m / e (rel intensity) 448 (7), 447 (40), 446 (100), 420 (35), 291 (18); calcd for $\mathrm{C}_{35} \mathrm{H}_{26},(\mathrm{P}+1) / \mathrm{P}=38.5 \%$, $(\mathrm{P}+$ 2) $/ \mathrm{P}=7.41 \%$. Its ir spectrum agreed with that in the literature. ${ }^{29 \mathrm{c}}$

Cyclopentadienylpotassium (1c) and Benzyne. Potassium amide was prepared from 4.3 g (110 mg -atoms) of potassium, a trace of ferric chloride hexahydrate, and ca. 150 ml of liquid ammonia in the usual manner. ${ }^{30}$ The ammonia was evaporated and replaced with 40 ml of THF. A solution of $3.3 \mathrm{~g}(50 \mathrm{mmol})$ of cyclopentadiene in 10 ml of THF was added dropwise, producing a white precipitate, and the mixture was allowed to stand for 1 h . Upon heating to reflux, most of the precipitate dissolved, and a solution of $5.63 \mathrm{~g}(50.0 \mathrm{mmol})$ of chlorobenzene in 15 ml of THF was added dropwise over a period of 45 min . The remainder of the procedure was identical with that described for la. GLC analysis at
$185{ }^{\circ} \mathrm{C}$ showed no trace of benzonorbornadiene, and at $200^{\circ} \mathrm{C}$ using $n-\mathrm{C}_{16} \mathrm{H}_{34}$ as an internal standard, the yield of phenylcyclo-pen-adienes was determined to be 0.9%.

Cyclopentadienylmagnesium Chloride (1d) and Benzyne with HMPA. A mixture of 0.97 g (40.0 mg -atoms) of magnesium turrings, 6.5 ml of 3.1 M ethylmagnesium chloride in ether (20.2 $\mathrm{mmol}), 1.32 \mathrm{~g}(20.0 \mathrm{mmol})$ of cyclopentadiene, and 10 ml of THF was stirred at $25^{\circ} \mathrm{C}$ for 30 min until ethane evolution subsided, and refluxed for 2.5 h . An aliquot was examined by ${ }^{1} \mathrm{H}$ NMR to confirm the absence of unreacted cyclopentadiene. The mixture was cooled, 7.35 g (41.0 mmol) of HMPA was added, the mixture was brought to reflux, and a solution of 3.5 g (20.0 mmol) of o-bromofluorobenzene in $7.35 \mathrm{~g}(41.0 \mathrm{mmol})$ of HMPA was added dropwise over a period of 45 min . The mixture was refluxed for 1 more h and cooled to $25^{\circ} \mathrm{C}$ and 20 ml of $99.8 \% \mathrm{D}_{2} \mathrm{O}$ was added. After standing overnight the solution was acidified with concentrated HCl , and an ether solution was prepared for GLC analysis by the procedure used for the reaction of 1 a . A 1.1% yield of phenylcyclo-pen-adiene was determined by GLC at 200° using $n-\mathrm{C}_{17} \mathrm{H}_{36}$ as an internal standard. The yield of benzonorbornadiene (4) was determined similarly at $185^{\circ} \mathrm{C}$ to be 0.24%. Although several peaks ($<1 \%$) of similar retention time to benzonorbornadiene (4) were observed, the correct identification of 4 was confirmed by a programmed GLC-mass spectrometry run from 90 to $260^{\circ} \mathrm{C}$ at $4^{\circ} \mathrm{C} /$ min . The mass spectrum assigned to benzonorbornadiene (4) showed 100% monodeuteration by analogy to the spectrum of an all-protio sample reported ${ }^{31}$ assuming the $P-1$ peak arises from loss of a hydrogen or deuterium atom from the 7 position with no deuserium isotope effect. Mass spectrum (70 eV) m / e (rel intensity) 144 (11), 143 (89), 142 (100), 141 (42), 140 (10), 117 (19), 116 (42).

5-Trimethylstannylcyclopentadiene (1f) ${ }^{32}$ was prepared from cyclopentadiene and diethylaminotrimethylstannane: ${ }^{33}$ bp 64.5$68.0{ }^{\circ} \mathrm{C}$ ($9-10$ Torr) [lit. bp 38 (3 Torr), ${ }^{32} 85^{\circ} \mathrm{C}$ (10 Torr) ${ }^{34}$]. Because If formed a white powder upon exposure to air, it was stored and used under dry nitrogen.

5-Trimethylstannylcyclopentadiene (1f) and Benzyne. To 0.49 g (20.0 mg -atoms) of magnesium turnings, $2.24 \mathrm{~g}(9.8 \mathrm{mmol})$ of $1 \mathbf{f}$, end 5 ml of THF at reflux a solution of $1.75 \mathrm{~g}(10.0 \mathrm{mmol})$ of $o-$ bromofluorobenzene in 5 ml of THF was added dropwise over a period of 15 min . Reflux was continued for 1 h . A tarry precipitate formed upon the addition of ether. The ether solution was decanted, and a portion of it was used to determine the yields of benzonorbornadiene ($4,3.6 \%$) and o-fluorotrimethylstannylbenzene (5 , 32.1%) by GLC relative to $n-\mathrm{C}_{14} \mathrm{H}_{30}$ at $180^{\circ} \mathrm{C}$. The yield of anti-7-tr.methylstannylbenzonorbornadiene ($2, \mathrm{M}=$ anti-SnMe $3,1.9 \%$) was determined relative to $n-\mathrm{C}_{15} \mathrm{H}_{32}$ at $200^{\circ} \mathrm{C}$. Another portion of the ether solution was separated into two components by preparative GLC at $250^{\circ} \mathrm{C}$. The shorter retention time component was a mixture of 4 (4.55% by weight, $8.3 \mathrm{~mol} \%$) and 5 (the remainder) by GLC analysis at $160^{\circ} \mathrm{C}$. This mixture could not be separated conveniently by preparative GLC. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right)$ showed the expected multiplets for 4^{35} and $\delta 0.48$ (s, $9 \mathrm{H}, J=55 \mathrm{~Hz}$ for ${ }^{117} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}$ satellites ${ }^{36}$) and 6.9-7.6 (m, 4 H) for 5. Ir (film) 3060 (w), 2975 (m), 2915 (w), 1595 (m), 1465 (s), 1460 (s), 1435 (s), 1258 (m), 1200 (s), 1190 (s), 1105 (m), 1055 (m), 824 (m), 814 (m), 755 (s), and $727 \mathrm{~cm}^{-1}(\mathrm{~m})$. GLC-mass spectra (70 eV) showed the expected spectra for 4^{31} and for 5: m / e (rel intensity) 260 (0.96), 258 (0.67), 245 (100), 243 (74), 241 (45), 239 (2), 237 (3), 227 (18), 225 (13), 223 (8), 215 (13), 213 (10), 211 (7), 210 (13), 208 (9), 206 (5), 197 (7), 195 (5), 193 (3), 169 (8), 167 (6), 165 (4), 139 (35), 137 (26), 135 (23), 96 (5), and 95 (2).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{FSn}$ with $8.3 \mathrm{~mol} \% \mathrm{C}_{11} \mathrm{H}_{10}: \mathrm{C}, 45.67$; H , 5.22. Found: C, $45.73, \mathrm{H}, 5.21$.

The longer retention time component isolated by preparative GLC was anti-7-trimethylstannylbenzonorbornadiene: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.13\left(\mathrm{~s}, 9 \mathrm{H}, J=51 \mathrm{~Hz}\right.$ for ${ }^{117} \mathrm{Sn}$ and ${ }^{119} \mathrm{Sn}$ satellites ${ }^{36}$), $2.5 \varepsilon(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}) 6.78-7.20(\mathrm{~m}, 6 \mathrm{H})$. Irradiation at $\delta 2.58$ sha-pened the upfield portion of the $\delta 6.78-7.20$ multiplet, and irradation at $\delta 6.80$ simplified $\delta 2.58$ to a triplet ($J=2.4 \mathrm{~Hz}$), establishing $\delta 2.58$ as a syn-7 proton. ${ }^{8-10}$ Ir (film) $3060(\mathrm{~m}), 2965(\mathrm{~m})$, $2900(\mathrm{~m}), 1453(\mathrm{~m}), 1440(\mathrm{~m}), 1190(\mathrm{~m}), 843(\mathrm{~m}), 758(\mathrm{~s})$, and 695 $\mathrm{cm}^{-1}(\mathrm{~s}) . \mathrm{GLC}$-mass spectrum (70 eV) m / e (rel intensity) 306 (5), 304 (4), 302 (2), 291 (72), 289 (74), 287 (59), 265 (32), 263 (24), 261 (21), 165 (31), 163 (34), 161 (15), 141 (95), and 115 (100).

Acknowledgment. The mass spectral data processing equipment was provided by NIH Grants CA 11388 from the National Cancer Institute and GM 16864 from the National Institute of General Medical Sciences.

Registry No.-1a, 16733-97-4; 1b, 4984-82-1; 1c, 30994-24-2; 1d ($\mathrm{X}=\mathrm{Cl}$), 34766-85-3; 1f, 2726-34-3; anti-2f, 57496-94-3; 3 1-phenyl isomer, 1961-98-4; 3 2-phenyl isomer, 2327-56-2; 4, 4453-90-1; 5, 2542-07-6; benzyne, 462-80-6; sodium amide, 7782-92-5; 1,4-diphenylcyclopentadiene, $57496-95-4 ; 1,2,3,4,5$-pentaphenylcyclopentadiene, 2519-10-0; potassium amide, 17242-52-3; ethylmagnesium chloride, 2386-64-3; diethylaminotrimethylstannane, 1068-74-2; cyclopentadiene, 542-92-7.

References and Notes

(1) (a) National Science Foundation Predoctoral Fellow, 1971-1974. (b) Address correspondence to W.T.F. at Rohm and Haas Co., Research Laboratories, Spring House, Pa. 19477.
(2) R. W. Hoffmann, "Dehydrobenzene and Cycloalkynes", Academic Press, New York, N.Y., 1967.
(3) G. Wittig and E. Knauss, Chem. Ber., 91, 895 (1958).
(4) W. T. Ford, R. Radue, and J. A. Walker, Chem. Commun., 966 (1970).
(5) W. T. Ford, J. Org. Chem., 36, 3979 (1971).
(6) "Organic Syntheses", Collect. Vol. V. Wiley, New York, N.Y., 1973, pp 54, 1120.
(7) (a) W. P. Neumann. "The Organic Chemistry of Tin", translated by W. Moser, Wiley. New York, N.Y., 1970, pp 40-43; (b) D. Seyterth, M. A. Weiner, L. G. Vaughan, G. Raab, D. E. Welch, H. M. Cohen, and D. L. Alleston, Bull. Soc. Chim. Fr., 1364 (1963); (c) D. Seyferth and L. G. Vaughan, J. Am. Chem. Soc., 86, 883 (1964).
(8) (a) P. Laszlo and P. V. R. Schleyer, J. Am. Chem. Soc., 86, 1171 (1964); (b) J. C. Davis, Jr., and T. V. Van Auken, ibid., 87, 3900 (1965); (c) P. M. Subramanian, M. T. Emerson, and N. A. LeBel, J. Org. Chem., 30, 2624 (1965); (d) E. I. Snyder and B. Franzus, J. Am. Chem. Soc., 86, 1166 (1964).
(9) S. J. Cristol and G. W. Nachtigall, J. Org. Chem., 32, 3738 (1967).
(10) M. E. Brennan and M. A. Battiste, J. Org. Chem., 33, 324 (1968).
(11) (a) H. P. Fritz, Adv. Organomet. Chem., 1, 240 (1964); (b) H. P. Fritz and L. Schater. Chem. Ber., 97, 1829 (1964); (c) W. T. Ford. J. Organomet. Chem., 32, 27 (1971).
(12) A. J. Ashe, J. Am. Chem. Soc., 92, 1233 (1970).
(13) Y. A. Ustynyuk, P. I. Zakharov, A. A. Azizov, V. K. Potapov, and I. M. Pribytkova, J. Organomet. Chem., 88, 37 (1975).
(14) A. Davison and P. E. Rakita, Inorg. Chem., 9, 289 (1970).
(15) H. P. Fritz and C. G. Kreiter. J. Organomet. Chem., 4, 313 (1965).
(16) N. N. Veniaminov, Y. A. Ustynyuk, N. V. Alekseev, I. A. Ronova, and Y. T. Struchkov, Dokl. Akad. Nauk SSSR, 199, 346 (1971)
(17) (a) A. V. Kisin, V. A. Korenevsky, N. M. Sergeyev, and Y. A. Ustynyuk,
J. Organomet. Chem., 34, 93 (1972), and references cited therein; (b) Y. K. Grishin, N. M. Se-geyev. and Y. A. Ustynyuk, ibid., 34, 105 (1972), and references cited therein.
(18) (a) J. D. Dunitz, L. E. Orgel, and A. Rich, Acta Crystallogr., 9, 373 (1956); (b) M. D. Rausch, Can. J. Chem., 41, 1289 (1963); (c) A. Nesmeyanov, Bull. Soc. Chim. Fr., 1229 (1965); (d) K. Plesske, Angew. Chem., Int. Ed. Engl., 1, 312, 394 (1962).
(19) A. Haaland, J. Lusztyk, J. Brunvoll, and K. B. Starowieyski, J. Organomet. Chem., 85, 279 (1975).
(20) (a) E. Weiss and E. O. Fischer, Z. Anorg. Allg. Chem., 278, 219 (1955); (b) W. Bünder and E. Weiss, J. Organomet. Chem. 92, 1 (1975).
(21) C. Johnson, J. Toney, and G. D. Stucky, J. Organomet. Chem., 40, C11 (1972).
(22) H. Normant. Angew. Chem., Int. Ed. Engl., 6, 1046 (1967).
(23) C. F. Huebner and E. N. Donoghue. J. Org. Chem., 33, 1678 (1968).
(24) (a) A. J. Ashe III, Tetrahedron Lett., 2105 (1970); (b) R. B. Larrabee and B. F. Dowden, ibid., 915 (1970); (c) A. Davison and P. E. Rakita, J. Organomet. Chem., 23, 407 (1970)
(25) (a) W. R. Roth, Tetrahedron Lett., 1009 (1964); (b) L. L. Miller, R. Greisinger, and R. F. Boyer, J. Am. Chem. Soc., 91, 1578 (1969).
(26) A. P. Manzara, Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, 1972.
(27) (a) W. Borsche and VJ. Menz, Chem. Ber., 41, 190 (1908); (b) N. L. Drake and J. R. Adams. Jr., J. Am. Chem. Soc., 61,1326 (1939); (c) D. G. Farnum, A. Mostashari, and A. A. Hagedorn. III, J. Org. Chem., 36, 698 (1971).
(28) P. L. Pauson, J. Am. Chem. Soc., 76, 2187 (1954)
(29) (a) K. Ziegler and B. Schnell, Justus Liebigs Ann. Chem., 445, 266 (1925); (b) F. C. Leavitt, T. A. Manuel, F. Johnson, L. U. Matternas, and D. S. Lehman, J. Am. Chem. Soc., 82, 5099 (1960); (c) L. Fortina and G. Montaude, Ann. Chim. (Rome), 50, 455 (1960).
(30) "Organic Syntheses", Collect. Vol. V. Wiley, New York, N.Y., 1973, p 187.
(31) T. Goto, A. Tatematsu, Y. Hata, R. Muneyuki, H. Tanida, and K. Tori, Tetrahedron. 22, 2213 (1966).
(32) I. M. Pribytkova, A. V. Kisin, Y. N. Luzikov, N. P. Makoveyeva, V. N. Torocheshnikov, and Y. A. Ustynyuk, J. Organomet. Chem., 30, C57 (1971).
(33) K. Jones and M. F. Lappert, J. Chem. Soc., 1944 (1965).
(34) H. P. Fritz and C. G. Kreiter, J. Organomet. Chem., 1, 323 (1964).
(35) (a) K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji, and H. Tanida, Tetrahedron Lett., 9 (1966); (b) N. Inamota, S. Masuda, K. Tori, K. Aono, and H. Tanida, Can. J. Chem., 45, 1185 (1967).
(36) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry'. 2d ed. Pergamon Press, Elmsford, N.Y., 1969, p 356.

Highly Stereoselective Preparations of anti-7-Benzonorbornadienyl Grignard Reagents

Gary R. Buske ${ }^{1 a}$ and Warren T. Ford ${ }^{* 1 b}$
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

Received November 13, 1975

Grignard reagents have been prepared in tetrahydrofuran from anti- and syn-7-chlorobenzonorbornadiene (anti- Cl and syn- Cl) and anti- and syn-7-bromobenzonorbornadiene (anti- Br and syn- Br) by three methods: reaction with magnesium turnings, reaction with activated magnesium prepared by reduction of magnesium halide with potassium metal, and reaction with sodium naphthalenide (NaNaph) in the presence of magnesium halide. Deuterolyses of the Grignard solutions give deuterated benzonorbornadiene (2) with $>85 \%$ overall retention of configuration from anti- Cl and anti- Br by the magnesium metal methods. Carbonation of the Grignard reagent from anti-Br and magnesium turnings also proceeds with high overall retention of configuration. The stereoselectivity does not depend on particle size or purity of the magnesium. In contrast, syn- Cl and syn- Br give deuterated 2 by the same methods with little or no stereoselectivity. The NaNaph method gives little stereoselectivity with any of the substrates but produces the Grignard reagents in higher yields. Sizable amounts of undeuterated benzonorbornadiene are formed in all of the preparations using magnesium turnings or activated magnesium. Grignard reagent formation and deuterolysis with anti-7-bromobenzonorbornene (5) also proceed with high retention of configuration. The Grignard reactions at saturated carbon with anti- Br , anti- Cl , and 5 are far more stereoselective than any previously reported. The results are discussed in terms of a mechanism of Grignard formation which proceeds by ratelimiting electron transfer to give a radical intermediate bound to the magnesium surface.

Both reaction of anti-7-chlorobenzonobornadiene (1a) with magnesium turnings in tetrahydrofuran (THF) ${ }^{2}$ and cycloaddition of benzyne to the cyclopentadienyl Grignard reagent in THF^{3} followed by deuterolysis give benzonorbor-nadiene-7-d (2) with the D incorporated $>90 \%$ stereoselectively anti. Assuming that deuterolysis proceeds with reten-
tion of configuration, ${ }^{4}$ both preparations must lead to the anti-7-benzonorbornadienyl Grignard reagent (3).

Three possible reasons for the stereoselectivity of these reactions are: (1) Both proceed stereoselectively to form 3 , and 3 is configurationally stable under the preparation and trapping conditions. (2) Both 3 and its syn isomer are formed but

1a, $\mathrm{X}=\mathrm{Cl} ; \mathrm{Y}=\mathrm{H}$; anti -Cl
b, $\mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{Cl} ;$ syn-Cl c, $\mathrm{X}=\mathrm{Br}: \mathrm{Y}=\mathrm{H}$; anti -Br $d, X=H ; Y=B r ; s y n-B r$

the mixture equilibrates rapidly to $>90 \% 3$, which is then captured by deuterolysis. (3) Both 3 and its syn isomer are formed, but the syn Grignard reagent is rapidly destroyed under the reaction conditions. The third possibility would require that the isomeric Grignard reagents interconvert slowly or not at all during the time required to prepare them.

Previous studies of Grignard reagents show that the configurational stabilities are highly dependent on structure. Some acyclic primary Grignard reagents undergo configurational inversion on the NMR time scale at room temperature. ${ }^{9}$ The tertiary Grignard reagent from optically active 1-bromo-1-methyl-2,2-diphenylcyclopropane (4) is configurationally stable for $\geq 30 \mathrm{~min}$ in refluxing di- n-butyl ether. ${ }^{6}$ endo-2-Norbornylmagnesium bromide reverts to an equilibrium endo/exo mixture in $\leq 24 \mathrm{~h}$ in ether at room temperature. ${ }^{5}$ A variety of secondary Grignard reagents fail to show inversion at $\geq 120^{\circ} \mathrm{C}$ on the NMR time scale. ${ }^{9 \mathrm{a}, 10}$ On the other hand, Δ^{3}-cyclohexenylmagnesium bromide and Δ^{3}-cyclopentenylmagnesium bromide undergo rapid inversion on the NMR time scale at $25^{\circ} \mathrm{C}$ in THF, presumably by a reversible homoallyl-cyclopropylcarbinyl rearrangement. ${ }^{11}$

The first possibility is most interesting because never before has any Grignard reagent been prepared with such high stereoselectivity at saturated carbon. The Grignard reagents from 4 and the corresponding chlorocyclopropane have been prepared and carbonated. The carboxylic acid obtained from bromide 4 had 59% retained and 41% inverted configuration, and that obtained from the corresponding chloride had 62.5% retained and 37.5% inverted configuration. ${ }^{6}$ All other Grignard preparations from alkyl halides and magnesium have led to equilibrium mixtures of isomers. The loss of configuration has been established clearly in the cases of 4^{6} and the exo- and endo-2-bromonorbornanes ${ }^{5}$ to occur during the Grignard formation step, not during subsequent deuterolysis or carbonation. Stereoselectivity of $\geq 90 \%$ has been reported for Grignard preparations from vinyl bromides such as the β bromostyrenes, 1 -bromopropenes, and 1-bromo-1-hexenes. ${ }^{7,8}$
In this paper we report details of Grignard preparations from anti-Cl, syn-7-chlorobenzonorbornadiene (1b), and the corresponding anti- and syn-7-bromobenzonorbornadienes (lc,d) by a variety of methods. The results clearly establish that stereoselective production of $2-a n t i-7-d$ is due to the first possibility, stereoselective formation of Grignard reagent 3. To learn more about the mechanism of this unprecedented stereoselective Grignard reaction we have also tested effects of the state and purity of the magnesium metal on the reaction, thermal stabilities of the Grignard reagents, equilibration
of the anti- and syn-7-carbomethoxybenzonorbornadienes, and preparation of the Grignard reagent from anti-7-bromobenzonorbornene (5).

5
Previous attempts to prepare and carbonate Grignard reagents from $1 \mathbf{c}^{12}$ and 5^{13} led to poor yields of carboxylic acids and considerable $7,7^{\prime}$-dimer formation. Earlier experience with 3 formed by cycloaddition indicated that deuterolysis was a much more effective trapping method than carbonation, ${ }^{3 \mathrm{~b}}$ so we chose to trap the Grignard reagents prepared from 1a-d and 5 by deuterolysis.

Results

Three methods were employed to prepare Grignard reagents from la-d. (1) The alkyl halide was added to a refluxing THF solution over ordinary magnesium turnings. (2) Activated magnesium was prepared from anhydrous magnesium halide and potassium metal in THF, ${ }^{14}$ and the alkyl halide was added to the resulting mixture. (3) A 0.7-0.9 M THF solution of 2.3 equiv of sodium naphthalenide (NaNaph) was added to a solution of 1.0 equiv of the alkyl halide and 1.3 equiv of anhydrous magnesium halide at room temperature. ${ }^{15}$ All three procedures were completed by deuterolysis of the Grignard reagent, determination of yield and purification of benzonorjornadiene (2) by GLC, and conversion of 2 to its diphenylisobenzofuran Diels-Alder adduct 6. ${ }^{16}$

Deuterium analyses of 6 were performed by low eV mass spectrometry for total deuterium content and by ${ }^{1} \mathrm{H}$ NMR for bota amount and location of deuterium. Because of low deuterium incorporation in many experiments, the ${ }^{1} \mathrm{H}$ NMR results were determinations of small differences in areas of large proton signals and are reliable only to ± 0.05 atom D at each isomeric position (anti or syn). Usually the total deuterium found by ${ }^{1} \mathrm{H}$ NMR at the two positions agreed within ± 0.08 atom D with the mass spectra. Complete results are in Table I. To check the accuracy of the ${ }^{1} \mathrm{H}$ NMR results, four representative samples were analyzed by Fourier transform deuterium NMR at 33.77 MHz with the help of Professor L. K. Montgomery at Indiana University. No internal standard was used in the deuterium NMR analyses, so only relative amounts of anti and syn D were obtained. Use of mass spectral results for total D and deuterium NMR for location of D gave the analyses in the last two columns of Table II, which agree well wita the ${ }^{1} \mathrm{H}$ NMR analyses.

Numerous attempts to trap the Grignard reagents with electrophiles other than $\mathrm{D}_{2} \mathrm{O}$ were disappointing. No simple derivatives were isolated after treatment with chlorotri-me-hylsilane, dimethyl sulfate, ethyl chloroformate, N chlorosuccinimide, methyl iodide, benzaldehyde, acetic anhydride, or ethyl bromoacetate. Carbonation produced the expected carboxylic acids in much lower yield than deuterolysis produced 2. Oxidation with O_{2} of the Grignard reagent 3 from cycloaddition of benzyne and CpMgBr gave only a 4%

Table I. Stereochemistry of Formation and Deuterolysis of 7-Benzonorbornadienyl Grignard Reagents in THF

Expt no.	Reactant	Reagents	Temp, ${ }^{\circ} \mathrm{C}$	Time, h	$\begin{gathered} \% \text { yield of } \\ 2 \end{gathered}$	Atom excess D in 6		
						By ${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		By MS
						Anti	Syn	
$1^{\text {b }}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MgBr}$	Benzyne	65	1.0	29	0.91	0.00	0.91
2	anti-Cl	Mg turnings	65	20	86	0.56	0.05	0.68
3	anti-Cl	Mg turnings ${ }^{\text {c }}$	70	24	56	0.47	0.00	0.53
4	anti-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}$	25	0.25	95	0.31	0.25	0.59
5	anti-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}$	25	0.25	92	0.39	0.30	0.72
6	anti-Cl	NaNaph	25	0.25	66	0.00	0.00	-0.02
7	anti-Cl	Mg turnings ${ }^{\text {d }}$	65	23	81	0.39	0.07	0.49
8	anti-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}{ }^{\text {e }}$	65	24	70	0.00	0.00	0.03
9	anti-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}^{\text {e }}$	65	24	71	0.00	0.02	0.13
10	anti-Cl	Activated Mg	25	780				
11	syn-Cl	Mg turnings	65	4	41	0.00	0.00	0.08
12	syn-Cl	Mg turnings	65	15	47	0.24	0.16	0.39
13	syn-Cl	Activated Mg	65	20	41	0.11	0.05	0.08
14	syn-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}$	25	0.25	36	0.64	0.33	0.86
15	syn-Cl	$\mathrm{MgCl}_{2} / \mathrm{NaNaph}$	25	0.25	32	0.63	0.18	0.91
16	anti- Br	Mg turnings	65	0.017	67	0.19	0.00	0.20
17	anti -Br	Mg turnings	65	0.5	73	0.24	0.07	0.28
18	anti -Br	Mg turnings	65	4	74	0.23	0.04	0.29
19	anti -Br	Mg turnings	65	0.083	72	0.24	0.06	0.30
			65	0.5	75	0.25	0.00	0.28
			65	4	71	0.15	0.00	0.23
			65	10	66	0.11	0.01	0.09
			65	20	65	0.01	0.00	0.00
20^{\prime}	anti-Br	Mg turnings	65	0.5	74	0.30	0.05	0.37
			25^{3}	0.1	77	0.25	0.08	0.33
21	anti- Br	Activated Mg	25	6.33	82^{h}	0.25	0.05	0.28
22^{\prime}	anti -Br	Activated Mg	25	6.33	74	0.28	0.11	0.36
			65	4	70	0.25	0.09	0.30
$23{ }^{\prime}$	anti- Br	Activated Mg	25	7	72	0.21	0.00	0.21
			65	20	58	0.01	0.01	-0.01
$24 /$	anti -Br	Activated Mg	25	3.83	60	0.25	0.03	0.28
			65	4	66	0.10	0.00	0.18
			65	20	49	0.00	0.00	0.00
$25 /$	anti- Br	Sublimed Mg	65	0.083	76	0.28	0.04	0.38
			65	4	80	0.27	0.07	0.36
			65	20	67	0.05	0.01	0.07
26	anti -Br	$\mathrm{MgBr}_{2} / \mathrm{NaNaph}$	25	0.25	85	0.30	0.29	0.60
271	1syn -Br	Mg turnings	65	0.25	60	0.08	0.02	0.10
			65	0.75	68	0.19	0.23	0.38
			65	4.25	71	0.10	0.06	0.13
287	syn -Br	Activated Mg	25	2.25	72	0.25	0.15	0.37
			65	0.5	68	0.23	0.15	0.35
			65	4	68	0.21	0.13	0.30
29	syn -Br	Activated Mg	25	20.5	37	0.00	0.00	-0.01
30	anti -Br	Mg turnings ${ }^{i}$	65	0.5	90	0.01	0.02	0.01
$31 /$	anti -Br	Mg turnings ${ }^{\text {j }}$	65	0.5	76	0.72	0.21	0.95
			65	240	31	0.14	0.08	0.21
32	anti -Br	Mg turnings ${ }^{\text {i }}$	65	0.5	59	0.01	0.00	0.02

[^2]yield of anti-7-benzonorbornadienol which required a tedious chromatography for purification.

Reactions of anti- Br and anti -Cl with magnesium turnings in refluxing THF followed by deuterolysis immediately after the starting halide was consumed gave benzonorbornadiene (2) in about 70 and 86% yields, respectively. However, the 2 was only partly deuterated, $27 \% \mathrm{D}$ from anti- Br (average of expt $16-20$) and $68 \% \mathrm{D}$ from anti- Cl (expt 2). If the yield of Grignard reagent is equal to the yield of benzonorborna-
diene-d [$(\%$ yield of 2$) \times$ (atom excess D in 2 determined by mass spectrometry), ant $i-\mathrm{Br}$ and ant $i-\mathrm{Cl}$ gave 20 and 58% yields of Grignard reagent, respectively. The higher yield of Grignard reagent from the alkyl chloride is consistent with previous reports of the 1-halo-1-methyl-2,2-diphenylcyclopropanes. ${ }^{6}$ Complete consumption of anti- Cl required 20 h at reflux, while all of the anti- Br usually reacted in 0.5 h . Prolonged reflux of the Grignard solutions from anti-Br led to still smaller degrees of deuteration of 2 but only a slight

Table II. Comparison of ${ }^{1} \mathrm{H}$ NMR and ${ }^{2} \mathrm{H}$ NMR Analyses of 6

Atom excess D in 6

	By ${ }^{1} \mathrm{H}$ NMR			By ${ }^{2} \mathrm{H}$ NMR	
Expt	Anti	Syn		Anti	Syn
2	0.56	0.05		0.60	0.08
12	0.24	0.16		0.23	0.16
24	0.25	0.03		0.25	0.03
28	0.25	0.15		0.22	0.15

decrease in the yield of 2 (expt 19). This indicates that much of the Grignard reagent which disappeared from the solution was converted to undeuterated 2 , either by reaction with adventitious moisture or by reaction with THF. The deuterium in 2 from anti- Br averaged 86% anti, and from anti- Cl was $>90 \%$ anti even after 20 h at reflux. Since prolonged reflux of the solutions from anti-Br destroyed both anti and syn Grignard reagents (expt 19), the experiments with the shortest reflux times (0.5 h or less) are the best indicators of the stereoselectivity of Grignard formation. In an attempt to prepare a Grignard reagent from anti- Cl with activated magnesium, no reaction occurred at $25^{\circ} \mathrm{C}$ (expt 10). Activated magnesium did enable preparation of Grignard solutions from anti- Br at $25^{\circ} \mathrm{C}$ with essentially the same stereoselectivity as magnesium turnings gave at $65^{\circ} \mathrm{C}$ (expt 22-24). Use of turnings from Dow sublimed magnesium crystal gave the same results as the ordinary grade of magnesium (expt 25).

Often hexamethylphosphoramide (HMPA) greatly increases the reactivity and ionic character of organomagnesium compounds. ${ }^{17}$ In expt 20 a Grignard solution prepared from ant $i-\mathrm{Br}$ and magnesium turnings was treated with 3.65 equiv of HMPA at $25^{\circ} \mathrm{C}$ for 0.1 h before deuterolysis. No change in yield and only a slight decrease in stereoselectivity of deuteration in 2 resulted.
Reactions of anti- Br and anti- Cl with NaNaph and anhydrous magnesium halides (expt 4,5,26) gave better yields of Grignard reagents than reactions with magnesium metal. Presumably the Grignard reagent is formed by an electron transfer-transmetalation sequence. ${ }^{18}$

$$
\begin{gathered}
\mathrm{RX}+\mathrm{Na}^{+} \mathrm{Naph} \cdot^{-} \rightarrow \mathrm{R} \cdot+\mathrm{Naph}+\mathrm{NaX} \\
\mathrm{R} \cdot+\mathrm{Na}^{+} \mathrm{Naph} \cdot{ }^{-} \rightarrow \mathrm{RNa}+\mathrm{Naph} \\
\mathrm{RNa}+\mathrm{MgX}_{2} \rightarrow \mathrm{RMgX}+\mathrm{NaX}
\end{gathered}
$$

That an organomagnesium rather than an organosodium species reacts with $\mathrm{D}_{2} \mathrm{O}$ is shown in expt 6 , where NaNaph treatment of anti- Cl in the absence of MgCl_{2} led to a lower yield of 2 which contained no deuterium. The $\mathrm{NaNaph} / \mathrm{MgX} 2$ reactions usually gave 2 with only a small excess of anti-d over syn-d. The lack of selectivity occurs during Grignard formation and is not due to isomerization of a more stereoselectively formed Grignard reagent by excess NaNaph , because treatment of a preformed Grignard reagent from anti- Cl and magnesium turnings with NaNaph still allowed highly stereoselective formation of 2-anti-7-d (expt 7). Unlike the Grignard reagent from anti- Cl and magnesium turnings, the one from $\mathrm{NaNaph} / \mathrm{MgCl}_{2}$ did not survive in refluxing THF ($\operatorname{expt} 8,9$).

Treatment of syn- Cl with magnesium turnings gave much lower yields of benzonorbornadiene than the corresponding reaction of anti- Cl , and much less deuterium was incorporated (expt 11, 12). Although the two experiments gave widely different degrees of deuteration, there was little stereoselectivity. syn -Cl also reacted with activated magnesium at $65^{\circ} \mathrm{C}$ (expt 13) with about the same yield and extent of deuteration as
with magnesium turnings. With $\mathrm{NaNaph} / \mathrm{MgCl}_{2}$ syn -Cl gave only $32-36 \%$ of 2 which was about 90% deuterated with more D anti than syn ($\operatorname{expt} 14,15$).
syin- Br behaved still differently from the other halides. With. either Mg turnings at reflux or activated Mg at room temperature it gave about 70% of 2 which contained a total of 0.37 atom excess D distributed about equally between the syn and anti positions (expt 27, 28). An attempted Grignard preparation from syn- Br and activated Mg which required 20.5 h at $25^{\circ} \mathrm{C}$ gave completely undeuterated 2 (expt 29). Experiment 27 gave a higher degree of deuteration after 0.75 h than after 0.25 h , probably because freshly formed Grignard reagent consumed a small amount of adventitious water in the first few minutes of the reaction to give undeuterated 2 . Since expt 27 is the only one where an increase in deuterium content was found in two successive samples, adventitious water does not appear to be a problem in the other experiments where the Grignard solution was sampled at different times.
The source of the undeuterated benzonorbornadiene is not known in the reactions of benzonorbornadienyl halides with magnesium turnings or activated magnesium followed by deuterolysis. The reproducibility of the atom excess D in 2 from nine experiments which varied in scale from 0.25 g to 2.25 g of anti- Br demenstrates that hydrolysis by $\mathrm{H}_{2} \mathrm{O}$ was not a major source of undeuterated 2 . Since the most likely source of hydrogen was the THF, Grignard reagents were prepared in THF- d_{8}. In expt 30 and 31 two samples of the same lot of THF- d_{8} were dried over sodium metal and used to prepare Grignard reagent from magnesium turnings and anti- Br under identical conditions. One Grignard solution was hydrolvzed with $\mathrm{H}_{2} \mathrm{O}$ (expt 30) and part of the other was hydrolyzed with $\mathrm{D}_{2} \mathrm{O}$ (expt 31). The remainder of the second solution was refluxed for 10 days and then hydrolyzed with $\mathrm{H}_{2} \mathrm{O}$. Surprisingly the benzonorbornadiene recovered after hydrolysis contained only 0.01 atom excess D while that recovered after deuterolysis contained 0.95 atom excess D. Continued reflux of the Grignard solution of expt 31, conditions known to destroy the Grignard reagent, led to a much lowe: yield of 2 which contained 0.21 atom excess D , indicating that most of the D in the portion deuterolyzed after 0.5 h came from the $\mathrm{D}_{2} \mathrm{O}$. Because of the apparent anomaly of expt 30 , it was repeated (expt 32) with a new batch of THF- d_{8} which was jurified by distillation from the sodium ketyl of benzopherone. Although the yield of 2 was lower in expt 32 than in expt 30 , the deuterium content was the same within experimental error by both mass spectrometry and ${ }^{1} \mathrm{H}$ NMR analyses.

In expt 20 samples of the Grignard solution were poured onto solid CO_{2} before and after HMPA was added to the THF solution. The resulting mixtures of carboxylic acids were converted to mixtures of anti- and syn-7-carbomethoxybenzonorbornadiene (7 and 8). Without HMPA a 10.3% yield

of carboxylic acids was isolated and the mixture of esters was $87 \% 7$ by GLC, the same as the anti/syn distribution of deuterolysis products (Table I). With HMPA a 6.5% yield of carboxylic acids was isolated and the ester mixture was $75 \% 7$ by GLC, also within experimental error of the deuterolysis results. Yields of benzonorbornadiene- d from deuterolysis were 27 and 25%, respectively, much better than the yields of carboxylic acids.
To establish the structures of 7 and 8 , anti ester 7 was syn-
thesized stereospecifically by treatment of anti- Br with secbutyllithium in hexane at $-78^{\circ} \mathrm{C}$ followed by carbonation and esterification in 17.6% overall yield after preparative GLC isolation. Its structure was proven by the characteristic four-bond coupling of 0.35 Hz between the syn- 7 proton and the vinyl protons in its ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{19}$ Treatment of 7 in refluxing 0.4 M sodium methoxide in $80 / 20(\mathrm{v} / \mathrm{v})$ methanol/HMPA produced an equilibrium mixture of $58 \% 7$ and $42 \% 8$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 8 showed no coupling between the anti-7 proton and the vinyl protons.

In expt 21 we attempted to isolate and identify the side products from reaction of anti- Br with activated magnesium. The unsymmetrical dimer 9 was obtained in 5.7% yield by silica gel chromatography, but no other compounds could be isolated in a form suitable for identification.

9
To test whether the $\mathrm{C}_{2}-\mathrm{C}_{3}$ double bond of anti -Br and anti- Cl is a structural requirement for highly stereoselective Grignard formation, anti-7-bromobenzonorbornene (5) was treated with magnesium turnings in refluxing THF, and the mixture was hydrolyzed with $\mathrm{D}_{2} \mathrm{O}$. A 79% yield of benzonorbornene (10) was purified by GLC and analyzed by mass

10
spectrometry to contain 0.40 atom excess D. A $220-\mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 10 , in which the anti- and syn- 7 proton resonances were clearly resolved from all other multiplets, showed 0.38 ± 0.05 atom excess D anti and 0.00 ± 0.05 atom excess D syn. This stereoselectivity is as high as or higher than in Grignard formation from anti- Br or anti- Cl .

Discussion

anti- Br , anti- Cl , and anti-7-bromobenzonorbornene (5) react with magnesium with high retention of configuration. Under similar conditions syn- Br and syn- Cl give mixtures of anti and syn-7-benzenorbornadienyl Grignard reagents in which the syn Grignard reagent neither isomerizes rapidly to its anti isomer nor is selectively destroyed. Therefore, the formation of Grignard reagents from anti-Br, anti- Cl , and 5 and the cycloaddition of benzyne to cyclopentadienyl Grignard reagents are kinetically controlled. anti- Br , anti- Cl , and 5 react with magnesium and deuterolyze to produce benzo-norbornadiene-7-d with at least a $6.1 / 1.0$ preference for retention of configuration (based on expt 16-20). Only with vinyl bromides has such high stereoselectivity been observed before. ${ }^{7,8}$ The only other Grignard preparations from halides and magnesium at saturated carbon known to proceed stereoselectively gave a maximum retention/inversion ratio of $1.67 .{ }^{6}$

In refluxing THF Grignard reagents from anti-Br start to decompose in less than 4 h and are completely consumed in 20 h . The thermal stability of the Grignard reagent from anti- Cl has not been tested directly, but it must be more stable than that from anti- Br because its formation required 20 h
in refluxing THF. The data in Table I indicate that the configurational stabilities of the Grignard reagents from anti-Br must be at least as great as their thermal stabilities. Thus they are at least comparable in configurational stability to many secondary Grignard reagents studied previously. ${ }^{5,9 a, 10}$ They do not invert configuration rapidly by homoallyl-cyclopropylcarbinyl rearrangement as Δ^{3}-cyclohexenyl- and Δ^{3}-cyclopentenylmagnesium halides do. ${ }^{11}$

Methyl esters 7 and 8 were designed to test the relative stabilities of anti- and syn-7-substituted benzonorbornadienes. Much greater stability of the anti isomer would help explain stereoselective formation of anti Grignard reagents. However, insofar as 7 and 8 are reasonable models for Grignard reagents, the anti isomer is only slightly favored at equilibrium.

We hypothesized at one time that the $\mathrm{C}_{2}-\mathrm{C}_{3}$ double bond of 3 could stabilize the anti Grignard reagent by coordinating to the magnesium atom more strongly than the benzene ring coordinates to magnesium in the syn Grignard reagent. However, such coordination is not a necessary feature for stereoselective Grignard formation because the saturated analogue 5 forms a Grignard reagent with as high retention of configuration as anti- Br and anti- Cl . Also treatment of syn-7-bromonorbornene (11) with magnesium in ether fol-

2
1
lowed by carbonation gives a $2 / 1$ mixture of the corresponding anti and syn carboxy.ic acids. ${ }^{20}$

Since the origin of the stereoselectivity is kinetic, an explanation for our untsual results must lie in the mechanism of Grignard reagent formation. Diverse evidence supports a mechanism which proceeds by a free radical at the magnesium surface. For example, reaction of 1-chloro-2-methyl-2-phenylpropane with magnesium gives several products expected from free-radical rearrangement. ${ }^{21}$ Grignard preparations from $1 \mathbf{c}^{12}$ and 5^{13} give substantial amounts of dimers from apparent free-radica- coupling. Radical disproportionation and coupling account for the side products from treatment of 1-bromo-1-methyl-2,2-diphenylcyclopropane with magnesium in ether. ${ }^{6}$ CIDNP in ${ }^{1} \mathrm{H}$ NMR spectra of alkyl Grignard reagents has been detected, but it must arise from coupling of free radicals in solution rather than at the magnesium surface. ${ }^{22}$ The relative rates of reaction of alkyl halides with magnesium metal co־relate better with their polarographic reduction potentials than with their rates of carbanion, SN2, lithium-halogen exchange, or tributyltin hydride reactions. ${ }^{23}$ This suggests that the rate-limiting step is electron transfer from the metal to the alkyl halide. ${ }^{23}$ Finally, the loss of configuration in formation of Grignard reagents at saturated carbon has long been cited as evidence for a radical intermediate. Radical surface mechanisms have been discussed recently by several authors. ${ }^{6,22,23}$

In spite of the high stereoselectivity, reactions of anti-Cl and anti-Br with magnesium may still proceed by a ratelimiting electron transfer to form a 7 -benzonorbornadienyl radical at the magnesium surface as shown in Scheme I. This mechanism requires only that capture by magnesium of the anti surface-bound radical proceed faster than rearrangement to the syn surface-bound radical. Within the framework of Scheme I several experimental facts support stronger anti than syn binding to the magnesium surface: (a) anti- Br and anti- Cl react faster than syn -Br and syn -Cl , respectively. (b) anti- Cl gives much higher yields of deuterated benzonorbornadiene than syn- Cl . Yields from anti- Br and syn -Br are

about the same, however. (c) syn- Br and syn- Cl give approximately equal amounts of anti and syn Grignard reagents. The much faster reactions of the bromides than of the chlorides with magnesium also supports qualitatively a rate-limiting electron transfer step. A possible reason for stronger anti binding than syn binding of benzonorbornadienyl species to the metal is substantial steric hindrance between the benzene ring and the metal surface. On the other hand, highly stereoselective Grignard formation from anti-7-bromobenzonorbornene (5) and lack of stereoselectivity in reaction of syn7 -bromonorbornene (11) ${ }^{20}$ suggest little difference in the abilities of ethano and etheno bridges of norbornene-like structures to bind to magnesium.

A radical mechanism for formation of 7-benzonorbornadienyl Grignard reagents must proceed at the metal surface rather than in solution. Tri- n-butyltin deuteride reductions of anti- Br and $s y n-\mathrm{Br}$, which proceed by a free-radical chain mechanism, give identical mixtures of 57% syn- and 43% anti-deuterated benzonorbornadiene. ${ }^{16}$ Also, preparation of Grignard reagents by the NaNaph method proceeds via an alkyl free radical and perhaps an alkylsodium compound in solution. ${ }^{18}$ Although the lifetimes of the 7 -benzonorbornadienyl free radical and 7-benzonorbornadienylsodium under the $\mathrm{NaNaph} / \mathrm{MgX}_{2}$ conditions are not known, the lack of stereoselectivity in all such experiments in Table I must be due to rapid configurational inversion of one or both of them.

If ant $i-\mathrm{Br}$, anti- Cl , and 5 react with magnesium by the same mechanism as other alkyl halides, why do only they give high retention of configuration? We hypothesize that two major factors are involved.

First, the 7 position of benzonorbornadiene is strained. The average $\mathrm{C}_{1}-\mathrm{C}_{7}-\mathrm{C}_{4}$ bond angle in norbornyl compounds studied by diffraction methods is $94^{\circ} .{ }^{24}$ The ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectrum of benzonorbornadiene are 134.6 and 136.2 Hz for the syn-7 and anti-7 protons, respectively, ${ }^{25}$ which imply that the exocyclic carbon orbitals of the C-H bonds are sp ${ }^{2.7}$ hybrids. Recent ESR studies suggest that 7 -norbornenyl ${ }^{26}$ and 7 -benzonorbornadieny ${ }^{27}$ radicals are pyramidal rather than planar, presumably because of the high s character in the exocyclic carbon orbitals. The high s character should slow the rate of configurational inversion at C_{7} in the 7 -benzonorbornadienyl radical just as it causes high inversion barriers in analogous 7 -azabenzonorbornadienes. ${ }^{28}$ The inversion barrier cannot be high enough to prevent complete equilibration of the anti and syn radicals in solution, but it might still affect reaction of the radicals bound to a magnesium surface.

Second, there is a substantial difference in steric hindrance to approach of the anti- and syn-7 faces of benzonorbornadienyl halides to the magnesium surface. The argument that high s character slows configurational inversion of pyramidal
radicals applies even better to Grignard formation from 1-bromo-1-methyl-2,2-diphenylcyclopropane (4) which proceeds with 18% retention of configuration. ${ }^{6}$ However, the strengths of binding of the two enantiomeric pyramidal radicals from 4 to the metal are equal. Our hypothesis suggests that other alkyl halides which meet the requirements, (a) high s character in the carbon orbital of the carbon-halogen bond and (b) a substantial difference in hindrance to binding of the two isomers to the metal surface, may also form Grignard reager ts with high retention of configuration.

Tae results of expt $30-32$ in which Grignard reagents were prepared from anti -Br in THF- d_{8} are most puzzling. Even though only about 0.02 atom excess D was incorporated into benzonorbornadiene using THF- d_{8} and $\mathrm{H}_{2} \mathrm{O}$ hydrolysis, THF still is the most incuitively likely source of hydrogen to account for the undeuterated 2 in THF/ $\mathrm{D}_{2} \mathrm{O}$ experiments. If this intuition is right, the results indicate a kinetic isotope effect of ≥ 60 for reaction of solvent with some intermediate benzonortornadienyl species. Such a large isotope effect could occur only if hydrogen atom or proton transfer proceeded by a quantum mechanical tunneling mechanism, or by a multistep mecianism which would cause the experimental isotope effect to be a product of two or more primary kinetic isotope effects.

Experimental Section

General. Microanalyses were performed by J. Nemeth and associates. All temperatures, including melting points, are uncorrected. Infrared spectra weee obtained either as a thin film between sodium chloride plates on Perkin-Elmer Model 137 or Model 237B instruments or as a potassium bromide pellet on Perkin-Elmer Model 521 or Beckman IR-12 instruments. Routine ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Varian T-60, A-60A, A-56/60, or HA-100 spectrometers. The HA-100 equipped with a Hewlett-Packard Model 200ABR audio oscillator was used for decoupling experiments. Mass spectra were recorded on a Varian-MAT CH-5 mass spectrometer.
Aralytical and Preparative GLC. Unless stated otherwise, analyses were performed with a $4 \mathrm{ft} \times 0.125 \mathrm{in} .20 \%$ Apiezon L on 60/8c Chromosorb W column at a He flow rate of $20 \mathrm{ml} / \mathrm{min}$ and 155 ${ }^{\circ} \mathrm{C}$ on a Hewlett-Packard Model 700 instrument equipped with a thermal conductivity detector. Naphthalene and n-tetradecane were used as internal stardards. The thermal conductivity response factor per unit weight [(weight compd) (area standard)/(area compd) (weight stancard)] of benzo:orbornadiene (2) to naphthalene is 1.01 , of 2 to $n-\mathrm{C}_{14} \mathrm{H}_{30}$ is 1.23 , of anti-7-chlorobenzonorbornadiene (1a) to naphthalene is 1.19, and of anti-7-bromobenzonorbornadiene (1c) to naphthalene is 1.57 These response factors are averages of at least three determinations. The response factors of 1a to $n-\mathrm{C}_{14} \mathrm{H}_{30}$ and 1 c to $n-\beth_{14} \mathrm{H}_{30}$ calculated from these values are 1.45 and 1.91, respectively. The response factors of deuterated 2 , syn -Cl (1b), syn -Br (1d), and benzonorbornene are assumed to be the same as those for $2,1 \mathrm{la}$, 1c, and 2, respectively. Preparative GLC purifications of 2 were performed on a Varian Model A-90-P instrument at 200° on either a 0.25 in. $\times 10 \mathrm{ft} 20 \%$ Apiezon L on 60/80 Chromosorb W column or a 0.375 in. $\times 10 \mathrm{ft} 20 \%$ Apiezon L on 60/80 Chromosorb W column.
Materials. Unless noted otherwise Baker reagent grade magnesium turnings were washed with benzene and dried overnight under nitrogen at $120^{\circ} \mathrm{C}$, and tetrahydrofuran was distilled from the sodium ketyl of benzophenone just before use. Hexamethylphosphoramide, 1,2-dibromoethane, and 1,2 -dichloroethane were distilled from calcium hydride under nitrogen. Tetrahydrofuran- d_{8} was Merck Sharp \& Dchme minimum 99% D, analyzed by mass spectrometry in our laboratory to contain $7 \% d_{7}$ and $93 \% d_{8}$ species. By ${ }^{1} \mathrm{H}$ NMR the residual protium was 21% at the α position and 79% at the β position. anti-7-Bromobenzonorbornadiene (1c), ${ }^{12}$ anti-7-chlorobenzonorbornadiene ($\mathbf{l a}$), ${ }^{29}$ anti- 7 -bromobenzonorbornene (5), ${ }^{13}$ and 7 -oxabicyclo $[2.2 .1]$ heptane ${ }^{30}$ were prepared by literature methods.
syn-7-Chlorobenzonorbornadiene (1b). The literature method ${ }^{31}$ for acetophenone-sensitized photolysis of anti-7-benzonorbornadienol after removal of solvent and evaporative distillation gave a 68% yield of a mixture of two compounds: the expected exo-tetracyclo[5.4.0.0.0,4. $0^{3,6}$]undeca-1(7),8,10-trien- 5 -ol and another tentatively identified as syn-7-benzonorbornadienol by similarity of ir and ${ }^{1} \mathrm{H}$ NMP. spectral frequencies to those reported earlier. ${ }^{31}$ Treatment of this mixture with thionyl chloride in ether by the literature method ${ }^{31}$ gave a 47% yield of 1 b after sublimation at $40-50^{\circ} \mathrm{C}(0.03 \mathrm{Torr})$ and
recrystallization from hexane: $\mathrm{mp} 57.5-58.5^{\circ} \mathrm{C}$ (lit. ${ }^{32} \mathrm{mp} 59.0-59.5$ ${ }^{\circ} \mathrm{C}$). Its ${ }^{1} \mathrm{H}$ NMR spectrum agreed with a previous report. ${ }^{19 \mathrm{c}} \mathrm{Ir}(\mathrm{KBr})$ $6.87(\mathrm{~m}), 7.73(\mathrm{~m}), 7.90(\mathrm{~m}), 11.50(\mathrm{~m}), 11.68(\mathrm{~m}), 12.40(\mathrm{~s}), 13.00(\mathrm{~s})$, $13.85(\mathrm{~m})$, and $14.53 \mu(\mathrm{~s})$.
syn-7-Bromobenzonorbornadiene (1d). By a method suggested earlier ${ }^{31,33}$ a solution of $5.16 \mathrm{~g}(23.4 \mathrm{mmol})$ of anti -Br and 500 mg of acetophenone in 250 ml of freshly distilled, nitrogen-purged benzene was photolyzed in a Rayonet reactor at $3500 \AA$ for 360 h . The reaction was fcllowed by ${ }^{1} \mathrm{H}$ NMR in which the $7-\mathrm{H}$ of $\mathrm{syn}-\mathrm{Br}$ appeared at δ 4.38 and the $7-\mathrm{H}$ of anti -Br at $\delta 4.15$. The solvent was removed under vacuum, and the resultant yellow oil was crystallized from petroleum ether ' 'bp $30-60^{\circ} \mathrm{C}$). Recrystallization gave 1.91 g ($8.65 \mathrm{mmol}, 37.0 \%$) of $1 \mathbf{d}, \mathrm{mp} 59.5-61.5^{\circ} \mathrm{C}$. Molecular distillation of the recrystallization mother liquors at $75-125^{\circ} \mathrm{C}$ (0.5-0.6 Torr) followed by recrystallization from petroleum ether yielded an additional $0.59 \mathrm{~g}(2.67 \mathrm{mmol}$, 11.8%) of $1 \mathrm{~d}, \mathrm{mp} 57-59{ }^{\circ} \mathrm{C}$ (lit. $.^{34} \mathrm{mp} 61.1-61.7^{\circ} \mathrm{C}$) $\mathrm{Ir}^{34,35}$ and ${ }^{1} \mathrm{H}$ NMR^{34} spectra agreed with the literature. GLC analysis on an 0.125 in. $\times 4 \mathrm{ft} 20 \%$ Apiezon L on $60 / 80$ Chromosorb W column at $200^{\circ} \mathrm{C}$ showed this material to contain $<0.5 \%$ of anti- Br .

Exclusion of Water and Oxygen from Grignard Reactions. All preparations were run under dry nitrogen at slightly above atmospheric pressure. All deuterolyses were performed under nitrogen at room temperature ($23-25^{\circ} \mathrm{C}$). All solvents, solutions, and liquid reagents were transferred by syringes which were dried at $160^{\circ} \mathrm{C}$ and stored in a desiccator. Grignard reactions were performed in 14/20 standard taper glassware that consisted of a three-neck round-bottom flask, magnetic stirring bar, condenser, addition funnel, and rubber septum. All but the septum were dried at $160^{\circ} \mathrm{C}$ overnight and then flame dried under a dry nitrogen flow. The alkyl halides were vacuum dried and weighed into oven-dried vials. They were dissolved in THF under nitrogen and transferred to the addition funnel by syringe.

Typical Procedure for Grignard Preparations with Magnesium Turnings (Expt 16-18). To 0.55 g (22.6 mg -atoms) of magnesium turnings under 5 ml of THF, $0.212 \mathrm{~g}(1.13 \mathrm{mmol})$ of 1,2 -dibromoethane was added dropwise at a rate which maintained reflux. Another 7 ml of THF was added, the mixture was refluxed for $1-2 \mathrm{~h}$, and $0.250 \mathrm{~g}(1.13 \mathrm{mmol})$ of anti- Br in 3 ml of THF was added dropwise in $2-5 \mathrm{~min}$ at reflux. After the additional heating time indicated in Table I the mixture was cooled to room temperature, 5 ml of $\mathrm{D}_{2} \mathrm{O}$ was added, and the mixture was stirred for at least 15 min .

This procedure was used on scales of $0.25-2.25 \mathrm{~g}$ of $1 \mathbf{c}, 0.10 \mathrm{~g}$ of $1 \mathbf{a}$ and 1 b , and 0.60 g of 1 d . Progress of the reaction was followed by quenching a $5-10-\mu \mathrm{l}$ aliquot of the reaction mixture in saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous) and analyzing an ether extract by GLC. Naphthalene (ca. 100 mg) was added to the deuterolyzed mixture as an internal standard for the GLC analysis, and the excess Mg was destroyed with 3 ml of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous). The phases were separated, and the aqueous phase was extracted with several portions of ether. The combined ethereal extracts were washed with saturated NaCl (aqueous), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to about 2 ml . Yield was determined by GLC aralysis of the concentrate, and 2 was isolated by preparative GLC. By the method of Cristol and Noreen, ${ }^{16}$ a 10% molar excess of 1,3-diphenylisobenzofuran was added to 2 and heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 20 h . The adduct (6) was recrystallized one or two times from ethanol/chloroform, vacuum dried, and analyzed for deuterium content.

Typical Procedure for Grignard Preparations from Activated Magnesium (Expt 21-24). This procedure is based on the method of Rieke and co-workers. ${ }^{14}$ A solution of $0.565 \mathrm{~g}(3.00 \mathrm{mmol})$ of $1,2-$ dibrcmoethane in 5 ml of THF was added dropwise with stirring to 153.6 mg (6.3 mg -atoms) of magnesium turnings in 10 ml of THF at a rate which maintained reflux, and the mixture was refluxed for another $1-2 \mathrm{~h}$. Freshly cut potassium metal ($217 \mathrm{mg}, 5.54 \mathrm{mg}$-atoms) was $\varepsilon d d e d$, and the mixture was refluxed for 2 h to produce a gray suspension of activated magnesium. After cooling to room temperature, 0.50 g (2.26 mmol) of anti- Br in 5 ml of THF was added and the progress of the reaction was checked by GLC. The reaction was usually complete in $3-7 \mathrm{~h}$. In expt 22 , naphthalene was added as an internal GLC standard, and half of the reaction mixture was removed by syringe and quenched in $D_{2} O$. The remaining half was refluxed for $4 h$, cooled to room temperature, and quenched with $\mathrm{D}_{2} \mathrm{O}$. Products from each half of the reaction were isolated independently in the manner described for mgnesium turning experiments. Experiments 23 and 24 were done similarly, except that the naphthalene was added to each aliquot after removal and quench.
Typical Procedure for Grignard Preparation from Magnesium Halide and Sodium Naphthalenide (Expt 4, 5, 14, 15, 26). A. Standard Magnesium Halide Solutions. A solution of 1.5 g (15 mmol) of 1,2 -dichloroethane in 10 ml of THF was added dropwise with stirring to 730 mg (30.0 mg -atoms) of magnesium turnings in 10 ml
of THF at a rate which maintained reflux. Another 30 ml of THF was added, and the mixture was filtered under nitrogen through a course porosity sintered glass frit into a dry flask. Typical quantities used in preparing the analogous $\mathrm{MgBr}_{2} / \mathrm{THF}$ solutions were 4.51 g (24.0 mmol) of 1,2 -dibromoethane, 1.22 g (50.0 mg -atoms) of Mg , and a total of 80 ml of THF. This resulted in a saturated $\mathrm{MgBr}_{2} / \mathrm{THF}$ solution as indicated by a white, crystalline precipitate. Molarities of these solutions (typically $0.20 \mathrm{M} \mathrm{MgCl}_{2}$ and 0.23 M MgBr 2) were determined by both EDTA titration of Mg^{2+} and Ag^{+}titration for X^{-}, which indicated that the reactions were quantitative.
B. Sodium Naphthalenide ($\mathbf{N a N a p h}$) Solutions. A large excess of sodium metal was added to $3.84 \mathrm{~g}(30.0 \mathrm{mmol})$ of naphthalene in 30 ml of THF. The so.ution turned green within seconds after the addition of the sodium and was stirred for $2-10 \mathrm{~h}$. The green solution was separated from the excess sodium and transferred to a dry flask under nitrogen by syringe. The solution was analyzed by quenching an aliquot in ethanol and titrating with standard HCl (aqueous) solution to the bromcresol green end point. ${ }^{36} \mathrm{NaNaph}$ was usually 0.7-0.9 M. Only fresh solutions of NaNaph worked satisfactorily. Solutions aged for 1 week or more still showed the same total base concentration, but failed to consume all the starting halide in the Grignard preparations.
C. Grignard Preparations. By the method of Bank and Bank, ${ }^{15}$ 1.3 mmol of NaNaph from a standardized solution was added dropwise with stirring at rcom temperature to a solution prepared from 100.0 mg (0.57 mmol) of anti-Cl in 0.4 ml of THF and 0.75 mmol of standardized MgCl_{2} solution. In the case of anti- Br 250 mg (1.13 mmol) of anti $-\mathrm{Br}, 1.7 \mathrm{mmol} \mathrm{o}^{*} \mathrm{MgBr}_{2}$, and 2.67 mmol of NaNaph were used. The solution was stirred for about 15 min after the addition was complete, quenched with $\mathrm{D}_{2} \mathrm{O}$, and stirred for at least 15 min . The product 2 was isolated in the usual manner using ca. 150 or 250 mg of $n-\mathrm{C}_{14} \mathrm{H}_{30}$ as the internal GLC standard rather than naphthalene.

Procedural Variations in Specific Experiments. In Table I, 65 ${ }^{\circ} \mathrm{C}$ refers to refluxing THF and $25^{\circ} \mathrm{C}$ means room temperature. Times refer to time after addition of the alkyl halide was complete. In experiments with more than one data point a single reaction mixture was prepared and aliquots were withdrawn by syringe at the times indicated. The reaction mixture was chilled briefly in an ice bath before sample withdrawal, and heating was resumed immediately afterward. In reactions of chlorides $\mathbf{l a}$ and $\mathbf{1 b}, 1,2$-dichloroethane, rather than 1,2 -dibromoethane, was used to precondition the magnesium turnings or to generate the MgCl_{2} from which activated magnesium was prepared.

Expt 3. 7-Oxabicyc.o[2.2.1]heptane was used as solvent in place of THF.

Expt 6. The MgCl_{2} was omitted from the NaNaph procedure.
Expt 7. A Grignard solution was prepared from anti- Cl and Mg turnings by the standard procedure and cooled to room temperature. Standard NaNaph solution (2.5 equiv) was added, the mixture was stirred for 15 min , and deuterolysis was carried out by the standard procedure.

Expt 8,9 . After the standard $\mathrm{MgCl}_{2} / \mathrm{NaNaph}$ treatment the reaction mixture was refluxed for 24 h before deuterolysis.

Expt 25. Turnings from Dow singly sublimed magnesium crystal rather than reagent grade magnesium turnings were used.

Expt 30, 32. THF- d_{3} (see Materials section) rather than THF was used and $\mathrm{H}_{2} \mathrm{O}$ rather than $\mathrm{D}_{2} \mathrm{O}$ was used for hydrolysis.

Expt 31. The solvent was THF- d_{8}. An aliquot was removed after 30 min at reflux and kydrolyzed with $\mathrm{D}_{2} \mathrm{O}$. The remaining solution was refluxed for 240 h and hydrolyzed with $\mathrm{H}_{2} \mathrm{O}$.

Benzonorbornadiene Dimer 9 (Expt 21). The usual activated magnesium with 1.00 g (4.52 mmol) of anti- Br was used. No naphthalene was added. After the usual extractions the solvent was removed under vacuum and replaced with hexane. The hexane solution was chromatographed on 100 g of silica gel taking $25-\mathrm{ml}$ fractions. Fractions 1-80 were eluted with hexane, 81-150 with 1% ether in hexane, 151-200 with 2% ether in hexane, 201-250 with 5% ether in hexane, and 251-300 with 10% ether in hexane. Fractions $1-30$ contained 2 and were combined and concentrated to a solution weighing 0.6728 g . By GLC ana ysis, the area of 2 compared to the total area of 2 and the solvent peak was 78%, which corresponds to a yield of 525 $\mathrm{mg}(82 \%)$. This solution was treated with $1.0 \mathrm{~g}(3.7 \mathrm{mmol})$ of $1,3-\mathrm{di}-$ phenylisobenzofuran and adduct 6 was purified in the usual manner.

Fractions 40-80 were combined and evaporated to dryness to yield $36.5 \mathrm{mg}(0.130 \mathrm{mmol}, 5.7 \%)$ of dimer 9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.00$ (broad $\mathrm{d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}$), 2.78 (brcad d, $1 \mathrm{H}, J=10 \mathrm{~Hz}$), 3.32-3.64 (broad $\mathrm{m}, 4 \mathrm{H}), 6.42-6.60(\mathrm{~m}, 4 \mathrm{H}), 6.60-7.16(\mathrm{~m}, 8 \mathrm{H})$; ir (KBr) $1448(\mathrm{~m}), 1300$ (m), $1285(\mathrm{~m}), 757(\mathrm{~s}), 727(\mathrm{~s}), 682(\mathrm{~s})$, and $632 \mathrm{~cm}^{-1}(\mathrm{~m})$; mass spectrum (70 eV) m/e (rel intensity) 284 (0.81), 283 (4.05), 282 (16.38), 281 (5.24), 167 (15.83), 155 (5.85), 154 (36.46), 153 (28.72), 142 (13.62), 141
(100.00), 128 (26.15), 115 (20.82). Other column fractions yielded no identifiable products.

Hexamethylphosphoramide Treatment and Carbonation of Grignard Reagent from anti-Br (Expt 20). The Grignard reagent was prepared from $2.25 \mathrm{~g}(10.2 \mathrm{mmol})$ of anti -Br and magnesium turnings in 70 ml of THF. A $7-\mathrm{ml}$ aliquot was removed and quenched in $\mathrm{D}_{2} \mathrm{O}$, and a $20-\mathrm{ml}$ aliquot was removed and injected into a flask of freshly powdered dry ice. As quickly as possible, 8 ml (45.7 mmol) of HMPA was added to the remaining Grignard solution. An $8.3-\mathrm{ml}$ aliquot was removed and quenched in $\mathrm{D}_{2} \mathrm{O}$, a $23.7-\mathrm{ml}$ aliquot was removed and quenched in dry ice, and $1.0 \mathrm{~g}(9.3 \mathrm{mmol})$ of chlorotrimethylsilane was added to the remaining 19 ml of solution. The deuterolyzed mixtures were purified in the usual manner. The chlorotrimethylsilane mixture was stirred overnight, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to destroy excess magnesium, the phases were separated, the aqueous phase was extracted with ether, and the ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. Analysis by GLC showed four peaks in the volatility range expected for 7-trimethylsilylbenzonorbornadienes, so no further isolation was attempted.

After warming to room temperature, water was added to the mixture carbonated without HMPA and it was acidified with concentrated HCl . The aqueous phase was extracted with several portions of ether, and the combined ether phases were extracted with three $50-\mathrm{ml}$ portions of 1 N NaOH . The combined NaOH extracts were washed with ether, acidified, and extracted with ether. The ether was evaporated and the resultant solid was vacuum dried to yield 56.0 mg ($0.301 \mathrm{mmol}, 10.3 \%$) of 7-benzonorbornadienecarboxylic acids. The acids were esterified by refluxing overnight in 5 ml of methanol with 0.1 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. Addition of water followed by ether extraction and evaporation gave $46.6 \mathrm{mg}(0.233 \mathrm{mmol}, 78 \%)$ of $7-$ carbomethoxybenzonorbornadienes (7 and 8). The aliquot that was carbonated after addition of HMPA was treated in an analogous manner to give 35.0 mg ($0.188 \mathrm{mmol}, 6.5 \%$) of 7 -benzonorbornadienecarboxylic acids and $24.1 \mathrm{mg}(0.121 \mathrm{mmol} ; 64.5 \%)$ of 7 and 8. GLC analyses of these samples on a 0.125 in . $\times 4 \mathrm{ft} 10 \%$ FFAP on $60 / 80$ Chromosorb G column at $200^{\circ} \mathrm{C}$ showed anti/syn ratios of esters of 6.8 and 3.0 , respectively, for the carbonations with and without HMPA. The structures of 7 and 8 were confirmed by comparison of their GLC properties and NMR spectra with those of known samples (vide infra).

Deuterium Analyses. Mass spectra of adduct 6 were run at ca. 8.5 eV to minimize fragmentation. The data were processed as follows. Let $P_{0}=$ peak height of parent peak of 6 at $m / e 412$ and $P_{1}=$ peak height of peak at $m / e 413$. The experimentally measured natural abundance P_{1} / P_{0} ratio was 0.3485 (theory, 0.3348). Thus atom excess $\mathrm{D}=\left[P_{1}-(0.3485)\left(P_{0}\right)\right] /\left[P_{1}-(0.3485)\left(P_{0}\right)+P_{0}\right]$. Duplicate analyses of three different samples gave values which never differed by more than 0.008 atom excess D.
${ }^{1} \mathrm{H}$ NMR spectra of 6 in CDCl_{3} were obtained on a Varian HA-100 spectrometer using either $\mathrm{Me}_{4} \mathrm{Si}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for the lock signal. The spectra were integrated five times and the deuterium incorporation was determined from the sum of the five integrals for each adsorption as follows. Let $H_{\mathrm{a}}=$ the area for protons $\mathrm{H}_{\mathrm{a}}(\delta 2.45)$ in $6, H_{\mathrm{b}}=$ the area for protons $\mathrm{H}_{\mathrm{b}}(\delta 3.04), H_{\mathrm{c}}=$ the area for proton $\mathrm{H}_{\mathrm{c}}(\delta 1.27)$, and H_{d} $=$ the area for proton $\mathrm{H}_{\mathrm{d}}(\delta 2.88)$. Three spectra of two independently prepared all-protio samples of 6 were run. Using a $\mathrm{Me}_{4} \mathrm{Si}$ lock H_{c} and H_{d} integrated on the average to 1.05 ± 0.05 protons when the total areas for H_{a} and H_{b} divided by 4 was considered equal to the area per proton. Using this correction factor

$$
\begin{aligned}
& \text { atom excess D syn }=1-\left[\frac{H_{\mathrm{c}}}{\left(H_{\mathrm{a}}+H_{\mathrm{b}}\right) / 4}\right]\left[\frac{1}{1.05}\right] \\
& \text { atom excess D anti }=1-\left[\frac{H_{\mathrm{d}}}{\left(H_{\mathrm{a}}+H_{\mathrm{b}}\right) / 4}\right]\left[\frac{1}{1.05}\right]
\end{aligned}
$$

With a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ lock, the corresponding correction faciors were 1.01 for the syn position and 1.04 for the anti position. Occasionally ${ }^{1} \mathrm{H}$ NMR analyses gave total deuterium content which differed from the mass spectral analysis by >0.10 atom excess D. In such cases the ${ }^{1} H$ NMR analyses were repeated and closer agreement with mass spectrometry was found. However, we do not claim that the ${ }^{1} \mathrm{H}$ NMR analyses are any better than ± 0.05 atom excess D at each position.
anti-7-Carbomethoxybenzonorbornadiene (7). At $-78^{\circ} \mathrm{C} 1.82$ ml of 1.9 M sec -butyllithium (Alfa) was added to a solution of 601.5 $\mathrm{mg}(2.73 \mathrm{mmol})$ of anti- Br in 24 ml of dry ether. The solution was allowed to warm to $0^{\circ} \mathrm{C}$, was cooled back to $-78^{\circ} \mathrm{C}$, and was added by syringe to freshly crushed dry ice. After the carbonated mixture had warmed to room temperature, the phases were separated, and the aqueous phase was extracted with several portions of ether. The combined ethereal extracts were extracted with two $60-\mathrm{ml}$ portions
of 1 N NaOH . The NaOH extracts were washed with ether and acidified with HCl . The precipitated carboxylic acid (200 mg) was filtered, vacuum dried, and esterified by refluxing in 10 ml of methanol with 0.25 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ for 23 h . After the addition of 40 ml of ice water, the solution was extracted with several portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to 216.7 mg of dry solid. Preparative GLC on a $0.25 \mathrm{in} . \times 10 \mathrm{ft} 20 \%$ SE- 30 on $60 / 80$ Chromosorb W column at $210^{\circ} \mathrm{C}$ gave $95.9 \mathrm{mg}(0.48 \mathrm{mmol}, 17.6 \%)$ of 7 . Only one minor component (1.2%) of comparable retention time could be seen by preparative GLC, but it was not isolated. No impurities or other isomers could be detected in the purified product by GLC analysis on a 0.125 in. $\times 4 \mathrm{ft} 10 \%$ FFAP on 60/80 Chromosorb G column at 200 ${ }^{\circ} \mathrm{C}$: ir (KBr) 3020 (m), 1733 (s), 1455 (m), 1440 (m), 1350 (m), 1295 (m), 1247 (s), 1220 (s), 1180 (m), 1170 (m), 1020 (m), 1012 (m), 918 (m), 772 (s), 743 (s), and $709 \mathrm{~cm}^{-1}(\mathrm{~s})$; mass spectrum (70 eV) m/e (rel intensity) 202 (0.21), 201 (3.18), 200 (23.51), 185 (5.12), 169 (13.34), 168 (71.4)), 157 (6.04), こ 42 (13.38), 141 (100.00), 129 (19.71), 116 (6.46), 115 (51.69); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.17$ (t of $\mathrm{t}, 1 \mathrm{H}, J=1.75,0.35 \mathrm{~Hz}$), 3.53 $(\mathrm{s}, 3 \mathrm{H}), 4.08(\mathrm{q}, 2 \mathrm{H}, J=1.83 \mathrm{~Hz}), 6.61(\mathrm{t}$ of d, $2 \mathrm{H}, J=1.95,0.35 \mathrm{~Hz}$), 6.96 ($\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}$); irradiation at $\delta 6.61$ converts the $\delta 3.17$ absorption to a simple triplet, $J=1.75 \mathrm{~Hz}$, confirming the anti configuration.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 77.98; $\mathrm{H}, 6.04$. Found: $\mathrm{C}, 78.01 ; \mathrm{H}, 5.94$.
Equilibration of anti- and syn-7-Carbomethoxybenzonorbornadienes (7 and 8). A mixture of $70.6 \mathrm{mg}(0.40 \mathrm{mmol})$ of $7,0.20$ ml of HMPA, and 0.8 ml of 0.53 M sodium methoxide in methanol was heated at $65^{\circ} \mathrm{C}$. Aliquots of $3-5 \mu \mathrm{l}$ were removed and analyzed by GLC on a 0.125 in . $\times 4 \mathrm{ft} 10 \%$ FFAP on 60/80 Chromosorb G column at 200 ${ }^{\circ} \mathrm{C}$. After 165 h equilibrium was attained since there was no further change in the ratio of anti to syn esters up to $333 \mathrm{~h}, K_{\text {eq }}=[8] /[7]=$ 0.73 . Least-squares analysis of the composition vs. time data plotted as a first-order rate process gave a straight line with slope $=3.415 \times$ $10^{-4} \mathrm{~min}^{-1}=k_{\mathrm{f}}+k_{\mathrm{r}}$, the sum of the forward and reverse rate constants. Thus $k_{\mathrm{f}}=1.44 \times 10^{-4} \mathrm{~min}^{-1}$ and $k_{\mathrm{r}}=1.97 \times 10^{-4} \mathrm{~min}^{-1} .{ }^{1} \mathrm{H}$ $\mathrm{NMF}\left(\mathrm{CCl}_{4}\right)$ of the equilibrium mixture showed both 7 (vide supra) and 8: $\delta 3.26(\mathrm{t}, 1 \mathrm{H}, J=1.75 \mathrm{~Hz}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{q}, 2 \mathrm{H}, J=1.92$ $\mathrm{Hz}), 6.70(\mathrm{t}, 2 \mathrm{H}, J=2 \mathrm{~Hz}), 6.8-7.2\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right)$.

Grignard Reagent from anti-7-Bromobenzonorbornene (5). The general procedure with magnesium turnings was used with 1.00 $\mathrm{g}(4.43 \mathrm{mmol})$ of 5 and a reaction time of 5 min at reflux. The reaction mixture was hydrolyzed with 40 ml of $\mathrm{D}_{2} \mathrm{O}$, and the resultant benzonorbornene (79% by GLC) was isolated by preparative GLC under identical conditions with isolation of 2. Deuterium analyses were carried out by mass spectrometry and by $220-\mathrm{MHz}^{1} \mathrm{H}$ NMR using meth ods analogous to those described for 2.

Registry No.-la, 10239-89-1; 1b, 14518-75-3; 1c, 7605-10-9; 1d, 22436-26-6; 2, 4453-90-1; 2 (7-d), 31893-09-1; 5, 7605-11-0; 6, 5847-6-66-8; 7, 58473-67-9; 8, 58525-37-4; 9, 14518-80-0; anti-7-ben zonorbornadienol, 6991-42-0; magnesium, 7439-95-4; 1,2-dibromoethan ϵ, 106-93-4; sodium naphthalenide, 3481-12-7; 1,2-dichloroethane, 107-06-2; $\mathrm{MgCl}_{2}, 7786-30-3 ; \mathrm{MgBr}_{2}, 7789-48-2$; hexamethylphosphoramide, 68(1-31-9.

References and Notes

(1) (a) National Science Foundation Predoctoral Fellow, 1971-1974. (b) Address correspondence to W.T.F. at Rohm and Haas Co., Research Laboratories, Spring House, Pa. 19477.
(2) W. T. Ford and G. Buske, J. Am. Chem. Soc., 96, 621 (1974).
(3) (a) W. T. Ford, R. Radue, and J. Walker, Chem. Commun., 966 (1970); (b) U' $^{\prime}$ T. Ford. J. Org. Chem., 36, 3979 (1971).
(4) Carbonation, ${ }^{5-7}$ bromomercuration, ${ }^{5}$ and deuterolysis ${ }^{8}$ of other Grignard $r \in a g e n t s$ proceed with retention of configuration.
(5) F. R. Jensen and K. L. Nakamaye. J. Am. Chem. Soc., 88, 3437 (1966).
(6) (a) H. M. Walborsky and A. E. Young. J. Am. Chem. Soc., 86, 3288 (1964): (b) H. M. Walborsky and M. S. Aronoff, J. Organomet. Chem., 51, 31 (1973).
(7) G J. Martin and M L. Martin, Bull. Soc. Chim. Fr., 1636 (1966)
(8) (a) T. Yoshino and Y. Manabe, J. Am. Chem. Soc., 85, 2860 (1963): (b) T. Yoshino, Y. Manabe, and Y. Kikuchi, ibid., 86, 4670 (1964).
(9) (a) G. M. Whitesides and J. D. Roberts. J. Am. Chem. Soc.. 87, 4878 (1965): 89, 2799 (1967); (b) G. Fraenkel and D. T. Dix, ibid., 88, 979 (1966).
(10) E. Pechhold, D. G. Adams, and G. Fraenkel, J. Org. Chem., 36, 1368 (1971).
(11) (a) A. Maercker anc R. Geuss, Angew. Chem., Int. Ed. Engl., 10, 270 (1971): (b) for a review see E. A. Hill, J. Organomet. Chem.. 91, 123 (1975).
(12) S J. Cristol and G. W. Nachtigall, J. Org. Chem., 32, 3727 (1967).
(13) J. W. Wilt, G. Gutman, W. J. Ranus, Jr., and A. R. Zigman, J. Org. Chem., 32, 893 (1967).
(14) (a) R. D. Rieke and P. M. Hudnall, J. Am. Chem. Soc., 94, 7178 (1972); (b) R D. Rieke and S. E. Bales. ibid., 96, 1775 (1974).
(15) S Bank and J. F. Bank. Tetrahedron Lett., 4533 (1969); 4581 (1971)
(16) S J. Cristol and A L. Noreen, J. Am. Chem. Soc., 91, 3969 (1969).
(17) H Normant. Angew. Chem., Int. Ed. Engl., 6, 1046 (1967)
(18) J. F. Garst and F. E. Barton, II, J. Am. Chem. Soc., 96, 523 (1974), and $r \in f e r e n c e s$ cited therein.
(19) (a) N. Inamoto. S. Masuda, K. Tori, K. Aono, and H. Tanida, Can. J. Chem., 45, 1185 (1967): (b) K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji, and H. Tanida, Tetrahedron Lett., 9 (1966): (c) S. J. Cristol and G. W. Nachtigall, J. Org. Chem.. 32, 3733 (1967).
(20) R. R. Sauers and R. M. Hawthorne, Jr., J. Org. Chem., 29, 1685 (1964).
(21) C. Ruchardt and H. Trautwein, Chem. Ber., 95, 1197 (1962).
(22) (a) H. W. H. J. Bodewitz, C. Blomberg, and F. Bickelhaupt, Tetrahedron Lett., 281 (1972); (b) H. W. H. J. Bodewitz, C. Blomberg, and F. Bickelhaupt. Tetrahedron. 29, 719 (1973): (c) H. W. H. J. Bodewitz, C. Blomberg, and F. Bickelhaupt, ibid., 31, 1053 (1975); (d) H. W. H. J. Bodewitz. C. Blomberg. and F. Bickelhaupt. Tetrahedron Lett., 2003 (1975).
(23) R. J. Rogers. H. L. Mitchell, Y. Fujiwara, and G. M. Whitesides. J. Org. Chem., 39, 857 (1974).
(24) T. A. Hamor and D. J. Watkin, J. Chem. Soc., Perkin Trans. 2, 140 (1974). and references cited therein.
(25) Determined in this investigation.
(26) (a) P. Bakuzis, J. K. Kochi, and P. J. Krusic, J. Am. Chem. Soc., 92,

1434 (1970); (b) J. K. Kochi, P. Bakuzis, and P. J. Krusic, ibid., 95, 1516 (1973).
(27) T. Kawamura, Y. Sugiyama, M. Matsunaga, and T. Yonezawa, J. Am. Chem. Soc., 97, 1627 (1975)
(28) (a) G.' W. Gribble, N. R. Easton, Jr., and J. T. Eaton, Tetrahedron Lett., 1075 (1970); (b) H. Kessler and D. Leibtritz, ibid., 4289 (1970).
(29) M. E. Brennan and M. A. Battiste, J. Org. Chem., 33, 324 (1968).
(30) E. A. Fehnel, S. Goodyear, and J. Berkowitz, J. Am. Chem. Soc., 73, 4978 (1951)
(31) J. J. Tufariello and D. 'N. Rowe, J. Org. Chem., 36, 2057 (1971).
(32) S. J. Cristol and G. W. Nachtigall, J. Am. Chem. Soc., 90, 7132 (1968).
(33) S. J. Cristol, T. D. Ziejarth, N. J. Turro, P. Stone, and P. Scribe, J. Am. Chem. Soc., 96, 3016 (1974i.
(34) J. W. Wilt and P. J. Chenier, J. Am. Chem Soc., 90, 7366, (1968)
(35) J. W. Wilt and P. J. Chenier, J. Org. Chem., 35, 1562 (1970).
(36) N. D. Scott, J. F. Walker, and V. L. Hansley, J. Am. Chem. Soc., 58, 2442 (1936).

Effects of a Remote Double Bond or Cyclopropane Ring on Electrophilic Aromatic Substitution ${ }^{1}$

Mark W. Galley and Roger C. Hahn*
Department of Chemistry, Syracuse University, Syracuse, Neu York 13210

Received January 13, 1976

Relative positional reactivities have been determined for nitration of benzonorbornene (1), benzonorbornadiene (2), and the corresponding exo- and endo-benzotricyclo[3.2.1.0 ${ }^{2.4}$]octenes (3 and 4) For \mathcal{R} positions, homoconjugation in 2 ard 3 dominates over hyperconjugative effects; for a and ipso positions, inductive effects dominate. A "buttressed fused ortho effect" is proposed to account for the lower α reactivity of 3 than of 4.

There is continued widespread interest in interactions between electron-deficient centers and remote (i.e., nonconjugated) double bonds, arenes, and cyclopropane rings. ${ }^{2}$ However, little attention has been turned to the effects of a remote double bond or cyclopropane ring on electrophilic substitution reactions of an aromatic ring; experimental approaches to determination of optimum geometries for such interactions have not been reported. Consideration of the literature on remote participation effects facilitated a choice of substrates for this type of study. As summarized recently, ${ }^{2 a}$ conformationally mobile molecules thus far have afforded no kinetic evidence of significant contributions from cyclopropane participation. In contrast, fusion of a cyclopropane ring into a rigid framework has produced some of the most dramatic solvolysis rate variations known, as exemplified by the group of compounds formulated below ($\mathrm{X}=$ brosvlate or p nitrobenzoate). ${ }^{3}$

$k_{\text {rel }}=1.00$
$k=10^{4}$

$k=10^{9}$

$k=10^{12}$

$k=1.7$

It was anticipated, therefore, that kinetically detectable interaction between arene and remote cyclopropane (or double bond) moieties would be found in a study of the series of rigid structures 1-4. Further impetus was given to this work by the

discovery ${ }^{4}$ that 1 undergoes detectable ($\sim 3 \%$) ipso ${ }^{5}$ (i) nitration; thus the influence of remote substituents might be accessible via measured reactivities at each of three distinct arene positions.

Results and Discussion

Benzonorbornadiene (2), prepared by established methods, ${ }^{6}$ was converted to 1 by catalytic hydrogenation and to a $95: 5$ mixture of 3 and 4 by Simmons-Smith cyclopropanation. ${ }^{7,8}$ Pure 3 was obtained by crystallization from the mixture; pure 4 was obtained by chromatography of the enriched mother liquor.

Certain features of the nitration study by Tanida and Muneyuki ${ }^{9}$ were adapted to the present work; indan and tetralin were nitrated for comparison purposes, with the latter used as a standard (rel rate $=1.00$) for computation of substrate reactivities. Because of the sensitivity of 2,3 , and 4 toward other nitrating agents, nitrations were performed with copper nitrate in acetic anhydride $\left(0^{\circ} \mathrm{C}\right)$. Product mixtures were subjected to VPC analysis; product distributions were checked against artificial mixtures of similar composition. Percentages of nitrc compounds (α and β) for 1 , indan, and tetralin were nearly identical with those previously re-

Table I. Isomer Ratios and Relative Rates for Nitration of 1 . Indan, and Tetralin in Different Media

Substrate	$\alpha: \beta$ Ratio c	Rel rate
1^{a}	$7 / 93$	1.88
1^{b}	$3 / 97$	3.92
Indan a	$50 / 50$	1.27
Indan b	$27 / 73$	1.01
Tetralin a	$52 / 48$	1.00^{d}
Tetralin d	$37 / 63$	1.00^{d}

${ }^{a}$ Reference $9 ; \mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{NO}_{2}, 0^{\circ} \mathrm{C}$. ${ }^{b}$ This work; $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ac}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$. c In the present work, duplicate nitrations were done for each substrate; distributions were within $\pm 3 \%$ of the average values. Repetitions of work done elsewhere gave equally good agreement. ${ }^{d}$ Standard of comparison.
ported ${ }^{9,10}$ for nitration in nitric acid-acetic anhydride. To interrelate nitration rates, pairwise competitive nitrations were performed: 1 vs. 2,3 , indan, and tetralin; 3 vs. $4 ; 4$ vs. indan; indan vs. tetralin. Percentages of both isomers of both compounds in each competition were determined and checked as in individual nitrations.

Discussion will center first on those aspects of the present results bearing on attack of the nitrating agent at ipso positions. Tanida and Muneyuki, ${ }^{9}$ on nitrating 1 , indan, and tetralin with nitric-sulfuric acid, reported 1 to be about twice as reactive as the other two substrates (Table I). However, ni-tric-sulfuric acid nitration now is known to allow ipso nitroarenium ions (exemplified by tetralin in Scheme I) to

rearrange and deprotonate, falsely enhancing the reactivity of the α position. Nitration in acetic anhydride leads to extensive ${ }^{11}$ trapping of these nitroarenium ions (Scheme I); α-nitro derivative then is not the ultimate product of normal workup. Because indan and tetralin appear to undergo ca. 50% ipso attack ${ }^{10,12}$ whereas 1 gives evidence of only 3% ipso attack, ${ }^{4}$ the α reactivities for indan and tetralin, as well as the total substrate reactivities toward direct (non-ipso) nitration are inflated in the Tanida-Muneyuki work, relative to the corresponding values for 1 . When the ipso effect is taken into account, closer agreement is found between the two studies, although our nitration conditions still appear to afford a more selective nitrating agent.

Results of nitration of all substrates in the present study are assembled in Table II. Because no ipso nitration was observed for 2,3 , or 4 , ipso partial rate factors have been omitted for all compounds, ${ }^{13}$ and the relative rates given are only for non-ipso aromatic nitration. That they are reliable in this regard is indicated by the stability of all nitro derivatives under conditions of nitration and workup. ${ }^{14}$
With a few exceptions, the range of relative rates is not large. Interpretation therefore is confined here to salient features, with more extensive discussion available as supplementary material (see paragraph at end of paper).

The inertness of ipso and α positions in 2-4 (at least 50

Table II. Relative Rates ${ }^{a}$ and Partial Rate Factors ${ }^{b}$ for Nitrationc of Selected Benzomono-, -bi-, and -tricyclic Compounds
Compd
${ }^{a}$ Relative to tetralin. ${ }^{b}$ Relative to the β position of tetralin. ${ }^{c}$ Competitive nitration with copper nitrate in acetic anhydride at $0{ }^{\circ} \mathrm{C}$. ${ }^{d}$ See footnote c, Table I. ${ }^{e}$ Approximate value.
times less reactive than the β positions in 2 and 3) is attributed prinsipally to inductive electron withdrawal from these positions. These results are consistent with previous reports of very high preferences for β-nitration in triptycene (5), ${ }^{15}$ janusene (6), ${ }^{16}$ and other compounds containing homoconjugated

5

6
π systems. ${ }^{15}$ Precedent for inductive deactivation of an ipso position by a cyclopropyl group is found in the apparently complete prefererce for ipso attack at C_{3} in substrate 7. ${ }^{17,18}$

7
Ar a priori unexpected feature of Table II is the greater α reactivity of 4 than of 3 . No α-activating effect can be proposed for 4, relative to 3 ; we suggest a deactivating steric factor for 3. The C_{7} syn proten $\left(\mathrm{H}_{\mathrm{s}}\right)$ in 1 has been held responsible for some of the steric hindrance to α-attack in 1 ("fused ortho effect"). ${ }^{9}$ Incorporation of an exo (but not an endo) cyclopropane ring into that skeleton (to give 3) introduces severe nonbonding interaction between H_{a} and a cyclopropane methylene hydrogen. This interaction should force the methylene bridge iand H_{5}) closer to the α carbons, generating a "buttressed fused ortho effect" in this case. The viability of

1

3
this explanation is under study.

Experimental Section

Proton magnetic resonance spectra were obtained with a Varian A-60 or a Varian XL-10'; ultraviolet spectra were recorded on a Perkin-Elmer Model 202 or a Cary 118. Infrared spectra were recorded on a Perkin-Elmer Infracord Model 137. Mass spectra were obtained on a Hitachi Perkin-Elmer RMU-6E mass spectrometer. Melting and boiling points are uncorrected.
exo- and endo-Benzo[6,7]tricyclo[3.2.1.0 $0^{2,4}$]octane (3 and 4). These compounds were prepared as a $95: 5$ mixture from jenzonorbornadiene using the Simmons-Smith procedure. ${ }^{7}$ Separation of the isomers began with low-temperature crystallization of 3 from pentane until 4 had been enriched to $20-30 \%$. Pure 4 then was obtained by chromatography on silica gel, using pentane as the elutant. Physical properties of 3 and 4 are given below.

3: $\mathrm{mp} 37^{\circ} \mathrm{C}$ (lit. ${ }^{20} 35-37^{\circ} \mathrm{C}$); bp $40-41^{\circ} \mathrm{C}(1 \mathrm{~mm})$; ir (neat, NaCl) 3000 (cyclopropyl C-H), 1485, 1438, 1290, 1258, 1240, 1160, 1140, 1085, $1065,970,940,930,897,860,820,799,735,720$, and $677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.1\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aryl), $3.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{5}\right)$, and 1.65-0.68 (m, $6 \mathrm{H},-\mathrm{CH}_{2-}$ and cyclopropyl H 's).

4: bp $38-39^{\circ} \mathrm{C}(1 \mathrm{~mm}$); ir (neat, NaCl$) 2950$ (cycloprcpyl $\mathrm{C}-\mathrm{H}$), $1380,1150,1115,980,78 C^{\prime}, 740,710$, and $678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.05$ (s, 4 H , aryl), $3.27 \mathrm{im}, 2 \mathrm{H}$, bridgehead H 's), $2.25(\mathrm{dt}, 1 \mathrm{H}, J=$ $2.0,8.0 \mathrm{~Hz}$, syn $\left.\mathrm{H}_{\mathrm{s}}\right), 2.0\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}\right.$, anti $\left.\mathrm{H}_{8}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ and H_{4}), $0.45\left(\mathrm{~m}, 1 \mathrm{H}\right.$, anti H_{3}), and -0.70 (overlapping dt, $1 \mathrm{H}, J=$ $2.0,6.0 \mathrm{~Hz}$, syn H_{3}).

Indan was prepared from distilled indene by hydrogenation over $10 \% \mathrm{Pd} / \mathrm{C}$ in a Parr hydrogenator. Commercial tetralin was passed through a column of alumina and distilled prior to use, as was indan.

General Procedure for Nitration with Copper Nitrate Trihydrate. The hydrocarbon in acetic anhydride was pipetted into a cooled $\left(0^{\circ} \mathrm{C}\right.$ in an ice-salt bath) round-bottom flask. Freshly powdered copper nitrate trihydrate was added to the cooled solution, and the reaction was maintained at $0^{\circ} \mathrm{C}$ with magnetic stirring for $1-2 \mathrm{~h}$. The mixture was poured onto ice and an equal volume of water was added. Solid sodium bicarbonate was added to the magnetically stirred solution at $0^{\circ} \mathrm{C}$. When no more gas evolution $\left(\mathrm{CO}_{2}\right)$ was observed, the water layer was extracted three times with half volumes of ether. The combined ether layers were washed once with an equal volume of 5% aqueous sodium bicarbonate and once with an equal volume of water. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and ether was removed on a rotary evaporator. The nitro compounds were isolated by column chromatography on silica gel ($60-80$ mesh, grade 95%, Fisher S-662, 30:1) using pentane to elute starting material and benzenepentane ($20: 80 \rightarrow 50: 50$; depending on the compounds) to elute the nitro compounds.

Nitro derivatives of 2,3 , indan, and tetralin were separated as described above. Nitro derivatives of 1 and 4 were separated using high-pressure liquid chromatography on Porasil columns.

The physical properties and spectral data of the nitro derivatives of $1-4$ are given below, using the nomenclature shown on the partial formula.

$\alpha-\mathrm{NO}_{2}-1:$ bp $140-141{ }^{\circ} \mathrm{C}(6 \mathrm{~mm}) ;{ }^{9}$ ir (neat, NaCl$) 1520$ and 1340 $\mathrm{cm}^{-1}\left(-\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \beta-\mathrm{H}), 7.45$ (d, $\left.1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 7.2\left(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \beta^{\prime}-\mathrm{H}\right), 4.25(\mathrm{~m}, 1 \mathrm{H}$, benzyl H near NO_{2}), $3.45(\mathrm{~m}, 1 \mathrm{H}$, other benzyl H$), 2.2-1.5[\mathrm{~m}, 4 \mathrm{H}$, $-\left(\mathrm{CH}_{2}\right)_{2-}$], and 1.1 (broad s, $2 \mathrm{H},-\mathrm{CH}_{2}$); uv $\lambda_{\max }$ (hexane) 275 nm (65180) and 302 (1500).
$\beta-\mathrm{NO}_{2}-1$: bp $140-142{ }^{\circ} \mathrm{C}(6 \mathrm{~mm}) ;{ }^{9}$ ir (neat, NaCl$) 1520$ and 1340 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \alpha-\mathrm{H}), 8.07$ (dd, 1 $\left.\mathrm{H}, J=2.0,8.0 \mathrm{~Hz}, \beta^{\prime}-\mathrm{H}\right), 7.42\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 3.50(\mathrm{broad}$ $\mathrm{s}, 2 \mathrm{H}$, bridgehead H 's), $2.22-1.50\left[\mathrm{~m}, 4 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{2}\right]$, and $1.18(\mathrm{~m}, 2$ $\mathrm{H},-\mathrm{CH}_{2}-$; uv $\lambda_{\text {max }}$ (hexane) $271 \mathrm{~nm}(\epsilon 8460$).
$\alpha-\mathrm{NO}_{2}-2$: this isomer was not positively identified; a small VPC
peak of suitable retention time was seen in the mother liquor from crystallization of the β iscmer; the α isomer must constitute less than 0.1% of the product mixture.
$\beta-\mathrm{NO}_{2}-2:^{21} \mathrm{mp} 38-38.5^{\circ} \mathrm{C}$; ir (KBr) 1520 and $1340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \alpha-\mathrm{H}), 7.85(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}$, $\left.\beta^{\prime}-\mathrm{H}\right), 7.28\left(\mathrm{~d}, 1 \mathrm{H}, J=\varepsilon .0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 6.80$ (broad s, 2 H , vinyl H’s), 3.95 (m, 2 H , bridgehead H 's), and $2.33\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2-}\right.$); uv $\lambda_{\text {max }}$ (hexane) 280.5 nm ($\epsilon 6625$); uv $\lambda_{\text {max }}$ (EtOH) 290 nm (є 7900).
$\alpha-\mathrm{NO}_{2}-3$: ir (KBr) 1520 and $1340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78$ (dd, $1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}, \beta-\mathrm{H}), 7.3 \mathrm{E}\left(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 7.12(\mathrm{t}, 1$ $\left.\mathrm{H}, J=8.0 \mathrm{~Hz}, \beta^{\prime}-\mathrm{H}\right), 4.20$ (broad s, 1 H , benzyl H near NO_{2}), 3.40 (broad s, 1 H , other benzyl H), and $1.74-0.68\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2}\right.$ - bridge and cyclopropyl H's); uv $\lambda_{\text {max }}$ (hexane) 259 nm ($\mathbf{~ 7 5 0 0) ; ~ M S ~ m / e ~} 201$ (M. ${ }^{+}, 12.5 \%$).
$\beta-\mathrm{NO}_{2}-3: \mathrm{mp} 79-80{ }^{\circ} \mathrm{C}$; ir (KBr) 1520 and $1340 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz} \alpha-\mathrm{H}), 8.01(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}$, $\left.\beta^{\prime}-\mathrm{H}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 3.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{5}\right)$, and 1.72-0.63 (m, $6 \mathrm{H},-\mathrm{CH}_{2}$ - bridge and cyclopropyl H's); uv $\lambda_{\text {max }}$ (hexane) $276 \mathrm{~nm}(\epsilon 9050)$; u $\vee \lambda_{\max }(\mathrm{EtOH}) 290 \mathrm{~nm}$; MS m/e 201 (M.+, 40.5\%).
$\alpha-\mathrm{NO}_{2}-4$: ir (neat, $\left.\mathrm{Na} \cdot \mathrm{ll}\right) 1520$ and $1340 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.88(\mathrm{dd}, 1 \mathrm{H}, J=2 . \mathrm{C}, 8.0 \mathrm{~Hz}, \beta-\mathrm{H}), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}$, $\left.\alpha^{\prime}-\mathrm{H}\right), 7.26\left(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \beta^{\prime}-\mathrm{H}\right), 4.29\left(\mathrm{~m}, 1 \mathrm{H}\right.$, benzyl H near $\left.\mathrm{NO}_{2}\right)$, 3.43 ($\mathrm{m}, 1 \mathrm{H}$, other benzyl), 3.34 (td, $1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}$, syn H_{8}), 2.08 (broad d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, anti H_{8}), $2.00-1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ and H_{4}), 0.57 (dt, $1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}$, anti H_{3}), and $-0.74(\mathrm{td}, 1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}$, syn H_{3}); uv $\lambda_{\text {max }}$ (hexane) 260 nm ($\epsilon 3000$); MS m/e 201 (M.+, 15%).
$\beta-\mathrm{NO}_{2}$-4: ir (neat, NaCl$) 1520$ and $1340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.04\left(\mathrm{dd}, 1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}, \beta^{\prime}-\mathrm{H}\right), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \alpha-\mathrm{H})$, $7.32\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \alpha^{\prime}-\mathrm{H}\right), 3.43$ (broad s, $2 \mathrm{H}, \mathrm{H}_{1}$ and H_{5}), 3.34 (td, $1 \mathrm{H}, J=2.0,8.0 \mathrm{~Hz}$, syn- $\mathrm{H}_{8}, 2.08\left(\operatorname{broad~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}\right.$, anti $\left.\mathrm{H}_{8}\right)$, $1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{4}\right), 0.57\left(\mathrm{~m}, 1 \mathrm{H}\right.$, anti $\left.\mathrm{H}_{3}\right)$, and $-0.70(\mathrm{td}, 1 \mathrm{H}$, $J=3.0,6.0 \mathrm{~Hz}$, syn H_{3} !; uv $\lambda_{\text {max }}$ (hexane) $272.5 \mathrm{~nm}(\epsilon 8370$); MS m/e 201 (M+ ${ }^{+}, 100 \%$).

The spectral data and physical constants of the nitro isomers of indan and tetralin were identical with those reported in the literature. ${ }^{12 b}$

General Procedure for Competitive Nitrations. The distribution of nitro compounds from competitive nitrations was obtained using VPC analysis (10% QF-1 on 60-80 Chromosorb W, $5 \mathrm{ft} \times 0.125$ in. column at $150-220^{\circ} \mathrm{C}$, Aerograph Hy-Fi Model 600-C).

The nitration conditicns were identical with those described above. A typical competition was rur as follows. The two competing arenes (7.6 mmol each) were d ssolved in $10-20 \mathrm{ml}$ of acetic anhydride. To this solution at $0^{\circ} \mathrm{C}$ was added 3.8 mmol of freshly powdered copper nitrate trihydrate. The reacticn was allowed to proceed for $1-2 \mathrm{~h}$ and worked up as for preparative nitrations, except that all nitro compounds were taken off the silica gel column together and weighed. VPC analyses were checked ty comparing the results with artificial mixtures of similar composition. Relative reactivities were calculated from the expression derived by Ingold and Shaw. ${ }^{22}$

Registry No.-1, 4486-29-7; $\alpha-\mathrm{NO}_{2}-1,4228-29-9 ; \quad \beta-\mathrm{NO}_{2}-1$, 4228-30-2; 2, 4453-90-1; α - NO_{2}-2, 58673-43-1; β - $\mathrm{NO}_{2}-2,42810-33-3$; 3, 15577-76-1; $\alpha-\mathrm{NO}_{2}-3,58673-44-2 ; \beta-\mathrm{NO}_{2}-3,58673-45-3 ; 4,58717-$ 04-7; $\alpha-\mathrm{NO}_{2}-4,58717-05-8 ; \beta-\mathrm{NO}_{2}-4,58717-06-9$; tetralin, 119-64-2; indan, 496-11-7.

Supplementary Material Available. A more extensive discussion of partial rate factors and appropriate external comparisons (4 pages). Ordering information is giver on any current masthead page.

References and Notes

(1) Preliminary report: M. W. Gailey and R. C. Hahn, Abstracts, 168th National Meeting of the Ame-ican Chemical Society, Atlantic City, N.J., Sept 8-13, 1974. No. ORGN-38
(2) (a) J. Haywood-Farmer. Chem. Rev., 74, 315 (1974). and references cited therein: (b) G. R. Wenzinger and J. A. Ors, J. Org. Chem., 39, 2060 (1974); (c) P. E. Schueler and Y. E. Fhodes, ibid., 39, 2063 (1974); (d) G. Ellen and G. W. Klumpp. Tetranedron Lett., 3637 (1974).
(3) Values are approximate; see Table X , ref 2a, for data sources, experimental conditions, extrapolations, and related compounds
(4) M. W. Galley and R. C. Hahn, J. Am. Chem. Soc., 96, 4337 (1974).
(5) C. L. Perrin and G. A. Skinner, J. Am. Chem. Soc., 93, 3389 (1971).
(6) (a) G. Wittig and E. <nauss, Chem. Ber., 91, 895 (1958); (b) H. Tanida, T. Tsuji, and H. Ishitobi, J. Am. Chem. Soc., 86, 4904 (1964).
(7) R. D. Smith and H. E. Simmons, Org. Synth., 41, 72 (1961).
(8) Professor M. A. Batiste (private communication) also has noted formation of small amounts of 4 on reaction of 2 with diazomethane.
(9) H. Tanida and R. Mur eyuki, J. Am. Chem. Soc., 87, 4794 (1965).
(10) J. Vaughan, G. J. Welch, and G. J. Wright, Tetrahedron, 21, 1665 (1965),
(11) Ipso attack percentages cited here must be regarded as minimum values; even in "trapping" redia, nitroarenium ions may be partitioned between
trapping and nitro migration. However, data available so far are consistent with the assumption of essentially complete trapping.
(12) (a) A. Fischer, C. C. Greig, A. L. Wilkinson, and D. R. A. Leonard, Can. J. Chem., 50, 2211 (1972); (b) A. Fischer and D. R. A. Leonard, Ibid., 50, 3367 (1972).
(13) Ipso partial rate factors in benzo-fused bi- and tricyclic systems currently are under separate study, and will be reported in due course.
(14) Nitrations of 2-4 with copper nitrate-acetic anhydride are not clean; benzonorbornadiene, in particular, gives considerable amounts of products derivable at least in part from reaction of the isolated double bond. Introduction of the nitro group, however, appears to stabilize nitro derivatives toward further electrophilic attack. Side reactions of 2-4 do not affect the data presented.
(15) B. H. Klanderman and W. C. Perkins, J. Org. Chem., 34, 630 (1969), and references citted therein
(16) S. J. Cristol and D. C. Lewis, J. Am. Chem. Soc., 89, 1476 (1967).
(17) R. C. Hahn and M. B. Groen, J. Am. Chem. Soc., 95, 6128 (1973).
(18) A referee has suggested that preferential ipso attack at C_{3} in 7 can be explained by cyclopropane stabilization of a Wheland-type transition state, which would invalidate this reaction as a useful precedent for inductive deactivation of an ipso position by cyclopropyl. We note that (a) there is evidence to indicate that the cyclopropane ring in 7 is in nearly the worst possible geometry for conjugative interaction with the benzene π system, ${ }^{18}$ and (b) this situation is not greatly improved in the Wheland intermediate (model inspection). Thus, in our view, inductive deactivation by cyclopropyl remains a viable factor in nitration of 7.
(19) (a) R. C. Hahn, P. H. Howard, S.-M. Kong, G. A. Lorenzo, and N. L. Miller, J. Am. Chem. Soc., 91, 3558 (1969); (b) R. C. Hahn and P. H. Howard, Ibid., 94, 3143 (1972).
(20) M. A. Battiste and M. E. Brennan, Tetrahedron Lett., 5857 (1966).
(21) S. Terabe and R. Konaka, J. Am. Chem. Soc., 95, 4976 (1973).
(22) C. K. Ingold and F. R. Shaw, J. Chem. Soc., 2918 (1927).
(23) The question of relative magnitudes of 2,3- and 2,4-bond participation has been raised by a referee. Studles ${ }^{24,26}$ of a reaction which generates a
stereoelectronically similar system (solvolysis of brosylate 10; see text) can be interpretod as sources of evidence for either mode of participation. depending on whether one regards step b or steps $(a+c)$ as a more facile route to species il (below). Our preference for step b is based on the facts

that i is a primary cation whereas il is secondary, and cyclopropyl σ-route migration to a C^{+}center (step c) is not facile relative to processes involving C-C ring bonds (see comments in ref 25).
(24) K. B. Wiberg and G. R. Wenzinger, J. Org. Chem., 30, 2278 (1965).
(25) J. A. Berson, R. G. Bergman, G. M. Clarke, and D. Wege, J. Am. Chem. Soc., 81, 5601 (1969).
(26) Cf. C. MacLean and E. L. Mackor, Mol. Phys. 4, 241 (1961).

Estimations of van der Waals Strain in Hydrocarbons

DeLos F. DeTar* and Carl J. Tenpas
Department of Chemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
Received January 3C, 1976

Abstract

Evaluation of van der Waals strain can in principle be based on enthalpies of formation of appropriate reference compounds. However, experimental enthalpies are available for molecules exhibiting only relatively restricted ranges of crowding. A potentially useful source of further data may be found in relative reaction rates of crowded molecules.

Recent studies have shown encouraging success in calculating steric retardation and steric acceleration. ${ }^{1-6}$ These have been based ultimately on calculation of enthalpies of formation of model compounds, and more specifically on calculation of relative differences in strain energy between some model of the reactant system and some model of the transition state.

A wide variety of methods has been proposed for estimating enthalpies of formation of alkanes and cycloalkanes; these are, of course, methods of interpolation and extrapolation from experimental values. ${ }^{7-17}$

We have made a careful evaluation of four representative methods for estimating the strain energy component of alkanes (primarily van der Waals) and have explored the usefulness of two criteria for judging effectiveness: (1) the accuracy with which the method reproduces experimental $\Delta H_{f}{ }^{0}$ values, and (2) the accuracy with which it treats relative rates of reactions controlled primarily by steric factors. We conclude that accuracy of reproducing $\Delta H_{\mathrm{f}}{ }^{0}$ values is at present an insufficient criterion; methods which are expected a priori to give a poor account of strain energy may yield quite good $\Delta H_{\mathrm{f}}{ }^{0}$ values. The problem lies in three facts: (1) that for alkanes the strain energy component is a small (and variable) fraction of the total $\Delta H_{f}{ }^{0}$, (2) that the six or more adjustable constants employed in each method tend to absorb the strain components in nonspecific ways, and (3) that accurate experimental $\Delta H_{\mathrm{f}}{ }^{0}$ values exist for rather few strained molecules, the
available data making relatively modest demands on any method of calculating $\Delta H_{\mathrm{f}}{ }^{0}$. We have evaluated the Franklin protocol, ${ }^{15}$ a simple and relatively effective older method which treats strain effects very roughly, the Allen protocol, ${ }^{16,17}$ which reproduces experimental $\Delta H_{\mathrm{f}}{ }^{0}$ values well, and molecular mechanics using two of the several available good alkane force fields, Allinger $1971{ }^{13}$ and Schleyer 1973. ${ }^{12}$ The list we have treated includes most of the alkanes and methylsubstituted alkanes for which accurate experimental $\Delta H_{f}{ }^{0}$ values are reported. ${ }^{9}$ The results are shown in Figures 1a-c. The standard deviations and correlation coefficients are as follows: Franklin, $0.6,0.998$; Allen, $0.3,0.999$; Schleyer, 0.7 , 0.99ε; Allinger (not shown), 0.4, 0.999. The molecular mechanics data are based on our calculations (a) of steric energies, (b) of statistical mechanical corrections, ${ }^{18}$ and (c) of reparameterized group increment values. ${ }^{5}$ Each of the four methods does a good job overall in predicting $\Delta H_{f}{ }^{0}$ for the reference compounds. The problem may now be presented by reference to Figures 2a-c. These show what happens when a series of considerably more hindered alkanes is treated by the same methods. Each point in Figure 2 is based on a difference, $\Delta \Delta H_{\mathrm{f}}{ }^{0}=\Delta H_{\mathrm{f}}{ }^{0}\left[\mathrm{RC}\left(\mathrm{CH}_{3}\right)_{3}\right]-\Delta H_{\mathrm{f}}{ }^{0}\left[\mathrm{RCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ for a neoalkane and an isoalkane. Experimental data are available for just a few of the 36-40 alkanes represented in the figure. The $\log k_{\text {rel }}$ are the Taft $E_{\text {s }}$ values representing steric hindrance; ${ }^{19}$ $k_{\text {rel }}=k / k_{0}$ where k is rate of hydrolysis of any ester RCOOEt

Figure 1. Observed heat of formation $\left(\Delta H_{f}{ }^{\circ}\right)$ vs. calculated heat of formation (gas, $298^{\circ} \mathrm{C}$) for various alkanes; (a) using Franklin protocol, ${ }^{15}$ (b) using Allen protocol, ${ }^{16,17}$ (c) using molecular mechanics with Schleyer $1973{ }^{12}$ force field. ${ }^{5,6}$ The Allinger 1971 force field gives a generally comparable plot. These data are from ref 6.

Figure 2. The strain energy component of the calculated $\Delta H_{f}{ }^{n}$ values of Figure 1 as shown b: plot of Taft $E_{\text {S values }}\left(-\log k_{\text {rel }}\right)^{18}$ vs. $\Delta \Delta H_{\mathrm{f}}{ }^{0}$ where $\Delta \Delta H_{\mathrm{f}}{ }^{0}=\Delta H_{\mathrm{f}}{ }^{0}$ (neoalkane) $-\Delta H_{\mathrm{f}}{ }^{0}$ (isoalkane); using $\Delta H_{\mathrm{f}}{ }^{0}$ calculated (a) by the F-anklin protocol, (b) by the Allen protocol, and (c) by molecular mechanics with the Schleyer force field. The Allinger 1971 force field gives a generally comparable plot. In 2c we have omitted points for cyclobutanecarboxylic acid and for cyclopentanecarboxylic acid, for which the isoalkane-neoalkane model breaks down, and for dineopentylacetic acid, for which the Schleyer and the Allinger force field calculation fails on the model hydrocarbons. The data are from ref 6 .

Table I. Alkanes Used to Get Calibration Terms

	Registry no.	$\begin{gathered} -\Delta H_{\mathrm{f}} 0 \\ (298)^{a} \text { exptl } \end{gathered}$	$\mathrm{SM}^{\text {b }}$	Lowest ${ }^{\text {d }}$ energy conformer		"Exptl"e strain energy	SE ${ }^{\prime}$ (Schleyer)	SE ${ }^{8}$ strainless (Schleyer)	SE^{h} (Allin- ger)	SE^{i} strainless (Allinger)
				Exptl	Calcd					
Pentane	109-66-0	-35.00	0.39	-35.39	-35.46	0.07	2.94	2.92	4.33	4.34
Hexane	110-54-3	-39.96	0.63	-40.59	-40.61	0.02	3.52	3.50	4.95	4.95
Heptane	142-82-5	-44.88	0.86	-45.74	-45.77	0.03	4.10	4.07	5.56	5.56
Octane	111-65-9	-49.82	1.10	-50.92	-50.92	0.00	4.67	4.64	6.17	6.17
Nonane	111-84-2	-54.74	1.33	-56.07	-56.07	0.00	5.24	5.21	6.77	6.78
Decane	124-18-5	-59.67	1.57	-61.24	-61.22	-0.02	5.81	5.79	7.38	7.39
Undecane	1120-21-4	-64.60	1.80	-66.40	-66.38	-0.02				
Dodecane	112-40-3	-69.52	2.04	-71.56	-71.53	-0.03				
$2-\mathrm{MeC} 4$	78-78-4	-36.92	0.09	-37.01	-37.55	0.54	3.80	3.08	3.47	2.78
2-MeC5	107-83-5	-41.66	0.27	-41.93	-42.71	0.78	4.38	3.65	4.11	3.39
2-MeC6	591-76-4	-46.59	0.52	-47.11	-47.86	0.75	4.93	4.23	4.69	4.00
2-MeC7	592-27-8	-51.50	0.76	-52.26	-53.01	0.75	5.50	4.80	5.30	4.61
$\begin{aligned} & \text { 2,2-Di- } \\ & \mathrm{MeC} 4 \end{aligned}$	75-83-2	-44.35	0.00	-44.35	-45.69	1.34	5.03	3.62	1.91	0.53
$\begin{aligned} & \text { 2,2-Di- } \\ & \text { MeC5 } \end{aligned}$	590-35-2	-49.27	0.12	-49.39	-50.85	1.46	5.59	4.20	2.55	1.14

${ }^{a}$ References 9-11. ${ }^{b}$ Statistical mechanical correction, ref $18 .{ }^{c}$ Column 2 - column 3, "experimental" energy of conformer of lowest energy. ${ }^{d}-10.000 n\left(\mathrm{CH}_{3}\right)-5.153 n\left(\mathrm{CH}_{2}\right)-2.400 n(\mathrm{CH})-0.540 n(\mathrm{C}) .{ }^{e}$ Nominal values are 0 for n-alkanes, 0.70 for isoalkanes, 1.40 for neoalkanes. Deviations from the nominal represent experimental error or departures from the assumed model. f Steric energy from Schleyer 1973 force field, ref $12 .{ }^{g} 0.602 n\left(\mathrm{CH}_{3}\right)+0.573 n\left(\mathrm{CH}_{2}\right)+0.700 n(\mathrm{CH})+0.643 n(\mathrm{C})$. The difference between the SE columns should match the value in the exptl strain energy column. ${ }^{h}$ From Allinger 1771 force field, ref $13 .{ }^{i} 1.254 n\left(\mathrm{CH}_{3}\right)+0.610$ $n\left(\mathrm{CH}_{2}\right)-1.595 n(\mathrm{CH})-5.101 n(\mathrm{C})$.
and k_{0} is the corresponding rate for ethyl acetate. The neoalkane has been taken as a model of the transition state in formation of tetrahedral intermediate, the isoalkane as model of the starting ester. Remarkably enough the energy differences, $\Delta \Delta H_{f}{ }^{0}$, calculated by molecular mechanics for these alkanes in the gas phase show a good correlation with ester hydrolysis rates. ${ }^{5}$

Use of better models, RCOOH and $\mathrm{RC}(\mathrm{OH})_{3}$, respectively, gives even better correlations. ${ }^{6}$ However, these better models unfortunately require introduction of several ad hoc constants into the alkane force fields. (The Franklin and Allen protocols are not applicable to these oxygen-containing models.)

It is relatively clear from Figure 2 and verifiable by the statistics that molecular mechanics $\Delta H_{\mathrm{f}}{ }^{0}$ values based on the Schleyer force field, though showing the poorest correlation with $\Delta H_{\mathrm{f}}^{0}$ experimentally, are greatly superior to the empirical Allen protocol values when applied to these highly hindered compounds. Results are as follows: Franklin protocol correlation coefficient, -0.57 ; Allen, -0.76 ; Schleyer, -0.95 ; Allinger, -0.93 .

Results and Discussion

There have been many definitions of strain energy; ${ }^{12-14}$ most are based on $\Delta H_{f}{ }^{0}$ values for the first members of the alkane series. Since for present purposes it is clearly necessary to seek the highest possible precision, we have explored a modified definition of strain based on the alkanes listed in Table I. In our definition, all strain values are related to the n-alkane single conformation of lowest energy and make use of an extended set of statistical mechanical corrections. ${ }^{18} \mathrm{We}$ define strain as follows: n-alkane, fully extended, zero strain; isoalkane, $0.70 \mathrm{kcal} / \mathrm{mol}$; terminal neoalkane, $1.40 \mathrm{kcal} / \mathrm{mol}$. These values are consistent with differences in observed enthalpies. ${ }^{9}$ There are certain advantages in skipping over the first members of each series since these prove exceptional when enthalpy correlations are attempted. ${ }^{9}$

The column labeled "Exptl" strain energy shows how small are the deviations of calculated strain from the defined strain values of $0,0.70$, and 1.40 ; the standard deviation is about 0.06 $\mathrm{kcal} / \mathrm{mol}$. The group increment values in footnote d therefore provides a good account of the strain-free component of $\Delta H_{f}{ }^{0}$

for alkanes.

A molecular mechanics calculation leads to a "steric energy" for ε given conformation. The steric energy may be dissected into a strain energy component and a "base" energy componen: which may be computed from the usual group increments. The "base" component depends on how the force field has been defined. To focus on this dissection we have calculated group increments which give the "base" component of the steric energy for the Schleyer and the Allinger force fields: Table I, footnotes g and i.

In Table II are summarized values for the first members of the alkane series, for many of the relatively strained alkanes for which data are available, and for a few cyclic compounds. It can be seen that strain energy amounts to from 0 to 150% of the steric energy depending upon compound and force field. It further turns out that plots of differences in experimental and calculated strain energies (Δ column of Table II) vs. differences in observed and calculated $\Delta H_{\mathrm{f}}{ }^{0}$ show rather poor correlations.

Relatively few alkane strain energy values in Tables I and II have been previously reported, and it is for this reason that we included the cyclic compounds. Agreement is relatively good with Allinger strain values based on a different definition, ${ }^{13}$ the largest difference being about $0.5 \mathrm{kcal} / \mathrm{mol}$. Differences with the Schleyer definition of strain are larger; some are more than $1.4 \mathrm{kcal} / \mathrm{mol}$.

Differences between "observed" and "raw" calculated strain energies expressed as standard deviations are Franklin (not tabulated), 1.0; Allen (not tabulated), 0.7; Schleyer, 1.0; Allinger, 0.7. These do not parallel the results shown in Figure 2.

Inspection of the "raw" calculated strain energies suggests that some may be biased. One way to express this is to state that the line $y=m x+b$ where y is an unbiased estimate of calculated strain energy for a given value of x, the "raw" calculated strain energy, may not have a slope of 1 and an intercept of 0 . We therefore calculated m and b for each case and obtcined the following standard deviations for ("observed" strain energy - y^{\prime}): Franklin, 1; Allen 0.4 ; Schleyer, 0.6 ; and Allinger, 0.4 . Even with this improvement the differences are hardly as striking as those in Figure 2.
Table II. Representative Strain Energies for Alkanes

	Registry no.	$\begin{aligned} & \Delta H_{\mathrm{f}}{ }^{a} \\ & \text { exptl } \end{aligned}$	$\begin{aligned} & \mathrm{SM}^{h} \\ & \text { corrn } \end{aligned}$	$\Delta H_{\mathrm{r}}{ }^{c}$ strainless	```"Exptl"d strain energy```	SE ${ }^{r}$ MM (Schieyer	$\mathrm{SF} \mathrm{F}^{f}$ strainless (Schleyer)	Strain ${ }^{\prime}$ energy calcd (Schleyer)	$\Delta^{h} \text { (Schle- }$ yer)	SE MM (Allinger)	Strainless (Allinger)	Straink energy calcd (Allinger)	(Allinger)
Ethane	74-84-()	-20.24	0.00	-20.00)	-0.24	1.04	1.20	-0.16	-0.08	2.37	2.51	-0.14	-0.10
Propane	74-98-6	-24.82	$0.00)$	-25.15	0.33	1.72	1.78	-0.06	0.39	3.08	3.12	-0.04	0.37
Butane	106-97-8	-:30.15	0.27	-.30.31	-0.11	2.35	2.35	-0.01	0.11	3.71	3.73	0.02	-0.09
Isobutane	75-28-5	-32.15	0.00	-32.40	+0.25	2.08	2.51	-0.4.3	0.68	2.10	2.17	-0.07	0.32
Neopentane	463-82-1	-39.67	0.00	-40.54	0.87	2.16	3.05	-0.89	1.76	-0.38	-0.09	-0.29	1.16
$\begin{aligned} & \text { 2,3-DiMe- } \\ & \text { C4 } \end{aligned}$	79-29-8	-42.49	0.27	-44.80	2.04	6.28	3.81	2.47	-0.43	3.85	1.83	2.02	0.02
$\begin{aligned} & \text { 2,3-I)iMe- } \\ & C .5 \end{aligned}$	565-59-3	-47.62^{j}	0.40	-49.95	1.93	8.89	4.38	4.51	-2.58	5.91	2.44	3.47	$-1.54{ }^{j}$
$\begin{gathered} \text { 2,4-DiMe- } \\ C 5 \end{gathered}$	108-08-7	-48.28	0.11	-49.95	1.56	5.66	4.38	1.28	0.28	3.66	2.44	1.22	0.34
$\begin{aligned} & 2,5-\mathrm{DiMe}- \\ & \mathrm{C} 6 \end{aligned}$	592-13-2	-53.21	0.26	-55.11	1.64	6.50	4.95	1.55)	0.09	4.69	3.05	1.64	0.00
$\begin{aligned} & 2,2-\mathrm{I} i \mathrm{Me}- \\ & \mathrm{C} 6 \end{aligned}$	590-73-8	-53.71	0.38	-56.00	1.91	6.12	4.77	1.35	0.56	3.10	1.75	1.35	0.56
$\begin{gathered} \text { 2,2,3-Tri- } \\ \mathbf{M e C 4} \end{gathered}$	464-06-2	-48.95	0.00	-52.94	3.99	8.68	4.35	4.33	-0.34	3.00	-0.43	3.43	0.56
$\begin{gathered} \text { 2,2,4-Tri- } \\ \text { MeС́ } \end{gathered}$	540-84.1	-53.57	0.03	-58.09	4.49	8.91	4.93	3.98	0.51	4.20	0.18	4.02	0.47
$\begin{gathered} 2,2,3-\text { Tri- } \\ \text { MeC } \end{gathered}$	564-02-3	-52.61	0.20	-58.09	5.28	10.92	4.93	5.99	-0.71	4.81	0.18	4.63	0.65
$2,2,3,3-$ TetraMeC 4	594-82-1	-53.99	0.00	-61.08	7.09	12.41	4.90	7.51	-0.42	3.08	-2.68	5.76	1.33
$\begin{aligned} & \text { 2-Me'3Et- } \\ & \text { C5 } \end{aligned}$	609-26-7	-50.48	0.43	-55. 11	4.20	10.84	4.95	5.89	-1.69	7.38	3.05	4.33	-0.13
Cyclopentane	287-92-3	-18.46	0.00	-25.77	7.31	(11.03)	2.87	8.16	-0.85	(11.76)	3.05	8.71 8.88	-1.40 -0.79
Cyclohexane	110-82-7	-29.43	0.00	-30.92	1.49	6.00	3.44	2.56	1.07	5.94	3.66	2.28	-0.79
$\begin{aligned} & \text { cis-I Deca- } \\ & \quad \text { lin } \end{aligned}$	493-01-6	-40.38	0.00	-46.02	5.98	(11.97)	5.98	5.99	-0.35	(8.06)	1.69	6.37	-0.73
trans-Decalin	493-02-7	-43.52	0.00	-46.02	2.45	(9.26)	5.98	3.28	-0.83	(5.48)	1.69	3.79	-1.34
Norbornane ${ }^{k}$	279-23-2	-12.60	0.00	-30.57	17.97	21.23	4.27	16.97	1.01	18.12	-0.14	18.26	-0.29
Adaman$\tan { }^{l}$	281-23-2	-32.96	0.00	-40.52	7.56	(14.06)	6.24	7.82	-0.26	(5.00)	-2.72	7.72	-0.16

${ }^{a}$ References 9-11. ${ }^{b}$ Statistical mechanical correction, ref $18 .{ }^{c}$ Footnote d, Table I. ${ }^{d}$ Column $5+$ column 4 - column 3 . ${ }^{e}$ Schleyer 1973 , ref 12 , or Allinger
 21. Other values are -30.65 (ref 22) and -30.57 (ref 23).

Everyone agrees that force fields are going to undergo further refinement, and such refinements may lead to some further improvements of calculated $\Delta H_{\mathrm{f}}{ }^{0}$ values. However, the larger issue involved in finding data for calibrating the van der Waals terms of force fields remains: there are not enough good $\Delta H_{\mathrm{f}}{ }^{0}$ data for highly crowded molecules.

We therefore suggest that it may prove useful to adopt a different approach, taking obvious precautions to avoid cir-
cular reasoning. We may assume that the Taft E_{s} values are a generally good measure of steric hindrance, and may then use carefully chosen reaction series for providing additional values of van der Waals strain. This argument is, of course, the exact converse of the one we have used previously. ${ }^{5,6}$ Data pertaining to van der Waals forces are even scarcer for compounds other than alkanes, and carefully selected reaction data may provide a valuable additional set of reference values.

References and Notes

(1) (a) R. C. Bingham and P. v. R. Schleyer, J. Am. Chem. Soc., 93, 3189 (1971); (b) J.C. Fry, E. M. Engler, and P. v. R. Schleyer, ibid., 94, 4628 (1972).
(2) J. Slutsky, R. C. Bingham, P. v. R. Schleyer, W. C. Dickason, and H. C. Brown. J. Am. Chem. Soc., 96, 1969 (1974).
(3) N. L. Allinger and G. A. Lane, J. Am. Chem. Soc., 96, 2937 (1974).
(4) D. F. DeTar, J. Am. Chem. Soc., 96, 1254, 1255 (1974).
(5) D. F. DeTar and C. J. Tenpas, J. Am. Chem. Soc., in press.
(6) C. J. Tenpas, Ph.D. Dissertation, Florida State University, 1975.
(7) References to calculation of ΔH_{4} values are too numerous to list. Representative bibliographies are given by G. J. Janz, "Thermodynamic Properties of Organic Compounds"', Academic Press, New York, N.Y., 1967; M. C. McGlashan, Senior Reporter, "Chemical Thermodynamics". Vol. 1. The Chemical Society, London, 1973; and by ref 2-6.
(8) P. v. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Am. Chem. Soc., 92, 2377 (1970).
(9) D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, "The Chemical Thermodynamics of Organic Compounds''. Wiley, New York, N.Y., 1969.
(10) F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and

Related Compounds'", Carnegie Press, Pittsburgh, Pa., 1953.
(11) S. W. Benson, "Thermochemical Kinetics", Wiley, New York, N.Y., 1968.
(12) E. M. Engler, J. D. Andose, and P. v. R. Schleyer, J. Am. Chem. Soc., 95, 8005 (1973). This reference has comprehensive bibliographies.
(13) N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Am. Chem. Soc., 93, 1637 (1971).
(14) S. Chang, D. McNally, S. Shary-Tehrany, M. J. Hickey, and R. H. Boyd, J. Am. Chem. Soc., 92, 3109 (1970).
(15) J. L. Franklin, Ind. Eng. Chem., 41, 1070 (1949).
(16) T. L. Allen, J. Chem. Phys., 31, 1039 (1959).
(17) A. J. Kalb, A. L. H. Chung, and T. L. Allen, J. Am. Chem. Soc., 88, 2938 (1966).
(18) D. F. DeTar, Comput. Chem., 1, 35 (1976).
(19) R. W. Taft, Jr., in "Steric Effects in Organic Chemistry". M. S. Newman, Ed., Wiley, New York, N.Y., 1957, p 556.
(20) H. K. Hall, C. D. Smith, and J. H. Baldt, J. Am. Chem. Soc., 95, 3197 (1973).
(21) H. Mansson, N. Rapport, and E. F. Westrum, Jr., J. Am. Chem. Soc., 92, 7296 (1970).
(22) R. H. Boyd, S. N. Sunwal. S. Shary-Tehrany, and D. McNally J. Phys.Chem., 75, 1264 (1971).
(23) R. S. Butler, A. S. Carson, P. G. Laye, and W. V. Steele, J. Chem. Thermodyn., 3, 277 (1971).

Prototropic Equilibrium of Imines. \boldsymbol{N}-Benzylidene Benzylamines

Peter A. S. Smith* and Chi Van Dang
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

Received January 26, 1976

The 1,3-prototropic shift of imines, exemplified in isomerization of unsymmetrically substituted N-benzylidene benzylamines, has been reexamined. Equilibrium constants for para-monosubstituted systems were determined by NMR methods; the constants do not show the anomalies reported in older work, and are adequately correlated by the Hammett equation ($\rho=0.94$).

Recent investigations ${ }^{1}$ of prototropic equilibration of nitrones Ia $\rightleftharpoons \mathrm{Ib}$ (Behrend rearrangement) in this laboratory invited a comparison with the corresponding imines, IIa \rightleftarrows IIb. Imine isomerization had been investigated by Shoppee, ${ }^{2,3}$

$$
\mathrm{ArCH}_{2}-\mathrm{NX} \underset{\|}{\|} \underset{\mathrm{CHAr}}{ } \quad \mathrm{ArCH}=\mathrm{NX}
$$

Ia, Ib, $\mathrm{X}=$ oxygen atom; IIa, IIb, $\mathrm{X}=$ electron pair
who brought about equilibration by heating N-benzylidene benzylamines with sodium ethoxide solution, over 40 years ago. His results on the effect of substituents, particularly alkyl groups, played a role in the early development of the theory of hyperconjugation. ${ }^{4}$ Much later, the mechanism of isomerization was investigated by Cram and Guthrie, ${ }^{5}$ who showed that it probably involved formation of a delocalized carbanion, rather than the synchronous process originally proposed.

In the ensuing years, uncertainties developed about the interpretation of the equilibrium constants reported by Shoppee. Baker in 1952 stated that the effects of substituents could not be satisfactorily assessed. ${ }^{6}$ The effects of para substituents were not acceptably consistent with the correlations subsequently developed by Hammett, and could not be satisfactorily interpreted according to theories of electronic influences. The equilibrium constant for the p-methyl substituent, of particular importance for hyperconjugation in its earliest development, was especially inconsistent.
At the time of Shoppee's investigations, most instrumental methods of analysis had not been developed. As a consequence, he had to use an indirect and error-prone analytical method to determine the composition of the equilibrium mixtures of imines. He hydrolyzed the imines, converted the resulting benzaldehydes to dinitrophenylhydrazones, and compared the melting range of these mixtures with the phase
diagram determined from known mixtures. Although this metiod is in principle sound, its reliability is vitiated if unsuspected traces of a third component should be present; it is also potentially sensitive to variations in yield of the conversion to dinitrophenylhydrazones. It therefore seemed desirable to reinvestigate the subject, not only for comparison with the Behrend rearrangement, but because of the importance of imine tautomerism in synthesis and in biological transamination.

We have prepared a series of para-substituted N-benzylidene benzylamines, all of which are known, by warming the corresponding benzaldehydes and benzylamines together. The purified imines consisted of but a single geometrical isomer, insofar as we could determine by infrared and NMR spectroscopy, consistent with Ossorio's report ${ }^{7}$ that only the anti isomer is present significantly at equilibrium. We did not include the p-nitro substituent, although we would have liked to, because its reaction with sodium ethoxide is more complex (a nitronate salt is apparently formed, and is the basis for a microanalytical determination of benzylamine ${ }^{8}$).

We equilibrated the imines by refluxing them in a 1 M solution of sodium ethoxide in absolute ethanol for periods of $2-36 \mathrm{~h}$. Analysis of the mixtures was accomplished with NMR spectroscopy. Neither the methylene nor the methyne hydrogens of the pairs of tautomers were sufficiently well resolved, unfortunately. However, the methyl signals of the mix-ures from the p-methyl, p-methoxy, and p-dimethylamino systems allowed their compositions to be determined. For the p-chloro system, hydrolysis of the imines to the corresponding mixture of benzaldehyde and p-chlorobenzaldehyde was necessary; the signals of the aldehyde protons were separated by 2.5 Hz .

For each substituent, equilibrium was approached from both. sides, and values were determined at a series of times to be sure that equilibrium had been reached. The mean values

Table I. Equilibrium Constants for Tautomerism of Imines and Nitrones

R	Imines ($\mathrm{Y}=\mathrm{e}_{2}$)			Nitrones $(\mathrm{Y}=0)$ K
	$\underset{\left(\text { found) }{ }^{a}\right.}{K}$	$\begin{gathered} K \\ \left(\text { lit. }^{3}\right) \end{gathered}$	Log K	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$ -	0.17	0.149	-0.77 ± 0.03	
$\mathrm{CH}_{3} \mathrm{O}$	0.55	0.370	-0.26 ± 0.02	0.33
$\mathrm{CH}_{3}-$	0.67	1.22	-0.17 ± 0.02	0.61
Cl_{-}	1.64	1.13	0.214 ± 0.004	0.62

slope corresponding to $\rho=0.941 \pm 0.008$. Figure 1 also includes two values determined by Baker, Nathan, and Shoppee ${ }^{4}$ for the tert-butyl and isopropyl groups, which they used in comparison with Shoppee's value for the methyl group to establish a relative order of hyperconjugation effects of alkyl groups.

One can conclude that tautomerism of imines is not anomalous, nor is the effect of the p-methyl group on it. The behavior of the system is adequately encompassed by the Hammett equation. The situation with analogous nitrones, $\mathrm{Ia} \rightleftharpoons \mathrm{Ib}$, has recently been analyzed in a way that implies that substituent effects operate in an ambivalent way with them, owing to the semipolar $\mathrm{N}-\mathrm{O}$ bond, and that equilibrium constarts for the Behrend rearrangement should not parallel

Table II. Properties of Imines (Benzylidene Benzylamines)
$\mathrm{ArCH}_{2}-\mathrm{N}=\mathrm{CHAr}{ }^{\prime}$

Registry no.	Substituent on		$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	NMR, $\delta, \operatorname{ppm}\left(\mathrm{CCl}_{4}, \mathrm{Me}_{4} \mathrm{Si}\right)$			
	Ar	Ar^{\prime}		- $\mathrm{CH}=\mathrm{N}-$	Arom CH	$-\mathrm{CH}_{2} \mathrm{~N}$	- CH_{3}
24431-17-2	H	$p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	74-76 (lit. ${ }^{3} 75$)	8.13	7.10 (q, 4 H), 7.22 (s, 5 H)	4.67	2.94
31401-61-3	p-($\left.\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	H	55.5-57 (lit. ${ }^{3}$ 57)	8.02	6.70 (q, 4 H), 7.36 (m, 5 H)	4.60	2.76
622-72-0	H	$p-\mathrm{CH}_{3} \mathrm{O}$	42-43 (lit. ${ }^{2}$ 42)	8.13	7.15 (q, 4 H), 7.16 (s, 5 M)	4.68	3.73
31490-38-7	p- $\mathrm{CH}_{3} \mathrm{O}$	H	Oil^{2}	8.12	6.86 (q, 4 H), 7.40 (m, 5 H)	4.61	3.67
24431-15-0	H	p- CH_{3}	26-27 (lit. ${ }^{3} 27$)	8.11	7.15 ($\mathrm{s}, 5 \mathrm{H}), 7.27$ (q, 4 H$)$	4.67	2.32
41882-47-7	p- CH_{3}	H	$\begin{aligned} & \text { bp } 124(0.2 \mathrm{~mm}) \\ & {\left[\text { lit. }{ }^{3} 190-196(20 \mathrm{~mm})\right. \text {] }} \end{aligned}$	8.03	6.94 (s, 5 H), 7.1-7.7 (m, 4 H)	4.60	2.26
13540-93-7	H	$p-\mathrm{Cl}$	34 (lit. ${ }^{3} 34$)	8.11	7.10 (s, 5 H), 7.11-7.7 (m, 4 H)	4.62	
15383-71-8	$p-\mathrm{Cl}$	H	35-36 (lit. ${ }^{3} 36-37$)	8.28	6.71 (s, 5 H), 7.52 (q, 4 H)	4.77	

are given in Table I, along with the values reported by Shoppee. (The results of individual determinations are in Table III.)

Although our results differ quantitatively from those of Shoppee, the relative effects of substituents are the same if one omits the value for p-methyl, which is markedly out of line. A graphic comparison is given in Figure 1 as a Hammett plot vs. $\sigma ;{ }^{9}$ the weighted least-squares method ${ }^{10}$ gave a line of

Figure 1. Hammett plot of equilibrium ratios in imine isomerizations: \odot, data from present work; Δ, data of Shoppee; ${ }^{3}$ 口, data of Baker, Nathan, and Shoppee. ${ }^{4}$

Table III. Isomerization of Imines

$$
p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}-\mathrm{CH}_{2} \mathrm{Ph} \rightleftharpoons p-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\mathrm{N}=\mathrm{CHPh}
$$

A
B

Initial imine		Time, h	Product ratio, B/A
R	A or B		
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	A	5	0.18
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	A	6	0.16
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	A	7	0.16
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	A	12	0.18
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	B	2.25	0.17
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	B	3.5	0.18
$\mathrm{CH}_{3} \mathrm{O}$	A	8 8-36	$0.57{ }^{a}$
$\mathrm{CH}_{3} \mathrm{O}$	B	5-12	$0.53{ }^{\text {a }}$
CH_{3}	A	5-13	$0.69{ }^{\text {a }}$
CH_{3}	B	4-5	$0.65{ }^{\text {a }}$
Cl	A	16-36	$1.63{ }^{\text {a }}$
Cl	B	20-29	$1.64{ }^{\text {a }}$

${ }^{a}$ Mean of values recorded after equilibrium was reached.
those of imines. ${ }^{1}$ This conclusion is consistent with the results reported here, as can be seen by comparing the values for nitrones and imines given in Table I.

Experimental Section

Imines. The appropriate aldehydes and benzylamines (slight excess), all of which are commercial products, were heated for 30 min at $100^{\circ} \mathrm{C}$, essentially following the method of Shoppee. ${ }^{3}$ The resulting crude imines were dissolved in ethyl ether and washed successively with two portions of 2% acetic acid, two portions of 10% sodium bicarbonate solution, and one portion of water. Evaporation of the dried $\left(\mathrm{N}_{2} \mathrm{SO}_{4}\right)$ solutions left the imines, which were recrystallized from petroleum ether or ligroin when possible. The identity of these known compounds was confirmed by their NMR spectra, all of which showed an upfield doublet and a downfield triplet with $J=1.3-1.5 \mathrm{~Hz}$, at-
tributable to the $-\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}$ - system, an aromatic region differentiated into 4 H and 5 H parts, and singlet signals appropriate to the substituents. These data are collected in Table II.

Isomerization. Solutions of 0.3 g of imine in 20 ml of 1 N ethanolic sodium ethoxide were heated under reflux (solution temperature 82 ${ }^{\circ} \mathrm{C}$). Reaction was quenched at a determined time by rapid cooling with cold water and dilution with 20 ml of distilled water. The resulting mixtures were extracted twice with chloroform, and the extracts were washed twice with water and then dried over sodium sulfate.

Analysis. The dried chloroform solutions were evaporated under vacuum and the residue was dissolved in carbon tetrachloride containing 1\% Me_Si. NMR spectra were determined on a Varian T-60 instrument. Addition of a drop of $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ or $\mathrm{CD}_{3} \mathrm{OD}$ enhanced the resolution of the signals of the pairs of isomers present. The intensities of the methyl signals (where present; see Table II) were compared to obtain the ratios reported in Table III. In general, three to five samples of each imine were used; except for the p-dimethylamino pair, for which all samples are reported, only the mean values are shown.

The mixtures with a p-chloro substituent were first hydrolyzed by emulsifying with a small amount of methanol-water mixture and heating with 30 ml of 2 N sulfuric acid at $100^{\circ} \mathrm{C}$ for 30 min . The cooled mixture was then extracted with ether, the dried extracts were
evaporated to dryness, and the residue was taken up in carbon tet-ract-loride for NMR analysis by comparison of the aldehydic CH signals.

The reliability of the methods was examined by using mixtures of known compositions. For the pair N-benzylidene- p-methylben-zylamine/p-methylbenzylidenebenzylamine, the results follow: known, 59.5/40.5 (found, 59.8/40.2); known, 58.2/41.8 (found, 59.5/ 40.5); known, 55.9/44.1 (found, 56.1/43.9). For benzaldehyde/pchlorobenzaldehyde mixtures derived from the p-chloro tautomeric imires, the results follow: known. 61.1/38.9 (found, 62.0/38.0); known, 62.4/37.6 (found, 63.0/37.0).

References and Notes

(1) P. A. S. Smith and S. E. Gloyer. J. Org. Chem., 40, 2504 (1975).
(2) C. K. Ingold and C. W. Shoppee, J. Chem. Soc., 1199 (1929).
(3) C. W. Shoppee. J. Chem. Soc., 1225 (1931).
(4) J. W. Baker. W. S. Nattan. and C. W. Shoppee. J. Chem. Soc., 1847 (1935).
(5) D. J. Cram and R. D. Guthrie. J. Am. Chem. Soc., 87, 397 (1965)
(6) J. W. Baker. "Hyperconjugation"', Oxford University Press, London, 1952. p 66.
(7) R. P. Ossorio. An. Quim., 66, 87 (1970).
(8) F. Feigl and V. Anger, Anal. Chim. Acta, 24, 494 (1961).
(9) H. H. Jaffe, Chem. Rev.. 53, 191 (1953).
(10) W. E. Dennings, "Statistical Adjustments of Data'. Wiley, New York, N.Y., 1943.

Occurrence of \mathbf{N}-Alkylation during the Acidolytic Cleavage of Urethane Protecting Groups ${ }^{\text {1a,b }}$

A. R. Mitchell* and R. B. Merrifield
The Rockefeller University, New York, New York 10021

Received December 12, 1975

Abstract

The occurrence of N -alkylation as a side reaction during the acidolytic cleavage of urethane protecting groups by trifluoroacetic acid has been investigated under the conditions of solid phase peptide synthesis. N-Alkylation did not occur when the protecting group was tert-butyloxycarbonyl (Boc) as treatment of Boc-Gly-Lys(Z)-resin with $50 \% \mathrm{CF}_{3} \mathrm{COOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ did not produce t - $\mathrm{Bu}-\mathrm{Gly}-\mathrm{Lys}(\mathrm{Z})$-resin $1<0.05 \%$). This novel side reaction did occur when the protecting group was benzyloxycarbonyl (Z). When Boc-Lys (Z)-resin was treated with $50 \% \mathrm{CF}_{3} \mathrm{COOH}$ for 14 $\mathrm{h}\left(25{ }^{\circ} \mathrm{C}\right)$ the Z group was partially removed and gave rise to $0.6 \% \mathrm{~N}^{-}$-benzyllysine-resin. The use of a more acid stable N^{\prime} protecting group ($2,4-\mathrm{Cl}_{2} \mathrm{Z}$) suppressed N -alkylation to less than detectable levels ($<0.1 \%$). The acidolytic removal of the benzyloxycarbonyl group from Z derivatives in solution was also studied. Treatment of Z-Gly and Lys $(\mathrm{Z})(0.1 \mathrm{M})$ in refluxing $\mathrm{CF}_{3} \mathrm{COOH}(30 \mathrm{~min})$ gave 1.1% Bzl-Gly and 3.3% Lys(Bzl), respectively. The addition of 20% anisole gave 0.5% Bzl-Gly and $2.1 \% \mathrm{Lys}$ (Bzl) from the same Z derivatives. The use of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\mathrm{CF}_{3} \mathrm{COOH}-$ anisole ($30 \mathrm{~min}, 25^{\circ} \mathrm{C}$) allowed the formation of 1.2% Bzl-Gly from Z-Gly and $3.1 \% \mathrm{Lys}(\mathrm{Bzl})$ from $\mathrm{Lys}(\mathrm{Z})$. No N-alkylation could be detected when amino acid resins or free amino acids containing Z protecting groups were cleaved with anhydrous HF.

The most widely used amino protecting groups in peptide synthesis are the benzyloxycarbonyl (Z$)^{2}$ and tert-butyloxycarbonyl (Boc) ${ }^{3}$ groups. A recent addition to this family of urethane-type protecting groups is the relatively acid-labile biphenylisopropyloxycarbonyl (Bpoc) ${ }^{4,5}$ group. A report ${ }^{6}$ of N -alkylation during the acidolytic cleavage of a Bpoc group from a derivative of hydroxylamine initially prompted the present study as a possible explanation of a rise in background observed with picrate monitoring during solid phase peptide synthesis. ${ }^{7}$

The unexpected formation (20\%) of N-2-(p-biphenylyl)-isopropyl- O-(5-nitro-2-pyridyl) hydroxylamine (II) occurred when 2 -(p-biphenylyl) isopropyl N-(5 -nitro-2-pyridyloxy)carbamate (I) was treated with acetic acid in nitromethane. ${ }^{6}$ Attack of III by p-biphenylyldimethyl carbonium ion could give rise to II. Attack of the carbonium ion on the carbamic acid formed from I, with simultaneous decarboxylation, was also considered a possible route to II.

Our initial interest was focused on the possible occurrence of an analogous reaction with the Boc group under conditions

of solid phase peptide synthesis. The formation of a small amo ant (ca. $0.1-1 \%$) of N^{α}-tert-butyl peptide (V) during each

deprotection step is undesirable because it would give rise to terminated chains or N-alkyl peptides. In addition, the production of a variable amount of hindered secondary amines would give corresponding increases in background if a chloride ${ }^{8}$ or picrate ${ }^{9}$ monitoring method were used to follow the course of a solid phase peptide synthesis.

Results and Discussion

To detect the occurrence of low levels of such side reactions, a sensitive model system employing Boc-Lys(Z)-resin (VII) was devised (see Chart I). The presence of lysine, with α - and

Chart Ia

${ }^{a}$ Model system for the detection of N^{α}-tert-butylation and N^{ϵ}-benzylation during solid phase peptide synthesis. TFA, trifluoroacetic acid; DIEA, diisopropylethylamine; HOAc, acetic acid; DCC, $N, N^{\prime \prime}$-dicyclohexylcarbodiimide; R , ring-brominated oxymethylcopoly(styrene-1\% divinylbenzene).
ϵ-amino groups that can react with ninhydrin, allows the detection of reaction products having either the α or ϵ position blocked. For chromatographic reference t-Bu-Gly-Lys (IX) was prepared by treating N^{α}-chloroacetyl- $N^{\text {e }}$-Z-L-lysine ${ }^{10}$ with tert-butylamine followed by decarbobenzoxylation in refluxing TFA. ${ }^{11}$ Similarly, Gly-Lys (X) was obtained starting with N^{α}-chloroacetyl- N^{ϵ}-Z-L-lysine and ammonium hydroxide. ${ }^{10}$ Compounds IX and X are well resolved on the long

Table I. Reaction of Boc-Lys(Z)-R ${ }^{a}$ with Cleavage Reagents

Run		Time, h	$\begin{gathered} N^{t} \text {-Bzl-Lys, } \\ \operatorname{mol} \%^{b} \end{gathered}$
1	5% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$	14	0
2	50\% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{v} / \mathrm{v})$	14	0.67
3	TFA	14	2.56
4	$16 \% \mathrm{HBr}$ in TFA-HOAc $(1: 1)^{c}$	1	0
5	HF	1	0

${ }^{a} \mathrm{R}$ represents ring-brominated oxymethylcopoly(styrene1% divinylbenzene). ${ }^{9}$ Initial substitution of resin was 0.457 $\mathrm{mmol} \mathrm{Lys} / \mathrm{g}$. The reactions used $0.100-0.200 \mathrm{~g}$ of resin in 2-4 ml of cleavage solution and were run at room temperature. ${ }^{b}$ The resins obtained from runs $1-3$ were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried, and then hydrolyzed in $\mathrm{HCl}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$. The values obtained for runs 1-3 have been corrected for the production of $0.34 \mathrm{~mol} \% N^{e}$-Bzl-Lys which occurred when untreated Boc-$\mathrm{Lys}(\mathrm{Z})-\mathrm{R}$ was hydrolyzed in HCl -propionic acid. The hydrolysates were analyzed on the short column ($0.9 \times 7 \mathrm{~cm}$ PA- 35 sulfonated polystyrene, sodium citrate buffer, $\mathrm{pH} 7.0,66 \mathrm{ml} / \mathrm{h}$, $56^{\circ} \mathrm{C}$) of a Beckman 120B amino acid analyzer. The cleavage products from runs \leq and 5 were chromatographed without further treatment. Limit of detection was $0.1 \mathrm{~mol} \%$. c One volume of $32 \% \mathrm{HBr}-\mathrm{HOAc}$ was added to Boc-Lys(Z)-R that was suspended in one volume of TFA.
column of an amino acid analyzer, thereby allowing the detection of small amounts ($\geq 0.05 \%$) of IX in an overloaded sample containing lazge amounts of X . The use of an amino acid analyzer for the detection of small quantities of amino acids and peptides in the presence of large amounts of similar compounds has been described elsewhere. ${ }^{12,13}$

The protected dipeptide-resin (VIII) was deprotected, neutralized, and cleaved as indicated in Chart I. Analysis of the cleavage products relative to Gly-Lys (100%) gave Lys (0.16%), and no t-Bu-Gly-Lys ($<0.05 \%$). The procedure was repeated in the presence of Boc-Gly-OEt (50 equiv), an additional source of tert-butyl carbonium ion, during the deprotection step. Again, Lys (0.08%), Gly-Lys (100%), and no t-Bu-Gly-Lys ($<0.05 \%$) were detected. It was concluded that significant N -alkylation during the acidolytic cleavage of tert-butyloxycarbonyl peptides does not occur.

The possible occurrence of N -benzylation during solid phase peptide synthesis was then investigated. A portion of Boc-Gly-resin was treated with 50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 40 equiv of benzyl carbamate ($\mathrm{Z}-\mathrm{NH}_{2}$) for 1 h . The resin was washed, dried, and hydrolyzed in HCl -propionic acid. ${ }^{14}$ No N-Bzl-Gly ${ }^{15}(<0.1 \%)$ was detected. The occurrence of N^{ϵ} benzylation was indicated, however, when the cleavage mixture obtained from V'III was examined in more detail. Since Gly-Lys(Bzl) was not eluted on the ion-exchange system used to detect IX and X, a portion of the cleavage mixture was hydrolyzed in HCl -propionic acid ${ }^{14}$ and then chromatographed on the short column of the amino acid analyzer at pH 7.0. A broad peak that eluted later than the basic amino acids was observed. An authentic sample of N^{e}-Bzl-Lys ${ }^{16}$ eluted at the same position, thereby indicating the presence of Gly$\mathrm{Lys}(\mathrm{Bzl})(0.17 \%)$ in the cleavage mixture.

Portions of Boc-Lys(Z)-resin (VII) were treated with cleavage reagents containing TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{HBr}-\mathrm{HOAc}-$ TFA, ${ }^{17}$ and HF. ${ }^{18}$ The results are given in Table I. Increasing concentrations of trifluoroacetic acid promoted increased formation of N^{ϵ}-Bzl-Lys. The addition of various carbonium ion scavengers to cleavage solutions containing trifluoroacetic acid did not significantly alter the formation of N^{e}-Bzl-Lys from VII (Table II). The use of methanesulfonic acid-trifluoroacetic acid solutions ${ }^{20}$ lowered the effect somewhat while

Table II. Reaction of Boc-Lys(Z)-R ${ }^{a}$ with Cleavage Reagents Containing Carbonium Ion Scavengers

Run	Reagent	$\begin{aligned} & N^{\epsilon} \text {-Bzl-Lys, } \\ & \operatorname{mol} \% \end{aligned}$
1	TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$	0.57
2	TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1) ; 0.08 \mathrm{M} \mathrm{DTT}$	0.88
3	TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-anisole (5:4:1)	0.69
4	TFA-anisole (1:1)	0.40
5	TFA-m-xylene (1:1)	0.57
6	0.06 M MSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.47
7	0.06 M MSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-anisole (9:1)	0.24
8	0.01 M MSA and $0.1 \mathrm{M} \mathrm{CF}_{3} \mathrm{COOH}$ in m-xylene	0.16
9	1 N HCl in glacial $\mathrm{CH}_{3} \mathrm{COOH}$	0.1
10	4 N HCl in dioxane	0

${ }^{a}$ See footnotes $a-c$ of Table I for the materials and conditions used. The reactions were run for 14 h at room temperature and the resin products were cleaved with $16 \% \mathrm{HBr}$ in TFA-HOAc (1:1). MSA, methanesulfonic acid; DTT, dithiothreitol. Limit of detection was $0.1 \mathrm{~mol} \%$.
hydrogen chloride in glacial acetic acid or dioxane depressed the formation of N^{ϵ} - Bzl-Lys to about the level of detectability.

The formation of N^{ϵ}-benzyllysine from N^{ϵ}-benzyloxycarbonyllysine residues during deprotection by acidic reagents is a novel side reaction. It should be noted, however, that it is not the major side reaction that occurs during the deprotection of N^{α}-amino protecting groups in solid phase peptide synthesis. The major side reaction is the N^{t}-decarbobenzoxylation of lysine side chains. ${ }^{21-23} \mathrm{~A}$ calculation using the rate constant ($1.9 \times 10^{-6} \mathrm{~s}^{-1}$) obtained for the N^{4}-deprotection of Boc-$[\mathrm{Lys}(\mathrm{Z})]_{10}-\mathrm{Val}$-resin in 50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{23}$ indicates that 9.1% cleavage of N^{ϵ}-benzyloxycarbonyl groups can be expected in 14 h . When VII was treated in 50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 14 h the formation of 0.57% of N^{e}-Bzl-Lys was observed (run 1, Table II). Therefore, about 6.5% of the prematurely N^{ϵ}-decarbobenzoxylated groups gave rise to N^{6}-benzyl side chains. Both of these side reactions are dependent on the concentration of acid present in the deprotection reagent (runs 1-3, Table I) and on the acid stability of the Z group. The use of more acid-stable N^{ϵ}-protecting groups ${ }^{21-23}$ has been shown to suppress the undesired deprotection reaction to acceptable levels and was expected to similarly suppress the N -alkylation reaction under the conditions of solid phase peptide synthesis. When $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)^{23}$ was allowed to stand in $50 \% \mathrm{TFA}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 67 h at room temperature only Lys (1.5\%) and $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)(98.5 \%)$ were detected. Since very little deprotection occurred, no $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)(<0.1 \%)$ could be detected.

The above studies of N -benzylation dealt with the formation of N-benzyl amino acids and peptides during conditions which gave only partial deprotection of N^{ϵ}-Z groups. The occurrence of N -benzylation during conditions which allow complete decarbobenzoxylation, namely refluxing in anhydrous trifluoroacetic acid or treatment with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\mathrm{TFA}$ at $25^{\circ} \mathrm{C}$, was next investigated. The use of refluxing TFA for removal of Z groups was originally proposed by Weygand and Steglich ${ }^{11}$ and it has found use in peptide synthesis, ${ }^{24}$ although cleavage by anhydrous HBr remains by far the most frequently used method for acidolytic decarbobenzoxylations. ${ }^{25}$ Samples of N^{α}-Z-Gly and N^{ϵ}-Z-Lys were refluxed in anhydrous TFA (30 min) and analyzed for the presence of free amino acid and N-benzyl amino acid. Anisole (20\%) was present in a duplicate series of experiments. The results are given in Table III. Lower substrate concentrations reduced but did not entirely suppress N -benzylation in refluxing TFA. The presence of anisole also reduced but did not eliminate N -benzylation in refluxing TFA. When $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)$ was

Table III. N-Alkylation under Conditions of Complete Deprotection of Z-Gly and $\boldsymbol{N}^{\boldsymbol{e}}$-Z-Lys in Refluxing TFA

Derivative	Concn, M	N-Benzyl amino acid. ${ }^{a}{ }^{\text {mol } \%}$
Z-Gly	1.0	$2.10(0.98)^{b}$
Z-Gly	0.1	$1.12(0.49)$
Z-Gly	0.01	$0.96(0.47)$
N^{e}-Z-Lys	0.1	$3.26(2.11)$

${ }^{a}$ Z-Gly deprotects to give Gly and N^{α} - Bzl-Gly, while N^{ϵ}-ZLys gives Lys and N^{ϵ}-Bzl-Lys. Recoveries of $95-101 \%$ were observed. ${ }^{b}$ The values in parentheses were obtained from duplicat runs in reflusing TFA containing 20% anisole.
refluxed in TFA for 10 h , the presence of Lys (96.2%), Lys ($2,4-$ $\mathrm{Cl}_{2} \mathrm{Z}$) (1.0%), and $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)(2.8 \%)$ was observed. In addition, treatment of N^{e}-Z-Lys in refluxing TFA gave Lys and N^{ϵ}-Bzl-Lys; the formation of N^{α}-Bzl-Lys was not observed. Convers ϵ ly, when N^{α}-Z-Lys was refluxed in TFA no formation of N^{ϵ}-Bzl-Lys was observed. These observations

suggest that the ©ormation of N-benzyl groups from N-benzyloxycarbonyl groups in TFA may proceed via an intramolecular rather than intermolecular pathway.

The test system was also used to evaluate trifluoromethanesulfonic acid, a reagent that was recently proposed for the removal of protecting groups from amino acids and peptides. ${ }^{26}$ Trif uoromethanesulfonic acid in methylene chlcride or trifluoroacetic acid was reported to resemble HF ${ }^{18}$ and boron tris(trifluoroacetate) ${ }^{27}$ in its efficiency in cleaving protecting groups from amino acids and peptides. Trifluoromethanesulfonic acid (8.3-9.4 equiv) was added to 0.1 M solutions of Z-Gly and N^{ϵ}-Z-Lys in trifluoroacetic acid containing anisole (2.3-2.6 equiv). Samples were withdrawn at 30 min , quenched with aqueous buffer, and chromatographed on an amino acid analyzer. Z-Gly gave 1.22% of N-Bzl-Gly while N^{ϵ}-Z-Lys afforded 3.13% of N^{ϵ}-Bzl-Lys. Therefore, treatment by either trifluoromethanesulfonic-trifluoroacetic acid or refluxing trifluoroacetic acid (Table III) gave rise to N -benzylation during the decarbobenzoxylation of Z-protected amino acids. Pending further investigation, trifluorometianesulfonic acid cannot be recommended as a general reagent (in lieu of HF, for example) for the removal of Z groups from peptides, although this reagent may prove to be advantageous in selected cases. In contrast, less than $0.1 \% \mathrm{~N}$-alkylation was observed when Z-Gly, $\mathrm{Lys}(\mathrm{Z})$, and $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)$ wert treated with anhydrous $\mathrm{HF}\left(30-60 \mathrm{~min}, 25^{\circ} \mathrm{C}\right.$). The best way to avoid N -benzylation is to use a substituted Z group which is stable during the multiple deprotections by TFA in a st ϵ pwise synthesis but can be removed by HF under conditions which do not cause N -benzylation.

It should be no-ed that the present investigation dealt with the Boc and Z protecting groups. The possible occurrence of N -alkylation reactions with other urethane-type protecting groups such as p-methoxybenzyloxycarbonyl, ${ }^{28}$ biphenylisopropyloxycarbonyl, ${ }^{4,5}$ and phenylisopropyloxycarbony ${ }^{29}$ should be of inte-est to investigators using those protecting groups in peptide synthesis.

In summary, N^{*}-tert-butylation was not observed when the Boc protecting group was used in model experiments employing the conditions of solid phase peptide synthesis. A novel side reaction, N -benzylation, was observed when Z groups were removed from Z derivatives of Gly and Lys by triflıoroacetic acid or trifluoromethanesulfonic-trifluoro-
acetic acid. This side reaction was not observed when a more acid-stable Z protecting group was used for lysine.

Experimental Section

Infrared spectra were taken with a Perkin-Elmer Model 237B grating infrared spectrophotometer, using KBr pellets. Melting points were taken on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Amino acid and peptide analyses were performed on Beckman amino acid analyzers (Models 120B and 121). Elemental analyses were performed by Mr. S. T. Bella of the Microanalytical Laboratory, The Rockefeller University. The solvents used for thin layer chromatography (TLC) (precoated $0.25-\mathrm{mm}$ silica gel G plates, Analtech) were 1 -butanol-acetic acid-water (BAW) (4:1::), 1-buta-nol-acetic acid-water-pyridine (BAWP) (15:10:3:12), chloroform-methanol-acetic acid (CMA) (17:2:1), and chloroform-methanol-15\% aqueous NH_{3} (CMN) (4:5:2). Spots were visualized by spraying with 0.2% ninhydrin in 1 -butanol and heating. The plates were then exposed to chlorine and sprayed with the o-tolidine reagent.

Z-Gly (Eastman) was twice recrystallized from chloroform while є-Z-Lys (Schwarz Bioresearch) was used without further purification. Boc-Lys(Z) was obtained from Fox Chemical Co., and the unsubstituted resin support, a copolymer of styrene- 1%-divinylbenzene (200-400 mesh), was purchased from Bio-Rad. The materials and methods for solid phase synthesis were similar to those described elsewhere ${ }^{13,23,30}$ but modified as indicated.
\mathbf{N}^{α}-Bzl-Gly-HCl. A modification of the method described by Greco et al. ${ }^{31}$ for the general preparation of N-(substituted benzyl)glycine derivatives was used. Ethyl bromoacetate ($11.3 \mathrm{ml}, 100 \mathrm{mmol}$) was cautiously added to a solution of benzylamine ($21.8 \mathrm{ml}, 200 \mathrm{mmol}$) in benzene (70 ml). An immediate precipitation of benzylamine hydrobromide occurred. The suspension was refluxed (5 h), cooled, and filtered. The filtrate was evaporated in vacuo yielding a clear, mobile oil (22.1 g) which was refuxed in $6 \mathrm{~N} \mathrm{HCl}(200 \mathrm{ml})$ for 1.5 h . The resulting solution was evaporated in vacuo until white crystals appeared. The suspension was allowed to stand in the cold for several hours. The crystals were collected, washed with diethyl ether, and dried to give 10.6 g of material, $\mathrm{mp} 220-225^{\circ} \mathrm{C}$ (lit. ${ }^{32} \mathrm{mp} 220^{\circ} \mathrm{C}$). A minor contaminant was detected by TLC (BAWP). A recrystallization was effected from ethanol-diethyl ether, yielding first $(5.97 \mathrm{~g}, \mathrm{mp} 223-228$ ${ }^{\circ} \mathrm{C}$) and second ($2.58 \mathrm{~g}, \mathrm{mp} 223-226^{\circ} \mathrm{C}$) crops (42% yieldi that were homogeneous by TLC, $R_{l} 0.56$ (BAWP).
$\boldsymbol{N}^{\mathbf{c}}$-BzI-Lys $\cdot \mathrm{HCl}$. Catalytic hydrogenation of \boldsymbol{N}°-benzylidene-I, lysine ${ }^{33}$ gave rise to the desired product, $R_{f} 0.63$ (CMN), in addition to a closely running contaminant, $R_{f} 0.57$. Attempts to free the product of the impurity were unsuccessful. The multistep synthesis of $N^{\text {}}$ - benzyl-L-lysine hydrochloride, as described by Benoiton, ${ }^{16}$ afforded material that was homogeneous by TLC and ior.-exchange chromatography.
 mmol) and ethanol (5 ml) were added to a solution of N^{α}-carboben-zoxy-L-lysine ${ }^{33}$ in 1 N sodium hydroxide (10 ml). The solution was stirred at room temperature for 20 min and then cooled in an ice bath. Sodium borohydride ($0.115 \mathrm{~g}, 3.00 \mathrm{mmol}$) was added in five portions over a $30-\mathrm{min}$ period. After 15 min , the treatment with 2,4 -dichlorobenzaldehyde and sodium borohydride was repeated and the solution was allowed to stir for 4 h . Water (15 ml) was added and the solution was extracted twice with diethyl ether (20 ml). A white solid was obtained when the solution was acidified (HCl) to pH 6.0 and cooled. The solid was collected and recrystallized from methanol-ethyl acetate, yielding $2.24 \mathrm{~g}(51 \%)$ of product: $\mathrm{mp} 168-170^{\circ} \mathrm{C} ; R_{f} 0.87$ (CMN); $[\alpha]^{24} \mathrm{D}+1.7^{\circ}$ ($c 2$, acetic acid).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 57.40 ; \mathrm{H}, 5.50 ; \mathrm{N} .6 .30 ; \mathrm{Cl}$. 16.14 . Found: C, 57.46; H, 5.49; N, 6.39; Cl, 15.97.

Gly-Lys(Z). This compound was prepared from $\mathrm{V}^{\text {a }}$-chloro-acetyl- N^{e}-benzyloxycarbonyl-L-lysine and ammonium hydroxide as described by Rao et al., ${ }^{10} R_{f} 0.32$ (BAW).
t-Bu-Gly-Lyz(Z). \boldsymbol{N}^{a}-Chloroacetyl- N^{*} - benzyloxycarbonyl-Llysine ${ }^{10}(0.933 \mathrm{~g}, 2.62 \mathrm{mmol})$ was refluxed in tert-butylamine (15 ml , 42 mmol) for 5 h . The tert-butylamine was removed in vacuo and the resulting foam was triturated with acetone to give solid material (0.720 g), mp 179-183 ${ }^{\circ} \mathrm{C}$. Crystallization from methanol-ethyl acetate gave a white solid ($0.332 \mathrm{~g}, 32 \%$ yield): mp $196-197^{\circ} \mathrm{C}$; $R_{/} 0.35$ (BAW); $[\alpha\}^{25} \mathrm{D}+7.2^{\circ}$ (c 2 , methanol). Carbonyl absorptions were observed in the infrared spectrum at 1686,1596 , and $1530 \mathrm{~cm}^{-1}$ and an absorption for tert -butyl was observed at $1254 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C}, 61.05 ; \mathrm{H}, 7.94 ; \mathrm{N}, 10.68$. Found: C, 60.86; H, 7.93; N, 10.68.

A sample of this material was examined by chemical ionization mass spectrometry. ${ }^{34}$ The source temperature was $190^{\circ} \mathrm{C}$ and the probe
temperature approximately $125^{\circ} \mathrm{C}$. Major ions observed were m/e $394(\mathrm{M}+1), 286\left(\mathrm{M} \cdot{ }^{+}-\mathrm{OCH}_{2} \mathrm{Ph}\right), 147,91\left(\mathrm{PhCH}_{2}{ }^{+}\right)$, and 74.

Analyses. Ion-Exchange Chromatography. Ion-exchange chromatography was performed using a Beckman amino acid analyzer (Model 120B or 121) at ε flow rate of $66 \mathrm{ml} / \mathrm{h}$ and temperature of 56 ${ }^{\circ} \mathrm{C}$. N^{a}-Bzl-Gly elutes exactly with phenylalanine on the long column ($0.9 \times 60 \mathrm{~cm}$; AA- 15 sulfonated polystyrene) of the analyzer. ${ }^{15}$ The ninhydrin color yield of N^{α}-Bzl-Gly is 0.82 relative to Gly. $N \cdot$-Bzl-Lys emerges from the short column ($0.9 \times 7 \mathrm{~cm}$; PA- 35 sulfonated polystyrene) at 161 min with pH 7.0 sodium citrate buffer. The ninhydrin color yield is 0.70 relative to Lys (28 min).

Samples of Gly-Lys (Z) and t-Bu-Gly-Lys (Z) were deprotected in refluxing TFA for 30 min . ${ }^{11}$ The TFA was removed in vacuo and the resulting Gly-Lys and t-Bu-Gly-Lys trifluoroacetates were used to derive a chromatographic system capable of resolving $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Lys}$, Gly-Lys, and t-Bu-Gly-Lys. These compounds are resolved on the $0.9 \times 60 \mathrm{~cm}$ column with pH 5.26 buffer.

Compd	Elution time, min	Ninhydrin color yield
Lys	193	1.00
Gly-Lys	235	1.28
$\mathrm{NH}_{4} \mathrm{Cl}$	297	1.29
t-Bu-Gly-Lys	346	0.43

A sample of $\left.N^{\alpha}-\mathrm{Z}-\mathrm{N}^{-}-12,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)$-L-Lys was decarbobenzoxylated with 32% hydrogen bromide in acetic acid. The HBr and acetic acid were removed in vacuo and the resulting $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)$ hydrobromide was dissolved in a calibration solution containing Lys and $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right) .{ }^{23} \mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)$ could not be eluted from the short column ($0.9 \times 7 \mathrm{~cm}$) of the amino acid analyzer with pH 7 citrate buffer atelevated temperatures $\left(56-90^{\circ} \mathrm{C}\right)$ although Lys and $\mathrm{Lys}(2,4$ $\mathrm{Cl}_{2} \mathrm{Z}$) are readily chromatographed under these conditions. ${ }^{23} \mathrm{~A}$ column of Dowex 50 W -X4 sulfonated polystyrene ($0.9 \times 9 \mathrm{~cm}$), eluted ($66 \mathrm{ml} / \mathrm{h}$) with pyridine acetate buffer ($0.8 \mathrm{M}, \mathrm{pH} 5.2$) at $25^{\circ} \mathrm{C}$, allowed the resolution of Lys (23 min), $\mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)(58 \mathrm{~min})$, and Lys ($2,4-\mathrm{Cl}_{2} \mathrm{Bzl}$) (135 min).

Boc-Lys(Z)-resin. ${ }^{35}$ Copoy(styrene-1\% divinylbenzene) beads (Bio-Beads SX-1, 200-400 mesh) were washed, chloromethylated (1.0 $\mathrm{mmol} \mathrm{Cl} / \mathrm{g}$), and brominated as described by Merrifield. ${ }^{19}$ The cesium salt of $\operatorname{Boc}-\mathrm{Lys}(\mathrm{Z})$ was prepared and allowed to react with the ringbrominated chloromethyl resin according to Gisin. ${ }^{36}$ A picrate titration ${ }^{9}$ after the removal of the Boc group ($50 \% \mathrm{TFA}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) indicated a loading of $0.457 \mathrm{mmol} \mathrm{Lys} / \mathrm{g}$.

Boc-Gly-Lys(Z)-resin. Formation of \boldsymbol{t}-Bu-Gly-Lys. BocLys (Z)-resin ($0.200 \mathrm{~g}, 0.0914 \mathrm{mmol}$) was placed in a $5-\mathrm{ml}$ reaction vessel ${ }^{30}$ and deprotected (30 min) with 50% TFA- MeCl_{2}. The resin was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and coupled with 10 equiv of Boc-Gly and 10 equiv of DCC in 4 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The coupling mixture was shaken (30 min), filtered, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The dipeptide resin was deprotected with 50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 min), filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, neutralized with 5% DIEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resin was shaken (30 min) with a cleavage solution containing 2 ml of TFA and 2 ml of $32 \% \mathrm{HBr}$ in acetic acid. ${ }^{17}$ The cleavage solution was filtered and the resin was washed with TFA, TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pooled filtrates were evaporated in vacuo. The resulting residue was dissolved in water and subjected to ion-exchange chromatography. Analysis of the cleavage products gave Lvs (0.16%), Gly-Lys (99.8%), and no t -Bu-Gly-Lys ($<0.05 \%$).

The above procedure was repeated with one variation: the Boc-Gly-Lys(Z)-resin was deprotected with 50% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing Boc-OEt (50 equiv). Chromatography of the cleavage products gave Lys (0.08%), Gly-Lys (99.9%), and no t-Bu-Gly-Lys ($<0.05 \%$).

Reaction of Boc-Lys(Z)-resin with Cleavage Reagents. Formation of $\boldsymbol{N}^{\mathbf{e}}$-Bzl-Lys. A. Reaction with TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Solutions ($2-4 \mathrm{ml}$) containing 5% TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \%$ TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 100% TFA were shaken with samples of Boc-Lys(Z)-resin ($0.100-0.200 \mathrm{~g}$) for 14 h at room temperature. The resins were filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried, and hydrolyzed in sealed ignition tubes containing HCl -propionic acid ($1: 1$) for 6 h at $130^{\circ} \mathrm{C} . .^{14}$ The analyses are given in Table I (runs 1-3).
B. Reaction with TFA-HBr-HOAc and HF. Untreated Boc-Lys(Z)-resin $(0.100 \mathrm{~g})$ was cleaved with TFA- $32 \% \mathrm{HBr}$ in $\mathrm{HOAc}(1: 1)$ (1 h) and worked up as described for the TFA- $\mathrm{HBr}-\mathrm{HOAc}$ cleavage of Boc-Gly-Lys(Z)-resir. Untreated Boc-Lys(Z)-resin (0.100 g) was also cleaved with anhydrous HF , in the absence of anisole, for 1 h at room temperature. The HF was removed in vacuo and the resin was
extracted with 1% HOAc. The use of either TFA- HBr - HOAc or HF did not allow formation ($<0.1 \%$) of N^{*}-Bzl-Lys (runs 4 and 5, Table I).
C. Reaction with Cleavage Reagents Containing Carbonium

Ion Scavengers. Solutions ($2-4 \mathrm{ml}$) having the compositions listed in Table II were shaken with samples of Boc-Lys(Z)-resin (0.100-0.200 g) for 14 h at room temperature. The resins were filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and cleaved with TFA- $32 \% \mathrm{HBr}$ in $\mathrm{HOAc}(1: 1$) as described above. The results are given in Table II.
Deprotection of Z-Gly and Lys(Z) in Refluxing Trifluoroacetic Acid. Solutions of Z-Gly ($0.01,0.10,1.0 \mathrm{M}$) and $\mathrm{Lys}(\mathrm{Z})(0.1$ M) in anhydrous TFA were prepared. Duplicate solutions containing 20% anisole were also prepared. The solutions were refluxed for 30 \min and then evaporated in vacuo. The resulting residues were taken up in water and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous solutions were analyzed for amino acid and N-benzylamino acid. Recoveries of $95-101 \%$ were observed. The results are given in Table III.

Deprotection of Z-Lys in Refluxing Trifluoroacetic Acid. A solution of Z-Lys ${ }^{33}(1.0 \mathrm{M})$ was refluxed (30 min) in TFA and worked up as described above. No N^{\star}-Bzl-Lys ($<0.1 \%$) was detected. The presence of N^{a}-Bzl-Lys (0.6%) was established when a reference sample of N^{α} - Bzl-Lys, prepared by treating Bzl-Lys $(\mathrm{Z})^{37}$ with 32% HBr in HOAc, was chromatographed on the short column of the analyzer.

Deprotection of Z-Gly and Lys(Z) in Trifluoromethanesulfonic Acid-Trifluoroacetic Acid. Trifluoromethanesulfonic acid (8.3 equiv) was added to a solution of Z-Gly (0.1 M) in TFA containing anisole (2.3 equiv) with the immediate formation of a purple solution. An aliquot was removed at 30 min , quenched in pH 4.25 buffer, and analyzed. It contained N^{α}-Bzl-Gly (1.2\%) and Gly (98.8%).
The experiment was repeated using $\operatorname{Lys}(Z)(0.1 \mathrm{M})$ in TFA containing anisole (2.6 equiv) and trifluoromethanesulfonic acid (9.4 equiv). At 30 min an aliquot was removed, quenched in pH 7.00 buffer, and analyzed. It contained N^{t}-Bzl-Lys (3.1\%) and Lys (96.9\%).
Deprotection of Z-Gly and Lys(Z) in HF. Z-Gly ($20.9 \mathrm{mg}, 100$ $\mu \mathrm{mol})$ and $\mathrm{Lys}(\mathrm{Z})(28.0 \mathrm{mg}, 100 \mu \mathrm{~mol})$ were allowed to stir in anhydrous $\mathrm{HF}(5 \mathrm{ml})$ for 30 min at room temperature. The HF was removed in vacuo and the resultant residue was extracted with water. An insoluble, light yellow solid was filtered off and the filtrate was evaporated in vacuo, yielding a residue which was dissolved in water (12.5 ml) for ion-exchange chromatography. Neither N^{a}-Bzl-Gly nor N^{\prime} - Bzl-Lys could be detected (<0.1\%).

Deprotection of Lys $\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)$ in HF. Lys $\left(2,4-\mathrm{Cl}_{2} \mathrm{Z}\right)(70.4 \mathrm{mg}, 202$ $\mu \mathrm{mol}$) was stirred in anhydrous $\mathrm{HF}(10 \mathrm{ml})$ for 1 h at room temperature. The HF was removed in vacuo and the resulting material was extracted with pyridine acetate buffer ($0.8 \mathrm{M}, \mathrm{pH} 5.2$). A white solid was removed by filtration and a portion of the filtrate was subjected to ion-exchange chromatography. Less than $0.1 \% \mathrm{Lys}\left(2,4-\mathrm{Cl}_{2} \mathrm{Bzl}\right)$ was present.

Registry No.- N^{α}-Bzl-Gly-HCl, 7689-50-1; N^{e}-Bzl-Lys-HCl, 38299-38-6; $N^{\alpha}-Z-N^{e}$-(2,4-Cl2 Bzl)-Lys, 58581-65-0; t-Bu-Gly-Lys(Z), 58581-66-1; N^{ϵ}-benzylidene-L-lysine, 14511-39-8; 2,4-dichlorobenzaldehyde, 874-42-0; N^{α}-carbobenzoxy-L.-lysine, 2212-75-1; $N^{\alpha}{ }^{\alpha}$
chlo:oacetyl- N^{t} - benzyloxycarbonyl-1--lysine, 47376-73-8; tert-butylamine, 75-64-9; Z-Gly, 1138-80-3; $N^{\text {e}}$-Z-Lys, 1155-64-2; Boc-Lys(Z)-H, 2389-60-8; Lys(2,4-Cl 2 Z), 58581-67-2.

References and Notes

(1) (a) Supported in part by Grant AM 01260 from the U.S. Public Health Service and by a grant from the Hoffmann-La Roche Foundation. (b) This paper was reported in part at the 170 th National Meeting of the American Chemical Society, Chicago, III., August 1975, Abstract No. ORGN-80.
(2) M. Bergmann and L. Zervas, Ber. Dtsch. Chem. Ges., 65, 1192 (1932)
(3) L. A. Carpino. J. Am. Chem. Soc., 79, 98, 4427 (1957); F. C. McKay and N. F. Albertson, ibid., 79, 4686 (1957); G. W. Anderson and A. C. McGregor. ibid., 79, 6180 (-957).
(4) P. Sieber and B. Iselin, Helv. Chim. Acta, 51, 614 (1968)
(5) P. Sieber and B. Iselin, Helv. Chim. Acta, 51, 622 (1968)
(6) T. Sheradsky, G. Salemnick, and M. Frankel, Isr. J. Chem., 9, 263 (1971)
(7) R. S. Hodges and R. B. Merrifield, Anal. Biochem., 65, 241 (1975).
(8) L. C. Dorman, Tetrahedron Lett., 2319 (1969)
(9) B. F. Gisin, Anal Chim. Acta, 58, 278 (1972).
(10) K. R. Rao, S. M. Birnbaum, R. B. Kingsley, and J. P. Greenstein, J. Biol. Chem., 198, 50 ; (1952).
(11) F. Weygand and W. Sieglich, Z. Naturforsch. B, 14, 472 (1959).
(12) J. M. Manning ard S. Moore, J. Biol. Chem., 243, 5591 (1968).
(13) R. B. Merrifield, A. R. Mitchell, and J. E. Clarke, J. Org. Chem., 39, 660 (1974).
(14) J. Scotchler, R. Lozier, and A. B. Robinson, J. Org. Chem., 35, 315 (1970).
(15) M. Friedman anc L. H. Krull, Biochim. Biophys. Acta, 207, 361 (1970).
(16) L. Benoiton, Car. J. Chem., 42, 2043 (1964).
(17) B. F. Gisin, unpublished procedure. Caution. Pressure develops.
(18) S. Sakakibara, Y. Shimonishi, Y. Kishida, M. Okada, and H. Sugihara, Bull. Chem. Soc. Jpn . 40, 2164 (1967).
(19) R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963).
(20) B. W. Erickson and C. Y. Wang. Abstracts, 170th National Meeting of the American Chemical Society, Chicago, III., August 1975. No. ORGN-81.
(21) S. Sakakibara, T. Fukuda, Y. Kishida, and I. Honda, Bull. Chem. Soc. Jpn., 43, 3322 (1970)
(22) D. Yamashiro and C. H. Li, J. Am. Chem. Soc., 95, 1310 (1973)
(23) B. W. Erickson and R. B. Merrifield, J. Am. Chem. Soc., 95, 3757 (1973).
(24) Some examples of decarbobenzoxylations using trifluoroacetic acid include S. S. Wang and R. B. Merrifield, Int. J. Pept. Protein Res., 4, 309 (1972); W. Konig and R Geiger, Chem. Ber., 105, 2872 (1972); W. Voelter, S. Fuchs, and K. Zech. Tetrahedron Lett., 3975 (1974); M. Bodanszky, Y. S. Klausner, C. Y. _in, V. Mutt, and S. Said, J. Am. Chem. Soc., 96, 4973 (1974).
(25) D. Ben-Ishai and A. Berger. J. Org. Chem., 17, 1564 (1952)
(26) H. Yajima, N. Fujii, H. Ogawa, and H. Kawatani, J. Chem. Soc., Chem. Commun., 106 (1974).
(27) J. Pless and W. Bauer, Angew. Chem.. Int. Ed. Engl., 12, 147 (1973).
(28) F. C. McKay and N. F. Albertson, J. Am. Chem. Soc., 79, 4686 (1957); F Weygand and K. Hunger, Chem. Ber., 95, 1 (1962).
(29) B. E. B. Sandberg and U. Ragnarsson. Int. J. Pept. Protein Res., 6, 111 (1974).
(30) B. F. Gisin and R. B. Merrifield, J. Am. Chem. Soc., 94, 3102 (1972).
(31) C. V. Greco, W. H. Nyberg. and C. C. Cheng. J. Med. Chem., 5, 861 (1962).
(32) H. J. Haas, Chem. Ber., 94, 2442 (1961).
(33) B. Bezas and L. Zervas. J. Am. Chem. Soc., 83, 719 (1961)
(34) The mass spectroscopy was performed by Dr. M. E. Rennekamp in the laboratory of Professor F. H. Field (Mass Spectrometric Biotechnology Resource, Rocksfeller University).
(35) This derivative was prepared by Dr. R. S. Hodges
(36) B. F. Gisin, Helv. Chim. Acta, 56, 1476 (1973).
(37) P. Quitt, J. Hellerbach, and K. Vogler, Helv. Chim. Acta, 46, 327 (1963).

Secondary Valence Force Catalysis. 16. Melittin-Catalyzed Hydrolysis of p-Nitrophenyl Dodecanoate

Bryan K. McQuoid, A. R. Goldhammer, and E. H. Cordes*
Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Received November 18, 1975

Abstract

Melittin, a cationic surface active polypeptide containing 26 amino acid residues isolated from the venom of the common honeybee Apis mellifera, is an effective catalyst for the hydrolysis of p-nitrophenyl dodecanoate. Catalytic activity reflects the capacity of melittin to (1) disperse aggregates of this ester which =orm in aqueous solution and (2) facilitate attack of hydroxide ion or the dispersed ester. An unexpected observation is the finding that a complex of dodecanoate and melittin is a more effective catalyst than is melittin itself. This is a unique example of the facilitation of the attack of an anionic nucleophile by an anionic surfactant.

The rates of many organic reactions are influenced by the nature and the concentration of micelle-forming amphipathic, or surfactant, molecules or ions. ${ }^{1-5}$ Such molecules generally consist of a straight hydrocarbon chain, usually $8-18$ carbon atoms in length, to which a polar head group is attached. In some cases the head group only provides a specific chemical environment for the reaction; in others it participates directly in the reaction as, for example, a nucleophile. The similarities between micelles and globular proteins and the utility of micelles in organic synthesis ${ }^{6}$ have stimulated considerable interest in micelle-catalyzed reactions. Previous investigations have provided significant information concerning the principal features of reactions catalyzed by structurally simple surfactants. Consequently, it appears appropriate to deviate from established patterns in order to probe the possible catalytic properties of more complex surfactants, especially those which are polypeptides and, hence, which may shed new light on enzymatic reaction mechanisms.

One example of a complex polypeptide amphipath is the low molecular weight polypeptide, melittin, ${ }^{7}$ which is the major component of venom obtained from the common honeybee, Apis mellifera. The primary structure is provided below: ${ }^{8}$

Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-LeL-
Pro-Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-Arg- ${ }_{20} \operatorname{Gln} \ln -\mathrm{G} \ln \left(\mathrm{NH}_{2}\right)$
A single melittin subunit consists of 26 amino acids. Since the two γ-carboxyl groups of residues 25 and 26 and the C terminus occur as the corresponding amides, there are no negatively charged centers. In contrast, there are six free basic groups: the N terminus, the lysine residue at position seven, and the sequence of four residues near the blocked C terminus. The amino acid sequence is worthy of note: predominantly hydrophobic residues occur in positions $21-26$, and, as a consequence, melittin has amphipathic character analogous to that of simpler cationic surfactants. In aqueous solution melittin forms micellelike, highly surface-active ${ }^{9}$ structures which contain four poypeptide molecules per aggregate. ${ }^{10-12}$ Since cationic surfactants catalyze the hydrolysis of certain aliphatic esters, ${ }^{13}$ we chose to probe the possible catalytic activity of melittin for the hydrolysis of p-nitrophenyl dodecanoate. The results are presented herein.

Experimental Section

Materials. p-Nitrophenyl dodecanoate ${ }^{14}$ was prepared by a slight modification of the general procedure of Bender and Nakamura: ${ }^{15}$ 0.125 mol of p-nitrophenol, 0.10 mol of dodecanoyl chloride. and 0.10 mol of pyridine were dissolved in 100 ml of toluene and refluxed for 1 h . The reaction mixture was then neutralized with saturated NaHCO_{3} and washed consecutively with water, $5 \% \mathrm{NaOH}, 0.1 \mathrm{~N} \mathrm{HCl}$, and finally with water. The resulting solution was dried over anhy-
drous MgSO_{4} and the solvent was evaporated. The ester, a light yellow, waxy solid, $\mathrm{mp} 40-41^{\circ} \mathrm{C}$ (lit. ${ }^{14} 46^{\circ} \mathrm{C}$), carbonyl stretching frequency (liquid film) at $1755 \mathrm{~cm}^{-1}$, was not purified further.

Melittin was purified from the venom of the common honeybee (Apis mellifera). ${ }^{12}$ One gram of the whole lyophilized crude venom, obtained from Sigma Chemičl Co., was dissolved in 2 ml of a 0.1 M ammonium formate buffer, pH 4.5 , and applied to a Sephadex G-50 column ($1.1 \times 300 \mathrm{~cm}$) previously equilibrated with the ammonium formate buffer. The melittin-rich fractions were pooled and lyophilized. The brown powder thus obtained was dissolved in 15 ml of distilled water and divided int. ten fractions. A saturated picric acid solution (1.5 ml) was added to each of the ten fractions causing the melittin to precipitate as the picrate complex. The precipitate was washed twice with a 70% picric acid solution and collected by centrifugation. The recovered picrate was dissolved in acetone and dissociated by the addition of concentrated HCl . The precipitation step was repeated and the p:otein was collected and washed twice with a $1 \% \mathrm{HCl}$-acetone solution. The melittin was dissolved in water, the pH was adjusted to 3.0 by the addition of HCl , and the solution was passed through a Dowex AG-1-X8 column (Cl^{-}form) $(0.8 \times 10$ cm) in order to remove trace amounts of picric acid. The purified protein, $350-400 \mathrm{mg} / \mathrm{g}$ crude venom. was stored in aqueous solution at $4^{\circ} \mathrm{C} .{ }^{16}$
Other reagents were obtained commercially. Inorganic salts were used without further purification. Glass-distilled water was employed throughout.

Kinetic measurements were performed spectrophotometrically with the aid of a Zeiss PMQII spectrophotometer equipped with a thermostated cell holder. All measurements were made at $25^{\circ} \mathrm{C}$. Reactions were monitored at 400 nm , near the absorption maximum of the p-nitrophenolate anion. Each reaction mixture initially contained $3 \times 10^{-2} \mathrm{M}$ triethylamine-ammonium ion buffer. Measured quantities of solid p-nitrophenyl dodecanoate were dissolved in acetonitrile in such proportions that the addition of $20 \mu \mathrm{l}$ of this solution to 3.0 ml of reaction mixture gave the desired ester concentration. First-order rate constants were calculated using the initial straightline portions of plots of $\log \left(O C_{\infty}-\mathrm{OD}_{t}\right)$ vs. time in the usual manner. Values of pH were measured with the aid of a Radiometer PHM4c pH meter equipped with a glass electrode.

Results

Hydrolysis of p-nitrophenyl dodecanoate at $25^{\circ} \mathrm{C}$ and pH 10.0 in the presence of melittin was monitored by observing the appearance of the p-nitrophenolate anion. No reaction occurs in the absence of acded polypeptide. In Figure 1, the data for this reaction in the presence of melittin are plotted in the usual manner for a pseudo-first-order reaction. It is obvious that the reaction does not obey simple first-order kinetics and that the rate of ester hydrolysis increases with increasing time. Using data from the initial straight-line portion of this curve, an approximate first-order rate constant of $0.056 \mathrm{~min}^{-1}$ can be calculated. If, on the other hand, one employs data taken near the terminus of the reaction, the corresponding rate constant is $0.21 \mathrm{~min}^{-1}$.

Following completion of the hydrolysis of $3 \times 10^{-5} \mathrm{M} p$ nitrophenyl dodecanoate in the presence of $1 \times 10^{-4} \mathrm{M}$ melittin, addition of a second aliquot of ester to give again an ester

Figure 1. Data for the hydrolysis of $3 \times 10^{-5} \mathrm{M} p$-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ in the presence of $1 \times 10^{-4} \mathrm{M}$ melittin plotted according to the usual method for first-order reactions. Employing the data points near the beginning of the reaction yields a first-order rate constant of $0.056 \mathrm{~min}^{-1}$.

Figure 2. Data for the hydrolysis of p-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ in the presence of $1 \times 10^{-4} \mathrm{M}$ melittin and varying concentrations of dodecanoate plotted according to the usual method for first-order reactions. The concentrations of dodecanoate, in increasing amounts as indicated, are $7.5 \times 10^{-6}, 1.5 \times 10^{-5}, 3.0 \times 10^{-5}$, and $4.5 \times 10^{-5} \mathrm{M}$.

Figure 3. Data for the hydrolysis of $3 \times 10^{-5} \mathrm{M} p$-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ in the presence of various concentrations of melittin plotted in the usual manner for first-order reactions. The concentrations of melittin, in increasing amounts as indicat ϵ, are $2.5 \times 10^{-4}, 5.0 \times 10^{-4}, 7.5 \times 10^{-4}$, and $1.0 \times 10^{-3} \mathrm{M}$.
concentration of $3 \times 10^{-5} \mathrm{M}$ results in an initial rate of ester hycrolysis equal to the terminal rate observed for the first reaction. As before, the rate of ester hydrolysis increases with increasing time. These results establish that the melittindependent hydrolysis of p-nitrophenyl dodecanoate is autocatalytic.

The simplest explanation for this autocatalytic behavior is that one or both of the reaction products combine with melittin to form a more effective catalyst than melittin alone. In an effort to probe this possibility, measured quantities of dodecanoic acid were added to the reaction mixture prior to its initiation. In Figure 2 the time course plots for ester hydrolysis in the presence of four concentrations of added dodecanoate are shown. In each case, significant deviations from first-order kinetics are observed. Both initial and final rate constants increase regularly with increasing dodecanoate concentration. An approximately linear relationship is obtained between the initial first-order rate constants and dodecanoate concentration; the addition of $4.5 \times 10^{-4} \mathrm{M}$ dodecaroic acid inceeases the rate of reaction approximately threefold.

In the presence of higher melittin concentrations the reaction kinetics for the basic hydrolysis of p-nitrophenyl dodecanoate are simpler. In Figure 3, first-order plots for this reaction at melittin concentrations ranging from 2.5×10^{-4} to : $.0 \times 10^{-3} \mathrm{M}$ are shown. There is significant deviation from simple first-order kinetics only at the lowest melittin concertration employed. The respective rate constants for these reactions, evaluated from data near the beginning of the reaction for the lowest concentration of melittin for which deviations from first-order kinetics were observed, are plotted as a function of melittin concentration in Figure 4. Although sone scatter in the data is evident, the rate constants increase regularly with increasing concentration of melittin. The

Figure 4. First-order rate constants for melittin-dependent hydrolysis of p-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ plotted as a function of melittin concentration. For the lower concentration of melittin, the first-order rate constants were evaluated from data taken in the first half-life of the reaction only.

Figure 5. Logarithms of first-order rate constants for hydrolysis of $3 \times 10^{-5} \mathrm{M} p$-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ and in the presence of $2.5 \times 10^{-4} \mathrm{M}$ melittin plotted against pH .
maximal rate constant obtained, $0.434 \mathrm{~min}^{-1}$, is approximately eightfold greater than that observed at the lowest melittin concentration employed.
In Figure 5, logarithms of first-order rate constants for hydrolysis of p-nitrophenyl dodecanoate catalyzed by $2.5 \times$ $10^{-4} \mathrm{M}$ melittin are plotted as a function of pH . At this concentration of melittin, ester hydrolysis yields a satisfactory approximation to first-order kinetics through at least 1 halflife; rate constants were calculated from data taken during the first half-life of the reactions. In the pH range in which rate constants increase with increasing hydroxide ion concentration, the slope of the line in this plot is somewhat less than unity. At higher values of pH , rate constants become relatively independent of this variable.
In Figure 6, first-order plots for the melittin-catalyzed hydrolysis of p-nitrophenyl dodecanoate at pH 10.0 in the presence of $1 \times 10^{-4} \mathrm{M}$ are shown for three concentrations of added sodium bromide. With increasing salt concentration, deviations from first-order kinetics become less noticeable and, moreover, the rate of ester hydrolysis decreases modestly. Similar behavior was observed for addition of sodium chloride and sodium nitrate, the former being less effective and the

Figure 6. Data for hydrolysis of p-nitrophenyl dodecanoate at pH 10.0 and $25^{\circ} \mathrm{C}$ and in the presence of $1 \times 10^{-4} \mathrm{M}$ melittin plotted acco-ding to the usual method for a first-order reaction at three concentrations of added sodium bromide.
latter more effective than sodium bromide in eliciting the indicated changes.

Discussion

Several features of the hydrolysis of p-nitrophenyl dodecanoate in aqueous solution have been probed in detail by Menger and Portnoy. ${ }^{17}$ These workers have established that this ester forms aggregates in water; the individual molecules in such aggregates are extremely unreactive toward hydroxide ion. Reactivity is so low that no reliable second-order rate constants for attack of hydroxide ion on this substrate in water are available. Agents which disperse the p-nitrophenyl dodecanoate aggregates lead to greatly increased rates of basecatalyzed hydrolysis. ${ }^{13,17}$
Previous reports from this laboratory have established that simple n-alkyltrimethylammonium bromides are effective catalysts for the basic hydrolysis of p-nitrophenyl dodecanoate and structurally related esters. ${ }^{13}$ Since rate constants for the hydrolysis of this ester in the presence of such surfactants are greater than those for hydrolysis of water-soluble esters of inherently equal reactivity, such as p-nitrophenyl hexanoate and acetate, in the absence of surfactants, it follows that factors other than dispersal of ester aggregates must intervene. The electrostatic field at the cationic micellar surface, which will have the effects of stabilizing the negatively charged transition state and of concentrating hydroxide ion at the micellar surface, must be responsible for a portion of the total catalytic effect.

The above considerations identify two catalytic mechanisms by which melittin may increase the rate of p-nitrophenyl dodecanoate hydrolysis: promotion of ester dispersal, with formation of ester-polypeptide aggregates, in the aqueous environment and electrostatic facilitation of the attack of hydzoxide ion. In addition, it is possible that one or more of
the nucleophilic groups present in the melittin molecule may attack the ester substrate directly, increasing the rate of p nitrophenolate liberation. That the rate of p-nitrophenyl dodecanoate hydrolysis is readily measureable at pH 10.0 in the presence of dilute solutions of melittin is proof that the first mechanism at least is operative. For example, the rate constant for ester hydrolysis at pH 10.0 in the presence of 1 $\times 10^{-4} \mathrm{M}$ melittin, based on the data points early in the reaction, is $0.05 \mathrm{~min}^{-1}$. This value is, coincidentally, almost the same as that measured for the hydrolysis of p-nitrophenyl hexanoate, an ester which does not aggregate, in the absence of melittin or surfactants at the same pH and temperature. ${ }^{13}$ The observation that the first-order rate constants for ester hydrolysis increase about eightfold at higher concentrations of melittin (Figure 4) establishes that melittin facilitates ester hydrolysis by some mechanism other than ester dispersal. The magnitude of the catalytic effect is similar to that elicited by simple cationic surfactants and suggests that the electrostatic field present at the surface of the melittin micelle may underlie the catalytic effect. Were nucleophilic participation by basic groups on the melittin molecule involved, greater rate increases might have been expected.

One of the intriguing aspects of melittin-dependent p nitrophenyl dodecanoate hydrolysis is the autocatalytic behavior observed at low melittin concentrations and the rate enhancement elicited by the addition of the anionic product of the reaction, dodecanoate. Previous work has shown that anionic surfactants alone inhibit base-catalyzed ester hydrolysis. ${ }^{13}$ Consequently, the discovery that the addition of dodecanoate to melittin solutions, either through product accumulation or exogenous addition, produces increased rates for ester hydrolysis is unexpected and surprising. The results strongly suggest that a complex between dodecanoate and melittin is formed which is a better catalyst than melittin alone. In addition, the observation that higher melittin concentrations produce reactions which are kinetically first order requires that autocatalysis depends critically upon the ratio of the number of moles of melittin to the number of moles of dodecanoate. To the best of our knowledge, this is the only case in which an anionic reagent increases the capacity of a cationic reagent to catalyze an organic reaction.
Aside from ester dispersion, melittin catalysis for p-nitrophenyl dodecanoate decomposition may be viewed as either (1) electrostatic facilitation by cationic melittin of the attack of hydroxide ion on the ester substrate or (2) direct nucleophilic attack of melittin on the ester with formation of acylated melittin (at serine, threonine, or lysine). The fact that added dodecanoate elicits the same catalytic effect as is observed in the course of the reaction at low melittin concentrations is consistent with the former observation, since dodecanoate is a reaction product. In the latter case, however, dodecanoylmelittin would be expected to be stable under the reaction conditions and the autocatalytic reaction would have to be ascribed to acylated melittin. The fact that added dodeca-
noate elicits the same rate effects would, then, have to be coincidental.

The complex pH -rate profile for melittin-catalyzed hydrolysis of p-nitrophenyl dodecanoate (Figure 5) is almost certainly the consequence of a combination of effects. The effect on reaction rate of increasing hydroxide ion concentration may be partially or completely offset by a decreasing positive charge on the melittin molecule reflecting neutralizat:on of the cationic lysine residues. To the extent that the catalytic activity of melittin depends on its cationic character, catalysis will diminish with increasing pH .
Finally, added inorganic anions have two effects on the kinetics of the melittin-catalyzed hydrolysis of p-nitrophenyl dodecanoate. The first is to cause the reactions to become somewhat more nearly first order at low melittin concentrations, and the second is to cause a slight reduction in rate. The fact that the reactions approach first-order kinetics may reflect the decreased ability of melittin to bind dodecanoate in the presence of inorganic ions. Sites on the protein molecule which might have been previously available to carboxylate ions are instead occupied by added inorganic anions. The observation that rates of ester hydrolysis are somewhat slower may also be a result of binding inorganic anions to the melittin molecules. To the extent that the positive charges on the projein aggregates are neutralized via association with the inorganic anions, that component of the melittin catalysis which depends upon electrostatic stabilization will be diminished. Inorganic anions are known to be potent inhibitors of the cationic surfactant catalysis for ester hydrolysis. ${ }^{13}$

Acknowledgements. This work was supported by Research Grant GM 19631 from the National Institutes of Health. B.K.M was the recipient of an Ira E. Lee Scholarship, summer 1975.

Registry No.-Melittin, 20449-79-0; p-nitrophenyl dodecanoate, 1956-11-2.

References and Notes

(1) E. H. Cordes and C. Gitler, Prog. Bioorg. Chem., 2, 1 (1973).
(2) E. J. Fendler and J. H. Fendler, Adv. Phys. Org. Chem., 8, 271 (1970).
(3) C. A. Bunton, Prog. Solid State Chem., 8, 239 (1973).
(4) I. V. Berezin, K. Nartinek, and A. K. Yatsimirskii, Usp. Khim., 42, 787 (1973).
(5) J. H. Fendler and E. J. Fendler, "Catalysis in Micellar and Macromolecular Systems'". Academic Press, New York, N.Y.. 1975.
(6) C. N. Sukekik, B -A. Weissman, and R. G. Bergman. J. Am. Chem. Soc., 97, 445 (1975).
(7) E. Habermann, Science, 177, 314 (1972).
(8) E. Habermann, and J. Jentsch, Hoppe-Seyler's Z. Physiol. Chem., 348 (1967).
(9) E. Habermann, Biochem. Z., 328, 474 (1957)
(10) E. Habermann, Z. Exp. Med., 130, 19 (1958).
(11) W. Vogt, P. Patzer, L. Lege, H.-D. Oldigs, and G. Wille, NaunynSchmiedeberg's Arch. Pharmacol., 265, 442 (1970).
(12) E. Habermann and K. G. Reiz, Biochem. J., 341, 451 (1965)
(13) L. R. Romsted and E. H. Cordes, J. Am. Chem. Soc., 90, 4404 (1968).
(14) H. Zahan and F. Schade, Chem. Ber., 96, 1747 (1963).
(15) M. L. Bender and K. Nakamura, J. Am. Chem. Soc., 84, 2577 (1962)
(16) G. Kriel, FEBS L9tt., 33, 241 (1973).
(17) F. M. Menger ant C. E. Portnoy. J. Am. Chem. Soc., 90, 1875 (1968).

Pathway Control of Products in the Reaction of Nitrosyl Chloride on Oximes

Jai Ho Kyung and Leallyn B. Clapp*
Chemistry Department, Brown University, Providence, Rhode !sland 02912

Received October 14, 1975

Abstract

The two pathways of reaction of nitrosyl chloride with oximes were found to be sensitive to three parameters: polarity of solvent, concentration of nitrosyl chloride, and concentration of oxime. Pinacolone oxime, which takes both pathways, was examined with respect to each variable. The two pathways can be controlled over rather wide limits by variation in the three parameters. Pinacolone is produced directly from the oxime by a mechanism which cannot involve hydrolysis since water was excluded from the reaction with nitrosyl chloride. A pathway to account for the production of chloronitroso compound 1 , nitrimine 4 , and ketone 5 is given.

The ambident nature of nitrosyl chloride has been mentioned in a review ${ }^{1}$ describing normal and anomalous reaction products in the nitrosochlorination of alkenes. Kadzyauskas and Zefirov point out that slight changes in conditions may produce substantial changes in the pathway of the reaction. We were impressed by the sensitivity of the reagent to changes in reaction conditions in repeating a reaction of nitrosyl chloride not with an alkene but with an oxime, first reported in 1927. Rheinboldt and Dewald ${ }^{2}$ reported a 19% yield of the chloronitroso compound, type 1 (Scheme I), as the only

Scheme I

product from a 0.38 M solution of pinacolone oxime in ethyl ether when treated with liquid nitrosyl chloride. We obtained a 51% yield of pinacolone nitrimine, type 4 , from a 0.45 M solution of the same oxime in chloroform with gaseous nitrosyl chloride. ${ }^{3}$
Search of the literature ${ }^{2-6}$ (Table I) suggested that many oximes react predominantly by pathway A (Scheme I) to incorporate chlorine; others appear only to react by pathway B; and a few gave products from both pathways (camphor oxime, pinacolone oxime). The results in Table I suggested enough anomalies that generalizations might be forthcoming from closer control over reaction conditions.
Preliminary experiments suggested that a systematic study of the sensitivity of the reagent to solvent polarity, concentration of the oxime, and concentration of the reagent would be worthwhile on an oxime that took both pathways. For this purpose pinacolone oxime was chosen over camphor oxime since it gave all five types of products, 1-5 (Scheme I), which could be conveniently identified.
Since 1 is the initial product in pathway A and subsequently precipitates as dimer (3) or is oxidized to 2 , the results obtained from a change of solvent polarity are reported in Figure 1 as a ratio of pathway A to pathway B where pathway A represents the total yield of $(1+2+3)$. The yield by pathway B includes $(4+5)$. The ratios are shown as a function of solvent polarity as measured by the dielectric constants for carbon tetrachloride, chloroform, methylene chloride, and the oxygen-containing solvents, ether and nitromethane. The ratio
of products from pathway A to products from pathway B is greater as the dielectric constant increases but it is not a continuous function; oxygen solvents, ether and nitromethane, give an added tilt to the ratio. However, within these results is a hidden anomaly. The ratio of 4 to compound 5 was nearly 5 in carbon tetrachloride and nitromethane while the ratio is approximately 1 in the solvents of intermediate polarity (Table II).

The distribution of products was also found to depend both on the concentration of oxime and concentration of nitrosyl chloride. Chloroform was chosen as solvent for this series of experiments using a molar ratio of $2: 1$ for nitrosyl chloride to oxime (Figure 2). As the concentration of oxime increased the formation of ketone 5 and nitrimine 4 increased at the expense of chloronitroso compound 1. At low oxime concentration (up to 1 M), nitrimine and ketone are formed in about equal molar amounts but at a concentration of 2 M , the product mixture was noticeably richer in nitrimine (Table III).

To examine the effect of the molar ratio of nitrosyl chloride to oxime, different molar ratios were used on oxime solutions of the same concentration (1 M), again in chloroform at $25^{\circ} \mathrm{C}$. The results shown in Figure 3 suggest that at a molar ratio of nitrosyl chloride to oxime of 4, chloronitroso compound formation dominates but does not stifle formation of 4 completely. The ratio of nitrimine to ketone remains essentially one at all ratios of reagent to oxime at this concentration (Table IV and Figure 3).

The question of the origin of the ketone in this reaction is relevant since it is known that nitrimines and chloronitroso compounds ${ }^{7}$ both hydrolyze to ketones as do oximes. However, water was excluded in the present work and we conclude that the ketone is a primary reaction product. To test this point the reaction of nitrosyl chloride with pinacolone oxime was monitored at intervals to see if the percentage of nitrimine or chloronitroso compcund diminished as the reaction progressed. This reaction was carried out at a low molar ratio of reagent to oxime to ensure that nitrimine and ketone were the dominant products. Table V gives the product distribution at approximately one-fourth (29%), half (54%). three-fourths (77%), and completion (100%) of the reaction. Each of the three products 1,4 , and 5 increased steadily in amount. There was no decrease in 1 or 4 in any interval. While this does not exc.ude some formation of ketone from a secondary process it strongly suggests that ketone is mainly formed directly by the reagent. Stirring the reaction mixture with nitrosyl chloride present for 5 h after completion of the reaction also did not change the final product distribution.

When pinacolone oxime was allowed to react with nitrosyl chloride under radiation by an ultraviolet lamp or in the presence of free-radical inhibitors (iodine and hydroquinone) no :nduction period or change in product distribution was observed.

Table I. Reaction Products of Oximes with Nitrosyl Chloride

Oxime	Pathway A Chloronitroso, \%	Pathway B	
		Nitrimine, \%	Ketone, \%
Acetaldehyde	$7.4{ }^{\text {a }}$		
α, β-Dibromodihydrocinnamaldehyde	b	94°	
Diethyl ketone	$36{ }^{\text {d }}$		
Ethyl n-propyl ketone	48^{e}		
Dibenzyl ketone	70^{e}		
Cyclohexanone	60^{e}		
α-tert-Butylcyclohexanone		92^{j}	
Methyl 1-chlorocyclohexyl ketone		64.	
Methyl 1-chlorocyclopentyl ketone		558	
Benzophenone		20^{e}	$31, e 84^{c}$
p-Methoxybenzophenone, syn		h	
p-Methoxybenzophenone, anti		h	h
1,3-Diphenyl-2,3-dibromopropanone	c, i, j	70^{c}	
1-p-Methoxyphenyl-1,2-dibromo-3-butanone		i, k	
p-Nitrobenzophenone	h (chloronitro)	h	
Camphor	18	24	
Pinacolone	19^{e}	51 f	
		$\begin{aligned} & 77^{l}(n=3) \\ & 89^{l}(n=4) \end{aligned}$	

${ }^{a}$ Reference 2; yields of chloronitroso compound not given on ten other aliphatic aldehydes. ${ }^{b} 12 \%$ yield of 1,3 -dichloro2 -bromo-1-nitroso-1-phenylpropane (dimer) and 83% yield of α, β-ditromodihydrocinnamhydroxamic chloride, ref 5 . ${ }^{c}$ Sealed tube, excess nitrosyl chloride. ${ }^{d}$ Reference 2 ; yields of nitrimines not given on 12 other aliphatic ketones. ${ }^{e}$ Reference 2. f Reference. 3. g Reference $6 .{ }^{h}$ Reference 2; yields not given. ${ }^{i}$ Referenc $5 . j 26 \%$ yield of 1 -chloro- 1 -nitro- 1,3 -diphenylpropene. ${ }^{k} 46 \%$ yield of 1-p-methoxy-1-chloro-2-bromo-3-butanonenitrimine. ${ }^{l}$ Reference \leq.

Figure 1. Reaction of nitrosyl chloride with pinacolone oxime (1.43 M) as a function of solvent polarity at $25^{\circ} \mathrm{C},[\mathrm{NOCl}] /[$ oxime $]=3$. Data from Table II: a, solid line, ratio of product yields of pathway A to pathway B; b, broken line, ratio of nitrimine, 4 to ketone, 5 as a function of dielectric constant of various solvents.

The results can be rationalized in terms of the polar mechanism proposed by Freeman ${ }^{8}$ where the key intermediate is a nitrosonitrone 6 (Scheme II). We add a second molecule of nitrosyl chloride in a pseudo-six-membered ring to account for pathway A predominating to give chloronitroso product with an excess of the reagent. In polar solvents and excess nitrosyl chloride (also strongly polar) ionization to give chloride ion in the pseudo-six-membered ring would be promoted. In less polar solvents and in very low concentrations of reagent the nitrone oxygen competes favorably as a nucleophile with chlorine to give the products of pathway B , ketone and nitrimine. Apparently the methyl and tert-butyl groups give the

Table II. Products in the Reaction of Nitrosyl Chloride with Pinacolone Oxime (1.43 M) and [NOCl$] /[$ Oxime] $=3$ at $25{ }^{\circ} \mathrm{C}$ as a Function of Solvent Polarity

Solvent Dielectric ccnst, ϵ	$\begin{array}{r} \hline \mathrm{CCl}_{4} \\ 2.24 \end{array}$	$\begin{array}{r} \mathrm{CHCl}_{3} \\ 4.81 \end{array}$	$\begin{array}{r} \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ 9.08 \end{array}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{OCH}_{3} \mathrm{NO}_{2}$	
				4.34	35.8
Pathway A $(1+2+3,$ $\%)$	70.1	79.6	80.1	81.8	83.7
Pathway B					
$\begin{aligned} & \text { \% ritri- } \\ & \text { mine, } 4 \end{aligned}$	24.8	9.5	7.8	11.0	13.1
\% ketone, 5	5.1	10.9	12.1	7.2	3.2
Pathway A	2.3	3.9	4.0	4.5	5.1
Pathway B Nitrimine					
Ke-one	4.9	0.9	0.65	1.5	4.3

Table III. Products in the Reaction of Nitrosyl Chloride with Pinacolone Oxime as a Function of Oxime Concentration in Chloroform at $25^{\circ} \mathrm{C}$ with
$[\mathrm{NOCl}] /[$ Oxime $]=2.0$

[Oxime]	0.25 M	0.5 M	1.0 M	2.0 M
\% chloronitroso,				
(1+2+3)	92.0	78.8	72.7	45.8
\% nitrimine, 4	3.5	8.8	14.7	37.1
\% ketone, 5	4.5	12.4	12.6	17.1

right electronic and steric requirements when pathway B predominates to allow approximately equal probabilities for the two three-membered ring intermediates 7 and 8 . The pathway to ketone was shown to include intermediate 7 by Wieland and Grimm ${ }^{9}$ with oxygen labeling as shown in Scheme II which resulted in 89% of the label in the nitrous oxide. Freeman ${ }^{10}$ has raised objections to the three-membered ring being the only pathway to ketone but it does seem to be the simplest explanation of the results in the absence of water. A referee suggested that compound 1 could be formed in a

Figure 2. Reaction of nitrosyl chloride with pinacolone oxime as a function of oxime concentration in chloroform at $25^{\circ} \mathrm{C}$, [NOCl]/ [oxime] $=2.0$. Data from Table III: a, upper broken line. percent chloronitroso product, $1 ; b$, lower broken line. percent nitrimine, 4; c, solid line, percent ketone, 5.

Scheme II

by-pass of 6 with high ratios of nitrosyl chloride to oxime in the following way:

However, the reversible formation of the relatively less polar adduct should not be sensitive to changes in the polarity of

Figure 3. Reaction of nitrosyl chloride with pinacolone oxime as a function of [NOCl$] /[$ oxime $]$ in chloroform at $25^{\circ} \mathrm{C}$, [oxime] $=1.0 \mathrm{M}$ at start. Data from Table IV: a, upper broken line, percent chloronitroso product, $1 ; b$, solid ine, nitrimine, $4 ; c$, lower broken line, ketone, 5.

Table IV. Products in the Reaction of Nitrosyl Chloride with Pinacolone Oxime at a Starting Concentration (1 M) in Chloroform at $25^{\circ} \mathrm{C}$ as a Function of [NOCl]/[Oxime]

[NOCl]/[Oxime]	0.1	0.5	1.0	2.0	3.0	4.0
\% chloronitroso,						
\quad 1 $+2+3)$	$1 \varepsilon .5$	24.0	39.5	70.2	87.4	96.2
\% nitrimine, 4	$3 \varepsilon .8$	36.6	31.8	14.2	6.2	1.7
\% ketone, 5	$4 \varepsilon .7$	39.2	28.7	15.6	6.4	2.1

Table V. Distribution of Products of Reaction of Nitrosyl Chloride with Pinacolone Oxime (1.0 M) and Starting Ratio [NOCl]/[Oxime] $\cong 0.5$ in Chlọroform at $25{ }^{\circ} \mathrm{C}$

\% oxime consumed	29	54	77	100
\% chloronitroso, 1	4	10	18	21
\% nitrimine, 4	13	23	32	41
$\%$ ketone, 5	12	21	27	38

solvent, contrary to the findings in this work (Table II and Figure 1). Instead in pathway A, more polar solvents should stabilize our suggested intermediate (Scheme I) and promote ionization of nitrosyl chloride in the pseudo-six-membered ring as was found.

Experimental Section

The NMR spectra were taken on a Varian A-60A spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. A standard integration method of dete-mining peak areas was reliable to $\pm 4 \%$. Each experiment with nitrosyl chloride was repeated until consistent results were obtained so that product ratios (Table II) are considered reliable to ± 0.4.

Reaction of Pinacolone Oxime and Nitrosyl Chloride in Ether. To a solution of $6.0 \mathrm{~g}(0.052 \mathrm{~mol})$ of pinacolone oxime in 50 ml of anhydrous ether, $4.5 \mathrm{ml}(0.10 \mathrm{~mol})$ of liquid nitrosyl chloride (purified and tried as previously described ${ }^{5}$ was quickly added at ice-bath temperature. The solution was stirred mechanically as a white precipitate formed which soon redissolved. After $10 \mathrm{~min}, 5 \mathrm{~g}$ of solid sodiurr carbonate was added and stirred for 10 min longer. The white salts were removed by filtration and the ether was distilled at ambient pressure. Cooling the remaining green oil gave blue 2-chloro-2-ni-
troso-3,3-dimethylbutane, yield 4.5 g (60\%), mp $121-122^{\circ} \mathrm{C}$ (recrystallized from methanol ${ }^{2,11}$).

When methanol-water was used for recrystallization the white dimer of the gem-chloronitroso compound slowly precipitated. The dimer sublimes, $120-150^{\circ} \mathrm{C}$: ir spectrum (KBr) $\mathrm{C}-\mathrm{H}, 2980 \mathrm{~s} ; \mathrm{N}=\mathrm{O}$, $1544 \mathrm{~s} ; 742 \mathrm{~cm}^{-1} \mathrm{w}$. The ir spectra of monomer and dimer are identical except for the absence of the weak line at $742 \mathrm{~cm}^{-1}$ in the dimer. However, the NMR spectra of monomer and dimer are substantially different.

NMR spectra $\left(\mathrm{CDCl}_{3}\right)$: monomer $\delta 1.64(\mathrm{~s}, 3), 1.27(\mathrm{~s}, 9)$; dimer δ 2.15 (s, 3), 1.17 (s, 9).

The pale green filtrate remaining after the removal of the chloronitroso compound was diluted with ether and transferred to a silica gel column. Pinacolone nitrimine was eluted from the column as a colorless oil with a 2:1 mixture of carbon tetrachloride and benzene: yield $0.90 \mathrm{~g}(13 \%)$; bp $40^{\circ} \mathrm{C}(2.5 \mathrm{~mm})$ [lit. ${ }^{12} \mathrm{bp} 80.5-81.0^{\circ} \mathrm{C}(12 \mathrm{~mm})$]; ir spectrum (neat) $\mathrm{CH}, 2980 \mathrm{br}, \mathrm{s} ; \mathrm{C}=\mathrm{N}, 1615 \mathrm{~m} ; \mathrm{NO}_{2}, 1560,1312 \mathrm{~cm}^{-1}$ $\mathrm{s} ; \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 3), 1.21(\mathrm{~s}, 9)$.

Finally, pinacolone was removed from the column by a $1: 1$ mixture of benzene and chloroform, yield $0.55 \mathrm{~g}(11 \%)$. The pinacolone was identified by the strong carbonyl absorption ($1640 \mathrm{~cm}^{-1}$) and the NMR spectrum: $\left(\mathrm{CDCl}_{2}\right) \delta 2.12(\mathrm{~s}, 3), 1.13(\mathrm{~s}, 9)$.
In this and experiments with other solvents (below), solvents could not be removed at reduced pressure because of loss of the chloronitroso compound, pinacolone, and pinacolone nitrimine in that order of decreasing volatility.

2-Chloro-2-nitro-3,3-dimethylbutane. 2-Chloro-2-nitroso-3,3-dimethylbutane $(4.2 \mathrm{~g}, 0.028 \mathrm{~mol})$ was heated on a steam bath with 10 ml of glacial acetic acid and 5 ml of concentrated nitric acid for 0.5 h. The reaction mixture was poured into 100 ml of cold water and extracted with 50 ml of ether. The ether solution was washed with 5% sodium carbonate solution and then with water. The ether layer was dried over anhydrous sodium sulfate. Removal of the ether by dis tillation and recrystallization of the product from methanol gave 2.9 $\mathrm{g}(62 \%)$ of 2 -chloro-2-nitro-3,3-dimethylbutane: $\mathrm{mp} 170-172^{\circ} \mathrm{C}$ (lit. ${ }^{2}$ $\mathrm{mp} 169-170^{\circ} \mathrm{C}$); ir spectrum (KBr) C-H, $2980 \mathrm{br}, \mathrm{s} ; \mathrm{NO}_{2}, 1560,1350$ $\mathrm{cm}^{-1} \mathrm{~s}$; NMR spectrum $\left(\mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 3), 1.21(\mathrm{~s}, 9)$.
Product Distribution. A. Effect of Solvent Polarity. The data for Table II and Figure I were obtained as follows. To a solution of 1.65 g (0.014 mol) of pinacolone oxime in 10 ml of carbon tetrachloride, $0.20 \mathrm{ml}(0.043 \mathrm{~mol})$ of liquid nitrosyl chloride was quickly added and the solution was stirred mechanically for 20 min . A sample was removed from the reaction mixture and analyzed by integration of the peaks in the NMR spectrum: chloronitroso compound ($\delta 1.65,1.27$); dimer ($\delta 2.12,1.17$); chloronitro compound ($\delta 2.17,1.21$): nitrimine ($\delta 2.03,1.21$); and ketone ($\delta 2.12,1.13$).
The same procedure was used with chloroform, methylene chloride, ether, and nitromethane. The dimer and the chloronitro compound appeared in less than 5% total yield in any experiment and did not interfere with the results. Repetition of each experiment more than once suggested that the limits of error in product percentage are ± 2.
B. Effect of Concentration of Oxime. Pinacolone oxime (11.5 g) in 50 ml of chloroform (2 M solution) was divided into equal portions. One portion was treated with $1.8 \mathrm{ml}(0.04 \mathrm{~mol})$ of liquid nitrosyl chloride and brought to $25^{\circ} \mathrm{C}$. The other portion was diluted with an
equal volume of chloroform and half the solution was treated with the same volume of liquid nitrosyl chloride at $25^{\circ} \mathrm{C}$. The second half of this solution was again diluted and so on until five concentrations (Figure 2) had been treated with the same volume of nitrosyl chloride. Each reaction mixture was analyzed as previously described to give the results shown in Figure 2 and Table III.
C. Effect of Excess Nitrosyl Chloride. At a 1 M concentration of pinacolone oxime in chloroform at $25^{\circ} \mathrm{C}$, the effect of different molar ratios of ni-rosyl chloride to oxime ($0.1-4.0$) was analyzed in the same way. The results are given in Table IV and Figure 3.
D. Effect of Nitrosyl Chloride Addition in Small Increments. A sslution of $5.8 \mathrm{~g}(0.05 \mathrm{~mol})$ of pinacolone oxime in 50 ml of chloroform (1.0 M solution) was treated with $0.6 \mathrm{ml}(0.012 \mathrm{~mol})$ of liquid nitrosyl chloride. The solution was stirred for 10 min and a sample was removed for an NMR spectrum. The same increment of nitrosyl chl.rride was added four times more until the oxime disappeared completely from the reaction mixture (Table V). After the reaction was completed, a fifth increment of nitrosyl chloride was added and a scmple was removed for an NMR spectrum after 2 and 5 h , respectively. The final product distribution was unchanged.
E. Effect of Free-Radical Inhibitors. The unlikely possibility of a free-radical mechanism being responsible for the results obtained was removed by adding free-radical inhibitors. A 2 M solution of pinacolone oxime in carbon tetrachloride (10 ml) was treated with varying amounts of iodine $(0.0,0.1,2.5 \mathrm{~g})$ in successive experiments anc $1.8 \mathrm{ml}(0.04 \mathrm{~mol})$ of liquid nitrosyl chloride. The solution was stirred for 20 min and a sample withdrawn. The solution was washed with saturated sodium hydrogen sulfite solution and dried over sodium sulfate. An NMR spectrum was taken. No noticeable difference in product composition in the three experiments was observed.
The same experiments were repeated with hydroquinone in the quentities given above. The solutions were washed with water to remove unreacted hydroquinone. The same result was obtained as with the iodine inhibitor.

Registry No.—Pinacolone oxime, 2475-93-6; nitrosyl chloride, 26؟6-92-6; 2-chloro-2-nitroso-3,3-dimethylbutane, 677-58-7; 2chl)ro- 2 -nitroso- $€, 3$-dimethylbutane dimer, 58673-06-6; pinacolone nit-imine, $586.3-42-0 ; \quad$ 2-chloro-2-nitro-3,3-dimethylbutane, 57484-14-7; pinac Jlone, 75-97-8.

References and Notes

(1) P. P. Kadzyauskas and N. S. Zefirov, Russ. Chem. Rev. (Engl. Transl.). 37, 543 (1968)
(2) H. Rheinboldt ard M. Dewald. Justus Liebigs Ann. Chem., 455, 300 (1927): 460, 305 (1928)
(3) C-Y. Shiue, Ph.J. Thesis, Brown University, 1970
(4) C-Y. Shiue, K. P. Park. and L. B. Clapp. J. Org. Chem., 35, 2063 (1970)
(5) E. G. Bozzi, C-Y. Shiue, and L. B. Clapp, J. Org. Chem., 38, 56 (1973)
(6) C-Y. Shiue and L. B. Clapp. J. Org. Chem., 36, 1169 (1971).
(7) L. J. Winters, J. F. Fischer, and E. R. Ryan. Tetrahedron Lett., 129 (1971)
(8) J. P. Freeman, J. Org. Chem., 27, 1369 (1962).
(9) T. Wieland and D. Grimm, Chem. Ber., 96, 275 (1963).
(10) J. P. Freeman, Chem. Rev., 73, 283 (1973).
(11; D. L. Hammick and M. W. Lister, J. Chem. Soc., 489 (1937)
(12) R. Scholl, A. O. Weil, and K. Holdermann, Justus Liebigs Ann. Chem., 338, 1 (1905).

Dewar Benzene Oxide Isomerization. A Forbidden Reaction

John R. Peyser and Thomas W. Flechtner*
Department of Chemistry, The Cleveland State University, Cleveland, Ohio 44115

Received November 21, 1975
In 1967 Carty and von Tamelen reported ${ }^{1}$ that thermolysis of Dewar benzene oxide (1a) afforded benzene oxide

a. $R=H$
b. $R=D$
(2a)-oxepin (3a). ${ }^{2}$ Since a concerted least-motion mechanism for this reaction would involve a process predicted to be "forbidden" by orbital symmetry criteria, ${ }^{3}$ we decided to determine whether such a process is, indeed, responsible for this transformation. Our idea was that a "forbidden" process should have a relatively high activation energy ${ }^{3 d}$ and, thus, the actual mechanism might be more complex ${ }^{4}$ in order to minimize energy requirements. For example, the conversion of 1 to $2 \rightleftharpoons 3$ might proceed by way of an initial isomerization to benzvalene oxide (4) which then

4
would undergo rearrangement to the observed products. The first step in this process is analogous to the reaction of bicyclo[2.2.0]pyran-2-one reported by Corey and Pirkle ${ }^{5}$ and the ready thermal conversion of benzvalenes to benzene derivatives is known. ${ }^{6}$ For the first part of this study, we selected the bridgehead labeled deuterio-Dewar benzene oxide $\mathbf{1 b}$. Such a labeling pattern would allow us to detect skeletal rearrangement occurring during the reaction.

The synthesis of $1 \mathbf{b}$ was accomplished as shown in Scheme I. All of the methods used have been previously published ${ }^{1,7}$ and the labeled materials were compared spectroscopically and, where possible, by mixture melting point with authentic unlabeled materials at each stage. The 6-d pyrone was prepared by the method of Corey and Pirkle. ${ }^{5}$ Integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 b indicated $102 \pm$ $5 \%{ }^{8}$ bridgehead monodeuteration.

A sample of $1 \mathrm{~b}(0 \mathrm{~A} \mathrm{M})$ in CCl_{4} was heated at 120 ± 10 ${ }^{\circ} \mathrm{C}$ (sealed tube) and the reaction monitored by NMR spectroscopy. As reported for la, ${ }^{1}$ the characteristic absorptions due to the α, β, and γ protons of $\mathbf{2 b} \leftrightharpoons \mathbf{3 b}$ ($\delta 5.4,5.7$, and 6.2 , respectively) ${ }^{2}$ appeared replacing in a continuous fashion those due to $\mathbf{l b}$. $\mathbf{l b}$ exhibits a half-life under these conditions of ca. $1 \mathrm{~h} .{ }^{9}$ Integration of these signals afforded an $\alpha: \beta: \gamma$ proton ratio of $1.95 \pm 0.10: 1.00 \pm 0.10: 1.98 \pm 0.10 .{ }^{8}$

Scheme I

This result demonstrates that 1 rearranges to $2 \rightleftharpoons 3$ in the straightforward manner.

The second part of this study involved a determination of the activation energy for the isomerization. Sealed samples of $1 \mathrm{a}(0.05 \mathrm{M})$ in tetrachloroethene were heated at 97.8 and $109.5(\pm 0.2)^{\circ} \mathrm{C}$ and the progress of the reaction monitored by NMR spectroscopy. Each reaction was followed for at least 2 half-lives and a plot of $\log [1 \mathbf{a}]$ vs. time afforded a straight line in each case. The rate constant for the rearrangement was $3.4 \times 10^{-5} \mathrm{~s}^{-1}$ at $97.8^{\circ} \mathrm{C}$ and 1.2×10^{-4} s^{-1} at $109.5^{\circ} \mathrm{C}$.

The derived free energy of activation at $97.8^{\circ} \mathrm{C}$ is 29 ± 3 $\mathrm{kcal} / \mathrm{mol} .{ }^{10}$ The limited nature of these data does not allow a rel:able calculation of the activation enthalpy and entropy.
These results suggest that the thermal isomerization of la resembles that of Dewar benzene itself ($\Delta G \neq=25 \mathrm{kcal} /$ mol 11). They are consistent with both fully concerted ${ }^{12}$ (symmetrical) and biradical mechanisms. Dewar has reported calculations ${ }^{3 \mathrm{~d}}$ which indicate that the favored pathway for a thermal disrotatory cyclobutene opening involves an unsymmetrical transition state. Further mechanistic discussion should await a determination of whether 2 or 3 is the initial reaction product.

Experimental Section

General. Proton magnetic resonance spectra were determined on a Varian Associates T-60 instrument. The labeled and unlabeled Dewar benzene oxides were prepared by the method of van Tamelen and Carty. ${ }^{1}$ The labeled dihydrophthalic anhydride was prepared by the cycloaddition of maleic anhydride and 6-d-pyrone ${ }^{5}$ followed by decarboxylation in boiling xylene by the method of Goldstein and Thayer. ${ }^{7 \mathrm{~b}}$

Pyrolysis of 3-Oxatricyclo[3.2.0.0 ${ }^{2,4}$]hept-6-ene-I-d (1b). A samp.e of $1 \mathbf{b}(5.0 \mathrm{mg}, 0.053 \mathrm{mmol})$ in 0.5 ml of carbon tetrachloride was sealed in an NMR tube. ${ }^{13}$ This tube was then inserted in an oil bath sept at $120 \pm 10^{\circ} \mathrm{C}$ on a hot plate. The reaction progress was monitored by periodically removing the NMR tube from the oil bath and determining the spectrum. Careful integration of the starting material and product ${ }^{2}$ proton absorptions showed that 52 $\pm 3 \%$ of $\mathbf{1 b}$ had been converted to $\mathbf{2 b} \rightleftarrows \mathbf{3} \mathbf{b}$ in 60.0 min . The heat-
ing was continued for a total of 240 min before the final NMR analyses were done.

Pyrolysis of 3-Oxatricyclo[3.2.0.0 $\mathbf{0}^{2.4}$]hept-6-ene (1a). Sealed tubes ${ }^{13}$ of la in tetrachloroethene were inserted in the condensing vapors of toluene $\left(109.5^{\circ} \mathrm{C}\right)$ and p-dioxane $\left(97.8^{\circ} \mathrm{C}\right)$ and the reaction progress monitored by NMR spectroscopy.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No.-1a, 16622-65-4.

References and Notes

(1) (a) E. E. van Tamelen and D. Carty. J. Am. Chem. Soc., 89, 3922-3923 (1967). (b) E. E. van Tamelen and D. Carty, ibid., 93, 6102-6110(1971). (c) The thermolysis of the hexamethyl derivative of 1 has also been reported: M. Klaus. H. Prinzbach, and H. Achenbach, Angew. Chem., Int. Ed. Engl., 8, 880-881 (1969); R. Grigg and G. Shelton, J. Chem. Soc. D. 1247-1248 (1971).
(2) (a) E. Vogel and H. Gunter. Angew. Chem., Int. Ed., Engl., 6, 385-401 (1967): (b) E. Vogel, W. A. Boll, and H. Gunter, Tetrahedron Lett., 609612 (1965).
(3) (a) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 8, 781 (1969): (b) H. E. Zimmerman, Acc. Chem. Res., 5, 393-401 (1972); (c) M. J. S. Dewar, Tetrahedron, Suppl., 8, 75 (1966): (d) M. J. S. Dewar and S. Kirschner, J. Am. Chem. Soc., 96, 6809-6810 (1974).
(4) For some examples see (a) H. H. Westberg, E. N. Cain, and S. Masamune, J. Am. Chem. Soc., 91, 7512-7514 (1969); (b) E. L. Allred and B. R. Beck, ibid., 95, 2393-2394 (1973); (c) J. E. Baldwin and M. S. Kaplan, ibid., 93, 3969-3977 (1971); (d) J. E. Baldwin and M. S. Kaplan, ibid., 94, 668-669 (1972): (e) E. Vedejs. Chem. Commun., 536-537 (1971).
(5) E. J. Corey and W. H. Pirkle, Tetrahedron Lett., 5255-5256 (1967).
(6) K. E. Wilzbach, J. S. Ritscher, and L. Kaplan. J. Am. Chem. Soc., 89, 1031-1032 (1967).
(7) The α-pyrone-maleic anhydride cycloaddition and decarboxylation sequence has been described: (a) 0 . Diels and K. Alder, Justus Liebigs Ann. Chem., 490, 257 (1931); (b) M. J. Goldstein and G. L. Thayer. Jr., J. Am. Chem. Soc., 87, 1925-1933 (1965).
(8) The error limits given are the average deviation found in eight or more separate integrations.
(9) Reference 1 indicates a half-life of 18 min in cyclohexane- d_{12} or n-dodecane at $118^{\circ} \mathrm{C}$.
(10) The error limits arise from an estimate of an error of $\pm 10 \%$ in each rate constant.
(11) R. Breslow. J. Napierski, and A. H. Schmidt, J. Am. Chem. Soc., 94, 5906-5907 (1972).
(12) (a) J. E. Baldwin, A. H. Andrist, and R. K. Pinschmidt. Jr.. J. Am. Chem. Soc., 94, 5845-5851 (1972); (b) J. I. Brauman and W. C. Archie, Jr., ibid., 94, 4262-4265 (1972).
(13) All glassware used for 1 was washed with potassium hydroxide solution and rinsed with water.

2-Acyloxymethylbenzoic Acids. Novel Amine Protective Functions Providing Amides with the Lability of Esters

Bruce F. Cain
Cancer Chemotherapy Research Laboratory, P.O. Box 1724, Auckland, New Zealand

Received October 9, 1975
To confer more desirable pharmacokinetic properties on certain antitumor agents a novel drug latentiation scheme was earlier proposed. ${ }^{2}$ To release agent from the latentiated derivatives a trigger mechanism utilizing a hydroxy acid component was suggested; elimination of the hydroxy acid unit as the corresponding lactone would release the core antitumor agent. In the example provided (Scheme I) the carbonyl group of the hydroxy acid component is linked to drug - NH - in an amide bond. Such hydroxy amides (2) are relatively unstable, the products of intramolecular hydroxyl group attack on amide carbonyl being the lactone 3 and amine 4. Masking of hydroxyl function in 2 by acylation provides stable derivatives 1 which can be readily manipu-

lated and purified. It was envisaged that in vivo serum esterase action on such acyl derivatives (1), by providing the unstable hydroxylic compound 2, could trigger the release of the core species 4.
Similarly in vitro, any chemical treatment resulting in ester cleavage or exchange in the acyloxy amides (1) could resalt in liberation of the amine component 4. Such amides might then also be useful for the protection of amino groups during synthesis with the ultimate ease of demasking approaching the ease of cleavage of an ester.
For the preparation of acyloxy amides of type 1 the most readily available precursors are the lactones but no directly useful example of a reaction for conveniently modifying a lac-one could be found. Possibly the simplest method of obtaining useful intermediates from lactone precursors, Schotten-Baumann acylation of alkaline hydrolysates of a lac:one, appears not to have been successfully applied. Errploying phthalide as a model compound it was found that addition of benzoyl chloride to alkaline solutions of this lactone provided 2-benzoyloxymethylbenzoic acid (5) in 62% yield. Attempted acid chloride preparation from this acid with thionyl chloride alone returned phthalide and benzoyl chloride. However, by inclusion of 1 mol of pyridine in such reactions crystalline 2 -benzoyloxymethylbenzoyl chloride could be isolated in 89% yield. From this acid chloride amide derivatives and the 4 -nitrophenyl ester could be readily prepared. The latter 4 -nitrophenyl ester also resulted from the action of tri(4-nitrophenyl) phosphite on the acid 5 in pyridine solution. The 4 -nitrophenyl ester with suitable amines also furnished amide derivatives and phosphorazo ${ }^{3,4}$ coupling of amines and 5 provided a further route to the amides.

5

6a. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CONH}_{2}$
b, $\mathrm{R}=4 \cdot \mathrm{CH}_{3} \mathrm{C}_{\mathrm{h}} \mathrm{H}_{4}$

An aliphatic ($6 \mathbf{a}$) and an aromatic amide ($\mathbf{6 b}$) of 2 -benzoyloxymethylbenzoic acid were prepared and subjected to usually employed reagents and conditions for protective grcup removal in peptide synthesis; ${ }^{5}$ details are tabulated in Table I. The first reagent listed ($\mathrm{NaOMe}-\mathrm{MeOH}$) is not normally applied in peptide chemistry but is commonly employed to catalyze ester exchange. It can be noted that those reagents which are normally considered to promote ester hydrolysis or exchange are those which produced amide cleavage in $\mathbf{6 a}$ and $\mathbf{6 b}$ (Table I).
For drug latentiation purposes 2 -acyloxymethyl functions other than that containing the lipophilic benzoyl residue were desired. Use of acetic anhydride in the initial Schotten-Baumann conditions provided mixtures and TLC of these showed that the desired 2-acetoxymethylbenzoic acid was being produced but the marked lability of this, providing acetic acid and phthalide, prevented com-

Table ${ }^{\text {I }}$

Reagents and conditions	$\mathbf{c} \mathbf{6 a}$	$\mathbf{6 b}$
$\mathrm{NaOMe}-\mathrm{MeOH}, 20^{\circ} \mathrm{C}$	Cleaved b	Cleaved b
$1 \mathrm{~N} \mathrm{HCl-MeOH}, 20^{\circ} \mathrm{C}$	Cleaved c	Cleaved d
$80 \% \mathrm{HOAc}, 15 \mathrm{~min}, 100^{\circ} \mathrm{C}$	Unchanged Unchanged	
$\mathrm{CF}_{3} \mathrm{COOH}, 1 \mathrm{~h}, 20^{\circ} \mathrm{C}$	Unchanged Unchanged	
$2 \mathrm{~N} \mathrm{HBr}-\mathrm{HOAc}, 30 \mathrm{~min}, 20^{\circ} \mathrm{C}$	Unchanged Unchanged	
$1 \mathrm{~N} \mathrm{NaOH}-80 \% \mathrm{MeOH}, 1 \mathrm{~h}, 20^{\circ} \mathrm{C}$	Cleaved	Cleaved
$45 \mathrm{psi} \mathrm{H}_{2}-10 \% \mathrm{Pd} / \mathrm{C}, 20^{\circ} \mathrm{C}$	Reduced	Reduced f

- Reactions were monitored by TLC and the nature of the products confirmed by isolation and direct comparison with authentic samples. Unless otherwise noted the products of cleavage were phthalide and glycinamide from $\mathbf{6 a}$ and phthalide and p-toluidine from 6b. ${ }^{b}$ Extremely rapid; reaction complete on mixing. ${ }^{c}$ Slow reaction, 48 h necessary for complete reaction of ninhydrin reactive product then glycine methyl ester. ${ }^{d}$ Slow, 48 h necessary for completion. ${ }^{e}$ Product 2 -(2methylbenzamido)acetamide. f Product 2 -methyl- N-(4-methylphenyl)benzamide.
plete purification. In contrast to most other acylating agents tried, acyl cyanides ${ }^{6,7}$ were found to selectively acylate hydroxyl functions without affecting carboxylate anions. For example, the potassium salt of 2-hydroxymethylbenzoic acid in DMF solution with benzoyl cyanide provided the potassium salt of 2-benzoyloxymethylbenzoic acid. Final addition of tri(4-nitrophenyl) phosphite to such reaction mixtures provided 2-benzoyloxymethylbenzoic acid 4nitrophenyl ester directly. By using equivalent conditions isolation of the unstable 2-acetoxymethylbenzoic acid could then be avoided; reaction of potassium 2 -hydroxymethylbenzoate and acetyl cyanide in DMF with following addition of tri(4-nitrophenyl) phosphite provided the stable 2 -acetoxymethylbenzoic acid 4-nitrophenyl ester.

Experimental Section

Melting points were determined on an Electrothermal melting point apparatus with the makers supplied stem corrected thermometer; melting points are as read. Analyses were performed by Dr. A. D. Campbell, Microchemical Laboratory, University of Otago, Dunedin, New Zealand. Ir spectra (KBr) were recorded on a Beckman 237 Infracord. Uv spectra were recorded on a Shimadzu UV-200.
Chromatography used Merck $\mathrm{SiO}_{2} \mathrm{~F}_{254}$ Al TLC sheets.
2-Benzoyloxymethylbenzoic Acid (5). Method A. Phthalide (15 mmol) was dissolved by heating in aqueous $\mathrm{NaOH}(12.5 \mathrm{ml}$ of 20%) and the solution cooled to $5{ }^{\circ} \mathrm{C}$. Crushed ice (100 g) was added and vigorous sweep stirring instituted. Benzoyl chloride (2.7 ml) was added in one portion and stirring continued until the odor of benzoyl chloride disappeared. Ice-cold $\mathrm{HCl}(25 \mathrm{ml}, 2 \mathrm{~N})$ precipitated crude acid, which, after washing well with hot water $\left(60^{\circ} \mathrm{C}\right)$ and drying, was crystallized from $\mathrm{C}_{6} \mathrm{H}_{6}$-light petroleum. Further crystallization from n - BuOH provided pure material as massive prisms, mp $128-129^{\circ} \mathrm{C}(2.37 \mathrm{~g}, 62 \%)$, ir $1686,1715 \mathrm{~cm}^{-1}$.
Method B. Potassium 2-hydroxymethylbenzoate was prepared by solution of phthalide (6 mmol) and KOH (6 mmol) in 85% $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, boiling for 30 min , then evaporating to dryness and drying at $110^{\circ} \mathrm{C}$ in vacuo. The crystalline salt was dissolved by warming in dry DMF (12 ml) and the solution cooled to below 0 ${ }^{\circ} \mathrm{C}$. Benzoyl cyanide (12 mmol) was then stirred in. After 30 min of stirring at this temperature $\mathrm{Et}_{3} \mathrm{~N}(0.05 \mathrm{ml})$ was added and stirring continued for 30 min more. Following addition of MeOH (20 mmol) and stirring for 10 min as much solvent as possible was removed in vacuo at steam bath temperature. The residue was dissolved in cold $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml}$) and neutrals (methyl benzoate and phthalide) removed by $\mathrm{Et}_{2} \mathrm{O}$ extraction. After vacuum stripping of $\mathrm{Et}_{2} \mathrm{O}$ from the aqueous phase acidification at $0{ }^{\circ} \mathrm{C}$ precipitated crude acid. Crystallization as above gave pure acid (87% yield) of the same melting point, mixture melting point, and TLC behavior.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 70.3 ; \mathrm{H}, 4.7$. Found: $\mathrm{C}, 70.5 ; \mathrm{H}, 4.8$.
2-Benzoyloxymethylbenzoyl Chloride. To a suspension of the above acid (4.7 mmol) in $\mathrm{C}_{6} \mathrm{H}_{6}(2 \mathrm{ml})$ was added $\mathrm{Py}(4.7 \mathrm{mmol})$ fol-
lowed by freshly redistilled $\mathrm{SOCl}_{2}(5 \mathrm{ml})$. After 10 min of boiling the solution was concentrated in vacuo and the remaining solid extracted with dry, boiling $\mathrm{C}_{6} \mathrm{H}_{6}(3 \times 25 \mathrm{ml})$. Evaporation provided the azyl chloride as a thick oil which crystallized on trituration with light petroleum. One crystallization from light petroleum provided product as large prisms, mp $47-49^{\circ} \mathrm{C}(1.2 \mathrm{~g}, 89 \%)$. Further crystallization raised the melting point to $51-52^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}: \mathrm{C}, 65.6 ; \mathrm{H}, 4.0 ; \mathrm{Cl}, 12.9$. Found: C, $66.0 ; \mathrm{H}, 4.0 ; \mathrm{Cl}, 12.9$.
2-Benzoyloxymethylbenzoic acid 4-nitrophenyl ester was isolated from $\mathrm{H}_{2} \mathrm{O}$-diluted reaction mixtures by extraction into EtOAc, washing of the crganic layer with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 2 \mathrm{~N} \mathrm{HCl}$, and $20 \% \mathrm{NaCl}$, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporation. Crystallization was from MeOH monitoring homogeneity by TLC.

Method C. Reaction of 2 -benzoyloxymethylbenzoyl chloride (10 $\mathrm{mmol})$ with a solution of 4 -nitrophenol (11 mmol) in $\mathrm{Py}(10 \mathrm{ml})$ on the steam bath for 30 min provided product in 89% yield.

Method D. A solution of tri(4-nitrophenyl) phosphite was prepared by dropwise addition of $\mathrm{PCl}_{3}(3 \mathrm{mmol})$ to a well-cooled solution of 4 -nitrophenol (10 mmol) in excess Py. Addition of acid 5 (6 mmol) and 30 min of heating on the water bath gave, after workup, a 72% yield of pure ester.

Method E. A DMF solution of the potassium salt of 2-benzoyloxymethylbenzoic acid was prepared exactly as in method B but MeOH was not then added. A solution of tri(4 -nitrophenyl) phosphite from 4-nitrophenol (11 mmol) and $\mathrm{PCl}_{3}(3 \mathrm{mmol})$ in Py was then added and after 30 min of heating on the steam bath as much solvent as possible was removed in vacuo.

Pure product separated from MeOH as colorless, glistening plates, mp $78.5-79^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{.5} \mathrm{NO}_{6}$: C, 66.7; H, 4.0; N, 3.7. Found: C, 66.9; H, 4.0; N, 3.4.

2-[2-(Benzoyloxymethyl) benzamido]acetamide (6a). 2-Benzoyloxymethylbenzoic acid (2 mmol) and glycinamide hydrochloride (2 mmol) were suspended in $\mathrm{Py}(25 \mathrm{ml}$) and the whole stirred while cooling to $-5^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(6.5 \mathrm{mmol})$ was added and then PCl_{3} (1.33 mmol) in dropwise fashion maintaining the temperature below $0^{\circ} \mathrm{C}$. After stirring at 0° for 24 h excess Py was removed in vacuc, $\mathrm{H}_{2} \mathrm{O}$ added, and product removed in EtOAc. The extracts were washed with $2 \mathrm{~N} \mathrm{HCl}, 10 \% \mathrm{KHCO}_{3}$, and $20 \% \mathrm{NaCl}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Shaking with light petroleum initiated crystallization. Recrystallization was by solution in excess boiling EtOAc, clarification, then distillation of solvent until crystallization commenced. Pure product (78% yield) was obtained as colorless needles, $\mathrm{mp} 206-207^{\circ} \mathrm{C}$.
Alternatively, the corresponding 4 -nitrophenyl ester (3 mmol) and glycinamide hydrochloride (3 mmol) were suspended in DMF (7.5 ml) at room temperature and $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{mmol})$ was added to the stirred suspension. After 48 h at room temperature isolation, as above, provided product (72% yield) having the same melting point, mixture melting point, and TLC behavior.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 65.4; H, 5.2; N, 9.0. Found: C, 65.4; H, 5.0; N, 8.9.

2-(Benzoyloxymethyl)- \mathbf{N}-(4-methylphenyl)benzamide (6b). Reaction between 2 -benzoyloxymethylbenzoyl chloride and p-toluidine in Py in the usual fashion provided this product (91% yield). Alternatively, addition of $\mathrm{PCl}_{3}(2 \mathrm{mmol})$ to a solution of acid (3 mmol) and amine component (3 mmol) in excess Py and isolation, as in other examples, provided an 87% yield of product. Pure product separated from $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ as colorless plates, mp $102-103{ }^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{-9} \mathrm{NO}_{3}: \mathrm{C}, 76.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 4.1$ Found: C, 76.6; H, 5.7; N, 4.3.

2-Acetoxymethylbenzoic Acid 4-Nitrophenyl Ester. Acetyl cyanide was prepared from acetyl bromide and cuprous cyanide ${ }^{8}$ and had bp 93-93.5 ${ }^{\circ} \mathrm{C}(.60 \mathrm{~mm})$ [lit. ${ }^{8} 93^{\circ} \mathrm{C}(760 \mathrm{~mm})$]. A solution of potassium 2-hydroxymethylbenzoate (12 mmol) in dry DMF (30 ml) was stirred at $0^{\circ} \mathrm{C}$ and acetyl cyanide (24 mmol) added. After 30 min of stirring $\mathrm{Et}_{3} \mathrm{~N}(0.02 \mathrm{ml})$ was added and stirring continued for another 1 h when a solution of 4-nitrophenol (18 mmol) and $\left.\mathrm{PCl}_{3} .6 \mathrm{mmol}\right)$ in $\mathrm{Py}(15 \mathrm{ml})$ was added. The mixture was heated at $100^{\circ} \mathrm{C}$ for 30 min and then solvents removed in vacuo. Product was removed in EtOAc in the usual way after addition of water. The gummy residue obtained on removal of EtAc crystallized on rubbing with light petroleum. Two crystallizations from EtOH provided TLC-homogenous material as colorless plates of mp $112-113{ }^{\circ} \mathrm{C}(52 \%$ yield).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6}$: C, 60.9; H, 4.2; N, 4.5. Found: C, 61.1; - $\mathbf{H}, 4.3$; N, 4.8 .

2-(2-Methylbenzamido)acetamide. Hydrogenation (45 psi H_{2})
in EtOH solution of 6 a at $20^{\circ} \mathrm{C}$ over $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst provided a product crystallizing from absolute EtOH as colorless needles, mp $206-207^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 62.5; $\mathrm{H}, 6.3 ; \mathrm{N}, 14.6$. Found: C, 62.8; H, 6.4; N, 14.8.

Phosphorazo coupling ${ }^{6,7}$ of 2 -methylbenzoic acid and glycinamide, as in earlier examples, provided a product which was identical by melting point, mixture melting point, and TLC criteria with that obtained from the hydrogenation.

In similar fashion hydrogenation of $\mathbf{6 b}$ provided 2 -methyl- N -(4-methylphenyl)benzamide, mp $143.5-144{ }^{\circ} \mathrm{C}$, identical in melting point, mixture melting point, and TLC behavior with a synthesized sample.

Registry No.-5, 58249-83-5; 6a, 58249-84-6; 6b, 58249-85-7; phthalide, 87-41-2; benzoyl chloride, 98-88-4; potassium 2-hydroxymethylbenzoate, 58249-86-8; benzoyl cyanide, 613-90-1; 2 -benzoyloxymethylbenzoyl chloride, 58249-87-9; 2 -benzoyloxymethylbenzoic acid 4-nitrophenyl ester, 58249-88-0; 4-nitrophenol, 100-02-7; tri(4-nitrophenyl) phosphite, 23485-35-0; glycinamide, 598-41-4; p-toluidine, 106-49-0; acetyl cyanide, 631-57-2; 2-(2-methylbenzamide)acetamide, 6754-94-5; 2-methyl- N-(4-methylphenyl)benzamide, 58249-89-1.

References and Notes

(1) This work was supported by the Auckland Division of the New Zealand Cancer Society Inc., and in part by the Medical Research Council of New Zealand.
(2) B. F. Cain, Cancer Chemother. Rep., 59, 679 (1975).
(3) H. W. Grimmel et al., J. Am. Chem. Soc., 68, 539 (1946)
(4) W. Foerst, Ed., "Newer Methods of Preparative Organic Chemistry", Vol II, Academic Press, New York, N.Y., 1963, Chapter 2.
(5) R. A. Boissonnas. Adv. Org. Chem., 3, 159-191 (1963).
(6) A. Dormow and H. Thiedel, Chem. Ber., 88, 1267 (1955).
(7) A. Holig and M. Soucek, Tetrahedron, Lett., 185 (1971).
(8) W. Tschelinzoff and W. Schmidt, Chem. Ber., 62, 2211 (1929).

Synthesis of

2-Benzyl-4-phenyl-2,4-dihydropyrrolo[3,4-b]indole

Willard M. Welch

Central Research, Pfizer, Inc., Groton, Connecticut 06340
Received January 9, 1976
The preparation of a limited number of 1,2,3,4-tetrahydropyrrolo $[3,4-b]$ indoles has been reported in the literature, but no compounds of the corresponding 2,4-dihydropyrrolo $[3,4-b]$ indole series have been described. We report here the preparation of the first example of this series via lithium aluminum hydride reduction of the corresponding 2-benzyl-1,4-dihydropyrrolo[3,4-b]indol-3(2H)-one.
The preparation of 2 -substituted 1,2,3,4-tetrahydropyr-rolo[3,4-b]indoles (2) through LiAlH_{4} reduction of the cor-

responding pyrrolo[3,4-b]indol-3(2H)-ones (1) at elevated temperatures has been reported by Southwick and Owellen. ${ }^{1}$ In conjunction with investigations of the chemistry of 2 -substituted pyrrolo[3,4-b]indoles bearing a phenyl substituent in the 4 position it was decided to adapt this procedure to our series. Thus, 2-benzyl-4-phenylpyrrolo [3,4-b]indol-3(2 H)-one (3), prepared in excellent yield from 1-benzyl-2,3-pyrrolidinedione ${ }^{2}$ and diphenylhydrazine, when reduced by the procedure of Southwick and Owellen afforded two major products which were readily separated by silica gel chromatography.

3 \downarrow Lialh

5
4

The more polar of these was identified as the expected 2 -benzyl-4-phenyl-1,2,3,4-tetrahydropyrrolo[3,4-b]indole (4) through spectral and analytical data. Spectral and analytical data obtained on the less polar, relatively stable (>4 weeks at $0^{\circ} \mathrm{C}$) product as the free base or picrate salt confirmed its structure as 2 -benzyl-4-phenyl-2,4-dihydropyrrolo $[3,4$ b |indole (5). The relatively simple mass spectrum of 5 consisted of the parent ion ($m / e 322$, base peak) and an ion at m / e 231 representing loss of the tropylium ion, indicating a highly stable nucleus. In the NMR spectrum of 5, only the benzyl methylene protons at $\delta 4.91$ lie outside the aromatic region, although both the $\mathrm{C}(1)$ and $\mathrm{C}(3)$ methine protons can be observed. Proton decoupling experiments demonstrate that these protons are coupled to each other with a coupling constant of 1.8 Hz , consistent with values established for $2,5-$ proton coupling in pyrrole and its derivatives.

The formation of a dihydropyrrolo $[3,4-b]$ indole under these conditions represents a novel and unprecedented action of LiAlH_{4} which may be rationalized through the following mechanistic considerations. Formation of 7, the immonium precursor of 4 (path a), by elimination of an oxyaluminum species from the initially formed $\mathbf{6}$ generates considerable ring strain in the 6-5-5 ring nucleus and is probably not favored energetically. The relative stability of 6 thus allows a second mechanism (path b) to become operative, that is, the abstraction of a relatively acidic (due to polarization of the $\mathrm{C}(3)-\mathrm{N}$ bond) $\mathrm{C}(1)$ proton generating 5 via the 1,4 elimination illustrated. Alternatively, proton abstraction from $\mathrm{C}(1)$ in 7 could yield 5 . This pathway is deemed less likely, owing to the known rapid addition of hydride ion to such immonium species.

Further evidence in support of either of these mechanisms was obtained through the reduction of 3 in the presence of the soluble tertiary amine base N-ethylpiperidine (bp $130^{\circ} \mathrm{C}$). The yield of 5 under these conditions was increased from 27% to 42% (the yield of 4 remaining the same) reflecting a more
efficient abstraction of the $\mathrm{C}(1)$ proton by soluble base. It is of interest to note that energetic requirements for operation of either mechanism appear to be high, since our attempted reductions at lower temperatures were unsuccessful. The reduction of α, β-unsaturated γ-lactones to the corresponding furans with dialkylaluminum hydrides has been reported ${ }^{3}$ to proceed at low (-20 to $-25^{\circ} \mathrm{C}$) temperatures in good yield. This difference most likely reflects the energy differences between formation of the pseudoaromatic furan ring and disruption of the indole nucleus to form 5.

It is of interest to note that Southwick did not report formation of dihydropyrrolo $[3,4-b$]indoles 9 from $N(4)$ unsub-

stituted pyrrolo[3,4-b]indolones 1 , although yields of the tetrahydro species and conditions of reduction were comparable. Owing to the relative acidity of indole nitrogen protons, it is quite likely that generation of the $\mathrm{N}(4)$ anion (i.e., 8) in Southwick's series would prevent abstraction of a proton from $C(1)$ and hence the elimination sequence envisioned in path b above. Also of interest is the stability of these compounds by comparison with that of isoindoles. ${ }^{4}$ Clearly the subject compounds resemble disubstituted pyrroles rather than the isoindole type of molecule. This stability and the extended chromophore apparent from our uv data imply (but do not confirm) electronic interaction between the rings of this interesting molecule.

Experimental Section ${ }^{5}$

2-Benzyl-4-phenylpyrrolo [3,4-b]indol-3(2H)-one (3). A solution of 11.90 g (63.0 mmol) of 1 -benzyl-2,3-pyrrolidinedione in 200 ml of glacial acetic acid was added to a suspension of diphenylhydrazine hydrochloride ($13.88 \mathrm{~g}, 63.0 \mathrm{mmol}$) in 200 ml of glacial acetic acid and the resulting suspension was heated briefly on a steam bath to effect hydrazone formation. Then 100 ml of concentrated hydrochloric acid was added to the warm solution and heated for a further 20 min . The reaction mixture was diluted slowly with water giving 17.8 g (84\%) of crystalline 3. Recrystallization from ethyl acetate gave colorless crystals, $\mathrm{mp} 145.5-146.5^{\circ} \mathrm{C}$: ir (KBr) $3.35,3.52,5.97,6.91$, $7.25,8.15,13.17,13.40 \mu$; NMR ICDCl_{3}) $\delta 4.30(2 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H} . \mathrm{s})$, 7.12-7.76 ($9 \mathrm{H}, \mathrm{m}$), $7.30(5 \mathrm{H}, \mathrm{s})$; uv (MeOH) $\lambda_{\max } 246 \mathrm{~nm}(\log є 4.265)$, 299 nm (4.141); mass spectrum m/e 338 (parent ion). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 81.66; H, $5.33 ; \mathrm{N}, 8.28$. Found: C, $81.35 ; \mathrm{H}, 5.51 ; \mathrm{N}, 8.24$.

2-Benzy]-4-phenyl-1,2,3,4-tetrahydropyrrolo[3,4-b]indole (4) and 2-Benzyl-4-phenyl-2,4-dihydropyrrolo[3,4-b]indole (5). To a solution of $13.0 \mathrm{~g}(38.5 \mathrm{mmol})$ of 3 dissolved in 350 ml of dry toluene (4 A molecular sieves) at reflux was added 2.92 g (76.9 mmol) of LiAlH_{4}. The resulting suspension was heated at reflux for 16 h and then cooled to room temperature. After the slow addition of 150 ml of ethyl acetate, 150 ml of water was added and the resulting suspension was filtered. The separated aluminum salts were washed thoroughly with ethyl acetate and the washings combined with the filtrate. The aqueous phase was extracted thoroughly with ethyl acstate, the combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$. and the solvent was evaporated to give 17 g of an orange oil. This material *was chromatographed on 340 g of Brinkmann silica gel. The benzene eluent consisted of 3.39 g of an oil ($R_{f} 0.75$, benzene) and the $1: 1$ benzene-ethyl acetate fraction was 5.16 g of an oil ($R_{f} 0.11$, benzene $)$. Neither product could be induced to crystallize; however, the less polar product, identified below as 5 , yielded a crystalline picrate salt from ethanol whereas the more polar product 4 formed a crystalline hydrochloride salt from ether with dry HCl gas.

2-Benzyl-4-phenyl-1,2,3,4-tetrahydropyrrolo[3,4-b]indole Hydrochloride (4): mp 198.0-199.5 ${ }^{\circ} \mathrm{C}$; mass spectrum m/e 324 (parent ion), $323(\mathrm{M}-1,100 \%), 232,218,204,91$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.47$ ($4 \mathrm{H}, \mathrm{d}),^{6} 4.69(2 \mathrm{H}, \mathrm{d}) .^{6} 6.94-7.50(12 \mathrm{H}, \mathrm{m}), 7.50-7.74(2 \mathrm{H}, \mathrm{m})$; uv (MeOH) $\lambda_{\text {max }} 254 \mathrm{~nm}(\log$ 6 4.159), 287 (3.963).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \cdot \mathrm{HCl}: \mathrm{C}, 67.54 ; \mathrm{H}, 5.87 ; \mathrm{N}, 7.76$. Found: C, 67.23; H, 5.95; N, 7.71.

2-Benzyl-4-phenyl-2,4-dihydropyrrolo[3,4-b]indole Picrate (5): mp 134-135 ${ }^{\circ} \mathrm{C}$; mass spectrum $m / e 323$ (parent ion, 100\%); NMR (free base, CDCl_{3}) $\delta 4.91(2 \mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.73(1 \mathrm{H}$, $\mathrm{d}, J=1.5 \mathrm{~Hz}$), 6.80-7.67 ($14 \mathrm{H}, \mathrm{m}$); uv (MeOH) $\lambda_{\max } 250 \mathrm{~nm}(\log \epsilon$ 4.065), 270 (3.807), 282 (3.8171, 303 (3.678).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, 63.16, H, 3.84; $\mathrm{N}, 12.70$. Found: C, 63.19; H, 3.93; N, 12.85 .

Reduction of 3 with LiAlH_{4} in the Presence of \boldsymbol{N}-Ethylpiperidine. A solution of $0.5 \mathrm{C} \mathrm{g}(4.4 \mathrm{mmol})$ of distilled N-ethylpiperidine and 0.50 g (1.48 mmol) or compound 3 in 15 ml of dry toluene was heated to reflux at which time $0.11 \mathrm{~g}(2.89 \mathrm{mmol})$ of LiAlH_{4} was added. Reflus was continued for 16 h . Then the reaction mixture was cooled, worke. up, and subjected to column chromatography as outlined above. The benzene eluent yielded 200 mg (42%) of compound 5 and the $1: 1$ benzene-ethyl acetate fractions contained $218 \mathrm{mg}(45 \%)$ of compound 4 identical in a.l respects with the compounds described above.

Acknowledgment. We are grateful to Dr. E. B. Whipple and associates for the proton decoupling experiments and to Mr. R. L. Taylor and Mr. F. C. Kohansky for valuable technical assistance.

Registry No.-3, 58485-96-4; $4 \mathrm{HCl}, 58485-97-5 ; 5$ picrate, 58485-99-7; 1-benzyl-2,3-pyrrolidinedione, 58485-00-3; diphenylhydrazine $\mathrm{HCl}, 29666-92-0 ; N$-ethylpiperidine, 766-09-6; LiAlH_{4}, 16853-8.j-3.

References and Notes

(1) P. L. Southwick and R. J. Owelien. J. Org. Chem., 25, 1133 (1960).
(2) P. L. Southwick and R. T. Crouch, ㄴ. Am. Chem. Soc., 75, 3413 (1953).
(3) H. Minato and T. Nagasaki, Chem. Ind. (London), 889 (1965); H. Minato and T. Naçasaki, J. Chem. Soc. C. 377 (1966); P. A. Grieco. C. S. Pognonowski. and S. Burke. J. Org. Chem., 40, 542 (1975).
(4) For example, see J. D. White and M. E. Mannin, Adv. Heterocycl. Chem., 10, 113 (1969)
(5) Melting points (uncorrected) were taken with a Thomas-Hoover capillary apparatus. NMR spectra were recorded on Varian A-60 and T-60 spectrometers with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Proton decoupling experiments were conducted on a Varian XL-100 spectrometer. Ir spectra were determined with a Perkin-Elmer Mcdel 21 spectrophotometer. Uv spectra were recorded on a Cary Model 14 spectrophotometer. Mass spectra were obtained with a Perkin-Elmer RMU-6E mass spectrometer. Microanalyses were performed by the Pfizer Analytical Department. All evaporations were conduc:ed in vacuo using either a water aspirator or a vacuum pump.
(6) It is apparent that, in the hydrochloride salt, the α and $\beta C(1)$ and $C(3)$ methyle re protons are nonequijalent owing to the quaternary nature of $N(2)$. In NMR spectra of the free base of 4 . this region collapses to a 6 H singlet at $\delta 4.10$.

s-Triazines. 1. Reaction of Cyanuric Chloride with Unsaturated Nitrogen Compounds

Koichi Miyashita* and Linus Pauling
Linus Pauling Institute of Science and Medicine, Menlo Park, Califcrnia 94025

Received December 22, 1975
Since $19 \div 0$ applications of s-triazine derivatives, especially melamine and its derivatives, have been extended into nearly every industrial field. ${ }^{1}$ In addition, many melamine derivatives have been found to exhibit ${ }^{1,2,3}$ antineoplastic, antibiotic, antibacterial, and/or insecticidal activity. We believe, therefore, that other hitherto unknown s-triazines, especially melamine derivatives, will probably have potential antineoplastic and antibiotic action.

Although several synthetic methods for the preparation of s-triazine derivatives from cyanuric halides have been developed, ${ }^{1}$ few studies have been reported of the reaction of cyanuric halides with unsaturated nitrogen compounds other than pyridine. ${ }^{4}$ In the course of work on potential anticarcinogens we have found that cyanuric chloride (CC) reacts at room temperature with dicyclohexylcarbodiimide (DCC, 1),

Scheme I

Scheme II

N-isopropylidenebenzylamine (2), and 2,3,3-trimethylindolenine (3).

DCC (1, 1 equiv) reacts with CC to form 2,4-dichloro-6[N^{\prime}-cyclohexyl- N^{\prime}-(N^{\prime}-cyclohexylchloroimino)]-s-triazine (4) in 95% yield (Scheme I). Also, we obtained a small amount of a pale yellow solid which was amorphous in several solvent systems and showed several bands on TLC.

2,4-Dichloro-6-(N^{\prime}-benzyl- N^{\prime}-isopropenyl)-s-triazine (5) and 2,4-dichloro-6-benzylamino-s-triazine (6) ${ }^{5}$ were obtained in 11 and 3 yield, respectively, from the base 2 (1 equiv). Also, N-isopropylidenebenzylamine hydrochloride (7) was obtained in 4 yield. When 2 equiv of the base was used, 5,6 , and 7 were obtained in 63,30 , and 94% yield, respectively, calculated on the basis of CC. No compound of structure 8 was isolated from either of the reactions. Pure 5 was converted to 6 at room temperature within 1 day, although 5 was stable enough to be separated by preparative TLC.

From the indolenine 3 (1 equiv), 2,4-dichloro-6-(2^{\prime}-meth-ylene- $3^{\prime}, 3^{\prime}$-dimethylindoline) s-triazine (9) and 2,4 -di-chloro-6-(2^{\prime}-hydroxy- $2^{\prime}, 3^{\prime}, 3^{\prime}$-trimethylindoline)-s-triazine (10) were obtained in 3.4 and 41% yield, respectively. Also, the hydrochloride 11 was obtained in 50% yield. Neither 12 nor 13^{6} was isolated.

It is of interest that the ratio of 9 and 10 , which was $3: 1^{7}$ before isolation by TLC, changed to 1:12 after the procedure,
although TLC of pure 9 showed no detectable conversion to 10, which was checked by NMR spectrum. Compounds 9 and 11 were obtained quantitatively by using 2 equiv of the indolenine $£$, one of which was used as a scavenger of hydrogen chloride produced in the reaction.

It was also found that 2,4-dichloro-6-methoxy-s-triazine reacted with the act:ve azomethine ($-\mathrm{C}=\mathrm{N}-$) group under more vigorous conditions (in refluxing dry $\mathrm{CH}_{3} \mathrm{CN}$, for 1 h). From 3 (2 equiv), 11, 2-chloro-4-methoxy-6-(2'-methylene$3^{\prime}, 3^{\prime}$-dimethylindoline)-s-triazine (14), and 2 -chloro- 4 -me-thoxy-6-(2'-hydroxy- $2,3^{\prime}, 3^{\prime}$-trimethylindoline)- s-triazine (15) were obtained in 96,24 , and 48% yield, respectively, calculated on the basis of the s-triazine (Scheme II). The indolenine 3 (3\%) was recovered. Again, the addition of water to 14 took place. The ratio of 14 and $15(2: 1)^{8}$ changed to $2: 5$ after isolation and purification. It is not clear at this time what causes these observed ratio changes of $9 / 10$ and $14 / 15$ during the process.

Experimental Section

All NMR spectra (60 MHz) were determined in $\mathrm{CDCl}_{3} / \mathrm{Me}_{4} \mathrm{Si}$. All ir spectra were determine d in a KBr mix. Silica gel, GF_{254} (E . Merck), was used f.or preparative TLC.

Genera: Procedure for the Reactions. To CC ($922 \mathrm{mg}, 5 \mathrm{mmol}$) suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml), a solution of the substrate (5 or 10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 or 4 ml) was added dropwise at room temperature
over a period of several minutes with vigorous stirring. After 30 min the solvent was removed by an aspirator at room temperature and the residue was purified by usual techniques.

Reaction of CC with DCC (1). The residue obtained from CC and DCC (1.03 g .5 mmol) was dissolved in n-hexane and the amorphous pale yellow solid was filtered off. The solution was condensed and kept in a refrigerator to give colorless prisms of $4(1.85 \mathrm{~g}, 95 \%)$: $\mathrm{mp} 101^{\circ} \mathrm{C}$; ir $1690 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\delta 4.41$ [1, m, methyne $\mathrm{H}(\mathrm{a})$], 3.70 [$1, \mathrm{~m}$, methyne $\mathrm{H}(\mathrm{b})$], 2.30-1.00 (20, m, dicyclohexyl H); m/e $339\left(\mathrm{M}^{+}+\right.$, 0.0001), 354 ($\mathrm{M}^{+}-\mathrm{Cl}, 0.01$), 308 (M^{+}- cyclohexenyl radical, 0.11).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{~N}_{5}$: C, 49.16; $\mathrm{H}, 5.63 ; \mathrm{N}, 17.97$. Found: C, 48.99; H, 5.62; N, 17.91.

Reaction of CC with \boldsymbol{N}-Isopropylidenebenzylamine (2). The residue obtained from CC and the imine ($735 \mathrm{mg}, 5 \mathrm{mmol}$) was extracted with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ under a nitrogen atmosphere. The insoluble solid was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was added to the solution slowly to give colorless needles of $7(440 \mathrm{mg}$, 48\%): mp 114-118 ${ }^{\circ} \mathrm{C}$; ${ }^{9}$ ir 2630 and $1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}^{+}<\right.$); NMR δ 7.60-7.10 (5, m, aromatic H), $4.82\left(2, \mathrm{~s},-\mathrm{CH}_{2} \mathrm{Ph}\right), 2.70$ and $2.41[6, \mathrm{~s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\right]$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N} \cdot \mathrm{HCl}:{ }^{10} \mathrm{C}, 65.39 ; \mathrm{H}, 7.62 ; \mathrm{N}, 7.62$. Found: C, 64.13; H, 7.44; N, 7.73 .

The ether filtrate was chromatographed by preparative TLC developed with benzene to give two main bands, which were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution from the upper band was disti.led to give 5 as a colorless liquid ($162 \mathrm{mg}, 11 \%$): bp $125-126^{\circ} \mathrm{C}(0.15 \mathrm{~mm}) ;{ }^{11}$ ir (NaCl) $1665 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}$); NMR $\delta 7.27$ ($5, \mathrm{~s}$, aromatic H), 5.10 and 4.85 $\left(2, \mathrm{~d}, J=1.8 \mathrm{~Hz}\right.$, vinylic H), $4.95\left(2, \mathrm{~s},-\mathrm{CH}_{2} \mathrm{Ph}\right), 1.84\left(3, \mathrm{~s},-\mathrm{CH}_{3}\right) ; m / e$ 203 (M. ${ }^{+}-\mathrm{C}_{7} \mathrm{H}_{7}, 64.2$)

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4}$: C, 52.88; H, 4.06; $\mathrm{N}, 18.98$. Found: C, 52.63; H, 4.09; N, 19.32.

The product from the other band was crystallized from n-hexane to give colorless prisms of 6 ($484 \mathrm{mg} .38 \%$), identical with an authentic sample. ${ }^{5}$

From 10 mmol of the imine, the compounds 5 ($929 \mathrm{mg}, 63 \%$), 6 (383 $\mathrm{mg} .30 \%$), and 7 ($865 \mathrm{mg}, 93 \%$) were obtained by the same procedure as above.

Reaction of CC with 2,3,3-Trimethylindolenine (3). The residue obtained from CC and the indolenine ($795 \mathrm{mg}, 5 \mathrm{mmol}$) was extracted with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ followed by preparative TLC developed with a mixture of n-hexane and benzene ($3: 1 \mathrm{v} / \mathrm{v}$) to give two main bands, which were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallized from n-hexane, respectively. The upper band was assigned as 9 ($52 \mathrm{mg}, 3.4 \%$): mp $122-123^{\circ} \mathrm{C}$; ir $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR $\delta 8.41\left(1, \mathrm{~m}, \mathrm{C}_{7}, \mathrm{H}\right), 7.43-7.10$ (3, m, aromatic H), 6.37 [1, d, $J=1.0 \mathrm{~Hz}$, olefinic $\mathrm{H}(\mathrm{b})$], 5.80 [1, d, J $=1.0 \mathrm{~Hz}$, olefinic $\mathrm{H}(\mathrm{a})], 1.43\left[6,3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right] ; m / e 306\left(\mathrm{M}^{+}, 47.6\right), 291$ ($\mathrm{M}^{+}+-\mathrm{CH}_{3}, 100$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4}$: C. $54.72 ; \mathrm{H}, 3.90 ; \mathrm{N}, 18.24$. Found: C. 54.80; H, 4.11; N, 18.24.

The other band was assigned as $10(674 \mathrm{mg}, 41 \%)$: $\mathrm{mp} 128-129.5^{\circ} \mathrm{C}$; ir $3485 \mathrm{~cm}^{-1}(-\mathrm{OH})$; NMR $\delta 8.13\left(1, \mathrm{~m}, \mathrm{C}_{7^{\prime}}, \mathrm{H}\right), 7.15-7.05(3, \mathrm{~m}$, aromatic H), $5.75(1, \mathrm{~s},-\mathrm{OH}), 1.75\left(3, \mathrm{~s}, 2^{\prime}-\mathrm{CH}_{3}\right), 1.39$ and $1.22[6, \mathrm{~s}$, $3^{\prime} .3^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}$]; m/e $324\left(\mathrm{M}^{+}, 27.5\right), 306\left(\mathrm{M}^{+}+-\mathrm{H}_{2} \mathrm{O}, 17.7\right)$, 291 (M. ${ }^{+}$ - MeOH, 96.5).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 51.69 ; \mathrm{H}, 4.30 ; \mathrm{N}, 17.27$. Found: C, 51.66; H. 4.39: N, 17.29

Also, the ether-insoluble solid $11(488 \mathrm{mg}, 50 \%)$ was identical with an authentic sample.

From 10 mmol of the indolenine, $9(1.534 \mathrm{~g}, 100 \%)$ and $11(977 \mathrm{mg}$, 100%) were obtained, respectively, calculated on the basis of CC.

Reaction of 2,4-Dichloro-6-methoxy-s-triazine with the Indolenine 3. A mixture of the s-triazine ($980 \mathrm{mg}, 5 \mathrm{mmol}$) and $3(1.59$ g. 10 mmol$)$ in dry $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{ml})$ was boiled for 1 h . The solvent was removed at room temperature and the residue was extracted with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ followed by preparative TLC developed with benzene to give two main bands. which were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and crystallized from n-hexane, respectively. The upper band was assigned as 14 ($362 \mathrm{mg} .24 \%$): $\mathrm{mp} 81-82^{\circ} \mathrm{C}$; ir $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR δ 8.60-8.39 (1, m, C ${ }_{-}^{\prime}$ H), 7.50-7.10 (3, m, aromatic H), $6.39[1, \mathrm{~d}, J=$ 1.8 Hz , olefinic $\mathrm{H}(\mathrm{b})], 5.02$ [1, d. $J=1.8 \mathrm{~Hz}$, olefinic $\mathrm{H}(\mathrm{a})$], $4.10(3, \mathrm{~s}$, $\left.-\mathrm{OCH}_{3}\right), 1.43\left[6, \mathrm{~s}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right] ; m / e 302\left(\mathrm{M} \cdot{ }^{+}, 20.1\right), 287\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 85.4).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 59.53 ; \mathrm{H}, 4.95 ; \mathrm{N}, 18.51$. Found: C. 59.49; H, 4.95; N, 18.64 .

The other band contained 15 ($769 \mathrm{mg}, 48 \%$): mp $132-133^{\circ} \mathrm{C}$; ir 3410 $\mathrm{cm}^{-1}(-\mathrm{OH})$; NMR $\delta 8.23-8.03\left(1, \mathrm{~m}, \mathrm{C}_{7} \cdot \mathrm{H}\right), 7.32-7.00(3, \mathrm{~m}$, aromatic H). 6.27 (1.s, -OH i, $4.02\left(3, \mathrm{~s},-\mathrm{OCH}_{3}\right), 1.57\left(3, \mathrm{~s}, 2-\mathrm{CH}_{3}\right), 1.39$ and $1.22\left[6, \mathrm{~s}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right] ; m / e 320\left(\mathrm{M}^{+}, 49.7\right), 305\left(\mathrm{M}^{+}-\cdot \mathrm{CH}_{3}, 52.1\right)$. 304 (M. ${ }^{+}-\mathrm{CH}_{4}$ 38.4).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{C}^{\prime} \mathrm{N}_{4} \mathrm{O}_{2}$: C, $56.16 ; \mathrm{H}, 5.30 ; \mathrm{N}, 17.47$. Found: C, 56.42; H, 5.62; N, 17.65.

The ether-insoluble solid 11 ($939 \mathrm{mg}, 96 \%$) was identical with an authentic sample. A band close to the baseline on TLC was also extracted with $\mathrm{Et}_{2} \mathrm{O}$ and identified as 3 ($24 \mathrm{mg}, 3 \%$, crude).

Acknowledgment. The authors are indebted to Professor Eugene E. van Tamelen, Stanford University, and his group for giving us the opporiunity to use the facilities for this research. We also thank Dr. Roy Neville for his useful discussions of this investigation.

Registry No. $1,538-75-0 ; 2,1197-48-4 ; 3,1640-39-7 ; 4,58502-$ 52-6; Ј, 58502-53-7; 6, 30369-82-5; 7, 58502-54-8; 9, 58502-55-9; 10, 58502-56-0; 11, 17790-92-0; 14, 58502-57-1; 15, 58502-58-2; CC, 108-77-0; 2,4-dichloro-6-methoxy-s-triazine, 3638-04-8.

References and Notes

(1) E. M. Smolin and L. Rapoport, "The Chemistry of Heterocyclic Compounds". Interscience. New York, N.Y., 1959, Chapter VI, p 309.
(2) J. Doskocil, V. Paces, and F. Sorm, Biochim. Biophys. Acta, 145, 771 11967).
(3) V. Paces. J. Doskocil, and F. Sorm, Biochim. Biophys. Acta, 161, 352 (1968).
(4) L. Saure. Chem. Ber.. 83, 335 (1950): S. O. Winthrop and G. A. Grant, U.S. Patent 2767180 (Oct 16, 1956): Chem. Abstr., 51 1, 7444d(1957).
(5) G. I. Braz. V. K. Antonjv, and K. N. Kurdyumova, Zh. Obshch. Khim., 28, 2972 (1958); Chem. Rbstr., 53, 9240i (1959).
(6) Many N -acyl-3,3-di- or 2,3,3-trisubstituted 2-chloro (or other electron attracting group substituted) indolines from corresponding indolenines have been reported: "The Cnemistry of Heterocyclic Compounds", Interscience, New York, N.Y., 1954, p 46, and references cited therein.
(7) The ratio was estimated on the basis of the signals of the olefinic and the hydroxy protons in the NMR spectrum. The ratio was not changed in a NMR sample tube kept for 1 week.
(8) The same manner as ref 7 for the estimation.
(9) The compound was extremely unstable and lost weight during weighing in preparation for the microanalysis owing to atmospheric hydrolysis to benzylamine hydrochloride.
(10; The calculated values for the cyanuric chloride salt. $\mathrm{PhCH}_{2}{ }^{+} \mathrm{N}(\mathrm{R})=\mathrm{C}\left(\mathrm{Cl}^{-} \mathrm{XCH}_{3}\right)_{2}-\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{~N}_{4}$, are C. 47.58; $\mathrm{H}, 3.92 ; \mathrm{N}, 16.89$. (11) The liquid was solidi ${ }^{-}$ied within $30 \mathrm{~min}, \mathrm{mp} 66-68^{\circ} \mathrm{C}$.

Ethoxycarbonylnitrene Insertion Selectivity. Photolysis of Ethyl Azidoformate in Bicyclo[4.n.0]alkanes and in Alkylcyclohexanes

Paolo A. Tardella* and Lucio Pellacani

Istituto di Chimica Organica (I Cattedra) dell'Universita, 00185 Roma, Italy

Received February 9, 1976

We first observed the influence of halogenated solvents in lowering the insertion selectivity of ethoxycarbonylnitrene (EtOCON) generated by the thermal decomposition of ethyl azidoformate $\left(\mathrm{EtOCON}_{3}\right)$ toward the $\mathrm{C}-\mathrm{H}$ bonds of cis- and trans-decalins. ${ }^{1}$ Assuming stabilization of the singlet nitrene by dichloromethane, a possible explanation is that the triplet nitrene inserts into the tertiary $\mathrm{C}-\mathrm{H}$ bonds of these hydrocarbons. ${ }^{2}$ Later, Brinkmann et al. ${ }^{3}$ found by the CIDNP technique during the thermolysis of ethyl azidoformate in trans-decalin an emission signal indicating the intermediacy of a radical pair. However, the multiplicity of the reactive intermediate, i.e., whether a triplet or a singlet diradical nitrene generates $\cdot \mathrm{NHCOOEt}$, remained an open question.

Another case concerning the same effect of the dichloromethane has been reported by Belloli et al. ${ }^{4}$ for the thermolysis of ethyl azicoformate in trans-1,2-dimethylcyclohexane (TDCH). The proportion of tertiary product to other isomers

Table I. Ratio of $\mathrm{CH} / \mathrm{CH}_{2}$, Bonds Reactivity of Hydrocarbons toward Ethoxycarbonylnitrene ${ }^{a}$

Registry no.	Entry	Hydrocarbon	Thermolysis		Photolysis
			$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Neat	
493-01-6	1		$2.3{ }^{\text {b }}$	$2.9{ }^{\text {b }}$	4.5
2207-01-4	2		4.0	4.4	5.0
493-02-7	3	10	$1.3{ }^{\text {b }}$	$2.3{ }^{\text {b }}$	3.7
6876-23-9	4		2.0	$2.5{ }^{c}$	3.2
4551-51-3	5		$2.8{ }^{\text {b }}$	$3.0^{\text {b }}$	3.1
286-08-8	6		$0.4{ }^{\text {b }}$	$0.5{ }^{\text {b }}$	0.5
108-87-2	7		2.6	3.1	4.1

a The average deviation of these values is 0.15 . b Reference 2. ${ }^{c}$ This value is in good agreement with that found by Belloli et al. (ref 4) for the same reaction (2.4).
dropped from 38.7% for neat TDCH to 22.6% for 8.1 mol of TDCH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

We now report on the results obtained for the photolysis of EtOCON_{3} (Hanovia medium-pressure 100-W lamp, room temperature, 6-8 h) in neat cis- and trans-bicyclo[4.4.0]decanes (decalins) (1 and 3), cis-bicyclo[4.3.0]nonane (hydrindane) (5), cis-bicyclo[4.1.0]heptane (norcarane) (6), cisand trans-1,2-dimethylcyclohexanes (CDCH and TDCH) (2 and 4), and methylcyclohexane (7). Repeated experiments and careful integration of peak areas gave the results shown in Table I. The data clearly show that the photolysis of EtOCON_{3} in cis and trans-decalins, in cis- and trans-1,2-dimethylcyclohexanes, and in methylcyclohexane gave an increased insertion selectivity, while no change was observed for the other substrates. The analogous behavior found for both cisdecalin and CDCH and trans-decalin and TDCH was to be expected from the similar steric situation of such pairs of hydrocarbons. An interesting point is the parallel between the solvent effect previously noted in the thermolysis and the increase in insertion selectivity found in the photolysis, namely, the same hydrocarbons which suffered solvent influence on insertion selectivity during the thermolysis gave also higher selectivity ratio in the photolysis.

On the basis of experimental evidence ${ }^{5}$ it is commonly assumed that about 30% of ethoxycarbonylnitrene is generated in the triplet state by the photolysis of ethyl azidoformate. On account of this, the present data might give further support to our assumption that the triplet nitrene is reactive in particular cases where high stable tertiary alkyl radicals are involved in a process of hydrogen abstraction-recombination. ${ }^{6}$ Probably the radical stability is more important than the above-mentioned steric factor. From this point of view the data concerning the thermolysis and the photolysis of EtOCON_{3} in bicyclo[4.1.0]heptane are consistent with the low stability of the tertiary radical derived from 6 , as shown by the behavior of the radical chlorination of this hydrocarbon, ${ }^{7}$ while the high stability of the tertiary decalyl radical is well established. ${ }^{8}$ However, on this basis, we are unable to rationalize the behavior of bicyclo[4.3.0]nonane for which the stability of the tertiary radical is comparable. On the other hand, the high selectivity displayed by triplet methylene ${ }^{9}$ or triplet oxygen ${ }^{10}$ in insertion reactions on $\mathrm{C}-\mathrm{H}$ bonds is well known. Nevertheless, we do not exclude the intervention of the singlet

Chart I. Tertiary and Secondary Insertion Products of EtOCON on Methylcyclohexane

diradical nitrene as recent LCAO-MO-SCF calculations ${ }^{11}$ suggest for the reaction between EtOCON and C-H bonds.

Experimental Section

Analytical VPC was carried out by a Carlo Erba Fractovap GI gas chromatograph using an Emulphor capillary column ($60 \mathrm{~m} \times 0.29$ mm .. Infrared spectra were obtained on a Perkin-Elmer 257 Infracord instrument. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Perkin-Elmer R32 $90-\mathrm{MHz}$ spectrom ϵ ter. Mass spectra were obtained on a AEI-MS12 spectrometer at ar ionization potential of 70 eV . Photolyses were carried out in a quartz vessel using a medium pressure Hanovia PCR lamp. The volume ratio of ethyl azidoformate to hydrocarbon (to dichloromethane) was $1: 10$ (:100). Irradiation time was $6-8 \mathrm{~h}$.

Ethyl azidoformate was prepared from ethyl chloroformate and sodium azide. ${ }^{12}$ cis-Bicyclo[4.1.0]heptane was obtained from WBL. Pure cis-bicyclo[4.3.0]nonane was obtained by spinning band distillation of commercial cis, trans mixture (Koch-Light). All other hydrocarbons are available from Fluka. The $\mathrm{C}-\mathrm{H}$ insertion products (carbamates) for cis- and trans-bicyclo[4.4.0]decanes, cis-bicyclo[4.3.0]nonane, and cis-bicyclo[4.1.0]heptane were previously reported. ${ }^{2}$ For the isc.meric cis- and trans-1,2-dimethylcyclohexanes carbamates we found the same order of elution as observed by Belloli et al. ${ }^{4}$ Identification of the eight isomeric methylcyclohexane carbamates was made by comparison of VPC retention times and spectra with those of independently synthesized compounds. The order of elution was a first feak for the tertiary $\mathrm{C}-\mathrm{H}$ insertion product, followed by six partial y overlapping peaks for the secondary insertion products, and finally a peak for the primary insertion product.

Ethyl \boldsymbol{N}-(2-Methylcyclohexyl)carbamates (9). A solution of 500 mg (3.5 mmol) of o-toluidine hydrochloride in 5 ml of absolute ethanol was hydrogenated at $55^{\circ} \mathrm{C}(1 \mathrm{~atm})$ in the presence of 50 mg of PtO_{2} Adams. The filtrate was evaporated and the residue dissolved in $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted with ether. To the organic layer, washed with saturated NaCl solution, 5 ml of water and, at $5^{\circ} \mathrm{C}$ with stirring, 540 mg (5 mmol) of ethyl chloroformate were added. The stirring was continued for 30 min and the ether layer was separated, washed with saturated NaCl solution, dried over anhydrous sodium sulfate, and evapcrated to dryness. Quantitative yield of the two isomers was obtained (74% of the shorter retention time product): ir (CCl_{4}) 3460 (NH) and $1730 \mathrm{~cm}^{-}(\mathrm{CO})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.25\left(\mathrm{t}, \mathrm{CH}_{3}\right.$ of Et). 0.9 (d, CH_{3}). 3.4 (m, NCH), 4.05 (q, CH_{2} of Et). 4.5 (broad, NH); m/e 185 (parent), 128 (base peak).

Ethyl \boldsymbol{N}-(3-Methylcyclohexyl)carbamates (10). Two isomers (36% of the shorter retention time product) were obtained with the procedure described above starting from m-toluidine hydrochloride: ir $\left(\mathrm{CCl}_{4}\right) 3450(\mathrm{NH})$ and $1730 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.2\left(\mathrm{t}, \mathrm{CH}_{3}\right.$ of Et$), 0.9\left(\mathrm{~d}, \mathrm{CH}_{3}\right), 4.0\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of Et$), 4.6$ (broad, NH); m/e 185 (parent), 142 (base Feak).

Ethyl \boldsymbol{N}-(4-Methylcyclohexyl)carbamates (11). Two isomers (80% of the shorter retention time product) were obtained with the procedure described above starting from p-toluidine hydrochloride: ir $\left(\mathrm{CCl}_{4}\right) 3450(\mathrm{NH})$ and $1730 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.25\left(\mathrm{t}, \mathrm{CH}_{3}\right.$ of Et), 0.95 (d, CH_{3}), 4.05 (q, CH_{2} of Et), 4.8 (broad. NH). 3.8 (m. NCH); m/e 185 (parent), 128 (base peak).

Ethyl \boldsymbol{N}-(1-Methylcyclohexyl)carbamate (8). A mixture of 2.5 ml of glacial acetic acid, $2.28 \mathrm{~g}(0.02 \mathrm{~mol})$ of 2-methylcyclohexanol (BDH), and 1.15 g of NaCN was added under stirring to a solution of 2.5 ml of $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in 2.5 ml of glacial acetic acid over a period of 30 min . The temperature was maintained at $50-60^{\circ} \mathrm{C}$. The reaction mixture was then allowed to stand at room temperature overnight;
afterwards it was cooled and 8.5 g of ice and 11 g of NaOH in 21 ml of water were added. The mixture was then refluxed for 4 h . The cooled solution was extracted with ether. The ether layer was then extracted with 2 N HCl . The amine was extracted with ether from the water layer made alkaline. Treatment with ethyl chlorocarbonate afforded 1.95 g of carbamate: ir $\left(\mathrm{CCl}_{4}\right) 3450(\mathrm{NH})$ and $1730 \mathrm{~cm}^{-1}(\mathrm{CO})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.25\left(\mathrm{t}, \mathrm{CH}_{3}\right.$ of Et$), 1.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 3.95\left(\mathrm{q}, \mathrm{CH}_{2}\right.$ of Et$), 4.25$ (broad, NH); m/e 185 (parent), 142 (base peak).

Acknowledgment. We are grateful to the Italian Research Council (CNR), Rome. for partially supporting this work.

Registry No.-8, 1837-74-7; cis-9, 58486-01-4; trans-9, 53486-02-5; cis-10, 58486-03-6; trans-10, 58486-04-7; cis-11, 58486-05-8; trans-11, 58486-06-9; o-toluidine $\mathrm{HCl}, 636-21-5$; ethyl chloroformate, 541-41-3; m-toluidine $\mathrm{HCl}, 638-03-9$; p-toluidine $\mathrm{HCl}, 540-23-8$; ethyl azidoformate, 817-87-8

References and Notes

(1) P. A. Tardella, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Rend., 48, 443 (1970): Chem. Abstr., 73, 120174p (1970).
(2) P. A. Tardella, L. Pellacani, G. Di Stazio, and M. Virgillito, Gazz. Chim. Ital., 104, 479 (1974).
(3) M. R. Brinkmann, D. Bethell, and J. Hayes, Tetrahedron Lett., 989 (1973).
(4) R. C. Belloll, M. A. Whitehead, R. H. Wollenberg, and V. A. La Bahn, J. Org. Chem., 39, 2128 (1974); R. C. Belloli and V. A. La Bahn, Ibid., 40, 1972 (1975).
(5) W. Lwowski, Ed., "Nitrenes", Interscience, New York, N.Y., 1970, Chapter 6.
(6) H. Nozaki, S. Fujita, H. Taakaya, and R. Noyorl, Tetrahecton, 23, 45 (1967)
(7) R. S. Boikess, M. Mackay, and D. Blithe. Tetrahedron Lett., 401 (1971).
(8) For example. H. Hart and G. J. Karabatsos, Ed., Adv. Allcycllc Chem., 1, 347 (1966)
(9) H. T. Roth, J. Am. Chem. Soc., 94, 1761 (1972).
(10) T. H. Varkony, S. Pass, and Y. Mazur, J. Chem. Soc., Chom. Commen., 709 (1975).
(11) P. F. Alewood, P. M. Kazmaier, and A. Rauk, J. Am. Chem. Soc., 95, 5466 (1973).
(12) W. Lwowski and T. W. Mattingly. Jr., J. Am. Chem. Soc., 87, 1947 (1965).

Some Reactions of Chlorotrialkyl-1,3-cyclobutanediones

William T. Brady* and Theresa C. Cheng
Department of Chemistry, North Texas State University, Denton, Texas 76203

Received November 20, 1975
The base-catalyzed ring contraction of α-halocyclobutanones to cyclopropyl derivatives is a very useful and well-documented reaction. ${ }^{1,2}$ Tetraalkyl-1,3-cyclobutanediones undergo ring opening reactions in the presence of base to yield β-keto esters. ${ }^{3} 1,2$-Cyclobutanedione has been prepared and shown to undergo ring contraction to hydroxycyclopropanecarboxylic acid. ${ }^{4}$ In view of these considerations, the halotri-alkyl-1,3-cyclobutanediones provide an interesting system for study. It would appear that such compounds could undergo

a ring contraction reaction and/or a ring opening reaction. The cyclopropanone would be expected to undergo ring opening in the presence of base to yield a succinic acid derivative. Consequently, the purpose of this paper is to investigate the
react:on of chlorotrialkyl-1,3-cyclobutanediones with sodium methoxide in methanol and also to examine some chemistry of these diones as related to tetraalkylcyclobutanediones.

The chlorotrialkyl-1,3-cyclobutanediones are readily available from the mixed dimerizations of dimethylketene and alkylhaloketenes. ${ }^{5}$ The treatment of several chlorotrialkyl1,3 -cyclobutanediones with sodium methoxide in methanol

yielded the ring open ϵ d products, β-keto esters. Although two β-keto esters are possible, only the expected γ-chloro- β-keto ester was found. There was no evidence of the cyclopropanone derivative or the diester of succinic acid.

Apparently, the strain associated with the cyclopropanone ring system prohibits :his ring contraction pathway from being followed. The formation of only the γ-chloro- β-keto ester is consistent with the shloro substituent stabilizing the carbanionic character in the transition state to a greater degree than the methyl substituents. The ring opening reaction of tetramethyl-1,3-cyclobutanedione requires a much longer reaction time than the chlorotrialkyl-1,3-cyclobutanedione. This further supports the stabilizing influence of the chloro sutstituent. The rate of the reaction decreases as the size of R increases from methyl to isopropyl as expected. When R is teri-butyl, ring opening does not occur; the dione is completely recovered.

The chlorotrialkyl-1,3-cyclobutanediones (I) react with tri- n-butyltin hydride to yield the corresponding trialkyl1,3 -cyclobutanediones (III), which exist as the dione in the

solid state, but the enol form is the predominant form in solution as evidenced by infrared. Conversion of the chlorotri-alkyl-1,3-cyclobutanediones to the trialkyl-1,3-cyclobutanediones could also be accomplished by treatment with sodium borohydride in methanol.

The trialkyl-1,3-cyclobutanediones (III) did not undergo ring opening reactions. Apparently, the well-delocalized enolate, IV, is immediately produced in the basic media, and the reaction is terminated at this stage.

The peracid oxidation of tetramethyl-1,3-cyclobutanedione occurs smoothy and in good yield to the expected lactcne. ${ }^{6.7}$ This Baeyer-Villiger oxidation of Ia and Ib gives the ring expansion product, V , in good yield. No other ring expansion product could be detected. The structure of V was assigned on the basis of the NMR data, i.e., the chemical shift of the geminal methyl groups in V is comparatively downfield

Va. b
from the chemical shift of the geminal methyl groups in Ia-d.
Baeyer-Villiger oxidation of Ic and Id did not occur; the diones were recovered unchanged. This is not too surprising since it is known that the $\mathrm{C}-\mathrm{Cl}$ dipole effect directs attack to the R side of the molecule. ${ }^{8}$ Apparently, when R is isopropyl and tert-butyl, the reaction is sterically retarded.

The Baeyer-Villiger oxidation of the trialkyl-1.3-cyclobutanediones yielded several products as evidenced by VPC analysis. The only isolated and identified product was formed from IIId. The assignment of the structure to the ring expanded VI was based on the downfield proton signal of the methinyl hydrogen in the NMR.

II
Diazomethane reacts with tetramethyl-1.3-cyclobutanedione to give the ring expanded product in quantitative yield. ${ }^{9}$ However, the reaction of diazomethane with Ia-d yields a mixture of products and nonvolatile polymeric material. The only identifiable isolated product was from Ia, and the following structure was assigned based on the NMR and mass spectrometry data.

VII
The reaction of diazomethane with trialkyl-1,3-cyclobutanediones resulted in methylation of the hydroxy group of the enolic form.

Mayr has recently reported the ring opening of cyclobutenones to vinylketenes in refluxing hexane. ${ }^{10}$ Extended refluxing of the methoxycyclobutenones. VIII, resulted in no change. Tetraalkyl-1,3-cyclobutanediones isomerize to the corresponding 2 -oxetanones in the presence of aluminum chloride. ${ }^{11}$ This isomerization was not observed for either the chlorotrialkyl-1,3-cyclobutanediones or the trialkyl-1,3-cyclobutanediones.

The sodium borohydride reduction of the methylated trialkyl-1,3-cyclobutanediones, VIII, led to the corresponding saturated alcohols in quantitative yields. Of the four isomeric alcohols that are possible, only two were detected. and these were IX and X as evidenced by NMR analysis. When R is methyl the ratio of X / IX is 2.2 , and when R is tert-butyl the ratio of X / IX is 0.3 . When R is tert-butyl, the alcohol IXd revealed $\mathrm{H}_{\mathrm{a}}\left(\mathrm{d}, 1 \mathrm{H}, 3.76 \mathrm{ppm}, J_{\mathrm{a}-\mathrm{b}}\right.$ trans $\left.=7 \mathrm{~Hz}\right)$ and $\mathrm{H}_{\mathrm{c}}(\mathrm{d}$,

Xad
$1 \mathrm{H}, 3.47 \mathrm{ppm}, J_{\mathrm{b}-\mathrm{c}} \mathrm{cis}=10 \mathrm{Mz}$). Conversely, the isomer Xd (the minor isomer) revealed $\mathrm{H}_{\mathrm{a}}\left(\mathrm{d}, 1 \mathrm{H}, 3.11 \mathrm{ppm}, J_{\mathrm{a}-\mathrm{b}}\right.$ trans $=7 \mathrm{~Hz}$) and $\mathrm{H}_{\mathrm{c}} \mathrm{d}, 1 \mathrm{H}, 2.76 \mathrm{ppm}, J_{\mathrm{b}-\mathrm{c}}$ trans $=7 \mathrm{~Hz}$). In IX, H_{a} is cis to the methoxy, and H_{c} is cis to the hydroxy group; consequently, the chemical shifts of these hydrogens are comparatively downfield relative to X in which H_{a} is trans to the methoxy and H_{c} is trans to the hydroxy group.

Experimental Section

${ }^{1}$ H NMR spectra were recorded on a Jeolco PS-100 NMR spectrometer employing tetramethylsilane as an internal standard. \'PC was performed on an F \& M Scientific Model 700 gas chromatograph with $10 \mathrm{ft} \times 0.25 \mathrm{in}$. columns packed with 10% SE- 30 and Carbowax 20M on acid-washed Chromosorb W (80/100). The chlorotrialkyl1,3 -yclobutanediones were prepared as previously described. ${ }^{5}$

General Procedure for Treatment of Chlorotrialkyl-1,3cyclobutanediones with Sodium Methoxide in Methanol. To 50 ml of methanol containing 0.5 g of sodium methoxide was added 0.015 mol of I , and the solution was heated to reflux. The reaction was monitored by VPC as a 2- to 7 -day refluxing time was required for consumption of I. Upon cooling, the reaction solution was concentrated on a rotatory evaporator, neutralized with dilute acid in an ice bath. and extracted with ether. The ether extracts were dried over anhydrous magnes um sulfate. the solvent removed. and the residue vacuum distilled.

Methyl 4-Chloro-2,2-dimethyl-3-ketopentanoate (IIa). The reac-ion was complete in 2 days as evidenced by V'PC. and the ester was sbtained in 82° yield: bp $42-44^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$: ir 1718 and 1748 cm^{-}; NMR $\delta 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, and 4.65 ($\mathrm{q}, 1 \mathrm{H}$); mass spectrum parent peak at $\mathrm{m} / \mathrm{e} 192$.

Methyl 4-Chloro-2,2-dimethyl-3-ketohexanoate (IIb). This keto ester was obtained after 5 days of refluxing in 75% yield: bp $50-52$ ${ }^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$; ir 1718 and $1748 \mathrm{~cm}^{-1}$; NMR $\delta 0.90(\mathrm{t}, 3 \mathrm{H}), 1.26$ (s, 3 $\mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, and $4.12(\mathrm{t}, 1 \mathrm{H})$; mass spec-rum parent $p \in a k$ at $m / e 206$.

Methyl 4-Chloro-2,2,5-trimethyl-3-ketohexanoate (IIc). Some dione remained after 7 days, but the keto ester was obtained in a 60% yield: bp $59-60^{\circ} \mathrm{C} \cdot 0.05 \mathrm{~mm}$); ir 1718 and $1748 \mathrm{~cm}^{-1}$: NMR $\delta 1.0(2$ d, 6 H). $1.44(\mathrm{~s}, 3 \mathrm{H}) .1 .52(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m} .1 \mathrm{H}) .3 .83$ (s. 3 H). and 4.40 (d. 1 H).

Aral. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17}-\mathrm{ClO}_{3}: \mathrm{C}, 54.42 ; \mathrm{H}, ~ 7.71$. Found: C. 54.65 : H . 7.80 .

General Procedure for Conversion of Chlorotrialkyl-1,3cyclobutanediones to Trialkyl-1,3-cyclobutanediones. To 0.1 mol of I in 150 ml of cold hexane containing 0.1 g of azobisisobutyronitrile was added dropwise 0.12 mol of freshly distilled tri- n-butyltin hydride. This mixture was stirred in the ice bath for an additional 2 h . The crude product was separated from the reaction solution by filtration, washed with ether, and recrystallized from methanol.

Trimethyl-1,3-cyclobutanedione (IIIa). An 80\% yield of this dione was obtained: $\mathrm{mp} 165-166^{\circ} \mathrm{C}$; ir ($\mathrm{Me}_{2} \mathrm{SO}$) 1620 , 1753. and 3444 cm^{-1}; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 1.12(\mathrm{~s}, 6 \mathrm{H}) .1 .40(\mathrm{~s}, 3 \mathrm{H})$, and $2.52(\mathrm{~s}, 1 \mathrm{H})$; mass spectrum parent peak at $m / e 126$.

Anal. Calcd for $\mathrm{C}_{\mathrm{i}} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 66.66: \mathrm{H} .7 .94$. Found: C. 66.82 : $\mathrm{H}, 8.46$
4-Ethyl-2,2-dimethyl-1,3-cyclobutanedione (IIIb) was obtained in 85% yield: $\mathrm{mp} \mathrm{143-145}{ }^{\circ} \mathrm{C}$: ir ($\mathrm{Me}_{2} \mathrm{SO}$) 1612, 1739, and $344 \mathrm{~cm}^{-1}$; ir (K 3 r) $1739 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) ó 1.02 (t. 3 H). 1.16 ($\mathrm{s}, 6 \mathrm{H}$). 1.92 (q, 2 H) and 2.58 (s. 1 H): mass spectrum parent peak at $\mathrm{m} / \mathrm{e} 140$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: $\mathrm{C}, 68.54 ; \mathrm{H}, 8.63$. Found: $\mathrm{C}, 67.97 ; \mathrm{H}, 8.76$.
2,2-Dimethyl-4-isopropyl-1,3-cyclobutanedione (IIIc) was obtained in 80% yield: mp 138-140 ${ }^{\circ} \mathrm{C}$; ir ($\mathrm{Me}_{2} \mathrm{SO}$) 1612,1742 , and $3444 \mathrm{~cm}^{-1}$; ir (KBr) $1759 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 0.98$ (d, 6 H), 1.06 (s, 6 H), 2.24 (septet, 1 H), and $2.44(\mathrm{~s}, 1 \mathrm{H})$; mass spectrum parent peak at $m / e 154$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: $\mathrm{C}, 70.13 ; \mathrm{H}, 9.09$. Found: $\mathrm{C}, 70.03 ; \mathrm{H}, 9.54$.
4-tert-Butyl-2,2-dimethyl-1,3-cyclobutanedione (IIId) was obtained in 90% yield: $\mathrm{mp} 217^{\circ} \mathrm{C}$; ir ($\mathrm{Me}_{2} \mathrm{SO}$) 1633,1739 , and 3444 cm^{-1}; ir (KBr) $1724 \mathrm{~cm}^{-1}$; NMR ($\mathrm{Me}_{2} \mathrm{SO}$) $\delta 1.12(\mathrm{~s}, 15 \mathrm{H}), 2.54(\mathrm{~s}, 1$ H); mass spectrum parent peak at $m / e 8$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.43; $\mathrm{H}, 9.52$. Found: C, $71.66 ; \mathrm{H}, 9.70$.
General Procedure for Baeyer-Villiger Oxidation. The peroxyacetic acid was prepared by a standard procedure. ${ }^{12} \mathrm{To} 50 \mathrm{ml}$ of CHCl_{3} containing 0.015 mol of I or III was added dropwise at room temperature 0.05 mol of peracetic acid. The solution was stirred and the reaction monitored by VPC. After the disappearance of all the dione, the organic layer was separated and washed with dilute sodium carbonate solution and then dried over magnesium sulfate. The CHCl_{3} was removed under reduced pressure and the β-keto- γ-lactone distilled.
α-Chloro- α, γ-dimethyl- β-keto- γ-valerolactone (Va). This lactone was obtained in 70% yield at $53-56{ }^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$: ir 1770 and $1809 \mathrm{~cm}^{-1}$; NMR $\delta 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 6 \mathrm{H})$; mass spectrum parent peak at $m / e 176$.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClO}_{3}$: $\mathrm{C}, 47.60 ; \mathrm{H}, 5.14$. Found: $\mathrm{C}, 47.33 ; \mathrm{H}$, 5.01 .
α-Chloro- α-ethyl- $\boldsymbol{\gamma}$-methyl- $\boldsymbol{\gamma}$-valerolactone (Vb). This lactone was distilled at $61-63^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ in 55% yield: ir 1770 and 1809 cm^{-1}; NMR $\delta 0.99(\mathrm{t}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, 2 \mathrm{H})$; mass spectrum parent peak $m / e 190$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClO}_{3}$: $\mathrm{C}, 50.40 ; \mathrm{H}, 5.82$. Found: $\mathrm{C}, 50.79 ; \mathrm{H}$, 5.62.
$\alpha, \alpha, \delta, \delta$-Tetramethyl- β-keto- γ-caprolactone (VI) was obtained in 15% yield at $66-67^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$: ir 1739 and $1802 \mathrm{~cm}^{-1}$; NMR δ $1.06(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, and $4.24(\mathrm{~s}, 1 \mathrm{H})$; mass spectrum parent peak at $m / e 184$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 65.22; H, 8.69. Found: C, 65.32; H, 8.99.
General Procedure for Diazomethane Reaction with Cyclobutanediones. The diazomethane was prepared by a standard procedure. ${ }^{13}$ To 0.01 mol of I or III in 50 ml of ether was added 0.03 mol of diazomethane in ether at petroleum ether-dry ice temperature. Upon warming to room temperature, the reaction solution was stirred for 3 days. The solvent was removed under reduced pressure and the product vacuum distilled.

4-Chloromethyl-2,2,4-trimethyl-1,3-cyclobutanedione (VII). This dione was distilled at $44-46^{\circ} \mathrm{C}(0.025 \mathrm{~mm})$ in 20% yield: ir 1770 cm^{-1}; NMR $\delta 1.36(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, and $4.24(\mathrm{~s}, 2 \mathrm{H})$; mass spectrum parent peak at $m / e 174$.

3-Methoxy-2,2,4-trimethylcyclobutenone (VIIIa). An 87\% yield was obtained at $38-39^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$: ir 1616 and $1750 \mathrm{~cm}^{-1}$; NMR δ $1.11(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, and $4.11(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum parent peak at $m / e 140$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 68.54; $\mathrm{H}, 8.63$. Found: $\mathrm{C}, 67.94 ; \mathrm{H}, 8.74$.
4-Ethyl-3-methoxy-2,2-dimethylcyclobutenone (VIIIb). An 85% yield was obtained at $45-47^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$: ir 1616 and $1750 \mathrm{~cm}^{-1}$; NMR $\delta 1.14(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}), 2.20(\mathrm{q}, 2 \mathrm{H})$, and $3.94(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum parent peak at $m / e 154$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 70.02; H, 9.09. Found: C, 69.82; H, 9.11.
3-Methoxy-2,2-dimethyl-4-isopropylcyclobutenone (VIIIc). This compound was obtained at $52-54^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ in 80% yield: ir 1616 and $1750 \mathrm{~cm}^{-1}$; NMR $\delta 0.92(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H})$, and $3.96(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum parent peak m/e 168.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 71.39; H, 9.59. Found: C, 71.19; H, 9.99.
4-tert-Butyl-3-methoxy-2,2-dimethylcyclobutenone (VIIId). A 90% yield was obtained at $45-47^{\circ} \mathrm{C}(0.025 \mathrm{~mm})$: ir 1626 and 1752 cm^{-1}; NMR $\delta 1.1(\mathrm{~s}, 9 \mathrm{H}), 1.3(\mathrm{~s}, 6 \mathrm{H})$, and $4.0(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum parent peak $m / e 182$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 72.49; $\mathrm{H}, 9.89$. Found: $\mathrm{C}, 71.81 ; \mathrm{H}, 9.97$.
General Procedure for Sodium Borohydride Reduction. To a stirred solution of 0.015 mol of VIII in 100 ml of methanol was slowly added sodium borohydride until the reduction was complete as evidenced by VPC. The solvent was removed and the saturated alcohol vacuum distilled.

3-Methoxy-2,2,4-trimethylcyclobutanol (Xa). This alcohol was distilled at $35-37^{\circ} \mathrm{C}(0.025 \mathrm{~mm})$ in nearly quantitative yield: ir 3334 cm^{-1} : NMR $\delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{q}, 1 \mathrm{H}), 2.41$ $(\mathrm{s} .1 \mathrm{H}), 2.54\left(\mathrm{~d}, 1 \mathrm{H} . J_{\mathrm{trans}}=7 \mathrm{~Hz}\right)$, and $2.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{\text {trans }}=7 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 66.63; H, 11.18. Found: C, $66.84 ; \mathrm{H}$, 11.29 .

4-tert-Butyl-3-methoxy-2,2-dimethylcyclobutanol (IXd). This alcohol was obtained at $62-63^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ in quantitative yield: ir $3334 \mathrm{~cm}^{-1}$; NMR $\delta 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 1$ $\mathrm{H}), 1.90(\mathrm{dd}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.47\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{cis}}=10 \mathrm{~Hz}\right)$, and 3.76 $\left(\mathrm{d}, 1 \mathrm{H}, J_{\text {trans }}=7 \mathrm{~Hz}\right.$).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 70.86 ; \mathrm{H}, 11.83$. Found: $\mathrm{C}, 71.22 ; \mathrm{H}$, 11.97.

Registry No.-Ia, 56513-93-0; Ib, 56513-92-9; Ic, 56513-95-2; Id, 5651§-91-8; IIa, 58548-55-3; IIb, 58548-56-4; IIc, 56513-99-6; IIIa, 58548-57-5; IIIb, 58548-58-6; IIIc, 58548-59-7; IIId, 58548-60-0; Va, 58548-61-1; Vb, 58548-62-2; VI, 58548-63-3; VII, 58548-64-4; VIIIa, 13085-31-3; VIIIb, 58548-65-5; VIIIc, 58548-66-6; VIIId, 58548-67-7; IXd, 58548-68-8; Xa, 58548-69-9.

References and Notes

(1) J. M. Conia and M. J. Rojson, Angew. Chem., Int. Ed. Engl., 14, 473 (1975).
(2) .. M. Conia and J. R. Salaun, Acc. Chem. Res., 5, 33 (1972).
(3) E. U. Elam and R. G. Nations, U.S. Patent 3412461 (to Eastman Kodak Co.); Chem. Abstr., 64, 602a (1966).
(4) .. P. Barneir, J. M. Den S. J. R. Salaun, and J. M. Conia, Tetrahedron, 30, 1405 (1974).
(5) (a) W. T. Brady and P. L. Ting, Tetrahedron Lett., 2619 (1974); (b) J. Org. Chem., 40, 3417 (1975).
(6) P. Y. Johnson and J. Yee, J. Org. Chem., 37, 1058 (1972).
(7) D. H. Gilson and J. T. Joseph, Tetrahedron Lett., 3483 (1972).
(8) P. R. Brook and A. J. Duke, Chem. Commun., 652 (1970).
(9) A. P. Krapcho, D. R. Rao, M. P. Silvon, and B. Abegaz, J. Org. Chem., 36, 3885 (1971).
(10) H. Mayr, Angew. Chem., Int. Ed. Engl., 14, 500 (1975).
(11) D. G. Farnum, J. R. Johnson, R. E. Hess, T. B. Marshall, and B. Webster, J. Am. Chem. Soc., 87, 5191 (1965).
(12) Org. React., 7, 378 (1953).
(13) 'Organic Syntheses'", Collect. Vol. II, Wiley, New York, N.Y., 1943, p 165.

Photochemistry of Diphenylcyclopropanecarboxylic Acid Derivatives

Thomas W. Flechtner, * Leslie J. Szabo, and Louis J. Koenig
Department of Chemistry, The Cleveland State University, Cleveland, Ohio 44115

Received November 20, 1975
Although the photoextrusion of carbenes by arylcyclopropanes is a general reaction, the importance of this process relative to others available to excited cyclopropanes is highly structure dependent. ${ }^{1}$ We wish to report here our observations concerning this process in two diphenylcyclopropanecarboxylic acid derivatives.

Results and Discussion

Irradiation of the anhydride 1^{2} in tert-butyl alcohol with Vycor-filtered light for 4 h afforded (1,1-dimethyl)ethyl 4,4-diphenylbut-3-er.oate (2) in 57% yield at 10% conversion. No (1,1-dimethyl)ethylbenzhydryl ether ${ }^{3}$ could be detected. In contrast to this, a similar irradiation of the lactone 3 in isopropyl alcohol produced benzhydryl isopropyl ether (4) in 80% yield and the hydroxy lactone 5 in 75% yield at 11% conversion. In each case sensitization with acetone using Corexfiltered light was unsuccessful. The structures of the photoproducts were confirmed by comparison with independently syr.thesized, previously reported materials. ${ }^{3-5}$

Both of these reactions can be rationalized in terms of cyclopropane bond homolysis to produce trimethylene diradicals. ${ }^{1,6}$ In the case of the anhydride, cycloelimination of carbon dioxide would then lead to the formation of an unsaturated ketene which should capture solvent to give the observed product. This is depicted in Scheme I.
The diradical derivable from 3 cannot eliminate CO_{2} in the same fashion and thus may fragment to diphenylcarbene and the unsaturated lactone. This olefin is known ${ }^{5}$ to add isopropyl alcohol photochemically in the manner depicted in Scheme I.

It should be noted that the evidence presented here does not require the intermediacy of a diradical. Hixson ${ }^{7}$ has shown that a cyclopropane closely related to those described here fragments stereospecifically to produce the diphenylcarbene and an olefin in a process that, as in these reactions, originates only from the singlet excited state.

Experimental Section

General. Melting points were determined on a Fisher-Johns apparatus and are uncorrected. Proton magnetic resonance spectra were recorded on a Varian Associates T-60 instrument with tetramethylsilane as the internal standard. Irradiations were conducted using a 450-W Hanovia lamp in a quartz immersion well. Irradiation solutions were deoxygenated by bubbling nitrogen through them for 1 h before and then during irradiation. Isopropyl alcohol was distilled from magnesium just before use. tert-Butyl alcohol was distilled from potassium.

Irradiation of 6,6-Diphenyl-3-oxabicyclo[3.1.0]hexane-2,4dione (1). A solution of $284 \mathrm{mg}(1.07 \mathrm{mmol})$ of 1^{2} in 330 ml of tertbutyl alcohol was irradiated for 4 h using a Vycor filter. After solvent removal the NMR spectrum of the photomixture indicated that the major component of the mixture was starting material, but that there was an additional absorption signal at $\delta 3.07$. This material was dissolved in 100 ml of ether, stirred with 100 ml of water, and the organic layer washed with 10% sodium carbonate solution. The ether solution was dried and the solvent removed. The residue was chromatographed on a $2.5 \times 190 \mathrm{~cm}$ column slurry packed in hexane; $50-\mathrm{ml}$ fractions were collected. Elution was accomplished with 250 ml of hexane and then 11 . each of 5 and 10\% ether-hexane. Fractions 27-34 contained 25 mg of a yellow oil. Attempted crystallization of this oil from chlo-roform-hexane afforded 18 mg (57% based on recovered starting material) of a clear oil. This material was identified as (1,1 -dimethyl)ethyl 4,4-diphenylbut-3-enoate by comparison with the authentic ester synthesized from the known acid. ${ }^{4}$ The photoproduct ester was dissolved in cyclohexane containing several drops of sulfuric acid and a white precipitate formed in several minutes. This solid was recrystallized from cyclohexane to afford 13 mg of 4,4 -diphenylbut-3-enoic acid, $\mathrm{mp} 116-117^{\circ} \mathrm{C}, \mathrm{mmp}$ with authentic ${ }^{4}$ acid $116-118^{\circ} \mathrm{C}$ (lit. ${ }^{4} \mathrm{mp}$ $\left.114-115^{\circ} \mathrm{C}\right)$. The NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ is $\delta 9.8(\mathrm{br}, 1 \mathrm{H}, \mathrm{COOH})$, $7.1-6.9(\mathrm{~m}, 10 \mathrm{H}), 5.97$ (triplet, $1 \mathrm{H}, J=6 \mathrm{~Hz}$), 3.07 (doublet, $2 \mathrm{H}, J$ $=6 \mathrm{~Hz}$). The spectrum of the tert-butyl ester was identical with the
exception of the absence of the acid proton resonance and the presence of the tert-butyl group absorption at $\delta 1.43$ (singlet, 9 H). Acidification of the sodium carbonate wash afforded 271 mg of a mixture of the cisand trans-3,3-diphenyl-1,2-cyclopropanedicarboxylic acids. ${ }^{2}$ A similar irrediation of 1 using 10.0 ml of acetone $(0.136 \mathrm{~mol})$ as a sensitizer and a Corex light filter gave no detectable reaction in a 12 -h irradiation.

6,6-Diphenyl-3-oxabicyclo[3.1.0]hexan-2-one (3). A solution of $1.80 \mathrm{~g}(9.28 \mathrm{mmol})$ of diphenyldiazomethane ${ }^{8}$ in 100 ml of dry benzene was add ϵ dropwise over 0.5 h to a solution of 2.00 g (23.8 mmol) of $2(5 \mathrm{H})$-Uranone ${ }^{9}$ in 100 ml of dry benzene at room temperature. This meterial was heated at reflux for 4 h and the solvent removed in vacuo. The oily product mixture was chromatographed on a $2.5 \times 87.5 \mathrm{~cm}$ column of Florisil slurry packed in hexane; $50-\mathrm{ml}$ fractions were collected. Elution was with 500 ml of hexane and $500-\mathrm{ml}$ portions of 2, 4, 8, and 15% ether-hexane. Fractions 23-25 contained 610 mg of an oil. Crystallization from ether-hexane afforded 458 mg (20%) of 3, mp $136-137^{\circ} \mathrm{C}$. Spectral data were uv ($\mathrm{CH}_{3} \mathrm{OH}$) 274 nm ($\epsilon 44$), 268 (59), 261 (60), 254 (49); NMR (CDCl_{3}) $\delta 2.80$ (multiplet, 2 H), 4.25 (m, 2 H), 7.1 (m, 10 H); MS (50 ev) m/e (rel intensity) 250 (31) $\left(\mathrm{M}^{+}\right), 205$ (100), 165 (68); ir (KBr) 1775 (sh), 1750 (sh), $1195,700 \mathrm{~cm}^{-1}$.
A.nal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 81.58; H, 5.64. Found: C, 81.88; H, 5.69.

Irradiation of 6,6-Diphenyl-3-oxabicyclo[3.1.0]hexan-2-one (3). A solution of $301 \mathrm{mg}(1.20 \mathrm{mmol})$ of 3 in 330 ml of isopropyl al cohol was irradiated for 4 h using a Vycor filter. After solvent removal most of the starting material was crystallized from ether-hexane, 268 $\mathrm{mg}, \mathrm{mp} 135-137^{\circ} \mathrm{C}$. The residue was then separated by gas chromatography ($156^{\circ} \mathrm{C}, 20 \%$ SE- 30 on firebrick in a $5 \mathrm{ft} \times 0.25 \mathrm{in}$. column, flow rate $60 \mathrm{ml} \mathrm{He} / \mathrm{min}$) to give 24 mg of isopropyl benzhydryl ether (4) (retention time 2.7 min) and 15 mg of $4-\left(1^{\prime}\right.$-hydroxy 1^{\prime}-meth-ylethyl)-4,5-dihydro-2(3H)-furanone (5) (retention time 21 min). The identities of these materials were confirmed by the superimposability of their ir and NMR spectra upon those of independently synthesized materials. The ether 4 was made by a standard method ${ }^{10}$ and the hydroxy lactone prepared by the irradiation of $2(5 \mathrm{H})$-furanone ${ }^{9}$ as reported by Ohga and Matsuo. ${ }^{5}$ A similar irradiation of 3 in which 10 ml of the solvent was replaced by acetone as a sensitizer afforded no reaction after 12 h of irradiation.

Acknowledgment. Acknowledgment is made to the donors of the Petroletm Research Fund, administered by the American Chemical Society, for partial support of this research. The part:al support by the Research Corporation and by the Research Initiation Award program of the Cleveland State University are also acknowledged with pleasure. We thank Professors Binkley and Andrist for their help and encouragement.

Registry No.-1, 26844-85-9; 2, 58540-89-9; 2 free acid, 7498-88-6; 3, 58540-90-2; difhenyldiazomethane, 883-40-9; $2(5 \mathrm{H})$-furanone, 497-23-1.

References and Notes

(1) This reaction has been reviewed: G. W. Griffin, Angew. Chem., Int. Ed. Engl., 10, 537-546 (1:71).
(2) J. van Alphen, Fiecl. Trav. Chim. Pays-Bas, 62, 210-214 (1943).
(3) H. E. Zimmerman and A. C. Pratt, J. Am. Chem. Soc., 92, 6259-6267 (1970).
(4) W. Borsche, Justus Liebigs Ann. Chem., 526, 1-22 (1936)
(5) K. Ohga and T. Matsuo, J. Org. Chem, 39, 106-108 (1974).
(6) R. S. Becker, L. Edwards, R. Bost. M. Elam, and G. Griffin. J. Am. Chem Soc., 94, 6584- € 592 (1972); E. J. O'Connell, G. Martin, and J T. Lis, Chem. Commun., 95-9j (1970).
(7) S. S. Hixson, J. Am. Chem. Soc., 95, 6144-6145 (1973).
(8) J. B. Miller, J. Org. Chem., 24, 560-561 (1959).
(9) E. C. Horning, Ed, "Organic Syntheses", Collect. Vol. III. Wiley, New York. N Y., 1955, pp 255-258.
(10) H. Richter, Gerr an Patent 1213 856; Chem. Abstr., 64, 19632b (1966).

A Phosgeneless Synthesis of Diaryl Carbonates

Kenneth Rict.ard Fountain* and Michael Pierschbacher ${ }^{1}$
No-theast Missouri State University, Kirksville, Missouri 63501
Received November 14, 1975
The production of diaryl carbonates most often involves at some point the use of extremely toxic phosgene. In this
paper we report the synthesis of carbonates without the use of phosgene by employing esters of dichloroacetic acid. The overall reaction is shown in reaction 1 for phenyl dichloroacetate.

This reaction is unusual in that it results in an oxidative cleavage of $\mathrm{C}-\mathrm{C}$ bonds apparently brought about by sodium hydride. The yield of diphenyl carbonate was modest, $35-70 \%$, and was accompanied by formation of tar and phenol along with dichloroacetic acid on water workup of the reaction mixture.

A reasonable mechanism would involve attack of phenoxide, as in eq 2 , on the carbonyl.

This attack would be followed by expulsion of CHCl_{2} from 3 or a concerted expulsion of Cl^{-}and $: \mathrm{CHCl}$ such as has been reported ${ }^{2}$ in the reaction of dichloroacetophenone with tertbutoxide. Indeed, it was found that phenoxide ion cleaved the phenyl dichloroacetate to give diphenyl carbonate in 60% yield, thus implicating phenoxide as in reaction 2. With carefully purified phenyl dichloroacetate, having literature ${ }^{3}$ values for physical constants, and containing no detectable phenol by GC, reaction 1 gave diphenyl carbonate in yields up to 71%, indicating that the ester must be the source of the phenolate ion. Reaction 3 shows that phenolate ion could be plausibly generated by expulsion of dichloroketene from the ester after abstraction of a proton (reaction 3).

$$
1+\mathrm{NaH} \longrightarrow \underset{4}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}-\mathrm{COCCl}_{2}} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}+\mathrm{Cl}_{2} \mathrm{C}=\mathrm{C}=\underset{\text { (3) }}{0}
$$

Attempts to trap dichloroketene with cyclohexene ${ }^{6}$ or cyclopentadiene ${ }^{7}$ were not successful. However, from the reaction mixture with cyclohexene a very small amount of a ketone having $\nu \mathrm{C}=0$ at $1655 \mathrm{~cm}^{-1}$ and giving a 2,4-DNP osazone derivative consistent with the reactions in eq 4 was isolated. This

2,4-dinitrophenylosazone was identical with one obtained from an authentic 2 -hydroxy- α, α-dichloroacetophenone prepared by a Fries rearrangement of the phenyl dichloroacetate. ${ }^{4}$ Such osazone formation is typical behavior for α, α-dichloroacetophenones and has long been known. ${ }^{5}$ The failure to trap dichloroketene with dienes or 2,3-dimethyl-2-butene could be considered a serious argument against this mechanism. However, as we show below, from consideration of the mass balance in alternate mechanisms, dichloroketene
expulsion must be fairly important; and the isolation of this ketone and the vinyl dichloroacetate ester described below must indicate generation of dichloroketene. Apparently dichloroketene is reluctant to attack even a very electron-rich aromatic ring such as phenolate ion and instead undergoes alternate fates expected of it.

The source of phenolate ion could also be considered a path such as reaction 5 . This type of derivative of dichloroacetic

acid was found by Lavanish when he treated excess dichloroacetyl chloride with triethylamine. ${ }^{8}$ Such behavior toward enolate ions seems to be typical of haloketenes. ${ }^{9}$

When 1 was treated with one-half stoichiometric amounts of sodium hydride in THF and the solvent removed, there was obtained an oily solid which had two strong ir bands at 1780 and $1640 \mathrm{~cm}^{-1}$. These bands were attributed to the carbonyl and the $\mathrm{C}=\mathrm{C}$ bond in 5 in the reaction mixture. Attempts to distill this mixture led to gas evolution, and the only distillable materials obtained were phenol, starting ester, and a trace of diphenyl carbonate. Apparently 5 decomposes with expulsion of dichloroketene to give starting ester.
A chromatographic attempt was made to isolate compound 5 by chromatography on silica gel. After elution of all the reaction mixture components (see Experimental Section), a band of organic material remained at the top of the column. When this was eluted with acetone an oily semisolid was obtained which had ir bands at $1770-1790 \mathrm{~cm}^{-1}$ and a band at $1640 \mathrm{~cm}^{-1}$ and NMR signals at $\delta 6.05$ and 5.90 ppm and a multiplet at 7.33 ppm . The signals at 6.05 and 7.33 ppm are due to the presence of starting ester, as was confirmed from examination of the infrared spectrum (see Experimental Section). The signal at 5.90 ppm we attribute to the presence of compound 5. Furthermore, at the time of isolation the $6.05 / 5.90$ ratio was $9 / 8$, but in 3 h it had risen to $6.05 / 5.90=$ $9 / 4$. These data are consistent with the postulate that 5 is unstable relative to starting ester and dichloroketene. Reinforcement for this view comes from the realization that the starting ester was removed from the chromatography column in the second fraction and the material examined here was removed in the $12-16$ fraction.
Reaction 5 cannot be solely responsible for the generation of phenolate ion because it would require 3 mol of ester to produce 1 mol of diphenyl carbonate. This would make our yields in the neighborhood of 110%. This means that, in spite of the failure of dients to trap it, dichloroketene must be expelled in the formation of phenolate ion. The dichloroketene is then trapped by phenolate ion as o-hydroxydichloroacetophenone, and as 5 by the enolate 4. Apparently in the presence of enolate ions this is the preferred fate for dichloroketene rather than addition to double bonds.

Following an unsuccessful attempt to trap monochlorocarbene and/or chloroform from phenyl dichloroacetate we sought to trap chlorocarbene from the bisdichloroacetate ester of catechol (eq 6) in the presence of 2,3-dimethyl-2-butene. This procedure gave low yields of the alkene-halocarbene adduct 7 as could be shown by observing NMR signals at

$0.9-1.3 \mathrm{ppm}$. The cyclopropane 7 is known to display a sharply defined doublet centered at 1.25 ppm , due to chemically shifted methyl groups, and a sharp singlet at 2.70 ppm. Both of these signals are observable in the reaction mixture from reaction 7 . Further evidence for the presence of 7 was found by observing a GC retention time (see Experimental Section) identical with authentic 7.

In view of the failure to trap methylene chloride, even with phenol in the reaction mixture, we ascribe the appearance of chlorocarbene to a concerted expulsion of chloride and chlorocarbene from the intermediate ion 3 in reaction 2 . This is quite consistent with the known behavior of dichloroacetophenone ${ }^{2}$ and contrasting with haloform cleavages observed in trihalogenated esters. ${ }^{11}$

The reaction of bisdichloroacetate catechol ester, 6 , with sodium hydride in THF led to a smooth production of o phenylene carbonate in $60-70 \%$ yield. The material obtained was identical with an authentic sample prepared by distillation of o-hydroxyphenylethyl carbonate. ${ }^{12}$

The synthetic usefulness of the reaction was explored briefly with the 3,5 -dimethylphenol ester and the p-bromophenyl ester, which gave yields of 41.5 and 54%, respectively.

Experimental Section

Instrumental. All infrared spectra were measured on a PerkinElmer Model 700 spectrophotometer; NMR spectra were obtained on a Varian EM 360 and melting points with a Mel-Temp block, and they are uncorrected. Gas chromatography was performed on a Varian Model 920 with columns as noted. Elemental analysis was performed by Galbraith Laboratories.

Phenyl Dichloroacetate (1). This compound was made by allowing phenol and dichloroacetyl chloride to react using triethylamine as an acid scavenger. Distillation followed by recrystallization from petroleum ether-ether gave solid white crystals, $\mathrm{mp} 46-48^{\circ} \mathrm{C}$ (lit. ${ }^{2}$ $48^{\circ} \mathrm{C}$). Gas chromatography on a $20 \mathrm{ft} \times 0.375 \mathrm{in}$. SE- 30 on $30 / 60$ Chromosorb W showed $99+\%$ purity.

Reaction of Phenyl Dichloroacetate with Sodium Hydride. In a typical procedure a three-necked $250-\mathrm{ml}$ flask equipped with a mechanical stirrer, dropping funnel, and reflux condenser was charged with 5.0 g of sodium hydride (50% dispersion in mineral oil). This was washed three times with 25 ml of dry benzene, then covered with 50 ml of dry tetrahydrofuran and $20 \mathrm{~g}(0.092 \mathrm{~mol})$ of the phenyl dichloroacetate in 25 ml of dry THF was added slowly under N_{2} with vigorous stirring. A lively evolution of hydrogen ensued and the solution turned red, then brown and began to reflux gently. When gas evolution ceased, the flask was stirred for 0.5 h further. Then the brown solution was poured into 300 ml of 3 N hydrochloric acid, immediately extracted with three $100-\mathrm{ml}$ portions of dichloromethane, and dried over magnesium sulfate. Solvent removal left a red oil which was picked up in methylene chloride and washed with 10% sodium bicarbonate until the aqueous layer was clear. Distillation of this oil gave, after a leading fraction containing 2.8 g of phenol and one containing 1.68 g of ester, 7.2 g of diphenyl carbonate. This represents a yield of 70.8% based on 2 mol of ester consumed per mole of carbonate produced.
Catechol Bis(dichloroacetate) (6). This compound was prepared by the reaction of catechol with dichloroacetyl chloride. Typically 11.0 $\mathrm{g}(0.1 \mathrm{~mol})$ of catechol was dissolved in 200 ml of benzene and 15 ml of dry diethyl ether in a three-necked mechanically stirred 1-1. flask equipped as for phenyl dichloroacetate. To this mixture 29.7 g (0.2 mol) of dichloroacetyl chloride was added and stirring was begun. A solution of $20.2 \mathrm{~g}(0.2 \mathrm{~mol})$ of triethylamine in 100 ml of dry benzene was added dropwise over a 2 -h period and stirring was prolonged for an additional 1 h after addition was complete.

Filtration of the suspended salt after this period gave only 8.5 g of amine salt. Subsequently the organic filtrate was washed with two $150-\mathrm{ml}$ portions of 4 N hydrochloric acid and with three $100-\mathrm{ml}$ portions of water. After drying over MgSO_{4} and solvent removal, distillation ($100-110^{\circ} \mathrm{C}, 0.5$ Torr) gave a solid, $\mathrm{mp} 64.5-66^{\circ} \mathrm{C}$, which was the diester, and a liquid which was the monoester (bp $70-75^{\circ} \mathrm{C}, 0.55$ Torr). The yield of solid was 65%, and the liquid was 11.5%. The solid diester was characterized by absence of ν_{OH} at $3600-3300 \mathrm{~cm}^{-1}$ and presence of a strong $\nu \mathrm{C}=0$ at $1770 \mathrm{~cm}^{-1}$ and $\nu \mathrm{C}-0$ at $1138 \mathrm{~cm}^{-1}$ (strong). The NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, vs. $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ had two strong singlets at δ $6.11(2 \mathrm{H})$ and $7.33(4 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{Cl}_{4}$: C, 36.18; $\mathrm{H}, 1.82$. Found: $\mathrm{C}, 36.15 ; \mathrm{H}$, 1.86.

Reaction of Catechol Bis(dichloroacetate) with Sodium Hydride. A $3.3-\mathrm{g}$ (0.01 mol) sample of this diester was treated with 0.48 $g(0.01 \mathrm{~mol})$ of NaH in a 50% oil dispersion as described for phenyl dichloroacetate. An immediate reaction occurred which consumed the NaH in 1 min . The solution was stirred overnight and worked up with hydrochloric acid as before. The organic layer after drying and solvent removal gave 1.18 g of a solid, $\mathrm{mp} 119-120^{\circ} \mathrm{C}$, after recrystallization from ether, 60% yield. This material was identical in infrared spectroscopy $\left[\nu \mathrm{C}=0\right.$ at 1780 (broad) and $\left.1850 \mathrm{~cm}^{-1}(\mathrm{sh})\right],{ }^{13}$ and NMR spectroscopy (signal at $\delta 7.22 \mathrm{ppm}$, singlet), and physical prcperties to a sample of o-phenylene carbonate made by distillation of o-hydroxyphenylethyl carbonate. ${ }^{12}$ The NMR of the authentic material showed complete absence of signals besides a singlet at $\delta 7.22$.

When this reaction was run in the presence of 5.0 g of $2,3-\mathrm{di}$ -methyl-2-butene and worked up as recorded above, the NMR spectrum in CDCl_{3} of the reaction mixture showed signals due to chemically shifted methyl groups centered at $\delta 1.25$ (doublet) and a sharp singlet at 2.70 ppm . These signals were similar to signals obtained from an authentic sample of 7 obtained by the method of Closs^{10} (-5 ${ }^{\circ} \mathrm{C}$, slow addition of butyllithium to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2,3 -di-methyl-2-butene). Gas chromatography of the reaction mixture after removal of most of the tetrahydrofuran by distillation showed a peak at $£ .6-\mathrm{min}$ retention time on a $20 \mathrm{ft} \times 0.375 \mathrm{in} .15 \%$ SE- 30 on $30 / 60$ Chromosorb W column (column temperature $132^{\circ} \mathrm{C}$, He flow 80 $\mathrm{ml} / \mathrm{min}$). This was the identical retention time with that of the authentic sample under identical conditions.
o-Hydroxy- α, α-dichloroacetophenone. This ketone was prepared by a Fries rearrangement of phenyl dichloroacetate as outlined in ref 4. There was obtained a 50% yield of a colorless to pale yellow liquid on distillation (bp 65-72 ${ }^{\circ} \mathrm{C}, 0.1$ Torr) ${ }^{7}$ which gave a 2,4 -dinitrophenylosazone on warming with 2,4-DNPH in sulfuric acid-ethanol, $\mathrm{mp} 263-265^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{9}$: C, 47.07; $\mathrm{H}, 2.76 ; \mathrm{N}, 21.95$. Found: C, 46.92; H, 2.61; N, 21.86.

Trapping Experiment with Cyclohexene. A sample of 2.2 g of 50% sodium hydride in oil was washed with three $50-\mathrm{ml}$ portions of dry benzene, then covered with 50 ml of dry cyclohexene and cooled to 0 to $-5^{\circ} \mathrm{C}$, with ice-salt water and stirred vigorously as $20 \mathrm{~g}(0.0922$ moll of phenyl dichloroacetate was added, in 120 ml of cyclohexene, over a period of 0.5 h . After stirring for an additional 1 h , the reaction was quenched with water, and the organic phase separated and distilled. The second, third, and fourth fractions contained a ketone (bp $45-50^{\circ} \mathrm{C}, 0.01$ Torr) which gave a 2,4 -DNP osazone derivative, mp 258-261 ${ }^{\circ} \mathrm{C}$, ir $\nu \mathrm{C}=01650-1660 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{9}$: C, 47.07; H, 2.76; $\mathrm{N}, 21.95$. Found: C, 46.63; H, 3.10; N, 21.96.

The yield was less than 1% of the theoretical for this ketone.
These data are essentially those of the authentic ketone obtained from Fries rearrangement of phenyl dichloroacetate.

Isolation of Compound 5 . To a $10-\mathrm{g}(0.046 \mathrm{~mol})$ sample of phenyl dichloroacetate in 100 ml of THF was added $1.0 \mathrm{~g}(0.023 \mathrm{~mol})$ of sodium hydride washed free of oil. This mixture was allowed to stir for 2 h , and the solvent was removed after this time. The reaction mixture disp.ayed a broad carbonyl band from 1790 to $1775 \mathrm{~cm}^{-1}$ and a me-dium-strong band at $1640 \mathrm{~cm}^{-1}$. Distillation gave a fraction at 65-87 ${ }^{\circ} \mathrm{C}$ (2.0 Torr) which was mostly starting material. At $99-118^{\circ} \mathrm{C}$ at $0.4-: .2$ Torr three fractions were obtained along with gas evolution; these fractions were also all starting material. Finally, at $124-180^{\circ} \mathrm{C}$ along with gas evolution there was obtained still another fraction of mostly starting ester. The material giving the $1640-\mathrm{cm}^{-1}$ band was not obtained in this distillation although much gas evolution, presumably dichloroketene, occurred.
This experiment was repeated using 22 g of ester and 2.18 g of sodium. hydride. A $3.5-\mathrm{g}$ sample of the reaction mixture was chromatogrephed on $60-2 C 0$ mesh silica gel to obtain 2.02 g of starting ester in the first five fractions (ether- 50% petroleum ether). The sixth and seventh fractions (60% ether-petroleum ether) contained $25-30 \mathrm{mg}$ of a red oil leaving $\nu \mathrm{C}=0$ at $1650 \mathrm{~cm}^{-1}$ and ν_{OH} at $3400 \mathrm{~cm}^{-1}$ (presumed to be the hydroxyacetophenone of reaction 4). In the 12 th through 16 th fractions (40% acetone -100% acetone, ethyl acetate) there was obtained an oily semisolid having $\nu \mathrm{C}=0$ at 1770 and $1640 \mathrm{~cm}^{-1}$. The $1770-\mathrm{cm}^{-1}$ band had a shoulder at $1780-1785 \mathrm{~cm}^{-1}$. The NMR spectrum had signals at $\delta 6.05$ (singlet) and 5.90 (singlet) (ratio of 9:8), as well as an aromatic multiplet at $7.3-7.1 \mathrm{ppm}$. After standing for 3 h, the upfield singlet diminished and the 6.05/5.90 ratio was 9.8/4.0.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work.

Registry No.-1, 10565-20-5; 2, 102-09-0; 5, 58462-98-9; 6, 58462-99-0; 6 monoester analogue, 58463-00-6; 7, 14123-41-2; catechol, 120-80-9; dichloroacetyl chloride, 79-36-7; o-phenylene carbonate, 2171-74-6; o-hydroxy- α, α-dichloroacetophenone, 29003-58-5; o-hydroxy- α, α-dichloroacetophenone bis(2,4-dinitrophenylosazone), 58463-01-7; 2,4-DNPH, 119-26-6.

References and Notes

(1) Petroleum Research Fund Undergraduate Fellow, 1973-1974
(2) M. K. Saxena and M. Bakadia, Chem. Ind. (London), 666 (1966)
(3) H. Crompton and P. M. Triffitt, J. Chem. Soc., 1874 (1921).
(4) A. B. Sen and A. K. Sen-Gupta, J. Indian Chem. Soc., 33, 437 (1956).
(5) D. S. Tarbell and P. E. Fanta, J. Am. Chem. Soc., 65, 2169 (1943).
(6) L. Ghosez, R. Montaigne, H. Vanlierde, and P. Mollet, Tetrahecron, 27, 615 (1971).
(7) H. C. Stevens. D. A. Reich. D. R. Brandt, K. R. Fountain, and E. J. Gaughan, J. Am Chem. Soc., 87, 5347 (1965)
(8) J. M. Lavanish. Tetrahedron Lett., 6003 (1968)
(9) (a) W. T. Brady and P. L. Ting, J. Org. Chem., 40, 3417 (1975); (b) W. T Brady. F. H. Parry, III, R. Roe, J., E. F. Hoff, J., and L. Smith, ibid., 35, 1515 (1970).
(10) G. L. Closs and G. M. Schwartz, J. Am. Chem. Soc., 82, 5723, 5729 (1960)
(11) A. C. Pierce and M. M. Joullie. J. Org. Chem., 28, 658 (1963)
(12) A. Einhorn and E. Lindenberg, Justus Liebigs Ann. Chem., 300, 141 (1898) R. S. Hanslick, W. F. Bruce, and A. Mascitti, "Organic Syntheses", Collect. Vol. IV, Wiley, New York, N.Y., 1963, p 788.
(13) Twinning of the carbonyl band of five-membered cyclic carbonates is ap parently common. Cf. L. J. Bellamy. "The Infrared Spectra of Complex Organic Molecules'", Vol. 1, 3d ed, Wiley, New York, N.Y., 1975, p 143.

Nucleosides. 98. Direct Introduction of an Acetamido Group into the Sugar Moiety of Nucleoside Epoxides ${ }^{1}$

Uri Reichman, David H. Hollenberg, Chung K. Chu, Kyoichi A. Watanabe, and Jack J. Fox*

Laboratory of Organic Chemistry, Sloan-Kettering Institute for Cancer Research, Sloan-Kettering Division of Cornell University Graduate School of Medical Sciences, New York, New York 10021

Received November 25, 1975
The interest in the synthesis of aminoglycosides (including amino nucleosides) has grown over the years owing to the antibiotic properties that many of them exhibit. ${ }^{2}$ The most common method for the introduction of an amino group into a sugar is via nucleophilic displacement of a sulfonyloxy group by azide followed by reduction ${ }^{3}$ or by opening an epoxide by ammonia. ${ }^{4}$ In the case of nucleosides, an amino group may be introduced into the carbohydrate moiety by cyclization of nucleoside dialdehydes with nitromethane followed by reduction of the nitro group, ${ }^{5}$ by replacement of a sulfonyloxy group. ${ }^{6}$ or by opening an epoxide ${ }^{7}$ or $2,2^{\prime}$-anhydro linkage ${ }^{8}$ with azide and subsequent reduction of the azido function. Direct opening of nucleoside $2^{\prime}, 3^{\prime}$-epoxides with ammonia is also known. ${ }^{9}$ We report herein a facile method for the direct introduction of an acylamino group into the sugar moiety of nucleosides by the use of boron trifluoride etherate in acetonitrile.

Treatment of the nucleoside $2^{\prime}, 3^{\prime}$-epoxides (1) with boron trifluoride etherate in acetonitrile followed by neutralization of the reaction mixture with saturated sodium hydrogen carbonate solution gave the corresponding 3^{\prime}-acetamido- 3^{\prime} deoxyarabinosyl nucleosides (2) which crystallized out in pure state from the reaction mixture (Chart I).
A plausible mechanism for the conversion of $1 \rightarrow 2$ via postulated intermediates 4 and 5 is shown (Chart II). This mechanism is somewhat akin to that proposed by Smith et al. ${ }^{10}$ for the synthesis of oxazolines from epoxides. In the case of nucleoside $2^{\prime}, 3^{\prime}$-epoxides, however, anchimeric assistance from the 2 ' oxygen in zwitterion 5 to form an oxazoline cannot occur. Hydrolysis of 5 results in the formation of 3^{\prime}-acet-

Chart I

a. $\mathrm{R}=$ uracil b. $\mathrm{R}=N^{4}$-benzoylcytosine

Chart II

4

amido- 3^{\prime}-deoxyarabinosyl nucleosides (2). It is noteworthy that TLC examination of the product 2 showed only one spot; no evidence for the formation of a 2^{\prime}-acetamidoxylo nucleoside was obtained.

The structures of nucleosides 2 were established in the following manner: the position of the free hydroxyl group at C- 2^{\prime} was confirmed by acylation of 2 to 3 , followed by NMR analyses of the acetylated products. In nucleosides 3 the sugar ring protons geminal to the acetoxy group are shifted downfield by $\sim 1.2 \mathrm{ppm}$ relative to their chemical shift in the parent compounds 2 (see NMR data in Experimental Section) and now appear as a triplet. Irradiation at the frequency of the triplet converted the doublet of the anomeric proton signal into a singlet. Upon irradiation at the frequency of the anomeric signal, the above mentioned triplet became a doublet. These decoupling experiments firmly allocate the hydroxyl substituent to $\mathrm{C}-2^{\prime}$ and, consequently, the acetamido function to $\mathrm{C}-3^{\prime}$ in 2 and 3 . Final proof was achieved by an unambiguous synthesis of 1-(3-acetamido-2-O-acetyl-5- O-benzoyl-3-deoxy- β-D-arabinofuranosyl)uracil and its identity with 3a by NMR, ir, and mixture melting point. Thus, the lyxo epoxide $1 \mathbf{a}^{11}$ was treated with ammonium azide to afford 6 which was hydrogenolyzed to amino nucleoside 7 and acetylated to 3a (Chart III).

Application of the boron trifluoride etherate-acetonitrile reagent combination to $2^{\prime}, 3^{\prime}$-epoxides of purine nucleosides is planned in our laboratory.

Experimental Section

NMR spectra were obtained on a JEOL J1M-PET-100 spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as reference. Chemical shifts are reported in parts per

Chart III

million (δ) and signals are described as s (singlet), d (doublet), t (triplet), and m (multiplet). Values given for coupling constants are first order. Ir spectra were recorded on a Perkin-Elmer Infracord using pressed KBr pellets. Melting points were determined on a ThomasHoover capillary apparatus. Microanalyses were performed by Galbraith Laboratories, Knoxville, Tenn.

1-(2,3-Anhydro- $\boldsymbol{\beta}$-D-lyx of uranosyl)cytosine. 2,2'-Anhydro-$3^{\prime}-O$-mesylarabinofuranosylcytosine mesylate $(2.0 \mathrm{~g}, 6 \mathrm{mmol})^{12}$ was dissolved in water (20 ml) and potassium carbonate was added (1.0 g). After 2 h , more potassium carbonate was added (0.5 g) and the solution was allowed to stir at room temperature for 16 h . Excess Amberlite IRC-50 $\left(\mathrm{H}^{+}\right)$was then added, and after stirring for 2 h the solution was filtered. The filtrate was concentrated and placed on a column of Dowex-50 $\left(\mathrm{H}^{+}\right)$. After washing thoroughly, the nucleoside was eluted with $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. Evaporation provided 0.9 g of an amorphous foam. TLC examination of the amorphous foam (90% ethanol) showed only two uv absorbing spots ($R_{f} 0.46$ and 0.20). Only the faster moving spot (major component) charred after sulfuric acid spray and also exhibited a positive test for epoxides with methyl red spray. This was used without further purification: NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 3.59\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{J}^{\prime} 5^{\prime} \simeq 6 \mathrm{~Hz}\right.$), 3.94-4.06 (two distorted doublets, $3 \mathrm{H}, J_{2^{\prime}, 3^{\prime}} \simeq 3 \mathrm{~Hz}$, superimposed on $\mathrm{H}-4^{\prime}, J$ value not first order), 5.77 (d, $1 \mathrm{H}, \mathrm{H}-5, J_{5.6} \simeq 8 \mathrm{~Hz}$), $6.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6), 4.09$ (broad s, 1 H , exchanged in $\mathrm{D}_{2} \mathrm{O}$), 7.20 (broad s, 2 H , exchanged in $\mathrm{D}_{2} \mathrm{O}$); uv $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 269 \mathrm{~nm}$ (neut), $277 \mathrm{~nm}(\mathrm{pH} 1)$.

1-(2,3-Anhydro-5-O-benzoyl- $\boldsymbol{\beta}$-D-lyxofuranosyl)- $\boldsymbol{N}^{\mathbf{4}}$-benzoylcytosine ($\mathbf{l b}$). The free epoxide (0.8 g) obtained above was treated with benzoic anhydride ($2.5 \mathrm{~g}, 3$ equiv) in dry pyridine (25 ml) for 12 h at room temperature and then for 3 h at $60^{\circ} \mathrm{C}$. The reaction misture was poured into water (50 ml) and extracted with chloroform ($50 \mathrm{ml} \times 3$). The combined organic extracts were dried (sodium sulfate) and evaporated to dryness. The residue was crystallized from ethanol to afford 1 b as colorless needles, 0.62 g (40% based on crude epoxide), mp 187-190 ${ }^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 63.74; H, 4.38; $\mathrm{N}, 9.69$. Found: C, 63.60; H. 4.29; N, 9.56.

1-(3-Acetamido-5-O-benzoyl-3-deoxy- β-D-arabinofurano$\mathbf{s y l})$ uracil (2a). To a suspension of the epoxide $\mathbf{1 a}^{11}(2.0 \mathrm{~g}, 6 \mathrm{mmol})$ in acetonitrile (25 ml , dried over $\mathrm{P}_{2} \mathrm{O}_{5}$) was added 4 ml of boron trifluoride etherate solution (5 equiv). A clear solution was obtained in a few minutes after the addition. The solution was stirred for 12 h at room temperature, then poured onto 40 ml of saturated sodium hydrogen carbonate solution. Compound 2a precipitated out as colorless crystals which were filtered and washed with water and acetone, 1.5 $\mathrm{g}(64 \%), \mathrm{mp} 230-234{ }^{\circ} \mathrm{C}$ (dec): NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.87$ (s, 3 H, NAc), 4.11 (m, 3 H, H-2', H-3', H-4'), 4.52 (d, $2 \mathrm{H}, \mathrm{H}-5^{\prime}, J_{4^{\prime}, 5^{\prime}} \simeq 4.3 \mathrm{~Hz}$), 5.49 (d, $1 \mathrm{H}, \mathrm{H}-5, J_{5.6} \simeq 8.2 \mathrm{~Hz}$), $5.88\left(\mathrm{~d}, 1 \mathrm{H}, 2^{\prime}-\mathrm{OH}, J_{2^{\prime}, \mathrm{OH}} \simeq 4.6 \mathrm{~Hz}\right.$), 6.10 (d, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}} \simeq 4.0 \mathrm{~Hz}$), 7.76 (m, 5 H, benzoyl), $8.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6$, $J_{5.6} \simeq 8.2 \mathrm{~Hz}$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, $55.52 ; \mathrm{H}, 4.89 ; \mathrm{N}, 10.76$. Found: C, 55.42; H, 4.83; N, 10.63 .

1-(3-Acetamido-5- O-benzoyl-3-deoxy- β - D -arabinofurano-syl)- \boldsymbol{N}^{4}-benzoylcytosine (2b). By the same procedure as above, 2b $\left(1.95 \mathrm{~g}, 67.5 \%\right.$) was obtained as colorless crystals, $\mathrm{mp} 254-259^{\circ} \mathrm{C} \mathrm{dec}$, from $1 \mathrm{lb}(2.6 \mathrm{~g}, 6 \mathrm{mmol})$: NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.89$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NAc}$), 4.20 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$), 4.56 (broad s, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.89 (d, $1 \mathrm{H}, 2^{\prime}-\mathrm{OH}$, $\left.J_{2^{\prime}}, \mathrm{OH} \simeq 4.6 \mathrm{~Hz}\right), 6.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{2}} \simeq 4.0 \mathrm{~Hz}\right), 7.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5$, $\left.J_{5.6} \simeq 7.3 \mathrm{~Hz}\right), 7.81\left(\mathrm{~m}, 10 \mathrm{H}\right.$, benzoyl), $8.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, J_{5.6} \simeq 7.3\right.$ Hz).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}: \mathrm{C}, 60.96 ; \mathrm{H}, 4.87 ; \mathrm{N}, 11.38$. Found: C , 60.85; H, 4.92; N, 11.26 .

1-(3-Acetamido-2-O-acetyl-5-O-benzoyl-3-deoxy- β-D-arabinofuranosyl)uracil (3a). Compound $2 \mathbf{a}$ ($380 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in pyridine (15 ml) and 1 ml of acetic anhydride was added. The mixture was stirred for 2 h and then poured onto an ice-water
mixture (25 ml). The mixture was extracted with chloroform (75 ml $\times 3$) and the organis layer was dried (over sodium sulfate), evaporated to dryness, and then coevaporated several times with ethanol to remove traces of pyridine. The residue was crystallized from ethanol to give 360 mg of $3 \mathrm{a}(85 \%)$ as colorless crystals, $\mathrm{mp} 208-210^{\circ} \mathrm{C}$: NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right) \delta 1.87$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NAc}$), 1.89 (s, $3 \mathrm{H}, \mathrm{OAc}$), 4.16 (m, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $4.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.56$ (d, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), $5.30\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}} \simeq J_{2^{\prime}, 3^{\prime}}\right.$ $\simeq 5.5 \mathrm{~Hz}), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5, J_{5,6} \simeq 7.9 \mathrm{~Hz}\right), 6.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1^{\prime}, 2^{\prime}}\right.$ $\simeq 55 \mathrm{~Hz}), 7.79\left(\mathrm{~m}, 5 \mathrm{H}\right.$, benzoyl), $8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, J_{5.6} \simeq 7.9 \mathrm{~Hz}\right)$.
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$: C, $55.68 ; \mathrm{H}, 4.87$; $\mathrm{N}, 9.74$. Found: C , 55.80; H, 4.96; N, 9.67.

1-(3-Acetamido-2- O-acetyl-5- O-benzoyl-3-deoxy- β-D-ara-binofuranosyl)- \boldsymbol{N}^{4}-benzoylcytosine (3b). Compound $2 b$ (100 mg , 0.25 mmol) was treated with acetic anhydride (1 ml) in pyridine (10 ml) for 2 h at room temperature and then poured onto water (20 ml). Colorless crystals precipitated, were collected and recrystallized from ethanol to give 86 mg of $3 \mathrm{~b}(80 \%), \mathrm{mp} 136-141{ }^{\circ} \mathrm{C}$: NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 1.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NAc}), 1.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right), 4.60$ (d, $_\mathrm{H}, \mathrm{H}-5^{\prime}$), $5.45\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, J_{1^{\prime}, 2^{\prime}} \simeq J_{2^{\prime}, 3^{\prime}} \simeq 4.6 \mathrm{~Hz}\right.$), $6.36(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1, J_{1^{\prime}: 2^{\prime}} \simeq 4.6 \mathrm{~Hz}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5, J_{5.6} \simeq 7.6 \mathrm{~Hz}\right), 7.83(\mathrm{~m}, 10 \mathrm{H}$, benzoyl), 8.58 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6$).
Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.69 ; \mathrm{H}, 5.07 ; \mathrm{N}, 10.14$. Found: C, 58.68; H, 4.96; N, 10.09 .

The presence of $\mathrm{H}_{2} \mathrm{O}$ was shown in NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ at $\delta 3.32$.
1-(3-Azido-5- O-benzoyl-3-deoxy- $\boldsymbol{\beta}$-D-arabinofuranosyl)uracil (6). Compound la (1.0 g) was added to ethanol (25 ml) containing ammonium azide (0.3 g). The mixture was refluxed for 22 h and the solusion was evaporated. The residue was crystallized from $80 \% \mathrm{EtOH}$ to give 1.1 g of 6 as colorless crystals, $\mathrm{mp} 150-153^{\circ} \mathrm{C}$. Recrystallization from methanol prcvided an analytical sample with mp $154-156^{\circ} \mathrm{C}$: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.20\left(\right.$ broad s, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.6-4.8\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right.$, H-4'), 5.31 (d, $1 \mathrm{H}, \mathrm{H}-5, J_{5,6} \simeq 8 \mathrm{~Hz}$), 5.43 (broad s, 1 H , exchangeable, $\left.2^{\prime}-\mathrm{OH}\right), 6.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime} . J_{1^{\prime}: 2^{\prime}} \simeq 3 \mathrm{~Hz}\right), 7.40-7.84(\mathrm{~m}, 4 \mathrm{H}$, benzoyl), 8.04-8.12 (distorted doublet, $2 \mathrm{H}, \mathrm{H}-6, J_{5,6} \simeq 8 \mathrm{~Hz}$, and benzoyl).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, $51.48 ; \mathrm{H}, 4.05 ; \mathrm{N}, 18.76$. Found: C, 51.23; H, 4.19; N, 18.68.

1-(3-Acetamido-2- \boldsymbol{O}-acetyl-5- O-benzoyl-3-deoxy- $\boldsymbol{\beta}$-D-arabinofuranosyl)uracil (3a). Compound 6 (159 mg) was dissolved in ethanol (15 ml) cortaining $\mathrm{CHCl}_{3}(1 \mathrm{ml})$, and $10 \% \mathrm{Pd} / \mathrm{C}(90 \mathrm{mg})$ was added. The mixture was stirred at room temperature in a hydrogen atmosphere for 20 h and then filtered. The filtrate was decolorized with carbon and evaporated. The residue was dissolved in pyridine (5 ml) and acetic anhydride (1 ml) was added. After 5 h , methanol was added, and the solution was evaporated. The residue was crystallized from ethanol to yield $3 \mathrm{a}\left(46 \mathrm{mg}, \mathrm{mp} 208-209^{\circ} \mathrm{C}\right.$). The NMR, ir, and TLC behavior were identical with those for 3a obtained as described above. The mixture melting point was undepressed.

Acknowledgment. The authors are indebted to Mr. Marvin Olsen for recording the NMR spectra.

Registry No.-1a, 14999-47-4; 1b, 58540-92-4; 1b free epoxide, 34989-27-0; 2a, 58540-93-5; 2b, 58540-94-6; 3a, 58540-95-7; 3b, 58540-96-8; 6, 58540-97-9; 2, 2'-anhydro-3'- - -mesylarabinofuranosylcytosine mesylate, 23463-73-2.

References and Notes

(1) This investigation was supported in part by funds from the National Cancer nstitute, DHEW (Grants CA-08748, -17085, and -18601), the Westchester Jivision of the American Cancer Society, and the Hearst Fund
(2) J. Horton, "The Amino Sugars", Vol. IA, R. W. Jeanloz and E. A. Balazs, ミd., Academic Press. New York, N.Y., 1969, p 2.
(3) J. H. Ball and F. W. Parrish, Adv. Carbohydr. Chem., 24, 139 (1969)
(4) つ. Horton in ref 2, p 27
(5) K. A. Watanabe, J. Beranek, H. A. Friedman, and J. J. Fox, J. Org. Chem., 30, 2735 (1965); J. Beranek, H. A. Friedman, K. A. Watanabe, and J. J. Fox. J. Heterocycl. Chem., 2, 188 (1965).
(6) J. P. Horwitz, J. Chua, and M. Noel, J. Org. Chem, 29, 2076 (1964); K. A. Watanabe, M. P. Kotick, and J. J. Fox, ibid., 35, 231 (1970).
(7) M. Hirata, T. Kobayashi, and T. Naito, Chem. Pharm. Bull., 17, 1188 (1969); M. Hubert-Habart and L. Goodman, Can. J. Chem., 48, 1335 (1970); A. P. Martinez, D. F. Calkins, E. J. Reist, W. W. Lee, and L. Goodman, J. Heterocycl. Chem., 7, 713 (1970).
(8) J. P. H. Verheyden, D. Wagner, and J. G. Moffatt, J. Org. Chem., 36, 250 :1971).
(9) B. R. Baker, R. E. Schaub, and H. M. Kissman, J. Am. Chem. Soc., 77, 5900 :1955).
(10) J. R. L. Smith, R. D. C. Norman, and M. R. Stillings. J. Chem. Soc., Perkin Trans. 1, 1200 (-975).
(11) J. F. Codington, R. Fecher, and J. J. Fox, J. Org. Chem., 27, 163 (1962).
(12) T. Kanai and M. Ichino. Chem. Pharm. Bull., 16, 1848 (1968).

Regiospecific 2,4-Diiodination of Resorcinol with Nascent Iodine

Frederick L. Weitl
Radiology Research S-004, University of California, San Diego, La Jolla, California 92093
Received December 9, 1975
As part of a continuing effort to synthesize new x-ray contrast media, the iodination of hydroxyaryl precursors has achieved our attention. This note describes a new application of the $\mathrm{KIO}_{3} / \mathrm{KI} / \mathrm{HCl}$ iodometric system ${ }^{1}$ for iodination of the m-hydroxybenzenes, resorcinol and phloroglucinol.

A review of the literature dealing with the synthesis of mono-, di-, and trihalogenated resorcinols reveals the conspicuous absence of 2,4 -diiodoresorcinol. ${ }^{2,3}$ For example, diiodination of resorcinol with the interhalogen $\mathrm{ICl}(2 \mathrm{~mol})$ in 20% aqueous HCl reportedly ${ }^{4}$ provided the corresponding 4,6 -diiodoresorcinol in 80% isolated yield. This experiment, repeated in our laboratory, gave crude 4,6-diiodoresorcinol which was isomerically pure as determined by NMR (Table I).

Table I. NMR Data (δ) for Iodinated Resorcinols

Compd	Structure	H_{a}	H_{b}

1

$7.63, \mathrm{~d}, J=9 \mathrm{~Hz}$, AB quartet

5

6.73 , s
7.93, s

2

5.42,b d (unsym), 7.05, t (unsym), $2 \mathrm{H} J=8 \mathrm{~Hz} \quad 1 \mathrm{H}, J=8 \mathrm{~Hz}$

4
 $-\quad 8.12, \mathrm{~s}$
${ }^{a}$ NMR spectra ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}, \mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}$) were recorded on a Varian EM- 360 spectrometer. $\mathrm{D}_{2} \mathrm{O}$ was used to simplify the spectra by exchanging off the phenolic protons. ${ }^{b}$ NMR data for these compounds also reported in ref 3 .

Moody and Thomas ${ }^{5}$ detected the two-stage oxidation of iodide (eq 1) in aqueous HCl in the presence of iodate and

$$
\begin{equation*}
\mathrm{I}^{-} \xrightarrow[\mathrm{HCl}]{\mathrm{IO}_{3}^{-}} 1 / 2 \mathrm{I}_{2}+e \xrightarrow[\mathrm{HCl}]{\stackrel{1 \mathrm{O}_{3}^{-}}{\longrightarrow}} \mathrm{I}^{+}+e \tag{1}
\end{equation*}
$$

noted the "strong brown coloration" of the intermediate oxidation state, $1 / 2 \mathrm{I}_{2}$, i.e., nascent iodine. This work takes advantage of nascent iodine generated in situ as an iodinating species, (a) by using only stoichiometric amounts of all reagents, (b) by using reactive m-hydroxyaryls to rapidly react with the nascent iodine, and (c) by choosing the correct order of combination of reagents with substrate to preclude unwanted oxidations of both substrate and reagent.

Results and Discussion

Use of nascent iodine has resulted in the regiospecific 2,4 -diiodination of resorcinol. In these experiments, stoichiometric amounts (eq 2) of aqueous $\mathrm{KIO}_{3} / \mathrm{KI}$ were added

dropwise to aqueous resorcinol/ HCl vigorously stirred at room temperature. Alternatively, aqueous $\mathrm{KIO}_{3} / \mathrm{HCl}$ can be added dropwise to resorcinol, KI. With each drop of reagent a brown color developed immediately but dissipated in approximately 1 s , thereby iodinating resorcinol in a rapid reaction. NMR spectra taken on crude diiodination mixtures revealed only two products, 2,4-diiodoresorcinol (56%, isolated) and 2,4,€-triiodoresorcinol (Table II).

Table II. Iodination of Resorcinol with $\mathrm{KIO}_{3} / \mathrm{KI} / \mathrm{HCl}$
$\left.\begin{array}{lll}\hline \begin{array}{c}\text { Stoichiometry } a \\ \mathrm{KIO} \\ \mathrm{HCl} / \mathrm{KI} /\end{array} & \begin{array}{c}\text { Product } \\ \text { ratio } b, c\end{array} \\ (1 / 4)\end{array} \quad \begin{array}{c}\text { Yield, \% } \\ \text { (compd) }\end{array}\right]$
$a \mathrm{IO}_{3}{ }^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$, see ref 1 . The overall reaction stoichiometry s calculated for resorcinol iodination by I , and assuming HI as a product. ${ }^{b}$ Crude product
(EtOAc extracted) ratios determined by NMR integration of aromatic protons. c No evidence for 4,6 -diiodoresorcinol observed in any crude products. ${ }^{d}$ NMR of crude product mixture too complex to measure ratios and probably containing 4 -iodo- and 2,4 -diiodo- as well as 2 -iodoreso:cinol.

Monoiodination of resorcinol resulted in 2-iodoresorcinol (32%, isolated) but the crude mixture was too complex to determine products and ratios by NMR (Table II).

Triiodination of resorcinol gave primarily 2,4 -diiodoresorcinol, the remainder being 2,4,6-triiodoresorcinol (Table II). This result suggests that for less reactive substrates such as diiodoresorcinol, dimerization (or deactivation) of nascent iodine to give molecu-ar (or unreactive) iodine is a process in competition with iodination of the m-hydroxybenzene (Scheme I). However, the more reactive substrate phloro-

glucinol is triiodinated to 2,4,6-triiodophloroglucinol ${ }^{6}$ (89%, isolated) in good yield.

By analogy to the action of $\mathrm{ICl},{ }^{4}$ a source of "relatively positive" iodine, any I^{+}(i.e., $\mathrm{I}^{\delta+} \mathrm{Cl}^{\delta-}$) formed in the redox reaction (eq 1, Scherre I) should have resulted in 4,6-diiodorescrcinol, but none was observed. Loss of nascent iodine to
give unreactive iodine results in decreased yields of iodination. It is anticipated that the $\mathrm{KIO}_{3} / \mathrm{KI} / \mathrm{HCl}$ system will complement the already used iodination methods opening the way to the synthesis of new iodoaryls. ${ }^{7}$

Experimental Section

General. Elemental analyses were performed by Chemalytics, Inc., Tempe, Ariz. Melting points are uncorrected and taken on a Thomas-Hoover apparatus. NMR spectra ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, \mathrm{D}_{2} \mathrm{O}, \mathrm{Me}_{4} \mathrm{Si}$) were recorded on a Varian EM 360. All evaporations were accomplished on a Buchi Rotovapor-RE at $\leq 45^{\circ} \mathrm{C}$. Resorcinol and phlo-roglucinol- $2 \mathrm{H}_{2} \mathrm{O}$ were obtained from Aldrich Chemical Co., Milwaukee, Wis. ICl was obtained from Matheson Coleman and Bell.

2,4-Diiodoresorcinol (1). To $11.0 \mathrm{~g}(0.10 \mathrm{~mol})$ of resorcinol in 250 ml of $\mathrm{H}_{2} \mathrm{O}$ was added $16.7 \mathrm{ml}(0.20 \mathrm{~mol})$ of concentrated HCl . To this stirred solution was added at a drop rate over a $1-\mathrm{h}$ period a second solution prepared from $14.3 \mathrm{~g}(0.067 \mathrm{~mol})$ of $\mathrm{KIO}_{3}, 22.1 \mathrm{~g}(0.13 \mathrm{~mol})$ of KI , and 500 ml of $\mathrm{H}_{2} \mathrm{O}$. (Note that nascent iodine color formed in situ after each drop dissipates in about 1 s.) Stirring was continued an additional 1.5 h before extracting the (essentially iodine free) reaction mixture with $\mathrm{EtOAc}(4 \times 100 \mathrm{ml}$). Evaporation of the EtOAc layer gave an oil which was dissolved in boiling CCl_{4}, filtered while hot to clarify, then cooled to obtain $20.3 \mathrm{~g}(56 \%)$ of white solid title compound, mp $87-89^{\circ} \mathrm{C} .{ }^{3}$
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2} \mathrm{O}_{2}$: C, 19.91; H, 1.11; I, 69.99. Found: C, 19.63; H, 1.02; I, 70.13.
2-Iodoresorcinol (2). Using the same procedure as for $1,11.0 \mathrm{~g}$ $(0.10 \mathrm{~mol})$ of resorcinol and $8.3 \mathrm{ml}(0.10 \mathrm{~mol})$ of concentrated HCl in 250 ml of $\mathrm{H}_{2} \mathrm{O}$ was combined with $7.1 \mathrm{~g}(0.033 \mathrm{~mol})$ of KIO_{3} and 11.1 $\mathrm{g}(0.067 \mathrm{~mol})$ of KI in 250 ml of $\mathrm{H}_{2} \mathrm{O}$. Thus was obtained an oil which was dissolved in CHCl_{3} adjusted to turbidity with petroleum ether and placed in the freezer for several days to obtain tan solid. Twice recrystallized from benzene this material gave $7.6 \mathrm{~g}(32 \%)$ of white, crystalline $2, \mathrm{mp} 105-108^{\circ} \mathrm{C}$ (lit. ${ }^{2,3} 100^{\circ} \mathrm{C}$).

2,4,6-Triiodophloroglucinol (3). ${ }^{6}$ To 10.0 g of phloroglucinol$2 \mathrm{H}_{2} \mathrm{O}(0.062 \mathrm{~mol})$ slurried in 250 ml of $\mathrm{H}_{2} \mathrm{O}$ with $15.1 \mathrm{ml}(0.18 \mathrm{~mol})$ of concentrated HCl was added at a drop rate, in 2 h , a solution of 13.2 $\mathrm{g}(0.062 \mathrm{~mol})$ of KIO_{3} and $20.5 \mathrm{~g}(0.12 \mathrm{~mol})$ of KI in 400 ml of $\mathrm{H}_{2} \mathrm{O}$. The reaction slurry was stirred overnight and then the crude product collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried in vacuo to obtain a pink powder, $\mathrm{mp} 160^{\circ} \mathrm{C}$ dec. Recrystallization from boiling CHCl_{3} gave $27.8 \mathrm{~g}(89 \%)$ of white, crystalline $3, \mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{I}_{3} \mathrm{O}_{3}$: C, 14,30; $\mathrm{H}, 0.60 ; \mathrm{I}, 75.57$. Found: $\mathrm{C}, 14.56 ; \mathrm{H}, 0.81$; I, 75.51.

2,4,6-Triiodoresorcinol (4). A. Using the same procedure as for $1,5.5 \mathrm{~g}(0.050 \mathrm{~mol})$ of resorcinol and $12.5 \mathrm{ml}(0.15 \mathrm{~mol})$ of concentrated HCl in 100 ml of $\mathrm{H}_{2} \mathrm{O}$ was combined with $10.7 \mathrm{~g}(0.050 \mathrm{~mol})$ of KIO_{3} and $16.6 \mathrm{~g}(0.10 \mathrm{~mol})$ of KI in 350 ml of $\mathrm{H}_{2} \mathrm{O}$. After stirring for an additional $2 \mathrm{~h}, \mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to decolorize $\left(\mathrm{I}_{2}\right)$ the reaction mixture, then EtOAc ($4 \times 100 \mathrm{ml}$) was used to extract all products. Evaporation of the organic layer gave tan solid dried in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$ to give 19.3 g (79% of expected weight) of tan solid. NMR showed this material to consist of a $43 / 57$ mixture of $2,4,6$-triiodo- and 2,4 -diiodorescorcinol, respectively.
B. Solid resorcinol ($22.0 \mathrm{~g}, 0.20 \mathrm{~mol}$) was added at once to a stirred solution of 875 ml of 0.8 N ICl in 1.6 N HCl and held at $50^{\circ} \mathrm{C}$ for 1 h . $\mathrm{Next} \mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to decolorize (I_{2}) the mixture, and product was collected by filtration and recrystallized from boiling CHCl_{3} to obtain $49.5 \mathrm{~g}(51 \%)$ of tan, crystalline $4, \mathrm{mp} 154-157^{\circ} \mathrm{C}$ (lit..$^{2} 154{ }^{\circ} \mathrm{C}$).

4,6-Diiodoresorcinol (5). Using the exact procedure of Nicolet and Sampey, ${ }^{4} 5.0 \mathrm{~g}(30 \%)$ of crude white solid 5 was obtained, mp $145-158^{\circ} \mathrm{C}$ (lit. $145^{\circ} \mathrm{C}$). NMR showed this compound to be isomerically pure (Table I).

Acknowledgments. This work was supported by the Na tional Institutes of Health Grant GM 16593. My thanks also is deserved by Dr . Milos Sovak for his continuing encouragement and Mr. Terry Williams for his devoted assistance.

Registry No.-1, 41046-69-9; 2, 41046-67-7; 3, 57730-42-4; 4, 19403-92-0; 5, 19514-91-1; KIO_{3}, 7758-05-6; KI, 7681-11-0; resorcinol, 108-46-3; phloroglucinol, 108-73-6.

References and Notes

(1) I. M. Kolthoff and E. B. Sandell, "Textbook of Quantitative Inorganic Analysis", 3d ed, Macmillan, New York, N.Y., 1952, p 594.
(2) S. Coffee, Ed., "Chemistry of Carbon Compounds'", Vol. 34, American Elsevier. New York, N.Y., 1971, p 398.
(3) Compound 1 was claimed, but no melting point or analysis given: V . Machacek, V. Sterba, and K. Valter, Collect. Czech. Chem. Commun., 37, 5073-3080 (1972).
(4) B. H. Nicolet and .. R. Sampey, J. Am. Chem. Soc., 49, 1796-1801 (1927). (5) G. J. Moody and J. D. R. Thomas, J. Inorg. Nucl. Chem., 25, 221-226 (1963). (6) First prepared in our laboratory, using this method, J. Lang and B. Nahlovsky. - 973 , unpublished; for analogous synthesis of tribromophloroglucinol, see A. W. Francis anc A. J. Hill, J. Am. Chem. Soc., 96, 2503 (1924).
(7) Attempted iodinations of catechol and hydroquinone using the same procedure as for resorcinol resulted in copious quantities of finely divided I_{2}. t. was noted that the brown color of nascent iodine was not dissipated even after the first several drops; rather the reaction mixture became progressively darker and I_{2} vapors progressively more apparent.

Stereochemistry and Conformation of Biogenetic Precursors of Indole Alkaloids ${ }^{1}$

Amos H. Heckendorf, Kenneth C. Mattes, and C. Richard Hutchinson*
School o! Pharmacy, University of Wisconsin, Madison, Wisconsin 53706
Edward W. Hagaman and Ernest Wenkert*2
Department of Chemistry; Indiana University, Bloomington, Indiana 47401

Received November 24, 1975
The biosynthetic pathway of indole alkaloids found in several plant genera, notably in the Apocynaceae family, commences with. tryptophan and mevalonic acid. ${ }^{3}$ Upon trarsformation of the latter into loganin (1a) and secologanin (2a) the metabolic substances meet in the form of vincoside (3a). It appears currently that $3 \mathbf{a}$ or, in at least one instance, isovincoside (3b) ${ }^{4}$ is a biogenetic precursor of many, structurally diverse indole alkaloids. ${ }^{3,5}$ In order to facilitate investigations of the chemistry and metabolism of loganin (1a), secologanin (2a), the vincosides (3a and 3b), and their lactams ($4 a$ and $\mathbf{4 b}$), provide NMR spectral parameters for the vincosides and the lactams, and reinforce and extend the ORD-based determination of the $\mathrm{C}(3)$ configuration of these substances, ${ }^{6}$ a ${ }^{13} \mathrm{C}$ NMR analysis of 1 a and derivatives $\mathbf{1 b}, \mathbf{2 b}, \mathbf{3 c}-\mathbf{e}$, and $4 \mathbf{c}$,d was undertaken.

The ${ }^{13} \mathrm{C}$ NMR analysis was initiated on the natural glucoside loganin (1a). The carbon shifts of the β-glucosyl unit were assigned on the basis of known literature values, ${ }^{7}$ while all but the methine shifts were recognized by the characteristic field position and/or multiplicity of the signals of the unique aglycone carbon centers. ${ }^{8}$ Carbon 19 was distinguished from the two other methines by its shift perturbation on acetylation of the neighboring 3 -hydroxy group (vide infra). The differentiation of the remaining methines, $C(15)$ and $C(20)$, was founded on the shift difference of related carbons in dihydropyran and the expected strong deshielding of the homoallylic vs. allylic carbon by the neighboring methyl and glucosyloxy groups.

The ${ }^{13} \mathrm{C}$ NMR spectra of loganin pentaacetate ($\mathbf{1 b}$) re-vea-ed expected deshielding of $C(3)$ and shielding of $C(14)$ and $\mathrm{C}(19)$ as well as a shift pattern for the sugar moiety reminiscent of methyl tetraacetyl- β-D-glucopyranoside. ${ }^{9}$ Rupturing the five-membered ring, i.e., loganin pentaacetate (1b) \rightarrow secologanin tetraacetate (2 b), caused no shift changes in the glucose unit, but induced ca. $2-5 \mathrm{ppm}$ shift alterations for the characteristic dihydropyran ring carbons. The shift assignment for $\mathrm{C}(15)$ and $\mathrm{C}(20)$ of the secologanin derivative $\mathbf{2 b}$ was confirmed by a correlation of the $\mathrm{H}(15)$ and $\mathrm{H}(20)$ shifts with the carbon resonances. ${ }^{10,11}$ All δ values of ccmpounds $\mathbf{l a}, \mathbf{1 b}$, and $\mathbf{2 b}$ are listed in Table I.

Table I. Carbon Shifts of Loganin and Secologanin Derivatives ${ }^{a}$

	$\mathbf{l a}^{\boldsymbol{b}}$	$\mathbf{l b}^{\mathbf{c}}$	$\mathbf{2 b}^{\mathbf{c}}$
$\mathrm{C}(3)$	72.8	76.9	198.6
$\mathrm{C}(14)$	40.9	38.7	43.0
$\mathrm{C}(15)$	30.2	29.7	25.0
$\mathrm{C}(16)$	112.0	113.3	109.2
$\mathrm{C}(17)$	150.2	148.8	150.9
$\mathrm{C}(18)$	11.4	12.3	120.7
$\mathrm{C}(19)$	40.2	38.7	131.9
$\mathrm{C}(20)$	44.6	45.3	43.5
$\mathrm{C}(21)$	95.8	94.5	95.6
$\mathrm{C}=\mathrm{O}$	167.7	166.7	166.3
OMe	50.3	51.0	51.0
$\mathrm{C}\left(1^{\prime}\right)$	98.1	95.7	95.6
$\mathrm{C}\left(2^{\prime}\right)$	73.3	70.5	70.4
$\mathrm{C}\left(3^{\prime}\right)$	76.1	72.3^{d}	72.2^{d}
$\mathrm{C}\left(4^{\prime}\right)$	69.7	68.1	67.9
$\mathrm{C}\left(5^{\prime}\right)$	76.1	72.0^{d}	72.0^{d}
$\mathrm{C}\left(6^{\prime}\right)$	61.1	61.6	61.5

${ }^{a} \delta$ values in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$; $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm} .{ }^{b}$ Enough methanol added to effect solution. ${ }^{c}$ The acetyl groups show $\delta(\mathrm{Me})$ and $\delta(\mathrm{C}=\mathrm{O})$ values of 20.4 ± 0.5 and $169.4 \pm 0.9 \mathrm{ppm}$, respectively. ${ }^{d}$ Signals may be reversed in any vertical column.

Table II. Carbon Shifts of Vincoside Derivatives ${ }^{a}$

	\mathbf{c}^{b}		$\mathbf{3} \mathbf{d}^{c}$	$\mathbf{3 e}^{c}$	$\mathbf{4} \mathbf{c}$
$\mathrm{C}(2)$	134.9	134.6	134.9	133.9	133.9
$\mathrm{C}(3)$	51.1	45.9	47.7	53.3	53.6
$\mathrm{C}(5)$	44.1	40.4	40.9	39.5	43.4
$\mathrm{C}(6)$	16.9	21.5	21.5	21.1	19.0
$\mathrm{C}(7)$	106.7	107.0	106.8	108.2	109.6
$\mathrm{C}(8)$	127.2	126.6	126.4	126.9	127.7
$\mathrm{C}(9)$	117.8	117.7	117.6	117.9	117.7
$\mathrm{C}(10)$	118.9	119.1	119.0	119.0	119.0
$\mathrm{C}(11)$	121.1	121.4	121.3	121.4	121.3
$\mathrm{C}(12)$	110.6	110.9	111.0	111.2	111.4
$\mathrm{C}(13)$	135.5	135.8	136.1	136.8	136.6
$\mathrm{C}(14)$	33.7	33.1	33.4	31.5	26.3
$\mathrm{C}(15)$	26.3	27.1	28.0	26.6	24.3
$\mathrm{C}(16)$	111.7	110.9	110.3	109.1	109.6
$\mathrm{C}(17)$	150.4	151.2	150.5	146.2	145.8
$\mathrm{C}(18)$	119.4	120.1	120.9	119.8	119.9
$\mathrm{C}(19)$	133.7	133.3	132.2	132.5	132.9
$\mathrm{C}(20)$	42.1	42.8	43.4	42.7	42.9
$\mathrm{C}(21)$	96.2	95.3	95.3	96.3	95.1
$\mathrm{C}=\mathrm{O}$	167.2	167.4	167.0	162.4	163.9
OMe	51.1	51.3	51.1		

${ }^{a} \delta$ values in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}$; $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}$. The tetraacetyl- β-D-glucopyranosyl carbon shifts are the same as those denoted in Table I. ${ }^{b}$ The shifts for the benzyl group are $\delta\left(\mathrm{CH}_{2}\right) 56.9, \delta$ (ipso-C) $139.6, \delta(o-\mathrm{C}) 128.2, \delta(m-\mathrm{C}) 129.4$, and $\delta(p-\mathrm{C}) 126.7 \mathrm{ppm} .{ }^{c}$ The carbonyl shift of the N-acetyl group is within the range of the δ values of the O-acetyl functions described in Table I, while the N-acetyl $\delta(\mathrm{Me})$ is 21.9 ppm .

The ${ }^{13} \mathrm{C}$ NMR data of secologanin tetracetate (2b) (vide supra) and of tryptamine and carboline derivatives ${ }^{12}$ permitted a first-order shift analysis of the tetraacetyl derivatives of $N_{\text {b }}$-benzylvincoside (3c), $N_{\text {b }}$-acetylvincoside (3d) and N_{b}-acetylisovincoside (3e). Inspection of the ${ }^{13} \mathrm{C}$ NMR spectra of vincoside lactam tetraacetate (4 c) and the corresponding isovincoside derivative (4d) showed the ring closure of the vincosides to yield no ambiguous shift perturbations. All chemical shifts of compounds $3 \mathrm{c}-\mathrm{e}$ and $4 \mathrm{c}, \mathrm{d}$ are listed in Table II.

$3 \mathrm{a}, 3 \beta-\mathrm{H}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$
b, $3 \alpha-\mathrm{H}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$
c, $3 \beta-\mathrm{H}, \mathrm{R}=\mathrm{Ac} ; \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C}_{;} ; \mathrm{H}_{\bar{\alpha}}$
d. $3 \beta-\mathrm{H}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ac}$
e. $3 \alpha-H, R=R^{\prime}=A c$

$4 \mathrm{a}, 3 \beta-\mathrm{H}, \mathrm{R}=\mathrm{H}$
b, $3 \alpha-\mathrm{H}, \mathrm{R}=\mathrm{H}$
c, $3 \beta-\mathrm{H}, \mathrm{R}=\mathrm{Ac}$
$\mathrm{d}, 3 \alpha-\mathrm{H}, \mathrm{R}=\mathrm{Ac}$

Comparison of the ${ }^{13} \mathrm{C}$ NMR data on the N_{b}-acetylvincosides $3 \mathbf{d}$ and $3 \mathbf{e}$ shows $C(3)$ epimerization to have little shift effect. The difference of the $\delta(\mathrm{C}-3)$ values can be attributed to a difference of rotamer populations of the side chain whose exact nature is difficult to assess. ${ }^{13}$ However, the shift difference of several carbon sites of tetraacetylvincoside lactam (4c) and tetraacetylisovincoside lactam (4d) reveals both the $\mathrm{C}(3)$ stereochemistry and the conformation of the fused pentacyclic nucleus of the two lactams.

The chemical shifts of $C(3)$ and $C(6)$ of yohimboid and ajmalicinoid alkaloids, pentacyclic substances (cf. 5) structurally related to $\mathbf{4 c}$ and $\mathbf{4 d}$, have been shown to be diagnostic parameters for the conformational analysis of these compounds. ${ }^{14}$ Conversion of the quinolizidine unit,
i.e., rings C and D, into a quinolizidone system is expected to change the $\mathrm{C}(3)$ shift. Furthermore, the presence of a β -oxy- α, β-unsaturated carbonyl moiety flattens rings D and E to such an extent as to preclude nonbonded interactions between $\mathrm{H}(3)$ and ring E hydrogens or substituents, i.e., γ and δ effects. As a consequence the $\delta(\mathrm{C}-3)$ value contains little stereochemical information, a prediction in accord with the identity of the $C(3)$ shift of $4 c$ and $4 d$. The $\Delta \delta$ value for the methine of quinolizidine (6) ${ }^{12}$ and quinolizidone (7) can be used in conjunction with the $C(3)$ shift of

5

6

7
yohimbine (5) ${ }^{14}$ for the evaluation of $\delta(\mathrm{C}-3)$ of $\mathbf{4 c}$ and 4 d . The calculated value 52.9 ppm fits well the observed resonances of 53.3 and 53.6 ppm , respectively.

The $\delta(\mathrm{C}-6)$ values of 21.5 ± 0.5 and $16.5 \pm 0.5 \mathrm{ppm}$ of yohimboid substances containing trans- and cis-quinolizidine units, respectively, ${ }^{14}$ indicate 4 c to adopt the transquinolizidone conformation and 4 d to tend toward a cisquinolizidone structure. While $\mathrm{C}(6)$ of $\mathbf{4 d}$ is less shielded than expected, the limiting δ (C-6) value cannot be assessed. The lactam carbonyl group imposes trigonality on N_{b} thereby reducing nonbonded interactions on $\mathrm{H}(6)$ within a C/D cis conformation. ${ }^{15}$ Finally, since $4 c$ and $4 d$ differ stereochemically only at $\mathrm{C}(3)$, the difference of their quinolizidone conformation limits them to $\mathrm{H}(3)-\mathrm{H}(15)$ cis and trans stereochemistry, respectively.

Besides the $\mathrm{C}(6)$ shift three other resonances are in agreement with conformation 8 for lactam 4 c and 9 a for lactam 4 d . Comparison of the aminomethylene shift of quinolizidine (6) with the amidomethylene resonance of quinolizidone (7) yields a $\Delta \delta$ value of 15.0 ppm , while $\Delta \delta$ (C-5) between yohimbine (5) and tetraacetylvincoside lactam

8

(4c) as well as its 3 epimer $4 \mathbf{d}$ is 12.6 and 8.7 ppm , respectively. ${ }^{16}$ Since the shielding of $C(5)$ on introduction of the nuclear carbonyl group is largely due to an added γ effect ${ }^{17}$ and since the nonbonded interaction of the carbonyl oxygen with the $\mathrm{C}(5)$ hydrogens is nearly identical in the trans-quinolizidone conformations 8 and $9 b$ but different in the cis-quinolizidone form 9 a , the $\Delta \delta(\mathrm{C}-5)$ values agree with the above conformational assignment. The γ effect of the carbonyl oxysen, which induces shielding of $C(5)$ of 4 c relative to 4 d , is reflected also, albeit in reduced form, by the carbonyl carbon being more shielded in $\mathbf{4 c}$ vs. 4 d . Carbon 19 experiences a 1,3 -diaxial nonbonded interaction with $\mathrm{H}(14 \alpha)$ in conformations 8 and 9 a , but not in 9 b . Since the $\mathrm{C}(19)$ shift is nearly the same in $\mathbf{4 c}$ and 4 d , it also confirms the above stereochemical argument.

Experimental Section

All carbon shifts were recorded on Brucker HFX-90E and Varian XL-100-15 NMR spectrometers operating in the Fourier transform mode at 22.6 and 25.2 MHz , respectively. The shifts on formulas 5, 6, and 7 refer to deuteriochloroform solutions; $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=$ $\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}$.

Acknowledgment. A gift of lactams $\mathbf{4 a}$ and $\mathbf{4 b}$ by Dr. G. J. O'Loughlin, ${ }^{13} \mathrm{C}$ NMR determinations by J. Blackburn, and financial support by the Public Health Service for the work at the University of Wisconsin (CA 17127 by NCI) and at Rice University are acknowledged gratefully.

Registry No.-1a, 18524-94-2; 1b, 20586-11-2; 2b, 21237-36-5; 3c, 55855-71-5; 3d, 22621-93-8; 3e, 20824-30-0; 4c, 52484-98-7; 4d, 23141-26-6.

References and Notes

(1) Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. 41. For the preceding publication see A. Ahond, A.-M. Bui, P. Potier, E. W. Hagaman, and E. Wenkert, J. Org. Chem., 41, 1878 (1976)
(2) Department of Chemistry, Rice University, Houston, Texas 77001.
(3) Cf. G. A. Cordell Lloydia, 37, 219 (1974), for an acerbic, but comprehensive review of indole alkaloid biosynthesis.
(4) (a) C. R. Hutchinson, A. H. Heckendorf, P. E. Daddona, E. W. Hagaman, and E. Wenkert, J. Am. Chem. Soc., 96, 5609 (1974); (b) A. H. Heckendorf and C. R. Hutchinson, Tetrahedron Lett., in press.
(5) R. F. Manske, "The Alkaloids", Vol. I-XV. Academic Press. New York, N.Y.
(6) W. P. Blackstock, R. T. Brown, and G. K. Lee. Chem. Commun., 910 (1971)
(7) A. S. Perlin, B. Casu, and H. J. Koch, Can. J. Chem., 48, 2596 (1970).
(8) J. B. Stothers, "Carbon-13 NMR Spectroscopy". Academic Press, New York, N.Y., 1972
(9) D. E. Dorman and J. D. Roberts, J. Am. Chem. Soc., 93, 4463 (1971).
(10) (a) B. Birdsall, N J. M. Birdsall, and J. Feeney, J. Chem. Soc., Chem. Commun., 316 (1972); (b) N. J. Bach. H. E. Boaz, E. C. Kornfeld, C.-J. Chang. H. G. Floss, E. W. Hagaman, and E. Wenkert. J. Org. Chem., 39, 1272 (1974); (c) E. Wenkert, B. L. Buckwalter, I. R. Burfitt, M. J. Gasic, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and P. M. Wovkulich. in G. C. Levy. "Topics in Carbon-13 NMR Spectroscopy", Vol. II, Wiley. New York, N.Y., 1976
(11) The unambiguous $\mathrm{C}\left(1^{\prime}\right)$ shift of 2 was responsible for the differentiation of the $C(21)$ from $C\left(1^{\prime}\right)$ shifts in 1 b .
(12) E. Wenkert. J. S. Bindra. C.J. Chang. D. W. Cochran. and F. M. Schell. Acc. Chem. Res.. 7, 46 (1974).
(13) For a ${ }^{13} \mathrm{C}$ NMR spectrally based conformational analysis of structurally related alkaloids see M. C. Koch. M. M. Plat, N. Preaux, H. E. Gottlieb, E. W. Hagaman, F. M. Schell, and E. Wenkert, J. Org. Chem., 40, 2836 (1975).
(14) E. Wenkert, C.J. Chang. H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C. King, and K. Orito. J. Am. Chem. Soc., in press.
(15) The shielding of $C(6)$ in C/D cis yohimboid alkaloids relative to C/D trans compounds is due to the nonbonded interaction between axial $H(6)$ and the axial hydrogen on the nonvicinal aminomethylene group. ${ }^{8}$ The change of the $C(6)$ shift of Ab reflects a change in the spatial disposition of the interacting centers toward each other rather than the effect on the γ shift by the replacement of the aminomethylene hydrogens by a doubly bonded oxygen, since γ effects are common to both hydro-gen-hydrogen ard hydrogen- π bond interactions. ${ }^{14}$
(16) I $\mathbf{4 b}$ is compared with pseudoyohimbine. ${ }^{14}$ a C/D cis structure. $\Delta \delta$ becomes 7.3 ppm .
(17) For sake of comparison the $\Delta \delta(\mathrm{Me})$ values of the methylcyclohexane/ 2-methylcyclohexanone and N -methylpiperidine/ N -methyl- α-piperidone pairs are 9.5 and 12.1 ppm, respectively.

Catalysis of the Cope Rearrangement by Alumina

Raymond P. Lutz.* Harlan A. J. Berg, and Paul J. Wang
Department of Chemistry, Portland State L'niversity, Portland, Oregon 97207

Received November 21, 1975
During attempted chromatographic purification of dl 3,4 -diphenylhexa-1,5-diene (1) on alumina (Woelm 200, neutral. grade super I), the unexpected and surprising observation was made ${ }^{1}$ that the diene had been partly converted to trans, trans-1,6-diphenylhexa-1,5-diene (2), the product of its thermal Cope rearrangement at $80^{\circ} \mathrm{C}$ via a chairlike transition state (la). ${ }^{2}$ We report here a more detailed inves-

tigation of this phenomenon, including examination of the corresponding meso diene (3) which likewise rearranges on alumina, although at a considerably slower rate, to a product mixture comparable to that of its purely thermal Cope rearrangement, namely, cis,trans- (4) and trans,trans-1,6-di-phenylhexa-1,5-diene (5). ${ }^{2}$ To achieve convenient rearrangement rates, the commercial alumina was further activated for 4 h at $650-700^{\circ} \mathrm{C}$, a temperature which is reported to yield a catalyst of maximum activity. ${ }^{3}$

With an alumina:diene ratio of $50: 1$, approximately 20 mg of $d l$ diene (1) in 1 ml of heptane was converted within 15 min at room temperature to the trans, trans diene (2). The infrared spectrum of the crude product (84% material recovery) was virtually identical with that of authentic material, and VPC analysis showed less than 0.1% of other products under conditions where the three isomeric 1.6 -diphenylhexa- 1,5 -dienes as well as trans-1,4-diphenylhexa-1,5-diene are resolved. Using Woelm 200 neutral alumina directly from its container without further activation, essentially equivalent results were obtained in 70 h at room temperature, as well as in 1.5 h at 60 ${ }^{\circ} \mathrm{C}$. The uncatalyzed Cope rearrangement of the $d l$ diene has a half-life of about 8 h at $80^{\circ} \mathrm{C}$ and yields exclusively the trans,trans diene. ${ }^{2}$

Investigation of the meso diene rearrangement was complicated by incomplete conversions as well as alumina-catalyzed product isomerization. The extent of conversion could be determined by quantitative infrared spectroscopy on the crude rearrangement mixture, and product analysis was again carried out by VPC, after separation of the thermally labile unconverted meso diene by thin layer chromatography on silver nitrate impregnated silica gel.

Table I summarizes the results of two rearrangements at room temperature under conditions similar to those employed for $d l$ diene. It is apparent from the leveling off of the percent rearrangement with time, especially in run 2, that the catalyst is becoming deactivated, and some product isomerization may be taking place. The inconsistencies in percent rearrangement with time are characteristic of the difficulties and poor reproducibility encountered in the investigation of the meso diene rearrangement. The sample points represent individual ampules, and the reaction is apparently sensitive to slight variations in the preparation and handling of the highly active catalyst. Accepting the data of run 1 as the more consistent, the alumina-catalyzed rearrangement of meso diene at room temperature gives 68% of cis,trans- (4) and 32% of trans,trans-1,6-diphenylhexa-1,5-diene (5).

Results of catalyzec rearrangement at $60^{\circ} \mathrm{C}$ are given in

Table I. Meso Diene Rearrangement at Room Temperature

Run 1

Reaction time, min	15	30	45	60
\% meso diene rearranged	11	15	20	21
\% cis,trans	68	68	68	68
\% trans,trans	32	32	32	32
\% material recovery	85	94	85	85

Run 2

Reaction time, h	1	2	3	4
\% meso diene rearranged	36	33	40	37
\% cis,trans	73	72	68	69
\% trans,trans	27	28	32	31
\% material recovery	78	79	90	87

Table II. Meso Diene Rearrangement at $60^{\circ} \mathrm{C}$

Reaction time, min	15	30	45	60
\% meso diene rearranged	53	96	82	$" 110 "$
\% cis,trans	46	34	23	23
\% trans,trans	54	66	77	77
\% material recovery	95	75	90	73

Table II. Product isomerization is pronounced, and a rough approximation of the isomer ratio formed in the rearrangement itself, obtained by extrapolation to zero time, is 55% of cis,trans and 45% trans,trans isomers. Inconsistencies are again apparent in the extent of rearrangement vs. time.

The alumina-catalyzed rearrangement of the meso diene is likewise seen to parallel its purely thermal Cope rearrangement. In this case both the chairlike (3a) and boatlike (3b) configurations are involved, leading respectively to the cis,trans and trans, trans products. The thermal rearrangement gives 63% cis, trans and 37% trans, trans diene at $120^{\circ} \mathrm{C}$ with a half-life of about $15 \mathrm{~h} .{ }^{2}$

To rule out the possibility that catalyzed rearrangement arises from a fragmen-ation-recombination process involving phenyl-substituted allyl radicals and trans-1,4-diphenyl-hexa-1,5-diene as intermediates, the latter was subjected to the conditions of catalyzed rearrangement. It was unaffected by this treatment. and was also not detected in any of the crude rearrangement products.

The parallelism between the alumina-catalyzed and thermal reactions suggests that catalysis involves interaction of only one double bonc with the catalyst surface, leaving the other free to adopt the preferred configuration. Assuming that catalysis by alumina is a consequence of Lewis acidity, some variation of the process illustrated in Scheme I for the $d l$ diene may be operating in the catalyzed reaction.

A few examples of catalyzed Cope rearrangements have been previously reported, each involving a transition metal complex. ${ }^{4}$ The oxa-Cope (Claisen) rearrangement is catalyzed by more or less ordinary Lewis acids. ${ }^{5}$

Experimental Section

Melting points are uncorrected and were obtained in capillary tubes. Infrared spectra were recorded on a Perkin-Elmer Model 467 spectrophotometer. VPC analysis of the systems under study has already been described. ${ }^{2}$ TLC analyses were on silica gel (Merck, HF_{254}) impregnated with about 20% silver nitrate, with sample components directly visible under short-wavelength uv light or upon spraying with 2,7-dichlorofluorescein followed by long-wavelength uv. Except where noted, alumina (Woelm 200, neutral, grade super I, approximately $200 \mathrm{~m}^{2} / \mathrm{g}$ BET surface area) was activated at 650-700 ${ }^{\circ} \mathrm{C}$ for 4 h prior to use. Weighings of alumina were carried out in a drybox. n-Heptane (Mallinckrodt spectrophotometric grade) was dried over molecular sieves.
Rearrangement of $d I$-3,4-Diphenylhexa-1,5-diene on Aluminum Oxide. Approximately 1 g of alumina was weighed into each of four $5-\mathrm{ml}$ Pyrex ampules; into each ampule was injected a solution of $d l$ diene ($\mathrm{mp} 34.7-35.6^{\circ} \mathrm{C}$) in n-heptane ($20 \mathrm{mg} / \mathrm{ml}$) in such quantity that the diene:alumina ratio was $1: 50$. The ampules were closed with serum caps and left at room temperature with frequent manual shaking for $15,30,45$, and 60 min , respectively. Crude products were isolated by vacuum evaporation of solvent after filtration and rinsing of the pale yellow alumina with a small amount of methanol. The ir spectra of all samples were virtually identical with that of authentic trans,trans-1,6-diphenylhexa-1,5-diene. VPC confirmed that this was the major component, with only traces of other materials; isomeric 1,6 -diphenylhexa-1,5-dienes were absent in amounts greater than 0.1%. Melting points and percent material recovery for the crude samples follow: $15 \mathrm{~min}(84 \%), \mathrm{mp} 74.0-77.2^{\circ} \mathrm{C} ; 30 \mathrm{~min}(94 \%)$, $73.5-$ $76.7^{\circ} \mathrm{C} ; 45 \mathrm{~min}(87 \%), 75.5-77.5^{\circ} \mathrm{C} ; 60 \mathrm{~min}(84 \%), 73.5-76.0^{\circ} \mathrm{C}$; lit. ${ }^{2}$ $79.0-79.5^{\circ} \mathrm{C}$.
Another run used 20 mg of $d l$ diene in 2 ml of n-heptane with 2 g of Woelm alumina taken directly from its container without further heating. Rearrangement was monitored by TLC (development in 1:1 carbon tetrachloride-acetone); the reaction appeared complete after 70 h . The crude product, $\mathrm{mp} 73.5-76.0^{\circ} \mathrm{C}$, analyzed by VPC as trans,trans-1,6-diphenylhexa-1,5-diene with only traces of other components.
A similar run was carried out at $60^{\circ} \mathrm{C}$ with 40 mg of $d l$ diene in 2 ml of n-heptane and 2 g of Woelm alumina taken directly from its container. VPC analysis of the crude product ($\mathrm{mp} 76.0-77.5^{\circ} \mathrm{C}$) after 1.5 h showed no significant components other than the trans, trans diene.
Rearrangement of meso-3,4-Diphenylhexa-1,5-diene on Aluminum Oxide. Run 1. Into each of four ampules containing approximately 1 g of alumina was injected a solution of meso diene (mp $85.6-86.5^{\circ} \mathrm{C}$) in n-heptane ($25 \mathrm{mg} / \mathrm{ml}$) in such quantity that the diene:alumina ratio was 1:50. Crude products were isolated after 15, 30,45 , and 60 min at room temperature. The ir spectrum of each was determined quantitatively, following which unreacted meso diene was removed by preparative TLC (70:30 carbon tetrachloride-acetone). The faster moving unresolved 1,6-diphenylhexa-1,5-dienes were eluted from the silica gel with dichloromethane. VPC analysis identified cis,trans- and trans,trans-1,6-diphenylhexa-1,5-diene as the only products present in other than trace amount, with their relative ratios determined by integration. The percent conversion for each sample was determined from the intensity of the $10.4-\mu$ ir band common to the two dienes, employing an average extinction coefficient calculated from the VPC data and the extinction coefficients for the pure cis, trans diene ($0.67 \mathrm{ml} \mathrm{mg}^{-1} \mathrm{~cm}^{-1}$) and the trans, trans diene ($1.97 \mathrm{ml} \mathrm{mg}^{-1} \mathrm{~cm}^{-1}$). Results are shown in Table I.
Run 2. In a second run ampules were kept at room temperature for $1,2,3$, and 4 h, respectively. Results are given in Table I. Character-
istics of this run were similar to those of the earlier one, except that the later samples showed a slight unidentified shoulder on the downward slope of the VPC trace of the trans, trans diene.
A third run was carried out at $60^{\circ} \mathrm{C}$, with crude products isolated at $15,30,45$, and 60 min . Results are given in Table II. A trace component with a retention time corresponding to that of cis,cis-1,6-diphenylhexa-1,5-diene could also be observed in the VPC traces. The " 11 c\%" conversion in 60 min probably reflects inability to isolate procuct absorption at 10.4μ from background ir absorption, since pure trans, trans diene showed linearity in the concentration range employed. Visual inspection of the ir spectrum actually suggested approximately 5% unreacted meso diene after 60 min . No attempt was made to improve the ir analysis in view of the inherent lack of reproducibility encountered and expected in a heterogeneous system involving a highly ac-ivated alumina.

Stability of trans-1,4-Diphenylhexa-1,5-diene on Alumina. Twc ampules prepared as above using trans-1,4-diphenylhexa-1,5diene in n-heptant were maintained, respectively, at room temperature for 4 h and $\mathrm{a}=60^{\circ} \mathrm{C}$ for 1 h . Isolation of the diene followed by ir and VPC examination showed that the trans 1,4-diene had undergone no change.

Registry No.-1, 33788-15-7; 2, 58463-02-8; 3, 33788-14-6; 4, 33788-20-4; alumir.a, 1344-28-1.

References and Notes

(1) H. A. J. Berg, Masters Thesis, Portland State University, Portland, Oregon, 1972.
(2) F.. P. Lutz, S. Bernal, R. J. Bogglo, R. O. Harris, and M. W. McNicholas, J. Am. Chem. Soc., 93, 3985 (1971)
(3) H. Pines and W. C. Haag. J. Am. Chem. Soc., 82, 2471 (1960).
(4) (a) J. C. Trebellas, J. R. Olechowski, and H. B. Jonassen. J. Organomet. Chem., 6, 412 (1968); (b) P. Heimbach and W. Brenner, Angew. Chem., Int. Ed. Engl., 6, 800 (1967).
(5) J. Borgulya, R. Madeja, P. Fahrni, H. J. Hansen, H. Schmid, and R. Barner, Helv. Chim. Acta, 56, 14 (1973).

Carboxylation of Aromatic Compounds by Palladium(II) Carboxylates

Tsutomu Sakakibara*
Institute of Chemistry, College of Liberal Arts, Kagoshima University, Korimoto-cho, Kagoshima, Japan

Yoshinobu Odaira

Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Suita-shi, Osaka, Japan

Received July 10, 1975
Benzenoid compounds react with palladium(II) salts in a variety of ways, depending on the reaction conditions used. The products resulting from chlorination, ${ }^{1}$ acetoxylation, ${ }^{2}$ nitration, ${ }^{3}$ carbonylation, ${ }^{4}$ and oxidative dimerization ${ }^{5}$ are known. The authors have already communicated a newer type of reaction by palladium(II) chloride and sodium acetate, i.e., aromatic carboxylation. ${ }^{6}$ However, the yields of aromatic acids therein produced were relatively poor.
The present paper describes that the use of palladium(II) carboxylates improves the yields of aromatic acids and that the olefinic hydragen of styrene is also substituted by carboxyl group, although in a low yield.
The reaction of aromatic compounds with sodium palladium(II) malonate (A) ${ }^{7}$ in a mixed solvent of acetic acids and acetic anhydride or carbon tetrachloride gave aromatic acids in good yields, together with lower yields of aromatic dimers. The results are shown in Table I. It can be seen that sodium palladium(II) malonate (A) is much more efficient for aromatic carboxylation than the palladium(II) chloride-sodium ace-ate system. ${ }^{6}$

Table I. Carboxylation of Aromatic Compounds by Sodium Palladium(II) Malonate (A)

Reactants ${ }^{\text {a }}$		Solvents (ratio)$(100 \mathrm{ml})$	Products, \% b	
 $(0.1 \mathrm{~mol})$	A, mmol			
$\mathrm{R}=\mathrm{H}$	1.4	$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(1: 1)$	98	None
H	2.8	$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(1: 1)$	70	Trace
H	2.8	$\mathrm{AcOH}-\mathrm{CCl}_{4}(5: 1)$	66	20
OCH_{3}	2.8	$\mathrm{AcOH}-\mathrm{CCl}_{4}(5: 1)$	55.4	Small

${ }^{a}$ Reactants were heated at $100{ }^{\circ} \mathrm{C}$ or reflux for $10 \mathrm{~h} . b$ Yields are based on A used.

Table II. Carboxylation of Aromatic Compounds by Palladium(II) Malonate Complex (A) in the Presence of Silver Acetate
Registry no.
a^{2} The complex $A(2.8 \mathrm{mmol}), \mathrm{AgOAc}(12 \mathrm{mmol})$, and aromatic compound (10 ml$)^{1}$ were allowed to react in the mixed solvent (96 ml) of acetic acid and carbon tetrachloride ($5: 1$). ${ }^{b}$ Yields are based on the complex A used. c Exclusively formed. ${ }^{d}$ Not determined. e The meta isomer (80%) and para isomer (20%) were formed. f The formation ratio of α and β isomer was 2:1.

When silver acetate was used in addition to the salt (A), the best yield of aromatic acid was raised to 111%, based on palladium(II) salt used. The results for various aromatic compounds are summarized in Table II. The addition of reoxidation agent for metallic palladium(0) may make palla-dium-catalyzed carboxylation possible. Even though reoxidation of palladiumi(0) during the present reaction may produce palladium(II) acetate rather than regenerate sodium palladium(II) malonate (A), it is emphasized that the catalytic reaction is possible, as palladium(II) acetate also introduces the carboxyl group into aromatic rings. The attempted reactions of palladium(II! acetate with benzene under similar
conditions gave benzoic acid in yields of $18-21 \%$.
The difference in yields between A and palladium(II) acetate suggests that carboxylate ions around the palladium atom have an important role upon the aromatic carboxylation. ${ }^{8}$ Furthermore, the carjoxylation of benzene by palladium(II) acetate occurred in other solvents, such as acetic anhydride (in a yield of 21%), isobutyric anhydride (64%), or tetrachloroethylene (10%), showing that the carbon atom introduced into the aromatic ring should not be derived from solvent molecules. Further supporting evidence for this inference may be the result of reactions of phenylmercury compounds with palladium(II) salts in the mixed solvent of acetic acid and acetic anhydride (Tzble III). The substitution of mercury atom with carboxyl group was successful only in the presence of acetate ion. Consequently, these observations elucidate that the carbon atom of the carboxyl group introduced should be derived from carboxylate ions (e.g., malonate or acetate ions) which may be bonded to palladium atom.

The reaction of styrene with palladium(II) salt was further investigated, in order to know the scope of the carboxylation. The result showed that the olefinic hydrogen of styrene was

Table III. Reaction of Phenylmercury Compounds with Palladium(II) Salts

Reactants ${ }^{\text {a }}$			Products, \% b			
Pd Salt (5 mmol)	PhHg salt (5 mmol)	Na salt (50 mmol)				
$\begin{aligned} & \mathrm{PdCl}_{2} \\ & \mathrm{PdCl}_{2} \\ & \mathrm{Pd}(\mathrm{OAc})_{2} \end{aligned}$	PhHgCl PhHgCl PhHgOAc	NaCl NaOAc NaOAc	$\begin{gathered} \text { Trace } \\ 11 \\ 60 \end{gathered}$	$\begin{gathered} 45 \\ 48 \\ 1.0 \end{gathered}$	None Trace 2.0	$\begin{aligned} & 52 \\ & \mathrm{ND} c \end{aligned}$

${ }^{a}$ Reactants were heated in the mixed solvent of acetic acid (100 ml) and acetic anhydride (50 ml) at $100{ }^{\circ} \mathrm{C}$ for 5 hr .
b Yields are based on phenylmercury compounds used. c Not determined
substituted by carboxyl group to give olefinic acid, although in a low yield. In a typical experiment, styrene was allowed to react with palladium(II) chloride and sodium acetate in a mixed solvent of acetic acid and acetic anhydride, to give cinnamic acid (trace) and 3-phenylallylic acid (2.6\%), together with 1,4 -diphenylbutadiene (2.4%) and β-acetoxystyrene (23.3\%). Furthermore, the reaction of styrene with palladium(II) chloride and sodium propionate in a mixed solvent of propionic acid and propionic anhydride gave cinnamic acid (5.0\%), in addition to 1,4 -diphenylbutadiene (9.0%) and β propioxystyrene (44.0\%).

Experimental Section

Materials. Commercially available palladium(II) chloride (a guaranteed reagent by Tokyo Kasei Kogyo Co. Ltd.) was powdered and used without further purification. Palladium(II) acetate was prepared according to the method of Stephenson et al. ${ }^{9}$ Thiophenefree benzenes were used after drying by Na wire. Sodium acetate was dried by heating in solid state before use. Malonic acid and the sodium salt were commercially available. All solvents were distilled and dried by sodium sulfate. All authentic aromatic acids and dimers were commercially available and compared with isolated products in melting point, ir, NMR, and GLC retention time.
Sodium Palladium(II) Malonate (A). A mixture of palladium(II) chloride ($3.6 \mathrm{~g}, 0.02 \mathrm{~mol}$) and sodium malonate ($6.0 \mathrm{~g}, 0.04 \mathrm{~mol}$) in water (60 ml) was stirred on a boiling water bath. The brown mixture was gradually changed to a yellow precipitate. After 1 h , the yellow precipitate was filtered out (60% yield). The addition of acetone to the concentrated mother liquid gave further precipitate. The collected solids were recrystallized from water: yellow needles, $\mathrm{mp} 198-200^{\circ} \mathrm{C}$ dec; ir data was identical with that of potassium palladium(II) malonate, prepared by Schmerz et al. ${ }^{10}$
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{8} \mathrm{Na}_{2} \mathrm{Pd}$: C, 20.20; $\mathrm{H}, 1.12$. Found: C, 20.31; H, 1.04.
A was also synthesized from the reaction in nonaqueous system. Namely, the reaction of palladium(II) chloride and sodium malonate (1:2) in a mixed solvent of acetic acid and carbon tetrachloride (1:1) under reflux for 5 h gave a yellow palladium(II) compound in a yield of 90%. The isolated compound was identical with A from the preceding reaction in all spectral data.
Carboxylation of Benzene by Palladium(II) Acetate. A stirred solution of palladium(II) acetate ($4.5 \mathrm{~g}, 0.02 \mathrm{~mol}$), sodium acetate (8.2 $\mathrm{g}, 0.1 \mathrm{~mol})$, and benzene ($15.6 \mathrm{~g}, 0.2 \mathrm{~mol}$) in a mixed solvent of acetic acid (100 ml) and acetic anhydride (100 ml) was heated at $100^{\circ} \mathrm{C}$ for 6 h under nitrogen. The initial clear brown solution gradually turned black, showing precipitation of metallic palladium. After 6 h , gas evolution almost ceased, whose total amount was 71 ml and consisted of carbon dioxide, confirmed by GLC analysis, using a $3-\mathrm{m}, 20 \%$ acetonylacetone on Neopac 1A column ($0{ }^{\circ} \mathrm{C}$, He carrier). Metallic palladium ($2.1 \mathrm{~g}, 95 \%$) was removed by filtration. Distillation of the filtrate gave a low-boiling fraction $\mathrm{I}\left(40-80^{\circ} \mathrm{C}\right)$ and a high-boiling fraction II ($80-136^{\circ} \mathrm{C}$). Fraction I contained methyl acetate, benzene, and acetic acid, by GLC analysis using a $1.5-\mathrm{m}$, silicon DC 550 on Celite 545 column ($50^{\circ} \mathrm{C}, \mathrm{H}_{2}$ carrier) and a $1.5-\mathrm{m}$, polyethylene glycol 20 M on Celite 545 column ($30^{\circ} \mathrm{C}, \mathrm{H}_{2}$ carrier). Redistillation of fraction I gave a small amount of almost pure methyl acetate, which was identical with authentic material in ir spectrum. Fraction II consisted of benzene, acetic acid, and acetic anhydride. Further distillation of the residue under a reduced pressure removed residual solvents. The residual mixture was basified by aqueous sodium carbonate (15\%) and extracted several times by diethyl ether. Then the aqueous layer was acidified by concentrated hydrogen chloride and similarly extracted. The ether extracts were dried over anhydrous sodium sulfate. The acidic ether extract gave 526 mg of benzoic acid (21%): needles from water, mp 121-122 ${ }^{\circ} \mathrm{C}$ (lit. mp $122^{\circ} \mathrm{C}$). The neutral ether extract gave 118 mg of acetophenone (5%), 44 mg of phenyl acetate (1.5%), and a trace of biphenyl, which were identified with authentic materials by GLC and ir.

The reactions under other conditions were similarly treated. However, other products, except benzoic acid and biphenyl, were not identified.

Carboxylation of Benzene by A. A mixture of aromatic compounds (0.1 mol) and $\mathrm{A}(1.4$ or 2.8 mmol$)$ was heated under nitrogen for 19 h at $100^{\circ} \mathrm{C}$ in a mixed solvent (100 ml) of acetic acid and acetic anhydride ($1: 1$) or under reflux in a mixed solvent (100 ml) of acetic acid and carbon tetrachloride (5:1). The reaction mixtures were similarly treated as described in the above reaction.
Carboxylation of Aromatic Compounds by \mathbf{A} in the Presence
of Silver Acetate. A mixture of aromatic compounds (ca. 10 ml), ${ }^{11}$ A ($1.0 \mathrm{~g}, 2.8 \mathrm{mmol}$;, and silver acetate $(3.0 \mathrm{~g}, 12 \mathrm{mmol})$ was heated in a mixed solvent of acetic acid (80 ml) and carbon tetrachloride (16 ml) under reflux for 10 h. The reaction mixtures were similarly treated as cescribed above. The isolated aromatic products were identified with the authentic materials by ir, NMR, and mass spectra. The isomer distribution of aromatic acids was determined by GLC analysis, after the esterification with diazomethane.

Reaction of Phenylmercury Compounds with Palladium(II) Salts. Palladium(I) acetate ($1.1 \mathrm{~g}, 5 \mathrm{mmol}$) was allowed to react with phenylmercuric acetate ($1.7 \mathrm{~g}, 5 \mathrm{mmol}$) in the presence of sodium acetate $(4.1 \mathrm{~g}, 50 \mathrm{mmol})$ in a mixed solvent of acetic acid (100 ml) and acetic anhydride (50 ml) at $100^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was treated as described above. An acidic part (367 mg) of products contained benzoic acid ($350 \mathrm{mg}, 3 \mathrm{mmol}$). Biphenyl and phenyl acetate were identified by GLC analysis of the neutral part (70 mg).
Competitive Carboxylation of Benzene and Hexadeuteriobenzene by Palladium(II) Acetate. A mixture of benzene (49.4 mmol) and hexadeuteriobenzene (44.5 mmol) was carboxylated by palladium(II) acetate $(2.2 \mathrm{~g}, 0.01 \mathrm{~mol})$ and sodium acetate $(8.2 \mathrm{~g}, 0.1$ mol) in a mixed solvent of acetic acid (50 ml) and acetic anhydride (50 $\mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 5 h . After the filtration of precipitated metallic palladium and then evaporation of solvents and unreacted benzenes, the residual mixture was basified by aqueous sodium carbonate and washed several times by ethyl ether. Then the aqueous solution was acidified by concentrated hydrochloric acid and extracted by 100 ml of ethyl ether. The ether extract was dried over anhydrous sodium sulfate. After evaporation of ether, the residual mixture of aromatic acids (277 mg) was analyzed by mass spectra, which showed two peaks at the mass number of 127 and 122 with relative peak height of 1.00 and 4.38 , respectively.
Competitive Carboxylation of Benzene and Hexadeuteriobenzene by A. A mixture of benzene ($4.23 \mathrm{~g}, 54.2 \mathrm{mmol}$) and hexadeuteriobenzene $(4.57 \mathrm{~g}, 54.4 \mathrm{mmol})$ was allowed to react with A (1.0 $\mathrm{g}, 6.8 \mathrm{mmol}$) in a mixed solvent of acetic acid (80 ml) and carbon tetrachloride (16 ml) under reflux $\left(92^{\circ} \mathrm{C}\right.$) for 5 h . After the treatment described in the reaction with palladium(II) acetate, both the acidic products (58.5 mg) and the neutral products (small amount) were anclyzed by mass spectra. The acidic part had two peaks at the mass number of 127 and 122 with relative peak height of 1.00 and 3.90 , respectively, corresponding to pentadeuteriobenzoic acid and benzoic acid. The neutral part had three peaks at the mass number 164, 159, and 154 with relative intensity of $1.00,6.08$, and 12.9 , respectively, corresponding to decadeuteriodiphenyl, pentadeuteriodiphenyl, and diphenyl. Thus the relative number of phenyl group and pentadeuter:ophenyl group in the produced aromatic dimers was 3.9 and 1.0 , respectively.
Reaction of Styrene with Palladium(II) Chloride and Sodium Acetate. A stirred mixture of styrene ($52.1 \mathrm{~g}, 0.5 \mathrm{~mol}$), palladium(II) chloride ($7.2 \mathrm{~g}, 0.04 \mathrm{~mol}$), and sodium acetate ($16.4 \mathrm{~g}, 0.2 \mathrm{~mol}$) was heated in a mixed solvent of acetic acid (600 ml) and acetic anhydride $(303 \mathrm{ml})$ at $105^{\circ} \mathrm{C}$ for 7 h under nitrogen. The acidic products and the nectral products were separated by a similar treatment of the reaction mixture as described in the reaction of palladium(II) acetate. The dis:illation of the acidic part under a reduced pressure ($1-2 \mathrm{mmHg}$) gave white sublimate (5 mg): mp $131-132^{\circ} \mathrm{C}$ (lit. $\mathrm{mp} 133^{\circ} \mathrm{C}$); the ir identical with that of a specimen of cinnamic acid. The distillation res:due (630 mg) was dissolved into water. Water-soluble substances were recovered and recrystallized from water. 3-Phenylallylic acid (167 mg) was isolated and further purified by sublimation: mp $85-86$ ${ }^{\circ} \mathrm{C}$: ir (KBr disk) 2750-2450, 1700, 1410, 1222 (-COOH), 3040, 748, $695(-\mathrm{Ph}), 972 \mathrm{~cm}^{-1}$ (trans $\mathrm{HC}=\mathrm{CH}$); NMR $\left(\mathrm{CCl}_{4}\right) \tau 6.80(\mathrm{~d}, 2 \mathrm{H})$, $2.85-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 5 \mathrm{H}),-1.76(\mathrm{~s}, 1 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 74.07 ; \mathrm{H}, 6.17$. Found: $\mathrm{C}, 74.10 ; \mathrm{H}, 6.19$.
The neutral pa-t was filtered after evaporation of ethyl ether and cocling of the oily liquid to give 1,4-diphenylbutadiene (200 mg): pale yellow leaflets from benzene, mp $152-153^{\circ} \mathrm{C}$ (lit. mp $153^{\circ} \mathrm{C}$); NMR (CCL4)) 2.65-3.70 (m); ir (KBr disk) 3060, 1603, 1580. 1500, 1450, 1073, $992,988,912,745,736,687 \mathrm{~cm}^{-1}$. The filtrate was distilled under a recuced pressure (2 mmHg) to collect a fraction I $\left(30-93{ }^{\circ} \mathrm{C}, 2\right.$ mmHg). Redistillation of fraction I gave 1.5 g of β-acetoxystyrene: bp $88-91^{\circ} \mathrm{C}(2 \mathrm{mmHg}) ; n^{18} \mathrm{D} 1.5491$ (lit. ${ }^{12} \mathrm{bp} 119-121^{\circ} \mathrm{C}(10 \mathrm{mmHg})$, n^{2} D 1.5483); ir 1758. 1220, 1103 (-OAc), 3060, 1655, 940 ($-\mathrm{HC}=\mathrm{CH}-$), $1600,758,700 \mathrm{~cm}^{-1}(-\mathrm{Ph}) ; \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \tau 2.25(\mathrm{~d}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 5 \mathrm{H})$, $3.74(\mathrm{~d}, 1 \mathrm{H}), 7.9-(\mathrm{s}, 3 \mathrm{H})$. The residual oily liquid is considered to contain saturated acetate compounds and oligomers of styrene from the spectral data.
Reaction of Styrene with Palladium(II) Chloride and Sodium Acetate. A stirred mixture of styrene ($52.1 \mathrm{~g}, 0.5 \mathrm{~mol}$), palladium(II) chioride ($3.6 \mathrm{~g}, 0.02 \mathrm{~mol}$), and sodium propionate ($9.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) was
heated in a mixed solvent of propionic acid (98.4 g) and propionic anhydride $(91.0 \mathrm{~g})$ at $103^{\circ} \mathrm{C}$ for 7.5 h under nitrogen. After the treatment described above, cinnamic acid ($324 \mathrm{mg}, 5.0 \%$), 1,4-diphenylbutadiene ($380 \mathrm{mg} .9 .0 \%$), and β-propioxystyrene ($1.5 \mathrm{~g}, 44 \%$) were isolated.

Acknowledgment. The authors are indebted to Mr. H. Miyamoto and Miss Y. Sato for the NMR measurements, to Miss J. Maenaka and Mr. and Mrs. K. Muneishi for the ele mental analyses, and also to Mr. H. Moriguchi for the mass analyses.

Registry No.-A, 31168-61-3; palladium(II) chloride, 7647-10-1; sodium malonate, 23549-97-5; palladium(II) acetate, 3375-31-3; styrene, 100-42-5; sodium acetate, 127-09-3; phenylallylic acid, 2243-53-0; 1,4-diphenylbutadiene, 886-65-7; β-acetoxystyrene, 10521-96-7; $\mathrm{PhHgCl}, 100-56-1 ; \mathrm{PhHgOAc}, 62-38-4$.

References and Notes

(1) P. Henry, J. Org. Chem., 36, 1886 (1971)
(2) L. Eberson and L. Gomez-Gonzales, Chem. Commun., 263 (1971)
(3) (a) T. Tisue and W. Downs, Chem. Commun., 410 (1969); (b) R. Normann, W. Parr, and C. Thomas. J. Chem. Soc., Perkin Trans. 1, 369 (1974).
(4) P. Henry, Tetrahedron Lett., 2285 (1968).
(5) (a) R. van Helden and G. Verberg, Recl. Trav. Chim. Pays-Bas, 84, 1263 (1965); (b) J. Davidson and C. Triggs, Chem. Ind. (London), 457 (1966); (c) H. Yoshimoto and H. Itatani, Bull. Chem. Soc. Jpn., 46, 2490 (1973).
(6) T. Sakakibara, S. Nishimura, Y. Odaira, and T. Yoshida, Tetrahedron Lett. 1019 (1969).
(7) The formation of this compound has been previously communicated: T. Sakakibara, T. Teramoto, and Y. Odaira, Chem. Commun., 1563 (1970)
(8) In the competitive reaction of benzene and benzene- d_{6}, some different isotope effect was observed between palladium(II) malonate salt (A) and palladium(II) acetate. Namely, the formation ratio of benzoic acid and benzoic acid $-d_{5}$ was 3.9 with $A, 4.4$ with the latter.

(9) T. Stephenson, S. Morehouse, A. Powell, J. Heffer, and G. Willkinson, J. Chem. Soc., 3632 (1965)
(10) M. Schmerz, I. Nakagawa, S. Mizushima, and J. Quagliano. J. Am. Chem. Soc., 81, 287 (1965).
(11) Naphthalene only was used in weight of 11.5 g (0.09 mol).
(12) F. Semmler, Ber., 42, 584 (1909).

Synthesis of 4-Lithio-2-methyl-2-pentene. A New Type of Allylic Organometallic Compound ${ }^{1}$

Thomas E. Stanberry, Michael J. Darmon, Herbert A. Fry, and Ronald S. Lenox*

Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933

Received August 5, 1975
Allylic organometallics have long been the subject of intensive investigation. ${ }^{2}$ In particular, the ability of unsymmetrical allylic organometallics (1) to attach themselves to electrophiles by either end of the allylic system ($\mathbf{2 a}$ and $\mathbf{2 b}$) (Scheme I) has interested many workers. The nature of some electrophiles (alkyl halide, mineral acid, carbon dioxide) can greatly affect the ratio of these two possible product types. ${ }^{3}$ It is, therefore, difficult to say anything about the point of attachment of the metal in the organometallic species unless some physical method such as NMR is used as a probe.

Fortunately, much NMR work has been done and compounds such as 2-butenyl (crotyl) ${ }^{4}$ (1a), 2-methyl-2-butenyl ${ }^{5}$ (1b), and propenyl (allyl) ${ }^{6}$ (1c) Grignard reagents have been investigated. In each of the above cases where the allylic sys-

Scheme I

la, $\mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
b, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$
c, $R_{1}=R_{2}=R_{3}=R_{4}=H$
d, $R_{1}=R_{2}=R_{3}=C H_{3} ; R_{2}=H$

2a
2b
$M=\operatorname{metal}(\mathrm{Li})$ or metal halide (MgBr)
tem is unsymmetrical ($\mathbf{l a}$ and $1 \mathbf{b}$), the organometallic compound has been shown to be a rapidly interconverting mixture of isomeric compounds (Scheme II). The predominant isomer

is always the isomer in which the metal is attached to the least substituted end of the allylic system (herein termed the α carbon)..4,5 The isomer with metal attached to the most substituted carbon (herein termed the γ carbon) is presumably present in only small quantities at room temperature. ${ }^{5}$

To date, all investigation concerning unsymmetrical allylic organometallics where all the nonhydrogen substituents on the α and γ carbons are alkyl has been with systems where the point of metal attachment may be either on a primary or secondary allylic carbon (crotyl and related systems) or a primary or tertiary allylic carbon (2-methyl-2-butenyl and related systems). No simple allylic organometallic in which the position of attachment of the metal atom may be on either a secondary and tertiary allylic carbon has been synthesized and studied. We now wish to report the synthesis of such a system, namely 4-lithio-2-methyl-2-pentene (1d), and the results of several reactions of this new organometallic with several carbonyl compounds.

Generally, the synthesis of allylic organometallics can easily be effected from the corresponding bromide or chloride. With this in mind, we attempted to synthesize 4-bromo-2-methyl2 -pentene (4) from 2-methyl-2-penten-4-ol (3) using phosphorus tribromide in ether (Scheme III), a method reported by Roberts and co-workers for the synthesis of 4. ${ }^{7 \mathrm{a}}$ The results of this attempt were disappointing as the bromide spontaneously decomposed to give HBr and what NMR studies indicated to be 4,4-dimethyl-1,3-butadiene (5). The report by Roberts is, it should be noted, the only reference in the chemical literature to the synthesis of $4 .{ }^{7 \mathrm{~b}}$ Similar results were obtained when the synthesis of 4-chloro-2-methyl-2-pentene (6) was attempted using 3 and a mixture of triphenylphosphine and carbon tetrachloride, a method reported to be suitable for the synthesis of allylic chlorides which are prone to rearrangement. ${ }^{8}$ Presumably, the extreme difficulty of obtaining these halides in pure form under normal conditions accounts for the fact that the corresponding allylic anion (ld) and related systems have not been prepared.

Mesitoate esters of allylic alcohols, however, have been

shown to be good in situ sources of allylic anions when treated with lithium metal in tetrahydrofuran in the presence of allylic halides, aldehydes, or ketones. ${ }^{9}$ The mesitoate ester of 3, 4-(2-methyl-2-pentenyl) mesitoate (7), was therefore prepared by treating that alcohol with mesitoyl chloride in chloroform. ${ }^{9}$ Since reaction of the resulting in situ generated allyllithium with electrophile is extremely rapid, this method of synthesis precluded NMR study of organolithium 1d, which originally had been one of our goals.

Anion Id was accordingly generated from the mesitoate ester 7 in the presence of three carbonyl compounds: the unhindered ketones acetone and cyclohexanone and the hin-

dered aldehyde 2,2-dimethylpropanal. The results of these reactions are summarized in Table I.

Table I. Reaction of 4-Lithio-2-methyl-2-pentene with Carbonyl Compounds

Registry no.	Carbonyl compd	Products (ratio)	\% yield of carbinol(s)
$67-64-1$	Acetone	8	49
$108-94-1$	Cyclohexanone	$\mathbf{9}$	35
$630-19-3$	2,2-Dimethyl-	$\mathbf{1 0 , 1 1 (1 : 2)}$	83
	propanal		

It is interesting to note that reaction of anion 1d with the unhindered ketones acetone and cyclohexanone gave carbinol products 8 and 9 , respectively, in which the allylic system is attached by the most substituted end of the system (γ carbon). This similarity of behavior with the 1-butenyl and 2-methyl-2-butenyl systems which also react with unhindered ketones to produce carbinols in which the allylic system is
attached by the γ carbon may indicate that the organometallic reagent 1d has the lithium atom attached to the least substituted end of the allylic system (α carbon).

Reaction of 1 d with the more hindered substrate 2,2 -dimethylpropanal zave slightly different results. It can be seen in Table I that ore of the reaction products, compound 10, has the allylic unit a-tached by the least substituted end (α carbon) of the allylic system. This type of behavior is similar to tha: reported by Benkeser and co-workers for the reaction of crotyl Grignard (1a) with the very hindered carbonyl electrophile di-tert-butyl ketone. ${ }^{10}$ These workers reported that although the most rapidly formed (least stable) product had the butenyl (crotyl) system attached by the most substituted end of the allylic system (δ carbon), the more stable product had the allylic unit attached by the least substituted end of the system (α carbon). ${ }^{11}$ The product ratio was found to change with time, with the least stable product disappearing almost entirely after 192 h . In the reaction of 1 d with $2,2-$ dimethylpropanal, the ratio of products 10 and 11 always was $1: 2$, respectively, regardless of when the reaction mixture was examined. Isolation of pure 10 followed by treatment with lithium metal in tetrahydrofuran led in a very short period of time to a $1: 2$ mixture of 10 and 11 . This indicates that the product ratio observed is a result of thermodynamic as opposed to kinetic control; the establishment of equilibrium must be extremely rapid.

In contrast to anion 1d, the 2-methyl-2-butenyl anion (1b) can be generated in the presence of 2,2-dimethylpropanal from the corresponding bromide (12) using either magnesium ${ }^{11}$ or lithium ${ }^{12}$ metal. When this was done, the only product found was $3,3,5,5$-tetramethyl-1-hexen-4-ol (13) in which the allylic

unit is attached ty the most substituted end (γ carbon) of the allylic system. This would indicate that the behavior observed for anion 1d and 2,2-dimethylpropanal is due to increased steric hindrance in the more highly substituted allylic anion 1d.

We have assigned E (trans) geometry to the double bond in carbinols 8 and 9 as well as compound 11 . Examination of the vinyl region of the NMR spectrum of these compounds showed a coupling constant for the vinyl protons of 12.5 Hz , a value which makes it difficult to assign geometry. However, strong infrared absorption in the $960-985-\mathrm{cm}^{-1}$ region indicated that the samples were E isomers. If the transition state leading to the carbinol product resembles the product itself, then the preference for trans geometry is clear as that geometry in products 8,9 , and 11 should result in a more thermodyramically stable product than would cis geometry.

Experimental Section

General. 2-Me:hyl-2-penten-4-ol (3) was prepared by lithium aluminum hydride reduction of mesityl oxide in dry tetrahydrofuran. The alcohol was purified by distillation ($137-139{ }^{\circ} \mathrm{C}, 747$ Torr). Mesitoyl chloride was prepared by treating mesitoic acid with thionyl chloride. ${ }^{13}$ 2,2-Dimethylpropanal and 2-methyl-4-bromo-2-butene (12) were purchased from Chemical Samples Co. Lithium wire (0.1% Na) was obtained From Ventron and was washed in hexane prior to use.

All NMR spectra were recorded on a Varian T-60 instrument with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Ir spectra were recorded on a Beckman IR-8. Microanalyses were performed by the University of Illinois. All preparative gas chromatography was done on a column of 15% Carbowax 20 M on $60-80$ mesh Chromosorb \mathbf{W}.

4-(2-Methyl-2-pentenyl) Mesitoate (7). The ester was prepared in 79% yield from alcohol 3 and mesitoyl chloride: ${ }^{9}$ bp $124-126^{\circ} \mathrm{C}$ (0.13 Torr); ir (neat) 2980 (m), 2940 (m), 1755 (s), 1630 (m), 1450 (m),

1380 (m), 1272 (s), 1175 (s), 1088 (s), $855 \mathrm{~cm}^{-1}(\mathrm{~m})$; NMR ($\left.\mathrm{CCl}_{4}\right) \delta 1.30$ $(\mathrm{d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 9 \mathrm{H}), 5.20(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $5.50-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}$, aromatic).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 77.99; H, 9.00. Found: C, 77.86; H, 8.93.
Reaction of Mesitoate Ester 7 with Carbonyl Compounds. The ester (0.05 mol) and the carbonyl compound (0.05 mol) were allowed to stir in 50 ml of dry THF with an excess (0.5 mol) of lithium metal. When all of the ester was consumed (TLC), the reaction was quenched and a standard aqueous workup employed to isolate the carbinol product(s). Pure samples were prepared by preparative GLC.

Reaction with Acetone. Compound 8: 49\% yield; ir (neat) 3520 (s), 3020 (w), 2960 (s), $1610(\mathrm{w}), 980 \mathrm{~cm}^{-1}(\mathrm{~s}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.00(\mathrm{~s}$, $6 \mathrm{H}), 1.07$ (s, 6 H), 1.75 (d, $J=5 \mathrm{~Hz}, 3 \mathrm{H}$), $4.60(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 5.58$ (m, 2 H , vinyl).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 75.98$; H, 12.76. Found: C, 75.83 ; H , 12.82.

Reaction with Cyclohexanone. Compound 9: 35\% yield; ir (neat) 3500 (s), 3040 (s), 2900 (s), 1630 (m), 1450 (s), 1380 (s), 1320 (m), 1270 (s), 1138 (s), $982(\mathrm{~s}), 852 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \mathrm{NMR}^{\left(\mathrm{CCl}_{4}\right)} \delta 1.00(\mathrm{~s}, 6 \mathrm{H}), 1.47$ $(\mathrm{s}, 10 \mathrm{H}), 1.76(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 5.58(\mathrm{~m}, 2 \mathrm{H}$, vinyl).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 79.04 ; \mathrm{H}, 12.17$. Found: $\mathrm{C}, 78.97 ; \mathrm{H}$, 12.08.

Reaction with 2,2-Dimethylpropanal. Compounds 10 and 11, 83% yield overall, 1:2 ratio, respectively.

Compound 10: ir (neat) 3500 (s), 2900 (s), 2870 (s), 1670 (s), 1480 (s), 1445 (s), 1360 (s), 1080 (s), 980 (s), $840 \mathrm{~cm}^{-1}$ (s); NMR (CCl_{4}) $\delta 0.90$ (s, 9 H$), 1.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.67(\mathrm{~m}, 6 \mathrm{H}), 2.20$ ($\mathrm{m}, 1 \mathrm{H}$), $3.10(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 77.56$; $\mathrm{H}, 13.03$. Found: C, 77.42; H , 12.71.

Compound 11: ir (neat) 3510 (s), 3045 (m), 2900 (s), 1665 (w), 1460 (s), $1265(\mathrm{~m}), 1140(\mathrm{~s}), 980 \mathrm{~cm}^{-1}(\mathrm{~s}) ; \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.10$ ($\mathrm{s}, 6 \mathrm{H}$), $1.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 5.42$ ($\mathrm{m}, 2 \mathrm{H}$, vinyl).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 77.56 ; \mathrm{H}, 13.03$. Found: $\mathrm{C}, 77.76 ; \mathrm{H}$, 12.82.

3,3,5,5-Tetramethylhexen-4-ol (13). 2,2-Dimethylpropanal (0.05 $\mathrm{mol})$ and 2 -methyl-4-bromo-2-butene ($12,0.05 \mathrm{~mol}$) were treated in dry THF with an excess of magnesium ${ }^{11}$ or lithium. ${ }^{12}$ Following a standard aqueous workup, the carbinol product 13 was distilled ($109-110^{\circ} \mathrm{C}, 30$ Torr). Yield in both cases was approximately 82%; ir (neat) 3500 (s), 3090 (w), 2970 (s), 2880 (s), 1632 (w), 1480 (m), 1365 (m), 1050 (s), 1005 (s), 987 (s), $905 \mathrm{~cm}^{-1}(\mathrm{~s}) ;$ NMR (CCl 4) $\delta 1.00(\mathrm{~s}, 9$ $\mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 4.78-5.10(\mathrm{~m} 2 \mathrm{H})$ $6.02\left(\mathrm{~d}\right.$ of $\left.\mathrm{d}, J_{\mathrm{a}}=19, J_{\mathrm{b}}=10 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 76.84$; $\mathrm{H}, 12.91$. Found: C, 76.57; H, 12.83.

Acknowledgment. The authors thank Research Corporation for their assistance in the form of a Cottrell College Science Grant.

Registry No.-Id, 58602-59-8; 3, 4325-82-0; 7, 58602-60-1; 8, 58602-61-2; 9, 58602-62-3; 10, 58602-63-4; 11, 58602-64-5; 12, 870-63-3; 13, 58602-65-6; mesityl oxide, 141-79-7; mesitoyl chloride, 938-18-1.

References and Notes

(1) An account of this work was presented at the 11 th Midwest Regional Meeting of the American Chemical Society, Oct 1975
(2) R. A. Benkeser, Synthesis, 347 (1971).
(3) M. S. Kharasch and O. Reinmuth, "Grignard Reactions of Nonmetallic Substances", Prentice-Hall, Englewood Cliffs, N.J., 1959, pp 1133-1165.
(4) J. E. Nordlander. W. G. Young, and J. D. Roberts, J. Am. Chem. Soc., 83, 494 (1962).
(5) G. M. Whitesides. J. E. Norlander, and J. D. Roberts, J. Am. Chem. Soc., 84, 2010 (1962).
(6) J. E. Nordlander and J. D. Roberts, J. Am. Chem. Soc., 81, 1769 (1959).
(7) (a) E. F. Kiefer and ᄃ. D. Roberts, J. Am. Chem. Soc., 84, 784 (1962). (b) In a private communication, J. D. Roberts has indicated to the authors that his experience with compound 4 was identical with ours. Hydrogen bromide was spontaneously eliminated to give the diene 5 .
(8) E. Snyder, J. Org. Chem., 37, 1466 (1972).
(9) J. A. Katzenellenbogen and R. S. Lenox. J. Org. Chem., 38, 326 (1973).
(10) R. A. Benkeser and W. E. Broxtermann, J. Am. Chem. Soc.. 91, 5162 (1969).
(11) M. P. Dreyfuss, J. Org. Chem., 28, 3269 (1963).
(12) P. J. Pearce. D. H. Richard, and N. F. Scilly, J. Chem. Soc., 1655 (1972)
(13) R. P. Barnes, '"Organic Syntheses'. Collect. Vol. III, Wiley, New York. N.Y., 1955, p 556.

Tetrabenzylethylene. An Unusually Sterically Hindered Olefin

W. H. Richardson* and K. W. Gunderson
Department of Chemistry, San Diego State University,
San Diego, California 92182
Received December 16, 1975

Current interest in the properties of sterically hindered olefins ${ }^{1}$ prompts us to report our results with tetrabenzylethylene (1). In the course of an attempt to prepare a bromohydroperoxide from 1 , we found that 1 was rather inert to the addition of bromine in carbon tetrachloride. ${ }^{2}$ Similarly, 1 was inert to potassium permanganate solution ${ }^{2}$ over a 25 \min period as well as being inert to 2,4-dinitrobenzenesulfonyl chloride ${ }^{2}$ and mercuric acetate. ${ }^{3}$ The well-known inertness of tetraphenylethylene ${ }^{4}$ is usually attributed solely to resonance stabilization of the olefinic bond. However, in view of the inert behavior of 1 , the steric effect of four phenyl groups in close proximity to the olefinic bond may be sufficient for inert behavior.

In order to assess the steric effects in 1 , the rate of bromination in acetic acid at $24.0^{\circ} \mathrm{C}$ was measured by an iodometric method. ${ }^{5}$ A second-order rate coefficient of $8.68 \pm 0.29 \times 10^{-4}$ $\mathrm{M}^{-i} \mathrm{~s}^{-1}$ was obtained with the reaction mixture under a nitrogen blanket and protected from light. A considerable amcunt of rate data obtained by Robertson and co-workers for bromination of olefins under these conditions has been compiled. ${ }^{6}$ Most of these rates can be correlated with the Taft polar effect equation (eq 1)

$$
\begin{equation*}
\log k=\rho^{*} \Sigma \sigma^{*}+a_{0} \tag{1}
\end{equation*}
$$

where $\rho^{*}=-2.58 \pm 0.099$, and $a_{0}=4.85 \pm 0.25$ with r (correlation coefficient $)=0.992$. With these values for eq 1 , the calculated bromination rate of 1 is $4.28 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $24^{\circ} \mathrm{C}$. Thus, steric effects in 1 causes a reduction in rate of about 5 $\times 10^{5}$-fold $\left(=4.28 \times 10^{2} / 8.68 \times 10^{-4}\right)$.

Dubois and Mouvier ${ }^{7}$ reported the rates of bromination of olef:ns in methanol at $25^{\circ} \mathrm{C}$ with 0.2 M sodium bromide, where steric effects in a few olefins were significant. These data are best correlated with the Taft polar-steric effect equation (eq 2)

$$
\begin{equation*}
\log k=\rho^{*} \Sigma \sigma^{*}+\delta \Sigma E_{\mathrm{s}}+a_{0} \tag{2}
\end{equation*}
$$

where $\rho^{*}=-5.30, \delta=0.913$, and $a_{0}=5.64$ with $r=0.999 .{ }^{8} \mathrm{To}$ compare our data in acetic acid at $24^{\circ} \mathrm{C}$ to the data of Dubois and co-workers in methanol at $25^{\circ} \mathrm{C}$, we have calculated the relative rate of bromination of 1 in methanol $\left(1.52 \times 10^{3} \mathrm{M}^{-1}\right.$ s^{-1}) to acetic acid ($4.28 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) where polar effects alone correlate the data. ${ }^{8}$ With this factor ($1.52 \times 10^{3} / 4.28 \times$ $10^{2}=3.55$), our experimental rate coefficient in acetic acid becomes $3.08 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\left(=3.55 \times 8.68 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ in methanol. Now a calculated value of the rate of bromination of 1 , with eq 2 and the parameters from the data of Dubois and Mouvier, ${ }^{7}$ is $4.91 \times 10^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The experimental rate for 1 is then about 160 -fold slower than predicted ($4.91 \times$ $10^{-} / 3.08 \times 10^{-3}=160$). Inclusion of 1 into a correlation of the data of Dubois and Mouvier ${ }^{7}$ by eq 2 gives a larger δ value; $\rho^{*}=-6.55, \delta=1.41$, and $a_{\mathrm{a}}=5.70$ with $r=0.990$. This may be a more reliable correlation, since it extends the range of E_{S} values of the olefins by including $1 .{ }^{9}$

An examination of space-filling molecular models suggests that la is a low-energy conformation of tetrabenzylethylene. Previously, ${ }^{1} \mathrm{H}$ NMR studies of tetraisopropylethylene indicated a "cogwheel" effect with a high barrier to rotation, which involved conformation $2 .{ }^{1}$ Two distinct tertiary protons were observed due to their disposition about the olefinic bond. Since conformation la suggests unique protons, the ${ }^{1} \mathrm{H}$ NMR

1a

2
spectrum of 1 was measured from approximately 30 to -30 ${ }^{\circ} \mathrm{C}$ in carbon tetrachloride solution. Over this temperature range, the benzyl protons of 1 remained as a singlet. This suggests that the "cogwheel" effect is inoperative with 1. Instead, it seems most reasonable that a rapid equilibrium may occur between conformations $\mathbf{l a}$ and $\mathbf{l b}$ such that unique protons are not detected over this temperature range.

lb
In summary, the bromination rate of 1 dramatically demonstrates the importance of steric effects in addition reactions of olefins. ${ }^{9}$ Without a consideration of steric effects, the experimental rate is slower by a factor of about 5×10^{5}-fold. However, an excellent correlation ${ }^{11}$ by eq 2 results when steric effects are included. It is apparent that the mere proximity of phenyl groups to the olefin bond is sufficient to cause slow rates of addition reactions. Lastly, ${ }^{1} \mathrm{H}$ NMR data suggest that a "cogwheel" effect is not operative with 1 .

Experimental Section ${ }^{12}$

2,3-Dibenzyl-1,4-diphenyl-2.3-butanediol (3). A mixture of 9.95 $\mathrm{g}(47.3) \mathrm{mmol}$) of dibenzyl ketone (MCB, recrystallized from cyclohexane), 0.540 g (20.0 mg -atoms) of aluminum foil (Reynolds Wrap, sanded prior to use), $0.10 \mathrm{~g}(0.368 \mathrm{mmol})$ of mercuric chloride, and 150 ml of benzene (reagent grade, distilled from calcium hydride) was stirred and heated at $60-70^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. The reaction mixture was then cooled in an ice bath while 100 ml of 5% hydrochloric acid was added over a $2.0-\mathrm{h}$ period. The organic layer was separated and the aqueous phase was extracted with carbon tetrachloride. The combined organic phases were washed with water, dried over anhydrous potassium carbonate, and concentrated on a rotary evaporator to give 9.34 g of a viscous yellow oil. NMR analysis of this oil, relative to a measured amount of methylene chloride, indicated a 48% yield of pinacol 3 . Chromatography of the oil (9.3 g) on silica gel (70 g) with 10% benzene- $90 \% n$-hexane eluent gave 4.23 g (42.3% yield) of $3: \mathrm{mp} 118-120^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp} 120^{\circ} \mathrm{C}$); ir 3560,3090 , 3060,3030 , and $2940 \mathrm{~cm}^{-1}$; NMR OH (1.77, s, 1.94), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}[2.92$, $\mathrm{AB}(J=14 \mathrm{~Hz}), 8.0]$, and $\mathrm{C}_{6} \mathrm{H}_{5}(7.08, \mathrm{~s}, 19.6)$.
Tetrabenzylethylene (1). A solution of $9.09 \mathrm{~g}(21.5 \mathrm{mmol})$ of pinacol $3,15.0 \mathrm{ml}(13.5 \mathrm{~g}, 90.9 \mathrm{mmol})$ of ethyl orthoformate (dried over calcium sulfate and distilled at $\left.146{ }^{\circ} \mathrm{C}\right)$, and $0.10 \mathrm{~g}(0.82 \mathrm{mmol})$ of benzoic acid was stirred and heated at $148-155^{\circ} \mathrm{C}$ (internal temperature) for 9.0 h under a nitrogen atmosphere. During this period 2.0 ml (ca. 80% of theory) of ethanol was distilled from the reaction solution. The excess ethyl orthoformate was distilled and the residual oil was heated with $0.20 \mathrm{~g}(1.6 \mathrm{mmol})$ of benzoic acid for 16 h . The reaction mixture was then dissolved in 25 ml of carbon tetrachloride and this solution was washed with 0.2 M potassium carbonate and with water. The organic solution was dried over calcium sulfate and rotary evaporated to 8.31 g of a yellow, oily solid. Recrystallization from n-hexane gave 6.60 g (82.8% yield) of white needles of $1: \mathrm{mp}$ $119.7-120.7^{\circ} \mathrm{C}$ (lit. $.^{14} \mathrm{mp} 119.5-120.5^{\circ} \mathrm{C}$); ir $3080,3060,3025,2960$, 2920 , and $2850 \mathrm{~cm}^{-1}$; NMR CH_{2} (3.47, s, 8.00), $\mathrm{C}_{6} \mathrm{H}_{5}(7.10, \mathrm{~s}, 20.0)$; mass spectrum, P m/e 388 (12), $\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} 297$ (9.0), $\mathrm{P}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$, and H) 219 (12), $\mathrm{P}-\left[2\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)\right.$ and H$] 205$ (13), $\mathrm{P}-\mid 2\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), \mathrm{H}$, and $\mathrm{C} \mid 193$ (3.9), and $\mathrm{C}_{7} \mathrm{H}_{7}+91$ (100).
Kinetics of Bromination. An acetic acid solution of 1 and bromine (each $7.63 \times 10^{-3} \mathrm{M}$) were placed in an aluminum foil wrapped vessel under a nitrogen atmosphere, which was thermostated at $24.0^{\circ} \mathrm{C}$. Aliquots were periodically withdrawn and titrated by an iodometric
prozedure. ${ }^{5}$ The second-order rate coefficients were obtained by a least-squares fit.

Acknowledgment. We thank the U.S. Army Research Office (Durham) for support of this research.

Registry No.-1, 19754-02-0; 3, 33574-71-9; dibenzyl ketone, 102-04-5.

References and Notes

(1) Cf. (a) R. F. Langler and T. T. Tidwell, Tetrahedron Lett., 777 (1975); (b) D. S. Bomse and T. H. Morton, ibid., 781 (1975).
(2) D. J. Pasto and S. R. Johnson, "Organic Structure Determination' ', Pren-tice-Hall, Englewood Clifts, N.J., 1969, p 330.
(3) H. O. House, "Modern Synthetic Reactions", 2d ed, W. A. Benjamin, Menlo Park, Calif., 19:2, pp 388-389.
(4) (a) R. L. Shriner, R. C. Fuson, and D. Y. Curtin, "The Systematic Identification of Organic Corrpounds"'. 5th ed, Wiley New York, N.Y., 1964, p 122; (b) R. E. Buckles, E. A. Hausman, and N. G. Wheeler. J. Am. Chem. Soc., 72, 2494 (1950).
(5) W. H. Richardson, J. Am. Chem. Soc., 87, 247 (1965)
(6) P. B. D. de la Mare and R. Bolton, "Electrophilic Additions to Unsaturated Systems"' American Elsevier, New York, N.Y., 1966, p 84.
(7) J. E. Dubois and G. Mouvier, Tetrahedron Lett., 1325 (1963).
(8) The correlation coefficient (r) is obtained by a linear regression analysis of $\log k_{\text {obsd }} v s . \log k_{\text {calcd. }}$. If four olefins (2,4,4-trimethyl-2-pentene, 4,4-dimethyl-2-pentene, 3-methyl-1-pentene, and 4,4-dimethyl-1-pentene) are not included, the data are well correlated by polar effects alone (eq 1), where $\rho^{\bullet}=-5.13 \pm .09$ and $a_{0}=5.87 \pm 0.10$ with $r=0.997$.
(9) The bromination of additional olefins, where steric effects are greater, have been reported by Grosjean, Mouvier, and Dubois. A correlation according to eq 2 is mentioned. These data are reported in an abstract, where numerical values are not included. ${ }^{10}$
(10) D. Grojean, G. Mouvier, and J. E. Dubois, Abstracts, 167th National Meeting of the Americar Chemical Society. Los Angeles, Calif., April 1-5, 1974, No. ORGN-88.
(11) P. R. Wells. "Linear Free Energy Relationships' ", Academic Press, New York, N. Y., 1963, p 3
(12) Melting points and temperatures reported for kinetic measurements are corrected. NMR spectra were obtained with a Varian A-60 and a Jeol Co. PS-100 spectroneter. Chemical shifts are expressed in parts per million relative to $\mathrm{Me}_{4} \mathrm{Si}$ as 0 ppm (o scale). The NMR spectra were measured in carbon tetrachloride solution and they are reported as δ, coupling, and relative area. The ir spectra were measured in carbon tetrachloride solution with either a Perkin-Elmer 621 or 337 spectrometer. The mass spectrum was obtained with a Hitachi RMU-6E spectrometer and it is reported as m / e (relative abundance). Elemental analyses were performed by M-H-W Laboratories, Garden City, Mich.
(13) L. Lepage and Y. Lepage, C. R. Acad. Sci., Ser. C. 272, 2205 (1971).
(14) H. A. Staab and H. A. Kurmeier, Chem. Ber., 101,2697 (1968)

Remote Substituent Effects on Carbon-13 Shieldings in Some Bicyclo[2.2.2]octyl Systems

William Kitching* ${ }^{*}$
Department of Chemistry, University of Queensland, St Lucia, Australia
William Adcock and T. C. Khor
School of Physical Sciences, Flinders University, Adelaide, South Australia
David Doddrell
School of Science, Griffith University: Nathan, Queensland, Australia

Received December 16. 1975
Fluorine-19 shemical shifts of certain dibenzobicyclo 2.2.2 octyl derivatives, e.g., adducts of 10 -substituted 9fluoroanthracenes with maleic anhydride (I) and dimethyl acetylenedicarbcxylate (II), have been studied in anticipation that these ${ }^{19} \mathrm{~F}$ substituent chemical shifts (${ }^{19} \mathrm{~F} \mathrm{SCS}$) might approximate to the field component of the overall ${ }^{19} \mathrm{~F}$ SCS in aromatic fluorices where direct partitioning of components is impossible. ${ }^{2}$ Although structural deformations in some bicyclic tertiary fluorides are apparently to blame for worrying fluctuations in chemical shift, Anderson and Stock reasoned

Table I. Carbon-13 Chemical Shifts ${ }^{a}$ of Some Bicyclo[2.2.2]octyl Systems

	System	Carbon number ${ }^{\text {b }}$				Substituent effects at carbon			
		1	2	3	4	1	2	3	4
$\mathrm{III}^{\text {c }}$	$\mathrm{X}=\mathrm{H}$	23.99	26.11	26.11	23.99				
	Br	62.88	37.61	29.14	22.78	38.89	11.50	3.03	-1.21
	F	92.47	31.30	27.38	24.26	68.48	5.19	1.27	0.27
		(185.3)	(18.4)	(9.4)	(3.3)				
IV ${ }^{\text {d }}$	$\mathrm{X}=\mathrm{H}^{\text {e }}$	45.5	48.6	48.6	45.5				
	$\mathrm{Br}^{\text {e }}$	nl	55.94	50.49	45.0		7.34	1.89	-0.5
	F	95.0	51.87	49.56	44.24	49.5	3.27	0.94	-1.26
		(212)	(18.31)	(6.10)	(3.0)				
	$\mathrm{CN}{ }^{\text {e }}$	47.2	51.52	48.77	44.67	1.7	2.92	0.17	-0.83
	CH_{3}	nl	52.33	50.00	45.4		3.73	1.4	
	COCH_{3}	61.07	50.17	49.85	45.96	15.57	1.57	1.25	+0.46
V ${ }^{\prime}$	$\mathrm{X}=\mathrm{H}$	52.60	147.06	147.06	52.6				
	Br	66.73	(142.63	140.58)	49.90	14.13			-2.7
	CN	nl	(143.88	142.25)	50.28				-2.32
	NO_{2}	nl	(142.5	143.3)	50.60				-2.00
	CH_{3}	nl	(155.58	142.15)	50.28				-2.32
	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	68.84	(155.47	145.49)	51.41	16.24			-1.19
VI	$\mathrm{X}=\mathrm{H}$	24.58	26.59	32.18	34.13				
	OCH_{3}	73.60	29.71	33.09	34.13	49.02	3.12	0.91	0.0
	OH	69.57	$34.26{ }^{\text {g }}$	$33.48{ }^{\text {g }}$	34.26	44.99	7.67	1.30	0.13
	OCOCH_{3}	80.62	30.23	33.09	34.20	56.04	3.64	0.91	0.07
	F	94.50	31.50	33.52	34.20	69.92	4.91	1.34	0.07
		(183.8)	(19.1)	(10.3)	(2.9)				
	Cl	67.42	36.61	33.35	34.20	52.84	10.02	1.17	0.07

${ }^{a}$ In ppm with respect to internal $\mathrm{Me}_{4} \mathrm{Si}$ unless otherwise indicated. Positive shifts correspond to lower shieldings. ${ }^{b}$ Numbering system for convenience only. ${ }^{c}$ From ref 9 and for CCl_{4} solutions referenced to internal cyclohexane. These have been referenced to $\mathrm{Me}_{4} \mathrm{Si}$ by assuming δ_{c} (cyclohexane) is 27.00 ppm . ${ }^{d}$ For solvent $\mathrm{DMF}-\mathrm{CDCl}_{3}$ (3:1). ${ }^{e}$ Confirmed by deuterium substitution. $f \mathrm{CDCl}_{3}$ solvent. Assignments for bridging carbons (i.e., $\mathrm{C}_{2}, \mathrm{C}_{3}$) unproven and β, γ effects therefore not listed. ${ }^{g}$ Assignments may require reversal.
that dibenzo fusion should essentially eliminate substitu-ent-induced skeletal changes. ${ }^{2}$ These authors suggested, in particular that the ${ }^{19} \mathrm{~F}$ SCS data for series II below "portray the polar interactions that would be realised in a rigid molecule such as benzene".

Carbon-13 chemical shifts also seem to provide a useful measure of substituent effects in aromatic systems, ${ }^{3-8}$ and again the problem of assessing the field component of the overall ${ }^{13} \mathrm{C}$ SCS arises. Recourse, again, to bicyclic molecules would seem logical but in the study of Maciel and Dorn ${ }^{9}$ with 1 -substituted bicyclo[2.2.2]octanes (III) it was not clear that the response of C_{4} could provide a useful platform from which to develop an understanding of long-range electronic (i.e., δ) effects at carbon. Nevertheless, the proposal of Anderson and Stock ${ }^{2}$ regarding the beneficial effects of dibenzofusion seemed to warrant study in respect of carbon- 13 shifts. In this note we present our findings for systems IV, V, and VI, and the somewhat melancholy conclusions regarding substituent effects that seem to follow.

I, $Y=F$ IV, $\mathrm{Y}=\mathrm{H}$

III

II, $Y=F$
$\mathrm{V}, \mathrm{Y}=\mathrm{H}$

VI

In this note, we are primarily concerned with the chemical shift of C_{4} in series III-VI and spectral assignments have been arrived at by standard techniques. For series IV, C_{4} was assigned on the basis of deuterium substitution in the starting anthracenes, consideration of ${ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}$ couplings for the fluoroanthracene adduct, ${ }^{10}$ and chemical shift trends. For V the closeness of the signals of C_{4} and COOCH_{3} required application of the partially relaxed Fourier transform spectral technique (PRFT), ${ }^{11}$ depending on the different relaxation times of such carbons. These assignments for the parent ($\mathrm{X}=\mathrm{Y}=$ H) of system V were confirmed by a fully proton-coupled spectrum. ${ }^{10,12}$ For series VI, C_{4} was assigned on the basis of intensities and chemical shifts. The results for $\mathrm{C}_{1}-\mathrm{C}_{4}$ are presented in Table I. The chemical shifts for other carbons in these systems have generally been obtained, but assignments have not been made, and hence the data are not tabulated.

Regarding the δ effects (i.e., at C_{4}) it is clear that these are a function of the particular bicyclo[2.2.2]octyl system under scrutiny, although changes in the $\mathrm{C}_{1}-\mathrm{C}_{4}$ distances are small and not capable of rationalizing these trends through the distance term in the field theory treatment. As suggested by Anderson and Stock, ${ }^{2}$ for systems III and IV in particular, structural disturbances are probably significant and may be associated with the quite large variations in some of the α and β effects as well. Nevertheless, in system IV the C_{4} SCS are to higher field (except for COCH_{3}), a movement traditionally associated with increased electron density and nuclear shielding. ${ }^{3-8}$ For system V, regarded ${ }^{2}$ as most resistant to structural unruliness, all C_{4} SCS are to higher field by not inconsiderable amounts. The methyl group, which exerts an extremely feeble dipolar effect, is comparable to cyano, nitro, and bromo. The bulky tert-butyl group was examined to explore the effect of sterically induced distortions, and in this case the C_{4} SCS is the smallest in an absolute sense. "Peritype" hydrogen interactions are severe in this system as judged

Table II. Analytical and Spectroscopic Data for Certain Adducts

Series IV				Series V			
	Mp, ${ }^{\circ} \mathrm{C}$	C	H		$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	C	H
$\mathrm{X}=\mathrm{H}$	257-258	(lit. 258-260) ${ }^{21}$		$\mathrm{X}=\mathrm{H}$	160-161	(lit. 160-161) ${ }^{24}$	
Br	252-253	(lit. 253-254) ${ }^{21}$		Br	178-179	60.19	3.76
F	239-240	73.20	3.87			(60.15)	(3.76)
		(73.46)	(3.74)	CN	174-175	72.58	4.44
CN	227-228	75.78	3.81			(73.04)	(4.34)
		(75.78)	(3.66)	NO_{2}	182-183	66.61	4.19
CH_{3}	269-270	77.96	4.80			(65.75)	(4.10)
		(78.62)	(4.82)	CH_{3}	184-185	75.39	5.40
COCH_{3}	259-260	75.30	4.51			(75.45)	(5.39)
		(75.47)	(4.40)	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	177-178	$\begin{gathered} 76.40 \\ (76.59) \end{gathered}$	6.45 (6.38)

${ }^{1} \mathrm{H}$ NMR Data
Series V

$\mathrm{X}=$	$-\mathrm{COOCH}_{3}$	CH	Aromatics	Other
H	3.75	5.45	$6.85-7.5$	
Br	$3.77,3.85$	5.70	$7.00-7.35$	
CN	$3.80,3.9$	5.67	$7.05-7.35$	
NO_{2}	$3.77,3.84$	5.63	$7.00-7.35$	2.16
CH_{3}	$3.73,3.80$	5.62	$6.96(\mathrm{~m}, 4 \mathrm{H}) 7.30(\mathrm{~m}, 2 \mathrm{H}) ;$	$1.82(6 \mathrm{H}) ;$
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$3.70,3.73$	5.52	$7.75(\mathrm{~m}, 2 \mathrm{H})$	$1.94(3 \mathrm{H})$

Series IV

$\mathrm{X}=$	H_{1}	H_{2}	H_{3}	H_{4}	Aromatics	Other
$\mathrm{H}^{\text {a }}$	4.94	3.62	3.62	4.94	7.16-7.60	2.94
COCH_{3}		4.24	3.64	4.90	7.2-7.70	
		$\left(J_{\mathrm{H}_{2}-\mathrm{H}_{3}}=10 \mathrm{~Hz}\right)$	$\left(J_{\mathrm{H}_{2}-\mathrm{H}_{3}}=10 \mathrm{~Hz} ;\right.$ $\left.J_{\mathrm{H}_{3}-\mathrm{H}_{4}}=3.5 \mathrm{~Hz}\right)$	$\left(J_{\mathrm{H}_{3}-\mathrm{H}_{4}}=3.35 \mathrm{~Hz}\right)$		
$\mathrm{F}^{\text {a }}$		3.72	${ }_{3.66}^{\mathrm{H}_{3}-\mathrm{H}_{4}}$	4.80	7.16-7.68	

${ }^{a}$ Poorly soluble and coupling constants poorly defined.
by the duality of sharp signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for the methyl groups of the arrested tert-butyl group. ${ }^{13}$ In system V , the upfield $\mathrm{C}_{4} \mathrm{SCS}$ may be due in part, for the bromo, cyano, and nitro groups, to polarization of the $\mathrm{C}_{4}-\mathrm{H} \sigma$ bond, but "through-space" effects in bicyclo[2.2.2]octyl systems are apparently of secondary importance to "through-bond" effects. ${ }^{14,15}$ The reverse may be the situation for the bicyclo[2.2.1]heptyl framework. ${ }^{16}$ In system V, through-bond hyperconjugative transfer of electron density induced by the substituent may occur, but it is not clear what effects on the C_{4} chemical shifts it might have.

For system VII, Anderson and Stock ${ }^{2}$ observed low-field (i.e., positive) ${ }^{19} \mathrm{~F}$ SCS but the correspondence among the substituents for the ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ SCS is poor. The ${ }^{1} \mathrm{H}$ chemical shifts of H_{4} in system V (these appear as singlets at ca. $\delta 5.60$) are all to lower field from the parent ($\mathrm{X}=\mathrm{H}$), with the bromo compound showing the largest shift (+0.25 ppm) and the tert-butyl the smallest (+0.07 ppm). Somewhat surprisingly, in system VI, C_{4} responds very feebly to 1 substitution and tentatively we associate this with the inability of the substituent to polarize the C_{4}-phenyl bond, in a direction disfavored on electronegativity grounds. Other poorly understood factors may also be involved.

What are the implications of these results for the idea that SCS data from bicyclic systems approximate to the field component of the overall SCS in substituted aromatics? A number of points warrant emphasis.
(a) For ${ }^{13} \mathrm{C}$ shifts, apparently in systems (e.g., V) regarded
as quite rigid, a number of factors, not necessarily related to the electronic capabilities of the substituent, contribute to the overall screening term and vary with the substituent.
(b) While system V may minimize these effects, the presence of highly polar groups in the bridge systems of IV and V may promote varying interactions when the substituents are powerfully dipolar and lead to additional complications. The π nature of the bridging group in V may also sustain certain polarizations.
(c) The recent conclusions ${ }^{14-16}$ that in certain bicyc$\mathrm{lo}[2.2 .2]$ octyl systems through-bond transfer of charge, involving the bridging 2,3 bond is important, creates a mechanism for affecting both ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ SCS in these systems, that is not a complication in benzenoid frameworks. Relating data from the two systems must therefore be somewhat dangerous.
(d) While the results of Anderson and Stock ${ }^{2}$ for system II are in the anticipated low-field direction (e.g., when $\mathrm{X}=\mathrm{NO}_{2}$ SCS $=1.68 \mathrm{ppm}$ for DMF) this figure conceivably could be the result of deshielding and shielding contributions, the latter varying in some way with the substituent. The characteristics of the "molecular cavities" in bicyclic and aromatic systems are also different and could seriously affect transmission. See cajove.
(e) A crucial assumption for both ${ }^{13} \mathrm{C}$ SCS and ${ }^{19} \mathrm{~F}$ SCS woald be required that, for example, the response of sp^{3} bound fluorine (in system II) to remote dipolar substituents would be similar to the response of sp^{2}-bound (i.e., aromatic) fluorine. Considering that C-F π-polarization is extremely
important in regulating the ${ }^{19} \mathrm{~F}$ chemical shift, ${ }^{17}$ the above assumption seems to us to be very tenuous.
(f) Surely the logical approach for magnetic resonance investigation of the field component of the total SCS observed in an aromatic system (whether ${ }^{19} \mathrm{~F}$ or ${ }^{13} \mathrm{C}$) is to examine a system in which the probe nucleus is still in the aromatic environment, but the substituent is contained in an attached, desirably strain-free system, so constructed that resonance and related effects are prohibited. We have seen above that in system V , dipolar substituents actually shield C_{4} but in aromatic systems, the whole π system is polarized, and leads to a deshielding of the carbon probe. ${ }^{18}$

The data in Table I indicate wide variations for the α, β, and γ effects as a function of substituent and molecular system. ${ }^{19}$ For the α effect there appears to be a basic correlation with substituent electronegativity within a system, but substantial differences between systems for the same substituent, e.g., for the sterically small fluoro, α effects of +68.48 (III), +49.5 (IV), and +69.92 (VI) are noted. The β effects are again positive, i.e., deshielding in nature, but the dependence on substituent electronegativity is not obvious. It would seem in fact, that more electronegative substituents may be associated in part with increased shielding at C_{β}, a result in accord with some theoretical work predicting alternation of charge in a σ-bonded framework. ${ }^{20}$ Other factors, such as degree of substitution and strain, may be important, the latter particularly at the a position. Small but significant deshielding effects at C , are also observed, and these C , positions are anti to the substituent. It is not clear how well the alternating polarization hypothesis accommodates these data, but a number of factors are almost certainly operating in this region.

Experimental Section

Compounds. The maleic anhydride adducts (series IV) were prepared in the standard way by refluxing the 9 -substituted anthracene with slightly more than 1 equiv of maleic anhydride in the minimum amount of o-xylene for $3-12 \mathrm{~h}$, depending on the 9 -substituent. ${ }^{21}$ On cooling crystals of the adducts separated, in quite pure form, and one further crystallization from xylene provided analytically pure compounds.
9.10-Dideuterioanthracene was obtained by the p-toluenesulfonic acid catalyzed $\mathrm{H}-\mathrm{D}$ exchange with anthracene. Specifically 9-deuterated anthracene resulted from lithium aluminum deuteride reduction of anthrone followed by acid (3 N HCl) induced dehydration. ${ }^{1} \mathrm{H}$ NMR analysis indicated $\sim 95 \%$ deuterium incorporation. 9-Bromo-10-deuterioanthracene was synthesized by bromine addition and hydrogen bromide elimination in the reported manner. ${ }^{22}$ Careful ${ }^{1} \mathrm{H}$ NMR measurements revealed ca. 50% deuterium at the 10 position indicating the absence of a significant isotope effect in the elimination. 9 -Cyano-10-deuterioanthracene was obtained from the 9 -bromo compound on treatment with copper(I) cyanide in N, N-dimethylformamide. ${ }^{23}$

The dimethyl acetylenedicarboxylate adducts (series V) ${ }^{24}$ were prepared by refluxing equimolar amounts of the reagents in benzene and monitoring the reaction by ${ }^{1} \mathrm{H}$ NMR analysis of the COOCH_{3} region. The benzene solvent was removed and the adducts were recrystallized from methanol. The structures of the adducts were confirmed by elemental ar.alyses, ${ }^{1} \mathrm{H}$ NMR spectra (where solubility was adequate), and of course the ${ }^{13} \mathrm{C}$ spectra.

Compounds in series I. II. and III have been reported elsewhere, ${ }^{2,9}$ while those in series V'I will be described in detail in another connection. ${ }^{25}$
${ }^{13}$ C spectra were recorded with a Bruker HX-90 spectrometer operating in the FT mode, and chemical shifts are relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ and accurate to $\pm 0.05 \mathrm{ppm}$.

The analytical data for new compounds are assembled in Table II, and the ${ }^{1} \mathrm{H}$ NMR data for series V also. These adducts are generally quite soluble, aṇd the chemical shifts $\left(\mathrm{CDCl}_{3}\right.$, internal $\left.\mathrm{Me}_{4} \mathrm{Si}\right)$ pertain to 5% weight/volume solutions. The maleic anhydride adducts are far less soluble, and cherrical shift data for series IV, $X=H, F$, and COCH_{3}, only, are tabulated.

Acknowledgment. The authors are grateful to the Australian Research Grants Committee for funding parts of this research.

Registry No.-III ($\mathrm{X}=\mathrm{H}$). 280-33-1; III ($\mathrm{X}=\mathrm{Br}$), 7697-09-8; III ($\mathrm{X}=\mathrm{F}$), 20277-22-9; IV (X = H), 5443-16-3; IV (X = Br), 58802-01-0; IV ($\mathrm{X}=\mathrm{F}$), 26306-24-1; IV (X = CN), 58802-02-1; IV (X = Me), 58802-03-2; IV (X = COCH_{3}). 17478-86-3; V $(\mathrm{X}=\mathrm{H}), 1625-82-7$; V $(\mathrm{X}=\mathrm{Br})$, 58802-04-3; $\mathrm{V}(\mathrm{X}=\mathrm{CN})$, 58802-05-4: $\mathrm{V}\left(\mathrm{X}=\mathrm{NO}_{2}\right)$, 58802-06-5; $\mathrm{V}\left(\mathrm{X}=\mathrm{CH}_{3}\right), 58802-07-6 ; \mathrm{V}\left(\mathrm{X}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33740-56-6$; VI ($\mathrm{X}=\mathrm{H}$), 23062-62-6; VI (X = OMe), 6555-88-0; VI (X = OH), 2001-62-9; VI (X = OCOMe), 54986-35-5; VI (X = F), 22947-58-6; VI ($\mathrm{X}=\mathrm{Cl}$), 33732-68-2.

References and Notes

(1) Direct enquiries to this author
(2) G. L. Anderson and L. M. Stock, J. Am. Chem. Soc., 91, 6804 (1969).
(3) For a discussion of carbon-13 chemical shifts see G. Maciel, Top. Car-bon- 13 NMR Spectrosc., 1, 53 (1974).
(4) H. Spiesecke and W. G. Schneider, J. Chem. Phys., 35, 731 (1961).
(5) G. E. Maciel and J. J. Natterstad. J. Chem. Phys., 42, 2427 (1965).
(6) G. L. Nelson, G. C. Levy, and J. D. Cargiolin, J. Am. Chem. Soc., 94, 3089 (1972).
(7) G. A. Olah and D. A. Forsyth. J. Am. Chem. Soc., 97, 3137 (1975).
(8) M. Bullpitt, W. Kitching. D. Doddrell, and W. Adcock, J. Org. Chem., 41. 760 (1976).
(9) G. E. Maciel and H. C. Dorn, J. Am. Chem. Soc., 93, 1268 (1971).
(10) W. Adcock, B. D. Gupta, T. C. Khor, D. Doddrell, and W. Kitching, J. Org. Chem., submitted.
(11) A. Alherhand, D. Doddrell, V. Glushko, D. W. Cochran, E. Wenkert, P. J. Lawson, and F. R. N. Gurd, J. Am. Chem. Soc., 93, 544 (1971).
(12) H. Günther, G. Jikeli, H. Schmickler, and J. Prestien, Angew. Chem., 85, 826 (1973).
(13) Observations in this series have also been made by Dr D. N. Butler. University of Waterloo, private communication.
(14) G. A. Olah, G. Liang, P. v. R. Schleyer, E. M. Eugler, M. J. S. Dewar, and R. C. Bingham. J. Am. Shem. Soc., 95, 6829 (1973).
(15) P. J. Krusic, T. A. Rettig, and P. v. R. Schleyer, J. Am. Chem. Soc., 94, 995 (1972).
(16) T. Kawamura, M. Matsunaga, and T. Yonezawa, J. Am. Chem. Soc., 97, 3234 (1975)
(17) See, for example, M. J S. Dewar and T. G. Squires. J. Am. Chem. Soc., 90, 210 (1968); G. C. Anderson and L. M. Stock, ibid., 90, 212 (1968); M. .. S. Dewar and J. Keleman, J. Chem. Phys., 49, 499 (1968).
(18) To be published.
(19) See D. G. Morris and A. M. Murray. J. Chem. Soc., Perkin Trans. 2, 734 (1975), and references cited therein, and J. B. Grutzner, M. Jautelat, J. B. Deuce, R. A. Smith, and J. D. Roberts, J. Am. Chem. Soc., 92, 7107 (1970). (20) .. A. Pople and M. Gordon, J. Am. Chem. Soc., 89, 4253 (1967).
(21) P. D. Bartett and S. G. Cohen. J. Am. Chem. Soc., 62, 1183 (1940).
(22) E. B. Barnett and J. W. Cook. J. Chem. Soc., 1084 (1924). See also C. Meritt and C. E. Braun. Org. Synth., 30, 1 (1950).
(23) See W. Adcock and M. J. S. Dewar, J. Am. Chem. Soc., 89, 388 (1967).
(24) O. Diels and K. Alder. Justus Liebigs Ann. Chem., 486, 19 (1931).
(25) IV. Adcock and T. C. Khor, to be published.

A Method for Relating Esterification Rates and Structures of Alkyl-Substituted Acetic Acids

Paul J. Sniegoski
U.S. Naval Research Laboratory, Washington, D.C. 20375

Received November 21, 1975
The relationship between the esterification rate and structure of aliphatic acids has been investigated since the latter part of the 19 th century. ${ }^{1}$ The collection of data by Loening, Garrett, and Newman ${ }^{2}$ for hydrogen chloride catalyzed esterifications in methanol is commonly used in relating structure and rate. By including additional data, some recent studies have suggested that there are relationships between rate and structure not previously disclosed. ${ }^{3}$ The purpose of the present study is to further examine the problem of rate and structure by the use of an expanded collection of comparable esterification data.

In the original method the determination of rate coefficients of slow-reacting acids was seriously limited since during the extended esterification time a substantial amount of the hydrogen chloride catalyst reacted with the methanol. ${ }^{2}$ In the present study, pairs of acids are allowed to react together and the ratios of the rate coefficients are determined by gas-liquid

Table I. Source and Purity of the Acids and Experimental Results

Registry no.	Acid no.	Structure	Source of acid or precursor	$\begin{gathered} \mathrm{NE}_{\text {caled }}- \\ \mathrm{NE}_{\text {found }} \end{gathered}$	GLC \% area	"Known" acid	$k_{\text {known }} / k_{\text {unknown }} \pm$ std dev
503-74-2	1^{a}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$	Eastman Organic	-0.5	98.3		
105-43-1	2	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)- \\ \mathrm{CH}_{2} \mathrm{COOH} \end{gathered}$	K \& K	0.3	¢8.1	1	1.2360 ± 0.0218
97-61-0	3	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}- \\ \left(\mathrm{CH}_{3}\right) \mathrm{COOH} \end{gathered}$	K \& K	-0.5	98.5	1	1.4950 ± 0.1422
1070-83-3	4	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{COOH}$	Aldrich	1.0	99.0	14	0.3840 ± 0.0520
88-09-5	5	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOOH}$	Eastman Organic	-0.9	99.1	14	0.7994 ± 0.0200
14287-61-7	6	$\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)- \\ & \mathrm{COOH} \end{aligned}$	K \& K	-1.5	96.7	14	0.6773 ± 0.0259
595-37-9	7	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}- \\ & \mathrm{COOH} \end{aligned}$	K \& K	-1.3	98.6	14	1.3263 ± 0.1168
32444-32-9	8^{a-c}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-$ COOH	Eastman Organic	1.2	98.1		
19889-37-3	9	$\underset{\left(\mathrm{CH}_{3}\right) \mathrm{COOH}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)-}$	Chemical Samples	-0.4	99.8	8	1.7825 ± 0.1805
3302-09-8	$10^{c, d}$	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH} \\ \left(\mathrm{CH}_{3}\right) \mathrm{COOH} \end{gathered}$	Pfautz and Bauer	-0.5	99.6	14	0.2942 ± 0.0137
149-57-5	11	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}- \\ \left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COOH} \end{gathered}$	Baker Chemical	-0.4	39.6	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.2980 \pm 0.0071^{e} \\ & 0.3461 \pm 0.0162^{f} \end{aligned}$
813-72-9	12^{g}	$\underset{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-}$	K \& K	-0.9	95.7	14	1.3456 ± 0.0208
108-81-6	13	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH} \\ \left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COOH} \end{gathered}$	Pfautz and Bauer	-0.6	99.1	14	1.1261 ± 0.0924
99-66-1	14^{a}	$\begin{aligned} & \left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{CH}- \\ & \mathrm{COOH} \end{aligned}$	K \& K	-0.5	99.3		
866-72-8	15^{8}	$\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C}- \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH} \end{gathered}$	Pfautz and Bauer	-2.3	98.6	14	2.4691 ± 0.2055
813-58-1	$16^{\text {c }}$	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CCOOH}$	K \& K	-2.4	99.3	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	$\begin{aligned} & 14.20 \pm 4.10 \\ & 25.61 \pm 1.48^{e} \end{aligned}$
32118-53-9	17^{i}	$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{CHCOOH}$	Pfautz and Bauer	0.2	94.5	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 2.053 \pm 0.031^{e, f} \\ & 0.827 \pm 0.043^{e, f} \end{aligned}$
6967-84-6	18^{c}	$\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)- \\ & \mathrm{COOH} \end{aligned}$	Dow Chemical	0.0	99.7	16	2.385 ± 0.431
						16	2.551 ± 0.144^{e}

[^3]chromatographic analysis. This method should not be influenced by change in concentration of the catalyst.

The experimental results giving the relative esterification rates of the various pairs of acids are shown in Table I. In determining these relative rates, one of the acids in each pair is considered to have a known rate. Therefore, the value for the "unknown" acid can be calculated. Several acids were used as "knowns" having the rate values given in the collected data of Loening, Garrett, and Newman.
For an examination of the relationship between structure and esterification rates, it was found extremely useful to represent the structure of an acid as a series of digits to be called the "carbon-carbon bond number pattern". Each digit represents the position of a carbon atom in relation to the number of carbon-carbon bonds to the carboxyl group. For example, the carbon-carbon bond number pattern for structure $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$ is 32221 . There are cases, of course, where several acid isomers have the same pattern. All rate data are given as relative to that of butanoic acid and the higher molecular weight normal acids. This is convenient because these acids have essentially the same rate. Examination of the relative rates and the carbon-carbon bond number patterns of acids from the collected data of ref 2 and from this study has led to the proposal of five simple rules for ranking the rate of the acids:

1. If the patterns are the same, the rates are approximately the same.
2. If the patterns for two isomers differ in the value of only one digit, the acid with the lower digit has the slower rate.

3 . The acid with the greater combined number of " 2 's" and " 3 ' s " has the slower rate.
4. An acid has a faster or equal rate if its pattern is included in that of another.
5. For acids that cannot be ranked by these rules, the one with the greater number of " 2 's" has the slower rate.

Although some of these "rules" may seem quite simple, together they form a powerful tool for ranking the rates of the acids. In Table II, the acids have been ranked according to these five rules. The excellent agreement between the ranking by the patterns and experimentally determined values is obvicus from inspection of the first two columns. A rank correlation of 0.99 is obtained from this data. Members of a group of acids with the same pattern (five pairs) or undifferentiated by any of the rules (one pair) are given the mean value of the ranks. Values determined in this study are given precedence over those of the collected data. A serious discrepancy occurs in the values for 2,2 -diethylbutanoic acid, the last entry in Table II, where the value determined in the present study is only one-seventh of that previously reported. Therefore, several rate coefficients were determined by the method used

Table II. Aliphatic Acids Ranked with Respect to the Carbon-Carbon Bond Number Pattern Rules and the Experimentally Determined Relative Esterification Rates

Rank according to					
$\begin{gathered} \text { C-C bond } \\ \text { no. } \\ \text { pattern } \\ \text { rules } \end{gathered}$	$\begin{aligned} & \text { Exptl } \\ & \text { detd } \\ & \text { rel } \\ & \text { rates } \end{aligned}$	Structure	Carbon-carbon bond no. pattern	Rel esterification rate, $40{ }^{\circ} \mathrm{C}$	
				Coll data (ref 2)	This report
1	1	$\mathrm{CH}_{3} \mathrm{COOH}$	1	2.02	
2	2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	21	1.70	
3	3	$\mathrm{H}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COOH}(n>2)$	n. 321	1.00	
4	4	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	44321	0.972	
5.5	5	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	444321	0.937	
5.5	8	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	555544321	0.206	
7	6	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$	221	0.675	
8	7	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}$	3321	0.236	(0.236)
9	10	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$	43321		0.191
10	9	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	3221	0.201	
11	11	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	43221		0.158
12	13	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	4443221	0.0311	0.0632
13	12	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$	2221	0.0756	
14	14	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{COOH}$	33321	0.0474	0.0487
15.5	15	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	33221		0.0276
15.5	16	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOOH}$	33221	0.0202	0.0234
17	17	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)- \\ & \mathrm{COOH} \end{aligned}$	5433221		0.0219
18.5	18	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{CHCOOH}$	4433221	0.0187	(0.0187)
18.5	20	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COOH}$	4433221		0.0166
20	19	$\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{CHCOOH}$	554433221	0.0169	
21	23	$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right]_{2} \mathrm{CHCOOH}$	444433221	0.00839	
22	26	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}\right]_{2} \mathrm{CHCOOH}$	44444433221	0.00176	
23	21	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	32221		0.0141
24	22	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	5432221		0.0139
25	24	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	4432221		0.00758
26	25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	44432221	0.00667	
27.5	27	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	333221	0.00125	
27.5	28	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COOH}$	333221	0.00120	(0.00120)
29	29	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$	332221		0.000673
30.5	32	$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{CHCOOH}$	3333221	Too slow	0.0000232
30.5	33	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COOH}$	3333221	Too slow	0.0000192
32.5	30	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOH}$	3332221	0.000261	
32.5	31	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{CCOOH}$	3332221	0.000328	0.0000474

to derive the previously reported data. The excellent agreement of these determinations with the GLC analyses gives strong support to this smaller value.

This method of ranking the expected relative esterification rates according to the carbon-carbon bond number patterns is, of course, based on the simple idea that the closer to the carboxyl group, the more effective is a group in retarding the rate. The scheme could not have been previously set forth because until quite recently ${ }^{3 \mathrm{~b}}$ it was generally accepted that a more distant β-substitution, a " 3 " in this case, would have more effect in retarding esterification than a nearer α-substitution, a " 2 ". Only in cases of the extremely hindered acids, the last four entries in Table II, does it seem that this previously accepted concept holds true.

Rule 3 is in accord with the findings of Smith and Burn, ${ }^{4}$ who reported that the esterification rates of various types of aliphatic acids tend to fall into classes according to the number of α and β substitutions (the number of " 2 ' s " and " 3 ' s " in the case of the carbon-carbon bond number patterns). However, this observation apparently was not used in any sort of predictive scheme. Instead, Newman's rule of six ${ }^{2}$ is still commonly used to correlate rates with structures. ${ }^{5}$ Although determined differently, the six-number of an acid amounts to three times the number of " 3 ' s " in the pattern. The greater the six-number the slower the predicted rate. Results would be much improved if consideration were given to the sum of the " 2 's" and " 3 's", designated here as the "steric hindrance number". For the acids in Table II with molecular weights
above that of propionic, the logarithm of the relative rate is plotted vs. the steric hindrance number. The line determined by the least squares method is

$$
\log \text { relative rate }=2.21-1.05 \text { (steric hindrance number) }
$$

With the value of 0.36 for the standard error of estimate for the log of the relative rate, accurate predictions are, of course, not expected. However, since the esterification rate tends to be cecreased by a factor of 10 when the steric hindrance number is increased by a unit, a rough estimate can be obtained from the following:
estimated rate compared to butanoic acid

$$
\left.=10^{(2-s t e r i c ~ h i n d r a n c e ~ n u m b e r ~}\right)
$$

Twc-thirds of the acids in Table II have relative rate values that are within a factor of 2 of the estimated values.
What has been accomplished here is the development of a method whereby aliphatic acids are ranked according to expected relative esterification rates by a simple inspection of the structures. The demonstrated success of this scheme indicates that it is far superior to any presently available.

Experimental Section

Of the 18 acids used in this study, five were synthesized by methods referred to in Table I. Purity is indicated from neutralization equivalents and GLC analysis. Designated structures of several of the acids were substantiated by NMR spectra obtained on a Varian HA-100 spectrometer modified for carben-13 pulsed Fourier transform op-
eration. The analytical gas-liquid chromatography was carried out on a Beckman GC-4 gas chromatograph equipped with a flame ionization detector which was interfaced with a Perkin-Elmer PEP-1 data processor. The $6 \mathrm{ft} \times 0.125 \mathrm{in}$. stainless steel chromatographic column was packed with 20% diethylene glycol adipate polyester and 3% phosphoric acid on 60/80 mesh Gas-Chrom P.

Experimental Procedures. The reaction mixture containing 5 ml of methanol, approximately 0.05 g of each of the two acids, and 0.01 ml of concentrated hydrochloric acid was esterified at $40 \pm 0.04^{\circ} \mathrm{C}$. Reaction times ranged from less than 1 h to more than 1 month. The calculation of r, the relative rate, is based on the equation

$$
k_{1} / k_{2}=\ln A / \ln B=r
$$

where A is the fraction of acid 1 and B the fraction of acid 2 remaining after the partial esterification. Two GLC methods of analysis were used to determine A and B. In the first method, the analyses were carried out with the column at $160^{\circ} \mathrm{C}$. The reaction mixture also contained 0.05 g of methyl myristate as an internal standard. Determinations of A and B are based on the results of two chromatograms, one taken before and one after the partial esterification; for example

$$
A=[\text { final acid } 1][\text { initial standard }] /[\text { initial acid } 1][\text { final standard }]
$$

where the items in brackets refer to the GLC areas of the components in the chromatograms. Neither hydrolysis of the internal standard nor esterification occurring in the chromatographic system during analysis was found to be significant. For the second GLC analytical method, in which case the acids and esters are analyzed, the temperature of the column was held at $100^{\circ} \mathrm{C}$ for 4 min and then programmed to $160^{\circ} \mathrm{C}$ over an 8 -min period. No internal standard is needed for this method and only the chromatogram of the partly esterified mixture is used to determine A and B; for example

$$
A=(\operatorname{acid} 1) /[(\operatorname{acid} 1)+\mathrm{c}(\text { ester } 1)]
$$

where c is the mole-area correction factor for the acid-ester pair. The correction factor of 0.92 , determined for 2 -ethylhexanoic acid and methyl 2-ethylhexanoate, was assumed to hold for the five octanoate entries in Table I.
In two cases, as indicated in Table I, the esterification was carried out with each acid in a separate container because the GLC separation of the mixture was not adequate for good analysis. This means that the esterification environment was not exactly the same for each acid because of different amounts of water produced during the reaction. However, the results should not be particularly affected since under the experimental conditions the "wetness" of the alcohol does not greatly increase during the esterification.

How errors in measuring A and B affect the computation of r has been previously considered. ${ }^{6}$ In the present case the relative standard deviation in reproducing the chromatographic peaks was found to be about 3%. Although in the first GLC analytical method, the error in r decreases the further the esterification proceeds, data cannot be used where the hydrolysis reaction becomes significant. Therefore acid pairs were chosen with somewhat similar rates and data was taken when the faster reacting component had esterified from 50 to 80%. For the second method of analysis, based on the relative amounts of each acid and its ester in the partly esterified mixture, the extent of esterification has little influence in the computational error of r. Data can therefore be taken during the early stages of the reaction. This advantage over the first method is somewhat offset by the more complex analytical procedure. Most of the esterification experiments were carried out by the first method described. The values of r in Table I are averages from at least four determinations. The relative standard deviation for r averaged 8%.

Esterification rate coefficients for 2-ethyl-3-methylbutanoic acid and 2,2-diethylbutanoic acid were determined by the procedures used in obtaining the data in ref 2 . Samples containing 0.5 M carboxylic acid and 0.005 M hydrogen chloride in dry methanol were sealed in glass ampules and kept at $40 \pm 0.04^{\circ} \mathrm{C}$ for 413 h . Analysis was carried out by acid titrations. The value of k in liters per mole per second for 2-ethyl-3-methylbutanoic acid was $7.47 \times 10^{-5}\left(7.80 \times 10^{-5}\right.$ previously reported) and for 2,2 -diethylbutanoic acid was $2.99 \times 10^{-6}(21.4 \times$ 10^{-6} previously reported). The ratio of the two rates as entered in Table I is $7.47 \times 10^{-5} / 2.99 \times 10^{-6}=25.0$.

Acknowledgments. The author wishes to thank Dr. Stanley Sojka of the Naval Research Laboratory for determining and interpreting the NMR spectra, and John Mulloy of the Dow Chemical Co. for a sample of 2-ethyl-3,3-dimethylbutanoic acid.

References and Notes

(1) (a) K. S. Markley in 'Fatty Acids'", Part 2, K.S. Markley, Ed., Interscience, New York, N.Y., 1961, Chapter IX; (b) C. K. Ingold, '"Structure and Mechanism in Organic Chemistry", Cornell University Press, Ithaca, N. Y., 1953, DD 776-778
(2) K. L. Loening. A. B. Garrett, and M. S. Newman, J. Am. Chem. Soc., 74, 3929 (1952).
(3) (a) P. J. Sniegoski, J. Chromatogr. Sci., 10, 644 (1972); (b) J. Org. Chem., 39, 3141 (1974).
(4) H S. Smith and J. Burn, J. Am. Chem. Soc., 66, 1494 (1944).
(5) (a) C. A. Buehler and D. E. Pearson, "Survey of Organic Synthesis"', W'iley-Interscience, New York, N.Y.. 1970, p 804; (b) A. J. Kirby in "Ester' Formation and Hydrolysis and Related Reactions'", C. H. Bamford and C. H. Tipper, Ed.. American Elsevier, New York, N.Y., 1972, p 57.
(6) TS.Lee in "Investigations of Rates and Mechanisms of Reactions, Techniques of Organic Chemistry", Vol. VIII, S. L. Friess and A. Weissberger, Ed., Interscience, New York, N.Y., 1953, pp 109-111.

Oxidation of Thiols and Disulfides to Sulfonic Acids by Dimethyl Sulfoxide

Orville G. Lowe
The Author's Consulting Laboratory, Los Angeles, California 90027

Received Julv 21, 1975
The oxidizing ability of dimethyl sulfoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ is well known; ${ }^{1}$ still, its ability to oxidize organic sulfur compounds to sulfonic acids has received little recognition. Such oxidations would include certain decompositions of $\mathrm{Me}_{2} \mathrm{SO}$ in the presence of bromine, hydrogen bromide, or iodine giving, among other products, methanesulfonic acid or its trimethylsulfonium salt. ${ }^{2}$ Methanethiol ${ }^{2 a}$ and the corresponding sulfenic and sulfinic acids ${ }^{2 d}$ and sulfinyl halides ${ }^{2 b, c}$ have been suggested as intermediates.

As for specific examples of the oxidation of thiols and disulfides, Toland ${ }^{3}$ has described the oxidation of dodecanethiol to dodecanesulfonic acid in the presence of ammonium bromide at temperatures approaching $170^{\circ} \mathrm{C}$; yet, a similar, preparative decomposition of $\mathrm{Me}_{2} \mathrm{SO}$ to methanesu fonic acid at $175^{\circ} \mathrm{C}$ is also described. Further, Lipton and Bodwell ${ }^{4}$ have reported that cystine is oxidized to cysteic acid by minor amounts of $\mathrm{Me}_{2} \mathrm{SO}$ under conditions used for the acid-catalyzed hydrolysis of proteins.

The above $\mathrm{Me}_{2} \mathrm{SO}$ decompositions also produce paraformaldehyde and dimethyl sulfide (DMS) and may be hazardocis. ${ }^{2 \mathrm{a}, 5}$ Thus, application of $\mathrm{Me}_{2} \mathrm{SO}$ to oxidation of thiols and disulfides has the disadvantage of both hazard and contamination of product sulfonic acid with methanesulfonic acid.

I have now found that, in the presence of a catalytic amount of bromine or iodine or their hydrogen halide, thiols and disulfides may conveniently be oxidized to the corresponding sulfonic acid with little $\mathrm{Me}_{2} \mathrm{SO}$ decomposition through the simple expedient of having water present during the oxidation of thiols (eq 1) and excess water present during the oxidation of disulfides (eq 2). With such presence of water, the characteristic deposit of paraformaldehyde in the upper reaches of the reaction vessel is much reduced or absent and reaction occurs in good agreement

Table I. Effect of Water on Oxidations ${ }^{\text {a }}$

$\mathrm{H}_{2} \mathrm{O} / \mathrm{RSH}$ or RSSR, molar ratio	Nature of reaction	Deposit, $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}$	DMS yield, \% theory	Acidity, \% theory
Benzenethiol (1.57 M , at $110^{\circ} \mathrm{C}$)				
0	Rapid and vigorous	Abundant	131	154
0.71	Moderate	Absent	86	107
Dimethyl Disulfide (1.13 M , at $90{ }^{\circ} \mathrm{C}$)				
1.00	Eventually vigorous	Abundant	183	191
1.44	Gradual	Trace	103	109
${ }^{\text {a }} 0.0356 \mathrm{M} \mathrm{HBr}$ catalyst.				

Table II. Effect of Variables on Completion Time in Oxidation of DMDS ${ }^{a}$ ($1.13 \mathrm{M}, \mathrm{HBr}$ Catalyst)

Temp, ${ }^{\circ} \mathrm{C}$	Water/DMDS molar ratio	Catalyst concn, M	Completion time, h
90	1.44	0.0356	10.75
90	2.00	0.0356	>12
90	4.00	0.142	665
100	2.00	0.0356	6.5
100	3.00	0.0712	5
$110-120$	2.00	0.0178	6.5
$110-120$	2.00	0.0356	3.25
Dimethyl disulfide.			

Table III. Effect of Added Methanesulfonic Acid on Completion Time, Oxidation of DMDS (1.13 M; Water, 2.22 M)

Catalyst $\left(\right.$ concn, $\mathrm{M}^{\circ}{ }^{a}$	Temp, ${ }^{\circ} \mathrm{C}$,	Added $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$, M	Completion time, h
$\mathrm{I}_{2}(0.0316)$ $\mathrm{I}_{2}(0.0316)$	130	None $\mathrm{HBr}(0.0356)$	90

${ }^{a} \mathrm{I}_{2}$ expressed as HI equivalents.
with theory (reaction 1 or 2) in DMS yield and titratable acidity (Table I).

Chlorine and hydrogen chloride are known to catalyze sulfoxide oxidation of thiols to disulfides, ${ }^{6}$ but on checking for further oxidation of disulfides, there was only a slow evolution of DMS. Thus, they do not provide practical catalysis for oxidation to sulfonic acid; though, in the presence of a minor amount of iodine or hydrogen iodide, good catalysis is obtained.
The oxidations are conducted with excess $\mathrm{Me}_{2} \mathrm{SO}$ as solvent and at elevated temperatures with distillation of produced DMS so that the progress of the oxidation may be followed. In satisfactory oxidations, completion is indicated by a marked slowing or near cessation of DMS formation at about the theoretical amount. For successful application with negligible $\mathrm{Me}_{2} \mathrm{SO}$ decomposition, the concentrations of thiol or disulfide, water, and catalyst and reaction temperature must be adjusted in relation to one another.

Water has'a marked moderating effect. As its concentration is increased, the oxidation becomes excessively sluggish, but this may be compensated for by an increase in catalyst concentration or reaction temperature (Table II). However, with increased catalyst concentration and tem-
perature, particularly if not appropriately compensated for with more water, there is a greater probability of $\mathrm{Me}_{2} \mathrm{SO}$ decomposition, further oxidation to sulfuric acid and, generally, a more impure product.

An induction period for the formation of DMS is regularly observed. This period can be decreased and oxidation time shortened through the addition of acid, e.g., sulfuric acid, though addition of the same acid as expected from the oxication is most convenient preparatively. Addition of acid also permits satisfactory oxidation at somewhat lower temperatures (Table III).

The use of a high concentration of thiol or disulfide (about 4.8 and 2.4 M , respectively) resulted in oxidations that were difficult to control. In practice thiol concentration was kept below 2.4 M , and disulfide, below 1.2 M. Bro-mine-hydrogen bromide catalyzed oxidations were generally conducted at about $110^{\circ} \mathrm{C}$, and iodine-hydrogen iodide catalyzed oxidations at somewhat higher temperatures. Lower temperatures were often suitable where the above catalysts were used in conjunction with HCl or other added acid. The use of high catalyst concentrations and temperatures so as to have short reaction times was avoided. For separation of the product sulfonic acid from excess $\mathrm{Me}_{2} \mathrm{SO}$, the use of ion exclusion chromatography ${ }^{7}$ was found to be convenient; though, generally, the reaction mixture was neu-ralized with aqueous sodium hydroxide and the salt recovered after addition of a precipitant.

The oxidation was applied successfully to a number of aliphatic and aromatic thiols and disulfides. Table IV summarizes these experiments. The method compares favorably with other oxidation procedures. ${ }^{8}$ The oxidation of 2-methyl-2-propanethiol and bis(tert-butyl) disulfide led to decomposition, and only sodium sulfate was identified after neutralization.

The subject oxidation has much in parallel with the halo-gen-hydrogen halide catalyzed oxidations of aliphatic thiols to disulfides by sulfoxides. ${ }^{6}$ In addition to the same oxidant and catalysts, there is retardation or moderation by water, enhancement of catalysis by addition of a nonhydrohalic acid, and satisfactory mixed chlorine-iodine species catalysis contrasted with inferior chlorine species catalysis. The principal distinction is a higher reaction temperature without a reduced reaction time. Again, reaction 3 accounts for catalysis by both halogen and its hydrogen halide. The produced halogen may play a leading role in the actual oxidation.

In view of the greater ease of oxidation of a thiol to its disulfide, the disulfide would appear to be an intermediate in oxidation of thiol to the sulfonic acid. Color changes such as those reported for iodine-hydrogen iodide catalyzed oxidation to disulfide ${ }^{6}$ have been observed part way through the oxidation to the sulfonic acid. Thereafter, the mixture retained the amber, iodine color.

I suggest that a further intermediate or intermediates ${ }^{9}$ have the structure 1 where X is the halogen species employed as catalyst and that the beneficial role of water is to hydrolyze such intermediates, thereby limiting undesirable reaction with $\mathrm{Me}_{2} \mathrm{SO}$. Such a hydrolysis would also regenerate catalyst. An example of undesirable reaction with $\mathrm{Me}_{2} \mathrm{SO}$ is the case of a sulfonyl chloride $(n=2) .{ }^{10}$ The $\mathrm{Me}_{2} \mathrm{SO}$ oxidation of such possible intermediates and their hydrolysis products is presently being investigated.

$$
\begin{gathered}
\mathrm{RSO}_{n} \mathrm{X} \\
1, n=0,1 \text { or } 2
\end{gathered}
$$

Table IV. Summary of Oxidations to Sulfonic Acid ${ }^{\text {a }}$

Registry no.	Thiol or disulfide	Conen, M	$\begin{aligned} & \text { Catalyst } \\ & \left(\mathrm{M} \times 10^{2}\right)^{b} \end{aligned}$	Temp, ${ }^{\circ} \mathrm{C}$	Rxn time, h	DMS yield \% theory	Acidity, \% theory ${ }^{c}$	$\begin{gathered} \mathrm{Na} \\ \text { sulfonate } \\ \text { yield, } \\ \%^{d} \end{gathered}$	$\begin{gathered} \mathrm{Na}_{2} \mathrm{SO}_{4} \\ \text { yieldd } \\ \%_{6}{ }^{e} \end{gathered}$
624-92-0	Dimethyl	1.126	$\mathrm{I}_{2}(3.16)$	130	4.25	89	105	96	<0.1
	Dimethyl	1.126	$\mathrm{I}_{2}(1.58)$	130	6.25	90	103		
	Dimethyl	1.126	HI (3.48)	130	4.5	88	104		
	Dimethyl	1.126	Br_{2} (3.66)	110	3	90	105		
	Dimethyl	1.126	$\mathrm{HBr}(3.56)$	110	3.25	89	106	92	<0.1
	Dimethyl	1.126	HBr (1.78)	110	6.5	91	103		
	Dimethyl	1.126	$\mathrm{HCl}(3.60)^{\prime}$	100	6.25	81	105	97	<0.1
110-81-6	Diethyl	0.972	$\mathrm{I}_{2}(3.16)$	120	6	88	108	84	8
	Diethyl	0.972	HBr (3.56)	110	3.75	85	107	82	0.6
109-79-5	Butane-	1.850	$\mathrm{I}_{2}(3.16)$	120	7	86	113	71	20
	Butane-	1.850	HBr (3.56)	110	5.75	92	110	89	4
75-33-2	2-Propane-	1.692	HBr (3.56)	110	$7.75{ }^{\text {g }}$	88	107	90	2.4
	2-Propane-	1.692	$\mathrm{HCl}(3.60)^{\prime}$	110	178	120	147	44	45
108-98-5	Benzene-	1.568	$\mathrm{I}_{2}(3.16)$	130	4.75	85	106	87	Trace
	Benzene-	1.368	HBr (3.56)	110	3.5	83	107	88	Trace
882-33-7	Diphenyl	0.732	$\mathrm{I}_{2}(3.16)$	130	3.75	83	108	94	Trace
1155-00-6	$\begin{aligned} & \text { Bis(2-nitro- } \\ & \text { phenyl) }^{h} \end{aligned}$	0.523^{i}	HBr (7.12)	j	7	118	143	90	4.5
	Bis(2-naphthyl)	$0.502^{\text {i }}$	HBr (3.56)	110	4.75	91	130	$84{ }^{k}$	
5586-15-2	Bis(2- naphthyl)	$0.628{ }^{\text {i }}$	$\mathrm{HCl}(3.60)$ f	105	4.25	94	117	79^{k}	

${ }^{\circ}$ Oxidations were conducted in 50 ml of $\mathrm{Me}_{2} \mathrm{SO}$. The water concentration was 1.11 M with thiols and 2.22 M with disulfides except as indicated. ${ }^{b}$ Halogen concentrations are expressed as equivalents of hydrogen halide. ${ }^{c}$ Based upon the amount of 5 N NaOH solution required to neutralize the reaction mixture. Theory according to reaction 1 or 2, as applicable. ${ }^{d}$ Yield of crude product less yield of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ except as indicated. ${ }^{e}$ Based upon thiol or disulfide. ${ }^{f}$ Iodine also present, $0.64-0.66 \times 10^{-2} \mathrm{M}$ as HI . ${ }^{g}$ Temperature of the reaction mixture was gradually increased from 70 to $110^{\circ} \mathrm{C}$ in $2-3 \mathrm{~h}$ before start of this heating period. ${ }^{h} \mathrm{~W}$ ater concentration was 1.11 M . ${ }^{\text {i }}$ Incompletely soluble initially. Went into solution as the oxidation progressed. ${ }^{j}$ See Experimental Section. ${ }^{k}$ Yield after recrystallization from water.

Experimental Section

Reagents. The $\mathrm{Me}_{2} \mathrm{SO}$, halogens, and hydrohalic acids were reagent grade. The concentrations of the acids follow: HI, 57%; HBr , 48%; and $\mathrm{HCl}, 37 \%$. Ordinary quality, commercial thiols and disulfides were used directly when available. Practical grades were redistilled. Bis(2-naphthyl) disulfide was prepared by oxidation of 2-naphthalenethiol. ${ }^{6}$

General Aspects of the Oxidation Procedure. The reactants were heated by means of an oil bath in a flask equipped with a distillation head suitable for collection of DMS. Temperatures were approximate. Such heating was continued until the rate of DMS distillation went through a maximum and slowed to less than about $1 / 3 \mathrm{ml}$ per $15-\mathrm{min}$ period per 100 mmol of expected sulfonic acid. Unless indicated otherwise, the reaction mixture was neutralized by addition of sodium hydroxide solution. The sodium salt was precipitated (preferably after removal of water under vacuum) by addition of acetone and ethyl acetate (about 200 ml of each per 100 mmol of expected sulfonate). The salt was dried at $130^{\circ} \mathrm{C}$ and then recrystallized from ethanol ${ }^{11}$ to separate from any sodium sulfate. Recrystallized salt was treated with phosphorus pentachloride and then concentrated aqueous ammonia to obtain the sulfonamide. In each case, the melting point of the sulfonamide agreed with the reported value. ${ }^{12}$
The following experiments are given as examples. Melting and boiling points are uncorrected.

Methanesulfonic Acid. A solution of 15 ml (169 mmol) of DMDS. 6 ml (333 mmol) of water, and $0.60 \mathrm{ml}(5.34 \mathrm{mmol})$ of hydrobromic acid in 150 ml of $\mathrm{Me}_{2} \mathrm{SO}$ was heated at $100-110^{\circ} \mathrm{C}$. After a bit, a distillation at $38-45{ }^{\circ} \mathrm{C}$ commenced. Heating was continued until the distillation temperature dropped and distillation slowed to less than 1 ml in a $15-\mathrm{min}$ period (about 4.25 h). Distillate (56.5 ml) was obtained and proved to be mainly DMS. It redistilled at $37-39^{\circ} \mathrm{C}$ and gave a mercuric chloride derivative melting at $159-161{ }^{\circ} \mathrm{C}$ (reported for the DMS derivative, $156-158$ ${ }^{\circ} \mathrm{C}$). ${ }^{13}$
Two-thirds of the reaction mixture was removed, and after dilution with 200 ml of water, the acid pesent was separated from excess $\mathrm{Me}_{2} \mathrm{SO}$ by ion exclusion chromatography ${ }^{7}$ on Dowex ion exchange resin ($50-\mathrm{X} 8$, acid form). The acid fraction was concentrated, then methanesulfonic acid distilled at 1 mm . Obtained was 19.6 g (90% of theory). The melting and boiling points agreed with literature values.
The remaining third of the reaction mixture was neutralized by
addition of 24.3 ml of 5 N NaOH . Addition of 250 ml of acetone and 150 ml of ethul acetate gave 12.4 g of crude sodium methanesulfonate (93% of theory). After recrystallization from 95% alcohol, the nelting point was $353-355^{\circ} \mathrm{C}$ (reported, $345^{\circ} \mathrm{C}$)..14

2-Nitrobenzenesulfonic Acid. A mixture of $8.0 \mathrm{~g}(26.0 \mathrm{mmol})$ of bis(2-nitrophenyl) disulfide, $1 \mathrm{ml}(55.5 \mathrm{mmol})$ of water, 0.40 ml (3.56 mmol) of hydrobromic acid, and 50 ml of $\mathrm{Me}_{2} \mathrm{SO}$ was initially heated at $120^{\circ} \mathrm{C}$, but the temperature was gradually allowed to drop to $106^{\circ} \mathrm{C}$. In $7 \mathrm{~h}, 11.2 \mathrm{ml}$ of DMS distilled. ${ }^{15} \mathrm{NaOH}(5 \mathrm{~N}, 15.2$ ml) was required to neutralize the residue. After water was removed by heating under vacuum, 200 ml of ethyl acetate was add d , and the mixture triturated. This was repeated with 100 ml of fresh ethyl acetate. Crude sodium 2-nitrobenzenesulfonate (10.9 g) uas obtained. The yield was 90% after correction for 0.33 g of sodium sulfonate removed by crystallization from 95% alcohol.

Registry No.- $\mathrm{Me}_{2} \mathrm{SO}$, 67-68-5; methanesulfonic acid, 75-75-2; ethanesulfonic acid, 594-45-6; 1-butanesulfonic acid, 2396-47-2; 2propanesulfonic acid, 14159-48-9; benzenesulfonic acid, 98-11-3; 2-nitrobenzenesulfonic acid, 80-82-0; 2-naphthalenesulfonic acid, 120-18-3.

References and Notes

(1) For reviews see W. W. Epstein and F. W. Sweat, Chem. Rev., 67, 247 (1967): T. Durst Adv. Org. Chem., 6, 343-356 (1969). For recent, leading references see C. R. Johnson, C. C. Bacon, and J. J. Rigau, J. Org. Chem., 37, 919 (1972).
(2) (a) F. Banci. Ar.n. Chim. (Rome). 57, 549 (1967): (b) D. Martin. A. Berger, and R. Pes=hel, J. Prakt. Chem., 312, 683 (1970); (c) N. Kharasch and O. G. Lowe. See H. H. Szmant in "Dimethyl Sulfoxide". Vol. 1, S. W. Jacob et al.. Ed.. Marcel Dekker, New York, N.Y.. 1971 , p 85; (d) T. Aido, N. Furukana, and S. Oae, Tetrahedron Lett., 3853 (1973).
(3) W. G. Toland, U.S. Patent 3,428,671 (Feb 18, 1969)
(4) S. H. Lipton and C. E. Bodwell, J. Agric. Food Chem., 21, 235 (1973)
(5) The combination of paraformaldehyde formation and hazard is typical of $\mathrm{Me}_{2} \mathrm{SO}$ in the presence of acidogenic agents. See G. G. Allan, E. Moks, and E. N. Nelson, Chem. Ind. (London), 1706 (1967). and references cited the-ein.
(6) O. G. Lowe, J. Org. Chem., 40, 2096 (1975).
(7) E. W. Berg. "Physical and Chemical Methods of Separation". McGrawHill, New York, N.Y., 1963. Chapter 11
(8) E.E. Gilbert, "Sulfonations and Related Reactions". Interscience. New York, N.Y., 1965, Chapter 4.
(9) Possible routes in the oxidation of disulfides have been considered by W. E. Savige and J. A. Maclaren in "Chemistry of Organic Sulfur Compounds'". Vol. 2. N. Kharasch and C. Meyers, Ed., Pergamon Press. Elmsford, N.Y., 1966, pp 367-368
(10) S. A. Heininger and J. Dazzi, Chem. Eng. News, 35, 87 (1957)
(11) Except sodium 2-naphthalenesulfonate. See Table IV. footnote k.
(12) Z. Rappoport. Ed. "Handbook of Tables for Organic Compound Identification". 3d ed. Chemical Rubber Publishing Co.. Cleveland, Ohio. 1967. pp 392-405
(13) F. Challenger and M. I. Simpson. J. Chem Soc., 1593 (1948)
(14) R. E. Banks and R. V. Haszeldine in ref 9. p 169
(15) Bis(2-nitrophenyl) disulfide was notably resistant to oxidation, and these conditions somewhat pressed the stability limits of $\mathrm{Me}_{2} \mathrm{SO}$. Though distillation of DMS had slowed by 7 h , it was still continuing at more than the usual rate.

Reactions of Fluorodinitroethoxyacetyl Chloride and Fluorodinitroethoxyacetic Anhydride with Friedel-Crafts Catalysts ${ }^{1}$

Vytautas Grakauskas
Fluorochem, Inc., Azusa, California 91702
Received December 5, 1975
Simple aliphatic anhydrides have been reported to react with boron trifluoride to give the symmetrical ketones. ${ }^{2,3}$ Simple acid halides and tertiary amines gave ketene dimers, which on hydrolysis gave the corresponding ketones. ${ }^{4}$ On the other hand, tertiary carboxylic acids, acid halides, and anhydrides underwent decarbonylation with Friedel-Crafts catalysts; ${ }^{5}$ pivalyl chloride and aluminum chloride gave HCl , CO , and isobutylene. ${ }^{6}$

These reactions of fluorodinitroethoxyacetic acid derivatives were investigated as a continuation of our earlier work on this class of compounds. ${ }^{7,8}$

Fluorodinitroethoxyacetic acid and fluorodinitroethoxyacetyl chloride needed for this work were prepared by reported ${ }^{7}$ procedures. Fluorodinitroethoxyacetic anhydride, unknown prior to this work, was synthesized in 60% yield by dehydrating fluorodinitroethoxyacetic acid with acetic anhydride:

$$
2 \mathrm{FC}\left(\mathrm{NO}_{2} \iota_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\right.
$$

Fluorodinitroacetic anhydride reacted with boron trifluoride under the reaction conditions employed by Man and Hauser. ${ }^{3}$ The reaction product, however, was not the expected ketone, but fluorodinitroethoxymethyl fluorodinitroethoxyacetate:
$\left.\left[\mathrm{FONO} \mathrm{Z}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right]_{2} \mathrm{O}$
$\xrightarrow{\mathrm{BF}} \mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COOCH}_{2} \mathrm{OCH}_{2} \mathrm{CF}\left(\mathrm{NO}_{2}\right)_{2}$
A small amount of fluorodinitroethoxymethyl acetate was also obtained in this reaction.

Fluorodinitroethoxyacetyl chloride reacted readily with triethylamine in ethereal solution to give a white, crystalline solid. The stoichiometry of reaction and the solubility characteristics of this product indicated that instead of the expected ketene dimer, the reaction product was fluorodinitroethoxyacetyl triethylammonium chloride:
$\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COCl}+\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{3}$

Unlike the reported reaction of ketene dimers, this material yielded dark, tarry product on treatment with water which did not contain any 1,3-bis(fluorodinitroethoxy)acetone.

Fluorodinitroethoxyacetyl chloride did not react with weak Friedel-Crafts catalysts such as stannic chloride or ferric chloride. The acid chloride, however, reacted rapidly with aluminum chloride with evolution of a gas. The product of this reaction was characterized as the previously reported ${ }^{9}$ chloromethyl fluorodinitroethyl ether.
$\mathrm{FCl} \mathrm{NO}_{2} \stackrel{2}{2}^{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Cl}+\mathrm{CO}$
These results are consistent with the initial reaction of flucrodinitroethoxyacetic anhydride and fluorodinitroethoxyacetyl chloride with Friedel-Crafts catalysts to give fluorodinitroethoxyacylium cation intermediate. Instead of losing the α proton and yielding fluorodinitroethoxyketene as is the case with simple carboxylic acid derivatives, this intermediate undergoes decarbonylation to give fluorodinitroethoxymethyl cation:

$$
\begin{aligned}
& \mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COCl} \stackrel{\mathrm{AlCl}_{3}}{\longrightarrow}\left[\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}^{+}+\mathrm{Cl}^{-}\right. \\
& {\left[\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right]_{2} \mathrm{O}}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{\mathrm{BF}_{3}}\left[\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right]^{+}+\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{COO}^{-} \\
& {\left[\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CO}\right]^{+} \xrightarrow{-\mathrm{CO}}\left[\mathrm{FC}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right]^{+}}
\end{aligned}
$$

Thus, the fluorodinitroethoxy group appears to promote decarbonylation rather than ketene formation because of oxygen stabilization of the resulting cation, FC$\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}{ }^{+}$.

Experimental Section

Fluorodinitroethoxyacetic Anhydride. A solution of 10 g (0.0472 mol ; of fluorodinitroet hoxyacetic acid ${ }^{7}$ in 15 ml of acetic anhydride was refluxed for 8 h and the excess of acetic anhydride and acetic acid were removed under reduced pressure. The reaction product, 8.3 g . was contaminated with fluorodinitroethoxyacetic acid which was removed by distillation at $175-180^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. The degassed matericl amounting to $6.1 \mathrm{~g}(64 \%$ yield) solidified at room temperature and was crystallized from carbon tetrachloride to give 5.1 g of a white, crys-alline solid: $\mathrm{mp} 54^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.32$ (d. $J_{\mathrm{HF}}=16 \mathrm{~Hz}$, $4 \mathrm{H}, 2 \mathrm{FCCH}_{2}$) and $4.69 \mathrm{ppm}\left(\mathrm{s}, 4 \mathrm{H} .2-\mathrm{CH}_{2} \mathrm{CO}-\right.$).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{13}$: C, 23.66; $\mathrm{H}, 1.98$. Found: C, 23.42; H, 2.03.

Fluorodinitroethoxymethyl Fluorodinitroethoxyacetate. A slow stream of boron trifluoride was passed at $0^{\circ} \mathrm{C}$ for ca. 50 min into a stirred and cooled solution of $4 \mathrm{~g}(0.01 \mathrm{~mol})$ of fluorodinitroethoxyacetic anhydride in 3 ml of chloroform. The resulting mixture was added to a solution of 4 g of sodium acetate in 9 ml of water and heated at $95-100^{\circ} \mathrm{C}$ for 45 min . Chloroform was allowed to evaporate. The cooled mixture was extracted with 25 ml of methylene chloride and the methylene chloride solution was washed with 50 ml of saturated aqueous sodium bicarbonate solution followed by 50 ml of water. The methylene chloride solution was dried and stripped to give 2.2 g of oil. The crude material was distilled at $150^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ in a short-path micro distillation apparatus to give 1.9 g of fluorodinitroethoxymethyl fluorodinitroethoxyacetate, a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.25$ (s, $2 \mathrm{H},-\mathrm{COOCH}_{2} \mathrm{O}_{-}$), 4.62 and 4.68 (two doublets, $J_{\mathrm{HF}} \simeq 16 \mathrm{~Hz}, 4$ $\mathrm{H}, 2 \mathrm{FCCH}_{2-}$), and $4.23 \mathrm{ppm}\left(\mathrm{s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{COO}-\right.$).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{12}$: C, 22.24; H, 2.13. Found: C, 22.36; H, 218.

A few drops of a colorless liquid obtained as a forerun in the above distillation was identified as fluorodinitroethoxymethyl acetate: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.17\left(\mathrm{~s} .2 \mathrm{H},-\mathrm{COOCH}_{2}\right), 4.66\left(\mathrm{~d}, J_{\mathrm{HF}}=16 \mathrm{~Hz}, 2 \mathrm{H}\right.$. FCCH_{2}), and 2.10 ppm (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{7}: \mathrm{C}, 26.56$: H, 3.12. Found: $\mathrm{C}, 27.3: \mathrm{H}$ 3.14 .

Reaction of Fluorodinitroethoxyacetyl Chloride with Aluminum Chloride. Gas was evolved immediately when 0.3 g of anhydrous aluminum chloride was added to $1.0 \mathrm{~g}(0.047 \mathrm{~mol})$ of fluorodinitrcethoxyacetyl chloride. When evolution of gas ceased in ca. 10 min , the mixture was washed with 10 ml of ice water and extracted with 10 mll of methylene chloride. The methylene chloride solution was distilled to give 0.85 g of a colorless liquid, bp $40^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$, identified as chloromethyl fluorodinitroethyl ether by comparing its physical properties and its ${ }^{1} \mathrm{H}$ NMR spectrum with those of an authentic sample of the ether. ${ }^{9}$ There was no reaction when a 4:1 molar mixture of fluorodinitroethoxyacetyl chloride and stannic chloride
was heated at $95-100^{\circ} \mathrm{C}$ for a few hours. Similarly, no reaction occurred when the acid chloride saturated with boron fluoride was allowed to stand at ambient temperature for 4 days.

Reaction of Fluorodinitroethoxyacetyl Chloride with Triethylamine. To a stirred and cooled $\left(0-5^{\circ} \mathrm{C}\right)$ solution of $2.3 \mathrm{~g}(0.01$ mol) of fluorodinitroethoxyacetyl chloride ${ }^{7}$ in 70 ml of diethyl ether was added dropwise (15 min) a solution of $1.0 \mathrm{~g}(0.01 \mathrm{~mol})$ of triethylamine in 15 ml of diethyl ether. A white, crystalline solid precipitated instantaneously. The mixture, protected from moisture by a calcium chloride drying tube, was refluxed for 24 h , cooled, and filtered. The filter cake, washed with ether, amounted to ca. 3 g . The filtrate and washings were combined and evaporated on a rotary evaporator, leaving no residue.

Registry No.-Fluorodinitroethoxyacetic anhydride, 58815-88-6; fluorodinitroethoxyacetic acid, 25172-22-9; fluorodinitroethoxymethyl fluorodinitroethoxyacetate, 58815-89-7; fluorodinitroethoxymethyl acetate, 50836-79-8; fluorodinitroethoxyacetyl chloride, 25172-23-0; aluminum chloride, 7446-70-0; triethylamine, 121-44-8.

References and Notes

(1) This work was supported by Air Force Rocket Propulsion Laboratory. Director of Science and Technology. Air Force Systems Command, U.S. Air Force. Edwards, Calif. 93523.
(2) Meerwein and Vossen. J. Prakt. Chem., 141, 149 (1934).
(3) E. H. Man and C. R. Hauser, J. Am. Chem. Soc., 72, 3294 (1950).
(4) J. Sauer, J. Am. Chem. Soc., 69, 2444 (1947).
(5) E. Rothstein and M. C. Gaboor, J. Chem. Soc., 425 (1943).
(6) J. Boescken, Recl. Trav. Chim. Pays-Bas, 29, 85 (1910).
(7) V. Grakauskas, J. Org. Chem., 35, 3030 (1970).
(8) V. Grakauskas, J. Org. Chem., 38, 2999 (1973).
(9) M. J. Kamler and H. G. Adolph. J. Org. Chem., 33, 3073 (1968).

Bromination of 1-Alkyl-3-methyl-2-pyridones with \boldsymbol{N}-Bromosuccinimide

Daniel L. Comins and Robert E. Lyle*
Department of Chemistry, Parsons Hall, University of New Hampshire, Durham, New Hampshire 03824

Received October 10, 1975
The functionalization of a β-methyl group attached to a pyridine or quinoline ring has proven to be an important step in several approaches to the synthesis of camptothecin ${ }^{1,2,3}$ and bromination with N-bromosuccinimide (NBS) met with only limited success. With the pyridine derivatives no bromination of the ring or alkyl substituent occurred unless the basicity of the nitrogen was decreased by an electronegative, α substituent. ${ }^{1,4}$ With 6 -methyl- or 4,6-dimethyl-2-pyridone (1 or 2) NBS caused ring bromination to 3 and 4 rather than substitution of the methyl groups even using benzoyl peroxide as catalyst. ${ }^{5,6}$ The earlier report ${ }^{7}$ that 1,3 -dimethyl-2-pyridone (5) gave bromination of the 3 -methyl group with NBS to give 6 was recently questioned, for ring bromination to give 7 was confirmed as the product from this reaction. ${ }^{3}$

1, $\mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{X}=\mathrm{H}$
2. $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{H}$

3, $\mathrm{R}_{1}=\mathrm{CH}_{;} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{X}=\mathrm{Br}$
4. $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{Br}$

5, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{X}=\mathrm{Y}=\mathrm{H}$ 6, $R=\mathrm{CH}_{j} ; \mathrm{X}=\mathrm{Br} ; \mathrm{Y}=\mathrm{H}$
7, $\mathrm{R}=\mathrm{CH}_{i} ; \mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{Br}$
8. $R=\mathrm{PhCH}_{2} ; X=Y=\mathrm{H}$
9. $\mathrm{R}=\mathrm{PhCH}_{2} ; \mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{Br}$

10, $\mathrm{R}=\mathrm{PhCH}_{2} ; \mathrm{X}=\mathrm{Br} ; \mathrm{Y}=\mathrm{H}$
Since 1-substituted 3-bromomethyl-2-pyridone would be
a convenient intermediate the NBS reaction with 1-alkyl3 -methyl-2-pyridones (5 and 8) was reinvestigated. A dilute solution of 1-benzyl-3-methyl-2-pyridone (8) was treated with NBS and dibenzcyl peroxide in refluxing carbon tetrachloride for 50 min and a solid product remained after filtration and evaporation of the solvent. The NMR spectrum of the product showed the triplet at 6.17 ppm due to the aromatic 5 proton, but the singlet at 2.16 ppm due to the signal for the C-methyl was missing. A new singlet was evident at 4.47 ppm due to a bromomethylene group. The elemental analyses confirmed that bromination of the methyl group had occurred to give 10. A careful analysis of the NMR spectrum showed the presence of a trace of staring compound 8 but there were no signals which could be assigned to 9 . The reaction was repeated using the concentration of reagents previously reported to give ring bromination of 5^{3} and again the major product was the bromomethyl derivative 10 with only $20-30 \%$ of the ring brominated product 9 detectable by NMR. Indeed a reasonable yield of ring bromination of 8 could be obtained only by a reaction with NBS in the absence of dibenzoyl peroxide. In benzene or carbon tetrachloride the NMR of the crude product showed the presence of only about 10% of the bromomethyl derivative 10 .

The reactions were repeated with 1,3-dimethyl-2-pyridone (5) and NBS, in the absence of dibenzoyl peroxide or with this catalyst in a concentrated reaction mixture, and gave 7 as the major product ty ring bromination. The crude products contained about 10% unreacted 5 and 10% of the 3-bromo-methyl-1-methyl-2-pyridine (6) detected by NMR analysis. The reaction of 5 with NBS and dibenzoyl peroxide after an eightfold dilution gave mainly side-chain bromination to form 6 contaminated with only a few percent of starting material or product of ring bromination, 7.

The ring or chain bromination of 1-alkyl-3-methyl-2-pyridones with NBS can be controlled in two examples to give either ring or side chain substitution. In the absence of dibenzoyl peroxide as a catalyst, NBS gave bromination of the ring in the same manner as would be expected with molecular bromine. In the presence of dibenzoyl peroxide, dilute reaction conditions gave side chain bromination with NBS. In concentrated reaction mixtures significant yields of ring bromination occurred even in the presence of dibenzoyl peroxide. The 1 -methyl derivative, 5 , was more sensitive to this concentration effect than was the 1-benzyl-3-methyl-2-pyridone (8). By a proper choice of reaction conditions selectivity could be controlled to give crude products which crystallized and whose NMR analyses showed less than 10% contamination by tie isomeric bromination product.

Experimental Section

1-Benzyl-3-methyl-2-pyridone (8). To a solution of 6.44 g of 87% KOH in 150 ml of absolute ethanol at $50^{\circ} \mathrm{C}$ was added 3 -methyl-2pyridone. ${ }^{8}$ The resulting solution was stirred for 20 min before the dropwise addition of benzyl chloride. The mixture was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 3 h , concentrated under reduced pressure, poured into 180 ml of water, and extracted with chloroform ($3 \times 50 \mathrm{ml}$). The organic phase was washed with water and saturated salt solution, dried (MgSO_{4}), filtered, and concentrated to yield a light yellow oil which crystallized under pentane with cooling. The solid was collected and dried to give 15.75 g (86%) of 8 as white crystals, $\mathrm{mp} 69-71^{\circ} \mathrm{C}$. The product was recrystallized twice from petroleum ether (bp 30-60 ${ }^{\circ} \mathrm{C}$)-methylene chloride to afford an analytical sample of $8: \mathrm{mp}$ $70.5-71.5^{\circ} \mathrm{C}$; NMF $\left(\mathrm{CDCl}_{3}\right) \delta 7.12-7.48$ (m, including s at $7.36,7 \mathrm{H}$ total), $6.06(\mathrm{t}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; ir (KBr) $1645 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 78.36 ; \mathrm{H}, 6.58 ; \mathrm{N}, 7.03$. Found: C, 78.34; H, 6.78; N, 711.

1,3-Dimethyl-2-pyridone (5). Using the procedure above, 6.94 g (63.6 mmol) of 3 -methyl-2-pyridone and $13.0 \mathrm{~g}(91.6 \mathrm{mmol})$ of methyl iodide gave after vacuum distillation $6.63 \mathrm{~g}(85 \%)$ of 1 as a clear oil: bp $63^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ [lit. ${ }^{8} \mathrm{bp} 83-84^{\circ} \mathrm{C}(1.3 \mathrm{~mm})$]; NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.24-7.50(\mathrm{~m}, 2 \mathrm{H}, 6.16(\mathrm{t}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; ir (neat) $165 \mathrm{C} \mathrm{cm}^{-1}$.

1-Benzyl-5-bromo-3-methyl-2-pyridone (9). A solution of 1.0 $\mathrm{g}(5.02 \mathrm{mmol})$ of 8 in 10 ml of dry benzene was placed in a dry, nitro-gen-filled flask. To the solution was added $0.90 \mathrm{~g}(5.02 \mathrm{mmol})$ of NBS and the mixture was heated at $90^{\circ} \mathrm{C}$ for 50 min . The benzene was removed under reduced pressure, 25 ml of carbon tetrachloride was added to the residue, and the resulting mixture was filtered. The filter cake was washed with. 25 ml of carbon tetrachloride and the filtrate was concentrated under reduced pressure leaving an orange oil as residue, the NMR of which showed less than 10% of 10 . The oil crystallized on cooling, and trituration with 10 ml of anhydrous ether gave $0.95 \mathrm{~g}(68 \%)$ of crude 9 as a white solid, $\mathrm{mp} 86.5-89^{\circ} \mathrm{C}$. The solid was recrystallized twice from ether to give an analytical sample of $9: \mathrm{mp}$ 96.5-97.5 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.04-7.60(\mathrm{~m}$, including s at $7.23,7 \mathrm{H}$ total), $5.02(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}: \mathrm{C}, 56.14 ; \mathrm{H}, 4.35 ; \mathrm{N}, 5.04$. Found: C , 55.98; H, 4.56; N, 5.00.

The reaction in 10 ml of carbon tetrachloride gave identical results. The product crystallized and NMR of the crude solid showed about 10% of 10 .

1-Benzyl-3-bromomethyl-2-pyridone (10). In a 100 -ml flask equipped with a reflux condenser and a drying tube was placed a solution of 1.0 g (5.02 mmol) of 8 in 75 ml of dry carbon tetrachloride. To the solution was added $0.90 \mathrm{~g}(5.02 \mathrm{mmol})$ of NBS and 0.1 g of dibenzoyl peroxide. The mixture was heated under reflux with a $100-\mathrm{W}$ lamp for $4 \mathrm{~h} .{ }^{12}$ After this time the mixture was cooled and filtered, and the solvent was removed to afford a yellow oil which solidified on cooling under 15 ml of anhydrous ether to give $1.0 \mathrm{~g}(72 \%)$ of crude $10, \mathrm{mp} 86-90^{\circ} \mathrm{C}$, the NMR spectrum of which showed no product of ring bromination, 9 . The solid was recrystallized twice from ether to give an analytical sample of $10: \mathrm{mp} 101-101.5^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.30-7.60(\mathrm{~m}$, including s at $7.34,7 \mathrm{H}$ total), $6.17(\mathrm{t}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, 4.47 (s, 2 H).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}: \mathrm{C}, 56.14 ; \mathrm{H}, 4.35 ; \mathrm{N}, 5.04$. Found: C, 56.23; H. 4.43; N, 4.94.

The reaction was $\mathrm{r} \in$ peated using only 10 ml of carbon tetrachloride and the NMR of the crude solid showed the presence of $20-30 \%$ of 9.

3-Bromomethyl-1-methyl-2-pyridone (6). In a dry nitrogenfilled $250-\mathrm{ml}$ flask was placed a solution of $0.83 \mathrm{~g}(6.7 \mathrm{mmol})$ of 5 in 100 ml of dry carbon tetrachloride. To the solution was added 1.19 $\mathrm{g}(6.7 \mathrm{mmol})$ of purified NBS^{9} and 0.15 g of dibenzoyl peroxide. The mixture was heated under reflux for 1 hr . After this time the mixture was cooled and filtered, and the solvent removed. The solid residue ${ }^{10}$ was stirred under 10 ml of anhydrous ether and was removed by filtration to afford $0.85 \mathrm{~g}(63 \%)$ of 6 as tan crystals, $\mathrm{mp} 86-89^{\circ} \mathrm{C}$. The product was recrysta.lized twice from benzene to give an analytical sample of 6: mp 101-101.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{7} \mathrm{mp} 98-99^{\circ} \mathrm{C}$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.67$ (m, 2 H), 6.31 (t, 1 H), 4.58 (s, 2 H), 3.65 (s, 3 H).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BrNO}: \mathrm{C}, 41.61 ; \mathrm{H}, 3.99 ; \mathrm{N}, 6.93$. Found: C , 41.68; H, 4.06; N, 6.83.

5-Bromo-1,3-dimethyl-2-pyridone (7). A solution of $0.83 \mathrm{~g}(6.7$ mmol) of 5 in 12 ml of dry carbon tetrachloride was placed in a dry nitrogen-filled flask. To the solution was added $1.18 \mathrm{~g}(6.6 \mathrm{mmol})$ of purified NBS ${ }^{9}$ and the mixture was heated under reflux for 30 min . After this time 25 ml of carbon tetrachloride was added; the mixture was cooled and filtered; and the solvent was removed to afford 1.28 $\mathrm{g}(96 \%)$ of 7 as a light-yellow solid, ${ }^{11} \mathrm{mp} \mathrm{98-101}{ }^{\circ} \mathrm{C}$. Recrystallization of the product from petroleum ether ($\mathrm{bp} 30-60^{\circ} \mathrm{C}$) gave fluffy, white crystals: $\mathrm{mp} 105-106{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{3} \mathrm{mp} 106-107{ }^{\circ} \mathrm{C}\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.30-7.55(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.

Acknowledgment. The authors wish to express appreciation to the National Cancer Institute of the National Institutes of Health for partial support of this research by Grant CA 12149. One of the authors (D.L.C.) also expresses appreciation to the Graduate School of the University of New Hampshire for summer fellowships which provided partial support for this research.

Registry No.-5, 6456-92-4; 6, 58802-10-1; 7, 51417-13-1; 8, 58802-11-2; 9, 58802-12-3; 10, 58802-13-4; 3-methyl-2-pyridone, 1003-56-1; benzyl chloride, 100-44-7; methyl iodide, 74-87-3; N-bromosuccinimide, 128-08-5.

References and Notes

(1) R. E. Lyle, D. E. Portlock. M. J. Kane. and J. A. Bristol, J. Org. Chem., 37, 3967 (1972).
(2) a) J. A. Bristol. D. L. Comins, R. W. Davenport, M. J. Kane, R. E. Lyle, J. ₹. Maloney, and D. E. Portlock. J. Med. Chem., 18, 535 (1975); (b) R. E. Lyle, J. A. Bristol, M. J. Kane. and D. E. Portlock. J. Org. Chem., 38, 3268 (1973). (3) J. J. Morrow and H. Rapoport. J. Org. Chem., 39, 2116 (1974).
(4) כ. T. Sullivan and S. J. Norton, J. Med. Chem., 14, 557 (1971).
(5) 2. Adams and A. W. Schrecker. J. Am. Chem. Soc., 71, 1186 (1949).
(6) २. P. Mariella and E. P. Belcher, J. Am. Chem. Soc., 74, 1916 (1952).
(7) D. J. Cook. R. E. Bowen. P. Sorter, and E. Daniels. J. Org. Chem., 26, 4949 1961).
(8) H. L. Bradlow and C. A. Vanderwerf, J. Org. Chem., 16, 73 (1951).
(9) The NBS was purified by recrystallization from ten times its weight of water and drying under vacuum overnight ($\mathrm{mp} 182.5-184^{\circ} \mathrm{C}$).
(10) The residue contained less than 10% of compounds 5 and 7. combined. by NMR.
(11) The product contained only a trace ($<2 \%$) of compounds 5 and 6 by NMR.
(12) The manner and the time of heating after 50 min is not critical.

Biological Probes. 3. Methods for Carbon-4 and Carbon-5 Labeling in Nicotinamide

T. A. Bryson,* D. M. Donelson, R. B. Dunlap,
R. R. Fisher, and P. D. Ellis

Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Received December 16, 1975
Increased interest in nonradioactive labels for use as general bio'ogical probes had led us to develop efficient methods for labeling the nicotinamide (1) portion of $\mathrm{NAD}^{+}(2) .{ }^{1-3}$ We have desaribed facile pyridine syntheses in which nicotinamide can be labeled ($\left.{ }^{13} \mathrm{C},{ }^{2} \mathrm{H},{ }^{15} \mathrm{~N}\right)$ at the $1,2,3,6$, and carbonyl positions and then be biosynthetically incorporated into the coenzyme NAD ${ }^{+}{ }^{4}$ However, these methods were not useful for labeling the 4 position of the nicotinamide ring, the site at which biological oxidation-reduction occurs in NAD^{+}. We now wish to report an efficient, high-yield procedure for label incorporation $\left({ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right)$ at the 4 and also the 5 position of nicotinamide (1).

Prior experience with diene 3 as a labeled pyridine precursor suggested an attractive synthetic route to 1 . Our initial studies focused on modification of diene 3 with designs on making this general type of synthon more accessible from lower molecular weight, labeled starting materials. Specifically, diene 3 readily undergoes addition (1,6) of amines with loss of methanol forming butadienamines, such as 4 . These conjugated enamines (4), analogous to diene 3 , undergo acid-catalyzed $(\mathrm{HBr} / \mathrm{AcOH})$ cyclization to 2-bromonicotinate 5 in high yield.

4a. $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}: \mathrm{R}_{\mathrm{i}}=\mathrm{C}, \mathrm{H}_{3}$
b. $\mathrm{R}_{\mathrm{r}}=\mathrm{R}_{2}=\mathrm{R}_{\mathrm{l}}=\mathrm{Me}$
c. $\mathrm{R}_{1}=\mathrm{Et}: \mathrm{R}_{2}=\mathrm{R}=\mathrm{Me}$

5. $R=M e$ or $E t$

Therefore, several routes to 3 or 4 were investigated with our labeling goals in mind resulting in the preparation of enamine $4 c$ as shown in Scheme I.

Scheme I

Sulfenyl cyanoacetate 6, prepared by treating N, N-diethylbenzenesulfenamide ${ }^{5}$ with cyanoacetate, can be alkylated using NaH in $\mathrm{Me}_{2} \mathrm{SO}$ with specifically labeled ethyl iodide (7) affording the cyanobutyrate 8 in 84% yield. Using extended reaction times (48 h) and finely powdered $\mathrm{NaIO}_{4},{ }^{7}$ cyanobutyrate 8 was smoothly oxidized to sulfoxide ${ }^{8} 9$ which was subjected in its crude form to thermolysis in refluxing toluene yielding ethylidene 10 in 89% yield. Transformation of 10 to enamine $4 \mathbf{c}$ was achieved through an amide acetal condensation. Ethyl ethylidene cyanoacetate (10) when treated with N, N-dimethylformamide dimethyl acetal in warm DMF affords $\mathbf{4 c}$ in 81% yield (60% from 6). As cited above, $4 \mathbf{c}$ undergoes facile HBr -catalyzed cyclization to 2-bromonicotinate 5 in 95% yield. Catalytic reduction of 5 followed by treatment with aqueous ammonia leads to nicotinamide ($1,45 \%$ yield from 6) as described earlier.

Ethyl iodide was not our initial choice as a labeling unit. However, the reproducibly high yields obtainable from alkylation of 6 followed by subsequent formation of ethylidene 10 (75% from 6) proved superior to alternatives such as a Knoevenagel condensation with cyanoacetate and acetaldehyde. Preliminary studies indicated that such reactions are at best low yield conversions to 10 , and the potential expense of using specifically labeled acetaldehyde is also prohibitive

Through this and earlier studies. methods now exist for the preparation of specifically labeled nicotinamide from simple labeled precursors through convenient, high-yield reactions. In addition, such reactions would appear to be general and usable for the preparation of other important pyridine systems. ${ }^{10}$

Experimental Section ${ }^{9}$

Ethyl Phenylthiocyanoacetate (6) ${ }^{6}$. A mixture of N, N-diethylbenzenesulfenamide ($24.54 \mathrm{~g}, 0.134 \mathrm{~mol}$) and ethyl cyanoacetate (15.17 g. 0.134 mol$)$ was stirred in methylene chloride (150 ml) at room temperature for 5 h . Removal of the volatiles at reduced pressure gave pale yellow crystals which were then stirred in a mixture of 10% hydrochloric acid (300 ml) and benzene (300 ml) at room temperature for 1 h . The benzene layer was separated and the solvent removed at reduced pressure to give 27.57 g of a pale yellow oil. Fractional distillation $\left(120^{\circ} \mathrm{C}, 2.5 \mathrm{~mm} \mathrm{Hg}\right)$ afforded $20.03 \mathrm{~g}(67 \%)$ of ethyl phenylthiocyanoacetate: ${ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{CDCl}_{3}}\left(\mathrm{Me}_{4} \mathrm{Si}\right) 7.76-7.06\left(\mathrm{~m} .5 \mathrm{H}\right.$. $\mathrm{C}_{6} \mathrm{H}_{5}$). $4.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}\right) .4 .16\left(\mathrm{q} . J=7 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{OCH}_{2}\right), 1.20(\mathrm{t}, J=8 \mathrm{~Hz}$. $3 \mathrm{H} .-\mathrm{CH}_{3}$): ir (film) $2300.1740 .1580 \mathrm{~cm}^{-1}$: TLC (silica gel 1:1:1 $\left.\mathrm{CH}_{3} \mathrm{OH} / \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f} 0.73 ; \mathrm{m} / \mathrm{e} 221$.

Ethyl 2-Phenylthio-2-cyanobutyrate (8). Phenylthiocyanoacetate $615 \mathrm{~g} .22 .7 \mathrm{mmol} / \mathrm{was}$ added to NaH (579 dispersion. washed once with hexane, 0.96 g . 1 molar equiv) in $\mathrm{Me} \mathrm{SO}_{\mathrm{S}}$ at $0^{\circ} \mathrm{C}$. The mixture was then allowed to equilibrate at room temperature for 20 min . Ethyl iodide (3.53 g . 22.7 mmol) was added and the mixture stirred for 6 h . diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, and extracted with ether/hexane ($3: 1.4$ $\times 75 \mathrm{ml})$. The organic extracts uere combined, washed with brine 1100 ml), and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Distillation (Kugelrohr oven, 0.5 mmHg ,
$120-135^{\circ} \mathrm{C}$) afforded $4.76 \mathrm{~g}(84 \%)$ of butyrate $8:$ ir (film) 2250,1740 , $158) \mathrm{cm}^{-1}$: ${ }^{\mathrm{H}} \mathrm{NMR}^{2} \mathrm{CDCl}_{3}\left(\mathrm{Me}_{4} \mathrm{Si}\right) 7.79-7.08\left(\mathrm{~m} .5 \mathrm{H} . \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.06(\mathrm{q}$. $2 \mathrm{H} . J=7 \mathrm{~Hz},-\mathrm{OCH}_{2}-1,2.41-1.74\left(\mathrm{~m}, 2 \mathrm{H} .-\mathrm{CH}_{2}-1.34-0.9(\mathrm{~m} .6 \mathrm{H}\right.$. $-\mathrm{CH}_{3}$); TLC (silica gel, CHCl_{3}) $R_{f} 0.54$: m / e 249. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$: C. 6 2. 64 ; H. 6.07. Found: C. 62.66 ; H. 6.02 .

Ethyl 2-Cyano-2-butenoate (10). A saturated aqueous solution of finely powdered $\mathrm{NaIO}_{4}(15 \mathrm{ml})$ was added to phenylthiocyanobutyrate 8 in $\mathrm{MeOH}(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred mechanically at $0^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 48 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$. extracted with $\mathrm{CHCl}_{3}(4$ $\times 75 \mathrm{ml})$, washed (NaCl), and dried $\left(\mathrm{MgSO}_{4}\right)$. The volatiles were removed at reduced pressure to afford 1.04 g of a yellow oil. which was dissolved in toluene (40 ml), stirred. and heated under reflux overnight. The mixture was concentrated at atmuspheric pressure and dist llation (Kugelrohr oven. $1.0 \mathrm{mmHg} .80^{\circ} \mathrm{C}$) afforded $0.45 \mathrm{~g}\left(899^{\circ}\right)$ of butenoate 10 : ir (film) $2275,1735.1635 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} N \mathrm{MR}^{2} \delta_{\mathrm{CDCl}}^{3}$ (Me , Si) 7.78 ($\mathrm{q} . J=8 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{C}_{3} \mathrm{H}$). 4.38 (q. $J=7 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{OCH}_{2}$), $2.26\left(\mathrm{~d} . J=8 \mathrm{~Hz} .3 \mathrm{H} .-\mathrm{C}_{4} \mathrm{H}_{3}\right), 1.38\left(\mathrm{t}, J=7 \mathrm{~Hz} .-\mathrm{CH}_{3}\right)$: TLC (silica gel, CHCl_{3}) $R_{f} 0.37$ (0.54 starting material); $m / e 139$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C} .60 .4 乏 ; \mathrm{H}, 6.52$. Found: C, 60.39; 46.52.

Ethyl 5-(N, N-dimethylamino)-2-cyano-2,4-pentadienoate (4c). N, N-Dimethylformamide dimethyl acetal (0.31 g .2 .6 mmol) was added to ethyl 2 -cy mo-2-butenoate $0.35 \mathrm{~g}, 2.5 \mathrm{mmol}$) in DMF (1 ml). The mixture was stirred and heated at $75^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature, poured into benzene (20 ml), and washed with 1 N HCl $(3 \times 25 \mathrm{ml})$. The benzene solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the soluent removed at reduced pressure. Distillation (Kugelrohr oven, 140-150 $\left.{ }^{\circ} \mathrm{C}, 2.5 \mathrm{mmHg}\right)$ afforded $0.31 \mathrm{~g}\left(81 \%, \mathrm{mp} 125-127^{\circ} \mathrm{C}\right)$ of enamine 4 c : ir $\left(\mathrm{CHCl}_{3}\right) 2220,1700,1620,1560 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \delta_{\mathrm{CDCl}_{3}}\left(\mathrm{Me}_{4} \mathrm{Si}\right) 7.78$ (d. $\left.J=13 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{C}_{5} \mathrm{H}\right) .7 .10\left(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 5.59(\mathrm{t}, J=$ $13 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{C}_{4} \mathrm{H}$) , 4.26 (q. $J=\mathrm{T}^{\prime} \mathrm{Hz}, 2 \mathrm{H} .-\mathrm{OCH}_{2}$). $3.11 \mathrm{ss}, 6 \mathrm{H}$. $\left.-\mathrm{NCH}_{3}\right) .1 .32\left(\mathrm{t}, J=7 \mathrm{~Hz} .3 \mathrm{H} .-\mathrm{CH}_{3}\right): \lambda_{\max }(\mathrm{EtOH}) 381 \mathrm{~nm}: \mathrm{TLC}$ (silica gel, CHCl_{3}) $\mathrm{Q}_{f} 0.08: \mathrm{m} / \mathrm{e}$ 194. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{1,} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$. 61.8:3: H. 7.27. Found: C. 61.88; H. 7. 25.

Ethyl 2-Bromonicotinate (5). Enamine fc 11 g. 3.49 mmol) was dissolved in 5 ml of acetic acid. An acetic acid solution of $\mathrm{HBr}(10 \mathrm{ml}$. saturated at $0^{\circ} \mathrm{C}$) was added dropwise to enamine 4 c while maintaining the reaction at $45^{\circ} \mathrm{C}$. After addition of the HBr solution, the temperature was raised to $55^{\circ} \mathrm{C}$ and the mixture was allowed to stir for $\mathcal{\&} h$ The dark solution was cooled. poured into water, and neutralized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 150 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined. washed once with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the volatiles at reduced pressure gave a dark oil. Distillation kugelrohr oven. 0.5 $\mathrm{mmHg} .110-125^{\circ} \mathrm{Cl}$ afforded $0.76 \mathrm{~g}(95 \%)$ of ethyl 2 - bromenicotinate: ${ }^{1} \mathrm{H}$ NMR $\mathrm{o}_{\mathrm{CDCl}_{3}}\left(\mathrm{Me}_{4} \mathrm{Si}\right) 8.47$ (dd. $\left.J_{6.4}=2, J_{6.5}=5 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{C}_{6} \mathrm{H}\right) .8 .07$ Idd. $J_{45}=8.5 . J_{46}=2 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{C}_{4} \mathrm{H} .7 .40$ (dd. $J_{4.5}=8.5$. $J_{2,6}=5 \mathrm{~Hz}$. $\left.1 \mathrm{H} . \mathrm{C}_{3} \mathrm{H}\right) .4 .42\left(\mathrm{q} . J=7 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{OCH}_{2}-1,1.43(\mathrm{t} . J=7 \mathrm{~Hz} .3 \mathrm{H}\right.$. $\left.-\mathrm{CH}_{3}\right)$; ir $\left(\mathrm{CHCl}_{3}\right): 735,1580 \mathrm{~cm}^{-1}$: TLC (silica gel. $\left(\mathrm{CHCl}_{3}\right) R_{f} 0.24$ (starting material. 0.08): $m / e 230$. Anal. Calcd for $C_{k} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{Br}$: C . 41.74: H. 3.51. Found: C. 41.70: H. 3.54.

Acknowledgment. We gratefully acknowledge the support of the National Cancer Institute of HEW (Grants CA17490 and CA15645) for support of this work.

Registry No.-4c, 51513-16-7; $5(\mathrm{R}=\mathrm{Et})$, 53087.78.8; 6, 587.34-93-3: 8, 58734-94-4; 10, 686-33-9; $N . N$-diethylbenzenesulfenamide. 6667-19-2; ethyl cyanoacetate. 105-56-6: N.N.dimethylformamide dimethyl acetal, 4637-24-5.

References and Notes

(1) R. P. Zens. T. J. Williams. J. C. Wisowaty. R. R. Fisher. R. B. Dunlap. T. A Eryson. and P. D. Ellis.J Am. Chem. Soc. 97, 2850 (1975).
(2) T. A. Bryson. J.C Wisowaty. R. B. Dunlap. R. R. Fisher. and P D. Ellis. J Org Chem. 39, 158 (1974)
(3) T. A. Bryson. J. C Wisowaty. R. B. Dunlap. R. R. Fisher. and P D Ellis. J Org. Chem 39. 3436 (1974).
(4) M. Blumenstein and M. A. Rattery. Biochemistry. 11. 1643 (1972)
(5) H. Lecher. F. Holschneider. K. Koberle, W. Speer. and P Stocklin. Ber. 58B, 409 (1925).
(6) T Kumamoto. S riobayashi. and T. Mukaiyama. Bull. Chem. Soc Jpn., 45, E66(1972)
(7) B. M Trosi and R A. Kunz. J. Org. Chem.. 39. 2648 (1974)
(8) Fresence of sulfoxide $|\mathrm{Ph}-\mathrm{Si} \rightarrow \mathrm{O}|-\mathrm{R} \mid$ was detected by infrared absorption ci $705 \mathrm{~cm}^{-1}$
(9) Structural assignments of all compounds are based on ir. 'H NNR. uv. mass spectra. analysis and conversion to previously reported organic comrounds
(10) A. variety of 2 -substituted nicotinamide compounds exhibit anti-inflammatory activity.

Radical Additions to Alkenylidenecyclopropanes ${ }^{1}$

Daniel J. Pasto* and Michael F. Miles

Department of Chemistry, University of Notre Dame,
Noire Dame, Indiana 46556
Received July 8, 1975
Recent studies in our laboratories have been directed toward gaining an understanding of the electronic structure of alkenylidenecyclopropanes and factors which determine reactivity and mode of reaction. Alkenylidenecyclopropanes (1) undergo cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) across the methylenecyclopropane portion of 1 regardless of the nature and number of groups attached to the three-membered ring. ${ }^{2}$ Kinetic 3 and theoretical studies ${ }^{4}$ have provided a detailed understanding of the bonding in 1

and of the mechanism of the cycloaddition reaction. In contrast to the uniform situselectivity exhibited in the cycloaddition reactions of 1 with PTAD, the site of attack by electrophilic reagents depends on the number and nature of the groups attached to the three-membered ring. ${ }^{5}$ For example, the phenyl-substituted derivative 2 undergoes attack exclu-
Clen
sively at the p orbital on C_{4} of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ double bond by electrophilic reagents such as proton and chlorosulfonyl isocyanate (CSI). ${ }^{5}$ The incipient cyclopropyl cation undergoes ring opening subsequently producing substituted butadienes. The presence of a methyl group on the ring of 1 results in a predominant shift of electrophilic attack to $\mathrm{C}_{5}(85 \%)$ to produce a β-lactam derivative, while with the tetramethyl derivative 3 electrophilic attack occurs exclusively at $\mathrm{C}_{5} .{ }^{5}$ In the

3

only study of the chemistry of alkenylidenecyclopropanes involving the formation of a radical intermediate 2 was found to react with 1,1 -dichloro-2,2-difluoroethene to produce essentially only 5 via the diradical intermediate $4 .{ }^{6}$ The present

paper describes the course of reaction of substituted alkenylidenecyclopropanes in radical chain addition reactions with thiophenol.

Alkenylidenecyclopropanes 2,6 , and 3 rapidly react (15 min at $25^{\circ} \mathrm{C}$) with thiophenol either neat or in benzene solution open to the laboratory light and atmosphere. Measurement of the rates of reactions (by NMR) shows the presence of an induction period, and the addition of dissolved sulfur and freeze-degassing result in longer reaction times, all characteristic of typical free-radical chain addition reactions of thiophenol. ${ }^{7}$ Also, the products formed in the reactions of 2, 6 , and 3 with thiophenol do not possess structures typically derived in electrophilic additions to these substrates, ${ }^{5}$ but are sim:lar to that derived from 2 with 1,1-dichloro-2,2-difluoroethene. ${ }^{6}$

Thiophenol reacts with 2 to produce only 7. The complexity of the NMR spectrum of 7 precluded assignment of the stereochemistry and stereochemical purity of the adduct. Ozonolysis of the product followed by basic hydrolysis gave pure ($>98 \%$) cis-2-phenylcyclopropanecarboxylic acid (8) demonstrating that 7 possesses the cis stereochemistry.

Reaction of 6 with thiophenol produces a mixture of 9 and 10 (65:35 ratio) which could not be separated. The stereochemistry of the two adducts is clearly indicated by the long-range shielding effects of the ring phenyl on the isopropylidene methyls, and of the thiophenyl group on the ring methyl. ${ }^{8}$ In 9 the isopropylidene methyls appear at $\delta 1.84$ and

10
1.88 , whereas in 10 they appear at $\delta 1.87$ and 2.08 . Similarly, the ring methyl of 9 appears at lower field ($\delta 1.47$) than in 10 ($\delta 1.33$). The ring hydrogens of the major isomer 9 are clearly evident as an ABX system, but those of 10 are obscured by the resonances of 9 and the methyl groups.

Reaction of 3 with thiophenol produces only 11 , which on ozonolysis produces 1 equiv of acetone.

11
In contrast to the different modes of reaction of 2,3, and 6 with CSI, attack by thiophenoxy radical occurs at the same position to give products of similar structure. The structures of the products, however, do not indicate whether attack occurs on the $\mathrm{C}_{1}-\mathrm{C}_{4}$ double bond to initially produce radical 12 , or the $\mathrm{C}_{4}-\mathrm{C}_{5}$ double bond to give radical 13, both of which are initially non-resonance-stabilized radicals. (Resonance stabilization of the radical centers in 12 and 13 requires an in-

ternal rotation of 90°, a process which may or may not be occurring simultaneously with attack by the thiophenoxy radical). Whether the radical center in the ultimate radical in-
termediate is nonplanar and non-resonance-stabilized, or is planar and resonance stabilized (i.e. 14), is difficult to assess. Estimation of the relative energies of the two radicals leads to similar values. Addition to produce the nonplanar radical involves a reduction of ring strain from $\sim 38.2 \mathrm{kcal} / \mathrm{mol}$ (42 $\mathrm{kcal} / \mathrm{mol}$ ring strain for the methylenecyclopropane ${ }^{9}$ minus the resonance energy of the alkenylidenecyclopropane system of $3.8 \mathrm{kcal} / \mathrm{mol}^{4}$) to $\sim 27 \mathrm{kcal} / \mathrm{mol}$ (assumed to be the same as the :ing strain of cyclopropane), a change of $\sim 11.2 \mathrm{kcal} / \mathrm{mol}$. Formation of the planar radical results in retention of the met.iylenecyclopropane ring strain and the resonance energy of the alkenylidenecyclopropane ring system, but yields an allyl radical possessing a resonance energy of $\geq 11.6 \mathrm{kcal} / \mathrm{mol} .{ }^{10}$ The stereochemistry of 7 is undoubtedly determined in the hydrogen atom abstraction step. Whether a rapidly inverting pair of nonplanar radicals ${ }^{11}$ or a planar radical is involved, approach to the radical must occur highly preferentially at the face opposite the phenyl group on the ring thus producing 7.

In the radical derived from 6 the larger steric effect of the phenyl relative to the methyl group directs dominant hydrogen atom abstraction at the face opposite the phenyl to produce the major product 9 .

In view of the substantial directive effects exerted by alkyl groups attached to the three-membered ring on the position of electrophilic attack (i.e., exclusively at C_{5} in 3), ${ }^{2.5}$ it is at first somewhat surpris:ng that no radical attack occurs at C_{5} of 3 to produce radical intermediate 15 . This would appear to be

due to the fact that vinyl cations prefer linear geometries ${ }^{12}$ which. would provide for excellent overlap of the vacant porbital on C_{4} with the orbitals of the three-membered ring, ${ }^{4}$ whereas vinyl radicals prefer nonlinear geometries ${ }^{13}$ (i.e., 15a) in which overlap o: the sp ${ }^{2}$ hybrid orbital on C_{4} with the orbitals of the three-membered ring would not be as favorable as in the linear radical 15b.

Experimental Section

Reaction of 2 with Thiophenol. A solution of 500 mg (2.96 mmol) of 2 and 325 mg (2.96 mmol) of thiophenol in 10 ml of benzene was allowed to stand at $25^{\circ} \mathrm{C}$ until no further reaction occurred as indicated by NMR analysis (0.5 h). The benzene solution was washed with 10% sodium hydroxide and water, and was dried $\left(\mathrm{MgSO}_{4}\right)$. The NMR spectrum of the resicue obtained after removal of the solvent indicated the presence of 2 and 7 . A $200-\mathrm{mg}$ portion of the residue was chromatographed on activity III alumina with hexane as eluent giving 17 mg of $2,24 \mathrm{mg}$ of diphenyl disulfide (identified by its melting point
and NMR spectrum), and 116 mg of 7 as a pale yellow, viscous oil: NMR (CDCl_{3}) $\delta 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{bs}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$, 2.17 (m,2 H), and 7.04 and 7.11 (s's, 5 H each); mass spectrum M. ${ }^{+}$ 280.1257, (calcd for $\mathrm{C} .{ }_{9} \mathrm{H}_{20} \mathrm{~S}, 280.1254$).

Conversion of 7 to cis-2-Phenylcyclopropanecarboxylic Acid (8). A solution of 80 rg of 7 in 2 ml of $1: 1$ dichloromethane-pyridine was cooled in a dry ice-acetone bath and was treated with a slight excess of ozone. ${ }^{14}$ The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$, poured into 25 ml of sther, and washed several times with 1 N hydrochloric acid. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduc ?d pressure, giving a yellow, viscous oil (ir 1702 cm^{-1}).

The residue was disolved in 10 ml of 10% sodium hydroxide in 50% aqueous ethanol. The mixture was refluxed for 40 min , cooled, poured into 20 ml of water, and extracted with ether. The aqueous layer was acidified with hydrochloric acid and was extracted with two $10-\mathrm{ml}$ portions of ether. The ether extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed uncer reduced pressure. leaving 15 mg of a tan solid whose NMR spectrum was identical with that of cis-2-phenylcyclopropanecarboxylic acid (8). ${ }^{15}$ No peaks representing trans-2-phenylcyclopropanecarbo<ylic acid were present.

Reaction of 6 with Thiophenol. To a solution of 200 mg of 6 in 0.5 ml of hexadeuteri sbenzene in an NMR tube was added 120 mg of thiophenol. The reaci ion mixture was thoroughly mixed and the rate of reaction was monit.red with time by NMR. The reaction displayed an induction period of $\sim 2 \mathrm{~min}$, being essentially complete in 15 min at $39^{\circ} \mathrm{C}$. The resulting mixture was poured into 10 ml of ether and was extracted twice with $5-\mathrm{ml}$ portions of 1 M sodium hydroxide, washed with water and saturated sodium chloride, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was reme ved under reduced pressure and the residue was distilled in a micros ill at $115^{\circ} \mathrm{C}(0.07 \mathrm{~mm})$, giving a pale yellow, viscous oil: NMR of $9\left(\mathrm{CDCl}_{3}\right) \delta 0.88$ (dd, $J=5.0$ and 8.1 Hz), 1.08 (dd, $J=2.3$ and 8.1 Hz$) .1 .47(\mathrm{~s}), 1.63(\mathrm{dd} . J=2.3$ and 5.0 Hz$), 1.84$ and 1.88 (broadened s's), $7.18: 10, \delta 1.33$ (s), 1.87 and 2.08 (broadened s's), 71.8 (the AMX dou sle doublets are obscured by the more intense resonances of 9): miss spectrum M. ${ }^{+} 294.1426$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~S}$, 294.1442).

Reaction of 3 wit 1 Thiophenol. A solution of $430 \mathrm{mg}(2.86 \mathrm{mmol})$ of 3 in 5 ml of benzene was added to $314 \mathrm{mg}(2.86 \mathrm{mmol})$ of thiophenol dissolved in 5 ml of benzene. The reaction mixture was allowed to stand at room temperature for 3 h , at which time analysis by NMR indicated complete reaction. The benzene solution was washed with 15 ml of 10% sodiur hydroxide and water, and was dried $\left(\mathrm{MgSO}_{4}\right)$. The benzene was removed under reduced pressure giving 656 mg of a pale yellow oil (11) $\mathrm{bp} \sim 50^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ in a molecular still; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 6 \mathrm{~F}), 0.98(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H})$, and $7.07(\mathrm{~m}, 5 \mathrm{H})$; mass spectrum M.+ 260.1597 (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~S}, 260.1608$).

Ozonolysis of 11 . A solution of $76 \mathrm{mg}(0.30 \mathrm{mmol})$ of 11 in 1.75 ml of dichloromethane and 0.25 ml of pyridine ${ }^{14}$ was cooled in a dry ice-acetone bath an tozone was bubbled through the solution for 15 s. The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and was analyzed directly by GLC on a Carbowax 20 M column showing the presence of acetone by comparison of retention time with authentic material and admix ure.

Registry No.—ะ, 4544-23-4; 3, 13303,30-5; 6, 40922-91-6; 7, 58873-30-6; 8, 939-89-9; 9, 58873-31-7; 11, 58873-32-8: thiophenol, 108-98-5.

References and Notes

(1) Research suppor ed by the donors of the Petroleum Research Fund, administered by the American Chemical Society.
(2) D. J. Pasto, A. F. T. Chen. and G. Binsch. J. Am. Chem. Soc., 95, 1553 (1973): D. J. PastJ and A. F.-T. Chen, ibid.. 93, 2562 (197 1).
(3) D. J. Pasto, J. K. Eorchardt. T. P. Fehiner. H. F. Baney, and M. E. Schwartz, J. Am. Chem. Soc., 98, 526 (1976).
(4) D. J. Pasto, T. P. Fehiner, M. E. Schwartz, and H. F. Baney, J. Am. Chem Soc.. 98, 530 (1¢76).
(5) D. J. Pasto and M. Miles. J. Org. Chem., 41, 425 (1976); D. J. Pasto, A. F.-T. Chen. G. Cuirdart, and L. A. Paquette, ibid., 38, 1015 (1973).
(6) D. J. Pasto and D Wampfler, Tetrahedron Lett., 1933 (1974).
(7) See W. A. Pryor. "Introduction to Free Radical Chemistry". Prentice-Hall, Englewood Cliffs N.J., 1966. p 79.
(8) Similar long-range shielding effects by a phenyl group are observed in $5 .{ }^{6}$
(9) N. C. Baird and M J. S. Dewar. J. Am. Chem. Soc., 89, 3966 (1967); K. B Wiberg and R. A. Fenoglio, ibid., 90, 3395 (1968).
(10) G. Levin and W. M. Goddard, J. Am. Chem. Soc., 97, 1649 (1975); W. R Roth, G. Ruf, and P. W. Ford, Chem. Ber., 107, 48 (1974): W. von E. Doering and G. H. Beasle-. Tetrahedron, 29, 2231 (1973)
'111 H. M. Walborsky and J.-C. Chen, J. Am. Chem. Soc., 93, 671 (1971).
..-) Z. Rappoport anc Y. Apeloig. J. Am. Chem. Soc., 91, 6734 (1969); W. D.

Pfiefer, C. A. Bahn, P. v. R. Schleyer, S. Bocher, C. E. Harding. K. Hummel, M. Hanack, and P. J. Stang, ibid., 93, 1513 (1971).
(13) P. S. Liu, S. Soloway, D. K. Wedegaertner, and J. A. Kampmeier, J. Am. Chem. Soc., 93, 3809 ;1971).
(14) D. J. Pasto and C. R. Jchnson, "Organic Structure Determination". Pren-tice-Hall. Englewood Clifts. N.J., 1969, p 333.
(15) Sadtler Research Laboratories, Inc., Philadelphia, Pa., NMR Spectrum No. 5561.

Trichloromethyl Chloroformate. Reaction with Amines, Amino Acids, and Amino Alcohols

Keisuke Kurita,* Toru Matsumura, and Yoshio Iwakura

Department of Industrial Chemistry, College of Technology,
Seikei University, Kichijoji, Musashino-shi, Tokyo, Japan
Received October 27, 1975
The title compound, trichloromethyl chloroformate (TCF), is of interest in that it is a potential substitute for phosgene, which presents a severe hazard in laboratory use because of its volatility and high toxicity. Although TCF is also toxic, ${ }^{1}$ it is a dense liquid ($\mathrm{bp} 128^{\circ} \mathrm{C}, d_{15}^{15} 1.65$) with vapor pressure of only 10 mm at $20^{\circ} \mathrm{C}$. Thus TCF is more easily handled with safety, and seems to have significant advantages over phosger.e.

Hentschel studied the decomposition of TCF and reactions with some organic compounds and found that phenyl isocyanate was formed by the action of TCF on 1,3-diphenylurea. ${ }^{2}$ The reaction with alcohols to give carbonates has also been reported. ${ }^{3}$ TCF was recently reported to be used as a substitute for phosgene in the preparation of N-carboxy- α-amino acid anhydrides; 1 mol of TCF provided the equivalent of 2 mcl of phosgene in the NCA synthesis. ${ }^{4}$

To extend our knowledge of the reactivity of TCF, it was of interest to compare other reactions of TCF with those of phosgene. This paper describes the reaction of TCF with amines, amino acids, and amino alcohols to give the corresponding isocyanates, isocyanato acid chlorides, and isocyanato chloroformates.

The reactions of TCF with aniline were carried out under conditions similar to those employed in the phosgene method. As expected, phenyl isocyanate was obtained in high yields (78-89\%) either from the hydrochloride or the free base. It was also confirmed that 0.5 mol of TCF was sufficient to convert 1 mol of the amine to the isocyanate.
Treatment of p-phenylenediamine hydrochloride with TCF in dioxane, on the other hand, gave only poor yields (23% or less) of the diisocyanate, even though the reaction was carried oct under almost the same conditions used with phosgene. When the free base was used instead of the hydrochloride, the yield of the diisocyanate was improved to 47%. An attempted reaction of hexamethylenediamine hydrochloride with TCF in dioxane was unsuccessful and the hydrochloride was reccvered. This result is presumably due to the high basicity of hexamethylenediamine compared to that of aromatic amines,
the more stable hydrochloride derived from the amine of higher basicity being less reactive to electrophilic attack.

The reactions of amino acids or amino alcohols with phosgene are interesting since they provide in one step molecules with two different functional groups, namely isocyanato acid chlorides or isocyanato chloroformates. The synthesis of 6isocyanatohexanoyl chloride by the action of phosgene on the amino acid was reported to be attained only by using an additional reagent such as hydrogen chloride, thionyl chloride, or phosphorus pentachloride besides phosgene. ${ }^{5}$ When TCF was used in this preparation, however, 6-isocyanatohexanoyl chloride was obtained in 73% yield without an additional reagent. TCF also reacted smoothly with 3-aminopropanoic acid, and in contrast to phosgene, 3-isocyanatopropanoyl chloride was obtained quantitatively (97%).

In contrast to the preparation of alkyl isocyanato acid chlorides, the TCF method with aromatic amino acids gave results similar to those with phosgene. ${ }^{5}$ Treatment of o-aminobenzoic acid with TCF resulted in the formation of isatoic anhydride in a quantitative yield, as observed with phosgene. The reaction between m-aminobenzoic acid and TCF failed to give the corresponding isocyanato acid chloride, and only an unidentified white solid was obtained. It was confirmed that an additional reagent such as phosphorus pentachloride was necessary to prepare o-isocyanatobenzoyl chloride (85\% yield) as in the phosgene method. ${ }^{5}$

Reactions of amino alcohols with TCF proceeded similarly to those with phosgene. ${ }^{6}$ 3-Aminopropanol and 2-aminoethanol gave 3-isocyanatopropyl chloroformate and 2-isocyanatoethyl chloroformate, respectively, in 53 and 21% yields.

Thus it was found that TCF is far superior to phosgene in the alkyl isocyanato acid chlorides syntheses, but was comparable to phosgene in the preparations of phenyl isocyanate, aromatic isocyanato acid chlorides, and alkyl isocyanato chloroformates.

Experimental Section ${ }^{7}$

Phenyl Isocyanate. To a mixture of $12.95 \mathrm{~g}(0.1 \mathrm{~mol})$ of aniline hydrochloride and 100 ml of dry dioxane was added $6.3 \mathrm{ml}(10.4 \mathrm{~g}, 0.05$ mol) of TCF. The mixture was heated at $60^{\circ} \mathrm{C}$; after 1.5 h of stirring, it became a clear solution. Heating was discontinued after 3.5 h and the solvent was removed under reduced pressure. The residue was distilled at $70-73.5^{\circ} \mathrm{C}(36 \mathrm{~mm})$ to give $10.6 \mathrm{~g}(89 \%)$ of phenyl isocyanate. It was redistilled almost quantitatively, bp $75-77^{\circ} \mathrm{C}(39 \mathrm{~mm})$ [lit. ${ }^{8} 55-57^{\circ} \mathrm{C}(16 \mathrm{~mm})$].
p-Phenylene Diisocyanate. A. From the Hydrochloride. To 100 ml of dry dioxane were added $14.48 \mathrm{~g}(0.08 \mathrm{~mol})$ of p-phenylenediamine hydrochloride and $51 \mathrm{ml}(84.2 \mathrm{~g}, 0.4 \mathrm{~mol})$ of TCF. The mixture was heated at reflux for 20 h . The unreacted hydrochloride was filtered off and the filtrate was evaporated under reduced pressure. The residual white, crystalline solid was sublimed under vacuum to give $3.0 \mathrm{~g}(23 \%)$ of p-phenylene diisocyanate. It was sublimed again at 85 ${ }^{\circ} \mathrm{C}(7 \mathrm{~mm})$ to give colorless crystals, $\mathrm{mp} 92-94^{\circ} \mathrm{C}$ (lit..$^{84-96}{ }^{\circ} \mathrm{C}$).
B. From the Free Base. To a solution of $8.64 \mathrm{~g}(0.08 \mathrm{~mol})$ of p phenylenediamine in 100 ml of dry dioxane was added 20.5 ml (34.8 $\mathrm{g}, 0.16 \mathrm{~mol}$) of TCF with stirring. Precipitation took place instantaneously. After refluxing the mixture for 20 h , the undissolved white solid was filtered off and the filtrate was evaporated. The residual solid gave $6.0 \mathrm{~g}(47 \%)$ of p-phenylene diisocyanate on sublimation.

3-Isocyanatopropanoyl Chloride. To 250 ml of dry dioxane were added 12.6 g (0.1 mol) of powdered 3 -aminopropanoic acid hydrochloride and then $37.9 \mathrm{ml}(62.6 \mathrm{~g}, 0.3 \mathrm{~mol})$ of TCF with stirring. The mixture became a clear solution after heating at $55^{\circ} \mathrm{C}$ for 4.5 h . The heating was continued for an additional 6.5 h and then the solvent was removed under reduced pressure. The residual oil was distilled to give $13.0 \mathrm{~g}(97 \%)$ of 3-isocyanatopropanoyl chloride, bp $77-80^{\circ} \mathrm{C}(10 \mathrm{~mm})$ [lit. ${ }^{5} 91-91.5^{\circ} \mathrm{C}(24.5 \mathrm{~mm})$].

6 -Isocyanatohexanoyl chloride was synthesized by virtually the same procedure, bp $112-113^{\circ} \mathrm{C}(5 \mathrm{~mm})$ [lit. $\left.{ }^{5} 114^{\circ} \mathrm{C}(6 \mathrm{~mm})\right]$.

Reaction of \boldsymbol{o}-Aminobenzoic Acid with TCF. A. Without $\mathbf{P C l}_{\mathbf{5}}$. A mixture of $10.0 \mathrm{~g}(0.073 \mathrm{~mol})$ of o-aminobenzoic acid and 36.8 ml ($60.7 \mathrm{~g}, 0.3 \mathrm{~mol}$) of TCF in 150 ml of dry dioxane was refluxed for 6 h. The resulting clear solution was evaporated to give a white solid.

It was recrystallized from tetrahydrofuran to give $10.0 \mathrm{~g}(92 \%)$ of isatoic anhydride, $\mathrm{mp} 241-243^{\circ} \mathrm{C}$ dec (lit. $.^{5} 242-243^{\circ} \mathrm{C} \mathrm{dec}$).
B. With PCl_{5}. To a mixture of 10.0 g of o-aminobenzoic acid and 36.9 ml of TCF in 150 ml of dry dioxane was added $15.2 \mathrm{~g}(0.073 \mathrm{~mol})$ of phosphorus pen-achloride with stirring. Phosphorus pentachloride went into solution in 1 h . The solution was allowed to stand at room temperature overright and then the solvent was removed under reduced pressure. The residue was distilled two times to give 11.2 g (85\%) of o-isocyanatobenzoyl chloride, bp $108-109.5^{\circ} \mathrm{C}(2 \mathrm{~mm}), \mathrm{mp}$ $30-32{ }^{\circ} \mathrm{C}$ (lit. ${ }^{5} 32{ }^{\circ} \mathrm{C}$).

3-Isocyanatopropyl Chloroformate. To a solution of 48.4 ml (79.8 $\mathrm{g}, 0.4 \mathrm{~mol}$) of TCF in 250 ml of dry dioxane was added 7.5 g (0.1 mol) of 3-aminopropanol dropwise over a period of 1 h with cooling in an ice bath. The mixture was stirred with cooling for 30 min and then left standing at room temperature overnight. The solution was evaporated under reduced pressure and the residue was distilled to give 10.2 g of dist:llate boiling $\mathrm{a}=65-105^{\circ} \mathrm{C}(7 \mathrm{~mm})$. Fractional redistillation afforded 0.5 g of a forerun boiling at $23-60^{\circ} \mathrm{C}(1 \mathrm{~mm})$ and $8.7 \mathrm{~g}(53 \%)$ of 3-isocyanatoprofyl chloroformate boiling at $70-74.5^{\circ} \mathrm{C}(1 \mathrm{~mm})$ [lit. ${ }^{6}$ $\left.82^{\circ} \mathrm{C}(1.5 \mathrm{~mm})\right]$. The forerun was considered to consist of mostly $3-$ chloropropyl isocyanate from its boiling range [lit..$^{6} 34^{\circ} \mathrm{C}(1.5 \mathrm{~mm})$] and ir spectrum.

2-Isocyanatoethyl Chloroformate. 2-Aminoethanol ($6.1 \mathrm{~g}, 0.1$ mol ; was treated with $24.2 \mathrm{ml}(40 \mathrm{~g}, 0.2 \mathrm{~mol})$ of TCF in 250 ml of dry dioxane at $55-60^{\circ} \mathrm{C}$ for 6 h . Fractional distillation gave $0.7 \mathrm{~g}(3 \%)$ of 2-chloroethyl isocyanate boiling at $41.5-45{ }^{\circ} \mathrm{C}(13 \mathrm{~mm})$ [lit. ${ }^{6} 35-36$ $\left.\left.{ }^{\circ} \mathrm{C}(13 \mathrm{~mm})\right], 3.2 \mathrm{~g}{ }^{\prime} .21 \%\right)$ of 2 -isocyanatoethyl chloroformate boiling at $89.5-90^{\circ} \mathrm{C}(14 \mathrm{~mm})$ [lit. $.^{6} 86-87^{\circ} \mathrm{C}(13 \mathrm{~mm})$], and $1 \mathrm{~g}(6 \%)$ of 2 oxazolidone boiling at $160-165^{\circ} \mathrm{C}(2 \mathrm{~mm}), \mathrm{mp} 86-88^{\circ} \mathrm{C}$ (lit. ${ }^{6} 89^{\circ} \mathrm{C}$).

Acknowledgment. The authors wish to express their appreciation to Hodogaya Kagaku Kogyo Co. for a gift of TCF.

Registry No.-Phenyl isocyanate, 103-71-9; aniline hydrochloride, 142-1)4-1; p-phenylene diisocyanate, 104-49-4; p-phenylenediamine hydrochloride, 624-18-0; p-phenylenediamine, 106-50-3; 3 -isocyanatopropanoyl chloride, 3729-19-9; 3-aminopropanoic acid hydrochloride, 6057-90-5; 6-isocyanatohexanoyl chloride, 3729-18-8; oaminobenzoic acid. 118-92-3; isatoic anhydride, 118-48-9; o-isocyanatubenzoyl chloride, 5100-23-2; 3-aminopropanol, 156-87-6; 3isocyanatopropyl chloroformate, 13107-90-9; 3-chloropropyl isocyanate, 13010-19-0; 2-aminoethanol, 141-43-5; 2-chloroethyl isocyanate, 1943-83-5; 2-isocyanatoethyl chloroformate, 13107-89-6; 2-oxazolidone, 497-25-6; TCF, 23213-83-4; PCl_{5}, 10026-13-8.

References and Notes

(1) (a) A. Mayer, H. Magne, and L. Plantefol. C. R. Acad. Sci., 172, 136 (1921): (t) Desgrez, Guillemard, and Saves, ibid., 171, 1177 (1920): (c) Desgrez. Guillemard, and Labat, ibid., 172, 342 (1921).
(2) W. Hentschel, J. Frakt. Chem., 36, 100, 305 (1887).
(3) W. Nekrassow and N. Melnikow. J. Prakt. Chem., 126, 81 (1930).
(4) M. Oya, R. Katakai, H. Nakai, and Y. Iwakura, Chem. Lett., 1143 (1973).
(5) Y. Iwakura, K. Unc, and S. Kang. J. Org. Chem., 31, 142 (1966).
(6) K Hayashi and Y. Iwakura, Makromol. Chem., 94, 132 (1966).
(7) S:ructures of all the products were confirmed by comparing boiling and/or melting points with the reported values and infrared spectra with those of authentic samples. The boiling and melting points were uncorrected.
(8) W. Siefken, Justus Liebigs Ann. Chem., 562, 75 (1949).

An Electron Spin Resonance Study of the Radical Anion of 7,8-Dimethylene-1,3,5-cyclooctatriene

Ronald L. Blankespoor* and Colleen M. Snavely
Department of Chemistry, Wake Forest University, Winsion-Salem, North Carolina 27109

Received February 20, 1976
S ϵ veral examples of pericyclic reactions in radical anions are known where the stereochemistry is the same as that of the excited state of the neutral molecule. ${ }^{1}$ If these reactions are concerted, the parallel mode of reaction of the radical anions with the eacited states is predicted by the highest occupied molecular orbital (HOMO) method. ${ }^{2}$ Bauld and Cessac^{3} have recent.y noted that the butadiene-cyclobutene

Figure 1. ESR spectrum of $3 \mathrm{a} \cdot \cdot^{-}$in DMF at $-60^{\circ} \mathrm{C}$.
radical anion transformation is allowed in the disrotatory mode by the HOMO method but is not allowed in either the disrotatory or conrotatory mode hy the orbital correlation diagram (OCD) method. ${ }^{4}$ INDO/MO calculations were carried out on this transformation giving a considerably lower barrier for the conrotatory mode. Interestingly, the radical anions of cis- and trans- 1^{5} and 2^{3} were found to undergo the cyclobu-

1

3a. $R=H$
b. $R=D$

4
tene to butadiene radical anion type transformation primarily in the conrotatory mode. We wish to report our preparation of the radical anion of 7,8 -dimethylene-1,3,5-cyclooctatriene (3a) and our observation that this type of transformation does not take place between 3a.- and $4 .^{-}$in either direction.

Using special precautions to prevent exposure to oxygen. ${ }^{6}$ a solution of $3 \mathrm{a}^{7}$ in deoxygenated DMF containing $n-\mathrm{Bu}_{4} \mathrm{~N}$ ClO_{4} was introduced into a standard variable temperature electrolytic cell. Reduction of this solution at $-60^{\circ} \mathrm{C}$ in an ESR cavity produced the spectrum shown in Figure 1 which could be satisfactorily simulated with $a^{\mathrm{H}}=4.31(2 \mathrm{H})$ and 3.10 $\mathrm{G}(6 \mathrm{H})$. Although the signal intensity decreased considerably upon warming to $0^{\circ} \mathrm{C}$, no evidence for a second radical could be found. Electroreduction of $\mathbf{3 b}$ at $-60^{\circ} \mathrm{C}$ gave an ESR spectrum with $a^{\mathrm{H}}=4.31(2 \mathrm{H})$ and $3.43 \mathrm{G}(2 \mathrm{H})$ and a small hyperfine splitting (hfs) of 0.44 G presumably for four deuteriums. An excellent simulation of the spectrum in Figure 1 was then obtained using $a^{\mathrm{H}}=4.31(2 \mathrm{H}), 3.43(2 \mathrm{H})$, and 2.96 $\mathrm{G}(4 \mathrm{H})$ with a line width of 0.50 G .

The above results support our assignment of structure 3a.to the radical anion obtained from electroreduction of $\mathbf{3 a}$ where the methylene hydrogens have a hfs of 2.96 G . Further support for this assignment comes from HMO and McLachlan ${ }^{8}$ calculations carried out on 3a.- assuming a planar geometry. In Table I are given Hückel and McLachlan spin densities (p_{c}) along with those calculated from hfs's using the McConnell equation, ${ }^{9} a^{\mathrm{H}}=-24 p_{c}$. Excellent agreement is

Table I. Spin Densities for 3a•-

Position	Hückel	McLachlan	Exptl
1.10	0.1236	0.1767	0.1233
2.9	0.120	-0.0353	
3.8	0.1822	0.2361	0.1796^{a}
4,7	0.0586	0.0037	
5,6	0.1236	0.1188	0.1429^{a}

a . Assignment made based on the MO calculations.
obtained suggesting that $\mathbf{3 a} \cdot{ }^{-}$is planar or very nearly so. The very small McLachlan spin densities at $\mathrm{C}-4$ and $\mathrm{C}-7$ nicely expain why only eight of the ten hydrogens in 3a-- give observable hfs's.

Bauld and co-workers have reduced 4 electrochemically (presumably at room temperature) and have obtained an ESR spectrum with $a^{\mathrm{H}}=5.40(4 \mathrm{H})$ and $3.25 \mathrm{G}(6 \mathrm{H}) .{ }^{10}$ Although assignment of this radical anion to structure 4.- is reasonable

4^{-}

5^{-}
in view of the hfs of 3.21 G for the hydrogens in the cyclooctatetraene radical arion, we decided to prepare the radical anion of 1,2 -dimethylcyclooctatetraene (5) for comparison. Reduction of 5 with a solution of Na in HMPA gave an ESR spestrum with hfs's of $3.38(6 \mathrm{H})$ and $2.75 \mathrm{G}(6 \mathrm{H})$ while reduction electrolytically in DMF ($n-\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ as supporting electrolyte) at $-65^{\circ} \mathrm{C}$ gave $a^{\mathrm{H}}=3.49(6 \mathrm{H}), 2.95(4 \mathrm{H})$, and $2.62 \mathrm{G}(2 \mathrm{H})$. The similarity in hfs's between $4 .^{-}$and 5^{-}certainly confirms their assignment. The methylene splitting of 5.40 G in $\mathbf{4}^{-}$is 60% greater than the methyl splitting of 3.38 G i. 5.- (HMPA) largely as a result of a conformational effect. ${ }^{10}$

A state correlation diagram for 3a.- (using Hückel energy levels) and 4.- reveals that transformation between ground sta:es is allowed in the conrotatory mode if the degeneracy of ψ_{4} and ψ_{5} in $4 .^{-}$is removed by placing the symmetric (C_{2} axis) orbital higher in energy. Our results clearly show that the transformation of $3 \mathrm{a}^{-}$to 4^{-}does not take place thermally under the conditions given. Since the width of the ESR spectrum for 4.- $(41.1 \mathrm{G})$ is considerably greater than that for $3 \mathbf{a}^{-}(27.3 \mathrm{G})$, even a trace of 4 .- $^{-}$would have been detected. The reverse reaction can also be ruled out based on earlier work. ${ }^{10}$ We are presently investigating whether phenyl substituents at the methylene positions of $4 .^{-}$will significantly reduce the energy barrier between $4 .^{-}$and 3a.-

Experimental Section

General. The ESR spectra were recorded on a Varian Associates V-4502 spectrometer. Electroreductions were carried out at a mercury surface using DMF which was previously distilled from CaH_{2}. HMPA was distilled from sudium prior to use as a solvent for sodium reductions.

Electroreduction of 3a. 7.8-Dimethylene-1.3.5-cyclooctatriene (3a) was prepared by the literature method ${ }^{7}$ and immediately purified before use by chromatography on silica gel and elution with deoxygenated pentane under N_{2}. The bulk of the pentane was removed below room temperature by passing a stream of N_{2} through the solution. Deoxygenated DMF was then added before the remainder of the pentane was remcved by the same procedure. Addition of the electrolyte, tetra- n-butylammonium perchlorate, and transfer to the electrolytic cell was also carried out under N_{2}.

Preparation of $\mathbf{3 b}$. Using the literature methods for preparing 3a ${ }^{-.11 .12} \mathbf{3 b}$ was syntresized from 1.2-dicarbomethoxycyclooctatetraene and aluminum deuteride: N.MR $\left(\mathrm{CCl}_{4}\right) \delta 5.6 i-6.00(\mathrm{~m} .4)$ and 6.16-6.42 (m. 2).

1,2-Dimethylcyclooctatetraene was prepared by the literature method. ${ }^{13}$

Acknowledgment. The authors are grateful to the Research Corporation for financial support. We wish to thank Professor Glen A. Russell for carrying out the MO calculation on $3 \mathrm{a} \cdot{ }^{-}$.

> Registry No.-3a, 10474-58-4; 3a.-- 58873-29-3.

References and Notes

(1) (a) S. F. Nelsen and J. P. Gillespie, J. Org. Chem., 38, 3592 (1973); (b) C. Elschenbroich, F. Gerson, and V. Boekelheide. Helv. Chim. Acta, 58, 1245 (1975); (c) J. R. Dodd, R. F. WInton, R. M. PagnI, C. R. Watson, Jr., and J. Bloor, J. Am. Chem. Soc., 98, 7846 (1974).
(2) R. B. Woodward and R. Hoftmann, J. Am. Chem. Soc., 87, 395 (1965)
(3) N. L. Bauld and J. Cessac. J. Am. Chem. Soc., 97,2284 (1975).
(4) (a) R. Hoftmann and R. B. Woodward. J. Am. Chem. Soc., 87, 2046 (1965);
(b) H. C. Longuet-Higgins and E. W. Abrahamson, ibid., 87, 2045 (1965).
(5) N. L. Bauld, C.-H. Chang, and F. R. Farr. J. Am. Chem. Soc., 94, 7164 (1972).
(6) 7,8-Dimethylene-1.3.5-cyclooctatriene (3a) has been reported ${ }^{7}$ to have a half-life of 45 min when exposed in the neat phase to sunlight and air. Therefore, the compound was used immediately after its preparation and workup operations after purification were done under N_{2} while keeping 3a in solution. (See Experimental Section.)
(7) J. A. Ellix, M. V. Sargent, and F. Sondheimer, J. Am. Chem. Soc., 92, 962 (1970).
(8) A. D. McLachlar. Mol. Phys., 3, 233 (1960).
(9) H. M. McConnel, J. Chem. Phys., 24, 632 (1956)
(10) N. L. Bauld, F. F. Farr, and C. E. Hudson, J. Am. Chem. Soc., 96, 5634 (1974).
(11) E. Grovenstein. Jr., and D. V. Rao. Tetrahedron Lett., 148 (1961).
(12) E. Le Goff and R. B. La Count. Tetrahedron Lett., 2787 (1965)
(13) L. A. Paguette. S V. Ley. R. H. Meisinger, R. K. Russell, and M. Oku. J. Am. Chem. Soc., 96, 5806 (1974).

Communications

Reaction of 1-Silyloxybicyclo[n.1.0]alkanes with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$. A Facile Synthesis of 2-Cycloalkenones via Ring Enlargement of Cyclic Ketones

Summary: Reactions of 1-trimethylsilyloxybicyclo[n.1.0]alkanes (1) with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$, followed by treatment with sodium acetate in methanol, furnish 2 -cycloalkenones (3) in high yields; similar reactions with bis(trimethylsilyloxy)bicyclo[n.1.0]alkanes (4) afford cycloalkane-1,3-dione (5) in moderate yields.

Sir: Much attention has been directed to the utilization of silyl groups in organic synthesis in the past several years. ${ }^{1}$ In our previous paper, ${ }^{2}$ we described a regiospecific formation of 1,4 diketones by the oxidative coupling of silyl enol ethers with $\mathrm{Ag}_{2} \mathrm{O}$, in which we assumed Ag^{I} enolate intermediate regiospecifically formed through the reaction of silyl enol ether with $\mathrm{Ag}_{2} \mathrm{O}$. Herein, we wish to report an oxidation reaction of 1 silyloxybicyclo[n.1.0]alkanes (1) with $\mathrm{Fe}^{\mathrm{II}} \mathrm{Cl}_{3}$, leading to the formation of the corresponding 2 -cycloalkenone (3) via 3 chlorocycloalkanone (2) in moderate to excellent yields according to the eq 1 . This reaction presents a new method for

one-carbon ring homologation of cycloalkanones. It is of practical use since 1 -silyloxybicyclo[$n .1 .0$]alkanes are readily prepared by the Simmons-Smith reaction of silyl enol ethers of cycloalkanones. ${ }^{3}$ Recently, Stork has reported a comparable ring homologation of cycloalkanones by the dichlorocyclopropanation of silyl enol ether followed by hydrolysis. ${ }^{4}$

A typical experimental procedure is illustrated by the reaction of 1-trimethylsilyloxybicyclo[4.1.0]heptane (1b) with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$. To a stirred solution of anhydrous $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}(973 \mathrm{mg}$, 6 mmol) in dimethylformamide (4 ml), a solution of 1 b (368 $\mathrm{mg}, 2 \mathrm{mmol}$) and pyridine ($158 \mathrm{mg}, 2 \mathrm{mmol}$) in dimethyl-
formamide (4 ml) was added dropwise over 2 h at $0 \sim 10^{\circ} \mathrm{C}$ under nitrogen. The resultant brown solution was stirred at room temperature for 1 h , and then poured into cold 1 N HCl aqueous solution and extracted repeatedly with chloroform. The chloroform extract was successively washed with 1 N HCl aqueous solution and with brine, dried over MgSO_{4} and concentrated in vacuo. The concentrate was subjected to preparative GLC to afford 3-chlorocycloheptanone (2b) in 93% yield: ir $1705 \mathrm{~cm}^{-1}$; NMR (CCl_{4} with TMS) $\delta 1.4 \sim 2.3$ (m, 6 H), $2.3 \sim 2.6(\mathrm{~m}, 4 \mathrm{H}), 4.1 \sim 4.4(\mathrm{~m}, 1 \mathrm{H})$; mass $\mathrm{M}^{+} 146$ and 148 (3:1). After the concentrate was refluxed with sodium acetate in methanol for $2 \mathrm{~h}, 2$-cycloheptenone ($\mathbf{3 b}$) was isolated in 84% yield by preparative GLC, which was identical in all respects with an authentic sample. No C- cyclic ketones other than 3b were detected in the reaction mixture by GLC. Some results of 2 -cycloalkenore synthesis are summarized in Table I.

Some remarks are to be added to Table I. The reaction of 1-trimethylsilyloxybicyclo[3.1.0]hexane (1a) with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$ at $0 \sim 10^{\circ} \mathrm{C}$ produced 2-cyclohexenone (3a) ${ }^{5}$ in almost quantitative yield prior to the treatment with sodium acetate in methanol. In this case, 3 -chlorocyclohexanone (2a) initially formed underwent readily dehydrochlorination under the reaction conditions. The reaction with 1 -trimethylsilyloxy6 -methylbicyclo[4.1.0]heptane (1e) afforded 3-methyl-2cycloheptenone (62% isolated yield), after the treatment with sodium acetate, which was not contaminated with any isomeric methylcyc.oheptenones. This reaction represents a transformation of unsymmetrical cycloalkanone into regiospecizically homoogated 2 -cycloalkenene. The reaction of 1-trimethylsilyloxybicyclo[10.1.0]tridecane (1g) with $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$, which was very sluggish at $0 \sim 10^{\circ} \mathrm{C}$, was carried out by heating at $80^{\circ} \mathrm{C}$ for 3 h . Oxidative cleavage of the carboncarbon bond of 1 g and dehydrochlorination of the resulting 3 -ch.orotridecancne (2 g) took place successively in one flask at a temperature of $80^{\circ} \mathrm{C}$. ${ }^{6}$ The product of trans-2-cyclotridecenone (3 g) was isolated in 81% yield by preparative TLC on silica gel: ir $1690,1662,1625 \mathrm{~cm}^{-1}$; NMR (CCl_{4} with TMS) $\delta 1.15 \sim 1.85(\mathrm{~m}, 16 \mathrm{H}), 2.10 \sim 2.50(\mathrm{~m}, 4 \mathrm{H}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.6 \mathrm{~Hz}), 6.61\left(\mathrm{td}, 1 \mathrm{H}, J=15.6\right.$ and 7.0 Hz); mass M^{+}194. Use of diethyl ether solvent ${ }^{1}$ in the ring enlargement reaction resulted in a remarkable reduction in the yield of the corresponding 2 -cycloalkenone [e.g., 5 -methyl-2-cycloheptenone (47%), trans-2-cyclotridecenone (56%)]. CuCl_{2} can also be used in place of $\mathrm{Fe}^{\mathrm{III}} \mathrm{Cl}_{3}$ in the present reaction, but was less effective [e.g., 2-cyclohexenone (60% yield)] than $\mathrm{Fe}^{\mathrm{II}} \mathrm{Cl}_{3}$.

Table I. Synthesis of 2-Cycloalkenone

No. | -Silyloxybicyclo- |
| :---: |
| (n.1.0]alkane |

${ }^{a}$ Satisfactory microanalysis data were obtained for all new compounds. ${ }^{b}$ No attempt has been made to optimize the reaction conditions. ${ }^{c}$ Cis-trans mixture, as judged by NMR. ${ }^{d}$ An axial-equatorial mixture. 3c: ir $1665 \mathrm{~cm}^{-1}$; NMR (CCl_{4} with TMS) $\delta 1.05$ and 1.08 (two d, $3 \mathrm{H}, \mathrm{J}=6.0$ Hz), $1.5 \sim 2.1(\mathrm{~m}, 3 \mathrm{H}), 2.1 \sim 2.5^{4}(\mathrm{~m}, 4 \mathrm{H}), 5.84$ (br d, 1 H , $J=12.0 \mathrm{~Hz}$), $6.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{e}$ An axial-equatorial mixture. 3d: ir $1665 \mathrm{~cm}^{-1} ;$ NMR (CCl_{4} with TMS) $\delta 0.90$ and 0.95 (two s, 9 H), $1.2 \sim 2.6$ (m, 7 H), 5.80 (brd, $1 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 6.43(\mathrm{~m}, 1 \mathrm{H}) . f 3 \mathrm{e}:$ ir $1650 \mathrm{~cm}^{-1}$; NMR (CCl_{4} with TMS) $\delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.7 \sim 2.0(\mathrm{~m}, 4 \mathrm{H}), 2.3 \sim 2.7(\mathrm{~m}, 4 \mathrm{H})$, 5.85 (broad s, 1 H). $\mathrm{g} \mathrm{3f}$: ir $1660 \mathrm{~cm}^{-1}$; NMR (CCl_{4} with TMS) $\delta 1.4 \sim 2.2(\mathrm{~m}, 6 \mathrm{H}), 2.3 \sim 2.7(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}$, $J=12.0 \mathrm{~Hz}), 6.14(\operatorname{td}, 1 \mathrm{H}, J=12.0$ and 6.0 Hz$)$.

The present procedure for one-carbon ring homologation of cyclic ketone is also applicable to bis(trimethylsilyloxy)bicyclo[n.1.0]alkanes (4) which are prepared by the cyclopropanation of bisísilyloxy)enediol derived from the silylacyloin synthesis. ${ }^{8}$ This reaction provides a new route to cy-

cloalkane-1,3-diones (5, eq 2) [e.g., cycloheptane-1,3-dione (68%), cyclonane-1,3-dione (72% yield)].

The reaction for one-carbon homologation of cycloalkanones in this study is mechanistically interesting in terms of the regioselectivity in the ring-opening of silyloxybicyclo[n.1.0]alkane (1 and 4), of which the bridging bond is cleaved. This is contrasted with the bromination ${ }^{9}$ and the potassium tert-butoxide treatment ${ }^{10}$ of 1 -silyloxybicyclo[n.1.0]alkanes producing 2-bromomethylcycloalkanones and 2-methylcycloalkanones, respectively. Based upon the extensive studies on the reaction of cyclopropanol with various halogenating reagents by DePuy and coworkers, ${ }^{7}$ the present ring enlargement reaction may be well explained by a mechanism involving an alkoxy radical intermediate (6) which undergoes the homolytic β scission of the bridging carboncarbon bond, and the subsequent abstraction of chlorine by the resulting carbon radical species (7) to give 3 -chlorocycloalkanone (2) (eq 3). Detailed understanding of the reaction mechanism must await further study.

Ring enlargement of the related silyloxybicycloalkanes is now being carried out in this laboratory.

Acknowledgment. We are grateful to Shinetsu Chemical Industry Co., Ltd., for providing the trimethylsilyl chloride.

References and Notes

(1) ia) L. Birkofer and A. Ritter. "Newer Methods of Preparative Organic Chemistry", W. Foerst, Ed., Vol. 5, Academic Press, New York, N.Y., pp 211. 237. 1968; (b) G. Stork and P. F. Hudrlik. J. Am. Chem. Soc., 90, 4462, 4464 (1968); (c) H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, J. Org. Chem., 34, 2324 (1969); (d) S. Washburne, Organometal. Chem. Rev., 83, 155 (1974)
(2) Y. Ito, T. Konoike, and T. Saegusa. J. Am. Chem. Soc., 97, 649 (1975).
(3) S. Murai. T. Aya, and N. Sonoda, J. Org. Chem., 38, 4354 (1973).
(4) G. Stork and T. L. Macdonald, J. Am. Chem. Soc., 97, 1264 (1975).
(5) Identical in all respects with an authentic sample
(6) The 2-cycloalkenone synthesis in this study can be also performed in one flask by heating the reaction mixture of 1 , pyridine, and $\mathrm{Fe}^{111} \mathrm{Cl}_{3}$ in DMF at $80^{\circ} \mathrm{C}$, but in decreased yields [for example, 5 -methyl-2-cycloheptenone (3c) (65\% yield)].
(7) (a) C. H. DePuy. W. C. Arney, Jr., and D. H. Gibson, J. Am. Chem. Soc., 90, 1830 (1968): (b) C. H. DePuy and R. J. Van Lanen, J. Org. Chem., 39, 3360 (1974).
(8) K. Ruhimann. Synthesis, 263 (1971).
(9) S. Murai, T. Aya, and N. Sonoda, J. Org. Chem., 38, 4354 (1973)
(10) J. M. Conia and C. Girard, Tetrahedron Lett., 2767 (1973).

Yoshihiko Ito, Syotaro Fujii, Takeo Saegusa*
Department of Synthetic Chemistry
Kyoto University, Kyoto, Japan
Received February 20, 1976

OF THE

More chemists quote the Journal of The American Chemical Society than any other journal in the world BECAUSE ...

Each year the JOURNAL OF THE AMERICAN CHEMICAL SOCIETY publishes nearly 9,000 pages of new chemistry-original research of the widest possible interest in all fields of chemistry

Each biweekly issue includes up to 50 definitive artic es, and abo at the same number of concise, up-to-the-minute communications by the world's leading chemists.

No wonder the JOURNAL OF THE AMERICAN CHEMICAL SOCIETY is one of chemistry's great subscription values . . . no wonder it is read, stuaied and quoted by more working chemists than any other publication.

Take advantage of this extraordinary value now . . . complete and send in the coupon today.

Ideas that cannot wait

We add several thousand compounds to our inventory annually, but have not been able to inform most of our customers about them. Through publications like our Aldrichimica Acta and other technical journals, we feature only a few of our new chemicals while others must be delayed - and some are too exciting to wait.

19,151-5
Methyl 4-ox0-3-piperidinecarboxylate hydrochloride
5g \$12.75

18,899-9
3-Benzyloxy-4-methoxybenzyl alcohol
5g \$6.10 $\quad \mathbf{2 5 g} \mathbf{\$ 2 3 . 5 0}$
p-Ethoxybenzyl alcohol
10g 56.75

19,146-9
Cyclohexanone cyanohydrin
25g $\$ 7.50$
$100 \mathrm{~g} \$ 20.00$

19,035-7
D-(-)- α-PhenyIglycinol
5g $\$ 9.00$
25g \$30.00

19,036-5
m-Methoxy- α-methylbenzyl alcohol
$\mathbf{1 0 g} \mathbf{\$ 9 . 8 0} \quad \mathbf{5 0 g} \mathbf{\$ 3 4 . 0 0}$

18,843-3
3-Hydroxy-4-methoxybenzyl alcohol
$10 \mathrm{~g} \$ 5.80 \quad 50 \mathrm{~g} \$ 18.00$

18.871-9

6-Nitro-o-tolunitrile
5g \$14.50
25g $\$ 48.00$

Aldrich Chemical Company, Inc.

Craftsmen in Chemistry

Corporate Offices
Aldrich Chemical Co., Inc.
940 W. Saint Paul Ave.
Milwaukee. Wisconsin 53233
U. S. A.

Great Britain
Aldrich Chemical Co., Lid. The Old Brickyard, New Road Gillingham, Dorset SP8 4JL England

Belgium/
Continental Europe:
Aldrich-Europe B-2340 Beerse Belgium

[^4]
[^0]: Supplementary material for this paper is available separately (consult the masthead page for ordering information); it will also appear following the paper in the microfilm edition of this journal.

[^1]: ' Ageo Research Laboratory, Nippon Kayaku Co., Ltd., Koshikiya, Ageo 362, Japan.
 ${ }^{\text {t/ Department of Industrial Chemistry. Faculty of Technology, Yamaguchi }}$ University, Tokiwadai, L'be isis. Japan

[^2]: ${ }^{a}$ Estimated error ± 0.05 atom excess D. ${ }^{b}$ Reference 3. ${ }^{c}$ The solvent was 7 -oxabicyclo[2.2.1]heptane instead of THF. ${ }^{d}$ The solution was treated with NaNaph at $25^{\circ} \mathrm{C}$ for 0.25 h before deuterolysis. ${ }^{e}$ The reaction with NaNaph was carried out at $25{ }^{\circ} \mathrm{C}$ for 0.25 h before heating to reflux. f Aliquots were withdrawn from a single reaction mixture at the times indicated. ${ }^{g}$ Reaction mixture from preceding line was cooled to $25{ }^{\circ} \mathrm{C}$ and 3.65 equiv of HMPA was added. ${ }^{h}$ Estimated yield $\pm 10 \%$, no internal standard. ${ }^{i}$ THF- d_{8}, hydrolyzed with $\mathrm{H}_{2} \mathrm{O} .{ }^{j}$ THF- d_{8}. Aliquot at 0.5 h was hydrolyzed with $\mathrm{D}_{2} \mathrm{O}$. Remainder at 240 h was hydrolyzed with $\mathrm{H}_{2} \mathrm{O}$.

[^3]: ${ }^{a}$ Used as a "known" acid having the value given in ref $2 .{ }^{b}$ Prepared by alkaline permanganate oxidation of the aldehyde. ${ }^{c}$ The nmr spectra is in agreement with the designated structure. ${ }^{d}$ Prepared by periodate-permanganate oxidation of $3,5,5$-trimethyl-1hexene. ${ }^{e}$ GLC analysis of both acids and esters. f Esterification experiment carried out with each acid in a separate container. ${ }^{g}$ Prepared by alkaline permanganate oxidation of the alcohol. ${ }^{h}$ Esterification experiment carried out under the conditions given in ref 2. ${ }^{i}$ Prepared from isobutyroin, A. A. Sacks and J. G. Aston, J. Am. Chem. Soc., 73, 3902 (1951).

[^4]: West Germany/
 Continental Europe:
 EGA-Chemie KG
 7924 Steinheim am Albuch
 West Germany

