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A Brief History of Axiomatization of N

1860s, Mathematicians realized that a proper axiomatization of natural
numbers was in need.

1881, Charles Sanders Peice (American mathematician/statistician,
philosopher, ‘the father of pragmatism’) provided an axiomatization of N.

1888, Richard Dedekind (German mathematician, who invented
‘Dedekind cuts’) gave a different axiomatization.

1889, Giuseppe Peano (Italian mathematician, linguist) simplified
Dedekind’s axiomatization, and the resulted system is called
Dedekind-Peano axioms or Peano’s axioms.

Now Peano Arithmetic (PA) is usually referred to the first order part of
Peano’s axioms.



The Language of Arithmetic

LA, the language of arithmetic, is a first order language with two
constants (0, 1), two binary operations (+,×) and a binary relation (<).

So LA is just the language of rings, augmented by a binary relation; or
just the language of ordered rings.



PA−, the Ordered Ring Part of PA

PA− is the part of PA, saying that a desired model is the non-negative
part of a discrete ordered ring.

So PA− contains the some ring axioms as follows,

I 0 + x = x; (i.e., (∀x(0 + x = x)))

I x+ (y + z) = (x+ y) + z;

I x+ y = y + z;

I 0× x = 0;

I 1× x = x;

I x× (y × z) = (x× y)× z;

I x× y = y × x;

I x× (y + z) = x× y + x× z.

Here we follow usual conventions in algebra, like omitting ∀.



PA−, the Ordered Ring Part of PA

PA− also contains axioms saying that < is linear with a least element 0,

I x ≤ y → y 6< x;

I x = y ∨ x < y ∨ x > y;

I x < y ∧ y < z → x < z;

I 0 ≤ x;

and the order is discrete,

I x < y → x+ 1 ≤ y;

and +,× obey the ordering to some extent,

I x < y → ∃z(x+ z = y);

I x ≤ y → x+ z ≤ y + z;

I x ≤ y → xz ≤ yz.



PA = PA−+ Inductions

Recall: fix M a first order model (of some language), B ⊆M , X ⊆Mm

is B-definable in M , iff there exist a formula ϕ(x1, . . . , xm, y1, . . . , yn)
and b1, . . . , bn ∈ B s.t.

X = {~a ∈Mn : M |= ϕ(~a,~b)} = ϕ(M,~b).

PA consists of PA− and the induction scheme saying that mathematical
induction holds for every definable set of numbers, i.e.,

ϕ(0, ~y) ∧ ∀x(ϕ(x, ~y)→ ϕ(x+ 1, ~y))→ ∀xϕ(x, ~y),

for all formula ϕ(x, ~y).

The above instance of induction for ϕ is denoted by Iϕ.



Standard and Non-standard Models of PA

N = (N, 0, 1,+,×, <) is the standard model of PA.

The following set of formulas

T = PA∪{c > 0, c > 1, c > 1 + 1, c > 1 + (1 + 1), . . .}

is finitely satisfiable in N. So by Compactness Theorem, there exists
M |= T . M contains N as an initial segment (i.e., in M , if a < n ∈ N
then a ∈ N) and also an infinite element cM (the interpretation of c in
M).

A non-standard model of PA is a model of PA different from N, like M .

Every non-standard model contains N as an initial segment.



The Order-Type of A Non-standard Model

Let M be a non-standard model of PA. For X ⊂M and a ∈M , let

a+X = {a+ b : b ∈ X}.

We define an equivalence relation on M as follows,

a ∼ b⇔ b ∈ a+ N or a ∈ b+ N.

Let [a] be the equivalence class of a and let [a] < [b] iff a < b and a 6∼ b.
If [a] < [b] then b− a = 2c or 2c+ 1 for some c. Clearly, [a] < [c] < [b].

If [a] > [0] = N then [2a] > [a].

So ∼ induces a dense linear order L with a least element [0]. And the
order-type of M under < is of the form

N + Z× L.

If M is countable then the order-type is N + Z×Q.



Standard Systems

Let M |= PA be non-standard. Every a ∈M can be identified as a
binary sequence, let (a)i be the i-th bit.

The standard system of M is the following set of subsets of N

SSy(M) = {{i ∈ N : M |= (a)i = 1} : a ∈M − N}.

We say that the set {i ∈ N : M |= (a)i = 1} is coded by a in M .

But there are other ways to present SSy(M). Let pi denote the i-th
prime number and let pi|a denote the formula saying that pi divides a.
Then

SSy(M) = {{i ∈ N : M |= pi|a} : a ∈M − N}
= {A ∩ N : A is definable in M}.



Computability of Standard Systems

Theorem (Scott, 1962)
If M is a non-standard model then SSy(M) satisfies the following.

1. If Y ≤T X ∈ SSy(M) then Y ∈ SSy(M);

2. If X and Y are both in SSy(M) then

X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y } ∈ SSy(M);

3. If T is an infinite binary tree computable in X ∈ SSy(M) then there
exists Y ∈ SSy(M) whose characteristic function as a countable
binary sequence is an infinite path on T (we write Y ∈ [T ]).

A Turing ideal is a set A ⊆ 2N satisfying (1-2) above, and a Scott set is a
Turing ideal satisfying also (3). So SSy(M) is a Scott set for every
non-standard model M .



Computability of Standard Systems
Finding Paths On A Coded Tree

We sketch a proof of the 3rd clause above.

By the 1st clause and by identifying finite binary sequences with natural
numbers, we fix an infinite tree T ∈ SSy(M). So there is a ∈M − N s.t.

T = {σ ∈ 2<N : M |= (a)σ = 1}.

Let

X = {n ∈M : M |= ∃σ(|σ| = n ∧ (a)σ = 1∧
∀ρ(ρ ≺ σ → (a)ρ) = 1))}.

where |σ| is the length of σ and ρ ≺ σ means ρ being an initial segment
of σ. Since T is an infinite tree, N ⊆ X; by induction, X contains some
b ∈M − N!

So in M , there is some ‘finite’ binary sequence τ with length b and
satisfying the matrix of the formula defining X. So every TRUE finite
initial segment of τ is on T , and τ codes a path of T in SSy(M).



Computability of Standard Systems
A Corollary: Tennenbaum’s Theorem

Theorem (Tennenbaum, 1959)
If (M, 0, 1,+,×, <) |= PA is non-standard and countable then (M,+) is
NOT computable.

By the 1st claus of Scott’s theorem, every computable set is in SSy(M).
By standard computability construction, there is a computable infinite
binary tree T which has NO computable infinite path. So T ∈ SSy(M)
and SSy(M) contains a path X of T which is not computable.

Let a ∈M − N be s.t.

X = {i ∈ N : M |= pi|a}.

If (M,+) were computable, the following algorithm would decide i ∈ X.
Given a positive i ∈ N, find b ∈M and r < pi s.t. a = bpi + r. If r = 0
then i ∈ X; otherwise i 6∈ X.



Models Coded By Their Standard Systems
Recursive Types and Recursively Saturated Models

Let M be a (first-order) model. If A ⊆M then

ThA(M) = {ϕ(~a) : ~a from A,M |= ϕ(~a)}.

A type of M over a set of parameters A ⊆M is a set p(~x) of formulas,
s.t. each formula is in a fixed set ~x of variables and may have parameters
from A, and p(~x)∪ThA(M) is satisfiable (equivalently, finitely satisfiable
in M).

If ~x and A = ~a are finite and

{ϕ(~x, ~y) : ϕ(~x,~a) ∈ p}

is recursive, then p is a recursive type.

M is recursively saturated, iff every recursive type p(~x) of M over some

finite ~a from M is realized in M , i.e., there exists ~b in M s.t.
M |= ϕ(~b,~a) for all ϕ(~x,~a) ∈ p.



Models Coded By Their Standard Systems
Countable Recursively Saturated Models of PA

Proposition

I Every countable model has a recursively saturated elementary
extension.

I If M |= PA is recursively saturated then it is SSy(M)-recursively
saturated, i.e., if X ∈ SSy(M) and p is a X-recursive type of M
over a finite set of parameters then p is realized in M , where
X-recursive type is a straight forward relativization of recursive type.

Theorem (H. Friedman, 1973)
Let M and N be countable recursively saturated non-standard models of
PA. If M and N are elementarily equivalent and SSy(M) ⊆ SSy(N)
then M can be elementarily embedded into N . Moreover, if
SSy(M) = SSy(N) then M ∼= N .



Tailor-made Standard Systems

Theorem (Scott, 1962)
For each countable Scott set S and each consistent extension Γ of PA in
S, there exists a non-standard M |= Γ s.t. SSy(M) = S.

Note that the construction of a completion Λ of a consistent Γ with
Henkin’s property can be viewed as finding an infinite path on a
Γ-computable binary tree. So, since Γ ∈ S, there is such a Λ ∈ S and
thus a Henkin model M0 of Γ exists in S.

Then SSy(M0) ⊂ S. If X ∈ S − SSy(M0), then let

ΓX = The elementary diagram of M0

∪ {(c)i = 1 : i ∈ X} ∪ {(c)i = 0 : i 6∈ X},

which is consistent and in S. By similar construction, in S we can find
M1 |= ΓX , so M0 ≺M1 and X ∈ SSy(M1) ⊂ S.

So we can have M0 ≺M1 ≺ . . . and finally M =
⋃
nMn is as desired.



The Scott Set Problem

Question
Does every Scott set (countable or uncountable) equal to the standard
system of some non-standard model of PA?



The Scott Set Problem Under CH

Theorem (Knight and Nadel, 1982)
Every Scott set of cardinality ω1 equals to the standard system of some
non-standard M |= PA.
So, under ZF + CH, the Scott set problem has an affirmative answer.

There are several known proofs of this theorem.

The original proof has two parts:

1. Nadel proved that if M is a recursively saturated model of
Pr′ = Th(Z,+, 1) and |M | = ℵ1 then M can be expanded to a
recursively saturated model N of PA. Clearly, SSy(N) = SSy(M).

2. Knight and Nadel proved that every Scott set is the standard
system of some M |= Pr′.



The Scott Set Problem Under CH
A New Proof

In 2015, Alf Dolich, Julia Knight, Karen Lange and David Marker gave a
new proof as follows.

Let S be a Scott set of cardinality ω1. Pick a consistent completion
T ∈ S of PA. We can find countable Scott sets (Sα : α < ω1) s.t.

T ∈ S0 ⊆ Sα ⊂ Sβ (α < β), S =
⋃
α

Sα.

By Scott’s Theorem, for each α, let Mα |= T be countable, recursively
saturated with SSy(Mα) = Sα.

By Friedman’s Embedding Theorem, for α < β, there exists an
elementary embedding fα,β : Mα →Mβ . With some additional care, we
can ensure that

α < β < γ → fα,γ = fβ,γ ◦ fα,β .

The limit of this elementary chain is a desired model.



Another New Proof of Knight-Nadel Theorem
Ehrenfeucht’s Lemma

Lemma (Ehrenfeucht)
Suppose that S is a Scott set, X ∈ S and M |= PA is countable with
SSy(M) ⊆ S. Then there exists N s.t. M ≺ N , X ∈ SSy(N) ⊆ S.

It is not hard to see that Ehrenfeucht’s Lemma implies the above
theorem of Knight and Nadel.

And it happens that Ehrenfeucht’s Lemma could also be proved by
applications of Friedman’s Embedding Lemma. (see Gitman, 2008)

But I shall present another proof of this lemma here.



Another New Proof of Knight-Nadel Theorem
Cofinal and End Extensions

Let M |= PA.

A cofinal extension of M is a super-model N ⊇M s.t. for every b ∈ N
there exists a ∈M with N |= b < a. We write M ⊆cof N iff N is a
cofinal extension of M , and M �cof N iff M ⊆cof N and M � N .

An end extension of M is a super-model N ⊇M s.t. b > N whenever
b ∈ N −M . We write M ⊆e N iff N is an end extension of M , and
M �e N iff M ⊆e N and M � N .

Theorem (Gaifmann, 1972)
If M � N |= PA and M ′ = {b ∈ N : ∃a ∈M(N |= b < a)} then

M �cof M
′ �e N.

Moreover, SSy(M ′) = SSy(N).

So to construct extensions whose standard systems have certain
properties, it suffices to construct cofinal extensions.



Another New Proof of Knight-Nadel Theorem
Extending a model of PA

PA has definable Skolem functions, i.e., each formula ϕ(~x, y)
corresponds to another formula ψ(~x, y) s.t.

I PA |= ψ defines a function Fϕ;

I PA |= ∀~x(∃yϕ(~x, y)→ ϕ(~x, Fϕ(~x))).

By the above property and Compactness, if M |= PA and p(x) is a type
of M , then there exists N , s.t. M ≺ N , p(x) is realized in N , and

N = {F (b,~a) : ~a ⊂M,F is a function definable in M}.

So by constructing types, we can construct elementary extensions of
given models.

And to construct cofinal elementary extensions, we can pick a ∈M − N
and then only construct types p(x) ` x < a. (Is this sufficient to get
cofinal extensions? Why?)



Another New Proof of Knight-Nadel Theorem
The Construction of A Type

Let S be a Scott set, M |= PA be countable with SSy(M) ⊆ S, X ∈ S.
We need N s.t. M ≺ N , X ∈ SSy(N) ⊆ S.

We build a type p(x) over M , s.t.,

(c1) if b realizes p(x) (in an extension of M) then b codes X;

(c2) for each definable function F in parameters ~d ⊂M , F (b, ~d) codes a
set in S (NEVER GO OUTSIDE).



Another New Proof of Knight-Nadel Theorem
The Construction of A Type: coding X

Fix a ∈M − N.

We begin with p0(x) consisting of conjunctions of formulas below

x ∈ 2a, x(i) = X(i),

where 2a denotes the set of binay sequences of length a, X(i) = 1 if
i ∈ X and X(i) = 0 if i 6∈ X.

As a is an ‘infinite natural number’, p0(x) is finitely realizable in M .

So, if b realizes a type p(x) ⊇ p0(x) then b satisfies (c1) (i.e., it codes
X).



Another New Proof of Knight-Nadel Theorem
The Construction of A Type: coding only insiders

Let F (x, ~d) be the first definable function (~d ⊂M). We need to ensure if

b realizes our final type p(x) then F (b, ~d) codes something inside S.

Consider the following tree T ⊆ 2<N × 2<N: (σ, τ) ∈ T , iff |σ| = |τ | (| · |
being the length), and the following subset of M is non-empty{

x ∈ 2a : ∀i < |σ|
(
σ(i) = x(i) ∧ τ(i) = (F (x, ~d))i

)}
.

Then, T ∈ SSy(M) and T is infinite (why?).

T ⊕X computes another infinite tree: σ ∈ TX iff (X � |σ|, σ) ∈ T
(again, why infinite?).

So, TX has an infinite path Y ∈ S. Let p1(x) be the set of conjunctions
of formulas from below

p0(x) ∪ {(F (x, ~d))i = Y (i) : i ∈ N}.

So p1(x) is a type and if b realizes p1(x) then F (b, ~d) codes Y .



Another New Proof of Knight-Nadel Theorem
The Construction of A Type: coding only insiders

Suppose that pn(x) is defined, X,Yk ∈ S, Fk(x, ~dk)’s are M -definable
functions (k < n), s.t., pn(x) consists of the following formulas

x ∈ 2a, x(i) = X(i), (Fk(x, ~dk))i = Yk(i) (i ∈ N, k < n).

Fn(x, ~dn) is a next M -definable function. Let T be the infinite tree in
SSy(M) of (σ, τ0, . . . , τn), s.t. |σ| = |τk|, in M there exists b ∈ 2a s.t.

i < |σ| → σ(i) = b(i) ∧
∧
k≤n

(Fk(b, ~dk))i = τk(i).

As in defining p1, the projection of T along X,Y0, . . . , Yn−1 is again an
infinite tree in S, so it has an infinite path Yn ∈ S, and we can define

pn+1(x) = pn(x) ∪ {(Fn(x, ~dn))i = Yn(i) : i ∈ N}.

Finally, p(x) =
⋃
n pn(x).



Scott Set Problem without CH

But the problem is still open if CH is not assumed.

Question
If CH fails, does the Scott Set Problem still have a positive answer?
What if CH is replaced by some forcing axiom?

A possible approach would be to generalize Ehrenfeucht’s Lemma. So it
is natural to raise the following question.

Question
Let M |= PA be non-standard and S be a Scott set s.t. SSy(M) ⊂ S,
and let X ∈ S − SSy(M). Is it always possible to find N �M s.t.
X ∈ SSy(N) ⊆ S, even if M (or SSy(M)) is uncountable?



An Obstacle

One may try to generalize Ehrenfeucht’s Lemma (i.e., to answer the
previous question) via the following. Given M |= PA of cardinality ℵ1,
write it as an elementary chain of countable submodels Mα’s. Then
construct Nα’s s.t. X ∈ SSy(N0), and the following diagram commutes

N0
≺ // N1

≺ // · · · ≺ // Nα
≺ // · · ·

M0

≺

OO

≺ // M1

≺

OO

≺ // · · · ≺ // Mα

≺

OO

≺ // · · ·

Although N0 could be obtained via Ehrenfeucht’s Lemma, moving from
N0 to N1 would encounter an obstacle.

Proposition (Knight, 1982)
For any countable non-standard M0 |= PA and any X ∈ 2N, there are
M1, N0 s.t. M0 ≺M1, M0 ≺ N1, SSy(M1) = SSy(N0), and if N1 is any
model as in the above diagram then X ∈ SSy(N1).



Assuming Proper Forcing Axiom

A Scott set S is proper, iff S/Fin (Fin is the set of finite subsets of N)
is a proper forcing poset under almost inclusion.

Theorem (Victoria Gitman)
Assume PFA. If S is a Scott set which is arithmetically closed (i.e., if
X ∈ S and Y ∈ ΣXn then Y ∈ S) and proper then it is the standard
system of some non-standard model.

However, it is unknown whether there exists a non-trivial (6= P(N))
uncountable Scott set which is arithmetically closed and proper.



A Weaker Question

Question
(ZFC) Are there non-trivial standard systems of cardinality 2ℵ0?

Exercise
In ZF, show that there exist non-trivial Scott sets of cardinality 2ℵ0 .

Hint: use Cohen forcing only for arithmetic formulas; and note that every
arithmetic closed subset of 2N is a Scott set.



Models with Non-trivial Standard Systems

Theorem
In ZF. For every countable non-standard M |= PA, there exists a family
(MX : X ⊂ 2N) s.t. M = M∅ �cof MX ,
|MX | = |SSy(MX)| = max{ℵ0, |X|} and

X ⊆ Y ⇔MX �MY ⇔ SSy(MX) ⊆ SSy(MY ).



Two Incomparable Extensions of SSy(M)

Consider a baby case: let M |= PA be countable and non-standard,
construct M1,M2 s.t. M �cof Mi and SSy(Mi) 6⊆ SSy(Mj).

Pick a ∈M − N, we construct a type p(x1, x2) and then form
Mi = M〈xi〉.
We construct p as a union of

⋃
s∈N ps, where each ps is a finite type,

p0 = {x1 ∈ 2a, x2 ∈ 2a} (2a identified with the set of binary sequences
with length a in M), ps ⊆ ps+1, and in M the size of ps(M) (the set of
realizations of ps in M) is at least r(2a)2 for some positive r ∈ Q.

Given ps and an M -definable function F , we want to have ps+1 implying
that (x1)k 6= (F (x2))k for some k ∈ N. For m ∈ N, let

q = p0 ∪ {∀k < m((x1)k = (F (x2))k)}.

In M , the size of q(M) is at most 2a−m2a = 2−m(2a)2. So there exists
k ∈ N, s.t., ps+1 = ps ∪ {(x1)k 6= (F (x2))k} can serve our purpose.



Many Extensions of SSy(M)

Given a countable M |= PA, to construct (MX : X ⊆ 2N) s.t.
SSy(MX) ⊆ SSy(MY ) iff X ⊆ Y .

It suffices to find 2ℵ0 many (bf : f ∈ 2N) s.t. if X ⊆ 2N then the
elementary extension of M generated by (bf : f ∈ X) would be MX as
desired. So we construct a type p(~x) of M in 2ℵ0 many variables
~x = (xf : f ∈ 2N).

To construct p(~x), we construct a sequence of finite approximations
pn(yσ : σ ∈ 2n), where 2n denotes the set of binary sequences of length
n, s.t.

I if yσ1
, . . . , yσk

∈ 2n+1, ρi = σi � n (the initial segment of σi in 2n)
and ϕ(yρ1 , . . . , yρk) ∈ pn is a formula with parameters in M , then
ϕ(yσ1 , . . . , yσk

) ∈ pn+1 as well (so the first order properties of yρ’s
specified in pn are inherited by their descendants in pn+1);

I if f1, . . . , xk ∈ 2N, σi = fi � (n+ 1) and ϕ(yσ1 , . . . , yσk
) ∈ pn+1

then ϕ(xf1 , . . . , xfk) ∈ p.



Many Extensions of SSy(M)

Pick a ∈M − N, let p0(y∅) = {y∅ ∈ 2a}.
Suppose that pn−1(yσ : σ ∈ 2n−1) and an M -definable function
F (z1, . . . , zk) are given. We want to define pn+1 s.t. if
τ, τ1, . . . , τk ∈ 2n+1 and τ 6= τi (i = 1, . . . , k) then

pn ` (yτ )j 6= (F (yτ1 , . . . , yτk))j for some j ∈ N. (∗)

To this end, as in the baby case, assume that in M the following holds

|{~b ⊂M : M |= pn(~b)}| > q(2a)2
n

= q|{(bσ : σ ∈ 2n) : bσ ∈ 2a}| (∗∗)

for some positive standard rational q. Then by the same trick in the baby
case, we can get (∗) and also (∗∗) for pn+1.



Many Extensions of SSy(M)

By careful arrangement, we can ensure that if f, f1, . . . , fk ∈ 2N and F is
an M -definable function then for some n and for τ = f � (n+ 1) and
τi = fi � (n+ 1),

pn+1 ` (yτ )j 6= (F (yτ1 , . . . , yτk))j for some j ∈ N. (∗)

As p inherits pn+1,

p ` (xf )j 6= (F (xf1 , . . . , xfk))j .

Hence, if (bf : f ∈ 2N) realizes p then the subset of N coded by bf is not
in the standard system of the elementary extension of M generated by
(bg : f 6= g ∈ 2N).



Exercises and Questions

Exercise

1. Fix a countable M |= PA and (fn ∈ 2N : n ∈ N) s.t. fn 6∈ SSy(M),
construct N �M s.t. |SSy(N)| = 2ℵ and fn 6∈ SSy(N) for all n.

2. Assume Martin’s Axiom (MA), solve the above for |M | < 2ℵ and
(fα : α < κ < 2ℵ).

3. Assume MA, fix a countable M |= PA, (gn ∈ 2N), κ < 2ℵ and
(fα : α < κ), s.t., the Turing ideal generated by SSy(M) and gn’s
does not contain any of fα, construct N s.t. M ≺ N ,
gn ∈ SSy(N), fα 6∈ SSy(N) and |SSy(N)| = 2ℵ.

Question
In the last exercise above, can we solve it for uncountable M and
uncountably many g’s?
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Thank you for your attention.


