

## Chapter 12 Long-term Liabilities

## Chapter 12 Learning Objectives

1. Journalize transactions for long-term notes payable and mortgages payable
2. Describe bonds payable
3. Journalize transactions for bonds payable and interest expense using the straight-line amortization method

## Chapter 12 Learning Objectives

4. Journalize transactions to retire bonds payable
5. Report liabilities on the balance sheet
6. Use the debt to equity ratio to evaluate business performance

3

## Chapter 12 Learning Objectives

7. Use time value of money
 to compute present value and future value (Appendix 12A)
8. Journalize transactions for bonds payable and interest expense using the effective-interest amortization method
(Appendix 12B)

## Learning Objective 1



Journalize transactions for long-term notes payable and mortgages payable

5

HOW ARE LONG-TERM NOTES PAYABLE AND MORTGAGES PAYABLE ACCOUNTED FOR?

- Long-term liabilities are liabilities that do not need to be paid within one year or within the entity's operating cycle, whichever is longer.
- These liabilities are reported in the longterm liability section of the balance sheet.
- Common long-term liabilities:
- Long-term notes payable
- Mortgages payable


## Long-term Notes Payable

On December 31, 2018, Smart Touch Learning signs a $\$ 20,000$ note payable. It is due in four annual payments of $\$ 5,000$ plus $6 \%$ interest each December 31.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :---: | ---: | ---: |
| 2018 |  | 20,000 |  |
| Dec. 31 | Cash <br> Notes Payable <br> Received cash in exchange for a 4-year, 6\% note. |  | 20,000 |
|  |  |  |  |

## Long-term Notes Payable

- An amortization schedule details each loan payment's allocation between principal and interest and the beginning and ending balances of the loan.
- Interest is computed as beginning balance multiplied by interest rate multiplied by time.


## Long-term Notes Payable

Exhibit 12-1 Long-term Notes Payable Amortization Schedule


## Long-term Notes Payable

On December 31, 2019, Smart Touch Learning must make its first installment payment of $\$ 5,000$ principal plus interest on the note.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :--- | ---: | :---: |
| 2019 |  |  |  |
| Dec. 31 | Notes Payable | 5,000 |  |
|  | Interest Expense | 1,200 |  |
|  | Cash |  |  |
|  | Paid principal and interest payment. | 6,200 |  |

## Mortgages Payable

- Mortgages payable are long-term debts that are backed with a security interest in specific property.
- Mortgages payable are similar to longterm notes payable except that mortgages payable are secured with specific assets, and long-term notes payable are not.


## Mortgages Payable

On December 31, 2018, Smart Touch Learning purchases a building for $\$ 150,000$, paying $\$ 49,925$ in cash and signing a 30-year mortgage for $\$ 100,075$, taken out at $6 \%$ interest that is payable in $\$ 600$ monthly payments, which includes principal and interest, beginning January 31, 2019.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :---: | :---: | :---: |
| 2018 |  | 150,000 |  |
| Dec. 31 | Building <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Cartgages Payable <br> Purchased building with a mortgage payable and cash payment. |  | 100,075 |



13

## Mortgages Payable

Smart Touch Learning records the first mortgage payment on January 31, 2019:

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :--- | ---: | ---: |
| 2019 |  |  |  |
| Jan. 31 | Mortgages Payable | 59.62 |  |
|  | Interest Expense  <br> Cash  <br> Paid principal and interest payment.  |  |  |
|  |  |  | 600.38 |

## Learning Objective 2



## WHAT ARE BONDS?

- Bonds payable are long-term debts issued to multiple lenders called bondholders, usually in increments of $\$ 1,000$ per bond.
- The face value is the amount a borrower must pay back to the bondholders on the maturity date.



## WHAT ARE BONDS?

- The maturity date is the date on which the borrower must pay the principal amount to the bondholders.
- The stated interest rate is the interest rate that determines the amount of cash interest the borrower pays and the investor receives each year.



## WHAT ARE BONDS?

A five-year, $9 \%$ bond issued at a face value of $\$ 100,000$ on January 1, 2018, will pay 10 semiannual interest payments of $\$ 4,500(\$ 100,000 \times 0.09 \times 6 / 12)$ in addition to the face value payment at the maturity date. The cash flow pattern for this bond is as follows:


## WHAT ARE BONDS?

Exhibit 12-3 Bond Certificate


## Types of Bonds

- Term bonds are bonds that all mature at the same time.
- Serial bonds are bonds that mature in installments at regular intervals.
- Secured bonds are bonds that give bondholders the right to take specified assets of the issuer if the issuer fails to pay principal or interest.
- Debentures are unsecured bonds backed only by the creditworthiness of the bond issuer.


## Bond Prices

- A bond can be issued at any price agreed upon by the issuer and the bondholders. A bond can be issued at face value, a discount or at a premium.
- A discount on bonds payable occurs when the issue price is less than face value.
- A premium on bonds payable occurs when the issue price is above face value.


## Bond Prices

Exhibit 12-4 Bond Price Information $^{\prime}$

| Bonds | Volume | High | Low | Close |
| :--- | :---: | :---: | :---: | :---: |
| SMT 9\% of 21 | 12 | 79.5 | 78.45 | 79.5 |

Price information for the bonds of Smart Touch Learning:

- 12 of Smart Touch Learning's 9\% bonds maturing in 2021 (indicated by 21) were traded.
- The bonds' highest price on this day was $\$ 795$ ( $\$ 1,000 \times$ 0.795).
- The lowest price of the day was $\$ 784.50$ ( $\$ 1,000 \times$ 0.7845).
- The closing price (last sale of the day) was $\$ 795$.


## Present Value and Future Value

- Money earns interest over time.
- The time value of money is the recognition that money earns interest over time.
- The present value is the amount a person invests now to receive a greater amount in the future.
- The future value is the value of an investment at the end of a specific time frame.


## Present Value and Future Value

- Assume that a $\$ 1,000$ bond reaches maturity three years from now and carries no interest. $\$ 750$ is a fair price.
- By investing $\$ 750$ now to receive $\$ 1,000$ later, you will earn $\$ 250$ over the three years.



## Bond Interest Rates

- The stated rate is the rate printed on a bond.
- The market interest rate (also known as the effective interest rate) is the rate that investors demand to earn for loaning their money.

Exhibit 12-5 Interaction Between Stated Interest Rate, Market Rate, and Price of Bond

Example: Bond with a Stated Interest Rate of 9\%

| Bond's Stated <br> Interest Rate |  | Market <br> Interest Rate |  | Issue Price of Bonds Payable |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $9 \%$ | $=$ | $9 \%$ | $\longrightarrow$ | Face value of the bond |
| $9 \%$ | $<$ | $10 \%$ | $\longrightarrow$ | Discount (price below face value) |
| $9 \%$ | $>$ | $8 \%$ | $\longrightarrow$ | Premium (price above face value) |

## Issuing Bonds Versus Issuing Stock

- Borrowing by issuing bonds payable carries a risk: The company may be unable to pay off the bonds and the related interest.
- However, debt is a less expensive source of capital than stock and does not affect the ownership percentage.
- Earning more income on borrowed money than the related interest expense is called financial leverage.


## Issuing Bonds Versus Issuing Stock

Exhibit 12-6 $\mid$ Issuing Bonds Payable Versus Issuing Common Stock

|  | Plan 1: Issue \$500,000 of 10\% Bonds Payable |  | Plan 2: Issue \$500,000 of Common Stock |  |
| :---: | :---: | :---: | :---: | :---: |
| Net income before new project |  | \$ 300,000 |  | ,000 |
| Expected income on the new project before interest and income tax expenses | \$ 200,000 |  | \$ 200,000 |  |
| Less: Interest expense (\$500,000 $\times 0.10$ ) | 50,000 |  | 0 |  |
| Project income before income tax | 150,000 |  | 200,000 |  |
| Less: Income tax expense (40\%) | 60,000 |  | 80,000 |  |
| Project net income |  | 90,000 |  | ,000 |
| Net income with new project |  | \$ 390,000 |  | 0,000 |
| Earnings per share with new project: |  |  |  |  |
| Plan 1 (\$390,000 / 100,000 shares) |  | \$ 3.90 |  |  |
| Plan 2 (\$420,000 / 150,000 shares) |  |  | \$ | 2.80 |

## Learning Objective 3



Journalize transactions for bonds payable and interest expense using the straight-line amortization method

## HOW ARE BONDS PAYABLE ACCOUNTED FOR USING THE STRAIGHT-LINE AMORTIZATION METHOD?

- Journal entries are required to record the issuance of bonds at:
- Face value
- A discount
- A premium
- Bonds are a long-term liability.


## Issuing Bonds Payable at Face Value

Smart Touch Learning has \$100,000 of 9\% bonds payable that mature in five years. The company issues these bonds at face value on January 1, 2018.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :--- | :---: | :---: |
| 2018 |  | 100,000 |  |
| Jan. 1 | Cash <br> Bonds Payable <br> Issued bonds at face value. |  | 100,000 |

## Issuing Bonds Payable at Face Value

Interest payments occur each June 30 and December 31. Smart Touch Learning's first semiannual interest payment is journalized as follows:

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :---: | ---: | ---: |
| 2018 |  |  |  |
| Jun. 30 | Interest Expense $(\$ 100,000 \times 0.09 \times 6 / 12)$ <br> Cash <br> Paid semiannual interest on bonds payable. | 4,500 |  |

## Issuing Bonds Payable at a Discount

Smart Touch Learning issues $\$ 100,000$ of $9 \%$, five-year bonds that pay interest semiannually. The market rate of interest is $10 \%$. Smart Touch Learning actually receives $\$ 96,149$ and records a discount of $\$ 3,851$.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :--- | ---: | ---: |
| 2018 |  |  |  |
| Jan. 1 | Cash | 96,149 |  |
|  | Discount on Bonds Payable $(\$ 100,000-\$ 96,149)$ | 3,851 |  |
|  | Bonds Payable |  | 100,000 |
|  | Issued bonds at a discount. |  |  |

## Issuing Bonds Payable at a Discount

After posting:


Smart Touch Learning reports these bonds payable on the balance sheet as follows:

| Long-term Liabilities: |  |  |
| :--- | :---: | ---: |
| Bonds Payable | $\$ 100,000$ |  |
| Less: Discount on Bonds Payable | $(3,851)$ | $\$ 96,149$ |

## Issuing Bonds Payable at a Discount

- Discount on Bonds Payable is a contra account to Bonds Payable.
- Bonds Payable minus the discount gives the carrying amount of bonds, also known as the carrying value.


## Straight-Line Amortization of Bond Discount

- We can amortize a bond discount by using the straight-line amortization method.

In our example, the initial discount of $\$ 3,851$ is divided over the 10 semiannual interest periods, and $\$ 385$ is amortized each interest period.

| Date | Accounts and Explanation | Debit | Credit |
| :---: | :---: | ---: | ---: |
| 2018 |  |  |  |
| Jun. 30 | Interest Expense $(\$ 4,500+\$ 385)$ | 4,885 |  |
|  | Discount on Bonds Payable $(\$ 3,851 \times 1 / 10)$ |  |  |
|  | Cash $(\$ 100,000 \times 0.09 \times 6 / 12)$ | 385 |  |
|  | Paid semiannual interest and amortized discount. |  |  |

## Straight-Line Amortization of Bond Discount

The same entry would be made again on December 31, 2018. So, the bond discount balance would be $\$ 3,081$ on December 31, 2018.

| Bonds Payable | Discount on Bonds Payable |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 100,000 Jan. 1 | Jan. 1 | 3,851 | 385 | Jun. 30 |
|  |  |  | 385 | Dec. 31 |
|  | Bal. | 3,081 |  |  |

The December 31, 2018, balance sheet would report:

| Long-term Liabilities: |  |  |
| :--- | :---: | ---: |
| Bonds Payable | $\$ 100,000$ |  |
| Less: Discount on Bonds Payable | $\underline{(3,081)}$ | $\$ 96,919$ |

## Straight-Line Amortization of Bond Discount

```
Face value }\times\mathrm{ State interest rate }\times\mathrm{ Time Exhibit 12-7 Bonds Payable-Discount Amortization Schedule
``` \(=\$ 100,000 \times 0.09 \times 6 / 12=\$ 4,500\)


\section*{Issuing Bonds Payable at a Premium}
- When the stated interest rate is greater than the market interest rate, the bonds are sold at a premium.
- Premium on Bonds Payable is an adjunct account to Bonds Payable.
- An adjunct account is an account that is directly related to another account.

\section*{Issuing Bonds Payable at a Premium}

Smart Touch Learning issues its 9\%, five-year bonds when the market interest rate is \(8 \%\). Assume that the bonds are priced at 104.10, and Smart Touch Learning receives \(\$ 104,100\) cash upon issuance.
\begin{tabular}{|c|l||r||r|}
\hline Date & \multicolumn{1}{|c|}{ Accounts and Explanation } & Debit & Credit \\
\hline \hline 2018 & & & \\
Jan. 1 & Cash & 104,100 & \\
& Premium on Bonds Payable \((\$ 104,100-\$ 100,000)\) & & 4,100 \\
& Bonds Payable & & 100,000 \\
& Issued bonds at a premium. & & \\
\hline
\end{tabular}

\section*{Issuing Bonds Payable at a Premium}

After posting, the bond accounts have the following balances:


Smart Touch Learning reports these bonds payable on the balance sheet as follows:
\begin{tabular}{lrr}
\hline Long-term Liabilities: & & \\
Bonds Payable & \(\$ 100,000\) & \\
Add: Premium on Bonds Payable & 4,100 & \(\$ 104,100\) \\
\hline
\end{tabular}

\section*{Straight-Line Amortization of Bond Premium}

The beginning premium is \(\$ 4,100\), and there are 10 semiannual interest periods during the bonds' five-year life. Therefore, \(1 / 10\) of the \(\$ 4,100\) ( \(\$ 410\) ) of bond premium is amortized each interest period.
\begin{tabular}{|c|l||r||}
\hline Date & \multicolumn{1}{|c|}{ Accounts and Explanation } & Debit \\
\hline Credit \\
\hline \hline 2018 & & 4,090
\end{tabular}

\section*{Straight-Line Amortization of Bond Premium}

The same entry would be made again on December 31, 2018. So, the bond premium balance would be \(\$ 3,280\) on December 31, 2018.
\begin{tabular}{c|llllll}
\multicolumn{3}{c}{ Bonds Payable } & & \multicolumn{4}{c}{ Premium on Bonds Payable } \\
\cline { 5 - 7 } & 100,000 & Jan. 1 & & Jun. 30 & 410 & 4,100 \\
Dec. 31 & 410 & & \\
\hline
\end{tabular}

The December 31, 2018, balance sheet would report:
\begin{tabular}{lrr}
\hline Long-term Liabilities: & & \\
Bonds Payable & \(\$ 100,000\) & \\
Add: Premium on Bonds Payable & 3,280 & \(\$ 103,280\) \\
\hline
\end{tabular}

\section*{Straight-Line Amortization of Bond Premium}


\section*{Learning Objective 4}


\section*{Journalize transactions to retire bonds payable}

\section*{HOW IS THE RETIREMENT OF BONDS PAYABLE ACCOUNTED FOR?}
- Retirement of bonds payable involves paying the face value of the bonds.
- Bonds can be retired at the maturity date or before.
- When a bond is matured, the carrying value always equals the face value.

\section*{Retirement of Bonds at Maturity}

Smart Touch Learning has \$100,000 of 9\% bonds that mature on December 31, 2022. (Note that all interest has already been paid, and the discount is fully amortized.)
\begin{tabular}{|c||c||c||c|}
\hline Date & Accounts and Explanation & Debit & Credit \\
\hline \hline 2022 & & 100,000 & \\
Dec. 31 & \begin{tabular}{l} 
Bonds Payable \\
Cash \\
Retired bonds payable at maturity.
\end{tabular} & 100,000 \\
\hline
\end{tabular}

\section*{Retirement of Bonds Before Maturity}
- Companies sometimes retire their bonds prior to maturity.
- The main reason is to relieve the pressure of paying interest payments.
- Some bonds are callable bonds, which means the company may call, or pay off, the bonds at a specified price.

\section*{Retirement of Bonds Before Maturity}

On December 31, 2018, Smart Touch Learning has \(\$ 100,000\) of bonds payable outstanding, with a remaining discount balance of \(\$ 3,081\). The company can buy the bonds in the open market for 95.
\begin{tabular}{lr}
\hline Face value of the bonds being retired & \(\$ 100,000\) \\
Less: Discount & \((3,081)\) \\
Carrying amount of bonds payable & 96,919 \\
Less: Market price paid to retire the bonds \((\$ 100,000 \times 0.95)\) & \((95,000)\) \\
Gain on retirement of bonds payable & \(\$ 1,919\) \\
\hline
\end{tabular}

\section*{Retirement of Bonds Before Maturity}

The following entry records retirement of the bonds, immediately after the December 31, 2018, interest payment:
\begin{tabular}{|c||l||r||c|}
\hline Date & \multicolumn{1}{|c|}{ Accounts and Explanation } & Debit & Credit \\
\hline \hline 2018 & & & \\
Dec. 31 & Bonds Payable & 100,000 & \\
& Discount on Bonds Payable & & 3,081 \\
& Gain on Retirement of Bonds Payable & & 1,919 \\
& Cash & & 95,000 \\
& Retired bonds payable prior to maturity. & & \\
\hline
\end{tabular}

\section*{Retirement of Bonds Before Maturity}

To retire bonds before maturity:
1. Record partial-period amortization of discount or premium and partial-period interest payment if the retirement date does not fall on an interest payment date.
2. Remove the portion of unamortized Discount or Premium that relates to the bonds being retired.
3. Debit Bonds Payable at face value.
4. Credit a gain or debit a loss on retirement.
5. Credit Cash for the amount paid to retire the bonds.

\section*{Learning Objective 5}


Report liabilities on the balance sheet

\section*{HOW ARE LIABILITIES REPORTED ON THE BALANCE SHEET?}
- At the end of each period, all current and long-term liabilities are reported on the balance sheet.
- When a company issues bonds, a discount or premium is included in the section with the bonds payable.


53

\section*{Learning Objective 6}


\section*{Use the debt to equity ratio to evaluate business performance}

\section*{HOW DO WE USE THE DEBT TO EQUITY RATIO TO EVALUATE BUSINESS PERFORMANCE?}
- The relationship between total liabilities and total equity is called the debt to equity ratio.
- The debt to equity ratio shows the proportion of total liabilities to total equity.
- This ratio measures financial leverage.
- A ratio greater than 1 indicates that the company is financing more assets with debt than with equity.

\section*{HOW DO WE USE THE DEBT TO EQUITY RATIO TO EVALUATE BUSINESS PERFORMANCE?}

Kohl's Corporation reported total liabilities and total equity (in millions) on its Fiscal 2015 Annual Report as follows:

January 30, 2016 January 31, 2015
\begin{tabular}{lrr}
\hline Total liabilities & \(\$ 8,115\) & \(\$ 8,342\) \\
Total equity & 5,491 & 5,991 \\
\hline
\end{tabular}

\section*{HOW DO WE USE THE DEBT TO EQUITY RATIO TO EVALUATE BUSINESS PERFORMANCE?}

Kohl's debt to equity ratio as of January 30, 2016 (2015 fiscal year), and January 31, 2015 (2014 fiscal year), can be calculated as follows:
```

Debt to equity ratio = Total liabilities / Total equity
2015=\$8,115 / \$5,491
= 1.48
2014 = \$8,342 / \$5,991
= 1.39

```

\section*{Learning Objective 7}


\section*{Use time value of money to compute present value and future value (Appendix 12A)}

\section*{WHAT IS THE TIME VALUE OF MONEY, AND HOW IS PRESENT VALUE AND FUTURE VALUE CALCULATED?}
- A dollar received today is worth more than a dollar to be received in the future.
- The fact that invested cash earns interest over time is called the time value of money.
- The time value of money is used to determine the present value of a bond, its market price.

\section*{Time Value of Money Concepts}
- The time value of money depends on these key factors:
1. The principal amount \((p)\)-The amount of the investment or borrowing, either as a lump sum or as an annuity
2. The number of periods ( \(n\) )-The length of time
3. The interest rate (i)-The percentage earned or invested

\section*{Simple Interest Versus Compound Interest}
- Simple interest means that interest is calculated only on the principal amount.
- Compound interest means that interest is calculated on the principal and all previously earned interest.

\section*{Simple Interest Versus Compound Interest}

Exhibit 12A-1 \(\quad\) Simple Interest Versus Compound Interest-\$10,000 at 6\% for 5 Years
\begin{tabular}{|c|c|r|l|r|}
\hline Year & \begin{tabular}{c} 
Simple \\
Interest \\
Calculation
\end{tabular} & \begin{tabular}{c} 
Simple \\
Interest
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Compound \\
Interest Calculation
\end{tabular}} & \begin{tabular}{c} 
Compound \\
Interest
\end{tabular} \\
\hline 1 & \(\$ 10,000 \times 6 \%\) & \(\$ 600\) & \(\$ 10,000 \times 6 \%\) & \(\$ 600\) \\
2 & \(\$ 10,000 \times 6 \%\) & 600 & \((\$ 10,000+\$ 600) \times 6 \%\) & 636 \\
3 & \(\$ 10,000 \times 6 \%\) & 600 & \((\$ 10,000+\$ 600+\$ 636) \times 6 \%\) & \(674 \star\) \\
4 & \(\$ 10,000 \times 6 \%\) & 600 & \((\$ 10,000+\$ 600+\$ 636+\$ 674) \times 6 \%\) & 715 \\
5 & \(\$ 10,000 \times 6 \%\) & 600 & \((\$ 10,000+\$ 600+\$ 636+\$ 674+\$ 715) \times 6 \%\) & 758 \\
& Total interest & \(\underline{\$ 3,000}\) & Total interest & \(\boxed{\$ 3,383}\) \\
\hline
\end{tabular}
*all calculations rounded to the nearest dollar for the rest of this chapter

\section*{Future Value and Present Value Factors}

In our example, the future value of the investment is:
\[
\begin{aligned}
\text { Future value } & =\text { Principal }+ \text { Interest earned } \\
& =\$ 10,000+\$ 3,383 \\
& =\$ 13,383
\end{aligned}
\]

If we know the future value and want to find the present value, we can rearrange the equation as follows:
```

Present value = Future value - Interest earned

```
    \(\$ 10,000=\$ 13,383-\$ 3,383\)

The only difference between present value and future value is the amount of interest that is earned in the intervening time span.

\section*{Future Value and Present Value Factors}
- Mathematical formulas specify future values and present values for unlimited combinations of interest rates ( \(i\) ) and time periods ( \(n\) ).
- Separate formulas exist for single lump sum investments and annuities.
- Present value tables contain the results of the formulas for various interest rate and time period combinations.

\section*{Future Value and Present Value Factors}

Present and future value tables in Appendix A:
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
Table \\
A-1
\end{tabular} & Present Value of \(\$ 1\) & \begin{tabular}{l} 
Used to calculate the value today \\
of one future amount (a lump \\
sum)
\end{tabular} \\
\hline \begin{tabular}{c} 
Table \\
A-2
\end{tabular} & \begin{tabular}{l} 
Present Value of \\
Ordinary Annuity of \(\$ 1\)
\end{tabular} & \begin{tabular}{l} 
Used to calculate the value today \\
of a series of equal future \\
amounts (annuities)
\end{tabular} \\
\hline \begin{tabular}{c} 
Table \\
A-3
\end{tabular} & Future Value of \(\$ 1\) & \begin{tabular}{l} 
Used to calculate the value in the \\
future of one present amount (a \\
lump sum)
\end{tabular} \\
\hline \begin{tabular}{c} 
Table \\
A-4
\end{tabular} & \begin{tabular}{l} 
Future Value of \\
Ordinary Annuity of \(\$ 1\)
\end{tabular} & \begin{tabular}{l} 
Used to calculate the value in the \\
future of a series of equal future \\
amounts (annuities)
\end{tabular} \\
\hline
\end{tabular}

\section*{Present Value of a Lump Sum}
- How much would you need to invest today (in the present time) to have \(\$ 13,383\) in five years if the interest rate is \(6 \%\) ?
- Use the PV factor from the table Present Value of \$1 (Appendix A, Table A-1).

Present value \(=\) Future value \(\times\) PV factor for \(i=6 \%, n=5\)
\[
\begin{aligned}
\text { Present value } & =\text { Future value } \times \text { PV factor for } i=6 \%, n=5 \\
& =\$ 13,383 \times 0.747 \\
& =\$ 9,997
\end{aligned}
\]

\section*{Present Value of an Annuity}
- A series of equal payments over equal intervals (years) is an annuity.
- Assume that instead of receiving a lump sum at the end of five years, you will receive \(\$ 2,000\) at the end of each year.
\[
\begin{aligned}
\text { Present value } & =\text { Amount of each cash inflow } \times \text { Annuity PV factor for } i=6 \%, n=5 \\
& =\$ 2,000 \times 4.212 \\
& =\$ 8,424
\end{aligned}
\]

\section*{Present Value of an Annuity}

To verify the calculation:
\begin{tabular}{|c|r|c|c|c|}
\hline \multirow{2}{*}{ Year } & \begin{tabular}{c} 
[1] \\
Beginning Balance
\end{tabular} & \begin{tabular}{c} 
[2] \\
Interest
\end{tabular} & \begin{tabular}{c} 
[3] \\
Withdrawal
\end{tabular} & \begin{tabular}{c} 
[4] \\
Ending Balance
\end{tabular} \\
\cline { 2 - 5 } & Previous [4] & {\([1] \times 6 \%\)} & \multicolumn{1}{c|}{\(\$ 2,000\)} & {\([1]+[2]-[3]\)} \\
\hline 0 & & & & \(\$ 8,424\) \\
1 & \(\$ 8,424\) & \(\$ 505\) & \(\$ 2,000\) & 6,929 \\
2 & 6,929 & 416 & 2,000 & 5,345 \\
3 & 5,345 & 321 & 2,000 & 3,666 \\
4 & 3,666 & 220 & 2,000 & 1,886 \\
5 & 1,886 & \(114 \star\) & 2,000 & 0 \\
\hline
\end{tabular}
*rounded up by \(\$ 1\)

\section*{Present Value of Bonds Payable}
- We can use the present value of a lump sum and present value of an annuity concepts to determine the selling price of a bond.
- The present value of a bond-its market price-is the sum of:
- The present value of the principal amount to be paid at maturity
- The present value of the future stated interest payments, an annuity

\section*{Present Value of a Bonds Payable Issued at a Discount}
- Smart Touch Learning issues \$100,000 of five-year, 9\% bonds that pay interest semiannually. The market interest rate is \(10 \%\).
- Maturity payment \(=\$ 100,000\)
- Periodic interest \(=\$ 4,500\)
- Interest rate \(=10 \%\) ( \(5 \%\) semiannually)
- Number of periods \(=10\) (payments twice a year for 5 years)

\section*{Present Value of a Bonds Payable Issued at a Discount}
```

Present value of principal:
Present value = Future value }\times\mathrm{ PV factor for }i=5%,n=1
=\$100,000 < 0.614
=\$61,400

```
Present value of stated interest:
Present value \(=\) Amount of each cash flow \(\times\) Annuity PV factor for \(i=5 \%, n=10\)
    \(=(\$ 100,000 \times 0.09 \times 6 / 12) \times 7.722\)
    \(=\$ 34,749\)
Present value of bonds payable:
Present value \(=\) PV of principal + PV of stated interest
    \(=\$ 61,400+\$ 34,749\)
    \(=\$ 96,149\)

Notice that the stated interest rate \((9 \% \times 6 / 12=4.5 \%)\), not the market interest rate \((5 \%)\), is used to calculate the amount of each cash flow for interest. This is because the bonds payable pay interest based on the rate stated in the contract, not the rate of the market.

\section*{Present Value of a Bonds Payable Issued at a Premium}
- Smart Touch Learning issues \$100,000 of five-year, \(9 \%\) bonds that pay interest semi-annually. The market interest rate is 10\%.
- Maturity payment \(=\$ 100,000\)
- Periodic interest \(=\$ 4,500\)
- Interest rate \(=8 \%\) (4\% semiannually)
- Number of periods \(=10\) (payments twice a year for 5 years)

\section*{Present Value of a Bonds Payable Issued at a Premium}
```

Present value of principal:
Present value = Future value }\times\mathrm{ PV factor for }i=4%,n=1
=\$100,000 < 0.676
=\$67,600

```

Present value of stated interest:
Present value \(=\) Amount of each cash flow \(\times\) Annuity PV factor for \(i=4 \%, n=10\)
\[
=(\$ 100,000 \times 0.09 \times 6 / 12) \times 8.111
\]
\[
=\$ 36,500
\]

Present value of bonds payable:
Present value \(=\) PV of principal + PV of stated interest
\(=\$ 67,600+\$ 36,500\)
\(=\$ 104,100\)

\section*{Future Value of a Lump Sum}

If \(\$ 10,000\) is invested today (in the present time), how much would there be in five years at an interest rate of \(6 \%\) ?

Future value \(=\) Present value \(\times \mathrm{FV}\) factor for \(i=6 \%, n=5\)
\(=\$ 10,000 \times 1.338\)
\(=\$ 13,380\)

At the end of five years, the investment will grow to \(\$ 13,380\).

\section*{Future Value of an Annuity}

Calculate the future value of an annuity, assuming that you will receive \(\$ 2,000\) at the end of each year and assuming an interest rate of 6\%.
```

Future value = Amount of each cash inflow }\times\mathrm{ Annuity FV factor for i=6%,n=5
=\$2,000 < 5.637
=\$11,274

```

This means investing \$2,000 per year for five years at \(6 \%\) will yield \(\$ 11,274\).

\section*{Learning Objective 8}


> Journalize transactions for bonds payable and interest expense using the effective-interest amortization method (Appendix 12B)

\section*{HOW ARE BONDS PAYABLE ACCOUNTED FOR USING THE EFFECTIVE-INTEREST AMORTIZATION METHOD?}
- Earlier we used a straight-line approach for amortizing the discount and determining interest expense.
- The effective-interest amortization method computes interest expense based on the carrying amount of the bond and the market rate at issuance.

\section*{Effective-Interest Amortization for a Bond Discount}
- Smart Touch Learning issues \$100,000 of \(9 \%\) bonds at a time when the market rate of interest is \(10 \%\).
- The interest expense is calculated using the carrying amount of the bonds and the market interest rate.


\section*{Effective-Interest Amortization for a Bond Discount}

Using the discount amortization table, record Smart Touch Learning's first interest payment on June 30.
\begin{tabular}{|c||c||r||r|}
\hline Date & Accounts and Explanation & Debit & Credit \\
\hline 2018 & & & \\
\hline Jun. 30 & Interest Expense \((\$ 96,149 \times 0.10 \times 6 / 12)\) & 4,807 & \\
& Discount on Bonds Payable \((\$ 4,807-\$ 4,500)\) & & 307 \\
& Cash \((\$ 100,000 \times 0.09 \times 6 / 12)\) \\
& Paid semiannual interest and amortized discount. & & 4,500 \\
\hline
\end{tabular}

\section*{Effective-Interest Amortization of a Bond Premium}
- Smart Touch Learning issues \$100,000 of \(9 \%\) bonds at a time when the market rate of interest is \(8 \%\).
- The interest expense is calculated using the carrying amount of the bonds and the market interest rate, similar to the method used for discounted bonds.

Exhibit 12B-2 Bonds Payable-Premium Amortization Schedule; Effective-Interest Amortization Method


\section*{Effective-Interest Amortization of a Bond Premium}

Using the premium amortization table, record Smart Touch Learning's first interest payment on June 30.
\begin{tabular}{|c||l||r||r|}
\hline Date & \multicolumn{1}{|c|}{ Accounts and Explanation } & Debit & Credit \\
\hline \hline 2018 & & 4,164 & \\
\hline Jun. 30 & Interest Expense \((\$ 104,100 \times 0.08 \times 6 / 12)\) & 336 & \\
& \begin{tabular}{ll} 
Premium on Bonds Payable \((\$ 4,500-\$ 4,164)\) \\
Cash \((\$ 100,000 \times 0.09 \times 6 / 12)\) \\
Paid semiannual interest and amortized premium.
\end{tabular} & 4,500 \\
\hline
\end{tabular}
```

