
Chapter 5

Gravity currents

5.1 Introduction

Gravity currents occur when there are horizontal variations in density in a fluid
under the action of a gravitational field. A simple example that can be read-
ily experienced is the gravity current that flows into a warm house through
a doorway when it is opened on a cold windless day. The larger density of
the cold air produces a higher pressure on the outside of the doorway than on
the inside, and this pressure difference drives the cold air in at the bottom and
warm air out at the top. If the temperature difference is large enough you will
experience a cool draft around your legs if you stand in the doorway.

This example also illustrates a second feature that is needed to produce a
gravity current. As shown in figure 5.1 the cool incoming air flows along the
hall as a gravity current. The escaping warm air rises up the facade of the
building as a turbulent plume. The presence of the floor is need to ensure that
the cool air flows horizontally – as would be the case of the warm air if there
was a large overhanging balcony.

So, in addition to horizontal density variations, there must also be some fea-
ture to stop the fluid from either rising or falling indefinitely and to constrain
the flow to be primarily horizontal. In many cases this is a solid boundary,
such as the ground. In other situations it may be another feature of the density
variations within the fluid, such as a density interface.

Gravity currents occur in gases when there are temperature differences, as
in the doorway flow just described. An important atmospheric example is the
sea breeze, which is the flow of cool moist air from the sea to the land. On a
warm day the sun heats the land more than the sea and, consequently, the air
at low altitudes over the land is warmer than that over the sea. The resulting
density difference drives the sea breeze. The sea breeze is a significant fea-
ture of coastal meteorology in many parts of the world. For example, the wind
measured at the Scripps Institution of Oceanography pier in La Jolla, Califor-
nia shows a strong daily signal with a maximum wind directed almost exactly
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Figure 5.1: A sketch of buoyancy-driven flow through a doorway showing the
incoming cold air flowing as a gravity current into the hall. The escaping warm
air rises as a turbulent plume since there is no upper boundary to constrain its
motion.
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Figure 5.2: Wind speed and direction measured at the Scripps Institution of
Oceanography pier in July 2002. Note the clear diurnal cycle with the maxi-
mum onshore wind corresponding to the sea breeze.

normal to the coast at 1400 local time during the summer. Figure 5.2 shows the
daily variation in the wind speed and direction during July 2002, associated
with the sea breeze during the day . This flow ventilates the coastal strip in
southern California with cool air, reducing the peak summer temperatures by
up to 10o C from the values observed 20 km inland. This flow affects property
prices, which are a (decreasing) function of distance from the coast. Figure 5.3
shows the sea fog being carried in with the sea breeze over Riverside, Califor-
nia in March 1972. Riverside is about 100 km from the coast and this picture
shows that the sea breeze can reach far inland, even though at this time of the
year the land-sea temperature contrast is quite modest. In some arid regions of
the world the effect of the sea breeze has been observed over 1000 km from the
coast.

Another important class of gravity currents is the flow of dense gases caused
by the accidental release of a liquefied gas. There are many examples of the
storage of liquefied gas. Chlorine, commonly used for sterilizing swimming
pools, is an example of a toxic gas that is stored in a pressurized container.
These containers are found in residential areas, and chlorine is transported by
road and rail. Flammable gases such as natural gas and propane are also stored
in this way, often in large quantities. If a leak occurs or the container fails
catastrophically, the released liquid vaporizes and produces cold gas, which is
denser than air because of its low temperature. Even for low molecular weight
gases such as methane the effects of temperature dominate and the cold gas
will, under most circumstances, produce a gravity current. Because of the po-
tential dangers of a toxic or flammable gas spreading over the ground in pop-
ulated regions, there has been considerable research into the consequences of
such accidental spills over the past 20 years and much of our understanding of
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Figure 5.3: The sea breeze over Riverside, California on 16 March 1972. The
cold, moist sea air carries photochemical smog picked up on its passage from
the coast.

gravity currents comes from field, laboratory and theoretical studies focused
on this problem.

In the 1970s Shell carried out a number of field trials on the release of LNG
and figure 5.4 shows an example of the cloud that results. In this case the
cloud is made visible by the condensation of water vapour in the air as a result
of the low temperatures in the cloud. The presence of droplets shows that
there is entrainment of the ambient air into the cloud as it forms and flows.
This dramatic picture shows a number of remarkable features. Perhaps most
noticeable is the sharp front or leading edge, with a convoluted structure. On
this front there are smaller scale across-front variations known as ‘lobes and
clefts’ and first described by Simpson (1972). The top of the cloud is quite flat
and shows little evidence of mixing with the ambient air.

Figure 5.5 shows a laboratory gravity current, produced when a salt so-
lution propagates into fresh water. The salt water is dyed with milk and the
remarkable feature of this photograph is how similar it is to the larger scale
atmospheric and dense gas currents shown in the previous figures. Although
the laboratory current is at a much lower Reynolds number, the sharp front and
the lobes and clefts are clearly visible in the laboratory experiment. Given the
difference in scales and Reynolds numbers this similarity suggests that the lab-
oratory experiments can provide good models of large scale gravity currents.

Other examples include gravity currents caused by the suspension of par-
ticles in a fluid. Generally, on a horizontal surface, air flows are not sufficiently
vigorous to lift particles from the ground, so the source of the flow is usually
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Figure 5.4: A gravity current produced by the discharge of LNG at sea. The
current is made visible by the condensation of water vapour within the cold
gas cloud.

Figure 5.5: A saline laboratory gravity current flowing into fresh water. The
current is made visible by milk added to the salt water. The lobes and clefts first
reported by Simpson (1972) are clearly visible. The three dimensional structure
persists behind the front and affects the structures at the top of the current.
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Figure 5.6: A dust storm created by cold air flowing out from under a thunder-
storm. This photograph was taken in Leeton, NSW, Australia.

another forcing mechanism such as a cold outbreak from a thunderstorm. Fig-
ure 5.6 shows dust suspended in the cold air advancing from underneath a
thunderstorm in Leeton, NSW in November 2002 . The front shows the same
convoluted structure as that observed in the LNG cloud and also in the labora-
tory current shown in figure 5.5

The focus of attention for most of the work on gravity currents is the motion
of and properties of the front. This is due to the fact that motion near the
front is non-hydrostatic and complex in form and so difficult to calculate. This
attention also results from the fact that the speed of an oncoming current is
essentially the speed of the front. Thus the ability of the vehicle to escape the
destruction of the Mount Pinatubo eruption depends on its speed relative to
that of the front (see figure 5.7). Similarly a gravity current carries the toxic
combustion fumes from a fire in a tunnel, and survival is related to its speed
relative to yours.

Although the above examples show that there are many situations where
gravity currents occur in natural and industrial flows, there is a more funda-
mental reason for their study. In a gravitational field, spatial density variations
in a fluid produce buoyancy forces. If the density varies in the horizontal di-
rection, flow always results. Since, by definition, a fluid can not withstand a
finite stress, but is set into motion, a horizontal density variation produces a
horizontal pressure gradient which can not be balanced. This is in contrast
with vertical variations in density, which produce vertical pressure variations
that can be balanced by gravity. Thus a stratified fluid – one where the den-
sity varies spatially – can be at rest in a gravitational field only if the density is
constant along horizontal planes. Otherwise the fluid will be set in motion.
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Figure 5.7: Ash-laden gravity current from the eruption of Mount Pinatubo
in 1991. This amazing photograph was taken by Alberto Garcia and is repro-
duced by permission of the National Geographic. The occupants in the vehicle
survived.

5.2 Non-dimensional parameters

The most important non-dimensional parameter for a Boussinesq gravity cur-
rent is the Froude number FH , which is defined as the ratio of the current
speed U to the long wave speed

√
g′H ,

FH =
U√
g′H

. (5.1)

An alternative way of expressing (5.1) is to note that in the absence of vis-
cosity or diffusion, dimensional analysis implies that the velocity of a Boussi-
nesq current is related to its depth H and buoyancy g′ by a relationship of the
form

U = FH

√
g′H, (5.2)

If these are the only relevant parameters the current will travel at a constant
Froude number, suitably defined. In order to determine the value of the Froude
number further considerations, either theoretical or experimental, are needed.
However, since we expect (5.2) to express the essential balance in the flow it is
anticipated that the Froude number FH is an order one quantity.

The idea that the current travels at a constant Froude number is well sup-
ported by experiments, and may be interpreted in a number of ways. These
interpretations are not precise, but they are worth discussing briefly.

The first concerns the idea that as the current travels along it derives its en-
ergy from the gravitational potential energy stored in the original distribution.
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Figure 5.8: A sketch of the idealised of a Boussinesq lock release with symmet-
rical light and heavy currents. After Yih (1965).

For fluid initially in a lock, the potential energy is reduced as the average depth
of dense fluid in the lock decreases as it flows into the current. If this potential
energy is converted without loss into the kinetic energy of the current, then we
can relate these quantities. The following analysis was first given by Yih (1965).

If we assume that the densities on the two sides of the lock are almost iden-
tical (i.e. ρ1 ≈ ρ2 and the current is Boussinesq), then symmetry implies that
the current will initially occupy one-half the depth. In a time ∆t the fronts
will have advanced a distance U∆t. The potential energy gained by the lighter
fluid is 1

8gρ1H
2U∆t, and that lost by the denser fluid is 1

8gρ2H
2U∆t. The total

kinetic energy gain is 1
4 (ρ1 + ρ2)HU2U∆t. Equating these energies gives

U =

√
g(ρ2 − ρ1)H
2(ρ2 + ρ1)

. (5.3)

For the Boussinesq case ρ1 ≈ ρ2, (5.3) implies that FH = 1
2 . The observed

speeds are found to be about 6% less than the theoretical value.
An alternative view of (5.2) concerns the ambient fluid. In a frame of refer-

ence moving with the current, and treating the current as a solid obstacle over
which the ambient fluid must rise, we can consider the kinetic energy of the
flow needed. A balance between the kinetic energy 1

2ρU
2 with the required

change in potential energy 1
2g∆ρH

2, gives a value of FH = 1. The idea here
is that dissipation is expected to be small in the ambient (as opposed to the
current) and so energy conservation has validity.

A different perspective comes from a consideration of the front of a gravity
current acting as a hydraulic control. If the current appears is controlled by
the flow near the front, it seems reasonable to expect that it is characterised, by
analogy with single layer flows, by a critical Froude number. For a two-layer
flow the critical condition is

F1
2 + F2

2 = 1, (5.4)

where the Froude numbers Fi are each based on the respective layer depth Hi.
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In the case of a current occupying half the total depth (H1 = H2) this implies
FH = 1

2 , in agreement with the energy conservation result of Yih (1965). For a
current in a deep ambient H1 →∞,H2 = H , (5.4) becomes FH = 1.

The second important parameter is the Reynolds numberReH = UH
ν , which

measures the ratio of inertia to viscous forces. When ReH >> 1, viscous forces
are not important and the buoyancy force driving the current is balanced by the
inertia of the flow. When ReH << 1, viscous forces provide the main retarding
forces to balance the buoyancy forces. Since the transition between these two
force balances is gradual, the precise value chosen for the scale H is not too
important.

Heat or mass transfer from the current is determined by the Peclet number
PeH = UH

κ , where κ is the molecular diffusivity of heat or mass. At high values
of PeH >> 1, molecular transport is not important and instead the density of
the current changes, if at all, by mixing with the ambient fluid.

Finally, for non-Boussinesq currents the density ratio γ = ρ1
ρ2

is a further
dimensionless parameter that must be considered.

5.3 Scaling analysis

Although gravity-driven fronts occur naturally in fluids with horizontal den-
sity gradients, most of our understanding of gravity currents has come from
consideration of releases of fluid of one density into a fluid of a second den-
sity. Study of these releases is motivated, in part, by the fact that in industrial
situations such releases are the possible consequence of the failure of a vessel
containing, say, a pressurized gas. It is also easy to produce these flows in the
laboratory where gravity currents were first studied.

The main discriminator between these types of releases, is the rate at which
the fluid is introduced into the surrounding fluid. In the simplest case, and the
one which has received most study, a fixed volume of, say dense, fluid is re-
leased from rest into a stationary ambient fluid. This release is known as a con-
stant volume release. This kind of release models, for example, the catastrophic
failure of a tank containing dense gas, so that the gas is released effectively in-
stantaneously into the air. If, on the other hand, the tank simply ruptured, then
the gas would be released at some rate with a volume flux that is a function of
time. These releases are known as flux releases.

5.3.1 Constant volume releases in a channel

Theory

Consider a finite volume V0 of dense fluid, density ρ2, released at t = 0 from
rest on a horizontal boundary in a stationary ambient fluid of density ρ1 < ρ2.
For simplicity, we assume that the ρ1 ≈ ρ2 so that the flow is Boussinesq. In
order to reduce the complexity of the flow, we also suppose the fluid is con-
fined in a channel of unit width, so the dense fluid flows along the channel
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and the properties of the flow are independent of the across-channel coordi-
nate. Because of this independence, in a channel the appropriate parameter
describing the size of the release is A0 = DL0, the volume per unit channel
width, where D is the depth and L0 is the length of the initial region of dense
fluid. We consider the channel to have a vertical wall at x = 0, with the initial
region of dense fluid extending from x = 0 to x = L0, so that the dense current
travels in the positive x direction only, as shown in figure 5.9. The depth of the
ambient fluid is H . In laboratory experiments releases of this kind are called
lock releases. The dense fluid is contained in a lock by a vertical gate, called the
lock gate, and L0 andD are called the lock length and lock height, respectively.
For convenience we will use this nomenclature here.

Flow is generated by the buoyancy force and, for this Boussinesq case, the
associated acceleration is given by the reduced gravity g′ = g ρ2−ρ1

ρ2
. As the

current propagates it may mix with the ambient fluid and change its density,
and we denote the initial negative buoyancy of the dense fluid by g′0.

We first consider the case where the initial region of dense fluid is shallow
so that D << L0. We also restrict attention to the case where the ambient fluid
is very deep, so that D << L0 << H . In the initial phases we suppose that the
flow accelerates to a speed large enough that viscous forces are unimportant,
and the volume per unit width, A0, is large enough to be effectively infinite. In
that case the only other parameter, apart from g′0, determining the flow is the
initial depthD of the dense fluid. Dimensional analysis shows that the velocity
U of the advancing current at time t is given by

U = F (g′0D)1/2f(t/Ta), (5.5)

where F is a dimensionless constant and

Ta =

√
D

g′0
, (5.6)

is the time scale associated with the acceleration from rest. This time Ta is
the free-fall time from a height d with buoyancy g′0, and the function f(t/Ta)
describes the acceleration from rest. Clearly f = 0 when t/Ta = 0, and obser-
vations (see figure 5.13) show that f tends to a constant, taken as 1 with loss
of generality, as t/Ta → ∞. After this acceleration the current travels with a
constant speed, characterized by the constant FD and

U = FD(g′0D)
1
2 . (5.7)

The length L(t) of the current, which is the quantity most easily measured in
experiments, is given by

L(t) = L0 + FD(g′0D)
1
2 t. (5.8)

Since
√
g′0D is the speed of infinitesimal long waves on the interface be-

tween the two fluids (for H → ∞) and U is the flow speed, FD, which repre-
sents their ratio, may be regarded as a Froude number. As discussed in § 5.2,
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Figure 5.9: A sketch of the release of a finite volume of dense fluid into a less
dense stationary environment of depth H . The dense fluid is initially held
behind a lock gate at x = L0, and the initial depth is D. The resulting flow is
considered to be confined to channel of unit width perpendicular to the plane
of the figure.

the front of a gravity current may be thought of as a control in the usual hy-
draulic sense, and so the notion of it travelling at a constant (critical) Froude
number is a reasonable interpretation. The relation (5.5) may also be inter-
preted as a balance between the buoyancy force driving the current and the in-
ertia of the surrounding ambient fluid, or between the potential energy of the
dense fluid and the kinetic energy of the resulting flow. For example, from the
horizontal momentum equation (3.17), the balance of the inertia and buoyancy
forces may be expressed as |u · ∇u| ∼ g′. Taking U and D as typical velocity
and depth scales, respectively, this implies U2 ∼ g′D, consistent with (5.7). The
balance between the kinetic and potential energy has been discussed in § 5.2.

At later times, the fact that the volume V0 of the dense fluid is finite will
influence the motion. This introduces a second time scale

TV =
L0√
g′0D

, (5.9)

which is the time it takes a gravity wave with speed
√
g′0D to travel the length

L0 of the lock. After this time the effect of the rear wall of the channel is trans-
mitted by the wave and the finite volume of the lock now becomes a parameter.
Then (5.5) becomes

U = FD(g′0D)1/2f(t/Ta, t/TV ). (5.10)
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The variable t/TV is the dimensionless time associated with the finite volume
of the initial release. When t/TV is small, the current propagates as though the
initial volume is infinite, and has a constant speed given by (5.5) in the limit
t/Ta → ∞. This limit requires that D << L0. When t/TV becomes large,
the effects of the finite initial volume become important and the current speed
depends only on the negative buoyancy per unit width B0 = g′0A0 and the
time t (assuming that viscous effects remain unimportant). Even though the
current may mix with its surroundings and reduce its density but increase its
volume, conservation of mass implies that B0 remains constant, provided no
fluid is detrained from the current. The dimensions of B0 are [B0] = L3 T−2,
and dimensional analysis implies that the length of the current is given by

L = cB
1
3
0 t

2
3 , (5.11)

where c is a dimensionless constant (for high Reynolds numbers). The speed
U during this phase decreases as

U =
2
3
cB

1
3
0 t

− 1
3 . (5.12)

Thus dimensional analysis predicts that the current formed from a shallow
release initially accelerates to a constant speed. We will see in § ?? that this
constant speed regime occurs when fluid is supplied from the lock at a constant
rate. Once the finite volume of the lock becomes significant, i.e. when sufficient
fluid has flowed away from the release, the speed then decreases as t−

1
3 . In this

phase the lock has emptied significantly and the flow of dense fluid from the
lock is a decreasing function of time.

The time at which the transition between the constant speed phase and the
decelerating phase occurs is found by equating (5.7) and (5.12). This transition
time ts is given by

ts =
(

2c
3F

)3

TV , (5.13)

and is the time it takes for the current to propagate a distance equal to a multi-
ple of the lock length L0.

This time-dependent motion (5.11) is called the similarity phase (Simpson
(1997)). This result does not assume conservation of volume of the current.
The current can mix with the ambient fluid, thereby increasing its volume and
decreasing its density. However, the total buoyancy B0 is conserved, and the
speed of the current depends only on B0, and not individually on g′0, D or L0.
Thus, at this stage of the motion, the speed of the current is independent of the
geometry of the lock, as the effects of the initial conditions (apart from the total
buoyancy) are lost.

We can also derive (5.7) and (5.12) by assuming the front travels with a
constant local Froude number, but now based on the local depth h(t) and the
local buoyancy g′(t) at the front (see figure 5.9) rather than the initial values, so
that F = Fh = U√

g′h
.



5.3. SCALING ANALYSIS 79

We represent the current by a characteristic length L(t) and depth h(t) and
suppose that it has a uniform buoyancy g′(t). Conservation of buoyancy is
expressed as

g′(t)L(t)h(t) = cBg
′
0A0 = cBB0, (5.14)

where cB is a shape constant, which would be unity if the current retained a
rectangular shape. A constant local Froude number Fh implies that

U =
dL

dt
= Fh(g′(t)h(t))1/2. (5.15)

Using (5.14) and integrating gives

L(t) = [
3
2
Fh(cBB0)1/2t+ (L0)3/2]2/3, (5.16)

where L0 is the initial length of the dense fluid in the channel (figure 5.9).
In dimensionless form (5.16) is

L(t)
L0

= [
3
2
FhcB

1
2 t/TV + 1]2/3. (5.17)

When t << TV , equation (5.17) gives

L(t)
L0

' 1 + FhcB
1
2 t/TV , (5.18)

which reduces to (5.8) if F = FhcB
1
2 . When t >> TV ,

L(t)
L0

'
(

3Fh

2

) 2
3

cB
1
3 (t/TV )2/3

, (5.19)

which gives the same result as (5.11) if c =
(

9
4cBFh

2
) 1

3 . The agreement be-
tween this calculation and the dimensional analysis supports the assumption
that the front of the current travels at a constant local Froude number and,
therefore, that the front acts as a control on the flow. Further, it suggests that
the same constant Froude number condition may apply to both the constant
velocity and decelerating phases of the flow.

As the current decelerates, the Reynolds number decreases and frictional
effects become important. The flow is then affected by the viscosity ν of the
fluid, which is assumed here to be the same in the current and the ambient
fluid. A further time scale

Tν =
νLν

2

g′νhν
3 , (5.20)

now enters the problem, where the subscript ν implies the values of the depth,
volume and buoyancy of the current as it enters the viscous phase. These val-
ues will, in general, be different from the values of the initial release. Then the
front speed may be written as
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U = F (g′νhν)1/2f(t/Ta, t/TV , t/Tν). (5.21)

The viscous time scale Tν is the time associated with the diffusion of vorticity
over the depth of the current. If we set Tν = hν

2

ν then Lν = Tν

√
g′νhν is the

distance a particle will travel in the current in that time. Hence Tν represents
the time at which all the fluid within the current is affected by viscous stresses
exerted at the bottom boundary.

At large times we expect the dependence on t/Ta and t/TV to be unim-
portant and so U = f(Bν , ν, t). Since there are now three variables and only
two dimensions (length and time) it is no longer possible to obtain the speed
using dimensional analysis alone. Instead it is necessary to consider the force
balances on the current.

In the viscous phase the horizontal pressure gradient driving the current is
balanced by viscous stresses so that

ν

h2

dL

dt
=
cνg

′
νh(t)

L(t)
, (5.22)

where cν is a dimensionless shape constant. To proceed further it is necessary
to assume that volume is conserved. This is likely to be a good assumption
in the viscous phase when mixing is unimportant, and volume conservation is
written as

L(t)h(t) = cAAν , (5.23)

where cA is a further shape constant. Substituting for h(t) from (5.23) and
solving the resulting differential equation gives

L(t) = [5
cνcA

3g′νAν
3

ν
t+ Lν

5]1/5, (5.24)

where Lν is the length of the current at the start of the viscous phase.
In dimensionless form (5.24) is

L(t)
Lν

= [5cνcA3t/Tν + 1]1/5. (5.25)

Thus in the viscous phase the current length will increase proportional to t1/5.
Conservation of volume implies that the depth decreases as h ∼ t−

1
5 .

The above analysis shows that, provided the initial acceleration is large
enough, the release of a finite volume of dense fluid in a channel will pass
through three phases. In the first phase, when the finite volume of the release
is unimportant, the speed of the current is constant. After it spreads sufficiently
far and the finite volume of the release becomes significant, but the flow is fast
enough for viscous forces to be unimportant, the velocity decreases as t−1/3.
Finally, when viscous forces balance the buoyancy force the current speed de-
creases as t−4/5.
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It is possible, of course, that in a very viscous fluid, that viscous effects may
dominate from the start of the flow. In that case the first two phases of the
flow will be absent, and the flow will be governed by (5.24) at all times. The

condition for this to occur is that the initial Reynolds number Re = g′1/2D3/2

ν of
the flow is small.

The above discussion has been restricted to the case where the depth H of
the ambient fluid is large compared to both the depth of the initial release d
and the local depth of the current h. Where this is not the case, the effect of the
flow in the ambient fluid cannot be ignored and the flow depends on a new
dimensionless parameter Φ ≡ D

H , called the fractional lock depth. In terms of
the scaling analysis given above, this means that the dimensionless constants
that appear in the above equations are now dimensionless functions of Φ. In
many of the experimental results to be described in the next section Φ ∼ 1,
while for most environmental flows Φ << 1. Extrapolating the results of the
experiments to the case of a deep ambient fluid remains a major challenge in
applications to geophysical and environmental flows.

Comparison with experiments

The scaling results in § 5.3.1 leave non-dimensional constants, such as the Froude
number, undetermined. In order to determine these constants it is either nec-
essary to develop further theory, as will be done in later chapters, or to de-
termine them from experiments. Here we discuss briefly experiments which
test the scaling relations and give values for the constants. As discussed above
these ‘constants’ are, in reality, functions of the depth ratio Φ. There are few ex-
periments that cover a significant range of Φ and so the values obtained have
restricted validity. Nevertheless, it is assumed (hoped) that the dependence on
the depth ratio is weak, so that the values obtained for relatively small Φ will
apply to deeper ambient fluids than are usually tested in the laboratory.

Keulegan (1958) measured the speed of saline gravity currents produced
by lock exchange in a channel. His experiments were all full-depth (Φ = 1)
lock releases, with the depth of the dense fluid inside the lock the same as
the ambient fluid on the other side, and he used two different lock lengths.
He found that the speed of the current was constant and independent of the
ratio of the channel width and depth, and found a small increase in the Froude
number FH , based on the channel depth H , with Re, from FH = 0.42 at Re =
600 to FH = 0.48 at Re = 150, 000.

Barr (1967) measured the speed of the fronts in a lock exchange for a vari-
ety of configurations, and with Reynolds numbers based on the channel depth
spanning 200 - 4000. He carried out experiments with both a free and a rigid
upper surface, and used temperature and salinity to provide the density dif-
ference. Like Keulegan (1958), Barr (1967) also observed that the front of the
current travelled at a constant speed, and his results show that the Froude
numbers FH based on the total depth increase with Reynolds number. This
variation was most pronounced between Re from 200 - 1000, and there was
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Figure 5.10: The front positions as functions of time after release for a set of
experiments with full-depth and partial-depth locks. The length of the current
is non-dimensionalised by the right hand side of (5.26) and time by the transi-
tion time ts. In the initial phase the front travels at constant speed after which
it decelerates as the similarity phase begins. Taken from Huppert & Simpson
(1980).

some slight evidence that little increase in FH occurs for Re ≥ 1000. The free
surface cases have higher values of FH . For the rigid upper surface, values of
FH for both currents are comparable, and vary from about 0.42 at Re = 200, to
about 0.46 for Re ≥ 1000.

These results imply that the Froude number F = U√
g′0H

≈ 0.46 − 0.48 at

high Re when the fractional depth Φ = 1.
Huppert & Simpson (1980) carried out lock exchange experiments that show

both the constant velocity and similarity phases of the current. They were con-
cerned with the effects of the fractional depth Φ and present their results in
terms of non-dimensional variables that are chosen to fit a particular model in
which the local front Froude number decreases with Φ. This makes their results
a little difficult to interpret, but from the data shown in figure 5.10 we infer that
during the initial phase of the motion

L = c

(
L0

7
6 +

7
12

(
g′0

3
DL0H

2
) 1

6
t

) 6
7

, (5.26)
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Figure 5.11: The length of Boussinesq currents produced by lock releases in a
channel. The length L is scaled by the similarity scaling B0

1
3 t

2
3 and the time

is non-dimensionalised by the viscous transition time t1 given by (??). Taken
from Huppert & Simpson (1980).

where the constant c is about 1.1 (see figure 5.10). Differentiating (5.26) we find
that the initial speed is given by

U =
dL

dt
= 1

2cΦ
− 1

3 (g′0D)
1
2

(
1− (g′0dD)

1
2

12L0
Φ− 1

3 t

)
. (5.27)

Hence the current initially travels at a constant speed. Comparison with (5.7)
shows that this value of c = 1.1 inferred from figure 5.10 gives the Froude
number F = 0.55 in the limit of a full-depth lock release (Φ = 1). This value
is somewhat larger than the value found by Keulegan (1958) and Barr (1967).
Huppert & Simpson’s data also show that the value of F is a decreasing func-
tion of the fractional depth.

Figure 5.11 shows the length of the current non-dimensionalised by B0
1
3 t

2
3

as suggested by the similarity scaling (5.11) plotted against non-dimensional
time t

t1
defined by (??). With this scaling the length is constant in the similarity

phase, and from the data we infer the value of the constant c in (5.11) is c ≈ 1.2.
Consequently, the front Froude number Fh (see (5.19)) takes the value

Fh =
2
3

(
c3

cB

) 1
2

. (5.28)

If the shape factor cB = 1, then this implies that Fh = 0.88.
The mechanism whereby the current changes from the constant-velocity to

the similarity phase was revealed by Rottman & Simpson (1983). They released
dense fluid from a lock of length L0 and depth D in a less dense ambient fluid
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Figure 5.12: Shadowgraphs of a full–depth lock release. The location of the
lock gate is shown by the vertical dotted line. In (a) a light surface current is
propagating back into the lock. This reflects from the back wall of the lock and
forms a bore, seen as the abrupt change in depth at the rear of the current in (b)
and (c). Since the bore is behind the front, the front travels at a constant speed,
as indicated by its positions in (b) and (c), as the two images are taken at equal
time intervals. Taken from Rottman & Simpson (1983).

of depth H . Figure 5.12 shows shadowgraph images of the current for a full
depth lock Φ = 1; the position of the lock gate is shown by the dotted vertical
line. The lock is shallow, with aspect ratio D

L0
' 0.16. The images show the

current propagating to the right along the bottom of the tank, and the position
of the front (for this and other full-depth releases) is plotted against time in
figure 5.13.

Initially the speed of the front is constant; on this log–log plot the slope
of distance against time is 1, consistent with (5.7) and confirming that f tends
to a constant as t/Ta → ∞ as discussed in § 5.3.1. Subsequently, the slope
decreases so that x increases like t

2
3 , consistent with the results of the scaling

analysis (5.19).
For full-depth releases, the transition from the constant–velocity to the self–

similar phase occurs at t ≈ 20t0 or, equivalently, L ≈ 10L0. It is at this point
that the influence of the finite volume of the lock becomes important. For that
to happen information must travel from the back wall of the lock to the front
of the current. This is one instance where the flow in the upper ambient fluid
clearly plays an important role. For full–depth releases Rottman & Simpson
(1983) show that a finite amplitude bore propagates along the interface, as can
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Figure 5.13: A logarithmic plot of dimensionless front positions against dimen-
sionless time for 3 full-depth lock releases. The collapse of the data show that
they are well described by (5.5) during the constant velocity phase, when x ∼ t

and by (5.16) during the similarity phase, when x ∼ t
2
3 . The different exper-

iments enter the viscous phase at different times, and then obey (5.24), with
x ∼ t

1
5 . Taken from Rottman & Simpson (1983).

be seen in the second and third images in figure 5.12. The bore is observed to
travel faster than the current head as can be seen in figure 5.14. When the bore
catches up with the front, which occurs after the current has travelled about 10
lock lengths, the self–similar phase begins. If the depth of the lock D < 0.6H
the disturbance takes the form of a long expansion wave, rather than a bore. In
that case experiments show the transition to the similarity phase occurs when
the front has travelled a distance xs of about 3 lock lengths when the D/H ≈ 0
to about 10 when D/H = 1. Hallworth, Huppert, Phillips & Sparks (1996)
express this relation empirically as

xs

L0
= 3 + 7.4

D

H
. (5.29)

As the current continues to decelerate, the Reynolds number decreases and
viscous effects become increasingly important. Figures 5.11 and 5.13 show that,
in the final phase of propagation, the speeds decrease below those observed in
the similarity regime. In this final viscous phase, as shown in figure 5.13 by the
dashed lines, the front position grows as t

1
5 , as predicted by (5.24).
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Figure 5.14: The front and bore positions as functions of time after release for a
set of experiments with full–depth locks. The straight lines show that the front
and bore travel at constant speeds until the bore catches the front, after which
the front decelerates. Taken from Rottman & Simpson (1983).
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Problem 5.1 A gravity current is produced by a constant flux of dense fluid in a
channel. At the source x = 0 the volume flux per unit width is Q0 and the reduced
gravity is g′0. Use dimensional analysis to show that the front of the current at x =
L(t) travels at a constant speed and find the dependence of this speed on Q0 and g′0.

Suppose that the front of the current propagates so that the local Froude number at
the front F = U√

g′h
is constant. Show that the result is the same as that obtained by

dimensional analysis, and calculate the unknown dimensionless constant.

Problem 5.2 Consider a fluid in which the density is a function of the horizontal
coordinate x only, i.e ρ = ρ(x). Draw the isopycnals (surfaces of constant density).
Consider the case where the horizontal density gradient is constant so that

ρ = ρ(1− αx),

where 0 < α << 1 is a constant. Calculate the term giving the baroclinic generation
of vorticity ∇p × ∇ρ. Find the direction of this vorticity and sketch the anticipated
motion of the isopycnals.

Suppose that the flow generated by this density distribution starts from rest and is
only in the x – direction, i.e. u = (u, 0, 0). Then show that u = u(z) and the inviscid
Boussinesq equations of motion are

∂u

∂t
= − 1

ρ0

∂p

∂x
,

gρ = −∂p
∂z
,

∂ρ

∂t
= −u∂ρ

∂x
.

Hence show that
∂2ρ

∂x2
= 0.

Solve the initial value problem and show that

u = −gαzt,

ρ = ρ0(1− αx)− 1
2gρ0α

2zt2.

Finally show that the angle θ of the isopycnals to the vertical satisfies

tan θ = 1
2gαt

2,

and confirm that this agrees with your earlier sketch.
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