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Abstract. We compute the cyclic homology of A = k[X]/<X") for an arbitrary commutative ring k, and
we apply this result to compute the cyclic homology of k[X]/<f), when k is a field andfis an arbitrary

polynomial.
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o. Introduction

[he aim of this paper is the computation of the cyclic homology of the algebra
A = k[X]j(f), where k is a commutative ring with unit and f is a monic polyno-
mial, under suitable hypothesis. In [8], Masuda and Natsume calculate the cyclic
homology of this kind of algebra when the characteristic of k is O. This has also
been done by Kassel in [5]. In this work, we generalize these results. The special
case f = xn - 1 has been treated in [2] and [3].

We divide the article into three sections. In the first, we build up a simplified
resolution using the Taylor series developed in [7] to compute the Hochschild
homology of A over k. Both the Hochschild resolution and the simplified resolution
are homotopically equivalent, so we compute the maps which give this equivalence.
This study was started while one of the authors was at the University of Paris VII
working with M. Karoubi [4].

In the second section, we compute the cyclic homology of A = k[x]/<xn)
starting with k = 7l.and then applying the Künneth formula [1].

We obtain the following results:

I

r

((
n - 1 k

)
k

)(a) HC2r+I(A) = EB EB ( . )k ~ _k (r ~ O),
}=o a=l a+jn n

(b) HC2r(A) = (Ann(n)(r») ~ k(n)~ C~C~ Ann(a + nj))) (r ~ O),

* This work was presented at the IX-ELAM, Santiago de Chile, July 1988, and was partially supported
by CONICET.
** The following people participated in this research: Jorge A. Guccione, Juan José Guccione, María
Julia Redondo, Andrea Solotar, and Orlando E. Villamayor.



52
THE BUENOS AIRES CYCLIC HOMOLOGY GROUP

where Ann(m) is the annihilator of m in k, Le., the m-torsion of k, and M(h) is the
direet sum of h copies of M.

In all eomputations, we use the normalized double eomplex Bnorm(A)introdueed
by Loday and QuilIen [6].

In the third seetion, 'Further Results', we study the periodie eyclic homology of
A = k[X]j<xn). Furthermore, we compute the eyclie homology of k[X]j(f) when
k is a field and / is an arbitrary polynomial.

1. Hochschild Homology

In this seetion, we compute the Hoehsehild homology of the algebra A = k[X]j(f),
where k is a eommutative ring with 1 and / = xn + f" _1xn - 1 + . . . + lo is a monie
polynomial of degree n.

We start by building a projeetive resolution of A as a left Ae-module.

We use the Taylor series T: B -+B <8>k BOP, where B is an arbitrary k-algebra,
defined in [7] as T(P) = 1<8> P - P <8> l. The relation

(*) T(PQ) = PT(Q) + QT(P) + T(P)T(Q)

holds when B <8>k BOPis eonsidered as a B-module by a(b <8>c) = ab <8>c. We denote
by J1:Ae -+A the multiplieation map; sinee A is generated as a k-algebra by X,
ker(J1) is the ideal in Ae generated by T(X).

Most of the eomputations will be earried out in k[X], and the results seen

through their images in A. We wiII use the faet that, for every polynomial PEk[X],
T(P) is divisible by T(X).

Sinee / is a monie polynomial, the division.algorithm can be used. For every
polynomial P, we denote P the quotient aIld P the remaining, i.e. P = P ./ + P,
dg(P) < dg(f). The uniqueness of P and P is obvious.

Remarks 1.1. (a) We are going to use the maps GO:A <8>;¡S<8>A -+ A <8>AS + 1 <8>A
(s ~ O),definedbyGo(ao<8> . . . <8>as+ ¡) = 1<8>ao<8> . . . <8>as+ ¡, where A = A jk and
AS denotes the s-fold tensor produet of A over k.

(b) y: k[X] <8>k[X] -+ A <8>A wiII be the map y(P <8>Q) = n(P <8> Q), where

n: k[X] <8> k[X] -+A <8> A is the eanoneial projeetion. ........

(e) The produet PIP2 in A wiII be represented in k[X] by p¡P2, and sometimes
explieitly indieated.

PROPOSITION 1.2. The /ollowing result holds:

(1) T(P¡P2) =(P <8>1)T(P2) +(1<8>P) T(P)
T(X) 1 T(X) 2 T(X)

- T(f)
- (1 <8> PI P2) T(X) mod( 1<8>/'/<8>1),

T(/) i- 1

(2) - = I ¡; I XJ<8>Xi-J-I,
T(X) i>O J~O
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(3) (P <8>1) T(f) = ( 1<8> P) T(f) = T(Pf)
T(X) T(X) T(X)

(
T(P)

)(4) Y X T(X) = O<8> O if dg(P) < n,

(5) (X T(f» )= 1<8> 1
Y T(X) .

mod(1 <8>/'/<8>1),

Proof: (1) As

P1P2 = P1P2 - p¡P2./, T(P1P2) = T(PIP2) - T(PIP2.f),

so, by using the formula (*), we obtain in k[X] <8>k[X],

T(PIP2) = (PI <8>I)T(P2) + (P2<8>I)T(P¡) + T(P¡)T(P2) -
- --

- (PIP2<8> I)T(f) - (f<8>I)T(PIP2) - T(f)T(P1P2)

= (PI <8> I)T(P2) + (1 <8>P2)T(P¡) - (1 <8>PI P2)T(f)

- (f<8>I)T(P¡P2),

henee
.........

T(P¡ P2) T(P2) T(PI)

T(X) = (PI<8> 1) T(X) + (1 <8>P2) T(X)

- (1 <8>PP ) T(f) - (f<8>1) T(PIP2).
¡ 2 T(X) T(X)

(2) It follows from the linearity of T and the faet that

T(Xi) i-I. ..- = ¿ XJ<8>X'-J-1
T(X) J=O .

(3) As 1<8>P - P <8> 1 is divisible by T(X), T(f) divides (1 <8>P - P <8> I)T(f)j
T(X). Then the last one is zero in A <8>A.

(4) If dg(P) < n, all the monomials in T(P) jT(X) have the form Xk <8>XJ with
k <n -1, then Xk+¡<8>XJ=O.

(5) If/="L7=0¡;Xi, withf" = 1, then

T(f) n i-I
X . - = ¿ ¡; I Xi+ 1<8>Xi - J - l.

T(X) i=O J~O

So,

Y(XT(f» )= f. ¡;it) XJ+I<8>Xi-J-I,
T(X) i-O J=O
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and since XJ+ ¡ =1=O only in the case j = n - 1,

(X T(f) )Y T(X) = f" @1= 1@1.

PROPOSITION 1.3. The following sequence is exact:
~ ~ ~ ~ ~ ~ p

Cs.:"'-- A2__ A2__ A2__A2__A2__ A2__A,

where A 2 denotes A @ k A and

d2i+ I (a @b) = (a @b)T(X), d2i(a @b) = (a @b)
T(f)

T(x) .

Proof To check that the sequence is a complex, it is enough to see that J1. T(X)
and the product T(X)T(f)jT(X) are zero in A2. Then we build up A-right maps
so: A ~A2, s¡: A2~A2, and S2:A2~A2 which are retraction homotopies for this
complex, showing its exactness. They are defined as

so(P) = 1@P,
T(P)

SI(P@ 1) = T(X)'
s2(P@I) =PX@I,

~ ~ ~ ~ ~ ~ p

Cs.:"" )A2, 'A2, 'A2, 'A2, 'A2, 'A2, )A.
S2 SI $2 sI $2 sI So

It can be seen by direct computation that

SI d2i _I + d2iS2 = id, S2d2i + d2i+ ¡SI = id, soJ1+ d¡s¡ = id, J1So= id.

Tensoring this sequence by A upon A @Ae and using the identification between
A @A e A 2 and A, we obtain the complex

_ O f' O f' O f' O

Cs.:"'-- A-- A-- A--A --A --A --A,
where A ~ A is the map f'(P) = f' P.

Since A is k-free, its Hochschild homology H *(A) is Tor~e(A, A), so it is the
homology of the complex Cs.. Hence,

Hr(A) =
{

~j(f'>
Ann(f')

if r = O,

if r is odd,
if r is even and r > O.

Let
~ ~ ~

C*:... __ A @A4@A -- A @A3@A -- A @A2@A
b' b' b'

--A@A@A--A@A--A

be the cano nical reduced Hochschild resolution. We are going to define the maps

g * : C * ~ Cs. and h * : Cs. ~ C * which are homotopy equivalences that will be used
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la ter for the computation of the cyclic homology. These maps are defined as follows:

go: A 2~ A 2 is the identity map,

- 2 . T(P)
g ¡ . A @ A @ A ~ A IS defined by g 1(1 @ P @ 1) = - ,

. T(X)

g2: A @A2@A ~A2 is given by g2(l@PI @P2(1) = -1@PIP2,

and for s> 2 gs: A @As@A ~AS will be

gs(l@PI@ ... @Ps@l)

=-gs_2(I@PI@ "'Ps-2@I)g2(l@Ps-I@Ps@I),

hence

r

g2r(l @p¡ @ ... @P2r @ 1) = (-1)' TI (1 @P2i-IP2;)
i= 1

and

g2r+¡(I@PI @... @P2r+1 (1) =( -1)'+1 ~~i; iD¡(I@P2iP2i+¡),

which after tensoring by A @ Ae, become

g*: C* ~C s.,
r

g2r(l @p¡ @ ... @P2r) = (-1)' TI P2i-IP2i
i= I

and

r

g2r+l(l@PI@ '" @P2r+I)=(_I)'+lp~ TI P2iP2i+l'
i= I

where C * denotes C* @ AeA. They are A -maps by the action of A on the first factor.
The A e-morphisms hs will be defined by ho: A 2~ A 2 the identity map, and

hs+ ] : A 2 ~ A @ As+ I@ A, hs+ 1(1@ 1) = Bohsds+ ¡( 1@ 1).

By direct computations, it follows that

n ;1-1 .ir-l

h2r(l@I)=(-IY. L U;,"'/;) ¿ I@Xk,@x@...
, l. . . . .ir = 1 k l. . . . . kr = 1

@Xkr @X@X(I}_, i¡ -I}= I kj-r),

h2r + I (1 @ 1) = ( - 1Y+ I
n ;1-1 i,-1

i L. (/;, .. ./;) ¿ 1 @X@Xk, @l. . . . .'r= I k I. . . . .kr= 1

. . . (8) Xkr @ X @ X(I} _ I i¡ - I} _ , kr r)
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which, after tensoring, become

n ;.-1,<. .,ir-l

112r(1)=( -1)' ¿ U;." .j;) ¿ X<Ij_.irIj_¡krr) @Xk\
i( .ir= 1 kl ,kr= 1

@X@ .,. @Xkr @X,

n ¡¡-l,... ,ir-I

112r+.(I) =( -1)'+¡ ¿ (j;¡" .j;) ¿ X<Ij_¡i¡-Ij_¡krr)
i., . . . . ir= . k ¡, . . . .kr= I

@X@Xk¡ @ .,. @Xkr @x.

We shall need the following auxiliary result:

LEMMA 1.4, For al! r > O,

gr+.(I@P;@'" @Pr+.@Pr+2)

=sr+ .grb'(1 @p. @ ". @Pr+. @Pr+2).

Proof Let us first show that Sr+ .gr(1 @p¡ @ . . . @Pr+ ¡) = O. In fact, for r = 21
1

gr(1@p.@ ... @Pr+.)=(-I)' n (I@P2i_¡P2i)(I@Pr+¡)
i= .

and

Sr+ ¡(1 @ 1) = O,

so the result follows because Sr+. is a right A -map; and, for r = 21 + 1

gr(1@p¡@...@Pr+.)=(-I)'+¡ T«
P

X
.

)
) .TI (I@P2iP2i+I)(1@Pr+¡)'

T I=¡

Since dg(P ¡) < n, all the monomials in the above product are of the type Xi @IX
with 1 < n - 1, so

Sr+ .gr(1 @p¡ @ ... @Pr+\) = ¿Xi+ ¡ @IX = O.

Using this, we have

Sr+¡grb'(I@P¡@ ... @Pr+\@Pr+2)=sr+.gr(p¡@ ... @Pr+.@Pr+2)'

Thus, we only need to show that

gr+.(p. @ ... @Pr+. @Pr+2)

=Sr+ .gr(p. @ ... @Pr+. @Pr+2).

Let r = 21, then
1

g21(P¡ @ ... @P21+2) = (_1)1 TI (1 @P2iP2i+l) (p¡ @P21+2),
i= I

CYCLIC HOMOLOGY OF ALGEBRAS WITH ONE GENERATOR 57

so

S21+.g2Ib'(I@P.@ ... @P21+2)

=S21+ Ig21(PI @ ... @P21+2)

=( _1)1+1 T(PI
)
).TI (1@P2iP2i+.)(l@P21+2)

T(X i~'

=g21+1(I@PI@ ... @P21+2).

Finally, let r = 21 + 1. Since

g21+.(PI @ ... @P21+3)

=( - 1)1+ I ~~i; iDI (1 @P2i+¡P2i+2) (P. @P21+3)

and S21+ 2 is an A -module map with the A -structure of A @ A by multiplication on
the right.

S21+2g21+,(p. @ ... @P21+3)

1

(
T(P2)

)=( -1)1+.}J (1@P2i+.P2i+2)(I@P21+3)s21+2 (p¡ @1) T(X) .

Using

T(P¡ P2) = (P @ 1) T(P2) + (1 @P ) T(P.) _
T(X) I T(X) 2 T(X)

- (1 @p. P2) TU) (Proposition 1.2),
T(X)

we obtain

( T(P2)

) (
T(PIP2) T(P.) - TU) )S21+2 (PI@I)T(X) =S21+2 T(X) -(1@P2)T(X)+(1@P.P2)T(X)

(
T(PIP2)

) (
T(P.)

)=S21+2 T(X) -(1@P2)S21+2 T(X) +

-

(
TU»

)+(I@P¡P2)s21+2 T(X)

= I @P.P2.
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Hence,

S2/+2g2/+ I(PI @ ... @P2/+3)

_1

=( _1)/+ 1(1 @PIP2) TI (1 @P2i+ IP2i+2) (1 @P2/+3)
i=\

1

=( - 1)1+ 1 TI (1 @P2i+ IP2i+2)( 1 @P2/+3)
i=O

=g2/+2(1 @PI @ ... @P2/+3).

PROPOSITION 1.5. g * and h* are maps 01 complexes.
Proof First, we shall prove that the diagrams

h'

A @Ar+\@A _A@Ar@A

1 gr + l 1 gr

A2
dr + I

. A2

commute. For r = o, we have

( T(P)

)dlgl(l@P@l)=d\ -- =-T(P)=P@I-1@P
T(X)

=go(P@ 1-1 @P)

= gob'(1 @P@ 1).

Now, let r > O. We know that dr+ ISr+ \ + srdr = id and our last lemma shows that
dr+ Igr+ 1= dr+ ISr+ ¡grb'.

So,

dr+ \gr+ 1 = dr+ ISr+ Igrb' = grb' - srdrgrb'.

By inductive hypothesis drgr =gr_,b', so

dr+ Igr+ 1= grb' - srgr_lb'b' = grb'.

Now we shall prove that

A2

1 hr + l

dr + I
. A2

1 hr
b'

A @Ar+ \@A _ A @Ar@A.
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commutes. For r = O,ho= id. So

59

hodl(P@Q) =(P@Q)T(X) =P@QX -PX@Q = -b'(P@X@Q)

= b'hl(P@Q).

For r > O,

hr+ 1(1 @ 1) = GohA_ 1(1 @ 1) and b'Go= id - Gob',

so

b'hr+ 1(1@ 1) = b'Gohrdr+1(1@1) = hrdr+ \(1@ 1) - Gob'hA+ 1(1 @ 1).

Since by inductive hypothesis,

Gob'hA+ 1(1 (1) = GOhr_ldrdr+1(1@ 1) = O,

then

b'hr+¡(1@I) =hA+I(1@I).

2. Cyclic Homology of k(XI/<Xn>

In this section, we compute the cyc1ic homology of A = k[x]/<xn) for k an
arbitrary commutative ring with unit. We first study the case k = Z and then apply
the Künneth formula for general k. The final result is stated in Theorem 2.6. For
the computations, we use the SBi sequence.

PROPOSITION 2.1. Let k be a commutative ring with 1 and A = k[X]/<J), where
1 = xn + f" _1xn - \ + . . . + lo is a monic polynomial 01 degree n. Then the morphism

lim _ Bm _ im + 1
BSm= A - A @Am_ A @Am+1 _ A

is given by

BS2r(xa) = -a' xa-I - r '1" xa if a ~ O (in particular, Bs2r(1) = O)

BS2r + \ = O.

Proof We shall first prove that B = O. As A is free over k with basisS2r + I

(xa)o '"a < n and 1i2r+ ¡(Xa) is a linear combination over k of expressions of the type

Xko @ X @ Xk\ @ . . . @ Xkr @ X, it will be enough to prove that

g2r+2B2r+I(Xko@X@Xkl@ ... @Xkr@X)=O.

Since

g2r+2GotS(XkO@X@Xkl@ ... @Xkr@X)

= (- I)Sg2r+2BO(Xko@x@xkl @ ... @xkr @X),
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where t: A <8>Ai --+A <8>Ai is the map induced by the permutation t': A i+ 1 --+ k+ 1

given by

(
Zr+ 1

)t'(ao <8> ... <8>a¡} = (-1)iai <8>ao <8> ... <8>ai-l and Bzr+ 1 = 80 I tS ,
s=o

the result follows.

To prove that BS2'(xa) = - a . xa - 1 - r .f' xa we shall use
n

hzr(xa) = (- ¡y L U;, .. ./;) X
i) ,ir= 1

il-I ,ir-l

X L Xko <8>Xkl <8> . . . <8>Xk, <8>X,
k, , k, = 1

where ko = Lj = 1(ij - kj) - r + a, hence BZrhZr(xa)is a sum of monomia1s of one of
the following types

A = ( - ¡y + I/; 1 . . ./;, (1 <8> Xko <8> Xkl <8> . . . <8> Xk, <8> X),

B = ( - ¡y+ 1/;1. . ./;,(1 <8>X <8> Xkj <8> . . . <8>X <8>Xk, <8>X <8>Xk0<8> Xkl <8>

<8>X<8> ... <8>Xkj-2<8>X<8>Xkj-I),

and

C = ( - 1Y + 1j¡, . . .h, (1 <8>Xkj <8>X <8> . . . <8> Xk, <8> X <8> Xko <8>Xkl <8>X <8>

. . . <8> Xkj - 2 <8> X <8> Xkj - 1 <8> X).

Now, gZr+ 1(A) is not zero on1y if kl = . . . = kr = n - 1 (so i1= . . . = ir = n and
ko = a). In this case, gZr+ 1(A) = - axa - l. Simi1ar1y gZr+ 1(B) :;6O on1y if
kz = . . . = kr = n - 1 (so iz=. . . = ir = n and ko = il - kl + a). Then

gZr+ 1(B) = _.fkoXk, = XkoXkl - Xko+kl .

Finally gZr+ 1(C) :;6 O on1y if kl =. . . = rs = . . . = kr = n - 1 (and consequentIy
il = . . . = ~ = . . . = ir = n). Hence

ko = ij - kj - 1+ a

and

gZr+ 1(C) = -kjXkj -1 }+o'X = kjXkj -1(XkoX - Xko+ 1).

Combining these results we obtain

n i-l

gZr+IBZrhZr(xa)=-axa-I_r I/; L (Xi+a-I_Xi-k+a-l.xk)_
i= 1 k= 1

n ;- 1

-r I,¡; I, kXk-I(Xi-k+a_Xi-k+a-l.X).
i= I k= I
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By computing
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i-I

I kXk-I(Xi-k+a - Xi-k+a-I . X)
k=1

;-1 ; i

= L kXk-l. Xi-k+a - L kXk-l. xi-k+a + L Xk-1. xi-k+a
k= 1 k=Z k=Z

i

= Xi-k+a _ iXi-1 . xa + L Xk-I. xi-k+a
k=Z

,. ;-1

= I Xk-I. Xi-k+a = L Xk. Xi-k-I +a,
k=1 k=O

and rep1acing this va1ue in the previous formula, it follows that

gZr+ 1BZrhzr(xa)

n ;-1

= -axa-I - r L /; L (Xi+a-I - Xi-k+a-I . Xk) -
i= 1 k= 1

n ;-1

- r L /; I Xk. Xi - k - 1 + a
i= 1 k=O

n n ;-1

= - axa - 1 - r L /; (i - 1)Xi + a - 1 + r L /; L Xi - k + a - 1 . Xk -
i= 1 i= 1 k= 1

n ;-1

- r L /; L Xk. Xi - k - 1+ a
i= 1 k=O

n n

=-axa-I_r L/;(i-1)xi+a-'_r I/;Xi+a-I
i=1 i= 1

n _
= -axa-l - r L /;iXi+a-1 = -a . xa-I - r 'f'xa.

i= 1

LEMMA 2.2. If f = xn, the sequence
s

0---> Coker BZr---> HCzr+ 1(A) ---> HCzr_ 1(A) ---> O

splits (r ~ 1). Hence,
r

HCZr + 1(A) ~ HCZr _1 (A) EBCoker BZr ~ EB Coker BZj
j=O

and

BZr - 1: HCZr _ 1(A) --+Hzr(A)

is zero.

Proof It is convenient to remark that, for f = Xn, A is graded and both b and B

are homogeneous maps. We shall give a map R: HC2r _1(A) --+HC2r + I (A) such
that S . R = id. We first define a k-free submodule of the cycles of dimension 2n - I
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whose images generate the cyclic homology, and a map R of this submodule into
the (2r + 1)-dimensional cycles. We prove later that R maps boundaries into
boundaries, hence, inducing the desired map.

Let X(í.,= Iizl+ 1(xa). We shall see by induction on r that for each a (O::::;a < n)
there is a sequence (X:. t) (s ~ O)

X:. t = L AXao @xa1 @. . .@Xa2s+2/+1 E A @;ps+Zt+ 1

(where A depends on lXo,. . . , lXZs+2t+ d, statisfying:

(i) lXo+ . . . + lX2s+ 2t + I = tn + a + 1,
(ii) (X~_t.t;X~_t_l.t;...;X(í.t;O;...;O) (O::::;t::::;r,O::::;a::::;n)generate

HC2r + 1(A),

(iii) B2r+I(X~-t.t) =0.

In the case r = O, conditions (i) to (iii) are immediate consequences of the

equality X(í, o = lit (xa) = - Xa @ X. For r > O, we consider the exact sequence
i S

H2r- 1(A) ~ HC2r+ I (A) ~ HC2r_ 1(A).

By the inductive hypothesis, there exists X:. t (O::::;s, O::::;t, s + t < r and O::::;a < n)
verifying (i), (ii) and (iii). Since B2r_ 1(X~_ t- l. t) is zero in H2r(A) there is a

X~_ t. tEA @A2r+ I such that

b2r+I(X~-t,t) = -B2r-1(X~-t-l,t).

As b and B are homogeneous we can take X~_t, t such that dg(X~_" 1) = tn + a + 1,
where dg means degree. It is clear that the conditions (i) and (ii) are veritied taking
into account that the image of i gives (XL; O;. . . ; O). To check condition (iii),
we apply g2r+2B2r+l and condition (i) to the elements of the type
(X~_t.t;X~_I_I";,,,;Xo.';O;...;O) (t#r) and use Proposition 2.1 for the
elements (Xo. r; O;. . . ; O).

The set (X~_1- 1, 1; . . . ; X(í, I ; O;. . . ; O) is linearly independent in
(A @AZr- 1)EB(A @A2r-,(3)EB. . . EB(A Q9A). This can be proved componentwise
by showing that the set (X(í.,) is linearly independent in A @.121+ l. So, the
application R detined by

R(X~_'_I.';"'; Xo.I; O;...; O)

=(X~_t,,; X~_'_I";,,,; X(í.t; O;...; O)

induces a map of a submodule of the cycles of dimension 2r + 1, which generates
the HC2r_I(A), into those of dimension 2r + 1. To prove that this morphism
induces R: HC2r_I (A) -. HCzr+ 1(A) it will be enough to check that it maps
boundaries into boundaries. To pro ve this fact, we may assume that

M = L Aa,,(X~_I_I.I;"'; X(j,I; O;...; O)
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is a boundary, i.e. there exists a (Yn... ,Yo) with Yt EA @A2t, such that

M = (b(Yr) + B(Yr_ d; . .. ; b(YI) + B(yo); b(yo».

As b and B are homogeneous, then we may take the Y's with the same total degree
of the elements X's. Let T = ~ Aa,IX~- 1,t - B(Yr)' So,

b(T) = b(L Aa,IX~_ 1,t ) - bB(Yr) = b( L Aa, IX~ - 1, I )+ Bb(Yr)

and since

b(Yr) + B(Yr_ 1)= L Aa, IX~- t- 1, I and LAa.I(X~ - lot; . . . ; X(ío,; O;. . . ; O)

is a cycle,

b(T) = b( L Aa.,X~_",) + B( L AaoIX~_'-1ot) = O.

Hence, T is a b-cycle and, using the fact that the total degree of T is at most rn,

gZr+ I (T) = O according to the detinition of g2r+l' So it is a boundary, and there
exists Yr + I EA @A2r+Z such that b(Yr+ 1) + B(Yr) = ~ Aa,IX~_ loI as we wished to

proveo

LEMMA 2.3. If A = Z[X]/<Xn), Ker B2r= Z (as a consequence, the sequence

O~ HZr+2(A) ~ HC2r+2(A) ~ Ker B2r-.0

splits). Moreover, we can define a map R.: Ker B2r-. HC2r+2(A), which actually
maps into Ker B2r+2, such that S . R = id.

Proof According to Proposition 1.1, H2r(A) = Ann(f') in A for r > O. In this
case, f' = nxn-l, so Ann(f') is the submodule generated by {X, X2, . . . , xn-I};

Ho(A) = A is free with basis {1, X, . .. , xn-I}; and

H2r+1(A) = A/<f/) = Z[x]/<xn, nxn-l)

is the free module generated by {l, X, . . . , xn - 2}, plus (Z/n z)xn - l.
As

B2Axa) = -(a + rn)xa-l, Ker(Boi) = <1)= Z

and

Ker(B2ri) = O for r > O

We shall prove by induction on r that the class of the element (O, . . . , O, 1) E

(A @A2r) EB . . . EBA genera te s Ker B2r. If r = O, the result follows from the fact
that Ker Bo = Ker(Boi) = <I) and is, hence, equal to Z. If r > O, let p E Ker B2r.

We know that S(p)EKer BZr-2' hence S(P) = c(O,..., 0,1), where (O,..., 0,1) E
(A 0..4Zr-2) EE>... EE>A, and e E Z. So, for (O,..., 0,1) E (A 0..42r) EE>... EE>
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A, S(f3- c(O, . . . , O, 1» = O. Because of the exactness of the SBi-sequence, there is
a y E H2r(A) such that f3= c(O, . . . , O, 1) + i(y). As f3and c(O,. . . , O,1) belong to
Ker B2n and Ker(B2ri) = O, Y= O. This proves that f3 is a multiple of (O, . . . , O, 1).
Since all even-dimensional boundaries in the double complex end in zero, then the
element (O,..., O, 1) generates a free submodule of HC2r(A) and the proof is
achieved.

As (O, . . . , O, 1) E (A 0..42r) EB. . . EBA freely generates Ker B2rand (O, . . . , O, 1) E

(A 0..42r+2) EB ... EBA generates Ker B2r+2, we can define R mapping the first one
into the second one.

PROPOSITION 2.4. Jf A = 1'[X]J<Xn),then
r

HC2r + 1(A) ~ Et> Coker(B2¡Í)
j=O

Proof HC1 (A) EBCoker BI and Lemma 2.2 shows that

HC2r + l (A) ~ HC2r _1 (A) EB Coker B2r.

So, we can conclude by induction that HC2r+ 1(A) ~ Et>}=o Coker B2j. Finally,

Coker B2j = Coker(B2j o i) because

HC2j(A) = i(H2¡(A» EBR(Ker B2j_2) and R(Ker B2j_2) = Ker B2j

by Lemma 2.3.

COROLLARY 2.5. II A = 1'[X]/<Xn),
r

((
n-I l'

)
1'

)HC2r+ ¡(A) = Et> Et> ( +. )1' EB 7i) = o a = l a Jn n IL
(r ~ O)

and

HC2r(A) = 1'(n) (r ~ O),

where M(h) means a direct sum 01 h copies 01 M.
Proof According to the proof of Lemma 2.3, we have

n-l

B2r o i(Xa) = - (a + rn)Xa- " Ho(A)= Et> 1'. Xa,
a=O

n-l

H2¡(A) = Et> 1'. xa (j > O)a=1
and

(
n-2

)
l'

H2j+ ,(A) = Et> 1'. Xa EB 7i. Xn-I.
a=O nlL

So,

(
n-, Z

)
Z

Coker(B2¡Í) = EB ( . )Z . xa - l ~ ---:;;. xn - l.a = 1 a + Jn n IL
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Hence, from Lemma 2.3 and Proposition 2.4, we obtain

HC2r(A) = H2r(A) EBl' = 1'(n) (r > O)
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and
r r

((
n-I l'

)
l'

)HC2r+ I(A) ~ Et> Coker(B2¡Í) ~ Et> Et> . )1' EB n1'}=o j=O a=l(a+Jn
(r ~ O),

respecti vel y.

THEOREM 2.6. Jf A = k[X]J<xn), with k an arbitrary commutative ring with 1,
r

((
n-I k

)
k

)HC2r+ 1(A) = Et> Et> ( +. )k EB_k (r ~ O).
}=o a=la Jn n

and

HC2r(A) = (Ann(n) (r) EB k(n) EB C$~($: Ann(a + nj»)) (r ~ O),

where Ann(m) means the annihilator 01 m in k, i.e., the m-torsion 01 k.
Proof Since the complex B(1'[X]/<Xn) )normis free and finitely generated, then so

are the cycles and boundaries, hence Künneth formula applies ([1], Ch. VI, Th. 3.3,
p. 113) and the theorem follows immediately.

3. FurtherResults

In this section, we shall compute the periodic cyclic homology of the k-algebra
A = k[X]J<xn). Moreover, we shall apply the previous results to the case of a field
k and an arbitrary polynomial f As a corollary, we obtain that the map B2r_ 1:
HC2r _ l(A) H2r(A) is zero if k is an integral domain and 1 a monic polynomial.

PROPOSITION 3.1. Let k be a commutative ring with 1 and A = k[X]/<Xn). Then
we have the equalities

<X:!

((
n - 1 k

)
k

)HC~;~ I(A) = .TI Et> ( +. )k EBnk1=0 a=1 a Jn
and

Hc~;r (A) = k EB J\ (C~:Ann(a + nj) )EB Ann(n) ).
Proof The periodic cyclic homology Hc~er(A) and the cyclic homology HC *(A)

are related by the following exact sequence,

O li~1 (HCm+I+2i(A» HC~er(A) ,li:n (HCm+2i(A» 0
(see, for instance, [9] (l.4».

We are going to prove that

liml (HCm+ l + 2i(A» = O
i
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and, hence, the periodic cyclichomologywillbe computed as lim (HCm+ zi(A» for
both m even and odd. ---¡

Let m = 2r + l. Using Lemma 2.2 and Proposition 2.4, we can see that the

following square

HCzr+ I(A) ~ HCzr_I(A)

1 1
r

((
n-l k

)
k

)
T r-l

((
n-l k

)
k

)EB EB . Ef) - > EB EB . Ef) -
j=O a= 1 (a + jn)k nk j=O a=1(a + jn)k nk

commutes, when , is the canonical projection. This implies that the sequence
{HCZi+ 1 (A), S} satisfies the Mittag- Leffter condition, hence lim1 (HCZi + 1(A» = o.
Thus ---¡

00

((
n - 1 k

)
k

)Hc::,er(A)= lim (HCm+ zi(A» = n EB ( . )k Ef) _k
.

---¡ j=O a=1 a+jn n

If m = 2r, we shall use the following short exact sequence of diagrams,

1 1

0- HC2r+2(d'[xJ/<xn»)@k - HC2r+2(A)- TOf,(HC2r+1(d'[xJ/<xn», k) - O

1 S<8>Ik lS 1 s,

0-> HC2r(d'[XJ/<Xn»)@k ---+ HC2r(A) ---+TOfl(HC2r_,(d'[XI/<xn»),k) - O

1 1 1

lwm which we obtain

O O

(a) k(n-I)(f)k
O@lk

k(n-')(f)k

(b) --+k(n-I)(f)k (f) (4) (n?iJIAnn(a+'!i) (f)Ann(n» ))
~ k(n-I)(f)k (f)

C
?iJ' (n?iJ' Ann(a + '!i) ((f)Ann(n»))--+

v-o a_l -o a-l

(e) (4) (n?iJ I Ann(a + nj) (f)Ann(n) ))v-o 0-1 C
?iJI(n?iJI Ann(a + nj) (f)Ann(n» ))---o 0-1

S,

o o

where SI is the canonical projection froro EB;~o to EB;=J. Since the diagraros (a)
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and (c) satisfy the Mittag- Leffter condition, we have that

Liml (HCZi(Z[X]J<xn»@k) is O
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-
i

and

Liml (Tor¡(HCZi+1(Z[x]/<xn»,k» is also O.-
¡

So, by using the long exact sequence we have ~i~1 (HCZi(A» = O,and the limit
sequence 1

(d) O-+k ~,Liim (HCZi(A» -+J10(C$:Ann(a + nj))Ef)Ann(n»)-+o

is exact. Now, the canonical map

PZr:k = ~ (HCzr+zi(Z[X]J<xn»@k) --> HCzr(Z[XJ/<xn»@k
¡

= k(n-l)Ef)k

composed with the projection 1t on the second factor k(n - 1)Ef)k -+ k is an isomor-

phism. So, if f3 is the composite

. P2r "2r "("P2r)-1

~ (HCzr + zi(A» > HCzr(A) > k(n - 1) Ef)k > k > k,
¡

where PZr is the natural map and 1tZris the canonical projection of

HCzr(A) = (k(n - 1) Ef) k) Ef) C~ (C~ Ann(a + nj) )Ef) Ann(n) ))
into its first component, then f3oa is the identity. Hence, the sequence (d) splits and

Hc~;r(A) = ,Li¡m(HCZi(A» = k Ef) it (C~IAnn(a + nj») Ef)Ann(n».

LEMMA 3.2. HC*(A x B) is isomorphic lo HC*(A) Ef)HC*(B).
Proof We are going to consider the Hochschild resolution ofAx B and the

direct sum of the resolutions of A and B
~ ~ ~

A x B +--(A x B)@2 +--(A x B)@3 +--(A X B)@4
b' b'

+-- (A x B) @5 +-- . . .

and

~x~ ~x~ ~x~ ~x~
A x B +--A@2 X B@2 +-- A@3 X B@3 +-- A@4 X B@4 +--...

As both are (A x B)e-resolutions which are relatively projective, the roaps

An«al' b,) @ ... @(an, bn» = (al @ '" @an, b, @ '" @bn)
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induce an isomorphism in homology. Since the maps An commute with t, they
induce a map in the L-Q complexes, hence a map in the cyclic homology. This map
is an isomorphism in Hochschild homology, so it is also an isomorphism in cyclic
homology.

PROPOSITION 3.3. If k is algebraically closed, then for f = (X - al ti . . .
(X - am)nm,

HC*(k[X]J<f» ~ j~ HC*(X ~~~)nj)~ j~ HC*(kl~]),

so we may compute the cyclic homology as in Section 2.
Proo! It is clear by Lemma 3.2.

Remark 3.4. If A = k[X]/<f), and f is a field containing k as a subfield, then
A rgh f = f[x]J<f). So, the L-Q complex, for A &h f, is the same as that one of
A tensorized by f over k. Since f is faithfully flat over k,
HC *(A @k f) = HC *(A) @ k ¡¿ This implies that, for an arbitrary field k, letting f
be its algebraic closure, we can also compute the cyclic homology of A.

PROPOSITION 3.5. For A = k[X]J<f), where k is an integral domain and f monic,

B2r : HC2r_ 2(A) ---+ H2r(A) is zero.

Proo! Let F be the field of quotients of k and let i: k ~ F be the canonical
inclusion. i induces an injective map A ~ A' = F[X]/<f), which we shall also
denote i. There is a commutative diagram

B1r _ I

HC2r_I(A) ~ H2r(A) ~ Ann(f') ~ A

1 , 1 j 1 iB1r -1
HC2r _ I(A') ~ H2r(A') ~ Ann'(f') ~ A'

where all the vertical arrows are induced by the inclusion i. Since B;r _1 = O and j
is injective, the B2r_1 is zero.

COROLLARY 3.6. If k is an hereditary integral domain and f monic, then
HC2Ak[X]/<f» is projective and its rank equals the dimension of HC2r(F[X]/<f»,
where F is the field of quotients of k and F[X]/<f) is considered as an F-algebra.

Proo! Let A = k[X]J<f). By Proposition 3.5, we have the short exact sequence

0---+ H2AA) ---+HC2r(A) ---+Ker B2r_ 2---+O.

In order to prove that HC2r(A) is projective, we shall show that both Ker B2r-2 and
H2r(A) are so. In fact, by the inductive hypothesis, we may suppose that HC2r _2(A)

is projective. Then

Ker E2r _2 S;; HC2r _2(A) and H2r(A) = Ann(f') S;;A
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are projective, because they are submodules of projective modules and k is
heredi tary.

The rank of HC2r(A) may be computed by tensoring by the field of quotients F
or k and using the previous results (we recall that F is flat over k).

References

1. Cartan, H. and Eilenberg, s.: Homological Algebra, Princeton Univ. Press, 1956.
2. Cortiñas, G. and Villamayor, O. E.: Cyclic homology of k[Zj2Z]. Rev. Un. Mat. Argentina 33, 1987,
3. Cortiñas, G., Guccione, J. and Villamayor, O. E,: Cyclic homology of k[ZjpZ], K-Theory 2 (1989),

603-616.
4, Karoubi, M. and Villamayor, O. E.: Homologie cyclique d'algebres de groupe, CRAS (serie J) 311( 1)

(1990),1-3.
5. Kassel, c.: Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), 195-216.
6. Loday, J. L and Quillen, D,: Cyclic homology and the Lie algebra homology of matrices, Comento

Math. Helv. 59 (1984),565-591.
7. Mount, K. and Villamayor, O. E.: Taylor series and higher derivations, Pub. del Dept. de Matem-

iiti,.a, Universidad de Buenos Aires No. 18, 1969.
8, Masuda, T. and Natsume, T.: Cyclic cohomology of certain affine schemes, Publ. Res. Inst. Math. Sci.

21 (1985), 1261-1279.
9. Weibel, C. A.: Nil K-Theory maps to cyclic homology, Trans. Amer. Math. Soco303 (1987), 541-558.


