Filters for Square-bracket Partition Relations

J. M. Henle

A. Kanamori

E. M. Kleinberg

Smith College

Baruch College, CUNY and Boston University

SUNY, Buffalo

It is a classical theorem of infinitary combinatorics that any filter for the relation: $\kappa \rightarrow (\kappa)^2$ must be a κ -additive ultrafilter. In this paper we explore the properties of filters for the generally weaker square-bracket partition relations. In §1, we prove that a filter for $\kappa \rightarrow [\kappa]^2$ can be extended to a κ -additive ultrafilter, and that the existence of a filter for $\kappa \rightarrow [\kappa]^2$ implies κ is weakly compact. In §2, we prove that a Jonsson filter is, in at least one natural case, a Rowbottom filter. In §3, we establish that most of our hypotheses imply the existence of an inner model of ZFC with a measurable cardinal. In §4, we apply these techniques to the filter of ω -closed sets and the Axiom of Determinateness.

§0 Preliminaries

Throughout this paper, κ will represent an infinite cardinal. $\left[\kappa\right]^{\alpha}$ will represent the set of all increasing sequences of length α from κ , and $\left[\kappa\right]^{<\omega}$ will denote the collection of all finite subsets of κ .

 φ is a filter for a given partition relation if it is a uniform filter, and if homogeneous sets in the filter may be found for all partitions. This is written by placing φ inside the bracket, for example φ with the understanding that φ is a uniform filter over φ .

 $\prescript{\%}$ is a Jonsson filter if κ satisfies $\kappa \rightarrow \prescript{\%}^{<\omega}$. $\prescript{\%}$ is a δ Rowbottom filter if $\prescript{\%}$ satisfies $\kappa \rightarrow \prescript{\%}^{<\omega}$ for all λ .

Ultrafilters U which satisfy $\kappa \rightarrow [U]_2^2$ are called Ramsey, and as mentioned at the beginning such ultrafilters are κ -additive over κ , and hence κ is either ω or a measurable cardinal. Ultrafilters which satisfy $\kappa \rightarrow [U]_3^2$ were first discussed by A. Blass [1] who called them weakly Ramsey, and since then, several results have appeared. For example, A. Blass [2] shows that if $\omega \rightarrow [U]_5^2$, then U is a p-point, and A. Kanamori [7] provides constructions for measurable cardinals.

We will have occasion to call upon some further concepts involving ultrafilters. The Rudin-Keisler partial order is defined as follows: If U is an ultrafilter over a set I, and V is over J, say $V \subseteq U$ iff there is a function f: $I \to J$ such that $V = f_*(U)$, where $f_*(U) = \{X \subseteq J \mid f^{-1}(X) \in U\}$. We write U = RK V iff $U \subseteq RK$ V and V RK U. It is well-known that U = RK V iff $V = f_*(U)$ for some f which is one-to-one on a set in U. U is said to be RK-minimal iff there is no (non-principal) $V \subseteq RK$ U. It is well-known that U is RK-minimal iff U is Ramsey.

An ultrafilter U is called (μ,ν) -regular <u>iff</u> there are ν sets in U any μ of which have empty intersection. Such a family of sets is called a (μ,ν) -regularizing family for U. An ultrafilter U over κ is λ -decomposable <u>iff</u> there is a uniform ultrafilter V over λ such that $V \leq_{RK} U$. This is equivalent to saying that there is a partition $\alpha \subset_{\alpha < \lambda} A_{\alpha} = \kappa$ such that for any $X \subset \lambda$ with $|X| < \lambda$, $\bigcup_{\alpha \in X} A_{\alpha} \notin U$. An ultrafilter U over κ is <u>weakly normal</u> iff whenever $\{\alpha < \kappa \mid f(\alpha) < \alpha\} \in U$, there is a $\beta < \kappa$ so that $\{\alpha < \kappa \mid f(\alpha) \leq \beta\} \in U$.

The regularity and decomposability of ultrafilters were first considered by H. J. Keisler (see [3] 4.3); K. Prikry [17] is the definitive

paper on decomposability, and A. Kanamori [8] connects irregularity with weak normality. W. W. Comfort and S. Negrepontis [4] is a good general reference for ultrafilters.

With the exception of §4, we assume the Axiom of Choice throughout.

\$1 Filters implying measurability and weak compactness

Our chief tool in this section will be a technique for extending filters to ultrafilters.

Theorem 1.1 Let κ , \sharp satisfy $\kappa \mapsto \left[\sharp \right]_n^{\alpha}$, for some $n < \omega$, α , κ regular. Then \sharp can be extended to a uniform ultrafilter \sharp with additivity at least that of \sharp .

Proof: Let n be least such that $\kappa \neq [\not =]_n^\alpha$, and let $F: [\kappa] \xrightarrow{\alpha} n$ be a partition with no homogeneous set. For any $X \subseteq \kappa$, let F_X be the partition on $[\kappa]^\alpha$:

$$F_{X}(p) = \begin{cases} n-1 & \text{if } F(p) = n-1 \text{ and } p(0) \notin X \\ n & \text{if } F(p) = n-1 \text{ and } p(0) \in X \end{cases}$$

$$F(p) \text{ otherwise.}$$

Since $\kappa \to [f]_{n+1}^{\alpha}$, there is a set YGK homogeneous for F_X . Since $\|F''[Y]^{\alpha}\| = n$, exactly one of $\{n-1,n\}$ fails to be in $F_X''[Y]^{\alpha}$. Furthermore, if Y' is any set in f, YnY' is also homogeneous, so that $n \in F_X''[Y]^{\alpha}$ iff $n \in F_X''[Y]^{\alpha}$. Thus we may define: f = $\{X \mid for any or all Y \in f$, $n \in F_X''[Y]^{\alpha}\}$. By construction, this is an ultrafilter. That f extends f follows from the observation that $n \in F_Y''[Y]^{\alpha}$. Since f is uniform, it is easy to see that $\kappa - \delta$ f for all $\delta < \kappa$. Thus sets in f are unbounded and hence size f by regularity.

Finally, suppose δ is the additivity of 7, and $\{X_{\alpha}\}_{\alpha<\eta}$ are

members of f, $\eta < \delta$. For each α , let $Y_{\alpha} \in f$ be homogeneous for $F_{X_{\alpha}}$, and let $Y = \bigcap_{\alpha < \eta} Y_{\alpha}$. It follows that Y is homogeneous for F_{X} , $X = \bigcap_{\alpha < \eta} X_{\alpha}$ and $n \in F_{X}^{"}[Y]^{\alpha}$, so that $X \in f$.

For specific n and α , we can say more:

Theorem 1.2 Let κ be a regular uncountable cardinal and \mathcal{F} a filter satisfying $\kappa \rightarrow [\mathcal{F}]^2$. Then κ is a measurable cardinal.

Proof: If $\kappa \neq [\not \tau]_2^2$ then $\not \tau$ is a κ -additive ultrafilter, as we remarked earlier. If $\kappa \neq [\not \tau]_2^2$, let $F: [\kappa]^2 + 2$ be a partition without a homogeneous set in $\not \tau$. Form the ultrafilter $\not \tau^*$ as in 1.1, and suppose its additivity is $\delta < \kappa$. Let $g: \kappa + \delta$ be a function such that for all $\alpha < \delta$, $g^{-1}(\alpha) \not \tau^*$. We define a partition G by

$$G(\alpha,\beta) = \begin{cases} 0 & \text{if } g(\alpha) = g(\beta) \\ 1 & \text{if } g(\alpha) < g(\beta) \\ 2 & \text{if } g(\alpha) > g(\beta) \end{cases}$$

Let $X \in \mathcal{F}$ be homogeneous for G, i.e., $F''[X]^2 \neq 3$. Since \mathcal{F} is uniform, 0 must be in $G''[X]^2$. 1 must also be in $G''[X]^2$, since otherwise

 $X \subset_{\alpha} g^{-1}(\alpha)$ where $\beta = g(nX)$.

By δ -additivity, this would imply $g^{-1}(\alpha) \in \varphi^*$. for some α .

These facts together compel $2 \notin G''[X]^2$, but then by regularity, there must be η, γ such that for $\alpha, \beta \in X-\eta$, $\gamma = g(\alpha) = g(\beta)$. Since $X-\eta \in \varphi^*$, and $X = \eta \subseteq g^{-1}(\gamma)$, $g^{-1}(\gamma) \in \varphi^*$, a contradiction.

That κ be regular in 1.2 is essential, as the following example attests: Let $\langle \kappa_n | n_{\epsilon} \omega \rangle$ be an increasing sequence of measurable cardinals, with U_n a normal κ_n -additive ultrafilter over κ_n . Let U be a Ramsey ultrafilter over ω , i.e. $\omega \to [U]_2^2$. Such U exist under a variety of assumptions, e.g. Martin's Axiom. Let $\lambda = \sup \kappa_n$; and define a uniform

ultrafilter V over \ by:

 $X \in V$ iff $X \subseteq \lambda$ & $\{n \mid X \cap \kappa_n \in U_n\} \in U$.

 λ is singular, yet we can show that $\lambda \rightarrow [V]_3^2$: Suppose that F: $[\lambda]^2 \rightarrow 3$. Using the κ_n -additivity of U_n and the fact that $\kappa_n \rightarrow [U_n]_2^2$ by a well-known result of Rowbottom about normal ultrafilters, it is not difficult to find sets $X_n \in U_n$ and $i_n < 3$ for every $n \in \omega$, and a function $f: [\omega]^2 \rightarrow 3$ such that:

- (a) $F''[X_n] = \{i_n\},$
- (b) $X_{n+1} \subseteq (\kappa_{n+1} \kappa_n)$, and
- (c) if $\alpha \in X_m$ and $\beta \in X_n$ and m < n, then $F(\alpha, \beta) = f(m, n)$. Finally, we can find a YeU and a fixed i<3 such that neY implies $i_n = i$, and using the Ramseyness of U, a fixed j<3 such that $f''[Y] = \{j\}$. Thus, if $Z = \underset{n \in Y}{u} X_n$, then $Z \in V$ and $F''[Z]^2 = \{i,j\}$.

Theorem 1.3 Let %, κ regular satisfy $\kappa \rightarrow [\%]_n^2$. Then κ satisfies $\kappa \not \sim [\kappa]_{n-2}^2$. Proof: Let $\text{H:}[\kappa]^2 \rightarrow n-2$ be any partition. We can assume that κ is not measurable. Thus, if we expand % to %, then we can suppose that its additivity is some $\delta < \kappa$, and define g and G as in the proof of 1.2. Let G_1 map $[\kappa]^2$ into $3\kappa(n-2)$ by:

 $G_{1}(\alpha,\beta) = (G(\alpha,\beta), H(\alpha,\beta))$

Since $\kappa \to [4]_n^2$ implies $\kappa \to [4]_{3(n-2),n}^2$, let $X \in \mathcal{C}$ be such that $\|G''[X]\| \le n-1$. It follows that $\|\{k \mid (0,k) \in G_1''[X]^2\}\| \le n-3$, since for some a, b, (1,a) and (2,b) are in $G_1''[X]^2$ as above. Thus if we choose α such that $Y = X \cap g^{-1}(\alpha)$ is size κ , then $\|H''[Y]\| \le n-3$.

Corollary 1.4 If κ is a regular uncountable cardinal with a filter \mathcal{F} satisfying $\kappa \rightarrow [\mathcal{F}]_4$, then κ is a weakly compact cardinal.

In a similar manner to the above, one may prove for κ regular

that the following imply measurability:

$$\kappa \rightarrow [\not \downarrow]_{13}^{3} \qquad \kappa \rightarrow [\not \downarrow]_{75}^{4} \ldots \qquad \kappa \rightarrow [\not \downarrow]_{h(n)}^{n}, \ldots$$

and in general:

$$\kappa \rightarrow [\not]_k^n$$
 implies $\kappa \rightarrow [\kappa]_{\kappa+l-h(n)}$

where h(n) is the number of different ways n objects may be prewellordered. The chief open question here is: does $\kappa op [4]_4^2$ imply measurability for regular κ ? An example can be found of a κ , and an ultrafilter such that $\kappa op [4]_4^2$, but $\kappa op [4]_3^2$. In the example, however, κ is measurable, and π is formed by gluing together a quantity of normal measures. In §3, we shall establish that $\kappa op [4]_n^2$ for an $n ext{ implies}$ that there is an inner model with a measurable cardinal.

We now consider infinite subscripts.

<u>Theorem 1.5</u> Given κ, α, \neq satisfying $\kappa \rightarrow [\neq]_{\omega}^{\alpha}$, then $\kappa \rightarrow [\neq]_{n}^{\alpha}$ for some n.

<u>Proof:</u> Suppose the theorem is false, and for each n, F_n is a partition with no homogeneous set in $\mathscr C$. Call a set $T \subseteq [\kappa]^\alpha$ <u>unavoidable</u> if $T \cap [X]^\alpha \neq \emptyset$ for all $X \in \mathscr C$. Call $S \subseteq [\kappa]^\alpha$ good if for all $k < \omega$, there is $m < \omega$ such that at least $k < \omega$ for the sets

$$SnF_n^{-1}(0)$$
, $SnF_n^{-1}(1)$,..., $SnF_n^{-1}(n-1)$

are unavoidable. Note that if S is good and S is partitioned into m pieces, $S = \bigcup_{i=1}^{\infty} S_i$, one of these pieces must be good, for if not, let k be such that for all $n < \omega$ and j < m, fewer than k of the sets $\{S_j \cap F_n^{-1}(i)\}_{j < m}, i < m$ are unavoidable. Choose n so that at least mk of the sets $\{S_n \cap F_n^{-1}(i)\}_{i < m}$ are unavoidable. Then mk of the sets $\{S_j \cap F_n^{-1}(i)\}_{j < m}, i < m$ are unavoidable, hence for some j < m, k of the sets $\{S_j \cap F_n^{-1}(i)\}_{i < m}$ are unavoidable.

We now construct disjoint unavoidable sets $\{T_i\}_{i < \omega}$ and good sets

 $S \subseteq S \subseteq S$... such that $S_i \cap T_j = \emptyset$ for $j \le i$ as follows: The sets $F_2^{-1}(0)$ and $F_2^{-1}(1)$ are both unavoidable and at least one is good. Let S_0 be the one which is good, T_0 the other.

Given T_i , S_i choose n so that at least two of the sets: $\{S_i \cap F_n^{-1}(j)\}_{j < n}$ are unavoidable.

Let S_{i+1} be one which is good, and T_{i+1} another which is unavoidable. Finally, we define that partition $F: [\kappa]^{\alpha} \rightarrow \omega$ by:

$$F(p) = \begin{cases} n & \text{if } p \in T_n \\ 0 & \text{otherwise} \end{cases}$$

By construction, $F^{-1}(n) \supseteq T_n$ is unavoidable for each $n < \omega$, violating $\kappa \rightarrow [x]_{\omega}^{\alpha}$.

Theorem 1.6 If there exist $\kappa, \alpha, \mathcal{F}$ which satisfy $\kappa \rightarrow [\mathcal{F}]^{\alpha}_{\omega, < \omega}$, then there exists a measurable cardinal.

Proof: By 1.5 and 1.1, # can be extended to an ultrafilter #. The stronger relation here shows that # is K_1 -additive since if

 $\bigcup_{n \in \omega} A = \kappa$ is a partition of κ into ω parts, let $X \in \mathcal{F}^*$ be homogeneous for the partition:

 $F(p) = \text{that n such that } p(0) \in A_n$.

Since $F''[X]^{\alpha}$ is finite, there is some n_o such that $X\subseteq_{n\leq n_o}^{U}A_n$, and so some $A_n\in\mathcal{T}^*$

Thus the additivity of \textbf{x}^* is greater than ω , and by the usual arguments there is a measurable cardinal. \square

The last result of this section is applicable only to situations with limited amounts of Choice.

Theorem 1.7 (DC) If $\kappa, \alpha, \not\leq \text{satisfy } \kappa \rightarrow \left[\not\leq \right]_{\omega}^{\alpha}$, then either $\kappa \rightarrow \left[\not\leq \right]_{\omega, \leq \omega}^{\alpha}$ or there is a non-principal ultrafilter on ω .

Proof: Suppose $\kappa \# [\#]^{\alpha}_{\omega, < \omega}$ and let $F: [\kappa]^{\alpha} \to \omega$ witness this fact.

Altering our notation somewhat, call a set $B\subseteq \omega$ avoidable if $F''[X]^{\alpha}$ $B=\emptyset$ for some $X\in \mathcal{F}$, unavoidable otherwise.

Let B = $\{n | \{n\}$ is avoidable}. The set ω -B cannot be finite, for then the partition:

$$G(p) = \begin{cases} n_0 & \text{if } F(p) \in B \\ \\ F(p) & \text{otherwise} \end{cases}$$

(where $n_0 \in \omega - B$) would contradict $\kappa \to [\sharp]^\alpha_\omega$. Similarly, B itself is not avoidable, for if $F''[X]^\alpha \cap B = \emptyset$ for some $X \in \mathcal{F}$, then $F:[X]^\alpha \to \omega - B$ would again contradict $\kappa \to [\sharp]^\alpha_\omega$.

Claim: There is an infinite subset DCB, unavoidable, such that D cannot be split into two unavoidable subsets. If not, split B itself into two unavoidable sets D_1 and A_1 . Next split D_1 into two unavoidable sets D_2 and A_2 and continue this procedure which results in an infinite disjoint collection $\{A_n\}_{n<\omega}$ of unavoidable sets. Then the partition:

$$G(p) = \begin{cases} n \text{ if } F(p) \in A_n \\ 0 \text{ otherwise} \end{cases}$$

contradicts $\kappa \rightarrow \left[\mathcal{L} \right]^{\alpha}$, establishing the claim.

Finally, let DGB be as claimed. Let U be the collection of unavoidable subsets of D. That U is a non-principal ultrafilter on D is straight-forward. We show for example, that D is ω -additive. If S, T \in U then SoT must be unavoidable, otherwise S-T and T-S would be disjoint unavoidable subsets of D, a contradiction.

§2 Jonsson and Rowbottom Filters

In [14] E. M. Kleinberg proved that Jonsson and Rowbottom cardinals are almost the same. We prove here a similar result for filters.

It is stated without proof in [7] (see 6.10, 6.11), where connections with Prikry forcing and the structure theory of ultrafilters over a measurable cardinal are made. Specifically,

Theorem 2.1 Let κ be the least cardinal with a Jonsson filter. Then any Jonsson filter on κ is a δ -Rowbottom filter for some $\delta < \kappa$.

Proof Let κ be as stated, # a Jonsson filter.

We first claim that κ , \sharp satisfy $\kappa \mapsto [\sharp]_{\delta}^{<\omega}$ for some $\delta < \kappa$. If not, then for each $\delta < \kappa$, let $F_{\delta} : [\kappa]^{<\omega} \to \delta$ be a partition such that for all $X \in \mathcal{F}_{\delta}^{"}[X]^{<\omega} = \delta$. Define $F : [\kappa]^{<\omega} \to \kappa$ by:

$$F(\alpha_1,\alpha_2,\ldots,\alpha_n) = \begin{cases} F_{\alpha_1}(\alpha_2,\ldots,\alpha_n) & \text{if } n>1, \\ 0 & \text{otherwise} \end{cases}$$

No Xe % can be homogeneous for F, since for $\gamma < \kappa$ we can choose $\delta > \gamma$, $\delta \in X$ and ordinals $\alpha_1, \ldots, \alpha_j \in X$, $\delta < \alpha_1$ such that $F_\delta(\alpha_1, \ldots, \alpha_j) = \gamma$. This contradicts $\kappa \to [\%]_{\kappa}^{<\omega}$.

Let δ be least such that $\kappa \to [\mathfrak{F}]_{\delta}^{<\omega}$ We next claim that $\kappa \to [\mathfrak{F}]_{\delta}^{<\omega} \to \delta$. Let $G: [\kappa]^{<\omega} \to \delta$ be any partition. Since δ is least, again choose $F_{\alpha}: [\kappa]^{<\omega} \to \delta$ for each $\alpha \times \delta$ such that $F_{\alpha}^{"}[X]^{<\omega} \to \delta$ and $X \in \mathfrak{F}$. Define $H: [\kappa]^{<\omega} \to \delta$ by:

$$H(\alpha_1, \ldots, \alpha_n) = \begin{cases} F_{G(\alpha_1, \ldots, \alpha_k)} & (\alpha_{k+1}, \ldots, \alpha_{k+m}) \\ & \text{if } n = 2^k 3^m > 6 \end{cases}$$

Let X be homogeneous for H. Then $\|G''[X]^{<\omega}\| < \delta$, otherwise, if $\eta < \delta$ there would be $\beta_1, \ldots, \beta_k \in X$ such that $G(\beta_1, \ldots, \beta_k) > \delta$ and then $\gamma_1, \ldots, \gamma_m \in X$ such that $F_{G(\beta_1, \ldots, \beta_k)}(\gamma_1, \ldots, \gamma_m) = \eta$ and by expanding the set $\beta_1, \ldots, \beta_k, \gamma_1, \ldots, \gamma_m$ one could show that $\eta \in H''[X]^{<\omega}$, contradicting $\kappa \to [\not +]_{\delta}^{<\omega}$.

Lastly, we claim that \sharp is a δ -Rowbottom filter, i.e., $\kappa \rightarrow [\sharp]_{\lambda, < \delta}^{<\omega}$ for all $\lambda, \delta \leq \lambda < \kappa$. For this it is sufficient to show

 $\kappa \to [\mathfrak{F}]_{\lambda, <\lambda}^{<\omega} \text{ for all such λ, since given F: } [\kappa]^{<\omega} \to \lambda, \text{ we can find successive }$ sets $X_1 \supseteq X_2 \supseteq \ldots \supseteq X_k$ with $\|F''[X_i]^{<\omega}\|$ a decreasing sequence of ordinals until $\|F''X_k\|^{<\omega}\| < \delta$

Given, $\delta < \lambda < \kappa$ suppose that $F: [\kappa]^{<\omega} \to \lambda$ is a partition such that $\|F''[X]^{<\omega}\| = \lambda$ for all $X \in \mathcal{F}$. Let $\mathcal{F}_{\lambda} \subseteq 2^{\lambda}$ be the filter defined by: $A \in \mathcal{F}_{\lambda}$ if for some $X \in \mathcal{F}$, $F''[X]^{<\omega} \subseteq A$. \mathcal{F}_{λ} is easily seen to be a filter on λ . We will show that \mathcal{F}_{λ} is actually a Jonsson filter, contradicting the leastness of κ . This will prove the theorem. Suppose $G: [\kappa]^{<\omega} \to \lambda$. Since $\kappa \to [\mathcal{F}]_{\delta}^{<\omega}$ and hence $\kappa \to [\mathcal{F}]_{\lambda}^{<\omega}$, we define a partition $H: [\kappa]_{\delta}^{<\omega} \to \lambda$ such that whenever $X \in \mathcal{F}$ and $H''[X]^{<\omega} \neq \lambda$, then $G''[F''[X]^{<\omega}]^{<\omega} \neq \lambda$. Since $F''[X]^{<\omega} \in \mathcal{F}_{\lambda}$, will be a Jonsson filter. Specifically,

$$H(\alpha_1, \dots, n) = \left\{ \begin{array}{ll} G(F(\alpha_1, \dots, \alpha_{i-1}, \dots, \alpha_{i-1}, \dots, \alpha_{i-2}, \dots, \alpha_{i-2}, \dots, F(\alpha_{i-1}, \dots, \alpha_{i-1}, \dots, \alpha_{i-2}, \dots, \alpha_{i-1}, \dots, \alpha$$

H has the required property.

§3 Inner Models of Measurability

Turning from direct combinatorial consequences to consistency strength, in this section we shall establish that, in most cases having $\kappa \rightarrow [\not T]_n^2$ for some $n \le \omega$ implies the existence of an inner model of ZFC with a measurable cardinal. We also establish that the same conclusion can be drawn from the existence of a Jonsson filter. The following simple observation has its own intrinsic interest.

Theorem 3.1 If U is an ultrafilter over κ such that $\kappa \rightarrow [U]_{n+1}^2$ and V is a uniform ultrafilter over λ such that $V <_{RK} U$, then $\lambda \rightarrow [V]_n^2$. Hence, there is no RK descending chain of length n starting with any U satisfying $\kappa \rightarrow [U]_n^2$.

<u>Proof:</u> Let $f_*(U) = V$, and suppose that $F:[\lambda] \stackrel{2}{\to} n$. Define $G: [\kappa] \stackrel{2}{\to} n+1$ by:

$$G(\alpha, \beta) = \begin{cases} F(f(\alpha), f(\beta)) & \text{if } f(\alpha) \neq f(\beta) \\ n & \text{otherwise.} \end{cases}$$

By hypothesis, there is an XeU and an i < n+l such that i \notin G"[X]². But i \neq n, else f would be one-to-one on X, contradicting V < U. Hence, if Y = f"X \in V, we have F"[Y]² \neq n.

The second sentence of the theorem follows from the fact that $\kappa \rightarrow [U]_2^2$ iff U is RK-minimal.

Next, we compile several facts from which our main result will follow. We shall only provide a proof for the first, which is an instance of the model-theoretic universality of regular ultrapowers (see [3] p. 207), and references for the rest.

Theorem 3.2. If U is an $(\omega, 2^{\lambda})$ -regular ultrafilter over κ and V is any ultrafilter over λ , then $V \leq_{RK} U$.

<u>Proof:</u> Let $\{A_X \mid X \subseteq \lambda\}$ be a $(\omega, 2^{\lambda})$ -regularizing family for U, indexed by subsets of λ . Define $f: \kappa \to \lambda$ by choosing

$$f(\alpha) \in n\{X | X \in V \& \alpha \in A_X\}.$$

This is possible, since this last set is in V. It is not difficult to see that $f_*(U) = V$.

Theorem 3.3 (Kunen-Prikry [15]) If an ultrafilter is λ^+ -decomposable and λ is regular, then the ultrafilter is λ -decomposable.

Theorem 3.4

(a) (Kanamori [8]) If U is a uniform non-(κ , κ^{+})-regular ultrafilter over κ^{+} , then there is such an ultrafilter \leq_{RK} U which is also weakly normal.

(b) (Kanamori [8] and Ketonen [9] independently) If U is a uniform ultrafilter over a regular κ which is not (ω λ)-regular for some $\lambda < \kappa$, then there is such an ultrafilter $\leq_{RK} U$ which is also weakly normal.

Theorem 3.5

- (a) (Jensen [5]) Suppose that $\kappa^{\kappa} = \kappa$ and there is a uniform weakly normal ultrafilter over κ . Then there is an inner model with a measurable cardinal.
- (b) (Koppelberg for regular $\kappa[5]$; Donder (unpublished) for singular κ). Suppose that there is a uniform ultrafilter over κ which is λ -indecomposable for some regular $\lambda < \kappa$. Then there is an inner model with a measurable cardinal.

The main result is at hand:

Theorem 3.6: Suppose that there are κ and ζ satisfying $\kappa \rightarrow [\mathcal{F}]_n^2$ for some $n \leq \omega$ where either

- (i) $\kappa \ge \omega_{n-3}$ if $n \ge 4$, or else
- (ii) The GCH holds and $\kappa > \omega$.

Then there is an inner model with a measurable cardinal.

<u>Proof:</u> By 1.2 and 1.5 we can suppose that $3 < n < \omega$ and by 1.1 we can replace % by an ultrafilter U. For case (i), it suffices by 3.5(b) to establish that U is not ω_{n-3} -decomposable. So, suppose it were. By repeated applications of 3.1 and 3.3 there would be an RK-descending chain $U \ge_{RK} V_1 >_{RK} V_2 >_{RK} \dots$, where V_i is uniform over ω_{n-2-i} and $\omega_{n-2-i} + [V_i]_{n+1-i}^2$. But when i = n-3, we would be confronted with $\omega_1 + [V_{n-3}]_{\mu}^2$, contradicting 1.4.

For case (ii), note first that U cannot be $(\omega, 2^{\omega})$ -regular, else by 3.2 there would be too many ultrafilters below U in the RK order.

For example, if V and W are ultrafilters over I and J respectively, define V x W over I x J by

 $X \in V \times W \text{ iff } \{i \big| \{j \big| < i, j > \epsilon X\} \in W\} \in V.$ Then set $V^2 = V \times V$ and $V^{k+1} = V^k \times V$. When V is a non-principal ultrafilter over ω , the projection to the first coordinate verifies that $V^K <_{RK} V^{K+1}, \text{ and thus } V^n \leq_{RK} U \text{ would contradict 3.1}$

Next, by CH if $\kappa = \omega_1$ we can assume by 3.4(a) that U is weakly normal. If $\kappa > \omega_1$, we can first assume that $\kappa < \omega_\omega$ by case (i) and thus that κ is regular. By CH and 3.4(b), we can again assume that U is weakly normal.

Finally, by 3.5(a) we can conclude that there is an inner model with a measurable cardinal for case (ii) as well.

We can draw the same conclusion for Jonsson filters:

Theorem 3.7: If there is a Jonsson filter, then there is an inner model with a measurable cardinal.

<u>Proof:</u> Let $\kappa \to [\mathscr{F}]_{\delta}^{<\omega}$ be as in the second paragraph of the proof of 2.1. It is not difficult to see that δ must be regular: If not, there is a $G: [\kappa]^{<\omega} \to cf(\delta)$ such that $G''[X]^{<\omega} = cf(\delta)$ for any $X \in \mathscr{F}$, and proceed just as in the proof of $\kappa \to [\mathscr{F}]_{\delta, <\delta}^{<\omega}$ to get a contradiction.

Secondly, by the argument of 1.6 using a partition $_{\alpha} \lor_{\delta} A_{\alpha} = \kappa$, we can show that any ultrafilter U extending Υ must be δ -indecomposable.

These facts together with 3.5(b) imply that there is an inner model with a measurable cardinal.

This result contrasts with a result of Mitchell [16] that a Jonsson cardinal is Jonsson (in fact, Ramsey) in K, the core model of Dodd and Jensen. Since there are no inner models of K with a measurable cardinal, the consistency strength of having a Jonsson filter is strictly

stronger than that of merely having a Jonsson cardinal.

§4 Applications

Theorem 4.1 AC + $\kappa \rightarrow [\kappa]_{\omega}^{\omega}$ imply there is a measurable cardinal.

Proof: The relation $\kappa \to [\kappa]^\omega_\omega$ in effect implies $\kappa \to [U_\omega]^1_\omega$ since if $F:[\kappa]^1 \to \omega$, let $F^*:[\kappa]^\omega \to \omega$ be the partition: $F^*(p) = F(\upsilon p)$, then if $X \subseteq \kappa$ is homogeneous for F^* , then $(X)_\omega$, the collection of ω -sups from X is closed and unbounded, and is homogeneous for F as well.

For any regular cardinal λ , let U_{λ} be the filter generated by the λ -closed, unbounded sets, Well-ordered choice of length κ implies that U_{λ} is not an ultrafilter (see [11]).

In applying the theorems of §1 here, our advantage is the natural additivity of $\mathbf{U}_{\mathbf{l}}$.

Theorem 4.2 (AC_{\beta}) $\kappa \rightarrow [U_{\lambda}]^{\alpha}_{\beta}$ \alpha, \lambda, \beta \sigma \text{implies } \kappa \int [U_{\lambda}]^{\alpha}_{\beta, <\beta}

Proof: Let $F: [\kappa]^{\alpha} \to \beta$ be any partition. In the terminology of 1.5, let $B = \{\delta \mid \{\delta\} \text{ is avoidable}\}$. For each $\delta \in B$, choose $X_{\delta} \in U_{\lambda}$ such that $\delta \notin F''[X_{\delta}]^{\alpha}$. Since each X_{δ} contains a λ -closed, unbounded subset, we may

assume X_{δ} is itself λ -closed and unbounded. By usual arguments, $X = \underset{\delta \in B}{\cap} X_{\delta} \text{ is } \lambda\text{-closed and unbounded, and } F''[X]^{\alpha} \cap B = \emptyset. \text{ It follows that } \|\beta - B\| < \beta (\text{otherwise } F^{\dagger}[X]^{\alpha} \text{ would contradict } \kappa \rightarrow [U_{\lambda}]^{\alpha}_{\beta}) \text{ and so } \|F''[X]^{\alpha}\| < \beta.$

Theorem 4.3 $(AC_{\omega})_{\kappa} \rightarrow [U_{\lambda}]_{\omega}^{\alpha}, \alpha \ \lambda < \kappa \text{ implies } \kappa \rightarrow [U_{\lambda}]_{\omega,k}^{\alpha}$ for some $k < \omega$.

Proof: By 1.1 and 4.2, $\kappa \rightarrow [U_{\lambda}]_{\omega}^{\alpha}$ and $\kappa \rightarrow [U_{\lambda}]_{n}^{\alpha}$ for some n. Together these imply the theorem, for given F, we can find $X \in U_{\lambda}$ such that $\|F''[X]^{\alpha}\| < \omega$, and hence, by repeated applications of $\kappa \rightarrow [U_{\lambda}]_{k}^{\alpha}$ to suitable partitions can reduce the size of the range further to a set of size less than n.

In [12], E. M. Kleinberg proved as a consequence of the Axiom of Determinateness (AD) and Dependent Choice (DC) that \mathcal{K}_n is a Jonsson cardinal for all $n<\omega$, and that \mathcal{K}_ω is Rowbottom. In [6], J. M. Henle proved that the $\{\mathcal{K}_n\}_{n<\omega}$ each had a Jonsson filter. The question remained open whether or not \mathcal{K}_ω had a Rowbottom filter. This question will not be answered here, but we do exhibit a partition relation satisfied by \mathcal{K}_ω for which \mathcal{K}_ω has no filter.

Theorem 4.4 AD+DC+ZF \models " $\chi_{\omega} \rightarrow [\chi_{\omega}]_{\omega}^2$ but there is no filter \neq on χ_{ω} satisfying $\chi_{\omega} \rightarrow [\chi]_{\omega}^2$.

Proof: The second part of this theorem follows from the work of \$1. By 1.7 either $\aleph_{\omega} \to [\not\in]_{\omega,<\omega}^{<\omega}$ or there is a non-principal ultrafilter on ω . The first relation is demonstrated false by the partition, $F: [\aleph_{\omega}]^{2} \to \omega \quad \text{defined by} \quad F(\alpha,\beta) = \text{the least n such that} \quad \alpha < \aleph_{n}. \quad \text{That the second is false is a well-known consequence of AD.}$

To prove the first part of the theorem, we use Kleinberg's methods of [13]. Let $F:[\raisebox{-4pt}{$\chi$}_{\omega}]^2\!\!\rightarrow\!\!\omega$ be any partition. Theorem 6.4 of [5] proves that if κ satisfies $\kappa\!\!\rightarrow\!\!(\kappa)^K$, then a related cardinal κ_{ω} is Rowbottom. In the case of AD, κ is $\raisebox{-4pt}{$\chi$}_1$ and κ_{ω} is $\raisebox{-4pt}{$\chi$}_{\omega}$. The proof deals with partitions

of $[X_{\omega}]^{<\omega}$ into γ pieces, $\gamma < X_{\omega}$. We consider here only the simpler problem of the partition F. The proof proceeds by finding subsets D_n of κ_n (for AD, X_n) each of size κ_{n-1} such that (for our case) $\|F:[D_n]^2\| = 1$ for all $n < \omega$ and $\|F''[D_n x D_m]\| = 1$ for all $n, m < \omega$. Let $g: \omega \to \omega$, $h: [\omega]^2 \to 2$ be defined by:

$$g(n) = \begin{cases} 0 \text{ if } F''[D_n]^2 & \text{is a multiple of 3} \\ 1 & \text{otherwise} \end{cases}$$

and
$$h(n,m) = \begin{cases} 0 & \text{if } F''[D_n x D_m] \text{ is even} \\ 1 & \text{otherwise} \end{cases}$$

By Ramsey's theorem, let A be an infinite subset of ω such that h is constant on $[A]^2$. Let B be an infinite subset of A such that g is constant on B. It follows that $E = \bigcup_{n \in B} D_n$ is our desired homogeneous set for F. It has cardinality X_{ω} , and $F:[E]^2$ will be disjoint from one of the four sets: even multiples of 3, odd multiples of 3, even non-multiples of 3, and odd non-multiples of 3.

References

- [1] A. Blass, Ultrafilter mappings and their Dedekind cuts, <u>Trans</u>. <u>Amer</u>.

 <u>Math. Soc</u>. 188 (1974), pp. 327-340.
- [2] A. Blass, Amalgamation of non-standard models of arithmetic, <u>Jour.</u>

 <u>Sym. Logic</u> 42(1977), pp. 372-386.
- [3] C. C. Chang and H. J. Keisler, <u>Model Theory</u>, North Holland Publishing Co., Amsterdam (1973).
- [4] W. W. Comfort and S. Negrepontis, <u>The Theory of Ultrafilters</u>, (Springer, Berlin 1974).
- [5] H. D. Donder, R. B. Jensen, and B. Koppelberg, Some applications of the core model, in: R. B. Jensen and A. Prestel (eds.) <u>Set</u> <u>Theory and Model Theory</u>, Lecture Notes in Math. no. 872, Springer-Verlag (1981), pp. 55-97.
- [6] J. M. Henle Researches into the world of κ→(κ)^κ, Annals of Math. Logic V. 17 (1979) pp. 151-169.
- [7] A. Kanamori, Ultrafilters over a Measurable cardinal, Annals Math.

 Logic 11(1976), pp. 315-356.
- [8] A. Kanamori, Weakly normal filters and irregular ultrafilters, <u>Trans.</u>
 Amer. <u>Math. Soc.</u> 220 (1976), pp. 393-399.
- [9] J. Ketonen, Some combinatorial properties of ultrafilters, <u>Fund</u>. <u>Math</u>. 107 (1980), pp. 225-235.
- [10] E. M. Kleinberg Strong partition properties for infinite cardinals

 Journal of Symbolic Logic V. 35, 1970 pp. 410-428.
- [11] E. M. Kleinberg and J. Seiferas "Infinite-exponent partition relations and well-ordered choice, <u>Journal of Symbolic Logic</u> V. 38 (1973) pp. 299-308.

- [12] E. M. Kleinberg AD \vdash "The X_n are Jonsson cardinals and X_ω is a Rowbottom cardinal." Annals of Math. Logic V. 12 (1977) pp. 229-248.
- [13] E. M. Kleinberg <u>Infinitary combinatorics and the Axiom of</u>

 <u>Determinateness</u> Springer-Verlag Lecture Notes in Math. #613

 (1977).
- [14] E. M. Kleinberg, Rowbottom Cardinals and Jonsson Cardinals are almost the same <u>Journal of Symbolic Logic</u> V.38 (1973) pp. 423-427.
- [15] K. Kunen and K. Prikry, On descendingly incomplete ultrafilters,

 Jour. Sym. Logic 36 (1971), pp. 650-652.
- [16] W. Mitchell, Ramsey cardinals and constructibility, <u>Journal of Sym</u>.

 <u>Logic</u>, 44 (1979), pp. 260-266.
- *[17] K. Prikry, On descendingly complete ultrafilters, in: A. R. D. Mathias
 & H. Rogers, Jr. (eds.), <u>Cambridge Summer School in Mathematical</u>
 <u>Logic</u>, Lecture Notes in Math. no. 337, Springer-Verlag (1973),
 pp. 459-488.