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It is a classical theorem of infinitary combinatorics that any
filter for the relation: «*(x)? must be a k-additive ultrafilter. In
this paper we explore the properties of filters for the generally wesker
square-bracket partition relations. In §1, we prove thata filter for
K+[K]§ can be extended to a k-additive ultrafilter, and that the existence
of a filter for |<+[|<]§implies K 1s weakly compact. In 82, we prove that a
Jonsson filter is, in at least one natural case, a Rowbottom filter. In 53,
we establish that most of our hypotheses imply the existence of an inner
model of ZFC with a measurable cardinal. In §4, we apply these techniques

to the filter of w-closed sets and the Axiom of Determinateness.

§0 Preliminaries

Throughout this paper, x will represent an infinite cardinal.
[K]a will represent the set of all increasing sequences of length o from
k, and [k]¥® will denote the collection of all finite subsets of K.

k satisfies K—>[sc]g (K-z»[.c];’Y) iff for all partitions F:[x]%sg
there is a set XSKJ|HI=K, such that F'[X]% g(| F"[X]*|sy). The set X is
called homogeneous for F. The relation K+[K]Z’< requires that
[7"[x]%) <y. In all these definitions, <y msy be substituted for q.
k()% is the relation (»[c]15 .

q:is a filter for a given partition relation if it is a uniform
filter, and if homogeneous sets in the filter may be found for all par-

titions. This is written by placing ¥ inside the bracket, for example

k(%1% with the understanding that % is a uniform filter over «.
8 ]



¢ is a Jonsson filter if k satisfies K+[¥]:w. ¢ is a & Rowbottom filter

if 4 satisfies K+[¥]<w

A, <8 for gl11 X.

Ultrafilters U which satisfy K+[U]§ are called Ramsey, and as
mentioned at the beginning such ultrafilters are xk-additive over K, and
hence k is either w or a measurable cardinal. Ultrafilters which satisfy
n+[U]§ were first discussed by A. Blass [1] who called them weekly Ramsey,
and since then, several results have appeared. TFor examplé, A. Blass [2]
shows that if w+{U]z, then U is a p-point, and A. Kanemori [T] provides
constructions for measurable cardinals.

We will have oécasion to call upon some further concepts involv-

ing ultrafilters. The Rudin-Keisler partial order is defined as follows:

If U is an ultrafilter over a set I, and V is over J, say V%ip iff there

i -1
is a function f: I + J such that V = £,(U), where £.(U) = {X c J|£7(x)eu}.
&We write U = RK Viff U < RK VandV f nK U. It is well-known that U = RK v

iff V = £,(U) for some f which is one-to-one on a set in U. U is said to

be RK-minimal iff there is no (non-prinecipal) V<pg U. It is well-known

that U is RK-minimal iff U is Ramsey.
An ultrafilter U is called (u,v)-regular iff there are v sets
in U any u of which have empty intersection. Such a family of sets is

called a (p,v)-regularizing family for U. An ultrafilter U over « is

A-decomposgble iff there is a wiform ultrafilter V bver 3 such that

"SRK U. This is equivalent to saying that there is a partition

oA, = x such that for any Xc A with |X| < a, ad Ay ¢ U. An ultrafilter

U over k is weakly normal iff whenever {a<k|f(a)<a} € U, there is a B < «

so that {a<k| f(a) < 8} ¢ U.
The regularity and decomposability of ultrafilters were first

considered by H. J. Keisler (see [3] L4.3); K. Prikry [17] is the definitive



paper on decomposability, and A. Kanamori [8] connects irregularity with
weak normality. W. W. Comfort and S. Negrepontis [L4] is a good general
reference for ultrafilters.

With the exception of 8§k, we assume the Axiom of Choice through-

out.

§1 Filters implying measurability and week compactness

Our chief tool in this section will be a technique for extend-
ing filters to wltrafilters.
Theorem 1.1 Let k, % satisfy K"*[?:]z, for some n<w, o, k regular. Then
¢ can be extended to a uniform ultrafilter ¢ with additivity at least

that of €.

o
Proof: Let n be least such that K?"[ﬁqi, and let F: [«k]-n

be a partition with no homogeneous set. For any Xck, let F_ be the

X
partition on [k]%
n-1 if F(p) = n-1 and p(0)4X
P (p) = S & 1f Flp) = 5-1 and p(0)ex
F(p) otherwise.
Since Ic-*[?']z_i_l, there is a set Yck homogeneous for Fy. Since |7 (Y1 =n,

exactly one of {n-1,n} fails to be in Fx“[Y]u. Furthermore, if Y' is any
set in ¥, YnY' is also homogeneous, so that neFX"[Y]a ity neF%[Y']a.
Thus we may define: ’9‘-’* = {XI for any or all Ye¥%, neF"X{Y]a }.

By construction, this is an ul‘tra,filte:;. That 45* extends ¥ follows from
the observation that neF;[Y]a. Since ¥ is uniform, it is easy to see
that k-8 7-'* for all 8<k. Thus sets in 7’* are unbounded and hence size
Kk by regularity.

Finally, suppose 8 is the additivity of ¥, and {Xa'}omn are



*
members of ¥ ,n<é . TFor each a, let Y e 4 be homogeneous for Fy , and
o

"let Y= n Y,. It follows that Y is homogeneocus for F,, X= n X and
a<n X a< a

n
neF;[Y]a, so that Xe%ﬁ. D_

For specific n and o, we can say more:
Theorem 1.2 Let .nc be a regular uncountaﬁle cardiﬁal and ‘5‘ a filter sat-
isfying « +[¥}2. Then k is a measurable cardinal.

Proof: If k- Pf]i then ¥ is a k-additive ultrafilter, as we re-
marked earlier. If k f[%]z, let F: [K]2+2 be a partition without a homo-
geneous set in ¥. Form the ultrafilter ¥* as in 1.1, and suppose its

additivity is 8<k. Let g: k»§ be a function such that for all a<d,

o %
g (o)ée . We define a partition G by

0 if gla) = g(B)

G(a,8) =4 1 if gla) < g(B)

A

2 if gla) > g(B)
Let Xe ¥ be homogeneous for G, i.e., F"[X]?#3. Since ¥ is uniform,

0 must be in G"[XJ?*. 1 must also be in G"[X]?, since otherwise

X;agsgrl(a) where B = g(nX).

By 6-additivity, this would imply g_l(d)€¥§. for some ©.

These facts together compel 2%G"[X]{ but then by ?egularity,
there must be n,y such that for a,Be X-n, y=gla)=g(B8). Since X;neﬁf,
and X - nsg_l(y), grl(Y)e$f a contradiction. 0 |

That « be regular in 1.2 is essential, as the following example
attests: Let <zn|new> be an increasing sequence of measurable cardinals,
with Uh a normal xnfadditive ultrafilter over K, Let U be a Ramsey
ultrafilter over w, i.e. w > [U]i . Such U exist under a variety

of assumptions, e.g. Martin's Axiom. Let X = swp K3 and define a uniform



ultrafilter V over X by: ‘

Xevy iff Xex & {annmneUn}eU.
A is singular, yet we can show that A+{V]§ : Suppose that F: [l}2+ 3.
Using the Kn—additivity of Un and the fact that <, [Un]z by a well-
known result of Rowbottom about normal ultrafilters, it is not difficult
to find sets X €U and i <3 for every new, and a function f: [u:]2~+ 3
such that:

(a) F" [x ] ={i},

(v) X 41 © ( Kn), and

A i Kn-!-l -
(e) if aeX and BeXn and m<n, then F(a,B) = f(m,n).

Finally, we can find a YeU and a fixed i<3 such that neY implies in =13,

and using the Ramseyness of U, a fixed j<3 such that £"[Y] = {j}.

Thus, if Z = 4Xn, then ZeV and F'[2]° = {1,J}.

e 1.3 Let ¥,k regular satisfy K+[‘¥}i. Then x satisfies K"’[K]i_ea
Proof: Let H:[K]2+n~2 be any partition. We can assume that «
is not measurasble. Thus, if we expand £ to ¥*} then we can suppose that
its additivity is some 6<k, and define g and G as in the proof of 1.2.
Let G, map [r:]2 into 3x(n-2) by:
G, (a,8) = (G(a,B8), H(a,B))

2 2 g 2
Since k>[¢]  implies LI let Xe¥be such that | ¢ "[X] ] <n-1.

Qg,n’
It follows that | {x|(0,k)eG,"[X] H =<n-3, since for some a, b, (1,8) and

2 -
(2,b) are in G;"[X] as sbove. Thus if we choose & such that ¥ = Xng !(a)

2
is size k, then |H"[Y] || <n-3. 0

Corollary 1.4 If k is a regular uncountable cardinal with a filter ¥

2
satisfying x>[¥],, then k is a weakly compact cardinal.

In a similar manner to the above, one may prove for Kk regular



that the following imply measurability:

3 L n
K+[§5]13 K**W]_ig ¥l (nys e

and in general:

n g o \
K-»[qf]k | implies K“*[K]K-‘_l_h(n}

vhere h(n) is the number of different ways n objects may be prewellordered.

The chief open question here is: does K:-%-[ﬁi imply measurability
for regular k? An example can be found of a k, and an ultrafilter
such that ac—w—[#]i , but K#[‘f’]g. In the example, however, k is
measureble, and ¥ is formed by gluing together a quantity of normal
measures. In §3, we shall establish that K-*[Fji for an n<w implies
that there is an inner model with a measurable cardinsl.
We now consider infinite subscripts.
.Theorem 1.5 Given k,o0, % satisfying K"‘ﬂ‘?}z . then K-r[a-"]z for some n.
Proof: Suppose the theorem is false, and for each n, Fn
is a partition with no homogeneous set in ¢ . Call & set Ts[m]a
unavoidable if Tn[X]%#§ for all Xe #. Call Sc[k]® good if for all k<u,
there is < W such that at least k of the sets
Sanl(O), SnF;I(l),..., SnF:ll(n—l)
are unavoidable. Note that if S is good and S is partitioned into m
pieces, S = 3 ymsj’ one of these pileces must be good, for‘ if not, let k
be such that for all n<w and j<m, fewer than k of the sets
{Sjanl(i)}J<m, i<« 8¢ unavoidable. Choose n so that at least mk of.
the sets 'BnFal(i)}i<n are unavoidable. Then mk of the sets {S nF;ki)}j

J

. 21
are unavoidable, hence for some j<m, k of the sets {S nFI1 (i)}i<n

J

are unavoidable.

We now construct disjoint unavoidable sets {’l‘i}i <« 204 good sets

<a,i<m



: il
so,c_slgsz... such that Si”Tf @ for j<i as follows: The sets F, (0)
1

and F, (1) are both unavoidable and at least one is good. Let S, be the
one which is good, T0 the other.
Given Ti’ Si choose n so that at least two of the sets:

g =
{SinFn (j)}Jq1 are unavoidsble.

Let Si+1 be one which is good, and Ti+ another which is unavoidable.

1
Finally, we define that partition F:[k]%w by:
] £
F(P) = n i pGTn
0 otherwise
o
By construction, F (n)2T_ is unavoidable for each n<w,
oy

violating K+[¥]$. O

Theorem 1.6 If there exist x,0,4 which satisfy Kﬁ{f]z’(w , then
there exists a measurable cardinal.

Proof: By 1.5 and 1.1, 4 can be extended to an ultrafilter L¥*.
The stronger relation here shows that 1* is iﬂ»additive since if

YA, = k is a partition of x into w parts, let X ¢ ¥*
be homogeneous for the partition:

F(p) = that n such that p(O)e_An.
Since F"[X]” is finite, there is some n_  such that X & _ Y An, and
so some A, € F ‘

Thus the additivity of ¥ is greater than U, and by the usual
arguments there is a measurable cardinal. 1]

The last result of this section is spplicable only to situations
with limited amounts of Choice.
Theorem 1.7 (DC) If k,0, ¥ satisfy K+[¥]$ , then either K+[¥]$,$w

or there is & non-principal ultrafilter on w.

Proof: Suppose K%{?]aw < and let F:[k]%w witness this fact.
2



Altering our notation somewhat, call a set Bcw avoidable if
F'[x]% B=¢ for some X ¢% , unavoidable otherwise.
Let B = {n|{n} is avoidable}. The set w-B cannot be finite, for then
the partition:
| ng  if F(p)e B

G(p) =
F(p) otherwise

(where ngew-B) would contradict K+[¥]z . Similarly, B itself is not
avoidable, for if F"[X]%nB=§ for some Xe¥, then F:[X]%+w-B would again
contradict x+[¥]$ .
Claim: There is an infinite subset DcB, unavoidable, such that D cannot
be split into two unavoidable subsets. If not, split B itself into two
unévoiﬁable sets Dy and Ay;. Next split D; into two unavoidable sets D2
and A and continue this procedure which results in an infinite disjoint
collection {Ah}n<w of unavocidable sets. Then the partition:

n if F(p) A

c(p) =
0 otherwise

contradicts k>[4]% , establishing the claim.

Finally? let D=B be as claimed. Let U be the collection of
unavoidable subsets of ﬁ. That U is a non—principa; ultrafilter on D
is straight-forward. We show for exampie, that D is w-additive. If
S, T € U then SAT must be unavoidable, otherwise S-T and T-S would be

disjoint unavoidable subsets of D, a contradiction. g

§2 Jonsson and Rowbottom Filters
In [14] ‘E. M. Kleinberg proved that Jonsson and Rowbottom

cardinals are almost the same. We prove here a similar result for filters.



It is stated without proof in [7] (see 6.10, 6.11), where connections with

Prikry forecing and the structure theory of ultrafilters over a measursble

cardinal are made. Specifically,

Theorem 2.1 Let k be the least cardinal with a Jonsson filter. Then any
Jonsson filter on «k is a 6-Rowbottom filter for some &<k.

Proof Let k be as stated, ¥ a Jonsson filter.

We first claim that K; ¥ satisfy K+[¥]§m for some 68<k.
If not, then for each 8<k , let Faz[xl<w+6 be a partition such that for
ell Xe , F4[x]™=6. Define F:[x]™» by:
Floy,0p, Ceesd ) = F“l(az’ i an) 4 ks
0 otherwise

No Xe ¥ can be homogeneous for F, since for y<k we can choose

8>y, 6eX and ordinals aj,...,a. eX, §<o; such that Fﬁ(al,...,aj} = v.

J

_This contradicts x~ [#}:w.

Let 6§ be least such that K*[?]gw We next claim that K+[¥];m<6'

<
Let G:[K]<m+6 be any partition. Since 8§ is least, again choose Fa:{K] “xa
<
for each 0x§ such that Fa"[X]<w a, for all Xe¥. Define H:[r] "+

by:
Y )

FG(al, ik ig ak) (ak+l, vees Ykim

H(01s oees an) = ifn=25"5¢
0 otherwise ‘

Let X be homogeneous for H. Then || G"[X]“Y <6, otherwise, if n<é there

would be B1,...,8 €X such that G(By,...,8,)>8 and then Y1seeesY €X

such that FG(Bl,---,Bk

< <w
61,...Bk’Y1,...Ym one could show that nei"[X] ", contradicting K+[¢J6 A

)(Yf...,ym) = n and by expanding the set

Lastly, we claim that ¥ is a &-Rowbottom filter,

; - K+[1J;w<6 for all A,8<A<k. For this it is sufficient to show
A ]



H(ai,:.

10

K+[¥]<T<A for all such A since givenE&[ﬁrm+A, we can find successive
sets Xj2Xp2...2X with HF"[xi]<ﬂ| a decreasing sequence of ordinals
until I}F"xk]‘“’ﬂ <5 :

Given, <A<k suppose that F:[n]<w¢l is a partition such that
IF" X1 =2 for all Xe ¥ . Let 3.’}@2" be the filter defined by: Ae¥,
if for some Xe¥, F"[x]“cA. ¥A is easily seen to be a filter on A.

We will show that ¥i is actually a Jonsson filter, contradicting the

. leastness of k. This will prove the theorem. Suppose G:[K]<m+l.

<
Since x+[¥]6m and hence Ké{x];w, we define a partition H:[K]jwl such
thet whenever Xe % and H'[X]““#1, then G"[F"[X]™1#% . since F"[x]"¥,,

951 will be a Jonsson filter. Specifically,

.
G(F(ai seeesly | F(ai seeesly ), ...,F(m__.L seens g ))
is1 1.k 251 2ok, m,] m.k
N m n n n
s n)= « ifn=2p1 P2 .--P B and
i i i
: 3
for j<m, n, = 2ka J’lp “’2...pkj’k3 (prime factorizations)
d 1 . 3
\ O otherwise
H has the required property. a

§3 Inner Models of Measurability

Turning from direct combinatorial consequences to consistency
strength, in this section we shall establish that, in most cases having
K*[?]i for some n<uw implies the existence of an inner mo@el of ZFC with
s measurable cardinal. We also establish that the same conclusion can be
drawn from the existence of a Jonsson filter. The following simple
observation has its own intrinsic interest.

Theorem 3.1 If U is an ultrafilter over k such that K+[U]i+l and V is &
uniform ultrafilter over A such that V <RK‘U’ then l+[V]i. Hence, there

2
is no RK descending chain of length n starting with any U satisfying x+[U]n.



i1

Proof: Let f, (U) = V, and suppose that F:[A]%*n.
Define G: [K]24n+l by:
F(£(a), £(8)) if £(a) # £(8)
G(o, B) =
n ‘ . otherwise.
By hypothesis, there is an XeU and an i < n+l such that i ¢ G“[X]z.
But i # n, else f would be one-to-one on X, contradicting V “ex U
Hence, if Y = "X € V, we have F“[Y]2 #n.

The second sentence of the theorem follows from the fact that
x#[U}Z iff U is RK-minimal.

Next, we‘campile several facts from which our main result will
follow. We éhall ohly provide a proof for the first, which is an instance
of the model-theoretic universality of regular ultrapowers (see [3] p. 207),
and references for the rest. |
Theorem 3.2. If U is an (w,ZA)—regular ultrafilter over k¥ and V is any

ultrafilter over A, then V< U.

RK
Proof: Let {AX|ngl} be a (m,EA)-regularizing family for U, indexed by
subsets of A. Define f:k>*A by choosing

fla) € n{X|XeV & aeAX}.
This is possible, since this last set is in V. It is not difficult to see

that £, (U) = V. 0

: ' +
Theorem 3.3 (Kunen-Prikry [15]) If an ultrafilter is A.-decomposable

and )\ is regular, then the ultrafilter is A-decomposable.

Theorem 3.4

(a) (Kanamori [8]) If U is a uniform non-(k, K+)-regular ultra-
filter over K+; then there is such an ultrafilter éRK U which is also
.weakly normal.
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(b) (Kenamori [8] and Ketonen [9] independently)
If U is a uniform ultrafilter over a regular « which is not (w A)-regular

for some A<k, then there is such an ultrafilter <__ U which is also weskly

RK

normnal,

Theorem 3.5

(a) ensen [5]) Suppose that k¥= ¢ and there is a uniform
weakly normal ultrafilter over k. Then there is an inner model with a
measurable cardinal. '

(b) (Koppelberg for regular k[5]; Donder (unpublished) for
singular k). Suppose that there is a uniform ultrafilter over k which
is A-indecomposeble for some regular A<k. Then there is an inner model
with a measurable cardinal.

The main result is at hand:
Theorem 3.6: Suppose that there are «k and ¥ satisfying K+F¥]i for some
n<w where either

(1) w2 w3 if n 2 k4, or else

(ii) The GCH holds and k >uw.
Then there is an inner model with a measurable cardinal.
Proof: By 1.2 and 1.5 we can suppose that 3 < n <wand by 1.1 we can
replace 1:by an ultrafilter U. For case (1), 3% suffices bf 3.5(b) to
establish that U is not wn_3
repeated applications of 3.1 and 3.3 there would be an RK-descending chain

-decomposable. So, suppose it were. By

U ERK. Vl >RK V2 )RK .5 Where Vi is uniform over W o g and
2
wn—2—i+[v%]n+l—i. But when i = n-3, we would be confronted with
w [V _] , contradicting 1.k.
1 -3

For case (ii), note first that U cammot be (w, 2%)-regular, else

by 3.2 there would be too many ultrafilters below U in the RK order.
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Yor example, if V and W are ultrafilters over I and J respectively,
define V x W over I x J by

X eVxWire {i]{j| <1, J >eX} eW} eV.
Then set V2 = V x V and Vk+l = Yk x V. VWhen V is a non-principal ultra-
filter over w, the projection to the first coordinate verifies that
Ve VP ans whuE YR n U would contradict 3.1

Next, by CH if k = w, we can assume by 3.4(a) that U is weakly

1
normal. If k > wy, we can first assume that k < u by case (i) and thus
thet k is regular. By CH and 3.4(b), we can again assume that U is weakly
normal.

Finally, by 3.5(a) we can conclude that there is an inner model

with a measurable cardinal for case (ii) as well. O

We can draw the same conclusion for Jonsson filters:

Theorem 3.7: If there is a Jonsson filter, then there is an inner model
with a measurable cardinal.
Proof: Let K+[¥];”’ be as in the second paragraph of the proof of 2.1.
It is not difficult to see that & must be regular: If not, there is a
6:[k]*® » cf(§) such that G"[X]"Y = cf(8) for any X € ¥, and proceed
Just as in the proof of K+[¥];T<G to get a contradiction.

Secondly, by the argument of 156 using a partition aé%Au = K,
we can show that any ultrafilter U extending 4 must be G;indecomposable.

These facts together with 3.5(b) imply that there is an inﬁer
model with a measurable cardinal. 0

This result contrasts with a result of Mitchell [16] that a
Jonsson cardinal is Jonsson (in fact, Ramsey) in K, the core model of
Dodd and Jensen. éince there are no inner models of K with. & measursble

cardinal, the consistency strength of having a Jonsson filter is strictly



1k

stronger than that of merely having a Jonsson cardinal.

§4 Applications

In [10], E. M. Kleinberg proved that the partition relation
k>(k)* implies that the filter U, generated by the w-closed, unbounded
sets is an ultrafilter on k. If ACm is also assumed, the additivity of
Um is at leastﬁ(l, and is a measurable cardinal. With our techniques,
we can improve this. |
Theorem k4.1 AC + K+[K]$ imply there is a measurable cardinal.

Proof: The relation K+[K]$ in effect implies
K+[Uw]i since if F:[x]lsw, let F*:[K]m+w
be the partition: F(p)=F(uwp), then if Xk is homogeneous for F', then
(X)m’ the collection of w-sups from X is closed and unbounded, and is
homogeneous for F as well.

By 1.5, K*[Uw]; for some n, and by 1.1, U can be extended to
an ultrafilter UZ (ACw is sufficient for these purposes.)
Finally, ACw implies this additivity is at leas#}(l, and hence a
measurable cardinal. U

For any regular cardinal A, let UA be the filter generated by the
A-closed, unbounded sets, Well-ordered choice of length k implies that UA
is not an ultrafilter (see [11]).

In spplying the theorems of §1 here, our advantage is the natural

additivity of Uk'

o a
A]B l]Bs<B

Proof: Let F:[k]®>8 be any partition. In the terminology of

Theorem k4.2 (ACB) k>[U o, AsB<k implies k-[U

1.5, let B = {§|{6} is avoidable}. For each §¢B, choose X .U, such that

6¢F"[X6]a. Since each X contains a A-closed, unbounded subset, we may
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assume Xﬁ is itself A-closed and unbounded. By usual arguments,
X = s0p XS is A—élosed and unbounded, and F"{X]anB=¢. It follows that
| 8-H <8(otherwise F}[X]® would contradict K"[U;\]g) and so | F"[x]1% <8. O
Theorem 4.3 (ACw)K+[Ul]$,a A<k implies K+[Ul]$?k for some k<uw.

Proof: By 1.1 and 4.2, K+[Uk]z’<w and K+[Ux]g for some n.
Together these imply the theorem, for given F, we can find XeUk such that
ﬂF"[X]ﬂ|<m , and hence, by repeated applications of K*[Ul]; to suitable
partitions can reduce the size of the range further to a set of size less
than n. a

In [12], E. M. Kleinberg proved as a consequence of the Axiom of
Determinateness (AD) and Dependent Choice (DC) that Nn is a Jonsson
cardinal for all n<w, and that )(w is Rowbottom. In [6], J. M. Henle
proved that the { ‘Kn}n':w each had a Jonsson filter. The question re-
mained open whether or not Km had a Rowbottom filter. This question will
not be answered here, but we do exhibit a partition relation satisfied by

}K:u for which flw has no filter.

Theorem 4.4 AD+DC+ZF  |" R -~ X, 12 but there is no filter ¥ on X o
satisfying ?’\m-*[ ‘;]i".

Proof: The second part of this theorem follows from the work of
$l. By 1.7 eitherjiﬁ+[¥]:T<w or there is a nonfprincip;l ultrafilter
on w. ‘The first relation is demonstrated false by the ﬁartition,

F:[ Rw]2->m defined by F(a,8) = the least n such that a<X. That the
second is false is a well-known consequence of AD.

To prove the first part of the theorem, we use Kleinberg's methods
of [13]. Let F:[Nm]zéw be any partition. Theorem 6.4 of [5] proves
that if satisfiés k+(k), then a related cardinal K, is Rowbottom.

In the case of AD, « is}il and Km is ](m' The proof deals with partitions
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< .

of [Km] “ into ¥ pieces, ‘r<}'{w. We consider here only the simpler problem
of the partition F. The proof proceeds by finding subsets Dn of K,

(for AD, Rn) each of size Kk,
for all n<w andI!F"[anDmﬂl =1 for all n,m<w.

such thet (for our case) ﬂF:[Dn]ZH =1.

Let g:ww, h:[w]?+2 be defined by:

0 if F“[Dn]2 is a multiple of 3
g(n) =
1l otherwise
o if F'[D xDm] is even
and h(n,m) = B

1 otherwise
By Ramsey's theorem, let A be an infinite subset of ® such that h is
constant on [A]?. Let B be an infinite subset of A such that g is
constant on B. It follows that E = néjB I)n is our desired homogeneous
set for F. It has cerdinality X , and F:[E]? will be disjoint from
one of the four sets: even multiples of 3, odd multiples of 3, even

non-multiples of 3, and odd non-multiples of 3. 0
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