From replica Bethe ansatz solution of KPZ growth to non-crossing directed polymers

P. Le Doussal (LPTENS)

with : Pasquale Calabrese (Univ. Pise, SISSA) Alberto Rosso (LPTMS Orsay)

Thomas Gueudre (LPTENS,Torino)
most recent: Andrea de Luca (LPTENS,Orsay)

- many discrete models in "KPZ class" exhibit universality related to random matrix theory: Tracy Widom distributions: of largest eigenvalue of GUE,GOE..

RBA: method integrable systems (Bethe Ansatz) +disordered systems(replica)

- provides solution directly continuum KPZ eq./DP (at all times) KPZ eq. is in KPZ class!
- also to discrete models => allowed rigorous replica

Outline:

Part I

- KPZ equation, KPZ class, random matrices,Tracy Widom distributions.
- solving KPZ at any time by mapping to directed paths then using (imaginary time) quantum mechanics attractive bose gas (integrable) => large time TW distrib. for KPZ height
- droplet initial condition
P. Calabrese, PLD, A. Rosso EPL 9020002 (2010)
P. Calabrese, M. Kormos, PLD, EPL 10011 (2014)
- flat initial condition P. Calabrese, PLD, PRL 106250603 (2011)
J. Stat. Mech. P06001 (2012)
- KPZ in half space T. Gueudre, PLD, EPL 10026006 (2012).

Part II

- Non-crossing probability of directed polymers

Andrea De Luca, PLD, arXiv1505.04802.
Generalized Bethe-Ansatz
Phys. Rev. E 92, 040102 (2015)
Macdonald process (Borodin-Corwin)

Kardar Parisi Zhang equation

Phys Rev Lett 56889 (1986)

$$
\overline{\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)}=D \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

- 1D scaling exponents $\quad h \sim t^{1 / 3} \sim x^{1 / 2} \quad x \sim t^{2 / 3}$
- $\mathrm{P}(\mathrm{h}=\mathrm{h}(\mathrm{x}, \mathrm{t})$) non gaussian
even at large time PDF depends on some details of initial condition related to RMT
flat $\quad h(x, 0)=0$ wedge $h(x, 0)=-w|x|$ (droplet)
$\lambda_{0}=0 \quad$ Edwards Wilkinson $\mathrm{P}(\mathrm{h})$ gaussian
- Turbulent liquid crystals

Takeuchi, Sano PRL 104230601 (2010)

$W(t) \equiv \sqrt{\left\langle[h(x, t)-\langle h\rangle]^{2}\right\rangle}$
$h(x, t) \simeq_{t \rightarrow+\infty} v_{\infty} t+\chi t^{1 / 3}$
χ is a random variable

$$
h \sim t^{1 / 3} \sim x^{1 / 2} \quad \text { also reported in: }
$$

- slow combustion of paper
- bacterial colony growth
- fronts of chemical reactions
- formation of coffee rings via evaporation
J. Maunuksela et al. PRL 791515 (1997)

Wakita et al. J. Phys. Soc. Japan. 66, 67 (1996) S. Atis (2012)

Yunker et al. PRL (2012)

$h \simeq v_{\infty} t+(\Gamma t)^{1 / 3} \chi$,

skewness =

$$
\frac{<(h-<h>)^{3}>}{<(h-<h>)^{2}>^{3 / 2}}
$$

Large N by N random matrices H , with Gaussian independent entries eigenvalues $\lambda_{i} \quad i=1, \ldots N$
$P[\lambda]=c_{N, \beta} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} e^{-\frac{\beta N}{4} \sum_{k=1}^{N} \lambda_{k}^{2}}$
1 (GOE) real symmetric
$\beta=2$ (GUE) hermitian
4 (GSE) symplectic
Universality large N :

- DOS: semi-circle law

histogram of eigenvalues $N=25000$
- distribution of the largest eigenvalue
$H \rightarrow N H$

$$
\lambda_{\max }=2 N+\chi N^{1 / 3}
$$

$$
\operatorname{Prob}(\chi<s)=F_{\beta}(s)
$$

Tracy-Widom distributions (largest eigenvalue of RM)

GOE $\quad F_{1}(s)=\operatorname{Det}\left[I-K_{1}\right] \quad \begin{aligned} & \text { Fredholm } \\ & \text { determinants }\end{aligned}$

$$
K_{1}(x, y)=\theta(x) A i(x+y+s) \theta(y) \quad(I-K) \phi(x)=\phi(x)-\int_{y} K(x, y) \phi(y)
$$

GUE $\quad F_{2}(s)=\operatorname{Det}\left[I-K_{2}\right]$
$K_{2}(x, y)=K_{A i}(x+s, y+s)$

$K_{A i}(x, y)=\int_{v>0} A i(x+v) A i(y+v)$
Ai(x-E)
is eigenfunction E particle linear potential

discrete models in KPZ class/exact results

- polynuclear growth model (PNG)

Prahofer, Spohn, Baik, Rains (2000)

- totally asymmetric exclusion process (TASEP)

Red boxes are added independently at rate 1. Equivalently, particles with no neighbour on the right jump independently with waiting time distributed as $\exp (-x) d x$.

Exact results for height distributions for some discrete models in KPZ class

- PNG model droplet IC
Baik, Deft, Johansson (1999)

$$
h(0, t) \simeq_{t \rightarrow \infty} 2 t+t^{1 / 3} \chi \quad \text { GUE }
$$

Prahofer, Spohn, Ferrari, Sasamoto,.. (2000+)
flat IC $\quad \chi=\chi_{1} \quad$ GOE
multi-point correlations
Airy processes

$A_{2}(y)$	GUE
$A_{1}(y)$	GOE

$$
h\left(y t^{2 / 3}, t\right) \simeq_{t \rightarrow \infty} 2 t-\frac{y^{2}}{2 t}+t^{1 / 3} A_{n}(y)
$$

- similar results for TASEP

Johansson (1999), ...

Exact results for height distributions for some discrete models in KPZ class

- PNG model droplet IC
Baik, Deft, Johansson (1999)

$$
h(0, t) \simeq_{t \rightarrow \infty} 2 t+t^{1 / 3} \chi \quad \text { GUE }
$$

Prahofer, Spohn, Ferrari, Sasamoto,.. (2000+)
flat IC $\quad \chi=\chi_{1} \quad$ GOE
multi-point correlations
Airy processes
$A_{2}(y) \quad$ GUE $\quad h\left(y t^{2 / 3}, t\right) \simeq_{t \rightarrow \infty} 2 t-\frac{y^{2}}{2 t}+t^{1 / 3} A_{n}(y)$
$A_{1}(y) \quad \mathrm{GOE}$

- similar results for TASEP

Johansson (1999), ...
question: is KPZ equation in KPZ class ?

Continuum
KPZ equation

Directed paths (polymers) in a random potential

\dagger
Quantum mechanics of bosons (imaginary time)

Kardar 87

- Droplet (Narrow wedge) KPZ/Continuum DP fixed endpoints

Replica Bethe Ansatz (RBA)

- P. Calabrese, P. Le Doussal, A. Rosso EPL 9020002 (2010)
- V. Dotsenko, EPL 9020003 (2010) J Stat Mech P07010 Dotsenko Klumov P03022 (2010).

Weakly ASEP

- T Sasamoto and H. Spohn PRL 104230602 (2010)

Nucl Phys B 834523 (2010) J Stat Phys 140209 (2010).

- G.Amir, I.Corwin, J.Quastel Comm.Pure.Appl.Math. 64466 (2011)
- Droplet (Narrow wedge) KPZ/Continuum DP fixed endpoints

Replica Bethe Ansatz (RBA)

- P. Calabrese, P. Le Doussal, A. Rosso EPL 9020002 (2010)
- V. Dotsenko, EPL 9020003 (2010) J Stat Mech P07010 Dotsenko Klumov P03022 (2010).

Weakly ASEP

- T Sasamoto and H. Spohn PRL 104230602 (2010)

Nucl Phys B 834523 (2010) J Stat Phys 140209 (2010).

- G.Amir, I.Corwin, J.Quastel Comm.Pure.Appl.Math. 64466 (2011)
- Flat KPZ/Continuum DP one free endpoint (RBA)
P. Calabrese, P. Le Doussal, PRL 106250603 (2011) and J. Stat. Mech. P06001 (2012)

ASEP J. Ortmann, J. Quastel and D. Remenik arXiv1407.8484 and arXiv 1503.05626

- Droplet (Narrow wedge) KPZ/Continuum DP fixed endpoints

Replica Bethe Ansatz (RBA)

- P. Calabrese, P. Le Doussal, A. Rosso EPL 9020002 (2010)
- V. Dotsenko, EPL 9020003 (2010) J Stat Mech P07010 Dotsenko Klumov P03022 (2010).

Weakly ASEP

- T Sasamoto and H. Spohn PRL 104230602 (2010)

Nucl Phys B 834523 (2010) J Stat Phys 140209 (2010).

- G.Amir, I.Corwin, J.Quastel Comm.Pure.Appl.Math. 64466 (2011)
- Flat KPZ/Continuum DP one free endpoint (RBA)
P. Calabrese, P. Le Doussal, PRL 106250603 (2011) and J. Stat. Mech. P06001 (2012)

ASEP J. Ortmann, J. Quastel and D. Remenik arXiv1407.8484 and arXiv 1503.05626

- Stationary KPZ

Cole Hopf mapping

KPZ equation:

$$
\partial_{t} h=\nu \partial_{x}^{2} h+\frac{\lambda_{0}}{2}\left(\partial_{x} h\right)^{2}+\eta(x, t)
$$

define:

$$
\begin{aligned}
Z(x, t)=e^{\frac{\lambda_{0}}{2 \nu} h(x, t) \quad \lambda_{0} h(x, t)=} & T \ln Z(x, t) \\
& T=2 \nu
\end{aligned}
$$

it satisfies:

$$
\partial_{t} Z=\frac{T}{2} \partial_{x}^{2} Z-\frac{V(x, t)}{T} Z
$$

$$
\lambda_{0} \eta(x, t)=-V(x, t)
$$

describes directed paths in random potential $\mathrm{V}(\mathrm{x}, \mathrm{t})$

$$
\partial_{t} Z=\frac{T}{2 \kappa} \partial_{x}^{2} Z-\frac{V(x, t)}{T} Z
$$

initial conditions

$$
e^{\frac{\lambda_{0}}{2 \nu} h(x, t)}=\int d y Z(x, t \mid y, 0) e^{\frac{\lambda_{0}}{2 \nu} h(y, t=0)}
$$

1) DP both fixed endpoints $Z\left(x_{0}, t \mid x_{0}, 0\right)$

KPZ: narrow wedge <=> droplet initial condition

$$
\begin{gathered}
h(x, t=0)=-w|x| \\
w \rightarrow \infty
\end{gathered}
$$

2) DP one fixed one free endpoint $\quad \int d y Z\left(x_{0}, t \mid y, 0\right)$

KPZ: flat initial condition

$$
h(x, t=0)=0
$$

Schematically

$$
Z=e^{\frac{\lambda_{0} h}{2 \nu}}
$$

calculate

$$
\overline{Z^{n}}=\int d Z Z^{n} P(Z) \quad n \in \mathbb{N}
$$

"guess" the probability distribution from its integer moments:

$$
P(Z) \rightarrow P(\ln Z) \rightarrow P(h)
$$

Quantum mechanics and Replica..

$\mathcal{Z}_{n}:=\overline{Z\left(x_{1}, t \mid y_{1}, 0\right) . . Z\left(x_{n}, t \mid y_{n} 0\right)}=\left\langle x_{1}, . . x_{n}\right| e^{-t H_{n}}\left|y_{1}, . . y_{n}\right\rangle$
$\partial_{t} \mathcal{Z}_{n}=-H_{n} \mathcal{Z}_{n}$
$x=T^{3} \kappa^{-1} \tilde{x} \quad, \quad t=2 T^{5} \kappa^{-1} \tilde{t}$
drop the tilde..

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Attractive Lieb-Lineger (LL) model (1963)

what do we need from quantum mechanics?

- KPZ with droplet initial condition
μ eigenstates
= fixed endpoint DP partition sum
E_{μ} eigen-energies

$$
e^{-t H}=\sum_{\mu}\left|\mu>e^{-E_{\mu} t}<\mu\right|
$$

$\overline{Z\left(x_{0} t \mid x_{0} 0\right)^{n}}=<x_{0} \ldots x_{0}\left|e^{-t H_{n}}\right| x_{0}, . . x_{0}>$
symmetric states = bosons

$$
=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0} \ldots x_{0}\right) \Psi_{\mu}\left(x_{0} \ldots x_{0}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

what do we need from quantum mechanics?

- KPZ with droplet initial condition
μ eigenstates
= fixed endpoint DP partition sum
E_{μ} eigen-energies

$$
e^{-t H}=\sum_{\mu}\left|\mu>e^{-E_{\mu} t}<\mu\right|
$$

$\overline{Z\left(x_{0} t \mid x_{0} 0\right)^{n}}=<x_{0} \ldots x_{0}\left|e^{-t H_{n}}\right| x_{0}, . . x_{0}>$
symmetric states = bosons

$$
=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0} \ldots x_{0}\right) \Psi_{\mu}\left(x_{0} \ldots x_{0}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

- flat initial condition

$$
\overline{\left(\int_{y} Z\left(x_{0} t \mid y 0\right)\right)^{n}}=\sum_{\mu} \Psi_{\mu}^{*}\left(x_{0}, . x_{0}\right) \int_{y_{1}, y_{n}} \Psi_{\mu}\left(y_{1}, . y_{n}\right) \frac{1}{\|\mu\|^{2}} e^{-E_{\mu} t}
$$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Bethe Ansatz:

all (un-normalized) eigenstates are of the form (plane waves + sum over permutations)

$$
\begin{array}{r}
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}} \\
E_{\mu}=\sum_{j=1}^{n} \lambda_{j}^{2}
\end{array}
$$

They are indexed by a set of rapidities $\lambda_{1}, . . \lambda_{n}$

LL model: n bosons on a ring with local delta attraction

$$
H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)
$$

Bethe Ansatz:

all (un-normalized) eigenstates are of the form (plane waves + sum over permutations)

$$
\begin{array}{r}
\mathbb{\Psi}_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}} \\
E_{\mu}=\sum_{j=1}^{n} \lambda_{j}^{2}
\end{array}
$$

They are indexed by a set of rapidities $\lambda_{1}, . . \lambda_{n}$
which are determined by solving the N coupled Bethe equations (periodic $B C$)

$$
e^{i \lambda_{j} L}=\prod_{\ell \neq j} \frac{\lambda_{j}-\lambda_{\ell}-i \bar{c}}{\lambda_{j}-\lambda_{\ell}+i \bar{c}}
$$

n bosons+attraction => bound states

Bethe equations + large L => rapidities have imaginary parts

- ground state $=$ a single bound state of n particules Kardar 87

$$
\psi_{0}\left(x_{1}, . . x_{n}\right) \sim \exp \left(-\frac{\bar{c}}{2} \sum_{i<j}\left|x_{i}-x_{j}\right|\right) \quad E_{0}(n)=-\frac{\bar{c}^{2}}{12} n\left(n^{2}-1\right)
$$

$\overline{Z^{n}}=\overline{e^{n \ln Z}} \quad \sim_{t \rightarrow \infty} e^{-t E_{0}(n)} \sim e^{\frac{\bar{c}^{2}}{12} n^{3} t} \quad$ exponent $1 / 3$
n bosons+attraction => bound states
Bethe equations + large L => rapidities have imaginary parts

- ground state $=$ a single bound state of n particules Kardar 87

$$
\begin{aligned}
& \psi_{0}\left(x_{1}, . . x_{n}\right) \sim \exp \left(-\frac{\bar{c}}{2} \sum_{i<j}\left|x_{i}-x_{j}\right|\right) \\
& \overline{Z^{n}}=\overline{e^{n \ln Z}} \quad E_{t \rightarrow \infty}(n)=-\frac{\bar{c}^{2}}{12} n\left(n^{2}-1\right) \\
& -t E_{0}(n)
\end{aligned} e^{\frac{\bar{c}^{2}}{12} n^{3} t} \quad \text { exponent } 1 / 310
$$

can it be continued in n ? NO !
information about the tail
of the distribution of "free energy" $f=-\ln Z=-\mathrm{h}$

$$
P(f) \sim_{f \rightarrow-\infty} \exp \left(-\frac{2}{3}(-f)^{3 / 2}\right)
$$

n bosons+attraction => bound states
Bethe equations + large L => rapidities have imaginary parts
Derrida Brunet 2000

- ground state $=$ a single bound state of n particules Kardar 87

need to sum over all eigenstates !

$$
E_{0}(n)=-\frac{\bar{c}^{2}}{12} n\left(n^{2}-1\right)
$$

- all eigenstates are: All possible partitions of n into ns "strings" each with mj particles and momentum kj

$$
\begin{aligned}
& \begin{aligned}
\lambda_{j, a_{j}}=k_{j}+\frac{i \bar{c}}{2}\left(m_{j}+1-2 a_{j}\right) \quad a_{j} & =1, . . m_{j} \\
j & =1, . . n_{s}
\end{aligned} \\
& \Rightarrow \quad E_{\mu}=\sum_{j=1}^{n_{s}}\left(m_{j} k_{j}^{2}-\frac{\bar{c}^{2}}{12} m_{j}\left(m_{j}^{2}-1\right)\right)
\end{aligned}
$$

Integer moments of partition sum: fixed endpoints (droplet IC)

$$
\begin{array}{ll}
\overline{Z^{n}}=\sum_{\mu} \frac{\left|\Psi_{\mu}(0 . .0)\right|^{2}}{\|\left.\mu\right|^{2}} e^{-E_{\mu} t} & \Psi_{\mu}(0 . .0)=n! \\
\overline{\hat{Z} n}=\sum_{n_{s}=1}^{n} \frac{n!}{n_{s}!(2 \pi \bar{c}) n_{s}} & n=\sum_{j=1}^{n_{s}} m_{j} \\
\left(m_{1}, \ldots m_{n_{s}}\right)_{n}
\end{array}
$$

$$
\int \prod_{j=1}^{n_{s}} \frac{d k_{j}}{m_{j}} \Phi[k, m] \prod_{j=1}^{n_{s}} e^{m_{j}^{3} \frac{\bar{c}^{2} t}{12}-m_{j} k_{j}^{2} t}
$$

$$
\Phi[k, m]=\prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} c^{2} / 4}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} c^{2} / 4}
$$

how to get $P(\ln Z)$ i.e. $P(h)$?

$$
\ln Z=-\lambda f
$$

$$
\begin{aligned}
& \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3} \\
& f=-\ln Z=-\mathrm{h} \\
& \begin{array}{l}
\text { random variable } \\
\text { expected } \mathrm{O}(1)
\end{array}
\end{aligned}
$$

introduce generating function of moments $\mathrm{g}(\mathrm{x})$:

$$
g(x)=1+\sum_{n=1}^{\infty} \frac{\left(-e^{\lambda x}\right)^{n}}{n!} \overline{Z^{n}}=\overline{\exp \left(-e^{\lambda(x-f)}\right)}
$$

so that at large time:

$$
\lim _{\lambda \rightarrow \infty} g(x)=\overline{\theta(f-x)}=\operatorname{Prob}(f>x)
$$

how to get $P(\ln Z)$ i.e. $P(h)$?

$$
\ln Z=-\lambda f
$$

$$
\lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

$$
f=-\ln Z=\mathrm{h} \quad \text { random variable }
$$ expected $O(1)$

introduce generating function of moments $\mathrm{g}(\mathrm{x})$:

$$
g(x)=1+\sum_{n=1}^{\infty} \frac{\left(-e^{\lambda x}\right)^{n}}{n!} \overline{Z^{n}}=\overline{\exp \left(-e^{\lambda(x-f)}\right)} \quad \begin{aligned}
& \text { what we aim } \\
& \text { to calculate }= \\
& \text { Laplace transform } \\
& \text { of } \mathrm{P}(Z)
\end{aligned}
$$

so that at large time:

$$
\lim _{\lambda \rightarrow \infty} g(x)=\overline{\theta(f-x)}=\operatorname{Prob}(f>x)
$$

reorganize sum over number of strings

$$
\begin{aligned}
& g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right) \\
& Z\left(n_{s}, x\right)=\sum_{m_{1}, \ldots m_{n_{s}}=1}^{\infty} \frac{(-1)^{\sum_{j} m_{j}}}{\left(4 \pi \lambda^{3 / 2}\right)^{n_{s}}} \\
& \prod_{j=1}^{n_{s}} \int \frac{d k_{j}}{m_{j}} \prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{j=1}^{n_{s}} e^{\frac{1}{3} \lambda^{3} m_{j}^{3}-m_{j} k_{j}^{2}+\lambda x m_{j}}
\end{aligned}
$$

reorganize sum over number of strings

$$
\begin{gathered}
g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right) \\
Z\left(n_{s}, x\right)=\sum_{m_{1}, \ldots m_{n_{s}}=1}^{\infty} \frac{(-1)^{\sum_{j} m_{j}}}{\left(4 \pi \lambda^{3 / 2}\right)^{n}} \int_{-\infty}^{\infty} d y A i(y) e^{y w}=e^{w^{3} / 3} \\
\prod_{j=1}^{n_{s}} \int \frac{d k_{j}}{m_{j}} \prod_{1 \leq i<j \leq n_{s}} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{j=1}^{n_{s}} e^{\frac{1}{3} \lambda^{3} m_{j}^{3}-m_{j} k_{j}^{2}+\lambda x m_{j}} \\
\operatorname{det}\left[\frac{1}{i\left(k_{i}-k_{j}\right) \lambda^{-3 / 2}+\left(m_{i}+m_{j}\right)}\right] \\
=\prod_{i<j} \frac{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}-m_{j}\right)^{2} \lambda^{3}}{\left(k_{i}-k_{j}\right)^{2}+\left(m_{i}+m_{j}\right)^{2} \lambda^{3}} \prod_{i=1}^{n_{s}} \frac{1}{2 m_{i}}
\end{gathered}
$$

Results: 1) $g(x)$ is a Fredholm determinant at any time t

$$
Z\left(n_{s}, x\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} \operatorname{dv_{j}} \operatorname{det}\left[K\left(v_{j}, v_{\ell}\right)\right] \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

$$
K\left(v_{1}, v_{2}\right)=-\int \frac{d k}{2 \pi} d y A i\left(y+k^{2}-x+v_{1}+v_{2}\right) e^{-i k\left(v_{1}-v_{2}\right)} \frac{e^{\lambda y}}{1+e^{\lambda y}}
$$

$$
g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right)=\operatorname{Det}[I+K] \begin{aligned}
& \text { by an equivalent definition } \\
& \text { of a Fredholm determinant }
\end{aligned}
$$

$$
K\left(v_{1}, v_{2}\right) \equiv \theta\left(v_{1}\right) K\left(v_{1}, v_{2}\right) \theta\left(v_{2}\right)
$$

Results: 1) $g(x)$ is a Fredholm determinant at any time t

$$
Z\left(n_{s}, x\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} d v_{j} \operatorname{det}\left[K\left(v_{j}, v_{\ell}\right)\right] \quad \lambda=\left(\frac{\bar{c}^{2}}{4} t\right)^{1 / 3}
$$

$$
K\left(v_{1}, v_{2}\right)=-\int \frac{d k}{2 \pi} d y A i\left(y+k^{2}-x+v_{1}+v_{2}\right) e^{-i k\left(v_{1}-v_{2}\right)} \frac{e^{\lambda y}}{1+e^{\lambda y}}
$$

$$
g(x)=1+\sum_{n_{s}=1}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}, x\right)=\operatorname{Det}[I+K] \begin{aligned}
& \text { by an equivalent definition } \\
& \text { of a Fredholm determinant }
\end{aligned}
$$

$$
K\left(v_{1}, v_{2}\right) \equiv \theta\left(v_{1}\right) K\left(v_{1}, v_{2}\right) \theta\left(v_{2}\right)
$$

Airy function identity

$$
\text { 2) large time limit } \quad \lambda=+\infty \quad \frac{e^{\lambda y}}{1+e^{\lambda y}} \rightarrow \theta(y)
$$

$$
\begin{aligned}
& \int d k A i\left(k^{2}+v++^{\prime}\right)^{j\left(k\left(v v^{\prime}\right)\right.}=2^{2 / 3 / 3 A\left(2^{1 / 3} s\right) A i\left(2^{1 / 3 / s^{\prime}}\right)} \\
& \mathrm{g}(\mathrm{x})=\operatorname{Prob}\left(f>x=-2^{2 / 3} s\right)=\operatorname{Det}\left(1-P_{s} K_{A i} P_{s}\right)=F_{2}(s) \\
& K_{A i}\left(v, v^{\prime}\right)=\int_{y>0} A i(v+y) \dot{A} i\left(v^{\prime}+y\right) \quad \begin{array}{l}
\text { GUE-Tracy-Widom } \\
\text { distribution }
\end{array}
\end{aligned}
$$

An exact solution for the KPZ equation with flat initial conditions
P. Calabrese, P. Le Doussal, (2011)

$$
\begin{gathered}
\text { needed: } \\
\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)
\end{gathered}
$$

1) $g(s=-x)$ is a Fredholm Pfaffian at any time t

$$
\begin{aligned}
& Z\left(n_{s}\right)=\sum_{m_{i} \geq 1} \prod_{j=1}^{n_{s}} \int_{k_{j}} \prod_{q=1}^{m_{j}} \frac{-2}{2 i k_{j}+q} e^{\frac{\lambda^{3}}{3} m_{j}^{3}-4 m_{j} k_{j}^{2} \lambda^{3}-\lambda m_{j} s} \\
& \times \operatorname{Pf}\left[\left(\begin{array}{c}
\frac{2 \pi}{2 i k_{i}} \delta\left(k_{i}+k_{j}\right)(-1)^{m_{i}} \delta_{m_{i}, m_{j}}+\frac{1}{4}(2 \pi)^{2} \delta\left(k_{i}\right) \delta\left(k_{j}\right)(-1)^{\min \left(m_{i}, m_{j}\right)} \operatorname{sgn}\left(m_{i}-m_{j}\right) \\
-\frac{1}{2}(2 \pi) \delta\left(k_{j}\right)
\end{array} \begin{array}{c}
\frac{1}{2}(2 \pi) \delta\left(k_{i}\right) \\
\frac{2 i k_{i}+m_{i}-2 i k_{j}-m_{j}}{2 i k_{i}+m_{i}+2 i k_{j}+m_{j}}
\end{array}\right)\right] \\
& Z\left(n_{s}\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} \operatorname{Pf}\left[\mathbf{K}\left(v_{i}, v_{j}\right)\right]_{2 n_{s}, 2 n_{s}} \quad g_{\lambda}(s)=\operatorname{Pf}[\mathbf{J}+\mathbf{K}]=\sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}\right)
\end{aligned}
$$

An exact solution for the KPZ equation with flat initial conditions

P. Calabrese, P. Le Doussal, (2011)

1) $g(s=-x)$ is a Fredholm Pfaffian at any time t

$$
\begin{gathered}
\text { needed: } \\
\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& Z\left(n_{s}\right)=\sum_{m_{i} \geq 1} \prod_{j=1}^{n_{s}} \int_{k_{j}} \prod_{q=1}^{m_{j}} \frac{-2}{2 i k_{j}+q} e^{\frac{\lambda^{3}}{3} m_{j}^{3}-4 m_{j} k_{j}^{2} \lambda^{3}-\lambda m_{j} s} \\
& \times \operatorname{Pf}\left[\left(\begin{array}{cc}
\frac{2 \pi}{2 i k_{i}} \delta\left(k_{i}+k_{j}\right)(-1)^{m_{i}} \delta_{m_{i}, m_{j}}+\frac{1}{4}(2 \pi)^{2} \delta\left(k_{i}\right) \delta\left(k_{j}\right)(-1)^{\min \left(m_{i}, m_{j}\right)} \operatorname{sgn}\left(m_{i}-m_{j}\right) & \frac{1}{2}(2 \pi) \delta\left(k_{i}\right) \\
-\frac{1}{2}(2 \pi) \delta\left(k_{j}\right) & \frac{2 i i_{i}+m_{i}-2 i_{j}-m_{j}}{2 i_{i}+m_{i}+2 k_{j}+m_{j}}
\end{array}\right)\right] \\
& Z\left(n_{s}\right)=\prod_{j=1}^{n_{s}} \int_{v_{j}>0} \operatorname{Pf}\left[\mathbf{K}\left(v_{i}, v_{j}\right)\right]_{2 n_{s}, 2 n_{s}} \quad \begin{array}{c}
g_{\lambda}(s)=\operatorname{Pf}[\mathbf{J}+\mathbf{K}]=\sum_{n_{s}=0}^{\infty} \frac{1}{n_{s}!} Z\left(n_{s}\right) \\
\mathbf{J}=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

2) large time limit $\quad \lambda=+\infty$

$$
g_{\infty}(s)=F_{1}(s)=\operatorname{det}\left[I-\mathcal{B}_{s}\right]
$$

$$
\mathcal{B}_{s}=\theta(x) A i(x+y+s) \check{\theta}(y)
$$

GOE Tracy Widom

Fredholm Pfaffian Kernel at any time t

$$
\begin{align*}
& K_{11}=\int_{y_{1}, y_{2}, k} A i\left(y_{1}+v_{i}+s+4 k^{2}\right) A i\left(y_{2}+v_{j}+s+4 k^{2}\right)\left[\frac{e^{-2 i\left(v_{i}-v_{j}\right) k}}{2 i k} f_{k / \lambda}\left(e^{\lambda\left(y_{1}+y_{2}\right)}\right)\right. \\
& K_{12}=\frac{1}{2} \int_{y} A i\left(y+s+v_{i}\right)\left(e^{-2 e^{\lambda y}}-1\right) \delta\left(v_{j}\right) \\
& K_{22}=2 \delta^{\prime}\left(v_{i}-v_{j}\right), \\
& \left.f_{k}(z)=\frac{\pi \delta(k)}{2} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)\right] \\
& \begin{array}{l}
\sinh (2 \pi k) \Gamma\left(z_{i}, z_{j}\right)=\sinh \left(z_{2}-z_{1}\right)+e^{-z_{2}}-e^{-z_{1}}+\int_{0}^{1} d u \\
\times J_{0}\left(2 \sqrt{\left.z_{1} z_{2}(1-u)\right)}\left[z_{1} \sinh \left(z_{1} u\right)-z_{2} \sinh \left(z_{2} u\right)\right] .\right. \\
\quad g_{\lambda}(s)=\sqrt{\operatorname{Det}(1-2 i k) \Gamma(2+2 i k)}, \quad(19) \\
\left.\quad K_{10}\left(v_{1}, v_{2}\right)=\partial_{v_{1}}\right)\left(1+\langle\tilde{K}|\left(1-2 K_{11}\left(v_{1}, v_{2}\right)\right.\right.
\end{array} \quad K_{12}\left(v_{1}, v_{2}\right)=\tilde{K}\left(v_{1}\right) \delta\left(v_{2}\right) \tag{19}
\end{align*}
$$

Fredholm Pfaffian Kernel at any time t

$$
\begin{array}{ll}
K_{11}=\int_{y_{1}, y_{2}, k} A i\left(y_{1}+v_{i}+s+4 k^{2}\right) A i\left(y_{2}+v_{j}+s+4 k^{2}\right)\left[\frac{e^{-2 i\left(v_{i}-v_{j}\right) k}}{2 i k} f_{k / \lambda}\left(e^{\lambda\left(y_{1}+y_{2}\right)}\right)\right. \\
K_{12}=\frac{1}{2} \int_{y} A i\left(y+s+v_{i}\right)\left(e^{-2 e^{\lambda y}}-1\right) \delta\left(v_{j}\right) & \left.+\frac{\pi \delta(k)}{2} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)\right] \\
K_{22}=2 \delta^{\prime}\left(v_{i}-v_{j}\right), & \text { large time limit } \\
& \\
f_{k}(z)=\frac{-2 \pi k z_{1} F_{2}(1 ; 2-2 i k, 2+2 i k ;-z)}{\sinh (2 \pi k) \Gamma(2-2 i k) \Gamma(2+2 i k)}, & \lim _{\lambda \rightarrow+\infty} f_{k / \lambda}\left(e^{\lambda y}\right)=-\theta(y) \\
F\left(z_{i}, z_{j}\right)=\sinh \left(z_{2}-z_{1}\right)+e^{-z_{2}}-e^{-z_{1}}+\int_{0}^{1} d u & \lim _{\lambda \rightarrow+\infty} F\left(2 e^{\lambda y_{1}}, 2 e^{\lambda y_{2}}\right)= \\
\times J_{0}\left(2 \sqrt{\left.z_{1} z_{2}(1-u)\right)\left[z_{1} \sinh \left(z_{1} u\right)-z_{2} \sinh \left(z_{2} u\right)\right] .}\right. & \theta\left(y_{1}+y_{2}\right)\left(\theta\left(y_{1}\right) \theta\left(-y_{2}\right)-\theta\left(y_{2}\right) \theta\left(-y_{1}\right)\right) \tag{19}\\
g_{\lambda}(s)=\sqrt{D e t\left(1-2 K_{10}\right)}\left(1+\langle\tilde{K}|\left(1-2 K_{10}\right)^{-1}|\delta\rangle\right) \\
& \\
K_{10}\left(v_{1}, v_{2}\right)=\partial_{v_{1}} K_{11}\left(v_{1}, v_{2}\right) & K_{12}\left(v_{1}, v_{2}\right)=\tilde{K}\left(v_{1}\right) \delta\left(v_{2}\right)
\end{array}
$$

Summary: we found

for droplet initial conditions

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+2^{2 / 3}\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

at large time has the same distribution as the largest eigenvalue of the GUE
for flat initial conditions similar (more involved)

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

$\begin{aligned} & \text { at large time has the same distribution } \\ & \text { as the largest eigenvalue of the GOE }\end{aligned} \quad t^{*}=\frac{8(2 \nu)^{5}}{D^{2} \lambda_{0}^{4}}$
in addition: $\mathrm{g}(\mathrm{x})$ for all times
=> $P(h)$ at all t (inverse LT)
decribes full crossover from Edwards Wilkinson to KPZ
t^{*} is crossover time scale large for weak noise, large diffusivity

Summary:

for droplet initial conditions

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+2^{2 / 3}\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

at large time has the same distribution as the largest eigenvalue of the GUE
for flat initial conditions similar (more involved)

$$
\frac{\lambda_{0} h}{2 \nu} \equiv \ln Z=v_{\infty} t+\left(\frac{t}{t^{*}}\right)^{1 / 3} \chi
$$

χ at large time has the same distribution as the largest eigenvalue of the GOE

$$
t^{*}=\frac{8(2 \nu)^{5}}{D^{2} \lambda_{0}^{4}}
$$

in addition: $\mathrm{g}(\mathrm{x})$ for all times
=> $\mathrm{P}(\mathrm{h})$ at all t (inverse LT)
decribes full crossover from Edwards Wilkinson to KPZ
t^{*} is crossover time scale

GSE ? KPZ in half-space

DP near a wall $=$ KPZ equation in half space

$$
Z(x, 0, t)=Z(0, y, t)=0
$$

$\nabla h(0, t)$ fixed

DP near a wall $=$ KPZ equation in half space

$$
\begin{aligned}
& g(s)=\sqrt{\operatorname{Det}[I+\mathcal{K}]} \\
& \mathcal{K}\left(v_{1}, v_{2}\right)=-2 \theta\left(v_{1}\right) \theta\left(v_{2}\right) \partial_{v_{1}} f\left(v_{1}, v_{2}\right) \\
& f\left(v_{1}, v_{2}\right)=\int \frac{d k}{2 \pi} \int_{y} A i\left(y+s+v_{1}+v_{2}+4 k^{2}\right) f_{k / \lambda}\left(e^{\lambda y}\right) \frac{e^{-2 i k\left(v_{1}-v_{2}\right)}}{2 i k} \\
& f_{k}[z]=\frac{2 \pi k}{\sinh (4 \pi k)}\left(J_{-4 i k}\left(\frac{2}{\sqrt{z}}\right)+J_{4 i k}\left(\frac{2}{\sqrt{z}}\right)\right) \\
& \times \quad-{ }_{1} F_{2}(1 ; 1-2 i k, 1+2 i k ;-1 / z) \\
& \times \quad \lim _{\lambda \rightarrow \infty} f_{k / \lambda}\left[e^{\lambda y}\right]=-\theta(y)(1-\cos (2 k y)
\end{aligned}
$$

$\nabla h(0, t)$ fixed

T. Gueudre, P. Le Doussal,

$$
Z(x, 0, t)=Z(0, y, t)=0
$$

Probability that a polymer (starting near the wall) does not cross the wall

$$
q_{\eta}(t)=\frac{Z_{\eta}^{\text {half space }}(t) / \epsilon^{2}}{Z_{\eta}^{\text {full space }}(t)}
$$

Probability that a polymer (starting near the wall) does not cross the wall

$\overline{\ln q_{\eta}(t)}=-\left(\overline{\chi_{2}}-\overline{\chi_{4}}\right)\left(\bar{c}^{2} t\right)^{1 / 3} \approx-1.49134\left(\bar{c}^{2} t\right)^{1 / 3}$
$\mu^{F_{2}}=-1.7710868$
$\mu^{F_{4}}=-3.2624279$
gives $q(t)$ in typical sample: decays sub-exponentially

Probability that N directed paths in a random potential do not cross

why interesting?
Kardar-Emig large N vortex lines in SC
Cardy-Ostlund model

- BA with generalized statistics - beyond bosons
- connections to random matrix theory

Probability that N directed paths in a random potential do not cross

Partition sum of 1 path with endpoints y, x

$$
Z_{\eta}(x ; y \mid t)
$$

Karlin McGregor formula
Partition sum of N non-crossing paths with endpoints

$$
y_{1}<y_{2}<. . y_{N} \quad x_{1}<x_{2}<\ldots x_{N}
$$

$$
\operatorname{det}\left[Z_{\eta}\left(x_{i} ; y_{j} \mid t\right)\right]_{N \times N}
$$

(thermal) probability of no crossing

$$
=\prod_{i=1}^{N} \frac{1}{Z_{\eta}\left(x_{i} ; y_{i} \mid t\right)} \operatorname{det}\left[Z_{\eta}\left(x_{i} ; y_{j} \mid t\right)\right]_{N \times N}
$$

Probability that 2 directed polymers in same disorder do not cross

Andrea de Luca, PLD, arXiv 1505.04802
non-crossing probability
Karlin Mc Gregor

$$
p_{\eta}\left(x_{1}, x_{2} ; y_{1}, y_{2} \mid t\right) \equiv 1-\frac{Z_{\eta}\left(x_{2} ; y_{1} \mid t\right) Z_{\eta}\left(x_{1} ; y_{2} \mid t\right)}{Z_{\eta}\left(x_{1} ; y_{1} \mid t\right) Z_{\eta}\left(x_{2} ; y_{2} \mid t\right)}
$$

we will study limit at coinciding endpoints

$$
p_{\eta}(t) \equiv \lim _{\epsilon \rightarrow 0} \frac{p_{\eta}(-\epsilon, \epsilon \mid-\epsilon, \epsilon ; t)}{4 \epsilon^{2}}
$$

Probability that 2 directed polymers in same disorder do not cross

Andrea de Luca, PLD, arXiv 1505.04802
non-crossing probability
Karlin Mc Gregor

$$
p_{\eta}\left(x_{1}, x_{2} ; y_{1}, y_{2} \mid t\right) \equiv 1-\frac{Z_{\eta}\left(x_{2} ; y_{1} \mid t\right) Z_{\eta}\left(x_{1} ; y_{2} \mid t\right)}{Z_{\eta}\left(x_{1} ; y_{1} \mid t\right) Z_{\eta}\left(x_{2} ; y_{2} \mid t\right)}
$$

we will study limit at coinciding endpoints

$$
p_{\eta}(t) \equiv \lim _{\epsilon \rightarrow 0} \frac{p_{\eta}(-\epsilon, \epsilon \mid-\epsilon, \epsilon ; t)}{4 \epsilon^{2}}
$$

NC probability is related to single path free energy

$$
\begin{aligned}
p_{\eta}(x ; y \mid t) & =\partial_{x} \partial_{y} \ln Z_{\eta}(x ; y \mid t) \\
p_{\eta}(t) & =\left.\partial_{x} \partial_{y} \ln Z_{\eta}(x ; y \mid t)\right|_{\substack{x=0 \\
y=0}}
\end{aligned}
$$

Moments of non-crossing probability via replica ..

$$
\begin{array}{ll}
\overline{p_{\eta}(t)^{m}}=\lim _{n \rightarrow 0} \Theta_{n, m}(t) & p_{\eta}(t) \equiv \lim _{\epsilon \rightarrow 0} \frac{p_{\eta}(-\epsilon, \epsilon \mid-\epsilon, \epsilon ; t)}{4 \epsilon^{2}} \\
\Theta_{n, m}(t) \equiv \lim _{\epsilon \rightarrow 0} \overline{\left[(2 \epsilon)^{-2} Z_{\eta}^{(2)}(\epsilon)\right]^{m}\left[Z_{\eta}(0 ; 0 \mid t)\right]^{n-2 m}} & \\
Z_{\eta}^{(2)}(\epsilon)=Z_{\eta}(\epsilon ; \epsilon \mid t) Z_{\eta}(-\epsilon ;-\epsilon \mid t)-Z_{\eta}(-\epsilon ; \epsilon \mid t) Z_{\eta}(\epsilon ;-\epsilon \mid t)
\end{array}
$$

Moments of non-crossing probability via replica ..

$$
\begin{aligned}
& \overline{p_{\eta}(t)^{m}}=\lim _{n \rightarrow 0} \Theta_{n, m}(t) \\
& \Theta_{n, m}(t) \equiv \lim _{\epsilon \rightarrow 0} \overline{\left[(2 \epsilon)^{-2} Z_{\eta}^{(2)}(\epsilon)\right]^{m}\left[Z_{\eta}(0 ; 0 \mid t)\right]^{n-2 m}} \\
& Z_{\eta}^{(2)}(\epsilon)=Z_{\eta}(\epsilon ; \epsilon \mid t) Z_{\eta}(-\epsilon ;-\epsilon \mid t)-Z_{\eta}(-\epsilon ; \epsilon \mid t) Z_{\eta}(\epsilon ;-\epsilon \mid t)
\end{aligned}
$$

and quantum mechanics ...

Lieb-Liniger model with general symmetry $\quad H_{n}=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}-2 \bar{c} \sum_{1 \leq i<j \leq n} \delta\left(x_{i}-x_{j}\right)$
(beyond bosons)

$$
\begin{array}{ll}
\Theta_{n, m}(t)=\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-2 m}\left\langle\Psi_{m}(\epsilon)\right| e^{-t H_{n}}\left|\Psi_{m}(\epsilon)\right\rangle=\sum_{\mu} \frac{\left|\mathcal{D}_{m} \psi_{\mu}(\mathbf{x})\right|^{2}}{\|\mu\|^{2}} e^{-t E_{\mu}} \\
\left|\Psi_{m}(\epsilon)\right\rangle=2^{-m / 2}\left(\otimes_{j=1}^{m}|\epsilon,-\epsilon\rangle-|-\epsilon, \epsilon\rangle\right) \otimes|0 \ldots 0\rangle \quad \mathcal{D}_{1}=\left.2^{-1 / 2}\left(\partial_{x_{1}}-\partial_{x_{2}}\right)\right|_{\mathbf{x}=0}
\end{array}
$$

$\overline{p_{\eta}(t)^{m}} \quad \mathrm{~m}=1$
look for eigenfunctions antisymmetric in the first two variables

$$
\Psi_{\mu}\left(x_{1}, x_{2}, . . x_{n}\right)
$$

$$
\overline{p_{\eta}(t)^{m}} \quad \mathrm{~m}=1
$$

look for eigenfunctions antisymmetric in the first two variables

$$
\Psi_{\mu}\left(x_{1}, x_{2}, . . x_{n}\right)
$$

more general Bethe ansatz

$$
\psi_{\mu}(\mathbf{x})=\sum_{P, Q \in \mathcal{S}_{n}} \vartheta_{Q}(\mathbf{x}) A_{Q}^{P} \exp \left[i \sum_{j=1}^{n} x_{Q_{j}} \mu_{P_{j}}\right] \quad\left\{\mu_{1}, \ldots, \mu_{n}\right\}
$$

$$
x_{Q_{1}} \leq x_{Q_{2}} \ldots \leq x_{Q_{n}} \quad A_{Q}^{P} \text { inside irreducible representation of S_n }
$$

$$
\text { 2-row Young diagram } \quad \xi=(n-m, m)
$$

example for $\mathrm{m}=3$
$n=8$ and $m=3$

$$
(5,3) \equiv \begin{array}{|l|l|l|l|l}
\hline 1 & 3 & 5 & 7 & 9 \\
2 & 4 & 6 & &
\end{array} \quad \begin{gathered}
\text { antisymmetry }
\end{gathered} \quad \mathcal{D}_{m=3} \begin{aligned}
& x_{1} \leftrightarrow x_{2}, x_{3} \leftrightarrow x_{4}, x_{5} \leftrightarrow x_{6}
\end{aligned}
$$

Nested Bethe ansatz

Bethe equations

$$
\mu_{\alpha \beta}=\mu_{\alpha}-\mu_{\beta}
$$

$$
\prod_{\substack{b=1 \\ b \neq a}}^{m} \frac{\lambda_{a b}-i c}{\lambda_{a b}+i c}=\prod_{j=1}^{n} \frac{\lambda_{a}-\mu_{j}-i c / 2}{\lambda_{a}-\mu_{j}+i c / 2}
$$

$$
\prod_{\substack{k=1 \\ k \neq j}}^{n} \frac{\mu_{j k}+i c}{\mu_{j k}-i c} \times \prod_{a=1}^{m} \frac{\mu_{j}-\lambda_{a}-i c / 2}{\mu_{j}-\lambda_{a}+i c / 2}=e^{i \mu_{j} L}
$$

auxiliary spin chain
auxiliary rapidities $\quad \lambda_{a} \quad a=1, . . m$ one for every doubled column they implement the symmetry of the wave-function

Nested Bethe ansatz

Bethe equations

$$
\begin{aligned}
& \mu_{\alpha \beta}=\mu_{\alpha}-\mu_{\beta} \\
& \prod_{\substack{b=1 \\
b=a}}^{m} \frac{\lambda_{a b}-i c}{\lambda_{a b}+i c}=\prod_{j=1}^{n} \frac{\lambda_{a}-\mu_{j}-i c / 2}{\lambda_{a}-\mu_{j}+i c / 2} \\
& \prod_{\substack{k=1 \\
k \neq j}}^{n} \frac{\mu_{j k}+i c}{\mu_{j k}-i c} \times \prod_{a=1}^{m} \frac{\mu_{j}-\lambda_{a}-i c / 2}{\mu_{j}-\lambda_{a}+i c / 2}=e^{i \mu_{j} L}
\end{aligned}
$$

auxiliary rapidities $\quad \lambda_{a} \quad a=1, . . m$ one for every doubled column they implement the symmetry of the wave-function
solved at large L by strings again!

$$
\mu_{j}^{a}=k_{j}+\frac{i c}{2}\left(m_{j}+1-2 a\right)+\delta_{j}^{a}
$$

Nested Bethe ansatz

Bethe equations

$$
\begin{aligned}
& \mu_{\alpha \beta}=\mu_{\alpha}-\mu_{\beta} \\
& \prod_{\substack{b=1 \\
b \neq a}}^{m} \frac{\lambda_{a b}-i c}{\lambda_{a b}+i c}=\prod_{j=1}^{n} \frac{\lambda_{a}-\mu_{j}-i c / 2}{\lambda_{a}-\mu_{j}+i c / 2} \\
& \prod_{\substack{k=1 \\
k \neq j}}^{n} \frac{\mu_{j k}+i c}{\mu_{j k}-i c} \times \prod_{a=1}^{m} \frac{\mu_{j}-\lambda_{a}-i c / 2}{\mu_{j}-\lambda_{a}+i c / 2}=e^{i \mu_{j} L}
\end{aligned}
$$

can one solve the polynomial equation for the auxiliary variable ?
\longrightarrow not all string states contribute!
auxiliary spin chain
auxiliary rapidities $\quad \lambda_{a} \quad a=1, . . m$ one for every doubled column they implement the symmetry of the wave-function
solved at large L by strings again!

$$
\mu_{j}^{a}=k_{j}+\frac{i c}{2}\left(m_{j}+1-2 a\right)+\delta_{j}^{a}
$$

$$
\prod_{j=1}^{n} \frac{\lambda-\mu_{j}-i c / 2}{\lambda-\mu_{j}+i c / 2}=1
$$

example for $m=1$
for instance the n-string does not telescopic product, no solution
in general several roots => difficult

BUT: the sum over all solutions for λ can be written as a contour integral

$$
\sum_{\lambda} \frac{\left|\left(\partial_{x_{1}}-\partial_{x_{2}}\right) \Psi_{\mu}(x)\right|^{2}}{2\|\mu\|^{2}}
$$

\longrightarrow simplifies $=>$ expression very similar to bosonic case

- first moment, $\mathrm{m}=1$

$$
\Theta_{n, 0}(t)=\mathcal{Z}_{n}(t) \equiv \mathcal{Z}_{n}(\mathbf{x}=\mathbf{0} ; \mathbf{0} \mid t)
$$

$$
\Lambda_{n, 1} \rightarrow \Lambda_{n, 0} \equiv 1
$$

$\Theta_{n, 1}(t)=\sum_{n_{s}=1}^{n} \frac{n!\bar{c}^{n}}{n_{s}!(2 \pi \bar{c})^{n_{s}}} \sum_{\left(m_{1}, . . m_{n_{s}}\right)_{n}} \prod_{j=1}^{n_{s}} \int_{-\infty}^{+\infty} \frac{d k_{j} e^{-A_{2} t}}{m_{j}} \Phi(\mathbf{k}, \mathbf{m}) \Lambda_{n, 1}(\mathbf{k}, \mathbf{m})$
$\begin{aligned} & \text { Lieb Lineger } \\ & \text { conserved charges }\end{aligned} \quad A_{p}=\sum_{j=1}^{n} \mu_{j}^{p} \quad \Lambda_{n, 1}=\frac{1}{n(n-1)}\left(n A_{2}-A_{1}^{2}+\frac{n^{2}\left(n^{2}-1\right)}{12} \bar{c}^{2}\right):$

BUT: the sum over all solutions for λ

$$
\sum_{\lambda} \frac{\left|\left(\partial_{x_{1}}-\partial_{x_{2}}\right) \Psi_{\mu}(x)\right|^{2}}{2\|\mu\|^{2}}
$$ can be written as a contour integral

\longrightarrow simplifies $=>$ expression very similar to bosonic case

- first moment, $\mathrm{m}=1$

$$
\Theta_{n, 0}(t)=\mathcal{Z}_{n}(t) \equiv \mathcal{Z}_{n}(\mathbf{x}=\mathbf{0} ; \mathbf{0} \mid t)
$$

$$
\Lambda_{n, 1} \rightarrow \Lambda_{n, 0} \equiv 1
$$

$\Theta_{n, 1}(t)=\sum_{n_{s}=1}^{n} \frac{n!\bar{c}^{n}}{n_{s}!(2 \pi \bar{c})^{n_{s}}} \sum_{\left(m_{1}, . . m_{n_{s}}\right)_{n}} \prod_{j=1}^{n_{s}} \int_{-\infty}^{+\infty} \frac{d k_{j} e^{-A_{2} t}}{m_{j}} \Phi(\mathbf{k}, \mathbf{m}) \Lambda_{n, 1}(\mathbf{k}, \mathbf{m})$

Lieb Lineger conserved charges

$$
A_{p}=\sum_{j=1}^{n} \mu_{j}^{p} \quad \Lambda_{n, 1}=\frac{1}{n(n-1)}\left(n A_{2}-A_{1}^{2}+\frac{n^{2}\left(n^{2}-1\right)}{12} \bar{c}^{2}\right):
$$

- does this extend to higher moments, m? YES

$$
\Theta_{n, m}(t)=\left\langle\Lambda_{n, m}(\boldsymbol{\mu})\right\rangle_{n} \quad \Rightarrow \Lambda_{n, m}\left(A_{p}\right)
$$

1) how does one get the $\Lambda_{n, m}\left(A_{p}\right)$?

We calculated them from the Borodin-Corwin "conjecture"

$$
\begin{array}{rlr}
\Theta_{n, m}(t)= & \frac{1}{2^{m}} \int \frac{d z_{1}}{2 \pi} \cdots \int \frac{d z_{n}}{2 \pi} e^{-t \sum_{k=1}^{n} z_{k}^{2}} & h(u)=u(u-i c) \\
& \times\left(\prod_{1 \leq k<j \leq n} f\left(z_{k j}\right)\right)\left(\prod_{q=1}^{m} h\left(z_{2 q-1,2 q}\right)\right) & f(u) \equiv u /(u-i c)
\end{array}
$$

1) how does one get the $\Lambda_{n, m}\left(A_{p}\right)$?

We calculated them from the Borodin-Corwin "conjecture"

$$
\begin{array}{rlr}
\Theta_{n, m}(t)= & \frac{1}{2^{m}} \int \frac{d z_{1}}{2 \pi} \cdots \int \frac{d z_{n}}{2 \pi} e^{-t \sum_{k=1}^{n} z_{k}^{2}} & h(u)=u(u-i c) \\
& \times\left(\prod_{1 \leq k<j \leq n} f\left(z_{k j}\right)\right)\left(\prod_{q=1}^{m} h\left(z_{2 q-1,2 q}\right)\right) & f(u) \equiv u /(u-i c)
\end{array}
$$

2) what can one do with them?

Introduce GGE partition function $\quad \mathcal{Z}_{n}^{\boldsymbol{\beta}}(t) \quad e^{-A_{2} t} \quad=>e^{-A_{2} t+\sum_{p \geq 1} \beta_{p} A_{p}}$

$$
\begin{gathered}
A_{p} \rightarrow \partial_{p} \equiv \partial_{\beta_{p}} \quad \Theta_{n, m}(t)=\Lambda_{n, m}\left(\left\{\partial_{p}\right\}\right)\left[\mathcal{Z}_{n}^{\boldsymbol{\beta}}(t)\right] \\
\left.\lim _{n \rightarrow 0} \partial_{i_{1}} \ldots \partial_{i_{k}} \frac{\mathcal{Z}_{n}^{\boldsymbol{\beta}}(t)-1}{n}\right|_{\boldsymbol{\beta}=0}=-\int_{0}^{\infty} \frac{d u}{u} \partial_{i_{1}} \ldots \partial_{i_{k}} \operatorname{Det}\left(1+\Pi_{0} \mathcal{K}_{u}^{\boldsymbol{\beta}} \Pi_{0}\right)
\end{gathered}
$$

relate to Fredholm determinant !

Results: - first moment: simple from STS !

$$
\overline{p_{\eta}(t)}=\lim _{n \rightarrow 0} \Theta_{n, 1}(t)=\frac{1}{2 t}
$$

$$
\begin{aligned}
& \overline{\ln Z_{\eta}(x ; y \mid t)}=h(t)-(x-y)^{2} /(4 t) \\
& h(t)=\overline{\ln Z_{\eta}(0 ; 0 \mid t)} \\
& \simeq-\frac{\bar{c}^{2} t}{12}+\overline{\chi_{2}}\left(\bar{c}^{2} t\right)^{1 / 3}
\end{aligned}
$$

Results: - first moment: simple from STS !

$$
\overline{p_{\eta}(t)}=\lim _{n \rightarrow 0} \Theta_{n, 1}(t)=\frac{1}{2 t}
$$

$$
\begin{aligned}
& \overline{\ln Z_{\eta}(x ; y \mid t)}=h(t)-(x-y)^{2} /(4 t) \\
& h(t)=\overline{\ln Z_{\eta}(0 ; 0 \mid t)} \\
& \simeq-\frac{\bar{c}^{2} t}{12}+\overline{\chi_{2}}\left(\bar{c}^{2} t\right)^{1 / 3}
\end{aligned}
$$

- second moment = we find exact relation to average free energy

$$
\overline{p_{\eta}(t)^{2}}=-\left(\frac{1}{t} \partial_{t}+\frac{1}{2} \partial_{t}^{2}\right) h(t) \simeq \frac{\bar{c}^{2}}{12 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{2 / 3}}{9 t^{5 / 3}}
$$

$$
\overline{p_{\eta}(t)^{2}}=-\left(\frac{1}{t} \partial_{t}+\frac{1}{2} \partial_{t}^{2}\right) h(t) \simeq \frac{\bar{c}^{2}}{12 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{2 / 3}}{9 t^{5 / 3}}
$$

Results: - first moment: simple from STS !
$\overline{\ln Z_{\eta}(x ; y \mid t)}=h(t)-(x-y)^{2} /(4 t)$

$$
\overline{p_{\eta}(t)}=\lim _{n \rightarrow 0} \Theta_{n, 1}(t)=\frac{1}{2 t} \quad h(t)=\overline{\ln Z_{\eta}(0 ; 0 \mid t)}
$$

- second moment = we find exact relation to average free energy

$$
\overline{p_{\eta}(t)^{2}}=-\left(\frac{1}{t} \partial_{t}+\frac{1}{2} \partial_{t}^{2}\right) h(t) \simeq \frac{\bar{c}^{2}}{12 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{2 / 3}}{9 t^{5 / 3}}
$$

- higher moments

$$
\overline{p_{\eta}(t)^{3}} \simeq \frac{\bar{c}^{4}}{15 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{8 / 3}}{9 t^{5 / 3}} \quad+\text { complicated }
$$

Results: - first moment: simple from STS! $\quad \overline{\ln Z_{\eta}(x ; y \mid t)}=h(t)-(x-y)^{2} /(4 t)$

$$
\begin{aligned}
& \overline{p_{\eta}(t)}=\lim _{n \rightarrow 0} \Theta_{n, 1}(t)=\frac{1}{2 t} \quad h(t)=\overline{\ln Z_{\eta}(0 ; 0 \mid t)} \\
& \simeq-\frac{\bar{c}^{2} t}{12}+\overline{\chi_{2}}\left(\bar{c}^{2} t\right)^{1 / 3}
\end{aligned}
$$

- second moment = we find exact relation to average free energy

$$
\overline{p_{\eta}(t)^{2}}=-\left(\frac{1}{t} \partial_{t}+\frac{1}{2} \partial_{t}^{2}\right) h(t) \simeq \frac{\bar{c}^{2}}{12 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{2 / 3}}{9 t^{5 / 3}}
$$

- higher moments

$$
\overline{p_{\eta}(t)^{3}} \simeq \frac{\bar{c}^{4}}{15 t}-\frac{2 \overline{\chi_{2}} \bar{c}^{8 / 3}}{9 t^{5 / 3}} \quad+\text { complicated }
$$

=> in arXiv1505.04802 we conjectured leading large time behavior
conjecture 1

$$
\overline{p_{\eta}(t)^{m}} \simeq \gamma_{m} \bar{c}^{2(m-1)} / t
$$

$=>p_{\eta}(t) \sim \bar{c}^{2} \quad$ for a fraction $\sim 1 /\left(\bar{c}^{2} t\right)$ of environments
the PDF of p has a $1 / t$ tail which controls the moments

What is p in a typical sample?

What is p in a typical sample?

remember proba $q(t)$ of single DP not crossing a hard-wall at 0

$$
\overline{\ln q_{\eta}(t)}=-\left(\overline{\chi_{2}}-\overline{\chi_{4}}\right)\left(\bar{c}^{2} t\right)^{1 / 3} \approx-1.49134\left(\bar{c}^{2} t\right)^{1 / 3}
$$

T. Gueudre, PLD 2012
=> typical p is sub-exponentially small

What is p in a typical sample ?

remember proba $q(t)$ of single DP not crossing a hard-wall at 0

$$
\overline{\ln q_{\eta}(t)}=-\left(\overline{\chi_{2}}-\overline{\chi_{4}}\right)\left(\bar{c}^{2} t\right)^{1 / 3} \approx-1.49134\left(\bar{c}^{2} t\right)^{1 / 3}
$$

T. Gueudre, PLD 2012
=> typical p is sub-exponentially small
=> conjecture 2
universality

$$
\begin{array}{r}
\overline{\ln p_{\eta}(t)} \sim-a\left(\bar{c}^{2} t\right)^{1 / 3} \quad a=\overline{\chi_{2}}-\overline{\chi_{2}^{\prime}} \approx 1.9043 \\
\overline{\ln p_{\eta}(t)}<\overline{\ln q_{\eta}(t)}
\end{array}
$$

known for semi-discrete DP non-crossing paths and GUE eigenvalues
h_{k} max energy of k non crossing paths length N
$h_{1}={ }_{d} \lambda_{1}$
$h_{2}-h_{1}={ }_{d} \lambda_{2}$

typical sample with small p

(b)
rare sample with $p=O(1)$
at inverse temperature
plot of $Z(\pm 1 / 2, \hat{x} \mid \hat{t}) \times Z(\hat{x}, \pm 1 / 2 \mid \hat{\tau}-\hat{t})$

$$
\beta=1.0
$$

Distribution of non-crossing probability

$$
\mathcal{P}_{t}(p) \simeq_{t \rightarrow+\infty} \mathcal{P}^{0}\left(p / p_{t y p}(t)\right)+\frac{\rho\left(p / \bar{c}^{2}\right)}{\bar{c}^{4} t}
$$

bulk of the PDF

$$
\begin{array}{r}
p_{t y p}(t) \sim e^{-a\left(\overline{\bar{c}}^{2} t\right)^{1 / 3}} \quad \int_{0}^{\infty} d \rho \rho(p) p^{m}=\gamma_{m} \\
\gamma_{1}=\frac{1}{2}, \quad \gamma_{2}=\frac{1}{12}, \quad \gamma_{3}=\frac{1}{15}
\end{array}
$$

Distribution of non-crossing probability

$$
\mathcal{P}_{t}(p) \simeq_{t \rightarrow+\infty} \mathcal{P}^{0}\left(p / p_{t y p}(t)\right)+\frac{\rho\left(p / \bar{c}^{2}\right)}{\bar{c}^{4} t}
$$

bulk of the PDF

$$
p_{t y p}(t) \sim e^{-a\left(\overline{\bar{c}}^{2} t\right)^{1 / 3}}
$$

$$
\int_{0}^{\infty} d \rho \rho(p) p^{m}=\gamma_{m}
$$

$$
\gamma_{1}=\frac{1}{2}, \quad \gamma_{2}=\frac{1}{12}, \quad \gamma_{3}=\frac{1}{15}
$$

FindSequenceFunction[..]

Distribution of non-crossing probability

$$
\mathcal{P}_{t}(p) \simeq_{t \rightarrow+\infty} \mathcal{P}^{0}\left(p / p_{t y p}(t)\right)+\frac{\rho\left(p / \bar{c}^{2}\right)}{\bar{c}^{4} t}
$$

bulk of the PDF

$$
p_{t y p}(t) \sim e^{-a\left(\overline{\bar{c}}^{2} t\right)^{1 / 3}}
$$

Recent result

$$
\begin{array}{r}
\int_{0}^{\infty} d \rho \rho(p) p^{m}=\gamma_{m} \\
\gamma_{1}=\frac{1}{2}, \quad \gamma_{2}=\frac{1}{12}, \quad \gamma_{3}=\frac{1}{15}
\end{array}
$$

FindSequenceFunction[..]
A. De Luca, PLD in prep.

$$
\overline{p_{\eta}(t)^{m}} \simeq_{t \rightarrow \infty} \gamma_{m} \frac{\bar{c}^{2(m-1)}}{t} \quad \gamma_{m}=\frac{\sqrt{\pi} 4^{-m} \Gamma(m)^{3}}{\Gamma\left(m+\frac{1}{2}\right)}
$$

from the moments extract the density
$\gamma_{m}=\frac{\sqrt{\pi} 4^{-m} \Gamma(m)^{3}}{\Gamma\left(m+\frac{1}{2}\right)}$

$$
\begin{aligned}
& \rho(p)=\frac{2}{p} \int_{0}^{+\infty} \frac{d u}{\sqrt{u(u+4)}} K_{0}(2 \sqrt{p} \sqrt{u+4}) \\
& \quad \rho(p) \simeq \frac{1}{2 p}(\ln p)^{2}
\end{aligned}
$$

numerical check

Idea of the method

$$
\Theta_{n, m}(t)=\left\langle\Lambda_{n, m}(\boldsymbol{\mu})\right\rangle_{n}
$$

1) after massaging of $B C$ formula..

$$
h(u)=u(u-i \bar{c})
$$

$$
\Lambda_{n, m}(\boldsymbol{\mu})=\frac{1}{2^{m}} \operatorname{sym}_{\mu}\left[\frac{\prod_{q=1}^{m} h\left(\mu_{2 q-1,2 q}\right)}{\prod_{1 \leq \alpha<\beta \leq n} f\left(\mu_{\beta \alpha}\right)}\right] \quad f(u)=u /(u-i \bar{c})
$$

2) algebra and guesses.. express in terms of elementary symmetric polynomials

$$
\begin{array}{lr}
\Lambda_{n, m}(\boldsymbol{\mu})=\sum_{a=0}^{m} \bar{c}^{2 a} \Omega_{n, m}^{a} \tilde{\Lambda}_{n, m-a}(\boldsymbol{\mu}) & \Omega_{n, m}^{a}=\frac{m!(n-m+a)!\sum_{2 a}^{(2 m-2 n-1)}(m-n)}{(2 a)!(m-a)!(n-m)!} \\
\tilde{\Lambda}_{n, m}(\boldsymbol{\mu})=\frac{1}{2^{m}} \operatorname{sym}_{\mu}\left[\prod_{q=1}^{m}\left(\mu_{2 q-1}-\mu_{2 q}\right)^{2}\right] & e_{p}(\boldsymbol{\mu})=\sum_{1 \leq \alpha_{1} \ldots \ldots<\alpha_{p} \leq n} \mu_{\alpha_{1}} \cdots \mu_{\alpha_{p}}
\end{array}
$$

$$
\tilde{\Lambda}_{n, m}(\mu)=\frac{m!}{n!(n-m)!}(-1)^{m} \sum_{p=0}^{2 m}(-1)^{p}(n-p)!(n-2 m+p)!e_{p} e_{2 m-p}
$$

3) take limit $n->0$

$$
\Lambda_{n, m}(\boldsymbol{\mu})=\frac{\lambda_{m}(\boldsymbol{\mu})}{n}+O\left(n^{0}\right)
$$

$$
A_{p}=\sum_{j=1}^{n} \mu_{j}^{p}
$$

4) dominant term at large time

$$
e_{p}^{s}(\mathbf{k}, \mathbf{m}) \longrightarrow(i c)^{p-1}\left(2^{2-p}-1\right) B_{p-1} \mathcal{A}_{1}^{s}(\mathbf{k}, \mathbf{m})
$$

only one charge contributes

$$
\left\langle\left(\mathcal{A}_{1}\right)^{2}\right\rangle_{n}=n /(2 t)
$$

remains to be done in progress ..

- obtain the bulk of the distribution of p (non-crossing proba)
- treat $\mathrm{N}>2$ non-crossing polymers
- extend generalized Bethe Ansatz calculations to $m>1$

Perspectives/other works

- replica BA method

Airy process
stationary KPZ Sasamoto Inamura $\quad t \rightarrow \infty \quad A_{2}(y)$

2 space points $\operatorname{Prob}\left(h\left(x_{1}, t\right), h\left(x_{2}, t\right)\right)$
Prohlac-Spohn (2011),
Dotsenko (2013)
2 times
$\operatorname{Prob}\left(h(0, t), h\left(0, t^{\prime}\right)\right) \quad$ Dotsenko (2013)
endpoint distribution of DP Dotsenko (2012) Schehr, Quastel et al (2011)

- rigorous replica.. Borodin, Corwin, Quastel, O Neil, .. q-TASEP $\quad q \rightarrow 1 \quad$ avoids moment problem $\overline{Z^{n}} \sim e^{c n^{3}}$ WASEP Bose gas moments as nested contour integrals
- sine-Gordon FT P. Calabrese, M. Kormos, PLD, EPL 10011 (2014)
- Lattice directed polymers
how to calculate $\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)$

first method: flat as limit of half-flat (wedge)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty, w \rightarrow 0} Z_{\mathrm{hs}}(x, t) \equiv Z_{\text {flat }}(x, t) \\
& Z_{\mathrm{hs}, \mathrm{w}}(x, t)=\int_{-\infty}^{0} d y e^{w y} Z(x, t \mid y, 0) \\
& Z(x, t=0)=\theta(-x) e^{w x}
\end{aligned}
$$

$$
\left(\prod_{\alpha=1}^{n} \int_{-\infty}^{0} d y_{\alpha} e^{w y_{\alpha}}\right) \Psi_{\mu}\left(y_{1} \ldots y_{n}\right)=\sum_{P} A_{P} G_{P \lambda}
$$

$$
\begin{gathered}
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}} \\
G_{\lambda}=\prod_{j=1}^{n} \frac{1}{j w+i \lambda_{1}+. .+i \lambda_{j}}
\end{gathered}
$$

how to calculate $\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)$

first method: flat as limit of half-flat (wedge)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty, w \rightarrow 0} Z_{\mathrm{hs}}(x, t) \equiv Z_{\text {flat }}(x, t) \\
& Z_{\mathrm{hs}, \mathrm{w}}(x, t)=\int_{-\infty}^{0} d y e^{w y} Z(x, t \mid y, 0) \\
& Z(x, t=0)=\theta(-x) e^{w x}
\end{aligned}
$$

$$
\left(\prod_{\alpha=1}^{n} \int_{-\infty}^{0} d y_{\alpha} e^{w y_{\alpha}}\right) \Psi_{\mu}\left(y_{1} \ldots y_{n}\right)=\sum_{P} A_{P} G_{P \lambda}
$$

$$
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}}
$$

miracle!

$$
G_{\lambda}=\prod_{j=1}^{n} \frac{1}{j w+i \lambda_{1}+. .+i \lambda_{j}}
$$

$$
=\frac{n!}{\prod_{\alpha=1}^{n}\left(w+i \lambda_{\alpha}\right)} \prod_{1 \leq \alpha<\beta \leq n} \frac{2 w+i \lambda_{\alpha}+i \lambda_{\beta}-1}{2 w+i \lambda_{\alpha}+i \lambda_{\beta}}
$$

how to calculate $\int d y_{1} . . d y_{n} \Psi_{\mu}\left(y_{1}, . . y_{n}\right)$

first method: flat as limit of half-flat (wedge)

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty, w \rightarrow 0} Z_{\mathrm{hs}}(x, t) \equiv Z_{\text {flat }}(x, t) \\
& Z_{\mathrm{hs}, \mathrm{w}}(x, t)=\int_{-\infty}^{0} d y e^{w y} Z(x, t \mid y, 0) \\
& Z(x, t=0)=\theta(-x) e^{w x}
\end{aligned}
$$

$$
\left(\prod_{\alpha=1}^{n} \int_{-\infty}^{0} d y_{\alpha} e^{w y_{\alpha}}\right) \Psi_{\mu}\left(y_{1} \ldots y_{n}\right)=\sum_{P} A_{P} G_{P \lambda}
$$

$$
\Psi_{\mu}=\sum_{P} A_{P} \prod_{j=1}^{n} e^{i \lambda_{P_{\ell}} x_{\ell}}
$$

miracle!

$$
G_{\lambda}=\prod_{j=1}^{n} \frac{1}{j w+i \lambda_{1}+. .+i \lambda_{j}}
$$

$$
=\frac{n!}{\prod_{\alpha=1}^{n}\left(w+i \lambda_{\alpha}\right)} \prod_{1 \leq \alpha<\beta \leq n} \frac{2 w+i \lambda_{\alpha}+i \lambda_{\beta}-1}{2 w+i \lambda_{\alpha}+i \lambda_{\beta}}
$$

strings:

$$
\begin{gathered}
\lambda^{j, a}=k_{j}+\frac{i \bar{c}}{2}(j+1-2 a) \\
a=1, \ldots, m_{j}
\end{gathered}
$$

$$
\begin{aligned}
& \int^{w} \Psi_{\mu}=n!(-2)^{n} \prod_{i=1}^{n_{s}} S_{m_{i}, k_{i}}^{w} \prod_{1 \leq i<j \leq n_{s}} D_{m_{i}, k_{i}, m_{j}, k_{j}}^{w} \\
& D_{m_{1}, k_{1}, m_{2}, k_{2}}^{w}=(-1)^{m_{2}} \frac{\Gamma\left(1-z+\frac{m_{1}+m_{2}}{2}\right) \Gamma\left(z+\frac{m_{1}-m_{2}}{2}\right)}{\Gamma\left(1-z+\frac{m_{1}-m_{2}}{2}\right) \Gamma\left(z+\frac{m_{1}+m_{2}}{2}\right)} \\
& S_{m, k}^{w}=\frac{(-1)^{m} \Gamma(z)}{\Gamma(z+m)} \quad z=2 i k+2 w
\end{aligned}
$$

in double limit

$$
\lim _{x \rightarrow-\infty, w \rightarrow 0}
$$

$$
S_{m_{i}, k_{i}}^{w} \rightarrow \frac{(-1)^{m_{i}}}{2 \Gamma\left(m_{i}\right)} 2 \pi \delta\left(k_{i}\right)+s_{m_{i}, k_{i}}^{0}
$$

expand the product $\prod_{i} S_{i} \prod_{i<j} D_{i j}$ each momentum k_{ℓ} appears only in exactly one pole
$D_{m_{i}, k_{i}, m_{j}, k_{j}}^{w} \rightarrow(-1)^{m_{i}} m_{i} \delta_{m_{i}, m_{j}} 2 \pi \delta\left(k_{i}+k_{j}\right)+d_{m_{i}, k_{i}, m_{j}, k_{j}}^{w}$
pairing of string momenta and pfaffian structure emerges
second method:
use Bethe equations: $e^{i \lambda_{j} L}=\prod_{\ell \neq j} \frac{\lambda_{j}-\lambda_{\ell}-i \bar{c}}{\lambda_{j}-\lambda_{\ell}+i \bar{c}}$
=> integral vanishes for generic state oberve: requires pairs opposite rapidities
is the overlap with uniform state

$$
\Phi_{0}\left(x_{1}, . . x_{n}\right)=1
$$

Can be seen as interaction quench in Lieb-Liniger model with initial state $\mathrm{BEC}(\mathrm{c}=0)$
de Nardis et al., arXiv 1308.4310
overlap is non zero only for parity invariant states $\quad\left\{\lambda_{1},-\lambda_{1}, . ., \lambda_{n / 2},-\lambda_{n / 2}\right\}$

$$
\left\langle\Phi_{0} \mid \mu\right\rangle=n!c^{n / 2} \prod_{\alpha=1}^{n / 2} \frac{1}{\lambda_{\alpha}^{2}} \prod_{1 \leq \alpha<\beta \leq n / 2} \frac{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}+c^{2}}{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}} \frac{\left(\lambda_{\alpha}+\lambda_{\beta}\right)^{2}+c^{2}}{\left(\lambda_{\alpha}+\lambda_{\beta}\right)^{2}} \times \operatorname{det} G^{Q} .
$$

$$
G_{\alpha \beta}^{Q}=\delta_{\alpha \beta}\left(L+\sum_{\gamma=1}^{n / 2} K^{Q}\left(\lambda_{\alpha}, \lambda_{\gamma}\right)\right)-K^{Q}\left(\lambda_{\alpha}, \lambda_{\beta}\right)
$$

Brockmann, arXiv1402.1471.

$$
K^{Q}(x, y)=K(x-y)+K(x+y),
$$

P. Calabrese, P. Le Doussal, arXiv 1402.1278

$$
K(x)=\frac{2 c}{x^{2}+c^{2}} .
$$

large L limit, overlap for strings partially recovers the moments $Z^{\wedge} n$ for flat

