Homework 5

In this homework, G is a compact connected Lie group with maximal torus Tand roots $\Phi \subset X^*(T)$, we fix a positive chamber $C \subset X^*(T) \otimes \mathbf{R}$ and corresponding decomposition $\Phi = \Phi^+ \cup \Phi^-$, we fix an invariant inner product $\langle -, - \rangle$ "on everything", W_{λ} denotes the representation parameterized by the W-orbit of $\lambda \in X^*(T)$, $\mathfrak{g} = \operatorname{Lie}(G) \otimes \mathbf{C}$ is the complexified Lie algebra, \mathfrak{g}_{α} for $\alpha \in \Phi$ are the root spaces. You should hand in problems 2, 3, 4, 5.

(1) For the root systems of U_n , SO_{2m} , SO_{2m+1} , Sp_{2m} (with the usual identification of $X^*(T) \simeq \mathbb{Z}^n$ that we have been using) prove that the following subsets of \mathbb{R}^n is a chamber

$$\begin{array}{rcl} (U_n) & : & a_1 > \dots > a_n \\ (SO_{2m}) & : & a_1 > \dots > a_{n-1} > |a_n| \\ (SO_{2m+1}, Sp_{2m}) & : & a_1 > \dots > a_n > 0. \end{array}$$

In each case, describe the positive roots, the associated basis of simple roots, and the half-sum ρ of all positive roots.

- (2) (a) Prove that the dual of V_{λ} is given by $V_{-\lambda}$.
 - (b) Prove that every representation of G is isomorphic to its own dual if and only if there exists w in the Weyl group such that w(t) = 1/t for every $t \in T$. Deduce that every representation of SO_m and Sp_m is self-dual.
 - (c) Describe a representation of U_m that is not self-dual for each m.
- (3) Suppose that λ, μ both lie inside the closure of the fixed chamber C. Show that $V_{\lambda+\mu}$ occurs as an irreducible subrepresentation of $V_{\lambda} \otimes V_{\mu}$ with multiplicity 1.
- (4) Here $G = U_n$ and V denotes the standard representation of G on \mathbb{C}^n and (e.g) $W_{(t,0,\ldots,0)}$ denotes the representation parameterized by the W-orbit of $(t,0,0,\ldots,0) \in X^*(T)$.
 - (a) Prove that $W_{(t,0,0,\ldots,0)}$ is isomorphic to Sym^tV.
 - (b) Prove that $W_{(1,1,\ldots,1,0,\ldots,0)}$ is isomorphic to $\wedge^k V$ (where k is the number of 1s).
 - (c) Prove that $W_{(2,2,0,\ldots,0)}$ is isomorphic to the kernel of $\operatorname{Sym}^2(\wedge^2 V) \to \wedge^4 V$ where the map sends $a \otimes b$ $(a, b \in \wedge^2 V)$ to $a \wedge b$. (This representation has dimension $n^2(n^2 1)/12$ and is essentially where the Riemann curvature tensor lies.)
 - (d) Prove that there's an exact sequence of U_n -representations

$$W_{(t,0,0,\ldots,0,-1)} \to \operatorname{Sym}^t V \otimes V^* \to \operatorname{Sym}^{t-1} V.$$

- (5) (a) Suppose that a representation V of G has the property that the subspace of $v \in V$ such that $\mathfrak{g}_{\alpha}v = 0$ for all $\alpha \in \Phi^+$ is one-dimensional. Prove that V is irreducible. (The converse is also true.)
 - (b) Prove that Sp_m acts irreducibly on $\operatorname{Sym}^k \mathbf{C}^m$ for every $k \ge 1$; show this is false in general for SO_m . Extra credit: what happens for $\wedge^k \mathbf{C}^m$?

- (6) Let $G = SU_m, SO_m$ $(m > 4), Sp_m$. Prove that the adjoint action of G on its Lie algebra $\mathfrak{g} = \text{Lie}(G) \otimes \mathbb{C}$ is irreducible, and determine the highest weight.
- (7) Prove that G_2 has an irreducible 7-dimensional representation V and that it fixes an element of $\wedge^3 V$. (This leads to the definition of G_2 as the subgroup of GL₇ fixing an appropriate trilinear form.)
- (8) (a) Let x = (x₁, x₂, x₃) be any weight of the diagonal torus that occurs in the irreducible representation of GL₃(C) with highest weight r = (r₁ ≥ r₂ ≥ r₃). Prove that in fact (x₁, x₂, x₃) ∈ R³ belongs to the convex hull of points (r_{σ(1)}, r_{σ(2)}, r_{σ(3)}) : σ ∈ S₃.
 (b) Let M be any Hermitian matrix with eigenvalues λ₁ ≥ λ₂ ≥ λ₃. Show
 - (b) Let M be any Hermitian matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3$. Show that the diagonal entries $(m_1, m_2, m_3) \in \mathbf{R}^3$ of M belong to the *convex* hull of points $(\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \lambda_{\sigma(3)})$.
- (9) Let $P: U_n \to \mathbf{C}$ be a polynomial in the matrix entries and their complex conjugates, with rational coefficients. Prove that $\int_{U_n} P(u) du \in \mathbf{Q}$, the integral being taken with respect to the Haar measure of mass 1.