Homework 5

In this homework, G is a compact connected Lie group with maximal torus T and roots $\Phi \subset X^{*}(T)$, we fix a positive chamber $C \subset X^{*}(T) \otimes \mathbf{R}$ and corresponding decomposition $\Phi=\Phi^{+} \cup \Phi^{-}$, we fix an invariant inner product $\langle-,-\rangle$"on everything", W_{λ} denotes the representation parameterized by the W-orbit of $\lambda \in X^{*}(T)$, $\mathfrak{g}=\operatorname{Lie}(G) \otimes \mathbf{C}$ is the complexified Lie algebra, \mathfrak{g}_{α} for $\alpha \in \Phi$ are the root spaces.

You should hand in problems 2, 3, 4, 5 .
(1) For the root systems of $\mathrm{U}_{n}, \mathrm{SO}_{2 m}, \mathrm{SO}_{2 m+1}, \mathrm{Sp}_{2 m}$ (with the usual identification of $X^{*}(T) \simeq \mathbf{Z}^{n}$ that we have been using) prove that the following subsets of \mathbf{R}^{n} is a chamber

$$
\begin{aligned}
\left(U_{n}\right) & : a_{1}>\cdots>a_{n} \\
\left(S O_{2 m}\right) & : a_{1}>\cdots>a_{n-1}>\left|a_{n}\right| \\
\left(S O_{2 m+1}, S p_{2 m}\right) & : a_{1}>\cdots>a_{n}>0
\end{aligned}
$$

In each case, describe the positive roots, the associated basis of simple roots, and the half-sum ρ of all positive roots.
(2) (a) Prove that the dual of V_{λ} is given by $V_{-\lambda}$.
(b) Prove that every representation of G is isomorphic to its own dual if and only if there exists w in the Weyl group such that $w(t)=1 / t$ for every $t \in T$. Deduce that every representation of SO_{m} and Sp_{m} is self-dual.
(c) Describe a representation of U_{m} that is not self-dual for each m.
(3) Suppose that λ, μ both lie inside the closure of the fixed chamber C. Show that $V_{\lambda+\mu}$ occurs as an irreducible subrepresentation of $V_{\lambda} \otimes V_{\mu}$ with multiplicity 1.
(4) Here $G=U_{n}$ and V denotes the standard representation of G on \mathbf{C}^{n} and (e.g) $W_{(t, 0, \ldots, 0)}$ denotes the representation parameterized by the W-orbit of $(t, 0,0, \ldots, 0) \in X^{*}(T)$.
(a) Prove that $W_{(t, 0,0, \ldots, 0)}$ is isomorphic to $\mathrm{Sym}^{t} V$.
(b) Prove that $W_{(1,1, \ldots, 1,0, \ldots, 0)}$ is isomorphic to $\wedge^{k} V$ (where k is the number of 1 s).
(c) Prove that $W_{(2,2,0, \ldots, 0)}$ is isomorphic to the kernel of $\operatorname{Sym}^{2}\left(\wedge^{2} V\right) \rightarrow$ $\wedge^{4} V$ where the map sends $a \otimes b \quad\left(a, b \in \wedge^{2} V\right)$ to $a \wedge b$. (This representation has dimension $n^{2}\left(n^{2}-1\right) / 12$ and is essentially where the Riemann curvature tensor lies.)
(d) Prove that there's an exact sequence of U_{n}-representations

$$
W_{(t, 0,0, \ldots, 0,-1)} \rightarrow \operatorname{Sym}^{t} V \otimes V^{*} \rightarrow \operatorname{Sym}^{t-1} V
$$

(5) (a) Suppose that a representation V of G has the property that the subspace of $v \in V$ such that $\mathfrak{g}_{\alpha} v=0$ for all $\alpha \in \Phi^{+}$is one-dimensional. Prove that V is irreducible. (The converse is also true.)
(b) Prove that Sp_{m} acts irreducibly on $\mathrm{Sym}^{k} \mathbf{C}^{m}$ for every $k \geq 1$; show this is false in general for SO_{m}. Extra credit: what happens for $\wedge^{k} \mathbf{C}^{m}$?
(6) Let $G=\mathrm{SU}_{m}, \mathrm{SO}_{m}(m>4), \mathrm{Sp}_{m}$. Prove that the adjoint action of G on its Lie algebra $\mathfrak{g}=\operatorname{Lie}(G) \otimes \mathbf{C}$ is irreducible, and determine the highest weight.
(7) Prove that G_{2} has an irreducible 7-dimensional representation V and that it fixes an element of $\wedge^{3} V$. (This leads to the definition of G_{2} as the subgroup of GL_{7} fixing an appropriate trilinear form.)
(8) (a) Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ be any weight of the diagonal torus that occurs in the irreducible representation of $\mathrm{GL}_{3}(\mathbf{C})$ with highest weight $\mathbf{r}=$ $\left(r_{1} \geq r_{2} \geq r_{3}\right)$. Prove that in fact $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}$ belongs to the convex hull of points $\left(r_{\sigma(1)}, r_{\sigma(2)}, r_{\sigma(3)}\right): \sigma \in S_{3}$.
(b) Let M be any Hermitian matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$. Show that the diagonal entries $\left(m_{1}, m_{2}, m_{3}\right) \in \mathbf{R}^{3}$ of M belong to the convex hull of points $\left(\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \lambda_{\sigma(3)}\right)$.
(9) Let $P: U_{n} \rightarrow \mathbf{C}$ be a polynomial in the matrix entries and their complex conjugates, with rational coefficients. Prove that $\int_{U_{n}} P(u) d u \in \mathbf{Q}$, the integral being taken with respect to the Haar measure of mass 1.

