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Products of linear forms= “Decomposable forms”

K: algebraically closed field.

“Decomposable forms” of degree n in K[tg,t1,...,tr]

totally factorizable forms

products of n linear forms.

They are a closed algebraic subvariety in the space of forms of degree
n. What is its ideal 7



Two nice works on the problem

John Dalbec, Multisymmetric functions, Beitrage zur Algebra und
Geometrie 40 (1999).

Friedrich Junker, Uber symmetrische Functionen von mehreren Reihen
vor Verdnderlichen, Matematische Annalen 43 (1893).
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Texte a traduire

Texte original :

bDie einfbrmigen und die elementaren Functicnen.
Bekanntlicht 1ldsst sich jede einformige Function als ganze
unction der Elementarfunctionen umgekehrt darstellen. Die
hiebei resultirenden Recursicnformeln heissen nach ihrem
Entdecker Newton'sche und sind filr r Gruppen von je zwel
Variabelnpaaren angegeben durch ...

Allemand a : Anglais j Traduire |

(up to permutation)

Texte traduit automatiguement :

The monctoncus and the elementary Functicnen. Admitting light
can be represented each monotonous Function as whole Function
of the Elementarfunctionen in reverse. Hiebei the
resultirenden Recursionformeln is called after its discoverer
Newton' and is for r groups indicated by two pairs of
variable each through.




Defining maps for the subvariety of decomposable forms

V : K—vector space of dimension r 4+ 1.

T he subvariety of decomposable forms is the image of:
T (V)" /6, — SNy
(51,52,...,&1) mod &, — b1 -bo---Lp

It is the affine cone over the image of:
Pr: Symm"P" = (PV*)"/G, — P(S™V*)
(Hl,HQ,...,Hn) mod &, — Hy1+ Ho+---+ Hp

The map Pr is injective and its image, Chow(n,0,P"), is the Chow
variety of the O-cycles of degree n in P".



Associated maps of graded algebra

S™V = symmetric power over V (quotient of ®"V).

T" 'V = symmetric tensors over V (subspace of ®"V).

sym
The map

Pr: Symm"P" = (PV*)"/&, — P(S"V¥)

gives rise to a map between the homogeneous coordinate rings:
o

oo
™ PTE SV — P ST,V = ST WV



Questions

Pr - Symm™ P . P(SPV*)
(Hl,HQ,...,Hn) mod &, — Hi+ Hr+---+ Hp

Pb 1. Is Pz an isomorphism Symm"™P" = Chow(n,0,P") 7

Pb 2. Compute, or describe, kern* (defining equations for the
subvariety of decomposable forms)



In coordinates

The map:
Pr: Symm"P" = (PV*)"/G,

—  P(S"VF)

can be worked out in homogeneous coordinates.

Write ¢; = a;oto + a;1t1 + -+ + agptr and [[; 4, = Y, €a t0t3 - - t27.

(a10 a11

It appears as: A = a?o

an0

alr

anr

- (ea)

la|=n

The algebra @ TSV of Symm"™P" is HDSymZ""l(K) (homogeneous
diagonal invariants of the symmetric group): the polynomials in the
entries of A, invariants under row permutations, homogeneous in the

variables of each row.

The ey (fundamental homogeneous invariants) are a linear basis for
the piece of degree 1 of HDSym}T1(K).



In coordinates, locally

The map:
Pr: Symm"Pr = (PV*)"/&, — P(S"V™)
can be worked out in affine charts: a;o = 1 for all < and e,,gg...0 = 1.

Write ¢, = 1+ a;1t1 + -+ + a;tr (We set tg = 1)

and [[; 4, =14 >, ¢€a t(lxl---t?”’ (1< ]a<n).
a11 - a1y

It appears as: mor: A= |21 |~ (ealA)1<)al<n
an1 anr

The algebra of the affine chart of Symm"™P" is DSym' (K) (diagonal
invariants of the symmetric group): the polynomials in the entries of
A, invariants under row permutations.

The ey are the elementary polynomials. The algebra DSym! also contains
analogues of the classical power sums and monomial functions and conversion
algorithmes.



The isomorphism problem

Pb 1. Is Px an isomorphism Symm"P" = Chow(n,0,P") 7
Neeman (1989): if charK = 0 or > n then Pz is an isomorphism.

Dalbec (1999): Pr: Symm?P2 — Chow(2,P?) is an isomorphism
regardless of chark.

E.B. (2002)

e For charK = 2, Px is an isomorphism iff r=1orn=1o0orr =2
with n < 3.

e For charK > 2, Px is an isomorphism iff n > charK or r = 1.



The isomorphism problem

Idea of the proof:

This can be established locally.
P is an isomorphism

iff 7, (the map between affine charts) is an embedding
iff the eq generate DSym! (K).

e Use a finite generating set of DSym! (over the integers) like
Fleischmann's monomial functions or the Bergeron—Lamontagne
basis.

e Use projections DSym!, — DSym” _, and DSym/, — DSym/~1.

e Finish with a small number of small “brute force” computations.



From now on K = C

Pb. 2: Compute the ideal of Chow(n,0,P")

It is kern* = ideal of the algebraic relations between the
éa € HDSymiT1(C)

It is easier to get kerwszz ideal of the algebraic relations between the
ea € DSym! (C) because:

e A nice algorithm to produce all relations in given multidegree is
known (Junker 4+ Dalbec).

e The (multigraded) Hilbert series of DSym] is known (it is the
generating function for vector partitions). (Gessel—Garsia 1979,
Bergeron—Lamontagne 2005)

All is in favour of Hilbert—driven Grobner basis computations.



Compute the ideal of Chow(n,0,P")

Two types of monomial orderings are interesting:

1. total degree order.

Useful: A Grobner basis for kernl - (relations between elementary
polynomials) provides a Grobner basis for kern* by mere
homogenization of its elements.

2. ‘easy” order, enjoying the structure of DSymy,.

DSym’ is a free module of rank (n!)"~1 over a subalgebra = ®"Sym,,.
This provides small Grobner bases and smaller (non Grdbner)
generating sets.

# small set of generators / # gb for nice order / # gb for total degree

Symm*Pr | n=2 n =3 n==4% n=2>5 n—=~6
r=>2 1/1/1 5/5/35 15/23/1139|35/102/7 | 70/518/7
r—=23 6/6/12|43/53/1779 | 177/743/7
r—==4 20/20/ | 196/292/7

Dalbec (1999) conjectured that the ideal of Chow(3,0,P3) is generated in degree 4:
true.




Foulkes—Howe conjecture

Foulkes' (open) plethysm conjecture: (1950)
hgo hn — hn o hg is Schur—positive for d > n.

Consider
©.@) ©.@)
d=0 d=0
GL(V)—characters for the pieces of degree d:

hn o hy and hgo hn



Foulkes—Howe conjecture

Foulkes' (open) plethysm conjecture: (1950)
hgo hn — hnohg is Schur—positive for all d > n.

Consider
oo oo
d=0 d=0
GL(V)—characters for the pieces of degree d:
hn o hy and hgo hn

Howe’'s (stronger) conjecture(s) (1987)

FH (i) 77 is injective for all d < n.

FH (ii) 7 is surjective for all d > n.



Foulkes—Howe conjecture

Foulkes' (open) plethysm conjecture: (1950)
hgo hn — hn o hg is Schur—positive for all d > n.

Consider
©.@) ©.@)
= Qg ED Tg'j/deV — @ SdTgLymV
d=0 d=0
GL(V)—characters for the pieces of degree d:

hn o hy and hgo hn
Howe’'s (stronger) conjecture(s) (1987):

FH (i) 7} is injective for all d < n.

(& 7 is bijective)

(< No form of degree < n vanishes on Chow(n,0,P")) (< The degree
n piece of HDSymZ"'1 IS generated by the fundamental homogeneous
invariants eq.)

(& Chow(n,0,P") has no equation of degree < n)



Foulkes—Howe conjecture

M. Brion (1997): FH conjecture (ii) is true for d >> n (with explicit
lower bound depending on n and r)

E.B. : FH conjectures (i) and (ii) are true for n = 3.

E.B. (2002), J. Jacob (2004): FH conjecture (i) is true for n = 4.



Foulkes—Howe conjecture

M. Brion (1997): FH conjecture (ii) is true for d >> n (with explicit
lower bound depending on n and r)

E.B. : FH conjectures (i) and (ii) are true for n = 3.

E.B. (2002), J. Jacob (2004): FH conjecture (i) is true for n = 4.

Miller+Neunhoffer (2005): FH
conjectures (i) and (ii) are false for

n =2>5.




Foulkes—Howe conjecture

M. Brion (1997): FH conjecture (ii) is true for d >> n (with explicit
lower bound depending on n and r)

E.B. : FH conjectures (i) and (ii) are true for n = 3.

E.B. (2002), J. Jacob (2004): FH conjecture (i) is true for n = 4.

Miller4+Neunhoffer (2005): FH
conjectures (i) and (ii) is false for
n = 5.

Anyway ...when is 7 injective 7 surjective 7



Showing that FH (i) holds for fixed n: Toy example n =2

To show: that the fundamental homogeneous invariants generate the
degree n piece of HDSymLT1(C).

. _ _ |a1 a2
ExX: n=2, A= [bl b2]

The monomial functions = orbit sums of monomials = (a$1a%2b;1652)
(under row permutations of the matrix) are a linear basis for DSym.

The decomposition
> (a$b1bn) = e11€20
IS obtained by applying the polarization operator
1 0 0
j(alﬁ + 51%)

to the key identity:



Z(a%b%) = a%b% + a%b% = e%l — 2e50€02

The key identity is also invariant under Column permutations !



Doubly symmetric functions

Checking FH (i) for fixed n can be reduced to computations in the

subspace of C[A]®n*6n; A =

(11 a19
a21 e o o

an1

aAln

ann |

of the elements

homogeneous of degree n w.r.t. the variables of each row and
homogeneous of degree n w.r.t. the variables of each column.

Ex: n = 3, linear bases are indexed by:

E=EX—
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1
1

1
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1
1
1
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Even the enumeration of these objects is difficult |
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