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Products of linear forms= “Decomposable forms”

K: algebraically closed field.

“Decomposable forms” of degree n in K[t0, t1, . . . , tr]

=

totally factorizable forms

=

products of n linear forms.

They are a closed algebraic subvariety in the space of forms of degree

n. What is its ideal ?



Two nice works on the problem

John Dalbec, Multisymmetric functions, Beiträge zur Algebra und

Geometrie 40 (1999).

Friedrich Junker, Über symmetrische Functionen von mehreren Reihen

vor Veränderlichen, Matematische Annalen 43 (1893).



Google translation

(up to permutation)



Defining maps for the subvariety of decomposable forms

V : K–vector space of dimension r + 1.

The subvariety of decomposable forms is the image of:
π : (V ∗)n/Sn −→ SnV ∗

(`1, `2, . . . , `n) mod Sn 7−→ `1 · `2 · · · `n

It is the affine cone over the image of:
Pπ : Symmn Pr = (PV ∗)n/Sn −→ P(SnV ∗)

(H1, H2, . . . , Hn) mod Sn 7−→ H1 + H2 + · · ·+ Hn

The map Pπ is injective and its image, Chow(n,0, Pr), is the Chow

variety of the 0-cycles of degree n in Pr.



Associated maps of graded algebra

SnV = symmetric power over V (quotient of ⊗nV ).

T n
symV = symmetric tensors over V (subspace of ⊗nV ).

The map

Pπ : Symmn Pr = (PV ∗)n/Sn −→ P(SnV ∗)

gives rise to a map between the homogeneous coordinate rings:

π∗ :
∞
⊕

d=0

Tn
symSdV ←−

∞
⊕

d=0

SdTn
symV = S•Tn

symV



Questions

Pπ : Symmn Pr −→ P(SnV ∗)
(H1, H2, . . . , Hn) mod Sn 7−→ H1 + H2 + · · ·+ Hn

Pb 1. Is Pπ an isomorphism Symmn Pr ∼= Chow(n,0, Pr) ?

Pb 2. Compute, or describe, kerπ∗ (defining equations for the

subvariety of decomposable forms)



In coordinates

The map:

Pπ : Symmn Pr = (PV ∗)n/Sn −→ P(SnV ∗)

can be worked out in homogeneous coordinates.

Write `i = ai0t0 + ai1t1 + · · ·+ airtr and
∏

i `i =
∑

α êα t
α0
0 t

α1
1 · · · t

αr
r .

It appears as: Â =











a10 a11 · · · a1r
a20 · · · ...
... ...

an0 · · · anr











7→
(

êα(Â)
)

|α|=n

The algebra
⊕

d Tn
symSV of SymmnP r is HDSymr+1

n (K) (homogeneous

diagonal invariants of the symmetric group): the polynomials in the

entries of Â, invariants under row permutations, homogeneous in the

variables of each row.

The êα (fundamental homogeneous invariants) are a linear basis for

the piece of degree 1 of HDSymr+1
n (K).



In coordinates, locally

The map:

Pπ : Symmn Pr = (PV ∗)n/Sn −→ P(SnV ∗)

can be worked out in affine charts: ai0 = 1 for all i and ên00···0 = 1.

Write `i = 1 + ai1t1 + · · ·+ airtr (we set t0 = 1)

and
∏

i `i = 1 +
∑

α eα t
α1
1 · · · t

αr
r (1 ≤ |α| ≤ n ).

It appears as: πaff : A =











a11 · · · a1r
a21

...
... ...

an1 anr











7→ (eα(A))1≤|α|≤n

The algebra of the affine chart of SymmnP r is DSymr
n(K) (diagonal

invariants of the symmetric group): the polynomials in the entries of

A, invariants under row permutations.

The eα are the elementary polynomials. The algebra DSymr
n also contains

analogues of the classical power sums and monomial functions and conversion

algorithms.



The isomorphism problem

Pb 1. Is Pπ an isomorphism Symmn
Pr ∼= Chow(n,0, Pr) ?

Neeman (1989): if charK = 0 or > n then Pπ is an isomorphism.

Dalbec (1999): Pπ : Symm2 P2 → Chow(2, P2) is an isomorphism

regardless of charK.

E.B. (2002)

• For charK = 2, Pπ is an isomorphism iff r = 1 or n = 1 or r = 2

with n ≤ 3.

• For charK > 2, Pπ is an isomorphism iff n > charK or r = 1.



The isomorphism problem

Idea of the proof:

This can be established locally.

Pπ is an isomorphism

iff πaff (the map between affine charts) is an embedding

iff the eα generate DSymr
n(K).

• Use a finite generating set of DSymr
n (over the integers) like

Fleischmann’s monomial functions or the Bergeron–Lamontagne

basis.

• Use projections DSymr
n → DSymr

n−1 and DSymr
n → DSymr−1

n .

• Finish with a small number of small “brute force” computations.



From now on K = C

Pb. 2: Compute the ideal of Chow(n,0, Pr)

It is kerπ∗ = ideal of the algebraic relations between the

êα ∈ HDSymr+1
n (C)

It is easier to get kerπ∗aff= ideal of the algebraic relations between the

eα ∈ DSymr
n(C) because:

• A nice algorithm to produce all relations in given multidegree is

known (Junker + Dalbec).

• The (multigraded) Hilbert series of DSymr
n is known (it is the

generating function for vector partitions). (Gessel–Garsia 1979,

Bergeron–Lamontagne 2005)

All is in favour of Hilbert–driven Gröbner basis computations.



Compute the ideal of Chow(n,0, Pr)

Two types of monomial orderings are interesting:

1. total degree order.

Useful: A Gröbner basis for kerπ∗aff (relations between elementary

polynomials) provides a Gröbner basis for kerπ∗ by mere

homogenization of its elements.

2. “easy” order, enjoying the structure of DSymr
n.

DSymr
n is a free module of rank (n!)r−1 over a subalgebra ∼= ⊗rSymn.

This provides small Gröbner bases and smaller (non Gröbner)

generating sets.

# small set of generators / # gb for nice order / # gb for total degree

Symmn Pr n = 2 n = 3 n = 4 n = 5 n = 6

r = 2 1/1/1 5/5/35 15/23/1139 35/102/? 70/518/?
r = 3 6/6/12 43/53/1779 177/743/?
r = 4 20/20/ 196/292/?

Dalbec (1999) conjectured that the ideal of Chow(3,0, P3) is generated in degree 4:

true.



Foulkes–Howe conjecture

Foulkes’ (open) plethysm conjecture: (1950)

hd ◦ hn − hn ◦ hd is Schur–positive for d ≥ n.

Consider

π∗ = ⊕dπ
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∞
⊕

d=0

Tn
symSdV ←−

∞
⊕

d=0

SdTn
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GL(V )–characters for the pieces of degree d:

hn ◦ hd and hd ◦ hn
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Foulkes–Howe conjecture

Foulkes’ (open) plethysm conjecture: (1950)

hd ◦ hn − hn ◦ hd is Schur–positive for all d ≥ n.

Consider

π∗ = ⊕dπ
∗
d :

∞
⊕

d=0

Tn
symSdV ←−

∞
⊕

d=0

SdTn
symV

GL(V )–characters for the pieces of degree d:

hn ◦ hd and hd ◦ hn

Howe’s (stronger) conjecture(s) (1987):

FH (i) π∗d is injective for all d ≤ n.

(⇔ π∗n is bijective)

(⇔ No form of degree ≤ n vanishes on Chow(n,0, Pr)) (⇔ The degree

n piece of HDSymr+1
n is generated by the fundamental homogeneous

invariants êα.)

(⇔ Chow(n,0, Pr) has no equation of degree ≤ n)



Foulkes–Howe conjecture

M. Brion (1997): FH conjecture (ii) is true for d >> n (with explicit

lower bound depending on n and r)

E.B. : FH conjectures (i) and (ii) are true for n = 3.

E.B. (2002), J. Jacob (2004): FH conjecture (i) is true for n = 4.
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Foulkes–Howe conjecture

M. Brion (1997): FH conjecture (ii) is true for d >> n (with explicit

lower bound depending on n and r)

E.B. : FH conjectures (i) and (ii) are true for n = 3.

E.B. (2002), J. Jacob (2004): FH conjecture (i) is true for n = 4.

Müller+Neunhöffer (2005): FH

conjectures (i) and (ii) is false for

n = 5.

Anyway . . . when is π∗d injective ? surjective ?



Showing that FH (i) holds for fixed n: Toy example n = 2

To show: that the fundamental homogeneous invariants generate the

degree n piece of HDSymr+1
n (C).

Ex: n = 2, A =

[

a1 a2
b1 b2

]

The monomial functions = orbit sums of monomials Σ(a
α1
1 a

α2
2 b

β1
1 b

β2
2 )

(under row permutations of the matrix) are a linear basis for DSym.

The decomposition

Σ(a2
1b1b2) = e11e20

is obtained by applying the polarization operator

1
2(a1

∂
d a2

+ b1
∂
d b2

)

to the key identity:



Σ(a2
1b22) = a2

1b22 + a2
2b21 = e211 − 2e20e02

The key identity is also invariant under Column permutations !



Doubly symmetric functions

Checking FH (i) for fixed n can be reduced to computations in the

subspace of C[A]Sn×Sn: A =











a11 a12 · · · a1n
a21 · · · ...
... ...

an1 · · · ann











of the elements

homogeneous of degree n w.r.t. the variables of each row and

homogeneous of degree n w.r.t. the variables of each column.

Ex: n = 3, linear bases are indexed by:







1 1 1
1 1 1
1 1 1













3 0 0
0 2 1
0 1 2













2 1 0
0 2 1
1 0 2













1 1 1
1 2 0
1 0 2













3 0 0
0 3 0
0 0 3







Even the enumeration of these objects is difficult !
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