HELLY'S THEOREM

TENGREN ZHANG

Theorem 1. (Eduard Helly) For a finite collection of convex subsets $X_{1}, X_{2}, \ldots, X_{n} \in \mathbb{R}^{d}$, where $n>d$, if the intersection of every $d+1$ of these sets is nonempty, then

$$
\bigcap_{j=1}^{n} X_{j} \neq \emptyset
$$

Pf:
By Mathematical Induction. Let proposition, P_{n}, be Helly's Theorem in the case of n subsets in \mathbb{R}^{d}. Since $n>d$, we would use P_{d+1} as our base case. P_{d+1} is clearly true, because if the intersection of $d+1$ of them are non-empty, then the intersection of all of them are non-empty.

Lemma 1. (Johann Radon) Any set with $d+2$ points in R^{d}, can be partitioned into 2 disjoint, non-empty sets such that the convex hull of these sets have a non-empty intersection.

Pf:
Let $X=\left\{p_{1}, p_{2}, \ldots, p_{d+2}\right\} \subset \mathbb{R}^{d}$, let \vec{p}_{i} be the position vector of the point p_{i} and let the vector \vec{p}_{i}^{\prime} be s.t.

$$
\text { if } \vec{p}_{i}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{d}
\end{array}\right] \text { then } \vec{p}_{i}^{\prime}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{d} \\
1
\end{array}\right]
$$

Since $p_{i}^{\prime} \in \mathbb{R}^{d+1}$, the position vectors of the points in X^{\prime} cannot be mutually linearly independent because $\left|X^{\prime}\right|=d+2$. This means that there exists some non-trivial solution for the equation

$$
\sum_{i=1}^{d+2} \alpha_{i} \vec{p}_{i}^{\prime}=0
$$

which implies that there exists some non-trivial solution to $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ s.t. the two equations

$$
\sum_{i=1}^{d+2} \alpha_{i} \vec{p}_{i}=0 \quad \text { and } \quad \sum_{i=1}^{d+2} \alpha_{i}=0
$$

are satisfied.

Let $I=\left\{i \in[d+2] \mid \alpha_{i}>0\right\}$, let $J=\left\{j \in[d+2] \mid \alpha_{j} \leq 0\right\}$, let $K=\left\{p_{i} \mid i \in I\right\}$ and let $L=\left\{p_{i} \mid i \in J\right\}$.

It is easy to see that $K, L \neq \emptyset$ because if either of them is empty, then either $\sum_{i=1}^{d+2} \alpha_{i}=0$ is not satisfied or the solution to $\sum_{i=1}^{d+2} \alpha_{i} \vec{p}_{i}=0$ is trivial. This means that the point p with position vector $\vec{p}=\frac{\sum_{i \in I} \alpha_{i} \vec{p}_{i}}{\sum_{i \in I} \alpha_{i}}$ exists, and is in the convex hull of K because it is a convex combination of the position vectors of the points in K, i.e.

$$
\forall i \in I, \frac{\alpha_{i}}{\sum_{i \in I} \alpha_{i}} \geq 0 \quad \text { and } \quad \sum_{i \in I}\left(\frac{\alpha_{i}}{\sum_{i \in I} \alpha_{i}}\right)=1 .
$$

Also,

$$
\begin{aligned}
\vec{p} & =\frac{\sum_{i \in I} \alpha_{i} \vec{p}_{i}}{\sum_{i} I_{I} \alpha_{i}} \\
& =\frac{\sum_{i=1}^{d i=1} \alpha_{i} \vec{p}_{i}-\sum_{i \in J} \alpha_{i} \vec{p}_{i}}{\sum_{i+2}^{d+2} \alpha_{i}-\sum_{i \in J} \alpha_{i}} \\
& =\frac{0-\sum_{i, J_{i}} \alpha_{i} \vec{p}_{i}}{0-\sum_{i \in J} \alpha_{i}} \\
& =\frac{\sum_{i \in J} \alpha_{i} \vec{p}_{i}}{\sum_{i \in J} \alpha_{i}}
\end{aligned}
$$

This shows that p is also in the convex hull of L because the position vector of p is a convex combination of the position vectors of the points in L. Hence, $p \in K \cap L$, so $K \cap L \neq \emptyset$.

Lemma 2. The intersection of any 2 convex sets is a convex set.
Pf:
By contradiction. Let A, B be convex sets, and assume that $A \cap B=C$ is not convex. This implies that there exists two points $a, b \in C$, with position vectors \vec{a}, \vec{b} respectively, such that for some $\alpha \in[0,1]$, the point p with position vector $\vec{p}=\alpha \vec{a}+(1-\alpha) \vec{b}$ is not in C. Since $p \notin C$, we can assume without loss of generality that $p \notin A$, which means that A is not convex because $a, b \in C$ implies $a, b \in A$. Contradiction.

Although we already have a base case, we shall now consider P_{d+2}, which would later be used in conjunction with the inductive hypothesis to prove the inductive step.

Let $A=\left\{p_{1}, \ldots, p_{d+2}\right\}$ and let p_{i} be the common point of all sets X_{j}, where $j \neq i$. This point p exists because every $d+1$ of the $d+2$ convex sets that we are considering have a nonempty intersection.

By Lemma 1 , there exists a nontrivial, disjoint partition A_{1}, A_{2} of A such that the convex hulls of A_{1} and A_{2} intersect at some point p. Also, observe that $\forall i \in[d+2]$, the only point that is not in X_{i} but is in A is p_{i}. Note that since $p_{i} \in A$ and $A_{1} \cup A_{2}=A$, we can assume without loss of generality that $p_{i} \in A_{1}$. This means that $p_{i} \notin A_{2}$, so $A_{2} \subset X_{i}$. Since X_{i} is convex, it has to contain the convex hull of A_{2}, and in particular, the point p. Hence, p is common to all the X_{i} 's, and so P_{d+2} is true.

Now, we are ready to prove the inductive step. Assume there exists some $k \in \mathbb{N}$ with $k>n$ such that P_{k} is true.

Consider P_{k+1}, and let $Y_{i}=X_{i} \cap X_{k+1}$.

$$
\begin{array}{rll}
\bigcap_{R \subset[k],\|R\|=d+1} Y_{i} & =\left[\bigcap_{R} X_{i}\right] \cap X_{k+1} & \\
& \neq \emptyset & \because P_{d+2} \text { is true } .
\end{array}
$$

By Lemma $2, \forall i \in[k+1], Y_{i}$ is also convex. Since the Y_{i} 's are convex and every $d+1$ of them have a nonempty intersection, by the inductive hypothesis, $\bigcap_{i=1}^{k} Y_{i} \neq \emptyset$, which implies that $\bigcap_{i=1}^{k+1} X_{i} \neq \emptyset$. Hence, P_{k} is true implies that P_{k+1} is true, and this proves the theorem.

Now that we have proven Helly's theorem for a finite number of convex sets in \mathbb{R}^{d}, we will try to extend this theorem to an infinite number of convex sets. However, we have to add an additional restriction of compactness in place of removing the finiteness restriction on the number of sets. Helly's theorem for an infinite number of convex sets is thus stated as follows:

Theorem 2. For any infinite collection of convex, compact subsets $X_{1}, X_{2}, \cdots \in \mathbb{R}^{d}$, if the intersection of every $d+1$ of these sets is nonempty, then

$$
\bigcap_{j \rightarrow \infty} X_{j} \neq \emptyset
$$

Before we attempt to prove this theorem, let us demonstrate that the restriction of compactness is necessary. This will be done by creating two counter-examples; in the first, we will show that restricting ourselves only to closed, convex sets is insufficient, while in the second, we will show that restricting ourselves to bounded, convex sets is also insufficient.

Proposition 1. For any infinite collection of convex, closed subsets $X_{1}, X_{2}, \cdots \in \mathbb{R}^{d}$, if the intersection of every $d+1$ of these sets is nonempty, then

$$
\bigcap_{j=1}^{\infty} X_{j} \neq \emptyset
$$

This counter-example will be in the case where $d=1$. Consider the sets $A_{i}=\mathbb{R} \backslash(-\infty, i)$, where $i \in \mathbb{N}$. Since the set $(-\infty, i)$ is open, it's complement, A_{i}, is by definition closed. Also, any two A_{i} 's have a non-empty intersection because $A_{i} \subset A_{j}$ if $i>j$. However,

$$
\bigcap_{i=1}^{\infty} A_{i}=\emptyset
$$

which is contrary to Proposition 1.

Proposition 2. For any infinite collection of convex, bounded subsets $X_{1}, X_{2}, \cdots \in \mathbb{R}^{d}$, if the intersection of every $d+1$ of these sets is nonempty, then

$$
\bigcap_{j=1}^{\infty} X_{j} \neq \emptyset
$$

This counter-example will again be in the case where $d=1$. Consider the sets $A_{i}=$ $\left(0, \frac{1}{i}\right)$, where $i \in \mathbb{N}$. The A_{i} 's are clearly bounded, and any two A_{i} 's have a non-empty intersection because $A_{i} \subset A_{j}$ if $i>j$. Again however,

$$
\bigcap_{i=1}^{\infty} A_{i}=\emptyset
$$

which contradicts Proposition 2.

Now, we will prove Helly's theorem for an infinite number of compact, convex sets.
Pf:
In Theorem 1 , we essentially proved that for any n convex sets A_{1}, \ldots, A_{n} with every $d+1$ of them having a nonempty intersection, there exists some point x_{n} s.t.

$$
x_{n} \in \bigcap_{i=1}^{n} A_{i}
$$

Consider the infinite set $Z_{i}=\left\{x_{i}, x_{i}+1, \ldots\right\}$. For all $j \in \mathbb{N}, j>i, x_{j} \in A_{i}$ because x_{j} is a point in the intersection of a set of sets, one of which is A_{i}. This means that for all $i \in \mathbb{N}, Z_{i} \subset A_{i}$. Since we restricted that A_{i} to be compact, A_{i} is bounded, and so its subset Z_{i} also has to be bounded. We also know that Z_{i} is infinite, which implies that Z_{i} has at least one limit point, because any infinite bounded set has a limit point.

Observe that if $i>j$ with $i, j \in \mathbb{N}$, then $Z_{i} \subset Z_{j}$, which means that the set of limit points of Z_{i} is a subset of the set of limit points of Z_{j}. Since every Z_{i} has at least one limit point, this means that for every $i>j, Z_{i}$ shares at least one limit point with Z_{j}. Also, for all $k<j$ with $k \in \mathbb{N}, Z_{j} \subset Z_{k}$, and this implies that all the limit points of Z_{j} are also limit points of Z_{k}, which means that for every $k<j, Z_{k}$ and Z_{j} share a limit point. Since this is true for all $j \in \mathbb{N}$, all the Z_{i} 's share a limit point, q.

Now, since $Z_{i} \subset A_{i}$, the limit points of Z_{i} is also a limit points of A_{i}. This means that q is a limit point of all the A_{i} 's because it is a limit point of all the Z_{i} 's. Moreover, since all the A_{i} 's are closed, for every $i \in \mathbb{N}, q \in A_{i}$, so

$$
\bigcap_{i=1}^{\infty} A_{i} \neq \emptyset
$$

