Complexity of high dimensional Gaussian random fields with isotropic increments

Qiang Zeng
University of Macau
Joint with
Antonio Auffinger (Northwestern University)

September 17

Outline

(1) Model and problem

(2) Warm-up Results

(3) Main results

Model and problem

- The model is

$$
H_{N}(x)=X_{N}(x)+\frac{\mu}{2}\|x\|^{2}, \quad x \in \mathbb{R}^{N}
$$

Here $\mu \in \mathbb{R},\|x\|$ is the Euclidean norm of x, X_{N} is a Gaussian random field with isotropic increments (GRFIC)

$$
\mathbb{E}\left[\left(X_{N}(u)-X_{N}(v)\right)^{2}\right]=N D\left(\frac{1}{N}\|u-v\|_{2}^{2}\right), \quad u, v \in \mathbb{R}^{N}
$$

$X_{N}(x)$ is also known as a locally isotropic Gaussian random field. The function D is known as the structure function of X_{N}.

Model and problem

- The model is

$$
H_{N}(x)=X_{N}(x)+\frac{\mu}{2}\|x\|^{2}, \quad x \in \mathbb{R}^{N}
$$

Here $\mu \in \mathbb{R},\|x\|$ is the Euclidean norm of x, X_{N} is a Gaussian random field with isotropic increments (GRFIC)

$$
\mathbb{E}\left[\left(X_{N}(u)-X_{N}(v)\right)^{2}\right]=N D\left(\frac{1}{N}\|u-v\|_{2}^{2}\right), \quad u, v \in \mathbb{R}^{N}
$$

$X_{N}(x)$ is also known as a locally isotropic Gaussian random field. The function D is known as the structure function of X_{N}.

- Problem:
- Given smooth H_{N}, how many critical points does H_{N} have?
- Where are most of the critical points?
- How about local minima or saddles with given index?

Classification of LIGRF for all N : Yaglom 1957

(1) Isotropic fields (short-range correlation, or SRC): $\exists B: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that

$$
\mathbb{E}\left[X_{N}(u) X_{N}(v)\right]=N B\left(\frac{1}{N}\|u-v\|_{2}^{2}\right)
$$

where B has the representation

$$
B(r)=c_{0}+\int_{(0, \infty)} e^{-r t^{2}} \nu(\mathrm{~d} t), \quad c_{0} \in \mathbb{R}_{+}
$$

ν is a finite measure on $(0, \infty)$. In this case, $D(r)=2(B(0)-B(r))$.
(2) Non-isotropic field with isotropic increments (long-range correlation, or LRC): D has representation

$$
D(r)=\int_{(0, \infty)}\left(1-e^{-r t^{2}}\right) \nu(\mathrm{d} t)+A r, \quad A \in \mathbb{R}_{+}
$$

ν is a σ-finite measure with

$$
\int_{(0, \infty)} \frac{t^{2}}{1+t^{2}} \nu(\mathrm{~d} t)<\infty
$$

An example of structure function

Assume $X_{N}(0)=0$ for LRC.
$\mathbb{E}\left(X_{N}(u) X_{N}(v)\right)=\frac{N}{2}\left(D\left(\frac{1}{N}\|u\|_{2}^{2}\right)+D\left(\frac{1}{N}\|v\|_{2}^{2}\right)-D\left(\frac{1}{N}\|u-v\|_{2}^{2}\right)\right)$.

Example

We assume $c_{0}=0$ and $A=0$. For fixed $\varepsilon>0$ and $\gamma>0$, let

$$
\nu(\mathrm{d} x)=2 e^{-\varepsilon x^{2}} x^{2 \gamma-3} \mathrm{~d} x
$$

$\gamma>1$ corresponds to SRC and $0<\gamma \leq 1$ LRC. If $\gamma>1$,

$$
B(r)=\int_{0}^{\infty} 2 e^{-r t^{2}} e^{-\varepsilon t^{2}} t^{2 \gamma-3} \mathrm{~d} t=\frac{\Gamma(\gamma-1)}{(r+\varepsilon)^{\gamma-1}}
$$

If $0<\gamma<1$,

$$
D(r)=\frac{\Gamma(\gamma)}{1-\gamma}\left[(r+\varepsilon)^{1-\gamma}-\varepsilon^{1-\gamma}\right] .
$$

If $\gamma=1, D(r)=\log \left(1+\frac{r}{\varepsilon}\right)$.

More examples of structure functions

More examples of structure functions

16.3 Exponential functions

| No | Function $f(\lambda)$ | Comment |
| :--- | :--- | :--- | :--- |
| 18 | $\sqrt{\lambda}\left(1-e^{-2 a \sqrt{\lambda}}\right), \quad a>0$ | $14.2(43)$ of [107], 2.25 and |
| | | 7.78 in [283], Theorem $8.2(\mathrm{v})$ |

$19 \sqrt{\lambda}\left(1+e^{-2 a \sqrt{\lambda}}\right), \quad a>0$	$14.60(3)$ of [107], 2.25 and	
		7.78 in[283], Theorem $8.2(\mathrm{v})$

$20 \quad \frac{\lambda\left(1-e^{-2 \sqrt{\lambda+a}}\right)}{\sqrt{\lambda+a}}, \quad a>0 \quad$| Appendix 1.17 of [68], |
| :--- |
| Theorem 8.2 (v). See $\S 16.12 .2$ |

$21 \lambda(1+\lambda)^{1 / \lambda}-\lambda-\frac{\lambda}{\lambda+1} \quad$ [5], p. 457, Theorem 8.2(v)

| $22 \quad e \lambda-\lambda\left(1+\frac{1}{\lambda}\right)^{\lambda}-\frac{\lambda}{\lambda+1}$ | Theorem 3 of [5], |
| :--- | :--- | :--- |
| | Theorem $8.2(\mathrm{v})$ |

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.
- Yaglom classified Gaussian random field with isotropic increments in 1957 (who credits some part of the work to Schoenberg).

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.
- Yaglom classified Gaussian random field with isotropic increments in 1957 (who credits some part of the work to Schoenberg).
- Mézard and Parisi considered such models as a single particle in a random potential in 1990-1992; see also Engel (1993).

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.
- Yaglom classified Gaussian random field with isotropic increments in 1957 (who credits some part of the work to Schoenberg).
- Mézard and Parisi considered such models as a single particle in a random potential in 1990-1992; see also Engel (1993).
- In 2004, Fyodorov computed the large N limit of mean total number of critical points of the isotropic Gaussian random fields and found a phase transition for different value of μ and $-D^{\prime \prime}(0)$.

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.
- Yaglom classified Gaussian random field with isotropic increments in 1957 (who credits some part of the work to Schoenberg).
- Mézard and Parisi considered such models as a single particle in a random potential in 1990-1992; see also Engel (1993).
- In 2004, Fyodorov computed the large N limit of mean total number of critical points of the isotropic Gaussian random fields and found a phase transition for different value of μ and $-D^{\prime \prime}(0)$.
- Many works thereafter, both in mathematics and physics, by Bray-Dean (2007), Fyodorov-Williams (2007), Fyodorov-Bouchaud (2008), Fyodorov-Nadal (2012), Klimovsky (2012), Fyodorov (2015), Cheng-Schwartzman (2018), Yamada-Vilenkin (2018), etc.

Background and history

- The definition of locally isotropic fields was formulated by Kolmogorov for the application in statistical theory of turbulence in 1941.
- Yaglom classified Gaussian random field with isotropic increments in 1957 (who credits some part of the work to Schoenberg).
- Mézard and Parisi considered such models as a single particle in a random potential in 1990-1992; see also Engel (1993).
- In 2004, Fyodorov computed the large N limit of mean total number of critical points of the isotropic Gaussian random fields and found a phase transition for different value of μ and $-D^{\prime \prime}(0)$.
- Many works thereafter, both in mathematics and physics, by Bray-Dean (2007), Fyodorov-Williams (2007), Fyodorov-Bouchaud (2008), Fyodorov-Nadal (2012), Klimovsky (2012), Fyodorov (2015), Cheng-Schwartzman (2018), Yamada-Vilenkin (2018), etc.
- Complexity for spherical (mixed) p-spin model and variants: Auffinger-Ben Arous-Cerny (2011), Auffinger-Ben Arous (2013), Subag (2017), Ben Arous-Mei-Montanari-Nica (2019), etc.

Outline

(1) Model and problem

(2) Warm-up Results

(3) Main results

Assumptions and Notation

We consider non-isotropic Gaussian random fields with isotropic increments X_{N}.

- Assumption I (smoothness): $0<\left|D^{(4)}(0)\right|<\infty$.
- Assumption II (pinning): $X_{N}(0)=0$.
- For Borel set $E \subset \mathbb{R}$ and $B_{N} \subset \mathbb{R}^{N}$, let

$$
\begin{aligned}
\operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\# & \left\{x \in B_{N}: \nabla H_{N}(x)=0, \frac{1}{N} H_{N}(x) \in E\right. \\
& \left.i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \\
\operatorname{Crt}_{N}\left(E, B_{N}\right)=\# & \left\{x \in B_{N}: \nabla H_{N}(x)=0, \frac{1}{N} H_{N}(x) \in E\right\}
\end{aligned}
$$

Here

$$
i\left(\nabla^{2} H_{N}(x)\right)=\# \text { negative eigenvalues of } \nabla^{2} H_{N}(x)
$$

In this talk, we will focus on $\mathbb{E C r t}_{N, k}\left(E, B_{N}\right)$ for $k \in \mathbb{Z}_{+}$fixed.

Some preparations

Assume domain growth condition: Let $Z_{N} \sim N\left(0, I_{N}\right)$. There exist Ξ or Θ such that the sequence of sets B_{N} satisfy

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{P}\left(Z_{N} \in|\mu| B_{N} / \sqrt{D^{\prime}(0)}\right) & =-\Xi \leq 0, & \mu \neq 0 \\
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left|B_{N}\right| & =\Theta, & \mu=0
\end{aligned}
$$

Define

$$
J_{1}(x)= \begin{cases}\int_{x}^{-\sqrt{2}} \sqrt{z^{2}-2} \mathrm{~d} z, & x \leq-\sqrt{2} \\ \infty, & \text { otherwise }\end{cases}
$$

and

$$
\phi(x)=-\frac{1}{2} x^{2}-\frac{\mu x}{\sqrt{-D^{\prime \prime}(0)}} .
$$

Warm-up: no restriction on critical values

Theorem (Total number of critical points of index k)
Let $k \in \mathbb{Z}_{+}$. Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \frac{1}{N} \log {\mathbb{E} \operatorname{Crt}_{N, k}\left(\mathbb{R}, B_{N}\right)} \begin{aligned}
\frac{\mu^{2}}{4 D^{\prime \prime}(0)}-\log \frac{|\mu|}{\sqrt{-2 D^{\prime \prime}(0)}}-\frac{1}{2}-\Xi+I_{k}, & \mu \neq 0 \\
\log \sqrt{-2 D^{\prime \prime}(0)}-\frac{1}{2} \log \left[D^{\prime}(0)\right]-\frac{3}{2}-\frac{1}{2} \log (2 \pi)+\Theta, & \mu=0
\end{aligned}
\end{aligned}
$$

where the constant I_{k} (decreasing in k) is given as

$$
I_{k}= \begin{cases}\phi(-\sqrt{2})=-1+\frac{\sqrt{2} \mu}{\sqrt{-D^{\prime \prime}(0)}}, & \mu \leq \sqrt{-2 D^{\prime \prime}(0)} \\ -\frac{1}{2} x_{1}^{2}-\frac{\mu x_{1}}{\sqrt{-D^{\prime \prime}(0)}}-J_{1}\left(x_{1}\right), & \mu>\sqrt{-2 D^{\prime \prime}(0)}, k=0 \\ -\frac{1}{2} x_{2}^{2}-\frac{\mu x_{2}}{\sqrt{-D^{\prime \prime}(0)}}-(k+1) J_{1}\left(x_{2}\right), & \mu>\sqrt{-2 D^{\prime \prime}(0)}, k \geq 1\end{cases}
$$

and x_{1}, x_{2} are explicit constants depending only on $\mu, D^{\prime \prime}(0)$ and k.

Proof: Based on the Kac-Rice formula

 Roughly, $\int f\left(\nabla H_{N}(x)\right) \mathrm{d}\left(\nabla H_{N}(x)\right)=\int f\left(\nabla H_{N}(x)\right)\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \mathrm{d} x$,$$
\begin{array}{r}
\operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \delta_{0}\left(\nabla H_{N}(x)\right)\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \\
\\
\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \mathrm{d} x .
\end{array}
$$

Writing $p_{\nabla H_{N}(x)}(t)$ for the p.d.f. of $\nabla H_{N}(x)$ at t,

$$
\begin{aligned}
& \mathbb{E} \operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\left.\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \right\rvert\, \nabla H_{N}(x)=0\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x \\
& =\int_{B_{N}} \int_{E} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \mathbf{1}\left\{i\left(\nabla^{2} H_{N}(x)\right)=k\right\}\right. \\
& \left.\quad \mid \nabla H_{N}(x)=0, H_{N}(x)=N t\right] p_{\nabla H_{N}(x)}(0) \mathbb{P}\left(\frac{1}{N} H_{N}(x) \in \mathrm{d} t\right) \mathrm{d} x
\end{aligned}
$$

Covariances

For $x \in \mathbb{R}^{N}$,

$$
\begin{aligned}
\operatorname{Cov}\left[H_{N}(x), \partial_{i} H_{N}(x)\right] & =D^{\prime}\left(\frac{\|x\|^{2}}{N}\right) x_{i}, \\
\operatorname{Cov}\left[\partial_{i} H_{N}(x), \partial_{j} H_{N}(x)\right] & =D^{\prime}(0) \delta_{i j}, \\
\operatorname{Cov}\left[H_{N}(x), \partial_{i j} H_{N}(x)\right] & =2 D^{\prime \prime}\left(\frac{\|x\|^{2}}{N}\right) \frac{x_{i} x_{j}}{N}+\left[D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)-D^{\prime}(0)\right] \delta_{i j} \\
\operatorname{Cov}\left[\partial_{k} H_{N}(x), \partial_{i j} H_{N}(x)\right] & =0, \\
\operatorname{Cov}\left[\partial_{l k} H_{N}(x), \partial_{i j} H_{N}(x)\right] & =-2 D^{\prime \prime}(0)\left[\delta_{j l} \delta_{i k}+\delta_{i l} \delta_{k j}+\delta_{k l} \delta_{i j}\right] / N,
\end{aligned}
$$

where $\delta_{i j}$ are the Kronecker delta function.

The case $E=\mathbb{R}$

By independence,

$$
\left.\begin{array}{rl}
\mathbb{E} \operatorname{Crt}_{N, k}\left(\mathbb{R}, B_{N}\right)= & \int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \mathbf{1}\left\{i\left(\nabla^{2} H_{N}(x)\right)=k\right\}\right] \\
& p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{array}\right] \begin{aligned}
p_{\nabla H_{N}(x)}(0)= & \frac{1}{(2 \pi)^{N / 2} D^{\prime}(0)^{N / 2}} \exp \left(-\frac{\mu^{2}\|x\|^{2}}{2 D^{\prime}(0)}\right), \\
\operatorname{Var}\left(\partial_{i i} H_{N}(x)^{2}\right) & =-6 D^{\prime \prime}(0) / N \\
\operatorname{Var}\left(\partial_{i j} H_{N}(x)^{2}\right) & =-2 D^{\prime \prime}(0) / N, i \neq j, \\
\operatorname{Cov}\left(\partial_{i i} H_{N}(x), \partial_{k k} H_{N}(x)\right) & =-2 D^{\prime \prime}(0) / N, i \neq k \\
\operatorname{Cov}\left(\partial_{i j} H_{N}(x), \partial_{k l} H_{N}(x)\right) & =0, \text { otherwise. }
\end{aligned}
$$

The case $E=\mathbb{R}$: Relation to GOE

Let $M=M^{N}$ be an $N \times N$ matrix taken from the Gaussian Orthogonal Ensemble (GOE) with

$$
\mathbb{E}\left(M_{i j}\right)=0, \quad \mathbb{E}\left(M_{i j}^{2}\right)=\frac{1+\delta_{i j}}{2 N}
$$

and z an independent $N(0,1)$ r.v. Then

$$
\begin{aligned}
\nabla^{2} H_{N}(x) & \stackrel{d}{=} \sqrt{-4 D^{\prime \prime}(0)} M-\left(\sqrt{\frac{-2 D^{\prime \prime}(0)}{N}} z-\mu\right) I_{N} \\
& =\sqrt{-4 D^{\prime \prime}(0)}\left[M-\left(\frac{1}{\sqrt{2 N}} z-\frac{\mu}{\sqrt{-4 D^{\prime \prime}(0)}}\right) I_{N}\right]
\end{aligned}
$$

Let $z^{\prime}=\frac{1}{\sqrt{2 N}} z-\frac{\mu}{\sqrt{-4 D^{\prime \prime}(0)}}, m=-\mu / \sqrt{-4 D^{\prime \prime}(0)}$ and

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N}
$$

be eigenvalues of $\operatorname{GOE}(N)$.

A key identity

$$
\begin{aligned}
& \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \mathbf{1}\left\{i\left(\nabla^{2} H_{N}(x)\right)=k\right\}\right] \\
& =\left[-4 D^{\prime \prime}(0)\right]^{N / 2} \mathbb{E} \prod_{i=1}^{N}\left|\lambda_{i}-z^{\prime}\right| \mathbf{1}\left\{\lambda_{k} \leq z^{\prime} \leq \lambda_{k+1}\right\} \\
& = \\
& \quad\left[-4 D^{\prime \prime}(0)\right]^{N / 2} \int_{\lambda_{1} \leq \cdots \leq \lambda_{N}} \mathbb{E}_{z^{\prime}} \prod_{i=1}^{N}\left|\lambda_{i}-z^{\prime}\right| \mathbf{1}\left\{\lambda_{k} \leq z^{\prime} \leq \lambda_{k+1}\right\} \\
& \quad \frac{1}{Z_{N}} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-z^{\prime}\right| e^{-\frac{N}{2} \sum_{i} \lambda_{i}^{2}} \prod_{i} \mathrm{~d} \lambda_{i} \\
& =\left[-4 D^{\prime \prime}(0)\right]^{N / 2} \sqrt{\frac{N}{\pi}}\left(\frac{N+1}{N}\right)^{\frac{(N+2)(N+1)}{4}} \frac{e^{-N m^{2}} Z_{N+1}}{Z_{N}} \\
& \quad \int_{y_{1} \leq \cdots \leq y_{N+1}} e^{-\frac{1}{2}(N+1) y_{k+1}^{2}+2 \sqrt{N(N+1)} m y_{k+1} \frac{1}{Z_{N+1}}} \\
& \prod_{i=1}^{N+1} e^{-\frac{(N+1) y_{i}^{2}}{2}} \prod_{1 \leq i<j \leq N+1}\left|y_{i}-y_{j}\right| \mathrm{d} y_{1} \cdots \mathrm{~d} y_{N+1} \\
& = \\
& \sqrt{2}\left[-4 D^{\prime \prime}(0)\right]^{N / 2} \Gamma\left(\frac{N+1}{2}\right) \\
& \sqrt{\pi} N^{N / 2} e^{N m^{2}} \\
& \mathbb{E}_{\mathrm{GOE}(N+1)} e^{-\frac{1}{2}(N+1) \lambda_{k+1}^{2}+2 \sqrt{N(N+1)} m \lambda_{k+1}} .
\end{aligned}
$$

A further reduction

We get

$$
\mathbb{E C r t}_{N, k}\left(\mathbb{R}, B_{N}\right)=C_{N} \mathbb{E}_{\mathrm{GOE}(N+1)} e^{-\frac{1}{2}(N+1) \lambda_{k+1}^{2}-\frac{\sqrt{N(N+1)} \mu \lambda_{k+1}}{\sqrt{-D^{\prime \prime}(0)}}}
$$

where

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \log C_{N} \\
& = \begin{cases}\log \frac{\sqrt{-2 D^{\prime \prime}(0)}}{|\mu|}+\frac{\mu^{2}}{4 D^{\prime \prime}(0)}-\frac{1}{2}-\Xi, & \mu \neq 0, \\
\log \sqrt{-2 D^{\prime \prime}(0)}-\frac{1}{2} \log \left[D^{\prime}(0)\right]-\frac{1}{2}-\frac{1}{2} \log (2 \pi)+\Theta, & \mu=0 .\end{cases}
\end{aligned}
$$

It suffices to consider

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}_{\mathrm{GOE}(N+1)} e^{(N+1) \phi\left(\lambda_{k+1}\right)}=?
$$

where $\phi(x)=-\frac{1}{2} x^{2}-\frac{\mu x}{\sqrt{-D^{\prime \prime}(0)}}$.

To finish: LDP

Theorem (Ben Arous-Dembo-Guionnet 2001, Auffinger-Ben Arous-Cerny 2013)
The k th smallest eigenvalue of an $N \times N$ GOE matrix satisfies a LDP with speed N and a good rate function

$$
J_{k}(x)= \begin{cases}k \int_{x}^{-\sqrt{2}} \sqrt{z^{2}-2} \mathrm{~d} z, & x \leq-\sqrt{2}, \\ \infty, & \text { otherwise }\end{cases}
$$

By Varadhan's Lemma,

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}} \phi(x)-J_{k+1}(x) \leq \liminf _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}_{\mathrm{GOE}(N+1)} e^{(N+1) \phi\left(\lambda_{k+1}\right)} \\
& \leq \limsup _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}_{\mathrm{GOE}(N+1)} e^{(N+1) \phi\left(\lambda_{k+1}\right)} \leq \sup _{x \in \mathbb{R}} \phi(x)-J_{k+1}(x) .
\end{aligned}
$$

Let $I_{k}=\sup _{x \in \mathbb{R}}\left[\phi(x)-J_{k+1}(x)\right]$.

Outline

(1) Model and problem

(2) Warm-up Results
(3) Main results

Main result: Local minima

We always assume Assumptions I, II \& III, $B_{N}=\left\{x \in \mathbb{R}^{N}: R_{1} \leq\|x\| / \sqrt{N}<R_{2}\right\}$ and write

$$
\operatorname{Crt}_{N, k}\left(E,\left[R_{1}, R_{2}\right)\right)=\operatorname{Crt}_{N, k}\left(E, B_{N}\right)
$$

Theorem

Let $0 \leq R_{1}<R_{2} \leq \infty$ and E be an open set of \mathbb{R}. Suppose $|\mu|+\frac{1}{R_{2}}>0$. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E C r t}_{N, 0}\left(E,\left(R_{1}, R_{2}\right)\right) & =\frac{1}{2} \log \left[-4 D^{\prime \prime}(0)\right]-\frac{1}{2} \log D^{\prime}(0)+\frac{1}{2} \\
& +\sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-\mathcal{I}^{-}(\rho, t, y)\right]
\end{aligned}
$$

where $F=\left\{(\rho, t, y): \rho \in\left(R_{1}, R_{2}\right), t \in \bar{E}, y \leq-\sqrt{2}\right\}$ and the functions ψ, \mathcal{I}^{-}only depend on D and μ.

Main result: Index $k \geq 1$

Theorem

Let $0 \leq R_{1}<R_{2} \leq \infty$ and E be an open set of \mathbb{R}. Suppose $|\mu|+\frac{1}{R_{2}}>0$. Then for any fixed $k \in \mathbb{N}$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N, k}\left(E,\left(R_{1}, R_{2}\right)\right)=\frac{1}{2} \log \left[-4 D^{\prime \prime}(0)\right]-\frac{1}{2} \log D^{\prime}(0)+\frac{1}{2} \\
& + \\
& \max \left\{\sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-k J_{1}(y)\right]\right. \\
& \\
& \left.\sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-\mathcal{I}^{+}(\rho, t, y)-(k-1) J_{1}(y)\right]\right\}
\end{aligned}
$$

where $F=\left\{(\rho, t, y): \rho \in\left(R_{1}, R_{2}\right), t \in \bar{E}, y \leq-\sqrt{2}\right\}$ and the functions ψ, \mathcal{I}^{+}depend only on μ, D.

It is necessary to have both terms in 'max'.

Proof: E open set

- By Kac-Rice formula

$$
\begin{aligned}
& \mathbb{E} \operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\left.\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \right\rvert\, \nabla H_{N}(x)=0\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{aligned}
$$

Proof: E open set

- By Kac-Rice formula

$$
\begin{aligned}
& \mathbb{E C r t}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\left.\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \right\rvert\, \nabla H_{N}(x)=0\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{aligned}
$$

- First new phenomenon: H_{N} and $\nabla H_{N}(x)$ not independent.

Proof: E open set

- By Kac-Rice formula

$$
\begin{aligned}
& \mathbb{E} \operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\left.\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \right\rvert\, \nabla H_{N}(x)=0\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{aligned}
$$

- First new phenomenon: H_{N} and $\nabla H_{N}(x)$ not independent.
- No worry: Note that $\operatorname{Cov}\left(H_{N}(x), \nabla H_{N}(x)\right)=D^{\prime}\left(\frac{\|x\|^{2}}{N}\right) x^{\top}$, $\operatorname{Cov}\left(\nabla H_{N}(x)\right)=D^{\prime}(0) I_{N}$. Consider

$$
Y(x)=\frac{H_{N}(x)}{N}-\frac{D^{\prime}\left(\frac{\|x\|^{2}}{N}\right) \sum_{i=1}^{N} x_{i} \partial_{i} H_{N}(x)}{N D^{\prime}(0)}
$$

Proof: E open set

- By Kac-Rice formula

$$
\begin{aligned}
& \mathbb{E} \operatorname{Crt}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\left.\mathbf{1}\left\{\frac{1}{N} H_{N}(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \right\rvert\, \nabla H_{N}(x)=0\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{aligned}
$$

- First new phenomenon: H_{N} and $\nabla H_{N}(x)$ not independent.
- No worry: Note that $\operatorname{Cov}\left(H_{N}(x), \nabla H_{N}(x)\right)=D^{\prime}\left(\frac{\|x\|^{2}}{N}\right) x^{\top}$, $\operatorname{Cov}\left(\nabla H_{N}(x)\right)=D^{\prime}(0) I_{N}$. Consider

$$
Y(x)=\frac{H_{N}(x)}{N}-\frac{D^{\prime}\left(\frac{\|x\|^{2}}{N}\right) \sum_{i=1}^{N} x_{i} \partial_{i} H_{N}(x)}{N D^{\prime}(0)}
$$

- $Y(x) \Perp \nabla H_{N}(x)$. So

$$
\begin{aligned}
\mathbb{E} \operatorname{Crt}_{N, k}\left(E, B_{N}\right) & =\int_{B_{N}} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right|\right. \\
& \left.\mathbf{1}\left\{Y(x) \in E, i\left(\nabla^{2} H_{N}(x)\right)=k\right\}\right] p_{\nabla H_{N}(x)}(0) \mathrm{d} x
\end{aligned}
$$

General case: Difficulty

$$
\begin{aligned}
\mathbb{E C r t}_{N, k}\left(E, B_{N}\right)= & \int_{B_{N}} \int_{E} \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H_{N}(x)\right| \mathbf{1}\left\{i\left(\nabla^{2} H_{N}(x)\right)=k\right\} \mid Y=t\right] \\
& p_{\nabla H_{N}(x)}(0) \mathbb{P}(Y \in \mathrm{~d} t) \mathrm{d} x
\end{aligned}
$$

But for $i \neq j, k \neq l,\{i, j\} \neq\{k, l\}$,

$$
\operatorname{Cov}\left[\left(\partial_{i j} H_{N}(x), \partial_{k l} H_{N}(x)\right) \mid Y=t\right]=-\frac{1}{N} \frac{\alpha x_{i} x_{j}}{N} \frac{\alpha x_{k} x_{l}}{N}
$$

where we let

$$
\begin{aligned}
& \alpha=\alpha\left(\|x\|^{2} / N\right)=\frac{2 D^{\prime \prime}\left(\|x\|^{2} / N\right)}{\sqrt{D\left(\frac{\|x\|^{2}}{N}\right)-\frac{D^{\prime}\left(\|x\|^{2} / N\right)^{2}}{D^{\prime}(0)} \frac{\|x\|^{2}}{N}}}, \\
& \beta=\beta\left(\|x\|^{2} / N\right)=\frac{D^{\prime}\left(\|x\|^{2} / N\right)-D^{\prime}(0)}{\sqrt{D\left(\frac{\|x\|^{2}}{N}\right)-\frac{D^{\prime}\left(\|x\|^{2} / N\right)^{2}}{D^{\prime}(0)} \frac{\|x\|^{2}}{N}}} .
\end{aligned}
$$

Remedy: Rotation

Define $A=U \nabla^{2} H_{N}(x) U^{\top}$ where U is an $N \times N$ orthogonal matrix s.t.

$$
U\left(\frac{\alpha x x^{\top}}{N}+\beta I_{N}\right) U^{\boldsymbol{\top}}=\left(\begin{array}{cccc}
\frac{\alpha\|x\|^{2}}{N}+\beta & 0 & \cdots & 0 \\
0 & \beta & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \beta
\end{array}\right) .
$$

Then

Remedy: Rotation

Define $A=U \nabla^{2} H_{N}(x) U^{\top}$ where U is an $N \times N$ orthogonal matrix s.t.

$$
U\left(\frac{\alpha x x^{\top}}{N}+\beta I_{N}\right) U^{\top}=\left(\begin{array}{cccc}
\frac{\alpha\|x\|^{2}}{N}+\beta & 0 & \cdots & 0 \\
0 & \beta & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \beta
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& \operatorname{Cov}\left[\left(A_{i j}, A_{i^{\prime} j^{\prime}}\right) \mid Y=t\right] \\
& = \begin{cases}\frac{-6 D^{\prime \prime}(0)}{N}-\frac{1}{N}\left(\frac{\alpha\|x\|^{2}}{N}+\beta\right)^{2}, & i=j=i^{\prime}=j^{\prime}=1, \\
\frac{-2 D^{\prime \prime}(0)}{N}-\frac{1}{N}\left(\frac{\alpha\|x\|^{2}}{N}+\beta\right) \beta, & i=j=1 \neq i^{\prime}=j^{\prime}, \text { or } i^{\prime}=j^{\prime}=1 \neq i=j \\
\frac{-6 D^{\prime \prime}(0)}{N}-\frac{\beta^{2}}{N}, & i=j=i^{\prime}=j^{\prime} \neq 1, \\
\frac{-2 D^{\prime \prime}(0)}{N}-\frac{\beta^{2}}{N}, & 1 \neq i=j \neq i^{\prime}=j^{\prime} \neq 1, \\
\frac{-2 D^{\prime \prime}(0)}{N}, & i=i^{\prime} \neq j=j^{\prime}, \text { or } i=j^{\prime} \neq j=i^{\prime}, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Assumption III and Relation to GOE

Assumption III: For $x \in \mathbb{R}^{N} \backslash\{0\}$,

$$
-2 D^{\prime \prime}(0)>\left(\frac{\alpha\|x\|^{2}}{N}+\beta\right) \beta, \quad-4 D^{\prime \prime}(0)>\left(\frac{\alpha\|x\|^{2}}{N}+\beta\right) \frac{\alpha\|x\|^{2}}{N} .
$$

Under Assumption III,

$$
(A \mid Y=t) \stackrel{d}{=}\left(\begin{array}{cc}
z_{1}^{\prime} & \xi^{\top} \\
\xi & G_{* *}
\end{array}\right)=: G
$$

where $z_{1}^{\prime}=\sigma_{1} z_{1}-\sigma_{2} z_{2}+m_{1}$,

$$
\begin{aligned}
G_{* *} & =\sqrt{-4 D^{\prime \prime}(0)}\left(\mathrm{GOE}_{N-1}-z_{3}^{\prime} I_{N-1}\right) \\
z_{3}^{\prime} & =\left(\sigma_{2} z_{2}+\frac{\|x\| \sqrt{\alpha \beta}}{N} z_{3}-m_{2}\right) / \sqrt{-4 D^{\prime \prime}(0)}
\end{aligned}
$$

$\xi \sim N\left(0, \frac{-2 D^{\prime \prime}(0)}{N} I_{N-1}\right), z_{1}, z_{2}, z_{3} \sim N(0,1)$ i.i.d.

Some notation

$$
\begin{aligned}
& m_{1}=\mu+\frac{\left(t-\frac{\mu\|x\|^{2}}{2 N}+\frac{\mu D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)\|x\|^{2}}{D^{\prime}(0) N}\right)\left(\frac{2 D^{\prime \prime}\left(\frac{\|x\|^{2}}{N}\right)\|x\|^{2}}{N}+D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)-D^{\prime}(0)\right)}{D\left(\frac{\|x\|^{2}}{N}\right)-\frac{D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)^{2}\|x\|^{2}}{D^{\prime}(0) N}} \\
& m_{2}=\mu+\frac{\left(t-\frac{\mu\|x\|^{2}}{2 N}+\frac{\mu D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)\|x\|^{2}}{D^{\prime}(0) N}\right)\left(D^{\prime}\left(\frac{\|x\|^{2}}{N}\right)-D^{\prime}(0)\right)}{D\left(\frac{\|x\|^{2}}{N}\right)-\frac{D^{\prime}\left(\frac{\|x\|^{2}}{N^{\prime}}\right)^{2}\|x\|^{2}}{D^{\prime}(0) N}} \\
& \sigma_{1}=\sqrt{\frac{-4 D^{\prime \prime}(0)-\left(\alpha\|x\|^{2} / N+\beta\right) \alpha\|x\|^{2} / N}{N}} \\
& \sigma_{2}=\sqrt{\frac{-2 D^{\prime \prime}(0)-\left(\alpha\|x\|^{2} / N+\beta\right) \beta}{N}}
\end{aligned}
$$

$$
\mathbb{E C r t}_{N, k}\left(E, B_{N}\right)=\int_{B_{N}} \int_{E} \mathbb{E}|\operatorname{det} G| \mathbf{1}\{i(G)=k\} p_{\nabla H_{N}(x)}(0)
$$

$$
\frac{1}{\sqrt{2 \pi} \sigma_{Y}} e^{-\frac{\left(t-m_{Y}\right)^{2}}{2}} \mathrm{~d} t \mathrm{~d} x
$$

Side remark about Assumption III

Following [SSV12], a function $f:(0, \infty) \rightarrow(0, \infty)$ is a Thorin-Bernstein function if and only if $\lim _{x \rightarrow 0+} f(x)$ exists and its derivative has the representation

$$
f^{\prime}(x)=\frac{a}{x}+b+\int_{(0, \infty)} \frac{1}{x+t} \sigma(\mathrm{~d} t)
$$

where $a, b \geq 0$ and σ is a measure on $(0, \infty)$ satisfying $\int_{(0, \infty)} \frac{1}{1+t} \sigma(\mathrm{~d} t)<\infty$.

Lemma

If D is a Thorin-Bernstein function with $a=0$, then Assumption III holds.
In fact,
Thorin-Bernstein $\Rightarrow \beta^{2}<-\frac{2}{3} D^{\prime \prime}(0) \Rightarrow$ Assumption III.

To proceed: Two cases for $i(G)=k$

Lemma (Lazutkin 1988)

Let S be a symmetric block matrix, and write its inverse S^{-1} in block form with the same block structure:

$$
S=\left(\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right), \quad S^{-1}=\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
\left(B^{\prime}\right)^{\top} & C^{\prime}
\end{array}\right) .
$$

Then, $\operatorname{sgn}(S)=\operatorname{sgn}(A)+\operatorname{sgn}\left(C^{\prime}\right)$, with $\operatorname{sgn}(M)$ denoting the signature of the matrix M.

By the interlacement property, for all $j \in\{1, \ldots, N-1\}$,

$$
\lambda_{j}(G) \leq \lambda_{j}\left(G_{* *}\right) \leq \lambda_{j+1}(G)
$$

Writing $\zeta\left(z_{1}^{\prime}, z_{3}^{\prime}\right)=z_{1}^{\prime}-\left[-4 D^{\prime \prime}(0)\right]^{-1 / 2}\left\langle\xi,\left(\mathrm{GOE}_{N-1}-z_{3}^{\prime} I_{N-1}\right)^{-1} \xi\right\rangle$, by Schur complement formula, $\left(G^{-1}\right)_{11}=1 / \zeta$. For $k \geq 1$,

$$
\{i(G)=k\}=\left\{i\left(G_{* *}\right)=k, \zeta>0\right\} \cup\left\{i\left(G_{* *}\right)=k-1, \zeta<0\right\} .
$$

General formula

Using spherical coordinates, $\rho=\frac{\|x\|}{\sqrt{N}}$,

$$
\mathbb{E C r t}_{N, k}\left(E ; R_{1}, R_{2}\right)=S_{N-1} N^{(N-1) / 2} \int_{R_{1}}^{R_{2}} \int_{E}
$$

$$
\mathbb{E}\left[|\operatorname{det} G|\left(\mathbb{1}\left\{i\left(G_{* *}\right)=k, \zeta>0\right\}+\mathbf{1}\left\{i\left(G_{* *}\right)=k-1, \zeta<0\right\}\right)\right]
$$

$$
\frac{1}{\sqrt{2 \pi} \sigma_{Y}} e^{-\frac{\left(t-m_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}} \frac{1}{(2 \pi)^{N / 2} D^{\prime}(0)^{N / 2}} e^{-\frac{N \mu^{2} \rho^{2}}{2 D^{\prime}(0)}} \rho^{N-1} \mathrm{~d} t \mathrm{~d} \rho
$$

where $\lim _{N \rightarrow \infty} \frac{1}{N} \log \left(S_{N-1} N^{\frac{N-1}{2}}\right)=\frac{1}{2} \log (2 \pi)+\frac{1}{2}$, and

$$
m_{Y}=\frac{\mu \rho^{2}}{2}-\frac{\mu D^{\prime}\left(\rho^{2}\right) \rho^{2}}{D^{\prime}(0)}, \quad \sigma_{Y}^{2}=\frac{1}{N}\left(D\left(\rho^{2}\right)-\frac{D^{\prime}\left(\rho^{2}\right)^{2} \rho^{2}}{D^{\prime}(0)}\right)
$$

Simplification

Define $Q=Q\left(z_{3}^{\prime}\right)=\left[-4 D^{\prime \prime}(0)\right]^{-1 / 2} \xi^{\top}\left(\mathrm{GOE}_{N-1}-z_{3}^{\prime} I_{N-1}\right)^{-1} \xi$. By rotational invariance of Gaussians, with Z_{i} 's being i.i.d. $N(0,1)$,

$$
Q\left(z_{3}^{\prime}\right)=\frac{\sqrt{-D^{\prime \prime}(0)}}{N} \sum_{i=1}^{N-1} \frac{Z_{i}^{2}}{\lambda_{i}-z_{3}^{\prime}}
$$

By conditioning on $z_{3}^{\prime}=y$,

$$
\begin{aligned}
& \mathbb{E}\left[|\operatorname{det} G|\left(\mathbf{1}\left\{i\left(G_{* *}\right)=k, \zeta>0\right\}\right]\right. \\
& =\left[-4 D^{\prime \prime}(0)\right]^{\frac{N-1}{2}} \mathbb{E}\left[\left|\operatorname{det}\left(\operatorname{GOE}_{N-1}-z_{3}^{\prime} I_{N-1}\right)\right| \mathbf{1}\left\{\lambda_{k}<z_{3}^{\prime}<\lambda_{k+1}\right\}\right. \\
& \\
& \left.\mathbb{E}\left(\left|z_{1}^{\prime}-Q\left(z_{3}^{\prime}\right)\right| \mathbf{1}\left\{z_{1}^{\prime}-Q\left(z_{3}^{\prime}\right)>0\right\} \mid \lambda_{1}^{N-1}, z_{3}^{\prime}, Z_{1}^{N-1}\right)\right] \\
& =\left[-4 D^{\prime \prime}(0)\right]^{\frac{N-1}{2}} \int_{\mathbb{R}} \mathbb{E}\left[\left|\operatorname{det}\left(\operatorname{GOE}_{N-1}-y I_{N-1}\right)\right| \mathbf{1}\left\{\lambda_{k}<y<\lambda_{k+1}\right\}\right. \\
& \\
& \left.\left(a_{N} \Phi\left(\frac{\sqrt{N} a_{N}}{\mathrm{~b}}\right)+\frac{\mathrm{b}}{\sqrt{2 \pi N}} e^{-\frac{N_{2}^{2}}{2 b^{2}}}\right)\right] \\
& \\
& \frac{\sqrt{-4 N D^{\prime \prime}(0)} \exp \left\{-\frac{N\left(\sqrt{\left.-4 D^{\prime \prime}(0) y+m\right)^{2}}\right.}{2\left(-2 D^{\prime \prime}(0)-\beta^{2}\right)}\right\}}{\sqrt{2 \pi\left(-2 D^{\prime \prime}(0)-\beta^{2}\right)}} \mathrm{d} y,
\end{aligned}
$$

where we used $\mathbb{E}[(a+b z) \mathbf{1}\{a+b z>0\}]=a \Phi\left(\frac{a}{b}\right)+\frac{b}{\sqrt{2 \pi}} e^{-\frac{a^{2}}{2 b^{2}}}$, and

$$
\begin{aligned}
& \mathrm{a}_{N}=\mathrm{a}_{N}(\rho, t, y)=W_{N}(\rho, t, y)-Q(y) \\
& \mathrm{b}^{2}=\mathrm{b}^{2}(\rho)=\frac{-2 D^{\prime \prime}(0)\left(-4 D^{\prime \prime}(0)-2 \beta^{2}-\alpha^{2} \rho^{4}\right)}{-2 D^{\prime \prime}(0)-\beta^{2}}
\end{aligned}
$$

are conditional mean and variance of z_{1}^{\prime} given $z_{3}^{\prime}=y$, respectively. For any $x \in \mathbb{R}$ and $b>0$, note that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left(x \Phi\left(\frac{\sqrt{N} x}{b}\right)+\frac{b}{\sqrt{2 \pi N}} e^{-\frac{N x^{2}}{2 b^{2}}}\right)=-\frac{\left(x_{-}\right)^{2}}{2 b^{2}}
$$

where $x_{-}=x \wedge 0$. We want to replace $Q(y)$ with a deterministic quantity in the large N limit.

Reduction: $k=0$

- Since LDP of empirical measures of GOE has speed N^{2}, it suffices to consider $y<-\sqrt{2}$.
- For $k=0$, on $\left\{y<\lambda_{1}\right\}$, we may find Lipschitz function $f_{y, \delta}$ to approximate $\frac{1}{\lambda_{i}-y}$ and

$$
\begin{aligned}
Q(y)=\frac{\sqrt{-D^{\prime \prime}(0)}}{N} \sum_{i=1}^{N-1} \frac{Z_{i}^{2}}{\lambda_{i}-y} & \geq \frac{\sqrt{-D^{\prime \prime}(0)}}{N} \sum_{i=1}^{N-1} f_{y, \delta}\left(\lambda_{i}\right) Z_{i}^{2}=: \tilde{Q}(y) \\
& \rightarrow \sqrt{-D^{\prime \prime}(0)} \mathrm{m}(y)
\end{aligned}
$$

where $\mathbf{m}(y)$ is the Stieltjes transform of semicirle law.

- Then use modified Gärtner-Ellis Theorem for large deviations for left tail of $Q(y)$.
- Use many times the concentration/deviation inequality of empirical measure of λ_{i} on the scale of N^{2} from σ_{sc} due to Maida and Maurel-Segala 2014.

Concluding remark for $k=0$

Write

$$
\mathrm{a}_{N} \rightarrow W(\rho, t, y)-\sqrt{-D^{\prime \prime}(0)} \mathrm{m}(y)=: \mathrm{a} .
$$

Recall
$\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N, 0}\left(E,\left(R_{1}, R_{2}\right)\right)=\frac{1}{2} \log \left[-4 D^{\prime \prime}(0)\right]-\frac{1}{2} \log D^{\prime}(0)+\frac{1}{2}$

$$
+\sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-\mathcal{I}^{-}(\rho, t, y)\right] .
$$

Here

$$
\mathcal{I}^{-}(\rho, t, y)=\inf _{x \in[0, \mathrm{~m}(y)]} \Lambda^{*}(x)+\frac{1}{2 \mathrm{~b}^{2}}\left[\left(\mathrm{a}+\sqrt{-D^{\prime \prime}(0)} x\right)_{-}\right]^{2},
$$

$\Lambda^{*}(x)$ is the Fenchel-Legendre transform of Λ, the limiting log moment generating function of $\tilde{Q}(y)$.

Reduction: $k \geq 1$

- For $k \geq 1$, the more difficulty term is

$$
\mathbb{E}\left[|\operatorname{det} G|\left(\mathbf{1}\left\{i\left(G_{* *}\right)=k-1, \zeta<0\right\}\right] .\right.
$$

- On $\left\{\lambda_{k-1}<y<\lambda_{k}\right\}$, we may find Lipschitz function f_{y} to approximate $\frac{1}{\lambda_{i}-y}$ and

$$
\begin{aligned}
Q(y)=\frac{\sqrt{-D^{\prime \prime}(0)}}{N} \sum_{i=1}^{N-1} \frac{Z_{i}^{2}}{\lambda_{i}-y} & \leq \frac{\sqrt{-D^{\prime \prime}(0)}}{N} \sum_{i=k}^{N-1} f_{y}\left(\lambda_{i}\right) Z_{i}^{2}=: \hat{Q}(y) \\
& \rightarrow \sqrt{-D^{\prime \prime}(0)} \mathrm{m}(y)
\end{aligned}
$$

where $\mathbf{m}(y)$ is the Stieltjes transform of semicirle law.

- Then use modified Gärtner-Ellis Theorem for large deviations for right tail of $Q(y)$.
- Extra work to handle boundary case, as Λ is not steep.

Concluding remark for $k \geq 1$

Recall

$$
\{i(G)=k\}=\left\{i\left(G_{* *}\right)=k, \zeta>0\right\} \cup\left\{i\left(G_{* *}\right)=k-1, \zeta<0\right\} .
$$

and

$$
\begin{aligned}
& \left.\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}^{\operatorname{Crt}_{N, k}\left(E,\left(R_{1}, R_{2}\right)\right)=\frac{1}{2} \log \left[-4 D^{\prime \prime}(0)\right]-\frac{1}{2} \log D^{\prime}(0)+\frac{1}{2}} \begin{array}{l}
+\max \left\{\sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-k J_{1}(y)\right]\right.
\end{array} \sup _{(\rho, t, y) \in F}\left[\psi\left(\sigma_{\mathrm{sc}}, \rho, t, y\right)-\mathcal{I}^{+}(\rho, t, y)-(k-1) J_{1}(y)\right]\right\} .
\end{aligned}
$$

Here

$$
\mathcal{I}^{+}(\rho, t, y)=\inf _{x<0} \Lambda^{*}(x)+\frac{1}{2 \mathrm{~b}^{2}}\left[\left(\mathrm{a}+\sqrt{-D^{\prime \prime}(0)} x\right)_{+}\right]^{2} .
$$

Some general strategy

- Prove exponential tightness first:

$$
\begin{aligned}
& \limsup _{T \rightarrow \infty} \lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N}\left([-T, T]^{c}, \mathbb{R}_{+}\right)=-\infty \\
& \limsup _{R \rightarrow \infty} \lim _{N \rightarrow \infty} \frac{1}{N} \log {\mathbb{E} \operatorname{Crt}_{N}(\mathbb{R},[0, R])}=-\infty
\end{aligned}
$$

This allows considering just \bar{E} compact and $R_{2}<\infty$.

- Use LDP for empirical measure $L\left(\lambda_{i=1}^{N}\right)$ of GOE with speed N^{2} to consider just $L\left(\lambda_{i=1}^{N}\right) \in B\left(\sigma_{\mathrm{sc}}, \delta\right)$.
- Use $\mathbb{P}\left(\max \left|\lambda_{i}\right|>K\right) \leq e^{-N K^{2} / 9}$ to consider only $\max \left|\lambda_{i}\right| \leq K$ for K large enough.

A simple idea of all arguments

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left(e^{-10 N} \pm e^{-100 N} \pm e^{-N^{2}}\right)=-10
$$

A simple idea of all arguments

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left(e^{-10 N} \pm e^{-100 N} \pm e^{-N^{2}}\right)=-10
$$

Thanks for your attention!

$$
\begin{aligned}
& \psi\left(\sigma_{\mathrm{sc}}, \rho, t, x\right):=\Psi_{*}(x)-\frac{\left(t-\frac{\mu \rho^{2}}{2}+\frac{\mu D^{\prime}\left(\rho^{2}\right) \rho^{2}}{D^{\prime}(0)}\right)^{2}}{2\left(D\left(\rho^{2}\right)-\frac{D^{\prime}\left(\rho^{2}\right)^{2} \rho^{2}}{D^{\prime}(0)}\right)}-\frac{\mu^{2} \rho^{2}}{2 D^{\prime}(0)}+\log \rho \\
& -\frac{-2 D^{\prime \prime}(0)}{-2 D^{\prime \prime}(0)-\frac{\left[D^{\prime}\left(\rho^{2}\right)-D^{\prime}(0)\right]^{2}}{D\left(\rho^{2}\right)-\frac{D^{\prime}\left(\rho^{2}\right)^{2} \rho^{2}}{D^{\prime}(0)}}} \\
& \times\left(x+\frac{1}{\sqrt{-4 D^{\prime \prime}(0)}}\left[\mu+\frac{\left(t-\frac{\mu \rho^{2}}{2}+\frac{\mu D^{\prime}\left(\rho^{2}\right) \rho^{2}}{D^{\prime}(0)}\right)\left(D^{\prime}\left(\rho^{2}\right)-D^{\prime}(0)\right)}{D\left(\rho^{2}\right)-\frac{D^{\prime}\left(\rho^{2}\right)^{2} \rho^{2}}{D^{\prime}(0)}}\right]\right)^{2}, \\
& \Psi_{*}(x):=\int \log |x-y| \mathrm{d} \sigma_{\mathrm{sc}}(y) \\
& = \begin{cases}\frac{1}{2} x^{2}-\frac{1}{2}-\frac{1}{2} \log 2, & |x| \leq \sqrt{2}, \\
\frac{1}{2} x^{2}-\frac{1}{2}-\log 2-\frac{1}{2}|x| \sqrt{x^{2}-2}+\log \left(|x|+\sqrt{x^{2}-2}\right), & |x|>\sqrt{2} .\end{cases}
\end{aligned}
$$

