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Model and problem

The model is

HN (x) = XN (x) +
µ

2
‖x‖2, x ∈ RN .

Here µ ∈ R, ‖x‖ is the Euclidean norm of x, XN is a Gaussian
random field with isotropic increments (GRFIC)

E[(XN (u)−XN (v))2] = ND
( 1

N
‖u− v‖22

)
, u, v ∈ RN .

XN (x) is also known as a locally isotropic Gaussian random field.
The function D is known as the structure function of XN .

Problem:
I Given smooth HN , how many critical points does HN have?
I Where are most of the critical points?
I How about local minima or saddles with given index?
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Classification of LIGRF for all N : Yaglom 1957
1 Isotropic fields (short-range correlation, or SRC): ∃ B : R+ → R such

that

E[XN (u)XN (v)] = NB
( 1

N
‖u− v‖22

)
where B has the representation

B(r) = c0 +

∫
(0,∞)

e−rt
2
ν(dt), c0 ∈ R+,

ν is a finite measure on (0,∞). In this case, D(r) = 2(B(0)−B(r)).
2 Non-isotropic field with isotropic increments (long-range correlation,

or LRC): D has representation

D(r) =

∫
(0,∞)

(1− e−rt2)ν(dt) +Ar, A ∈ R+,

ν is a σ-finite measure with∫
(0,∞)

t2

1 + t2
ν(dt) <∞.
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An example of structure function
Assume XN (0) = 0 for LRC.
E(XN (u)XN (v)) = N

2 (D( 1
N ‖u‖

2
2) +D( 1

N ‖v‖
2
2)−D( 1

N ‖u− v‖
2
2)).

Example

We assume c0 = 0 and A = 0. For fixed ε > 0 and γ > 0, let

ν(dx) = 2e−εx
2
x2γ−3dx.

γ > 1 corresponds to SRC and 0 < γ ≤ 1 LRC. If γ > 1,

B(r) =

∫ ∞
0

2e−rt
2
e−εt

2
t2γ−3dt =

Γ(γ − 1)

(r + ε)γ−1
.

If 0 < γ < 1,

D(r) =
Γ(γ)

1− γ
[(r + ε)1−γ − ε1−γ ].

If γ = 1, D(r) = log(1 + r
ε).
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More examples of structure functions

304 Chapter 16 Examples of complete Bernstein functions

16.2 Algebraic functions

No Function f .�/ Comment

1 �˛; 0 < ˛ < 1

2 .�C 1/˛ � 1; 0 < ˛ < 1

3 1 � .1C �/˛�1; 0 < ˛ < 1

4 �

�C a ; a > 0

5 �p
�C a ; a > 0

Theorem 8.2 (v)
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More examples of structure functions

312 Chapter 16 Examples of complete Bernstein functions

16.3 Exponential functions

No Function f .�/ Comment

18 p
� .1 � e�2a

p
�/; a > 0 14.2(43) of [107], 2.25 and

7.78 in [283], Theorem 8.2 (v)

19 p
� .1C e�2a

p
�/; a > 0 14.60(3) of [107], 2.25 and

7.78 in[283], Theorem 8.2 (v)

20 � .1 � e�2
p
�Ca/p

�C a ; a > 0
Appendix 1.17 of [68],
Theorem 8.2 (v). See §16.12.2

21
� .1C �/1=� � � � �

�C 1
[5], p. 457, Theorem 8.2 (v)

22
e� � �

�

1C 1

�

��

� �

�C 1

Theorem 3 of [5],
Theorem 8.2 (v)

330 Chapter 16 Examples of complete Bernstein functions

16.5 Inverse trigonometric functions

No Function f .�/ Comment

63 p
� arctan

�

r

a

�

�

; a > 0

64 p
� arctan

 

r

�

a

!

; a > 0

16.6 Hyperbolic functions

No Function f .�/ Comment

65
r

�

2

cosh2.
p
2�/

sinh.2
p
2�/

� 1

4

Appendix 1.5 of [68],
Theorem 8.2 (v). See §16.12.2
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Background and history
The definition of locally isotropic fields was formulated by Kolmogorov
for the application in statistical theory of turbulence in 1941.

Yaglom classified Gaussian random field with isotropic increments in
1957 (who credits some part of the work to Schoenberg).

Mézard and Parisi considered such models as a single particle in a
random potential in 1990–1992; see also Engel (1993).

In 2004, Fyodorov computed the large N limit of mean total number
of critical points of the isotropic Gaussian random fields and found a
phase transition for different value of µ and −D′′(0).

Many works thereafter, both in mathematics and physics, by
Bray–Dean (2007), Fyodorov–Williams (2007), Fyodorov–Bouchaud
(2008), Fyodorov–Nadal (2012), Klimovsky (2012), Fyodorov (2015),
Cheng–Schwartzman (2018), Yamada–Vilenkin (2018), etc.

Complexity for spherical (mixed) p-spin model and variants:
Auffinger–Ben Arous–Cerny (2011), Auffinger–Ben Arous (2013),
Subag (2017), Ben Arous–Mei–Montanari–Nica (2019), etc.
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Assumptions and Notation

We consider non-isotropic Gaussian random fields with isotropic
increments XN .

Assumption I (smoothness): 0 < |D(4)(0)| <∞.

Assumption II (pinning): XN (0) = 0.

For Borel set E ⊂ R and BN ⊂ RN , let

CrtN,k(E,BN ) = #{x ∈ BN : ∇HN (x) = 0,
1

N
HN (x) ∈ E,

i(∇2HN (x)) = k},

CrtN (E,BN ) = #{x ∈ BN : ∇HN (x) = 0,
1

N
HN (x) ∈ E}.

Here

i(∇2HN (x)) = # negative eigenvalues of ∇2HN (x).

In this talk, we will focus on ECrtN,k(E,BN ) for k ∈ Z+ fixed.
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Some preparations

Assume domain growth condition: Let ZN ∼ N(0, IN ). There exist Ξ or
Θ such that the sequence of sets BN satisfy

lim
N→∞

1

N
logP(ZN ∈ |µ|BN/

√
D′(0)) = −Ξ ≤ 0, µ 6= 0,

lim
N→∞

1

N
log |BN | = Θ, µ = 0.

Define

J1(x) =

{∫ −√2
x

√
z2 − 2dz, x ≤ −

√
2,

∞, otherwise,

and

φ(x) = −1

2
x2 − µx√

−D′′(0)
.
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Warm-up: no restriction on critical values

Theorem (Total number of critical points of index k)

Let k ∈ Z+. Then we have

lim
N→∞

1

N
logECrtN,k(R, BN )

=


µ2

4D′′(0) − log |µ|√
−2D′′(0)

− 1
2 − Ξ + Ik, µ 6= 0,

log
√
−2D′′(0)− 1

2 log[D′(0)]− 3
2 −

1
2 log(2π) + Θ, µ = 0.

where the constant Ik (decreasing in k) is given as

Ik =


φ(−
√

2) = −1 +
√
2µ√

−D′′(0)
, µ ≤

√
−2D′′(0),

−1
2x1

2 − µx1√
−D′′(0)

− J1(x1), µ >
√
−2D′′(0), k = 0,

−1
2x

2
2 −

µx2√
−D′′(0)

− (k + 1)J1(x2), µ >
√
−2D′′(0), k ≥ 1,

and x1, x2 are explicit constants depending only on µ,D′′(0) and k.
Qiang Zeng (University of Macau) Complexity of Gaussian random fields 10 / 34



Proof: Based on the Kac–Rice formula
Roughly,

∫
f(∇HN (x))d(∇HN (x)) =

∫
f(∇HN (x))|det∇2HN (x)|dx,

CrtN,k(E,BN ) =

∫
BN

δ0(∇HN (x))|det∇2HN (x)|

1
{ 1

N
HN (x) ∈ E, i(∇2HN (x)) = k

}
dx.

Writing p∇HN (x)(t) for the p.d.f. of ∇HN (x) at t,

ECrtN,k(E,BN ) =

∫
BN

E[| det∇2HN (x)|

1
{ 1

N
HN (x) ∈ E, i(∇2HN (x)) = k

}
|∇HN (x) = 0]p∇HN (x)(0)dx

=

∫
BN

∫
E
E[| det∇2HN (x)|1{i(∇2HN (x)) = k}

|∇HN (x) = 0, HN (x) = Nt]p∇HN (x)(0)P(
1

N
HN (x) ∈ dt)dx.
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Covariances

For x ∈ RN ,

Cov[HN (x), ∂iHN (x)] = D′(
‖x‖2

N
)xi,

Cov[∂iHN (x), ∂jHN (x)] = D′(0)δij ,

Cov[HN (x), ∂ijHN (x)] = 2D′′(
‖x‖2

N
)
xixj
N

+ [D′(
‖x‖2

N
)−D′(0)]δij

Cov[∂kHN (x), ∂ijHN (x)] = 0,

Cov[∂lkHN (x), ∂ijHN (x)] = −2D′′(0)[δjlδik + δilδkj + δklδij ]/N,

where δij are the Kronecker delta function.
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The case E = R

By independence,

ECrtN,k(R, BN ) =

∫
BN

E[| det∇2HN (x)|1{i(∇2HN (x)) = k}]

p∇HN (x)(0)dx,

p∇HN (x)(0) =
1

(2π)N/2D′(0)N/2
exp

(
− µ2‖x‖2

2D′(0)

)
,

Var(∂iiHN (x)2) = −6D′′(0)/N,

Var(∂ijHN (x)2) = −2D′′(0)/N, i 6= j,

Cov(∂iiHN (x), ∂kkHN (x)) = −2D′′(0)/N, i 6= k,

Cov(∂ijHN (x), ∂klHN (x)) = 0, otherwise.
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The case E = R: Relation to GOE
Let M = MN be an N ×N matrix taken from the Gaussian Orthogonal
Ensemble (GOE) with

E(Mij) = 0, E(M2
ij) =

1 + δij
2N

and z an independent N(0, 1) r.v. Then

∇2HN (x)
d
=
√
−4D′′(0)M −

(√−2D′′(0)

N
z − µ

)
IN

=
√
−4D′′(0)

[
M −

( 1√
2N

z − µ√
−4D′′(0)

)
IN

]
.

Let z′ = 1√
2N
z − µ√

−4D′′(0)
, m = −µ/

√
−4D′′(0) and

λ1 ≤ λ2 ≤ · · · ≤ λN

be eigenvalues of GOE(N).
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A key identity

E[| det∇2HN (x)|1{i(∇2HN (x)) = k}]

= [−4D′′(0)]N/2E
N∏
i=1

|λi − z′|1{λk ≤ z′ ≤ λk+1}

= [−4D′′(0)]N/2
∫
λ1≤···≤λN

Ez′
N∏
i=1

|λi − z′|1{λk ≤ z′ ≤ λk+1}

1

ZN

∏
1≤i<j≤N

|λi − z′|e−
N
2

∑
i λ

2
i
∏
i

dλi

= [−4D′′(0)]N/2
√
N

π

(N + 1

N

) (N+2)(N+1)
4 e−Nm

2

ZN+1

ZN∫
y1≤···≤yN+1

e−
1
2
(N+1)y2k+1+2

√
N(N+1)myk+1

1

ZN+1

N+1∏
i=1

e−
(N+1)y2

i
2

∏
1≤i<j≤N+1

|yi − yj |dy1 · · ·dyN+1

=

√
2[−4D′′(0)]N/2Γ(N+1

2
)

√
πNN/2eNm2 EGOE(N+1)e

− 1
2
(N+1)λ2

k+1+2
√
N(N+1)mλk+1 .
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A further reduction
We get

ECrtN,k(R, BN ) = CNEGOE(N+1)e
− 1

2
(N+1)λ2k+1−

√
N(N+1)µλk+1√
−D′′(0) ,

where

lim
N→∞

1

N
logCN

=

log

√
−2D′′(0)
|µ| + µ2

4D′′(0) −
1
2 − Ξ, µ 6= 0,

log
√
−2D′′(0)− 1

2 log[D′(0)]− 1
2 −

1
2 log(2π) + Θ, µ = 0.

It suffices to consider

lim
N→∞

1

N
logEGOE(N+1)e

(N+1)φ(λk+1) =?

where φ(x) = −1
2x

2 − µx√
−D′′(0)

.
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To finish: LDP

Theorem (Ben Arous–Dembo–Guionnet 2001, Auffinger–Ben
Arous–Cerny 2013)

The kth smallest eigenvalue of an N ×N GOE matrix satisfies a LDP
with speed N and a good rate function

Jk(x) =

{
k
∫ −√2
x

√
z2 − 2dz, x ≤ −

√
2,

∞, otherwise.

By Varadhan’s Lemma,

sup
x∈R

φ(x)− Jk+1(x) ≤ lim inf
N→∞

1

N
logEGOE(N+1)e

(N+1)φ(λk+1)

≤ lim sup
N→∞

1

N
logEGOE(N+1)e

(N+1)φ(λk+1) ≤ sup
x∈R

φ(x)− Jk+1(x).

Let Ik = supx∈R[φ(x)− Jk+1(x)].
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Main result: Local minima

We always assume Assumptions I, II & III,
BN = {x ∈ RN : R1 ≤ ‖x‖/

√
N < R2} and write

CrtN,k(E, [R1, R2)) = CrtN,k(E,BN ).

Theorem

Let 0 ≤ R1 < R2 ≤ ∞ and E be an open set of R. Suppose |µ|+ 1
R2

> 0.
Then

lim
N→∞

1

N
logECrtN,0(E, (R1, R2)) =

1

2
log[−4D′′(0)]− 1

2
logD′(0) +

1

2

+ sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− I−(ρ, t, y)],

where F = {(ρ, t, y) : ρ ∈ (R1, R2), t ∈ Ē, y ≤ −
√

2} and the functions
ψ, I− only depend on D and µ.
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Main result: Index k ≥ 1

Theorem

Let 0 ≤ R1 < R2 ≤ ∞ and E be an open set of R. Suppose |µ|+ 1
R2

> 0.
Then for any fixed k ∈ N,

lim
N→∞

1

N
logECrtN,k(E, (R1, R2)) =

1

2
log[−4D′′(0)]− 1

2
logD′(0) +

1

2

+ max
{

sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− kJ1(y)],

sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− I+(ρ, t, y)− (k − 1)J1(y)]
}
,

where F = {(ρ, t, y) : ρ ∈ (R1, R2), t ∈ Ē, y ≤ −
√

2} and the functions ψ,
I+ depend only on µ,D.

It is necessary to have both terms in ‘max’.
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Proof: E open set
By Kac–Rice formula

ECrtN,k(E,BN ) =

∫
BN

E[|det∇2HN (x)|

1{ 1

N
HN (x) ∈ E, i(∇2HN (x)) = k}|∇HN (x) = 0]p∇HN (x)(0)dx

First new phenomenon: HN and ∇HN (x) not independent.

No worry: Note that Cov(HN (x),∇HN (x)) = D′(‖x‖
2

N )xT,
Cov(∇HN (x)) = D′(0)IN . Consider

Y (x) =
HN (x)

N
−
D′(‖x‖

2

N )
∑N

i=1 xi∂iHN (x)

ND′(0)
.

Y (x) ⊥⊥ ∇HN (x). So

ECrtN,k(E,BN ) =

∫
BN

E[|det∇2HN (x)|

1{Y (x) ∈ E, i(∇2HN (x)) = k}]p∇HN (x)(0)dx.
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General case: Difficulty

ECrtN,k(E,BN ) =

∫
BN

∫
E
E[| det∇2HN (x)|1{i(∇2HN (x)) = k}|Y = t]

p∇HN (x)(0)P(Y ∈ dt)dx.

But for i 6= j, k 6= l, {i, j} 6= {k, l},

Cov[(∂ijHN (x), ∂klHN (x))|Y = t] = − 1

N

αxixj
N

αxkxl
N

,

where we let

α = α(‖x‖2/N) =
2D′′(‖x‖2/N)√

D(‖x‖
2

N )− D′(‖x‖2/N)2

D′(0)
‖x‖2
N

,

β = β(‖x‖2/N) =
D′(‖x‖2/N)−D′(0)√

D(‖x‖
2

N )− D′(‖x‖2/N)2

D′(0)
‖x‖2
N

.
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Remedy: Rotation
Define A = U∇2HN (x)UT where U is an N ×N orthogonal matrix s.t.

U(
αxxT

N
+ βIN )UT =


α‖x‖2
N + β 0 · · · 0

0 β · · · 0
...

...
. . .

...
0 0 · · · β

 .

Then

Cov[(Aij , Ai′j′)|Y = t]

=



−6D′′(0)
N − 1

N (α‖x‖
2

N + β)2, i = j = i′ = j′ = 1,
−2D′′(0)

N − 1
N (α‖x‖

2

N + β)β, i = j = 1 6= i′ = j′, or i′ = j′ = 1 6= i = j,
−6D′′(0)

N − β2

N , i = j = i′ = j′ 6= 1,
−2D′′(0)

N − β2

N , 1 6= i = j 6= i′ = j′ 6= 1,
−2D′′(0)

N , i = i′ 6= j = j′, or i = j′ 6= j = i′,

0, otherwise.
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Assumption III and Relation to GOE

Assumption III: For x ∈ RN \ {0},

−2D′′(0) > (
α‖x‖2

N
+ β)β, −4D′′(0) > (

α‖x‖2

N
+ β)

α‖x‖2

N
.

Under Assumption III,

(A|Y = t)
d
=

(
z′1 ξT

ξ G∗∗

)
=: G,

where z′1 = σ1z1 − σ2z2 +m1,

G∗∗ =
√
−4D′′(0)(GOEN−1−z′3IN−1),

z′3 =
(
σ2z2 +

‖x‖
√
αβ

N
z3 −m2

)
/
√
−4D′′(0),

ξ ∼ N(0, −2D
′′(0)
N IN−1), z1, z2, z3 ∼ N(0, 1) i.i.d.
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Some notation

m1 = µ+
(t− µ‖x‖2

2N +
µD′(

‖x‖2
N )‖x‖2

D′(0)N )(
2D′′(

‖x‖2
N )‖x‖2

N +D′(‖x‖
2

N )−D′(0))

D(‖x‖
2

N )− D′(
‖x‖2
N )2‖x‖2
D′(0)N

,

m2 = µ+
(t− µ‖x‖2

2N +
µD′(

‖x‖2
N )‖x‖2

D′(0)N )(D′(‖x‖
2

N )−D′(0))

D(‖x‖
2

N )− D′(
‖x‖2
N )2‖x‖2
D′(0)N

σ1 =

√
−4D′′(0)− (α‖x‖2/N + β)α‖x‖2/N

N
,

σ2 =

√
−2D′′(0)− (α‖x‖2/N + β)β

N
.

ECrtN,k(E,BN ) =

∫
BN

∫
E

E|detG|1{i(G) = k}p∇HN (x)(0)

1√
2πσY

e−
(t−mY )2

2 dtdx.
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Side remark about Assumption III

Following [SSV12], a function f : (0,∞)→ (0,∞) is a Thorin–Bernstein
function if and only if limx→0+ f(x) exists and its derivative has the
representation

f ′(x) =
a

x
+ b+

∫
(0,∞)

1

x+ t
σ(dt),

where a, b ≥ 0 and σ is a measure on (0,∞) satisfying∫
(0,∞)

1
1+tσ(dt) <∞.

Lemma

If D is a Thorin–Bernstein function with a = 0, then Assumption III holds.

In fact,

Thorin–Bernstein⇒ β2 < −2

3
D′′(0)⇒ Assumption III.
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To proceed: Two cases for i(G) = k

Lemma (Lazutkin 1988)

Let S be a symmetric block matrix, and write its inverse S−1 in block
form with the same block structure:

S =

(
A B
BT C

)
, S−1 =

(
A′ B′

(B′)T C ′

)
.

Then, sgn(S) = sgn(A) + sgn(C ′), with sgn(M) denoting the signature of
the matrix M .

By the interlacement property, for all j ∈ {1, . . . , N − 1},

λj(G) ≤ λj(G∗∗) ≤ λj+1(G).

Writing ζ(z′1, z
′
3) = z′1 − [−4D′′(0)]−1/2〈ξ, (GOEN−1−z′3IN−1)−1ξ〉, by

Schur complement formula, (G−1)11 = 1/ζ. For k ≥ 1,

{i(G) = k} = {i(G∗∗) = k, ζ > 0} ∪ {i(G∗∗) = k − 1, ζ < 0}.
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General formula

Using spherical coordinates, ρ = ‖x‖√
N

,

ECrtN,k(E;R1, R2) = SN−1N
(N−1)/2

∫ R2

R1

∫
E

E[| detG|(1{i(G∗∗) = k, ζ > 0}+ 1{i(G∗∗) = k − 1, ζ < 0})]

1√
2πσY

e
− (t−mY )2

2σ2
Y

1

(2π)N/2D′(0)N/2
e
−Nµ

2ρ2

2D′(0) ρN−1dtdρ,

where limN→∞
1
N log(SN−1N

N−1
2 ) = 1

2 log(2π) + 1
2 , and

mY =
µρ2

2
− µD′(ρ2)ρ2

D′(0)
, σ2Y =

1

N

(
D(ρ2)− D′(ρ2)2ρ2

D′(0)

)
.
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Simplification
Define Q = Q(z′3) = [−4D′′(0)]−1/2ξT(GOEN−1−z′3IN−1)−1ξ. By
rotational invariance of Gaussians, with Zi’s being i.i.d. N(0, 1),

Q(z′3) =

√
−D′′(0)

N

N−1∑
i=1

Z2
i

λi − z′3
.

By conditioning on z′3 = y,

E[|detG|(1{i(G∗∗) = k, ζ > 0}]

= [−4D′′(0)]
N−1

2 E[|det(GOEN−1−z′3IN−1)|1{λk < z′3 < λk+1}
E(|z′1 −Q(z′3)|1{z′1 −Q(z′3) > 0}|λN−11 , z′3, Z

N−1
1 )]

= [−4D′′(0)]
N−1

2

∫
R
E[|det(GOEN−1−yIN−1)|1{λk < y < λk+1}

(aNΦ(

√
NaN
b

) +
b√

2πN
e−

Na2N
2b2 )]√

−4ND′′(0) exp{−N(
√
−4D′′(0)y+m2)

2

2(−2D′′(0)−β2) }√
2π(−2D′′(0)− β2)

dy,
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where we used E[(a+ bz)1{a+ bz > 0}] = aΦ(ab ) + b√
2π
e−

a2

2b2 , and

aN = aN (ρ, t, y) = WN (ρ, t, y)−Q(y),

b2 = b2(ρ) =
−2D′′(0)(−4D′′(0)− 2β2 − α2ρ4)

−2D′′(0)− β2

are conditional mean and variance of z′1 given z′3 = y, respectively. For any
x ∈ R and b > 0, note that

lim
N→∞

1

N
log
(
xΦ(

√
Nx

b
) +

b√
2πN

e−
Nx2

2b2

)
= −(x−)2

2b2
,

where x− = x ∧ 0. We want to replace Q(y) with a deterministic quantity
in the large N limit.
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Reduction: k = 0

Since LDP of empirical measures of GOE has speed N2, it suffices to
consider y < −

√
2.

For k = 0, on {y < λ1}, we may find Lipschitz function fy,δ to
approximate 1

λi−y and

Q(y) =

√
−D′′(0)

N

N−1∑
i=1

Z2
i

λi − y
≥
√
−D′′(0)

N

N−1∑
i=1

fy,δ(λi)Z
2
i =: Q̃(y)

→
√
−D′′(0)m(y)

where m(y) is the Stieltjes transform of semicirle law.

Then use modified Gärtner–Ellis Theorem for large deviations for left
tail of Q(y).

Use many times the concentration/deviation inequality of empirical
measure of λi on the scale of N2 from σsc due to Maida and
Maurel-Segala 2014.
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Concluding remark for k = 0

Write
aN →W (ρ, t, y)−

√
−D′′(0)m(y) =: a.

Recall

lim
N→∞

1

N
logECrtN,0(E, (R1, R2)) =

1

2
log[−4D′′(0)]− 1

2
logD′(0) +

1

2

+ sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− I−(ρ, t, y)].

Here

I−(ρ, t, y) = inf
x∈[0,m(y)]

Λ∗(x) +
1

2b2
[(a +

√
−D′′(0)x)−]2,

Λ∗(x) is the Fenchel–Legendre transform of Λ, the limiting log moment
generating function of Q̃(y).
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Reduction: k ≥ 1

For k ≥ 1, the more difficulty term is
E[| detG|(1{i(G∗∗) = k − 1, ζ < 0}].
On {λk−1 < y < λk}, we may find Lipschitz function fy to
approximate 1

λi−y and

Q(y) =

√
−D′′(0)

N

N−1∑
i=1

Z2
i

λi − y
≤
√
−D′′(0)

N

N−1∑
i=k

fy(λi)Z
2
i =: Q̂(y)

→
√
−D′′(0)m(y)

where m(y) is the Stieltjes transform of semicirle law.

Then use modified Gärtner–Ellis Theorem for large deviations for
right tail of Q(y).

Extra work to handle boundary case, as Λ is not steep.
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Concluding remark for k ≥ 1

Recall

{i(G) = k} = {i(G∗∗) = k, ζ > 0} ∪ {i(G∗∗) = k − 1, ζ < 0}.

and

lim
N→∞

1

N
logECrtN,k(E, (R1, R2)) =

1

2
log[−4D′′(0)]− 1

2
logD′(0) +

1

2

+ max
{

sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− kJ1(y)],

sup
(ρ,t,y)∈F

[ψ(σsc, ρ, t, y)− I+(ρ, t, y)− (k − 1)J1(y)]
}
.

Here

I+(ρ, t, y) = inf
x<0

Λ∗(x) +
1

2b2
[(a +

√
−D′′(0)x)+]2.
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Some general strategy

Prove exponential tightness first:

lim sup
T→∞

lim
N→∞

1

N
logECrtN ([−T, T ]c,R+) = −∞,

lim sup
R→∞

lim
N→∞

1

N
logECrtN (R, [0, R]) = −∞.

This allows considering just Ē compact and R2 <∞.

Use LDP for empirical measure L(λNi=1) of GOE with speed N2 to
consider just L(λNi=1) ∈ B(σsc, δ).

Use P(max |λi| > K) ≤ e−NK2/9 to consider only max |λi| ≤ K for
K large enough.
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A simple idea of all arguments

lim
N→∞

1

N
log(e−10N ± e−100N ± e−N2

) = −10.

Thanks for your attention!

Qiang Zeng (University of Macau) Complexity of Gaussian random fields 34 / 34



A simple idea of all arguments

lim
N→∞

1

N
log(e−10N ± e−100N ± e−N2

) = −10.

Thanks for your attention!

Qiang Zeng (University of Macau) Complexity of Gaussian random fields 34 / 34



ψ(σsc, ρ, t, x) := Ψ∗(x)−
(t− µρ2

2 + µD′(ρ2)ρ2

D′(0) )2

2(D(ρ2)− D′(ρ2)2ρ2

D′(0) )
− µ2ρ2

2D′(0)
+ log ρ

− −2D′′(0)

−2D′′(0)− [D′(ρ2)−D′(0)]2

D(ρ2)−D
′(ρ2)2ρ2
D′(0)

×
(
x+

1√
−4D′′(0)

[
µ+

(t− µρ2

2 + µD′(ρ2)ρ2

D′(0) )(D′(ρ2)−D′(0))

D(ρ2)− D′(ρ2)2ρ2

D′(0)

])2
,

Ψ∗(x) :=

∫
log |x− y|dσsc(y)

=

{
1
2x

2 − 1
2 −

1
2 log 2, |x| ≤

√
2,

1
2x

2 − 1
2 − log 2− 1

2 |x|
√
x2 − 2 + log(|x|+

√
x2 − 2), |x| >

√
2.
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