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Background

Islamic art is unique because its form and function permeate both distance and time. Since
the birth of Islam, Muslim artists around the world have created pieces of art that share
an uncanny resemblance to pieces created by other Muslim artists through common themes,
appearances, and applications. These similarities include calligraphic elements, exaggerated
depictions of plants and animals, and repetitive, often star-shaped, geometric patterns.

Seyyed Hossein Nasr, author of Islamic Art and Spirituality, proposes that the similarities
between different pieces of Islamic art across time arise because of the connections between
Islamic worship and art; the contemplation of Allah recommended in the Qur’an and the
contemplative nature of Islamic art; and, finally, the remembrances of Allah as the final
goal of Islamic worship and the role played by art in the lives of Muslim individuals and
communities. He continues on to say that Islamic revelation is “crystalized in” art, which,
in turn, guides the viewer toward Islamic revelation, so it is natural that Islamic art would
take on a form that allows the artist and viewer to feel connected to Allah.
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Figure 1: A few examples of applied Islamic geometrical patterns.

In particular, Islam emphasizes the oneness of Allah as the only god (called Unity), which
is embodied in the form of geometric Islamic art. The Muslim artist attempts to express
“the manifestation of Unity upon the plane of multiplicity” in his artwork, reflecting their
beliefs in Unity, the dependence of all beings on Allah, the fleetingness of the physical world,
and the “positive qualities of cosmic existence.”

The popularity of geometric patterns to express Islamic revelation stems from a number
of sources. First and foremost, the Qur’an bans the use of many images, including the
representation of both Allah and the prophet Mohammed. Titus Burckhardt writes in Sacred



Art in East and West that “a Muslim’s awareness of the Divine presence is based on a feeling
of limitlessness; he rejects all objectification of the Divine, except that which presents itself
to him in the form of limitless space,” so the same geometric shape will be seen repeating
over and over again on any given space.

In essence, Islamic art seeks to maintain truth in its expression and to not add to or
subtract from the value of what is being represented. Repetitive geometric patterns are
traditionally constructed by Muslim artists using only a ruler and compass. Thus, geometric
patterns show no more and no less than their value; the possibilities for symmetries are
bounded by the nature of the two-dimensional surface on which they are drawn. Burckhardt
goes so far as to say that geometrical figures contained in a circle are the best possible visual
symbol of the movement from Unity to multiplicity, although he does not back up this claim.

Due to their heavy use and reverence of geometric patterns, Muslim artists and math-
ematicians paved the way for much of the algebra we use today. From their reliance on a
ruler and compass to create shapes on a two-dimensional service, Muslim artists eventually
created all possible symmetries that can be produced in that manner.

Disregarding the apparent visual differences between geometric patterns, there are only
seventeen possible symmetries of repeating geometric figures on a two-dimensional plane. Of
these seventeen symmetry groups, five are commonly found in Islamic art: p6m, p4m, cmm,
pmm, and p6, with p6m and p4m appearing most often. We will discuss what the symbols
mean later. The remaining twelve are not used nearly as frequently, and sometimes not at
all, by Muslim artists, so we will exclude them from our analysis.

We will begin by exploring the method used to create Islamic geometrical patterns, and
from there will look at the symmetry groups that arise from their structures.

Creating Islamic Patterns

As previously stated, Muslim artists in different periods of time and locations produced
geometric patterns with only the help of a ruler and compass.With these two tools they were
able to crate many patterns, but the first step in all cases is to draw a circle. From there,
polygons can be formed with careful division of the circle’s circumference and the addition
of straight lines connecting the appropriate points. The polygons are then manipulated to
create a variety of images. These images become patterns when they are repeated across a
surface by connecting certain points of intersection with straight lines. The most common
types of geometric patterns utilized in Islamic art are created by dividing the circle into
pieces that number four or six, and multiples thereof.

We can divide a circle into four (or multiples of four) equal parts by first constructing
two perpendicular diameters and using the endpoints of the diameters as the center for four
intersecting semi-circles that share the radius of the circle. Next, connect opposite semi-
circle intersection points by a diagonal through the center of the circle, as well as the edges
of the circumscribing square. From here, there are two ways to create octagonal squares
within the circle. One method, seen on the left-hand side of figure 2, is to connect every
second intersection point that was created through the above process. The other involves
connecting every third intersection point, and is exemplified on the right-hand side of figure
2.



Figure 2: The two most commonly used bases for patterns with 4n parts. Left: Every second
intersection point joined. Right: Every third point joined. Source: [El-Said, 1993]

Figure 3: The petal shape created by intersecting a circle with 6 equally spaced arcs. Source:
[El-Said, 1993]

The division of a circle into three (or multiples of three) equal parts begins similarly
with the construction of two perpendicular diameters. This time, however, we use only the
endpoints of one diameter as the center for two arcs that, again, maintain the radius of the
circle. Beginning by adopting the four new points of intersection created by the arcs as
respective centers, draw four more arcs, creating a petal shape (figure 3).

To complete the formulation of the two most commonly used formations, create two
equilateral triangles within the circle by connecting the appropriate “petal tips.” The alter-
native version is made by constructing three new diameters through the intersection points
of the triangles. The points where these diameters meet are then used as the vertices for
two equilateral triangles. This is more clearly explained by figure 4.

These four bases can be manipulated by further division, drawing, and erasing to create
the vast number of geometric, symmetrical patterns found in Islamic art. We will proceed
by seeing how these patterns guide us to analysis of symmetries using group theory.



Figure 4: The two most commonly uses bases for patterns with 3n parts. Left: Initial equilateral
triangle placement. Right: Alternative structure derived from (left). Source: [El-said, 1993]

Symmetries in FEj

The definition of symmetric we will be using is as follows: an object is symmetric if the
position it occupies in space remains invariant to one or more isometry transformations,
meaning that the appearance of the object does not change when modified by a translation,
rotation, reflection, or glide reflection.

This leads naturally to the concept of a symmetry, which is a transformation that
leaves the appearance of a particular object unchanged. The symmetry group (not to be
confused with the symmetric group) of an object refers to the combination of isometry trans-
formations that are symmetries of that object. Wallpaper patterns are simply repeating
patterns in Fy, the symmetry group of functions that preserve distance in two-dimensional
Euclidean space. Wallpaper groups are symmetry groups which send a given pattern to
itself, classified by a subgroup of E,. In order to analyze wallpaper groups, we must first
discover the properties of Fs.

A Euclidean transformation of R? is a function of the form 7" : R? — R? by

T(x) = a+ Mx,

where a, x € R? and M € O,. The vector x is the vector on which the transformations
are performed. M and a determine how the vector will be translated, rotated, or reflected.
Again, isometries can be broken up into translations, rotations, and reflections.

Translations

The symmetry group of a given pattern always contains translational symmetries which de-
scribe the directions in which we can move the pattern, so it lands on top of itself. There are
an infinite amount of directions in which the pattern can slide, but there must be two trans-
lations with the shortest magnitudes, a and b. When combined together, these translations
can create any other possible translation, so they are a basis for all translations.

Given a vector a, we define a function 7" : R? — R? by

T(x)=a+x.



T translates x by a, which is the form of any translation. The set of all translated points
forms a lattice spanned by a and b [Amstrong: 1988]

Rotations

Rotational symmetries are formed by rotating the pattern around a given point until it re-
turns to itself. They often occur at centers of polygons and star shapes, as well as vertices
and midpoints of sides. It turns out that an infinitely repeated pattern can only have 2-fold,
3-fold, 4-fold, and 6-fold rotational symmetries; this is due to a restriction imposed by group
called the crystallographic restriction, which is proven later.

_ |cos(0) —sin(0) : : :
Let Ay = [sm( 6) cos(6) | Given a matrix Ay, and an angle 0, we define a rotation
R:R? - R? by

R(x) = Apx.

Apx 1 the counterclockwise rotation of x by 6.

Mirror Reflections

Mirror reflections arise when a pattern can be reflected over a line and remain unchanged.

~ |cos(y)  sin(y)
bet By = Lin(v) —cos(7)
M : R? — R? by

} Given a matrix B,, and an angle v, we define a reflection

M(x) = B,x.

In this scenario, B, takes x and reflects it over a line that is rotated 3 radians from the
horizontal axis.

Wallpaper Groups

Isometries of wallpaper patterns are denoted by an ordered pair (a, M) with a € R and
M € O, the group of orthogonal 2 x 2 matrices, where if g = (a, M), then

g(x) =a+ Mx VaoeR
Note that the product of two such isometries is
(ar, My)(ag, My) = (a; + Myag, M My).

We can then define a function t : Ey — O by t(a, M) = M, which is a homomorphism
because



t((ar, My)(ag, My)) = t(ay + Myag, My M,)
= M, M,
= t(al, Ml)t(az, Mg)

The kernel of ¢ consists of the isometries (a, I) V a € R?, the same form of the translations.
Given a group G a subgroup of E,, we have two definitions. The translation subgroup
of Gis H= G NT, where T is the subgroup of F5 that consists of translations. The point
group of G is J = t(G).

This brings us to the formal definition of a wallpaper group. A subgroup of Fj is a
wallpaper group if its translation subgroup is generated by two independent translations
and its point group is finite.

The Crystallographic Restriction

We now have the tools to prove the crystallographic restriction. The definition of the crys-
tallographic restriction given above can be expressed using abstract algebra terminology to
say that the order of a rotation in a wallpaper group can only be 2, 3, 4, or 6. We adapt the
proof from Amstrong [Armstrong, 1988].

Before launching into the proof, we first consider a few examples. Let ¢ be the order

cos(/q) —sm(%)

of a rotation through and Az = [ 2ﬂ) ] be the matrix associated with this
q

sin (2= ) cos(
rotation.

Example 1: ¢ =3

Let ¢ = 3. First, we take an arbitrary vector [ﬂ € R, and multiply it by A2?7r to rotate it

about the origin by %’T radians.
cos(%”) —sin(%”) r| xcos(%’r) — ysz’n(%’r) B —%a: — %gy
sin(3)  cos(3) | |ly| — |wsin(E) +ycos(3F)| \/Tgx — iy

Now, rotate the new vector by another T radians.

o) sing] [ ] _ oot
sin(%)  cos(5) %gx—%y %gx 1y

Rotate the vector one more time.

o) —smg%)}

sin(3F)  cos(%)

Finally, we have the original vector, so we see that a rotation about 2?” corresponds to a

rotation of order 3. If we apply this method for ¢ = 4 and ¢ = 6, we can see that rotation
about 7 and % correspond to rotations of order 4 and 6, respectively.



Example 2: ¢ =5

For this example, we will go about things a little differently. Take the unit circle and divide

it into 5 sections with a vector, v; of unit length every %’r radians, with one vector pointing
along the y-axis. Define v; = vy = v3 = vy = v5 to be the vectors of shortest length in the
lattice. Since the set of lattice vectors is closed, the sum of any two lattice vectors must also

be a lattice vector. We choose to add the vectors that are rotated %’r radians to the right

\/g_|_ﬁ _ §_|_L5
8 8 | and vy = . 8 ' 8 |. It is easy
V5 1) V5 -1)

0 .
to see that when we add these two vectors together, we get [1 (V5 1>] , which should be
1 _
contained in J. However, %(\/3 — 1) < 1, a contradiction. We can extend this reasoning to
show why a rotation in a wallpaper group cannot be of order 5.

and left of 7 to illustrate our point: v, =

Proof. Coming soon.

Islamic Art and the Seventeen Types of Symmetries

Again, there are a total of seventeen different wallpaper patterns, but we will only be focusing
on the five that appear most frequently in Islamic art. The symbolic names for the groups
each have a specific meaning. The first symbol describes the shape of the lattice structure
and is always either a p (most cases) or a ¢ - p for “primitive” cell (a cell that contains
the smallest generator of a pattern), ¢ for “centered rectangular” cell, which is a rectangle
repeat pattern imposed on a rhombus net for the sake of consistency. The number that
follows indicates the highest order of rotational symmetry in the pattern and can be either
1, 2, 3, 4, or 6, as confirmed by the crystallographic restriction. The third and fourth symbols
can either by m for “mirror reflection” or g for “glide reflection,” which we will not cover
here.

Recalling the notation used above, we refer to G as the wallpaper group with translation
subgroup H, point group J, and lattice L. a and b are vectors that span L, with b being
the vector of shortest length. Ay rotates a vector around the origin by ¢, while B, reflects a
vector across a line through the origin with an angle of 1 to the z-axis. We now look at the
five symmetry types present in Islamic art based on lattice shape (see figure 5 for a visual
of what the patterns may look like).

Rectangular

A lattice is rectangular if ||al| < ||b|| < [Ja—b = |]a+ b|. There are four orthogonal
transformations that preserve L: the identity, the rotation by =, reflection across the -
axis, and reflection across the y-axis, meaning that the point group will be a subgroup of
{I,A, =—1,By, B,}.



pmm

The group p2mm is categorized by a rectangular lattice structure, 2-fold rotational symmetry,
and two mirror lines. It can be shortened to just pmm because the presence of the two m’s
can adequately express the 2 without confusion. Since pmm contains both a vertical and
horizontal reflection, the point group is the same as the general one for wallpaper groups
with a rectangular lattice: {I,—1, By, B, }.

Centered Rectangular

A lattice is rectangular if [ja|| < ||b|| = |[a—b < |la+ b||. It is called centered rectangular
because it is viewed as a rectangular lattice superimposed and centered over a rhombus
lattice. The orthogonal transformations that preserve a centered rectangular lattice are the
same ones that preserve a rectangular lattice.

cmim

The symmetry group ¢2mm has a centered rectangular lattice structure, 2-fold rotational
symmetry, and two mirror lines. Similar to pmm, it can be shortened to cmm because the
presence of the two mirror lines imply 2-fold rotational symmetry. In fact, cmm and pmm
have the same the same point group as well. The difference between the wallpaper groups
comes from slight differences in their lattice structure. Due to its rhombus-shaped back-
ground, the centered rectangular lattice has two rotational points and points of intersecting
mirror lines. Thus cmm has two points of symmetry, while pmm has only one.

Square

A lattice is square if ||a|| = ||b|| < ||a—b = |la+ b||. The points group that preserves L is
the dihedral group of order 8, generated by Az and By.

p4m

P4mm refers to the symmetry group of a pattern with a square lattice structure, 4-fold
rotational symmetry, and mirror lines in two directions. As before, pAmm can be shortened
to pdm. P4m is generated by Az and By.

Hexagonal

A lattice is hexagonal if ||al| = ||b|| = [Ja—b < |[Ja+ b]|. The point group is a subgroup of
the dihedral group of order 12, generated by Az and B.

pom

P6mm describes the symmetry group of a pattern with a hexagonal lattice structure, 6-
fold rotational symmetry, and mirror lines in two directions. This can be shortened to
p6bm because the 6-fold rotational symmetry and presence of one mirror line are enough to



categorize the symmetry group without causing confusion. It is generated by Ag and By,
including both rotations and reflections.

p6

Lastly, patterns of type p6 have a hexagonal lattice structure and 6-fold rotational symmetry,
but no reflectional symmetries. It is generated by solely Ag.

(d) p6m

Figure 5: An example of each of the chosen wallpaper patterns
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