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Introduction
Earthworm’s ability to increase plant nutrient availability is likely to 

be dependent on the activity of earthworm gut microflora. Earthworms 
indirectly influence the dynamics of soil chemical processes, by 
comminuting the litter and affecting the activity of the soil micro-
flora.1−3 Interactions between earthworms and microorganisms seem to 
be complex. Earthworms ingest plant growth-promoting rhizospheric 
bacteria such as Pseudomonas, Rhizobium, Bacillus, Azosprillium, 
Azotobacter, etc. along with rhizospheric soil, and they might get 
activated or increased due to the ideal micro-environment of the gut. 
Therefore earthworm activity increases the population of plant growth-
promoting rhizobacteria (PGPR).4 This specific group of bacteria 
stimulates plant growth directly by solubilization of nutrients,5,6 
production of growth hormone, 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase,7 nitrogen fixation,8 and indirectly by suppressing 
fungal pathogens. Antibiotics, fluorescent pigments, siderophores and 
fungal cell-wall degrading enzymes namely chitinases and glucanases 
6,8−12 produced by bacteria mediate the fungal growth-suppression. 
Earthworms are reported to have association with such free living 
soil bacteria and constitute the drilosphere.13 Earthworm microbes 
mineralize the organic matter and also facilitate the chelation of metal 
ions.14,15 Gut of earthworms L. terrestris, Allolobophora caliginosa 
and Allolobophora terrestris were reported to contain higher number 
of aerobes compared to soil.16 Earthworms increased the number 
of microorganisms in soi1 as much as five times17 and the number 
of bacteria and ‘actinomycetes’ contained in the ingested material 
increased upto 1,000 fold while passing through their gut.18 Similar 
increase was observed in plate counts of total bacteria, proteolytic 
bacteria and actinomycetes by passage through earthworms gut.16,19-

21 Similarly microbial biomass either decreased,3,21 or increased22 or 
remained unchanged19 after passage through the earthworm gut. An 
oxalate-degrading bacterium Pseudomonas oxalaticus was isolated 
from intestine of Pheretima species23 and an actinomycete Streptomyces 

lipmanii was identified in the gut of Eisenia lucens.24 Scanning electron 
micrographs provided evidence for endogenous microflora in guts of 
earthworms, L. terrestris and Octolasion cyaneum.25 Gut of E. foetida 
contained various anaerobic N2-fixing bacteria such as Clostridium 
butyricum, C. beijerinckii and C. paraputrificum.26 Alimentary 
canal of Lumbricus rubellus and Octolasium lacteum were found 
to contain more numbers of aerobes and anerobes27 and culturable 
denitrifiers. Earthworms harbor ‘nitrogen-fixing’ and ‘decomposer 
microbes’ in their gut and excrete them along with nutrients in their 
excreta.28 Earthworms stimulate and accelerate microbial activities by 
increasing the population of soil microorganisms,29 microbial numbers 
and biomass,3 by improving aeration through burrowing actions. 
Vermicomposting modified the original microbial community of the 
waste in a diverse way. Actinobacteria and Gamma proteobacteria 
were abundant in vermicompost, while conventional compost 
contained more Alpha proteobacteria and Bacteriodetes, the bacterial 
phylogenetic groups typical of non-cured compost.30 Total bacterial 
counts exceeded 10-10/g of vermicompost and it included nitrobacter, 
azotobacter, rhizobium, phosphate solubilizers and actinomycetes.31 
Molecular and culture-dependent analyses of bacterial community 
of vermicompost showed the presence of α-Proteobacteria, 
β-Proteobacteria, γ-Proteobacteria, Actinobacteria, Planctomycetes, 
Firmicutes and Bacteroidetes. Several findings showed considerable 
increase in total viable counts of actinomycetes and bacteria in the 
worm treated compost.32,33 The increase of microbial population may 
be due to the congenial condition for the growth of microbes within 
the digestive tract of earthworm and by the ingestion of nutrient 
rich organic wastes which provide energy and also act as a substrate 
for the growth of microorganisms.34 The differences in microbial 
species, numbers and activity between the earthworm alimentary 
canal or burrow and bulk soil indirectly support the hypothesis that 
the bacterial community structures of these habitats are different from 
those of the soil. Specific phylogenetic groups of bacteria such as 
Aeromonas hydrophila in E. foetida,35 fluorescent pseudomonads in 
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Abstract

The soil bears infinite life that promotes diverse microflora. Soil bacteria viz., 
Bacillus, Pseudomonas and Streptomyces etc., are prolific producers of secondary 
metabolites which act against numerous co-existing phytopathogeic fungi and human 
pathogenic bacteria. Microbial communities also support a large number of soil 
invertebrates, which in turn have an important regulatory effect on the microbial 
populations. Decomposition of organic material is assumed to be mainly mediated by 
microorganisms. The rate and extent of the decomposition depends on the chemical 
composition of the material, environmental factors, and on the microbial community. 
The activity of the decomposing microorganisms is accelerated by the activity of the 
soil fauna. The microorganisms show a high degree of specialization and display a large 
number of enzymes for the breakdown of organic matter. It is certainly proven that the 
growth of earthworms is dependent on microbial associations. In fact, microorganisms 
are largely responsible for the decomposition of the materials ingested by earthworms 
and in turn earthworm regulates modifications in microbial communities thus sharing 
a mutualistic relationship..
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L. terrestris,36 and Actinobacteria in L. rubellus37 have been found in 
higher numbers in earthworm guts, casts, or burrows.

Enzymatic activity characterization and quantification has a direct 
correlation with type and population of microbes and reflects the 
dynamics of the composting process in terms of the decomposition of 
organic matter and nitrogen transformations and provide information 
about the maturity of the compost.38 Wormcasts contain higher 
activities of cellulase, amylase, invertase, protease, peroxidase, 
urease, phosphatase and dehydrogenase.3,39 Dehydrogenase is an 
intracellular enzyme related to the oxidative phosphorylation process40 
and is an indicator of microbial activity in soil and other biological 
ecosystems.41 The maximum enzyme activities (cellulase, amylase, 
invertase, protease and urease) were observed during 21–35 days in 
vermicomposting and on 42–49 days in conventional composting. 
Also, microbial numbers and their extracellular enzyme profiles were 
more abundant in vermicompost produced from fruitpulp, vegetable 
waste, groundnut husk and cowdung compared to the normal compost 
of the same parental origin.33 Pseudomonas, Paenibacillus, Azoarcus, 
Burkholderia, Spiroplasm, Acaligenes, and Acidobacterium, 
the potential degraders of several categories of organics are 
seen associated with the earthworm’s intestine and vermicasts.28 
Firmicutes viz., Bacillus benzoevorans, B. cereus, B. licheniformis, 
B. megaterium, B. pumilus, B. subtilis, B. macroides; Actinobacteria 
namely Cellulosimicrobium cellulans, Microbacterium spp., M. 
oxydans; Proteobacteria such as Pseudomonas spp., P. libaniensis; 
ungrouped genotypes Sphingomonas sp., Kocuria palustris and yeasts 
namely Geotrichum spp. and Williopsis californica were reported 
from vermicomposts.42 Pinel et al.43 reported the presence of a novel 
nephridial symbiont, Verminephrobacter eiseniae from E. foetida. 
Ochrobactrum sp., Massilia sp., Leifsonia sp. and bacteria belonging 
to families Aeromonadaceae, Comamonadaceae, Enterobacteriaceae, 
Flavobacteriaceae, Moraxellaceae, Pseudomonadaceae, 
Sphingobacteriaceae, Actinobacteria and Microbacteriaceae were 
reported to occur in earthworms alimentary canal. The microbial flora 
of earthworm gut and cast are potentially active and can digest a wide 
range of organic materials and polysaccharides including cellulose, 
sugars, chitin, lignin, starch and polylactic acids.30,44,45 Single-strand 
conformation polymorphism (SSCP) profiles on the diversity of 
eight bacterial groups viz., Alphaproteobacteria, Betaproteobacteria, 
Bacteroidetes, Gammaproteobacteria, Deltaproteobacteria, 
Verrucomicrobia, Planctomycetes, and Firmicutes from fresh soil, gut, 
and casts of the earthworms L. terrestris and Aporrectodea caliginosa 
showed the presence of Bacteroidetes, Alphaproteobacteria, 
Betaproteobacteria and representatives of classes Flavobacteria, 
Sphingobacteria (Bacteroidetes) and Pseudomonas spp. in the 
worm casts in addition to unclassified Sphingomonadaceae 
(Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria).46−49

Conclusively enough, the activity of the decomposing 
microorganisms is accelerated by the activity of the soil fauna. The 
microorganisms show a high degree of specialization and display 
a large number of enzymes for the breakdown of organic matter. It 
is certainly proven that the growth of earthworms is dependent on 
microbial associations. In fact, microorganisms are largely responsible 
for the decomposition of the materials ingested by earthworms and 
in turn earthworm regulates modifications in microbial communities 
thus sharing a mutualistic relationship.
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