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Abbreviations: RAS or RA system, renin-angiotensin system; 
DPPIV, dipeptidyl-peptidase IV; PEP, prolyl endopeptidase; NEP, 
neutral endopeptidase; APN, aminopeptidase N; PGI, Pyroglutamyl-
peptidase I; Leu-AP, leucine aminopeptidase; Cys-AP, cystine 
aminopeptidase; GnRH, gonadotropin-releasing hormone; Ang II, 
angiotensin II; EOP, endogenous opioid peptides; APA, aminopeptidase 
A; hFF, human follicular fluid; POMC, proopiomelanocortin; PDYN, 
prodynorphin; PENK, proenkephalin; APB, aminopeptidase B; Asp-
AP, aspartyl aminopeptidase

Introduction
Peptidases fulfil a fundamental task in the intercellular 

communication, conditioning different physiological functions 
and influencing the genesis and evolution of different pathological 
processes. At the level of the central nervous system, it has been 
described that they are part of functions such as memory, behavior 
and nociception.1 Its role in the cardiovascular system and in renal 
function is also well known, since the metabolic pathways of the 
renin-angiotensin system (called RAS or RA system) are regulated 
by peptidases.2,3 Similarly, changes in the expression and function of 
peptidases have been described in: memory and mood disturbances, 
cardiovascular, renal, endocrinometabolic diseases and tumor 
processes.1,4‒6 In fact, the use of certain peptidases as tumor markers 
is widely described.7‒13

On the other hand, some peptidases inhibitors are currently used 
in pharmacological therapy. For example, captopril, enalapril, and 
lisinopril, are inhibitors of angiotensin converting enzyme (ACE), and 
are used in the treatment of cardiovascular diseases.14 The gliptins, 
inhibit the action of the enzyme dipeptidyl-peptidase IV (DPPIV), 
and are used in the treatment of type II diabetes.4,15 There are also 
quite advanced studies on the use of other inhibitors of peptidases, 
such as those of prolyl endopeptidase (PEP) for the treatment of senile 
dementia or those of neutral endopeptidase (NEP) and aminopeptidase 
N (APN) in the treatment of pain, among others.16,17

The sexual cycle is one of the main physiological events in which 
changes in hormone levels are generated, so it is not surprising that 
there are alterations in the activities of proteolytic enzymes along it.

At the end of the decade of the 60s, studies began to appear that 
establish a clear relationship between peptidases and sex hormones. 
One of them was the one carried out by Vanhaper18 which described an 
increase in pituitary activity of leucine aminopeptidase (Leu-AP) after 
estrogen treatments. Increases in various aminopeptidase activities 
were also observed after administration of estrogens and progestagens 
in the hypothalamus of rats of both sexes.19,20 Practically at the same 
time it was proposed that, after intracerebroventricular administration 
of LH, the gonadotropin-releasing hormone (GnRH) was inactivated 
by cystine aminopeptidase (Cys-AP) and by an enzyme similar to 
oxytokinase.21 Note that the degradation of GnRH is not limited to the 
hypothalamic-pituitary axis, since in all brain areas there are enzymes 
capable of hydrolysing this decapeptide.

At the end of the 80’s our department conducted a study on 
sexual differences in aminopeptidase activity after orchidectomy 
and ovariectomy, in which a higher increase in enzymatic activity 
was observed in males than in females that coincided with a higher 
elevation of LH plasma levels in the first after castration.22 From the 
works mentioned above, numerous studies were carried out to monitor 
the proteolytic activity during the sexual cycle in the hypothalamic-
pituitary axis and in other cerebral regions, observing cyclic changes 
in these enzymatic activities that could be parallel or antiparallel to 
the cyclical gonadotropic changes.23‒28

Discussion
Sexual cycle regulation: gonadotropic release model

Despite the scientific investigations carried out, the mechanism by 
which hormonal cyclical release occurs is not known exactly. In short, 
there is not a fully established gonadotropic release model. 

Due to the behavioral changes observed in the behavior of women 
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Abstract

In recent years, it has been described the role that different bioactive peptides (also 
called biopeptides) can play in diverse physiopathological situations, including issues 
directly related to both male and female (in) fertility, although their role in female 
fertility it is much less studied than in male fertility, as we will see throughout this 
review.

One of the most common ways to study peptidergic alterations is to analyze the 
activity of the enzymes that control them and that, in general, are called peptidases. 
The peptides are hydrolyzed by a limited number of enzymes that have relatively 
broad substrate specificity, the concept “a peptidase, a substrate” has been discarded. 
Peptidases are present in a wide variety of tissues and body fluids, for that reason they 
are thought to be involved in the metabolism of a large number of biopeptides, which 
are essential in the intercellular communication of the organism. Nowadays, knowledge 
of the role of peptidases has led to their use as tumor markers and therapeutic targets.

Keywords: peptides, peptidases, endogenous opioid peptides, human follicular 
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during the menstrual cycle, for a long time it was thought that there 
should be a relationship between this and the brain. But until Sawyer29 
detected that various neurotransmitters inhibited ovulation, it could 
not be proved experimentally. Currently it is known that a large 
number of neuropeptides is involved in controlling the secretion of 
sex hormones, both at the hypothalamic and pituitary levels and in 
other brain regions such as the amygdala or the cortex. Thus, there are 
numerous studies that relate reproductive activity to biopeptides such 
as angiotensin II (Ang II), neuropeptide Y, cholecystokinin and opioid 
peptides (the latter being the most studied).

It has been observed in rats how the hypothalamic opioid tone 
drops sharply during the proestrus (moment in which the preovulatory 
peak of LH occurs),30 this event is vital in the neural mechanism 
that causes the secretion of LH. It seems that the opioid system lies 
between the neural clock and the GnRH neurons, so it is suggested 
that the neural clock must restrict the opioid tone.31 Other authors 
propose that estrogens can modulate the synthesis and / or activity 
of enzymes responsible for the degradation or synthesis of peptides, 
thus being able to intervene in the gonadotropin secretion.32 It has also 
been described that estradiol makes fluctuate synaptic density in the 
hippocampus during the estrous cycle.33

Enkephalins are one of the most important endogenous opioid 
peptides (EOP) in the body and are involved in the control of hormonal 
cyclical release. The activity of three enkephalin-degrading enzymes 
has been studied: tyr-aminopeptidase (soluble), aminopeptidase A 
(APA) and APN (both membrane-bound). The obtained results showed 
how the soluble activity changed throughout the cycle, presenting 
higher levels of activity during the afternoon of the proestrus at the 
hypothalamic level, in the same way, it was observed that the APN 
activity varied throughout the cycle presenting its highest levels in the 
evening of the proestrus at the level of the hypothalamus, hypophysis 
and amygdala. All these peaks of peptide activity are coincident with 
a decrease in the opioid tone, and may therefore be involved in the 
regulation of sexual cycle.26,34

The findings discussed above have caused that has been proposed 
a gonadotropic release mechanism of the hypothalamus-pituitary axis, 
complement of the neural clock of Kalra31 in which during the estrus 
phase the enkephalins would act by inhibiting the release of GnRH 
and catecholamines would produce a global inhibition. This would be 
achieved with a lower degradation of the peptide at the intracellular 
and synaptic level (low soluble and membrane aminopeptidase 
activity). On the contrary, during the proestrus there would be an 
encephalinergic disinhibition due to an increase in the degrading 
enzymatic activity.35

Cell communication systems and fertility

The opioid peptides and their peptidases, in addition to acting on 
the hypothalamic-pituitary axis modulating the secretion of GnRH, 
FSH and LH,36‒38 also have a direct action on the ovarian follicle.39,40

In the ovary, processes as crucial as oogenesis, folliculogenesis 
and ovulation are controlled both hormonally and by a wide variety of 
substances produced by the oocyte and by the granulosa cells,41‒43 so 
there is an intense bidirectional communication between the different 
cell types (Figure 1). Human follicular fluid (hFF) contains a large 
number of factors and substances that regulate follicular and oocyte 
maturation. Similarly, the fertilization of the oocyte, the transport of 
the resulting embryo, its evolution and its ability to implant in the 
endometrium will be clearly influenced by the characteristics of the 

microenvironment that the embryo finds both in the fallopian tubes 
and in the uterine cavity.44‒48

Figure 1 Bidirectional communication between the oocyte and the granulosa 
cells. The influence of granulosa cells on oocyte development is observed, as 
well as the oocyte-controlled processes that take place in the granulosa cells.42

In summary, during the sexual cycle the ovarian and endometrial 
cells undergo dynamic changes in terms of growth, differentiation and 
cell regression. So the female reproductive organ represents a good 
model for the study of peptidergic regulation.49 

One of the most studied cellular communication systems is the 
opioid system, composed of: EOP, their cellular receptors and the 
enzymes responsible for their regulation (peptidases). The opioid 
system is present in organs and tissues of the male and female genital 
tract, intervening in the reproductive function. Another important 
model of physiological regulation is the RA system, present in the 
ovary of multiple species (including human),50 in fact, it has been 
proposed to take part in important processes such as steroidogenesis, 
ovulation, polycystic ovary syndrome and ovarian hyperstimulation 
syndrome.51

Male fertility

The three types of opioid receptors have been described in the 
human sperm membrane,52,53 which would indicate a direct action of 
the EOP on the sperm cells, and therefore, in the male reproductive 
capacity. Opioid peptides such as enkephalins and endorphins are 
present in the seminal fluid, with concentrations between 6 and 12 
times higher than in blood.54 In addition, there are several studies 
that relate the opioid system with the sperm motility, obtaining 
contradictory results. In 1982 Sastry´s et al.55 observed how high 
concentrations of enkephalins and β-endorphins decreased the sperm 
motility. In fact, Ragni56 described that addicts to opiate drugs used 
to suffer from astenozoospermia (low percentage of sperm motility). 
However, a Japanese group reported low levels of met-enkephalin in 
the seminal plasma of astenozoospermic patients.57 Trying to reach a 
consensus, later studies have suggested that for the maintenance of 
sperm mobility is necessary an adequate level of enkephalins, and 
even, that the effect of these peptides depends on their concentration 
in the medium. Therefore, the enkephalin-degrading peptidases, 
present in the seminal fluid, would play a key role in sperm motility.58

Throughout the female oviduct the human sperm obtains its 
fertilizing capacity. In cows, it has been observed how the concentration 
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of met-enkephalins and β-endorphins varies throughout the different 
parts of their reproductive system.44,45 However, the role played by 
the opioid system in the sperm capacitation, hyper activation and 
acrosome reaction is still unknown.

It should be noted that the majority of studies focused on relating 
physiological communication systems to fertility have been carried 
out in seminal samples, so the female reproductive system represents 
today a great unknown.

Female fertility

Opioid peptide receptors have been found in various parts of 
the female reproductive system, like human placenta59 or porcine 
granulosa cells.60 Recent research has shown the presence of the MOR 
opioid receptor in the oocyte-cumulus complex, where, thanks to the 
increase of intracellular calcium mediated by MOR, this receptor has 
been proposed as one of the main intermediaries in the bidirectional 
communication (between oocyte and granulosa cells) whose purpose 
is oocyte maturation (Figure 1).61‒63 More specifically, it has been 
described the presence of the three types of opioid receptors in the 
membrane of human oocytes, as well as a distribution dependent on the 
maturation degree of the oocyte for the MOR and KOR receptors.64,65

Precursors of opioid peptides have been found in the uterus 
and ovary of different species (including human), in fact, there is a 
localized production of proopiomelanocortin (POMC), prodynorphin 
(PDYN) and proenkephalin (PENK) in these organs.66‒69 POMC 
mRNA is present in antral follicles, in the corpus luteum, and in 
granulosa and theca cells, moreover its expression is mainly regulated 
by FSH, varying throughout the menstrual cycle. LH induces the 
expression of PENK in theca cells in small follicles. Point out that 
the gonadotropins also modulate the expression of PDYN, the FSH 
acts on granulosa cells and the LH on theca cells.70‒72 In summary, 
gonadotropic hormones FSH and LH modulate the expression of 
opioid peptide precursors in the ovary.

For all the above, endogenous opioids, present both in the 
follicular fluid and in the tubal and uterine fluid,45,68,73,74 could play a 
fundamental role in the final nuclear maturation of the oocyte, acting 
directly via receptor.57,65 In fact, it is considered that a large number 
of bioactive peptides are related to the function and differentiation of 
ovarian cells.

With respect to petidases, aminopeptidase activity has been detected 
in the uterine membrane of rats, which correlates positively with the 
estradiol concentration in serum, suggesting that the aminopeptidase 
activity in the uterus would be regulated by estradiol and would 
be tissue-specific, influencing indirectly in the endometrial state.75 
Regarding the ovary, in 1996 Tachibana76 described how bestatin 
increased steroidogenesis (FSH-dependent) of porcine granulosa cells, 
so it has been suggested that membrane-bound aminopeptidases are a 
vital regulator of follicular steroidogenesis. Years later, Carrera et al.3 
found in rat ovary enzymatic activity in both soluble and membrane-
associated form for APN, aminopeptidase B (APB), APA and aspartyl 
aminopeptidase (Asp-AP).

In women undergoing surgery, it has been detected activity for 
APN in the membrane of the endometrial stromal cells, the inner 
follicular theca and the corpus luteum.77‒80 However, in granulosa cells 
activity for APN has not been described but for APN-like.49 Similarly, 
activity was reported for DPPIV in the membrane of glandular cells of 
the endometrium and luteal cells.81,82 At the end of the 90s, all this led 

to the proposal of ectopeptidases expressed in ovary as determining 
enzymes in the function and differentiation of ovarian cells, since they 
regulated the extracellular (intrafollicular) concentrations of bioactive 
peptides, establishing a peptidergic regulatory system in the antral 
cavity.83

In the bovine brain puromycin-sensitive aminopeptidase (PSA) 
has been characterized and purified in vivo as an extracellular 
enkephalinase.84 Nevertheless, as being considered as a cytoplasmic 
enzyme, its role in opioidoinergic metabolism is unknown.85,86 The 
group of Tomoharu Osada87 showed that transgenic rats deficient 
of PSA had infertility since they were incapable of forming and 
maintaining the corpus luteum of pregnancy.

The presence of APA has been reported at the level of endometrial, 
ovarian and placental tissue.88‒90 APA is one of the main enzymes that 
regulate the concentration of Ang II in the human ovary, even more, 
it has been detected in follicular fluid an AngII-like immunoreactivity 
10 times greater than in plasma.91 Harata51 described for the first 
time the expression and cellular distribution of APA in the ovary 
of women throughout their menstrual cycle. During the process of 
folliculogenesis, a weak presence of APA was detected in the oocyte 
membrane and in the granulosa cells, with respect to the corpus 
luteum, a moderate presence in the large luteal cells and a weak 
presence in the small luteal cells. Finally, in the yellow body, no APA 
was observed. These results have led to speculate with the possibility 
of AngII intervening in processes such as folliculogenesis and the 
function of the corpus luteum.

Cys-AP or oxytocinase (the only membrane aminopeptidase 
wich degrades oxytocin) has been described in tissues as diverse as 
brain, heart, kidney, smooth muscle, adipose cells, colon, prostate 
and ovary.92‒94 Considered in humans the most important placental 
peptidase at the membrane level, during pregnancy a circulating form 
of Cys-AP has been detected in plasma, resulting from the proteolytic 
cleavage carried out in the extracellular domain of the peptidase.95 
The activity of Cys-AP in plasma increases significantly during the 
third trimester of pregnancy, to experience a plateau effect just before 
childbirth.96‒98 Because two of its main substrates, oxytocin and 
vasopressin, generate contraction and uterine vasoconstriction, it has 
been established that Cys-AP contributes to the normal development 
of pregnancy and suppresses pain by regulating the level of these 
hormones in serum.99,100

Activity for the PEP enzyme has been detected in a large amount 
of human tissues and fluids. More specifically, high activity has been 
observed in the renal cortex, epithelial cells, fibroblasts, testicles, 
lymphocytes, thrombocytes, placenta and ovary101,102 while the 
activity of PEP in body fluids has been low.103 In 1998 Kimura’s et 
al.104 compared the PEP activity (founded in hFF and granulose cells) 
between pre-antral and antral follicles and determined greater activity 
in pre-antral follicles in both HFF and granulose cells. In addition, in 
situ hybridization revealed higher expression of prolyl oligopeptidase 
mRNA in the granulosa cells of pre-antral follicles with respect to 
those from antral follicles. This comes to suggest the importance of 
PEP in the development of the first stages of folliculogenesis.

Recently, it has been described the presence of APN, PSA, APB, 
APA, Cys-AP, Asp-AP, PEP and PGI enzymes in the soluble fraction 
of the hFF and their relationship with maternal age and different sub 
fertilities such as polycystic ovarian syndrome, ovarian endometriosis, 
tubal factor and unexplained infertility.105‒107
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Conclusion
Therefore, peptidases exert different actions in different stages of 

the female reproductive process. And that is why they are molecules 
of great interest for a better understanding of human fertility, as well 
as for their study as possible markers of follicular and ovarian quality.
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