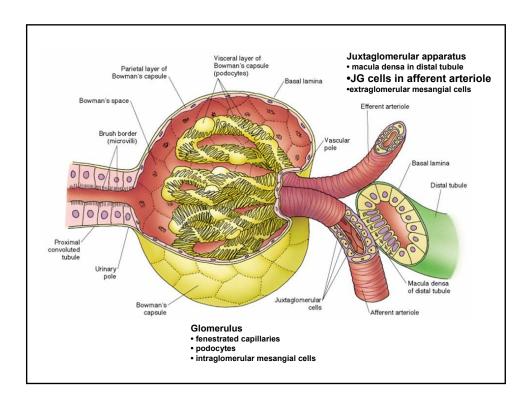
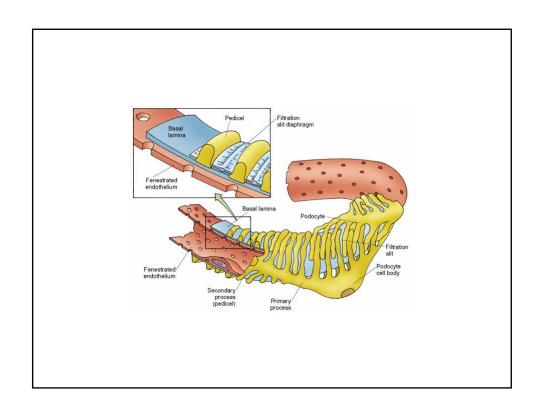


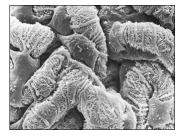
Uriniferous Tubule

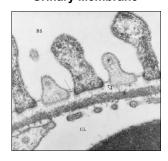

Nephron + Collecting tubule


Nephron

Renal corpuscle produces glomerular ultrafiltrate from blood

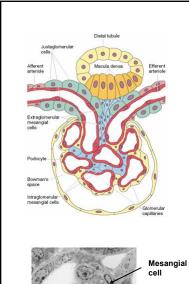
Ultrafiltrate is concentrated


- Proximal tubule
 - convoluted
 - straight
- Henle's loop
 - thick descending
 - thin
 - thick ascending
- Distal tubule
- Collecting tubule



Urinary Filtration Membrane

Podocytes



Urinary Membrane

- Endothelial cell 70-90 nm fenestra restrict proteins > 70kd
- Basal lamina

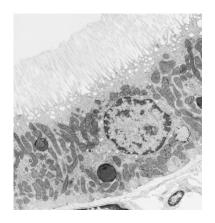
 - heparan sulfate is negatively charged
 produced by endothelial cells & podocytes
 phagocytosed by mesangial cells
- Podocytes
 pedicels 20-40 nm apart
 diaphragm 6 nm thick with 3-5 nm slits
 podocalyxin in glycocalyx is negatively charged

Mesangi cell JG cell Macula densa

Juxtaglomerular Apparatus

Macula densa in distal tubule

- monitor Na+ content and volume in DT
- low Na+:
 - stimulates JG cells to secrete renin
 - stimulates JG cells to dilate afferent arteriole
- tall, narrow columnar cells
- numerous microvilli


JG cells

- secrete renin into circulation
 - \bullet renin converts angiotensinogen \to angiotensin I
- contain angiotensin converting enzyme (ACE)
 - · lung is principal site of ACE activity
 - \bullet ACE converts angiotensin I \to II
- contain angiotensin I & II
 - angiotensin II constricts vasculature and stimulates secretion of aldosterone and ADH
- primarily in afferent arteriole
- specialized smooth muscle cells
- no basal lamina between JG cells & macula densa

Extraglomerular mesangial cells

also known as Polkissen or lacis cells

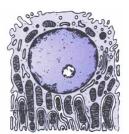
REGION OF URINIFEROUS TUBULE	MAJOR FUNCTIONS	MISCELLANEOUS COMMENTS
Renal Corpuscle: Simple squamous epithelium, fused basal laminae, podo- cytes	Filtration	Filtration barrier: endothelial cell, fused basal laminae, filtration slits
Proximal Tubule: Simple cuboidal epithelium	Resorption of 67%—80% of water, so- dium, and chloride (reducing volume of ultrafiltrate); resorption of 100% of protein, amino acids, glucose, and bi- carbonate	Sodium pump in basolateral membrane; ultrafiltrate is isotonic with blood
Descending Thin Limb of Henle's Loop: Simple squamous epithelium	Completely permeable to water and salts (reducing volume of ultrafiltrate)	Ultrafiltrate is hypertonic with respect to blood; urea enters lumen of tubule
Ascending Thin Limb of Henle's Loop: Simple squamous epithelium	Impermeable to water, permeable to salts; sodium and chloride leave tubule to enter renal interstitium	Ultrafiltrate is hypertonic with respect to blood; urea leaves renal interstitium and enters the lumen of tubule
Ascending Thick Limb of Henle's Loop: Simple cuboidal epithelium	Impermeable to water; chloride and so- dium leave tubule to enter renal inter- stitium	Ultrafiltrate becomes hypotonic with re- spect to blood; chloride pump in baso- lateral cell membrane is responsible for the establishment of osmotic gradient in interstitium of outer medulla
Macula Densa: Simple columnar cells	Monitors sodium level and volume of ul- trafiltrate in lumen of distal tubule	Contacts and communicates with juxtaglo- merular cells
Juxtaglomerular Cells: Modified smooth muscle cells	Synthesize and release renin into blood- stream	Renin initiates the reaction for the eventual formation of angiotensin Π (see Table 19–2)
Distal Convoluted Tubule: Simple cuboidal epithelium	Responds to aldosterone by resorbing so- dium and chloride for lumen	Ultrafiltrate becomes more hypotonic (in the presence of aldosterone); sodium pump in basolateral membrane; potas- sium is secreted into the lumen
Collecting Tubule: Simple cuboidal epithelium	In the presence of ADH, water and urea leave the lumen to enter the renal in- terstitium	Urine becomes hypertonic in the presence of ADH; urea in interstitium is respon- sible for gradient of concentration in in- terstitium of the inner medulla

Proximal Convoluted Tubule

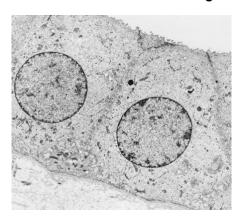
- Cuboidal (low to high) cells
- Eosinophilic granular cytoplasm
- Basal nuclei
- Elaborate brush/striated border
- Lateral interdigitations
- Resorbs 100% protein, amino acids, glucose, creatinine, and bicarbonate ions
- \bullet Resorbs 70-80% of Na $^{\!\scriptscriptstyle +},$ Cl $^{\!\scriptscriptstyle -},$ and water
 - Na⁺/K⁺ pumps in basolateral membrane
 - Na⁺ pumped into interstitium
 - Cl and water follow
- Secretes waste products into lumen



Henle's Loop (thin segments)

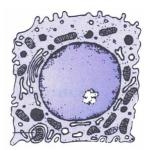

- Squamous cells
 - slightly thicker than endothelial cells
- Few short microvilli
- Lateral interdigitations
- Descending limb
 - highly permeable to water, salt and urea
- Ascending limb
 - impermeable to water
 - permeable to salt which enters interstitium

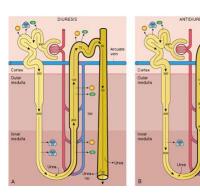
Distal Tubule (DCT & thick ascending limb of Henle's loop)



- Not permeable to water or urea
- Active Na+/K+ pumps (DCT)
 - aldosterone stimulates salt resorption
 - H+ and K+ transported into lumen
- Active CI⁻ pumps (Henle's thick) CI⁻ enters interstitium (Na⁺ follows)

- Low cuboidal cells
- Clear pale cytoplasm
- Apical nuclei (DCT)
 Central nuclei (Henle's loop)
- Numerous mitochondria
- Absent (or few short) microvilli
- Basal interdigitations
- Numerous zonula occludens




Collecting Tubule & Duct

- Permeable to urea
- In response to ADH, becomes permeable to water which enter the interstitium

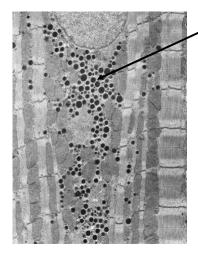
- Cuboidal to columnar cells
- Clear cytoplasm
- Central nuclei

Formation of Urine

Countercurrent Multiplier System

Increasing osmolarity gradient exists from corticomedullary junction to deep in medulla

** due to high urea and salt content deep in medulla


- •Descending thin limb of Henle is freely permeable to water and salt
 - Due to increasing osmolarity of interstitium: lumenal volume decreases and osmolarity increases
- Ascending (thin and thick) limb of Henle and DCT are not permeable to water
 - Lumenal volume does not change
 - Urea enters lumen
 - Cl- pumped into interstitium (Na+ follows)

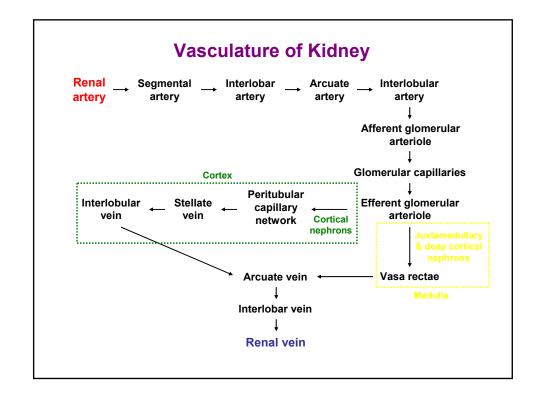
 - → increases salt deep in medulla
 → ultrafiltrate becomes hypotonic as it ascends
- Without ADH: collecting tubule/duct impermeable to water
 - ADH (pars nervosa of pituitary) makes collecting tubule/duct freely permeable to water and urea

 - → increases water resorption, decreases urine volume, and increases urine tonicity
 → increases urea content deep in medulla to maintain interstitial osmolarity gradient

Angiotensin II Regulation of Blood Pressure TABLE 19-2 Effects of Angiotensin II FUNCTION RESULT Acts as a potent vasoconstrictor Increased blood pressure Resorption of sodium and chloride from lu-men of distal convoluted tubule Facilitates release of ADH Increased tissue fluid volume Increases thirst Inhibits renin release Feedback inhibition Vasodilation of afferent glomerular arteriole thus maintaining glomerular filtration rate Facilitates release of prostaglandins Gartner & Hiatt Burns & Cave

Additional Regulators of Kidney Function

Atrial Natriuretic Peptide (ANP)


- · Secreted by atrial cardiac myocytes
- Function
 - decreases renin release
 - decreases aldosterone release
 - · blocks resorption salt and water
 - · decreases blood pressure

Alcohol

• decreases ADH release

Caffeine

• increases salt resorption in DCT

