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ABSTRACT

In a speech signal, Voice Onset Time (VOT) is the period between
the release of a plosive and the onset of vocal cord vibrations in the
production of the following sound. Voice Offset Time (VOFT), on
the other hand, is the period between the end of a voiced sound and
the release of the following plosive. Traditionally, VOT has been
studied across multiple disciplines and has been related to many
factors that influence human speech production, including physical,
physiological and psychological characteristics of the speaker. The
mechanism of extraction of VOT has however been largely manual,
and studies have been carried out over small ensembles of individ-
uals under very controlled conditions, usually in clinical settings.
Studies of VOFT follow similar trends, but are more limited in scope
due to the inherent difficulty in the extraction of VOFT from speech
signals. In this paper we use a structured-prediction based mecha-
nism for the automatic computation of VOT and VOFT. We show
that for specific combinations of plosives and vowels, these are re-
latable to the physical age of the speaker. The paper also highlights
the ambiguities in the prediction of age from VOT and VOFT, and
consequently in the use of these measures in forensic analysis of
voice.

Index Terms— Age, voice onset time, voice offset time, voice
forensics, voice biometrics

1. INTRODUCTION

The human voice is increasingly being recognized to be a biomarker.
Not only can it be used to match or verify speakers [1, 2], it has
also been correlated with many characteristics of the speaker that
could be descriptive of speaker’s self and surroundings. There is
a burgeoning body of literature that addresses the problem of deriv-
ing such biodescriptive parameters from voice recordings, especially
the speaker’s biophysical characteristics such as height, weight, age,
race etc [3, 4, 5, 6].

The majority of current techniques that attempt to derive these
biophysical parameters are based on macro characterizations of the
speech signal, i.e ensemble characterizations of spectral features de-
rived from it. Typically, speech signals are parametrized into col-
lections of Mel-frequency cepstral (or similar) vectors, which may
also be used to obtain higher-level representations such as i-vectors
which model their distributions [7, 8]. Yet other characterizations in-
clude ensembles of utterance- or segment-level measurements such
as those obtained from the popular OpenSmile toolkit [9].

In contrast, many studies in the literature that have correlated
biophysical parameters to voice are predicated on the fact that bio-
physical parameters most directly influence the speech-production

mechanism. Age, height, weight, physical and psychological health
status, etc., affect a variety of physical characteristics such as the
size, tension and agility of the vocal cords, the length of the vocal
tract, the power and resonance of the voice source, i.e. the lungs, the
size and shape of the resonant cavities, muscle response in the vocal
apparatus, and many other such factors. These influences manifest
in the micro characteristics of the speech signal produced. By micro
characteristics, we refer to localized, fine detail of the signal such as
the nature of the individual pulses of excitation of the speech sig-
nal, the relative energy in periodic and aperiodic components of the
excitation, the exact phoneme-specific positions of formants, their
bandwidths, and their relation to one another, the width and energy
in harmonic peaks, the degree of co-articulation in complex sound
sequences, the degree of closure of the velum and cessation of voic-
ing and a plethora of other features that are glossed over by the crude
characterizations of macro representations.

Consequently, there is a prevalent belief amongst some re-
searchers that computational approaches that directly key in on
these micro features may be expected to be more effective at deci-
phering physical profiles. Some examples of such studies are [10]
that employs estimates of sub-glottal resonances as an aid to esti-
mating body size, [11] that utilizes formant positions, etc. For the
most part, however, micro features have not featured prominently
in the pantheon of features used for the deduction of biophysical
parameters, often due to the difficulty in their accurate measurement
at such small scales (typically 20-100ms).

One such micro feature that has repeatedly been reported to re-
late to many biophysical parameters is the Voice Onset Time (VOT).
VOT measures the time between the burst in a plosive and the onset
of voicing in the subsequent voiced phoneme. A number of stud-
ies have shown VOT to be relatable to the speaker’s age. Correla-
tions between VOT and age have been closely studied in children,
since the expectation is that because children’s vocal tracts change
rapidly with age [12], VOT may show more changes across ages than
seen in adults. In reality, however, this has not been the case [13].
Amongst adults, VOT has been reported to correlate with age but
most studies have not evaluated its predictive potential for age. Most
studies merely show a direct relation between VOT statistics and the
speaker age, e.g. [14]. Some studies have found joint correlations
of VOT with age and other parameters, e.g. gender [15], hearing
loss [16], age of learning (a second language) [17], age of learning
and speaking rate [18]. Along another dimension, joint correlations
of VOT and other measures such as Formants and their bandwidths
have been found with age [19].

The clear message from all of these studies is that under a vari-
ety of conditions VOT has statistical dependence on age, and conse-
quently VOT measurements may be utilized to disambiguate the age



of the speaker, at least to some degree. In this paper, based on these
studies, we investigate whether VOT estimates may be utilized to
make predictions about age, and whether computational mechanisms
may be useful for this purpose. We analyze the relation of VOT to
the speaker’s age on a study of 630 speakers from the TIMIT cor-
pus. We note that in contrast to other, previously reported studies on
VOT, this analysis employs a much larger corpus of a much greater
variety of speakers, while maintaining a phonetic balance and also a
balance between genders. Note that the VOT is a fine detail of the
speech signal and is hard to characterize accurately. In particular,
for relatively large data such as TIMIT, hand-annotating VOTs is not
feasible, and we require an automated algorithm that can do so. To
this end, we also identify a high-accuracy algorithm that can be used
to measure the VOTs in large corpora.

In addition to studying VOT, we also study the Voice Offset
Time (VOFT). VOFT can be viewed as the complement of VOT,
and measures the duration between the cessation of voicing in a
voiced phoneme, and the onset of the burst of the subsequent plosive
sound. Although VOFT has been studied in some medically relevant
contexts e.g. [20], it is significantly less studied than VOT. VOFT,
like VOT, also has a dependence on the physical parameters of the
speaker, including, potentially, age. Like VOT, however, it is also
hard to measure automatically, which is a requirement if we must
analyze large quantities of speech. In this paper we also suggest an
automated algorithm to obtain VOFT measurements from the speech
signal.

Our experiments arrive at a surprising, if disappointing, out-
come. Regardless of how we slice or dice it, VOT is unrelatable
to age. Every result contradicts the large body of physiometric liter-
ature that claims the opposite. This is not a consequence of incorrect
computation - in fact, in a separate exercise that compared manually
marked VOTs to those derived by our automated algorithm, we have
extensively verified that the automated VOT computation we use is
better than human-judged VOT annotation.

The rest of this paper is organized as follows. In Section 2 we
describe VOT, VOFT and their measurement in greater detail. In
Section 3 we describe our experimental techniques and the results of
our experiments, and in Section 4 we present our conclusions.

2. VOICE ONSET AND OFFSET TIMES

Speech sounds may be categorized along a variety of dimensions.
One partition is based on voicing – whether the vocal cords vibrate
or not during the production of the sound. Voiced sounds include
vowel sounds such as /aa/, /uw/, /iy/ etc., and also voiced conso-
nants such as /jh/, /v/, /dh/ etc. A second manner of categorization of
speech sounds is by the place and nature of articulation. Of particular
interest to us are plosives, also called stop consonants. These are the
phonemes /b/, /d/, /g/, /k/, /p/ and /t/, where the vocal tract is entirely
closed briefly (a stop phase), resulting in a momentary cessation of
the airflow from the mouth, and then followed by a release of the air
(a burst or release phase). Of these, /b/, /d/ and /g/ are called voiced
stops, because voicing typically begins very quickly after the airflow
is resumed, and may sometimes even continue through the stoppage.
/k/, /p/ and /t/ are not accompanied by vocal cord vibrations, and are
hence called voiceless stops. Voice Onset and Offset times are char-
acteristic timings related to the conjunction of stop sounds and other
voiced sounds. We discuss each of these below.

2.1. Voice Onset Time

Voice Onset Time measures a timing characteristic of sound pairs
where a plosive is followed by a vowel, or more generally, any

voiced sound.
When a voiced phoneme (e.g a vowel) follows a plosive, the

enunciation of the voiced phoneme requires the vocal cords to start
vibrating immediately after the plosive. The time interval between
the beginning of the release of the plosive, and the beginning of the
voicing in the subsequent vowel is defined as the Voice (or Voicing)
Onset Time (VOT). Fig. 1 illustrates VOT and one of its typical vari-
ations. In the speech of an adult speaking American English, VOT
is of the order of 25ms for voiced plosives and 95ms of unvoiced
plosives.

2.2. Voice Offset Time

In contrast to the VOT, Voice OFfset Time (VOFT) refers to a timing
characteristic of sound pairs where a voiced sound is followed by a
plosive. VOFT is the duration between the cessation of voicing in
the voiced phoneme and the onset of the following plosive. In this
sense it is the complement of VOT. Fig. 1 shows an illustration of
VOFT. Unlike the onset of voicing, the offset of voicing is often hard
to discern, and consequently, VOFT is hard to measure.

Fig. 1. Illustration of VOT and VOFT (a) spectrogram of the word
TOOTHPASTE showing micro-level variations between phonemes
(b) VOT and VOFT on the spectrogram of an instance of the word
DARK, as obtained by the structured-prediction algorithm (c) Ex-
ample of negative VOT. VOT can have three variations: Zero VOT:
the duration between the burst and the subsequent voicing pattern is
zero ; Positive VOT: there is a measurable duration between the two;
Negative VOT: in rare cases, voicing begins before the onset of the
stop. In this example the stop and release of /g/ are very faint.

It is generally accepted that VOT and VOFT are indicators of the
ability of the vocal tract to move from one configuration to another
[21]. In other words, these entities measure the agility of the vocal
tract [22, 23], which in turn is thought to be dependent on the age
of the speaker, amongst other factors. It is therefore reasonable to
expect VOT and VOFT to be statistically related to the speaker’s
age, a hypothesis that seems to be borne out by the studies reported
in Section 1.

2.3. Estimation of VOT and VOFT

Automatic estimation of VOT is a challenging problem – the onset of
voicing is typically a faint cue that is easily missed, as is the initial



burst that signals a plosive. A limited number of approaches have
been proposed in the literature for the automatic estimation of VOT.
Lin and Wang [24] employ random forest classifiers on cepstral fea-
tures derived from the signal. Stouten and Hamme [25] propose the
use of “reassignment spectra” to estimate the VOT. In all cases, the
estimation errors can approach 20ms, which is sometimes as long as
the VOT itself.

In this paper, we utilize a structured-prediction approach, origi-
nally proposed in [26] to estimate VOT, which has consistently been
shown to result in VOT estimates with errors less than 5ms, provided
the algorithm is cued about the approximate location of the VOT. We
derive these approximate location cues using a speech recognition
system.

The structured-prediction approach, which we will refer to as
the SP model for brevity, combines the evidence from a number
of acoustic cues to determine the VOT. Specifically, given a speech
segment X = {x1, x2, · · · , xt} that includes a plosive-vowel con-
junction with a VOT, it computes a number of numeric features
φi(X,Tp, Tv), i = 1 · · ·K from the signal. Each feature map φi

is computed between time instants Tp and Tv , and has the charac-
teristic that it may be expected to peak if Tp and Tv are the true
boundaries of the VOT. The SP model computes a weighted combi-
nation

∑
i wiφi(X,Tp, Tv) of the evidence from all of the feature

maps. The boundaries of the voice onset time are estimated as the
instants t̂X,p and t̂X,v at which this score peaks.

t̂X,p, t̂X,v = arg max
Tp,Tv

S(X,Tp, Tv) (1)

A learning phase for the detector estimates the weights w =
[w1, w2, · · · , wK ]> such that the expected error between the esti-
mates given by the above predictor and the true boundaries of the
VOT is minimized. To do so we define the following loss:

LX = max{|(tX,p − tX,v)− (t̂X,p − t̂X,v)| − ε, 0} (2)

The weight w is estimated to minimize the empirical average of the
above loss over a large number of training instances, leading to an
iterative estimate with the following update rule.

w←− w +
∑
X

Γ(Φ(X, tX,b, tX,w)− Φ(X, t̂X,b, t̂X,w))

where Γ is a diagonal matrix whose ith diagonal entry represents the
learning rate corresponding to the ith feature map φ(X, tp, tv). This
update rule has been proven to converge to a local optimum in [27].
The learned weights may be used in conjunction with Equation 1 to
estimate the VOT on test instances.

The same algorithm may be employed to estimate VOFT as well.
The only distinction is in the feature maps used, which must now be
characteristic for VOFT, rather than VOT. In practice we have found
the same feature maps to be effective for both VOT and VOFT. A
total of 59 feature maps are used. We refer the reader to [28] for a
detailed description of the feature maps.

3. EXPERIMENTS

Experiments were performed using the TIMIT acoustic-phonetic
corpus [29]. The corpus consists of 630 speakers representing eight
major dialects of American English. The recordings contain 16kHz
sampled speech recordings of ten phonetically rich sentences that
are read by each speaker. Nearly every stop consonant is represented
at least once in both, the VOT and VOFT contexts for each speaker.
In all cases, the speech was well-articulated, and the recordings are

clean i.e., studio-quality with no noise present. The gender of the
speaker and their age at the time of recording have been provided in
this corpus.

Our first goal was to evaluate age-related trends in the VOT, such
as those observed in other studies reported in the literature. In order
to do this, we computed VOT for all words that began with a plosive
leading into a vowel sound, distinguishing between voiced and un-
voiced bilabial plosives (/b/ and /p/ respectively), voiced and voice-
less lingua-alveolar plosives (/d/ and /t/ respectively), and voiced and
voiceless lingua-velar plosives (/g/ and /k/ respectively). The top row
of Fig. 2 shows the scatter of the actual VOT readings obtained for
/k/ and /g/ against the age of the speaker. As we see, there are no
noticeable trends with age. Similar lack of trend are observed for
other plosives.
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Fig. 2. Scatter plots for VOT and VOFT of plosives /k/ and /g/
against age. Top: VOT. Bottom: VOFT.

As a first step we compute both the overall and phoneme-
conditional mutual information between VOT and age. To do so,
we quantized both variables into 20 bins, a number obtained using
the optimal histogram-based formula proposed in [30]. The mutual
information between VOT and age was computed from the resulting,
normalized, bivariate histogram. These values are given in Table 1.
The marginal entropy of age, using the same quantization, is 2.93
bits. We note that the mutual information between VOT and age is
very small in nearly all cases. It would appear that knowledge of
these VOTs does not sufficiently disambiguate age.

Voiced Unvoiced
B: /b/ LA: /d/ LV: /g/ B: /p/ LA: /t/ LV: /k/

VOT 0.19 0.16 0.16 0.12 0.18 0.20
VOFT 0.46 0.18 0.27 0.18 0.21 0.27

Table 1. Mutual Information in VOT and VOFT for different plo-
sives. B: Bilabial; LV: Lingua-Velar; LA: Lingua-Alveolar. The
italicized numbers were computed on fewer instances than others,
using appropriately fewer histogram bins, as suggested by [30].

On the other hand, we also find that the VOTs of the different
plosives do not significantly predict one another. The mutual infor-
mation between the various plosives is shown in Table 2. These too
are of the same order as the MI between the plosives and age. Given
this, we may speculate that although the VOTs for the individual plo-
sives do not by themselves have significant MI with age, they might



do so jointly since, being effectively independent of one another, the
information they individually provide may combine cumulatively.

Mutual Information
Voiced Unvoiced

Plosive /b/ /d/ /g/ /p/ /t/ /k/
/b/ 1.97 0.15 0.17 0.11 0.20 0.20
/d/ 1.70 0.15 0.10 0.10 0.17
/g/ 2.46 0.10 0.21 0.22
/p/ 2.77 0.12 0.13
/t/ 3.33 0.22
/k/ 3.30

Table 2. Mutual Information in VOT measures across different plo-
sives. The lower portion of the table is empty since MI is symmetric.

Measure Mean LR RF GPR SLK KNN
VOT: Ph 8.24 8.29 9.02 9.02 8.31 9.09
VOT: Wd 8.24 8.26 8.69 9.33 8.26 9.85
VOFT: Ph 8.24 8.21 8.78 8.89 8.40 10.96
VOFT: Wd 8.24 8.22 8.24 8.50 8.18 8.63

Table 3. RMS prediction errors on a 10-way jackknife test across
phonemes (Ph) and words (Wd) using various regression models.
Highlighted numbers are for the case where the predicted age is as-
sumed to be the mean age of the training data partition.

To test this hypothesis, we attempted to develop several regres-
sion models to predict age from VOT. In each case, the input to the
regression was a set of six values, consisting of the mean VOT times
for each of the six plosives for the speaker. The predicted variable
was the age of the speaker. In each experiment we ran a 10-way
jackknife test – we partitioned the 630 speakers into ten sets of 63.
For each set, we trained the regression from the remaining 9 sets and
used the trained regression to predict the age of that set. Table 3
shows the mean-squared error of prediction obtained with six differ-
ent age predictors – linear regression (LR), random forest regression
(RF), Gaussian process regression (GPR), support-vector regression
with a linear kernel (SLK), and a KNN regression (KNN). Support
vector regression with other Kernels was generally worse than with
a linear Kernel. For reference, we also show the MSE when we
simply predict the age as the global mean (MEAN). For reference,
the standard deviation of age in the TIMIT data is 8.23 years. In
each case, the mean squared error of prediction is comparable to the
standard deviation of the age variable itself, and is, in some cases,
actually larger. None of the predictors are able to make any reliable
estimates of age.

We considered that we may be losing information by aggregat-
ing the VOTs for all instances of a plosive without regard to the
following vowel, and that the dependence of the VOT on the fol-
lowing vowel may be significant. So we focused on the four fol-
lowing VOTs: /d/-/aa/ (from “DARK”), /d/-/ow/ (from “DON’T”),
/t/-/ax/ (from “TO”) and /k/-/ae/ (from “CARRY”), each of which
was uttered by every subject. Table 3 also shows the mean-squared
prediction error obtained with each of the regression models, when
age was predicted on the basis of these four VOTs. Once again, the
prediction error is comparable to the standard deviation of age itself.

This could well be from competing effects introduced by other
factors such as height, weight, gender, dialect etc. To gauge the ex-
tent of these effects, in other experiments, we partitioned subjects
by gender, dialect and height, and attempted to perform predictions.

While we do not report detailed results here for lack of space, segre-
gation of the data by any of these factors did not result in improve-
ment of predictions – the RMS prediction error remained greater
than the innate standard deviation of age in all cases.
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Fig. 3. Illusory age-limiting trend exhibited by VOFT for /d/ follow-
ing the phoneme /ae/. For any given VOFT, it is possible to assign
an upper limit to the age of the person with high accuracy. 86% of
all instances lie below the lower line. 95% lie below the upper line.

3.0.1. VOFT

We note from Table 1 that VOFT values too have, at best, weak mu-
tual information with age, although VOFT values for voicing pre-
ceding /g/ and /k/ have marginally stronger relationship to age than
the remaining VOFTs, or the VOTs for any plosive. The bottom row
in Fig. 2 shows the scatter plots for VOFTs associated with /k/ and
/g/. No clear trends are seen, as in the case of VOT. As in the case of
VOT, similar results were obtained for other plosives.

Table 3 shows that prediction of age using the VOFTs for all
plosives jointly produces no useful result, both when we consider
all VOFTs, and when we choose word-specific VOFTS (“DARK”,
“RAG”, “HAD”, “SUIT”, “THAT”, and “ASK”). Once again, parti-
tioning the data by any other factor only degraded prediction.

4. CONCLUSIONS

From our experiments we conclude that contrary to popular belief,
VOT is not predictive of the age of the speaker across a large en-
semble of speakers. Note that this observation does not preclude the
presence of predictive VOT-age trends for much more carefully se-
lected groups of speakers, as have been chosen in most earlier stud-
ies. In addition, our results indicate that VOFT may also be worth
exploring in more detail as an age-profiling tool.

The fact that the results in this paper largely do not support those
in most reported literature may be due to two factors. The first is that
most earlier results were obtained on smaller amounts of data from
subjects who were carefully selected to eliminate secondary factors.
Some trends may be purely illusory. Fig. 3 shows one such example.
For the voiced lingua-alveolar plosive /d/ in the context of /ae/, we
appear to observe a trend that allows us to use the VOFT value to
establish an upper limit on the age of the speaker. Closer inspection
shows the VOFT to segregate into two groups, a high-occurrence
cluster between 15-18ms, and a second more spread out one. Once
separated, the trend disappears. A likely second factor is the aggre-
gate error made in the estimation of VOT (and VOFT). Although
our VOT predictor is highly accurate, with a mean error of less than
5ms, for micro-features small errors may eliminate patterns. Unfor-
tunately both of these factors are likely to affect characterizations
based on any micro-factor. This does not imply that micro features
in general may not be useful for profiling. Rather, this work may
be viewed as a caution that patterns observed in small-scale human
studies may not appear in larger-scale automated analyses.
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