РАКТИЧЕСКОЕ РУКОВОДСТВО ПО МИКРОФАУНЕ СССР

ОСТРАКОДЫ КАЙНОЗОЯ

ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО МИКРОФАУНЕ СССР

ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО МИКРОФАУНЕ СССР

Справочник для палеонтологов и геологов

В ДЕВЯТИ ТОМАХ

ГЛАВНЫЙ РЕДАКТОР академик Б. С. СОКОЛОВ

ЗАМЕСТИТЕЛИ ГЛАВНОГО РЕДАКТОРА: А. И. ЖАМОЙДА, М. С. МЕСЕЖНИКОВ

Члены редакционной коллегни: А.Ф. Абушик, А.Я. Азбель, И.С. Барсков, А.А.Григялис, П.С. Любимова, Н.И. Маслакова, Г.И. Немков, Е.Н. Поленова, Е.А. Рейтлингер, Д.М. Раузер-Черноусова, М.Н. Соловьева, С.П. Яковлева (ученый секретарь)

министерство геологии ссср ВСЕСОЮЗНЫЙ ОРДЕНА ЛЕНИНА НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ГЕОЛОГИЧЕСКИЙ ИНСТИТУТ ИМЕНИ А. П. КАРПИНСКОГО

ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО МИКРОФАУНЕ СССР

TOM 3

ОСТРАКОДЫ КАЙНОЗОЯ

УДК 565.33:551.77(031)

Практическое руководство по микрофауне СССР. Т. 3. Остракоды кайнозоя. М-во геологии СССР, Всесоюз. науч.-исслед. геол. ин-т.— Л.: Недра, 1989.— 235 с.

В работе суммированы все имеющиеся материалы по остракодам кайнозоя. В ней изложены сведения по биологии, экологии и распространению этой группы в кайнозое и истории ее изучения. Приведены данные о технической обработке и новых методах изучения группы.

В систематической части дано описание 40 семейств, 178 родов кайнозойских остракод, классификация которых отличается иной таксономической структурой по сравнению с ранее существующими. Характеризуются основные черты кайнозойского этапа развития остракод.

Приведены сведения о стратиграфическом использовании для зонального расчленения кайнозоя и палеоэкологическом значении остракод.

Для палеонтологов, стратиграфов и геологов-съемщиков. Может быть использована студентами геологических вузов.

Ил. 402, табл. 7, список лит. 189 назв.

Practical manual on microfauna of the USSR. Vol. 3. Cenozoic ostracoda/Ministry of Geology of the USSR. All-Union Geological Research Institute.— L.: Nedra, 1989, 235 p.

All materials on Cenozoic ostracoda are summed up in the manual. It contains the information on biology, ecology and distribution of this group in Cenozoic and in the history of its study. The information is given on technical treating and new methods of study of this group.

In the systematic part there is the description of 40 families, 178 genera of Cenozoic ostracoda, the classification of which is distinguished by other taxonomic texture in comparison with the carlier existed ones. The characteristic of the main features of Cenozoic stage of evolution of ostracoda is given.

The information on stratigraphic use of ostracoda for zonal subdivision of Cenozoic and paleontological significance is cited.

The book is intended for paleontologists, stratigraphers and geologists-surveyers. It may be used by students of geological institutes.

Составители: И. А. Николаева, В. И. Павловская, Г. И. Кармишина . А. Л. Коваленко, Н. В. Аладин Научный редактор И. А. Николаева

ОТ РЕДКОЛЛЕГИИ

Переход к крупномасштабному геологическому картированию территории СССР, к поискам и разведке средних и небольших залежей нефти, газа и других полезных ископаемых, связанных с осадочными породами, обусловил необходимость создания детальной и точной стратиграфической основы этих работ. В свою очередь разработка такой стратиграфической основы в значительной мере опирается на усиление исследований в области биостратиграфии, дающей наиболее объективные данные для дробного расчленения и сопоставления разрезов и датировки осадочных толщ, а следовательно, и на усиление палеонтологических исследований. Особое место среди последних занимает изучение микрофоссилий, поставляющих основной биостратиграфический материал при изучении закрытых районов. Развертывание микропалеонтологических исследований требует специальной справочной литературы.

В задачи настоящего издания входит ознакомление читателей с общими вопросами биологии различных групп микрофауны, современными методами изучения и выделения микрофоссилий, принципами их классификации, основными таксономическими единицами и, наконец, с практическими вопросами использования микрофоссилий в стратигра-

фии и фациальном анализе.

Особенностью предлагаемого справочника является его направленность на изучение микрофауны в первую очередь из осадочных толщ, развитых в пределах нашей страны. Поэтому в обзоре систематики особое внимание уделено таксонам, распространенным в осадочных бассейнах СССР, а примеры использования микрофоссилий при решении геологических задач почерпнуты главным образом из опыта отечественных биостратиграфических и палеогеографических исследований. Приводимые стратиграфические схемы, а также данные биофациальных и палеогеографических исследований, часть которых является оригинальными, могут непосредственно использоваться в работе советских палеонтологов и геологов.

Издание осуществляется в девяти томах: «Известковый нанопланктон» под редакцией М. С. Месежникова; «Радиолярии палеозоя» под редакцией А. И. Жамойды; «Радиолярии мезозоя и кайнозоя» под редакцией А. И. Жамойды и Г. Э. Козловой; «Фораминиферы палеозоя» под редакцией М. Н. Соловьевой; «Фораминиферы мезозоя и кайнозоя» под редакцией А. Я. Азбель и А. А. Григялиса; «Остракоды палеозоя» под редакцией А. Ф. Абушик; «Остракоды мезозоя» под редакцией П. С. Любимовой и И. Ю. Неуструевой; «Остракоды кайнозоя» под редакцией И. А. Николаевой; «Конодонты» под редакцией И. С. Барскова.

ПРЕДИСЛОВИЕ

Ракообразные подкласса остракод являются широко распространенной группой в кайнозое. Наряду с другими ископаемыми они используются в стратиграфии при датировке отложений и их корреляции. Остракоды практически эврифациальны, они встречаются во всех типах как морских, так и континентальных осадочных отложений, причем в отложениях континентальных замкнутых и полузамкнутых бассейнов они часто являются единственной группой микрофауны. Несмотря на широкое распространение остракод, изученность их в различных регионах СССР далеко не равномерна и во многих случаях не соответствует потенциальным возможностям данной группы.

В связи с разработкой детальных стратиграфических и корреляционных шкал возникла необходимость более широкого ознакомления палеонтологов и геологов с методами исследования отдельных групп ископаемых, и в том числе кайнозойских

остракод.

В задачу данного тома входило обобщение материалов по методам изучения, систематике и практическому применению остракод в стратиграфических схемах кайнозоя и палеоэкологических исследованиях.

Справочник по кайнозойским остракодам содержит общие сведения по биологии остракод, описание различных методов технической обработки остракод и извлечения их из пород, описание новых методов научного исследования — возможностей применения математической обработки и методов изучения соленостных адаптаций.

Глава, содержащая общую характеристику остракод, в какой-то степени предваряет биологическую характеристику группы в целом, рассматривающейся в томах

по остракодам палеозоя и мезозоя.

В систематической части описываются 5 отрядов остракод, имеющих кайнозойских представителей, 40 семейств и 178 родов, распространенных в кайнозойских отложениях на территории СССР. При описании надродовых таксонов приводится полный диапазон их стратиграфического распространения и во всех случаях (за исключением преимущественно палеозойских групп) — систематический состав таксонов. Для родов указывается количество входящих в них видов. Из новых таксонов устанавливаются только 2 подсемейства и 1 род. Термины, используемые в описательной литературе, объединены в главу «Словарь терминов». Сделан обзор исследования кайнозойских остракод и изложены принципы классификации, принимаемой в данной работе, которая существенно отличается от принятых ранее иной таксономической структурой. Основные разделы этой классификации обсуждались на X Всесоюзном микропалеонтологическом совещании в 1986 г. и опубликованы в решениях коллоквиума этого совещания.

В стратиграфической части дан обзор исторического развития группы в кайнозое, обзор разрабатываемых зональных схем и отражены возможности ее использова-

ния в палеоэкологических исследованиях.

Справочник составлен на основании обобщения литературных данных и мате-

риалов многолетних исследований авторов.

В работе над томом принимали участие: И. А. Николаева (ВСЕГЕИ), В. И. Павловская (ВНИГРИ), А. Л. Коваленко (Институт геологии и геофизики АН МССР), Н. В. Аладин (Зоологический институт АН СССР), некоторые главы написаны по материалам Г. И. Кармишиной (Саратовский университет). Типовой коллекционный материал по роду Pontocythere любезно предоставлен авторам В. В. Синегубом (Институт геологии и геофизики АН МССР), а материалы по стратиграфии кайнозойских отложений Казахстана— А. П. Савиновой (Южно-Казахстанское ПГО).

Иллюстрации к работе выполнены художниками Ленинградского оформительского комбината Л. Ф. Друговой, Р. А. Лейкиной, Б. П. Николаевым, Н. Г. Раковым.

Большую помощь в работе над справочником оказали советы, консультации и кураторская деятельность старших научных сотрудников К. Н. Негадаева-Никонова (Институт геологии и геофизики АН МССР), М. Н. Грамма (Биолого-почвенный институт ДВНЦ АН СССР), Я. И. Старобогатова (Зоологический институт АН СССР). Всем перечисленным лицам авторы приносят свою искреннюю благодарность.

І. ВВОДНАЯ ЧАСТЬ

I.I. ОБЩАЯ ХАРАКТЕРИСТИКА КАЙНОЗОЙСКИХ OSTRACODA

І.1.1. Общая характеристика

Остракоды, или раковинчатые раки, относятся к подклассу Ostracoda класса Crustacea. Это обитатели водной среды: морских бассейнов, материковых водоемов и даже увлажненных наземных биотопов.

По морфологии мягкого тела (за исключением конечностей) остракоды, защищенные двустворчатой раковиной, значительно отличаются от других групп ракообразных. Минимальные размеры ныне живущих остракод составляют 0,1, максимальные — 23 мм. Мягкое тело имеет неправильно-овальную форму, оно расположено посередине раковины и прикреплено к створкам в спинной части. Раковина состоит из двух латерально расположенных створок, соединенных по спинному краю эластичной связкой и часто замком. Это устройство дает возможность створкам расходиться под определенным углом, обеспечивая доступ телу животного во внешнюю среду. По мнению некоторых авторов, связка обеспечивает открывание створок, по мнению других, основным усилием при открывании створок является боковое движение конечностей, влияние гидростатического давления, а также ослабление натяжения замыкающего мускула. Отрезок спинного края, на котором действует связка, не полностью совпадает с замочным краем: связка может быть короче или длиннее замочного края и находиться впереди или сзади него. Длина и положение связки определяют угол, под которым могут расходиться створки.

По наблюдениям Яануссона, положение связки видно на ископаемом материале [Jaanusson, 1985 г.]. Каждая створка состоит из двух листков: наружного (обызвествленного) и внутреннего (кожистого) и представляет собой дупликатуру. Листки прочно соединены между собой по краям раковины: спинному — месту сочленения створок — и всему свободному краю. Пространство между листками называется полостью створок; пространство, образуемое створками, называется поло-

стью раковины.

Мягкое тело срастается с внутренним листком частью своей спинной поверхности, находясь, таким образом, в подвешенном состоянии в полости раковины (рис. 1). Раковина образует наружный скелет животного. Помимо того, имеется внуренний каркас, состоящий из хитиновых реек и тяжей различного диаметра. Эти хитиновые образования формируют головную капсулу, внутреннюю скелетную основу конечностей, а также участвуют в укреплении дупликатуры в качестве фибрильных подпорок. В головном отделе, или цефалоне, находятся головная капсула и 4 пары конечностей. С грудным отделом, или тораксом, связаны 3 пары конечностей. Брюшко рудиментарное и срастается с тораксом. У большинства остракод задний конец тела формирует пара фуркальных ветвей. Явная сегментация тела отсутствует. Она проявлена в слабом расчленении на головной и грудной отделы и распределении конечностей. Головная капсула состоит из верхней шлемовидной губы (лябрума), сросшейся со лбом, и нижней губы (гипостома). Задняя часть верхней губы формирует передний край рта; гипостом, расположенный на брюшной стороне, — задний край. К головной части прикреп.

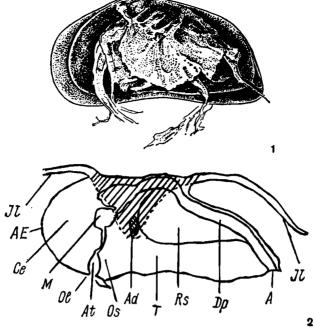
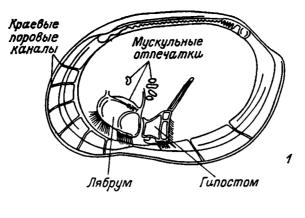
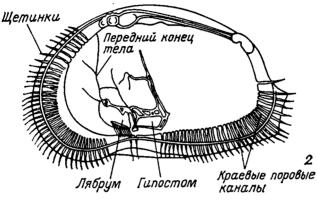


Рис. 1. Мягкое тело остракод.


1 — общий вид Mytilocypris praepunctata (Chapman) при удаленной левой створке. Коллекция Аладина; 2 — схематическое строение Pterygocythereis jonesti (Baird) в сагиттальном разрезе [176].


Аладина; Z— схематическое строение Prerygocymerers (разги) в сагиттальном разрезе (Пб). П— внутренняя пластинка; AE— передний конец тела, лоб; Ce— цефалон, головной отдел; M— желудок; Ol— лябрум; Al— ротовое отверстие; Os— пищевод; Ad— поле аддуктора; T— торакс—грудной отдел; Rs— семяприемник; Dp— задняя кишка; A— анальное отверстие. Заштрихована поверхность срастания тела с внутренним листком.

лены 2 пары антенн: антеннулы (A_I) и антенны (A_{II}) , мандибулы (Md) — по обеим сторонам рта и максиллулы (Mx_I) — по обеим сторонам гипостома. В грудной части на значительном расстоянии от гипостома прикреплены максиллы (Mx_{II}) , или ногочелюсти (первые торакоподы), и ходильные ноги — торакоподы $(T_I$ и $T_{II})$. В грудном отделе размещаются пищеварительная и репродуктивная системы (рис. 2, 3).

Как у всех членистоногих, конечности остракод состоят из сегментов (члеников), называемых подомерами. Исходным типом является двуветвистая конечность, состоящая из одной базальной ветви протоподита, или ствола, образованного двумя подомерами: коксоподитом и базисом. Базис несет 2 ветви: обращенную внутрь — эндоподит и обращенную наружу — экзоподит (рис. 4). На мандибулах и максиллулах базис вместе с эндоподитом часто называют щупиком. Строение конечностей остракод очень разнообразно и обычно высоко специализировано. Ряд представителей имеют коксоподит и базис, сросшиеся в один подомер; может присутствовать дополнительный подомер — прекоксоподит. Бывают одноветвистые (без экзоподита) и двуветвистые конечности. Все 3 членика могут иметь отростки: направленные внутрь — эндиты и направленные наружу — экзиты и эпиподиты. Эндиты мандибул в области рта трансформируются в жевательные пластинки. Экзиты и эпиподиты развиваются в жаберные придатки, которые обычно снабжены лучами и волосками различной длины. Щупики у некоторых групп могут быть снабжены щетинками, образующими фильтрующий аппарат. Обычно все конечности вооружены щетинками, волосками и коготками самого разнообразного назначения.

Основными функциями конечностей являются следующие. У антенн — двигательная: ползание, копание грунта, а у плавающих форм — плавательная; часто первая антенна используется как осязательный ор-

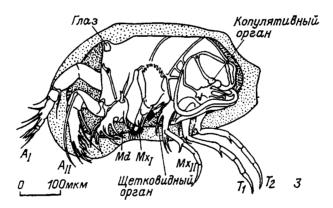


Рис. 2. Хитиновые образования головной капсулы и поддерживающих конечности структур [105].

I-Loxoconcha pseudo-homboidea G гозятап, раковина самки; 2, 3-Aurila conradi littoralis G гозятап; раковины самки (2) и самца (3). $A_{\rm I}$, $A_{\rm II}$ — антенны; Md— мандибулы; $Mx_{\rm I}$, $Mx_{\rm II}$ — максиллы; $T_{\rm I}$, $T_{\rm 2}$ — торакоподы.

ган, вторая — как локомоторный. Мандибулы несут основную нагрузку при разгрызании объектов питания, максиллуллы и максиллы могут быть вспомогательными в этом процессе. Кроме того, эти 2 или 3 конечности снабжены жаберными пластинками. Торакоподы используются при движении как опорные и ходильные ноги. Второй торакопод может выполнять чистильные функции. У ряда групп присутствует щетковидный орган, считающийся рудиментом продвинутой вперед восьмой конечности. Строение конечностей благодаря доступной сравнительной

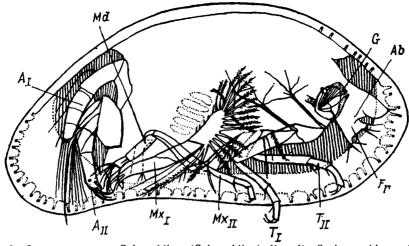


Рис. 3. Схема строения Sclerochilus (Sclerochilus) firmulis Schornikov [74]. Ab— брюшко; G— генитальный бугорок самки: Fr— фурка. Обозначения конечностей см. на рис. 2.

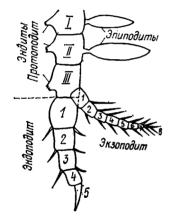


Рис. 4. Схема исходного типа расчленения конечности Arthropoda [118].

морфологии и гомологизации с конечностями других ракообразных является ведущим признаком в систематике современных остракод.

Движение конечностей и фурки и замыкание створок осуществляются мышцами. Мускулатуру остракод составляют поперечно-полосатые мышцы. Двигательные мышцы конечностей прикреплены к их внутренним скелетным образованиям, хитиповому каркасу тела, и к внутренней стороне наружного листка. К внутренней стороне наружного листка прикреплен также и наиболее мощный замыкательный мускул, закрывающий раковину. Замыкательный мускул, или аддуктор, состоит из нескольких отдельных тяжей (рис. 5). Следы прикрепления мускулов в виде шрамов, отпечатков

или бугорков хорошо сохраняются на ископаемом мезозойско-кайнозойском и нередко — палеозойском материале.

На раковинах постпалеозойских остракод хорошо различимы 2 мускульных поля: спинное и центральное (рис. 6). В спинном поле расположены следы прикрепления мускулов конечностей и мускулатуры мягкого тела. В центральном мускульном поле расположен отпечаток аддуктора, проходящего через тело в области прикрепления мандибул и максиллул. Он присутствует у всех остракод. Достоверные мандибулярные и фронтальные отпечатки наблюдаются только у метакопид и подокопид. Мандибулярные отпечатки расположены впереди и ниже аддукторного поля. Они представляют собой место прикрепления одного или двух крупных хитиново-мышечных тяжей, поддерживающих протоподит мандибул, который обычно хорошо развит у жующих остракод. У некоторых цитерокопин с хорошо развитым протоподитом мандибул на раковине остается след упора его острого конца — фулькральное пятно. Оно находится между фронтальными и аддукторными отпечатками (рис. 7). Фронтальные отпечатки, расположенные перед аддуктором ципридокопин и цитерокопин, не являются отражением гомологичных структур не только у представителей этих подотрядов, но и у предста-

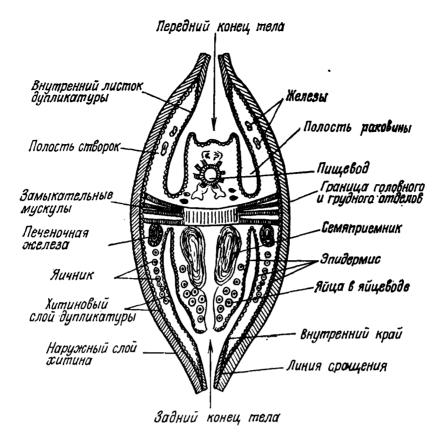


Рис. 5. Схематическое изображение мягкого тела и раковины Ostracoda в продольном срединном сечении [184].

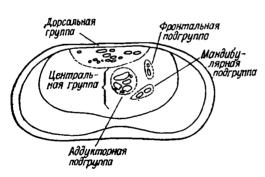


Рис. 6. Схематическое изображение участков прикрепления мускульных тяжей к раковине [158].



Рис. 7. Схема расположения мандибулы по отношению к аддукторному и поперечному мускулам у Суtherideidacea. Правая створка изнутри [184].

вителей различных надсемейств цитерокопин. Основной функцией фроитальных мускулов у всех групп является поддержка и прикрепление внутреннего скелета. У ципридокопин это не сильноразвитые мускулы. У большей части цитерокопин фронтальные отпечатки принадлежат: 1) мощному поперечному аддуктороподобному мускулу, 2) проходящему рядом с ним фронтальному мандибулярному мускулу, 3) менее заметному мускулу второй антенны. Фронтальный мандибулярный мускул прикреплен к внутренней стороне протоподита мандибул и к стенке раковины близ места прикрепления поперечного мускула или же сливается с ним.

По наблюдениям Смита [Smith, 1971 г.], поперечный мускул развит у групп с прочным замком и предположительно способствует укреплению спинного края. Мышечные пучки поперечного мускула, так же как и некоторые пучки замыкательного мускула, могут раздваиваться на концах, увеличивая таким образом количество мест прикрепления и образуя так называемые расщепленные отпечатки. Количество расщепленных отпечатков не всегда отражает истинное положение вещей, так как некоторые отпечатки могут снова сливаться в один в известковом слое, однако здесь важна сама тенденция к разветвлению мышечных волокон, очень постоянная в пределах определенных групп. Довольно часто (особенно в случаях расщепления) отпечатки поперечного, переднего мандибулярного и антеннального мускулов не поддаются точной идентификации — в таком случае их называют фронтальными. Мускульные отпечатки на раковинах остракод — это один из немногих признаков, где находит свое отражение (хотя далеко не в полной степени) строение мягкого тела и конечностей. В силу этого форма мускульных полей, характер, расположение и количество мускульных отпечатков используются как признаки, позволяющие синтезировать неонтологическую и палеонтологическую систематику остракод.

Нервная система и органы чувств. Нервная система остракод состоит из надглоточного и подглоточного нервных узлов, или ганглиев, и брюшной цепочки. Надглоточный узел иннервирует антенны, глаза, фронтальный орган, эпидермис створок. Подглоточный узел иннервирует верхнюю и нижнюю губу, мандибулы, максиллы и торакоподы, замыкающий мускул; с ним связаны узлы брюшной цепочки, а также все органы, расположенные в грудной части раковины. Подглоточный и надглоточный узлы иногда называют раковинными нервами. В настоящее время установлено, что ряд групп имеет только один раковинный нерв. Иннервация осуществляется несколькими сериями нервных клеток различных порядков, соединяемых разветвляющимися нервными волокнами. Щетинки, покрывающие раковину и конечности и функционирующие как органы осязания, имеют внутри нервные волоконца, соединенные с нервными клетками. Часть из них является хеморецепторами. Наибольшее количество волосовидных хеморецепторных щетинок сосредоточено в области рта.

Органами зрения являются глаза. Сложные фасеточные боковые глаза присутствуют только у миодокопид. Остальные группы, обладающие этим органом, имеют медиальный, или личиночный, глаз. У живых остракод он просвечивает через створки в виде окрашенного субпрямоугольного или округлого пятна. Личиночный глаз расположен на переднем конце тела над основанием первых антенн. Он состоит из 2 или 3 опрокинутых бокальчиков, под которыми находятся зрительные клетки. При положении центрального бокальчика близко от боковых глаз представляется в виде одного пятна; если боковые бокальчики значительно удалены друг от друга, наблюдается 2 пятна, или так называемые разделенные глаза. Примечательно наружное проявление разделенных глаз, присущее некоторым группам цитерокопин. Глазные бокальчики располагаются в ямке — окулярном синусе, а над ними рако-

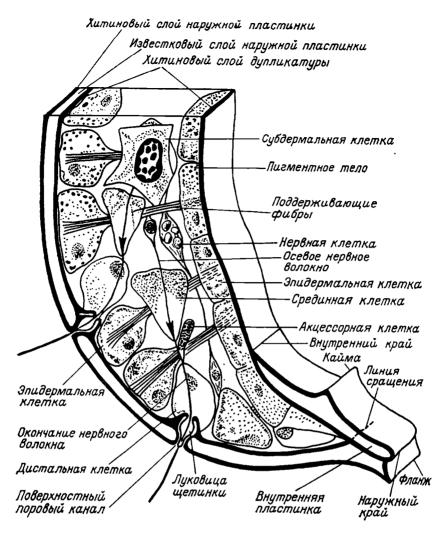


Рис. 8. Схематическое изображение дупликатуры *Cypridopsis vidua* (О. F. Müller) в сечении через переднебрюшную часть правой створки [184].

вина образует бугорок, а иногда прозрачную выпуклую линзу. Светочувствительную функцию может выполнять фронтальный орган, присутствующий у некоторых преимущественно слепых групп кладокопид и миодокопид. Он представляет собой щетинкообразный стебелек, отходящий от области расположения медиального глаза. Установлено, что остракоды, имеющие глазные устройства, обитают в световой зоне—примерно до глубины 600—800 м. На более глубоких участках морского дна распространены так называемые «слепые» группы остракод, при этом последние могут сущсствовать и в световой зоне.

Органы кровообращения и дыхание. У современных остракод сердце чаще всего отсутствует; оно имеется только у миодокопид и представляет собой удлиненно-округлый мешочек, располагающийся в спинной части тела. Циркуляция кровеносной жидкости осуществляется по замкнутой системе сосудов. У всех остракод межклеточные пространства полости тела и полости створок заполнены гемолимфой — жидкостью, богатой органическими и неорганическими веществами. При помощи гемолимфы осуществляется газо- и солеобмен. С гемолимфой связана одна из примечательных особенностей остракод — высокоразвитая способность к осморегуляции, т. е. установлению равно-

весия между осмотическим давлением внутренней и внешней среды. Изучение этого явления в применении к остракодам начато относительно недавно и в перспективе интересно во многих аспектах (см. гл. 11.4).

Дыхание остракод осуществляется через поры покровов тела и внутренних листков дупликатуры. Газообмен обеспечивается энергичным притоком воды, создаваемым жаберными придатками конечностей. Дупликатура является продолжением тела раковины, поэтому в ее строении участвуют те же элементы, которые присутствуют в мягком теле (рис. 8).

Пищеварительный тракт состоит из 4 крупных отделов: рта (часть головной капсулы), пищевода, средней кишки (ее передний отрезок может быть обособлен как желудок) и задней кишки, заканчивающейся анальным отверстием (см. рис. 1). К органам пищеварения относятся печеночные выросты кишечника, находящиеся в полости створок (см. рис. 5), и слюнные железы, помещенные в мандибулах. Остракоды с депозитарным способом питания, к которым относится большая часть мезозойско-кайнозойских групп, разжевывают свою пищу. Основными и вспомогательными приспособлениями для этого являются жевательные пластинки мандибул, зубовидные образования максиллул и граблевидные придатки — хитиновые образования ротовой полости. Фильтраторы, также присутствующие в составе мезозойско-кайнозойской фауны остракод, имеют специализированные щетинки щупиков на мандибулах, максиллулах и торакоподах или же длинные щетинки гипостома, образующие фильтрующий аппарат. Необходимый при таком способе питания мощный поток воды достигается движениями хорошо развитых жаберных придатков максиллул и максилл. У сосущих групп имеется специализированное устройство из сросшихся вместе лябрума, гипостома и грудины. Большинство остракод всеядно. Пищей могут служить детрит, трупы животных, водоросли, нейстон. Встречаются хищники и паразиты.

Органы выделения у остракод представлены железами. К ним в первую очередь относятся 3 пары: первая, расположенная у основания первых антенн; вторая — между листками створок в передней части раковины и выходящая у основания второй антенны (паутинная железа цитерокопин); третья — в теле животного у максилл. Имеется также ряд других желез и клеток специального назначения: пигментных, светящихся и др.

Остракоды раздельнополы и имеют очень сложно и разнообразно устроенные парные половые органы. У самок они состоят из яичников, семяприемника, яйцевода и яйцевой сумки, внутри которой накапливается значительное количество зрелых яиц. У самцов половые органы построены более сложно. В общих чертах: имеются семенники, семяпровод и копулятивный оргам. Детальное описание можно найти в работах Бронштейна [10], Шорникова [74], Гартманна [118], Г. Мюлле-

ра [153] и др.

У разных групп остракод в строении половых органов имеются очень существенные отличия, которые, как правило, используются зоологами в качестве систематических признаков. Помимо того, на теле и главным образом конечностях присутствует ряд вторичных диморфных признаков. У большей части современных остракод все половые органы находятся в теле животного. В таком случае на раковине не остается непосредственных следов их расположения. У ципридокопин яичники самок и семенники свободно располагаются в полости створок; в этом случае на внутренней стороне наружного листка остаются четкие отпечатки, которые могут быть хорошо видны на ископаемом кайнозойском материале. Частично или полностью видно, что слепой край яичника, завернутый кверху, расположен в заднебрюшной части створки, откуда направлен косо вверх и вперед и тянется параллельно печеночной же-

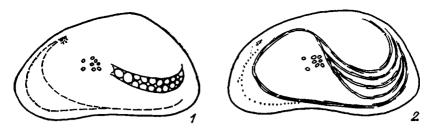


Рис. 9. Половой диморфизм у Candona studeri Kaufmann [118].

1 — раковина самки; 2 — раковина самца.

лезе, расположенной также в полости створок. Семенники в виде длинных спирально изогнутых семенных трубочек могут располагаться в задней части раковины или даже протягиваться и закручиваться в области переднего конца. Отпечатки остаются обычно в задней части раковины (рис. 9).

На раковинах пресноводных остракод можно наблюдать отпечатки 4 семенных трубочек, круто поднимающихся слепым концом кверху. Распродуктивные органы занимают около трети заднего пространства раковины, что значительно отражается на ее форме. За некоторым исключением раковины самцов обычно длиннее, с более вытянутым (высоким, свисающим) задним концом, но всегда более узкие, чем раковины самок. Раковины самок значительно шире в задней трети, что обычно связано с содержанием в яйцевой сумке значительного количества созревающих яиц. Большая часть мезозойско-кайнозойских остракод не имеет специальных приспособлений (типа выводковой камеры) для вынашивания яиц. Исключение составляют цитереллацеи (отряд Platycopida), у которых в области заднего конца створок имеются или отгороженное поперечной перегородкой пространство, или отдельные гнезда, по 2—3 в створке. В эти гнезда, или домации, помещаются яйца, приклеенные секреторной жидкостью. Дарвинулы, некоторые миодокопиды и подокопиды содержат яйца в полости раковины, между заднеспинной частью тела и раковиной, также прикрепляя их секреторной жидкостью. При этом у дарвинул яйца в полости раковины могут развиваться до третьей личиночной стадии, у других групп с подобным содержанием яиц — до первой. Однако в большинстве случаев яйца остракод развиваются вне материнского организма. Наряду с амфигонией у остракод существует и партеногенетический путь размножения. Оба типа встречаются у представителей всех существующих ныне отрядов, но соотношение их различно. Известны случаи, когда один и тот же вид в одних широтах может размножаться путем амфигонии, в других — партеногенетически. В первых популяциях присутствуют как самки, так и самцы, во вторых — встречаются только самки. Предполагается, что тип размножения может быть связан с различными расами и генотипами.

Яйца остракод относительно крупного размера, в среднем 0,075—0,12 мм, шаровидные или удлиненные, имеют 2 оболочки. В своем развитии остракоды проходят эмбриональную (от яйца до личинки) и постэмбриональную (от личинки до взрослой особи) стадии. Развитие яйца начинается с быстрого деления, образуется бластула, и начинается гаструляция. На этой фазе при неблагоприятных условиях (низкие температуры, пересыхание водоемов) может наступить пауза в развитии или даже латентный период. Высушенные или замороженные яйца остаются жизнеспособными и могут сохраняться длительное время в покое или при пассивной транспортировке: переносе ветром или животными. При благоприятных условиях идет непрерывное развитие до по-

явления личинок. Скорость развития различна у отдельных систематических единиц. Она зависит не только от внешних условий, но и от запаса питательных веществ в самом яйце. Эмбриональное развитие может занимать от 6 дней у групп, имеющих незначительные запасы желтка, до 40 дней, даже до года у групп со значительным запасом желтка.

Началом постэмбрионального развития считается появление подвижной личинки первой стадии, имеющей двустворчатую, часто кожистую раковину. В процессе роста мягкого тела животное несколько раз сбрасывает раковину. Время постэмбрионального развития и число линек в отдельных систематических группах различно. При этом следует иметь в виду, что не всегда можно установить их точное число, особенно не в аквариумных, а естественных условиях. По данным Гартманна [118], у миодокопид известно от 5 до 7 личиночных стадий, у кладокопид — 4, подокопид — 8. Постэмбриональное развитие платикопид очень слабо изучено. Существуют данные о наличии 8-11 личиночных стадий у некоторых групп палеозойских остракод. Продолжительность постэмбрионального развития (от 1 до 6 мес) непостоянна для огдельных систематических единиц, она может быть непостоянной даже для одного вида, при этом паузы между линьками увеличиваются по мере роста мягкого тела. Возможно и латентное существование личинок. Известно, что у форм с меньшим сроком эмбрионального развития постэмбриональное развитие протекает быстрее. По данным Бронштейна [10], некоторые пресноводные формы, обитающие в водоемах с богатой растительностью, могут давать по 2—3 генерации в год. Общая продолжительность индивидуальной жизни также различна у различных групп: от 2-9 мес до 1 года. Максимальная продолжительность жизни — 3 года — зафиксирована у бентосных миодокопид.

При изучении ископаемого материала необходимо учитывать, что один вид остракод может быть представлен несколькими сериями раковин различных размеров, принадлежащих разновозрастным личиночным стадиям.

Как уже говорилось выше, основой для создания систематихи современных остракод послужили признаки морфологического строения мягкого тела, и в первую очередь конечностей. К сожалению, эти признаки не могут быть применены при изучении ископаемых форм. Уникальные находки фоссилизированных частей мягкого тела остракод в кембрии, карбоне, триасе, юре и мелу необычайно важны в научном отношении [Müller K., 1964 г.; Brongniart, 1876 г.; Weitschaft, 1983 г.; Dzik, 1978 г.; Bate, 1972 г.].

Практически же палеонтологу приходится почти всегда иметь дело только с раковиной, фиксируя, насколько возможно, признаки устройства мягкого тела, которые могли найти на ней свое отражение. Исторически сложилось так, что при описании отдельных слагающих раковину элементов применялась та или иная терминология, обычно отражающая их внешнюю форму или топографическое положение, а не происхождение структур. Более чем полувековой опыт детального изучения ископаемых остракод многое прояснил в этом вопросе, оставив, однако, без особых изменений принцип формального наименования признаков.

Строение раковины. Раковина состоит из 2 соединенных на спинном крае створок, каждая из которых при жизни животного представляет собой дупликатуру, состоящую из наружного и внутреннего листков. Наружный листок почти у всех остракод (за исключением ряда планктонных и других специализированных групп) значительно обызвествлен. Внутренний листок может быть совершенно не обызвествлен у многих палеозойских остракод или в той или иной степени обызвествлен по краю у постпалеозойских остракод.

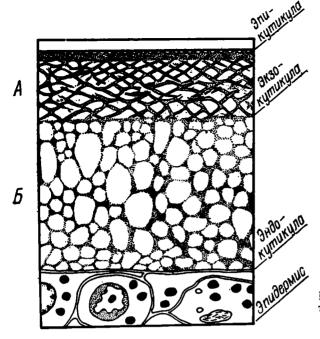


Рис. 10. Модель ультраструктуры стенки *Cypridopsis vidua* (O. F. Müller) [88].

В отношении понятия «дупликатура» у палеонтологов существуют некоторые разногласия. Ван Морковен и Сильвестер-Брэдли называют дупликатурой наружный и весь внутренний листок, включая его обызвествленную и мягкую части. Под термином «внутренняя пластинка» Ван Морковеном и Бенсоном понимается только обызвествленная часть внутреннего листка [85, 184, 185]. Бейт и Ист называют дупликатурой только обызвествленную часть внутреннего листка [84]. Это же определение дано в «Treatise on Invertebrate Paleontology» [175]. Представляется более целесообразным использование первого толкования термина дупликатура — как двойной складки кожи с заключенной в ней серией клеточных элементов, продолжающих тело. Наружный и тренний листки сразу после линьки почти не содержат извести. Их наружный и внутренний хитиновые слои очень сближены. Отложение извести происходит в среднем слое очень быстро — в течение нескольких дней. Обызвествление обычно начинается по краю раковины (для быстрейшего смыкания створок). Центральная часть некоторое время может оставаться мягкой. Процессы обызвествления протекают неоднородно у разных групп, особенно это отражается на строении внутренней пластинки, обызвествляемой иногда поэтапно (первичная и вторичная внутренние пластинки). Электронно-микроскопическими исследованиями Бейта и Ист. Сильвестера-Брэдли и Бенсона установлена достаточно сложная структура стенки раковины остракод [84, 173].

Верхний слой раковины — эпикутикула — обычно не сохраняется в ископаемом состоянии. Известковый слой развивается по хитиновой матрице, пронизывающей экзо- и эндокутикулы. В нем различаются: А — верхний сетчатый субслой, уплотненный в поверхностной части, и Б — нижний — тонкослоистый субслой, подстилаемый эпидермальными клетками (рис. 10). Внутренняя пластинка содержит меньшее число субслоев в известковом слое. По химическому составу известковый слой преимущественно состоит из неорганических солей — карбоната кальция и карбоната магния с примесью различных микроэлементов. Розенфельд [Rosenfeld, 1982 г.] предполагает, что кальцитовый слой формируется слоем гранул верхней части эпидермиса, имеющих более сложный химический состав и обогащенных микроэлементами. Ориентация оптиче-

ских осей кристаллов кальцита, устройство хитиновой сетки и толщина субслоев, очевидно, могут быть различными у отдельных групп остракод. По данным Зона, общий состав раковины современных остракод включает: 80—90 % CaCO₃; 12—15 % органического материала (хитин, протеин); 1,9 % разных элементов: K, Mg, Si, Al, Sr, Ba [Sohn, 1958 г.]. Состав хитина определяется как вещество, близкое к аминополисахаридам. В отношении внутреннего хитинового слоя наружной пластинки, подстилающего эпидермис, не существует единого мнения. Бейт и Ист отрицают его присутствие, а Ван Морковен и Гартманн придают ему достаточное значение [84, 184, 118].

Внутренняя пластинка, обызвествляясь, срастается по свободному краю с наружной и образует зону сращения. Ширина зоны сращения зависит от толщины створки и угла, под которым сходятся пластинки. Эта зона обычно пронизана многочисленными так называемыми радиальными, или краевыми, поровыми каналами, через которые выходят

сенсорные щетинки.

Внутренняя граница зоны сращения, ровная или извилистая, называется линией сращения. Эта линия может совмещаться с внутренним краем (внутренней границей обызвествления внутреннего листка) или не совпадать с ним. В последнем случае между пластинками образуется пространство, называемое вестибюлем. Вестибюль является краевой частью полости створок. Наличие или отсутствие вестибюля, его размер и расположение могут значительно отличаться у различных групп остракод. Как правило, он сильнее выражен у представителей подотряда Сургіdосоріпа, что, возможно, косвенно связано с размещением репродуктивных органов в полости створок.

Помимо краевых поровых каналов в зоне сращения, образующих краевую порово-канальную зону, на раковине имеется большое число поровых каналов, пронизывающих наружную пластинку почти перпендикулярно к ее поверхности (так называемые нормальные поровые каналы). Выходы этих каналов являются поверхностными порами. Большая часть таких каналов несет сенсорные щетинки, однако некоторые лишены щетинок и являются предположительно устьями желез.

Створки одной раковины никогда не бывают строго симметричны. Это в первую очередь связано с тем, что одна из них перекрывает или охватывает другую; при этом они могут иметь подобные или различающиеся очертания и самым различным образом выраженный охват или перекрывание. В пределах определенных таксономических единиц признак отличия створок может быть закреплен генетически. Так, среди платикопид преобладают правоперекрывающие раковины, среди подокопид — левоперекрывающие. При этом не принимаются во внимание случайностные отклонения «перевернутого» соотношения створок, которые в редких случаях могут наблюдаться даже внутри категорий. В меньшей степени асимметрия створок может проявляться в поверхностных образованиях или во внутренних структурах.

Конструкция и общая форма раковины определяются в первую очередь формой тела и функциями его отдельных органов. В соответствии со строением тела животного различаются спинная, брюшная, передняя и задняя части раковины.

Раковина подвергается двустороннему воздействию: водной среды снаружи и натяжению замыкательных мускулов изнутри. Идеальной формой, противостоящей этим силам, была бы сферическая, где с минимумом известкового материала сочетался бы максимум прочности. Однако сферическая форма не соответствует структуре тела, которое, как правило, удлинено. Очень редко встречаются субсферические раковины остракод или же округлые, но сжатые с боков. Это вполне объяснимо тем, что выгнутый спинной край препятствует конструкции прочного замка, а выгнутый брюшной край неудобен ползающим по дну

Puc. 11. Очертания раковины Cytheropteron limburgense Van Veen [125].

a — вид с боковой стороны; b — с переднего конца; b — со спинной стороны.

формам. Таким образом, за немногим исключением остракоды имеют вытянутую в длину раковину. Ширина ее сильно варьирует — от сжатой с боков до форм, имеющих крыловидные боковые выступы; при этом наибольшая ширина находится или посередине, или в задней половине раковины. Наибольшая высота может размещаться по всей длине раковины.

По определению Мандельштама, «форма раковины у остракод является более устойчивым признаком, нежели другие, образовавшиеся внутри раковины: замок или порово-канальная зона и т. д.» [35, с. 62]. Консервативность формы определенных групп, закрепленная генетически, не исключает возникновения конвергентных образований у далеко отстоящих в филогенетическом отношении остракод, вызванного существованием в сходных условиях. Эти вопросы подробно рассматриваются в работах Трибеля [180], Ван Морковена [184, 185], Гартманна [118] и Шорникова [74].

Помимо определения объемной формы раковин, таких как почковидная, стручковидная и т. п., в описательной терминологии обычно принято характеризовать форму на основании трех ее проекций: вид с боков, вид краев (спинного или брюшного) и вид с концов (переднего или заднего) (рис. 11). Обычно при характеристике бокового очертания, которая является основной, учитывается характер контактной линии брюшного и линии замочного края, если он погружен по отношению к выступающим частям створок. Формы с выгнутым брюшным краем, по мнению Гартманна [118], были первично плавающими, а формы с прямым или вогнутым брюшным краем — первично ползающими. Адамчек предполагает, что характер контакта по брюшному краю может отражать способ питания остракод: изогнутый и усиленный дополнительными образованиями у депозитарных групп и более ровный у фильтраторов [Аdamczak, 1969 г.].

У большинства остракод раковина закрывается плотно, однако существует ряд групп, имеющих отверстия на концах, обеспечивающие движение животного и проток воды при закрытых или почти закрытых створках. К таким образованиям, присутствующим только у некоторых миодокопид, относятся ростральная инцизура для выхода вторых плавательных антенн на переднем конце и каудальный трубковидный отросток на заднем конце (сифон), реже — щель на брюшном крае.

Различно развитый на заднем конце каудальный отросток с отверстием и без него или образование подобного типа присутствует довольно часто и у других групп остракод, не имеющих инцизуры. В этих случаях его функции не всегда ясны. Конструкцию раковины могут усложнять различные игловидные длинные выросты на концах одной или обеих створок. Предполагается, что они поддерживают раковину в толще воды или препятствуют вращению во время плавания.

Рельеф раковины может быть ровным и неровным, а поверхность гладкой или скульптированной. Происхождению, функциональному назначению и терминологии поверхностных образований посвящено много работ по современным и ископаемым остракодам. Общепризнанно, что на раковине могут присутствовать разнородные образования. К ним относятся: 1) рельефные неровности, отражающиеся на внутренней стороне створок, — широкий рельеф, по определению Ханаи [Напаі,

2*

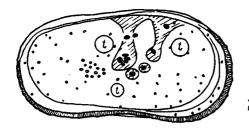


Рис. 12. Ilyocypris gibba (R a m d o h r) [185].

Левая створка изнутри. Заштрихованные участки соответствуют депрессиям. I— полые бугорки.

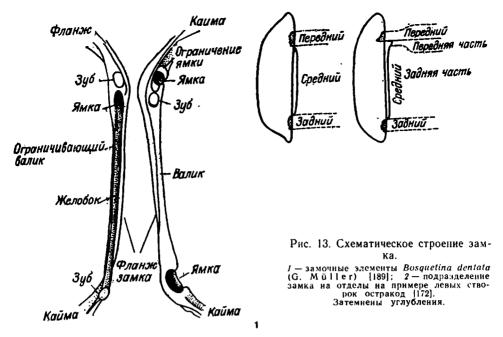
1970 г.]; 2) поверхностные скульптурные образования, не отражающиеся на внутренней поверхности; 3) поверхностные образования, связанные с органами чувств.

Рельеф раковины прямо или косвенно связан со строением мягкого тела. Гартманн приводит пример образования плечевого валика — вздутия — в переднеспинной части на раковине современного миодокопидного рода Conchoecia. С внутренней стороны вздутию соответствует общирное углубление, где размещаются базальные членики сильноразвитой плавательной антенны.

Возникновение поперечных борозд, особенно заметно проявляющихся на раковинах мезозойско-кайнозойских представителей подокопид из групп лимноцитерацей и илиоципридацей, Трибель и Гартманн объясняют натяжением мускулов в тот момент, когда раковина еще не до конца затвердела. Большее натяжение (и более глубокая борозда с наружной стороны) может соответствовать воздействию пучка замыкательных мускулов, меньшее — антеннальным мускулам (рис. 12). Этот признак расчлененности раковины носит достаточно устойчивый характер в пределах определенных групп, которые, однако, могут быть значительно удалены в филогенетическом отношении. Не исключено, что натяжением мускулов можно объяснить и возникновение мускульной ямки на раковинах цитереллацей, представителей отряда платикопид. При этом вполне возможно, что натяжению может оказывать сопротивление хитиновая сетка известкового слоя. У форм с сильноразвитой ретикуляцией мускульный пучок располагается в ямке, которой с внешней стороны соответствует бугорок. К числу рельефных образований могут относиться и крупные бугры некоторых цитерокопин и ципридокопин. Шорников рассматривает их как армирующие раковину приспособления.

Трудно объяснить происхождение продольной складчатости трахилеберидацей Podocopida, Cytherocopina, проявившейся с начала появления этой группы в юре. Сохраняя общий план расположения трех продольных элементов, она изменялась во времени от широкорельефных складок до массивных ребер, заполненных кальцитом и не отражающихся на внутренней стороне створок. В некоторых линиях развития также видоизменялись краевые ребра.

Наибольшим многообразием отличается скульптура раковины. Исследованиями Сильвестера-Брэдли и Бенсона установлено, что эти образования затрагивают весь известковый слой раковины. Иногда они бывают более отчетливыми в субповерхностном слое, чем на самой поверхности. С этим же слоем, возможно, связано и возникновение мутных пятен, которое часто объясняют иным расположением кристаллов кальцита, чем в участках без таких пятен. По формальной классификации элементы скульптуры различаются: по положению на поверхности раковины — субцентральные и краевые; по направлению — параллельные концам или краям; по отношению к поверхности — выступающие (ребра, бугорки, шипы) или погруженные (ямки, ячейки); по высоте или глубине слагающих элементов — тонкая или грубая скульптура; по конфигурации — округлые, многоугольные — и по относительным


размерам — образования I порядка (наиболее крупные), II порядка и т. д.

По наблюдениям Шорникова, имеются еще и внутренние неровности наружной пластинки, однако это явление практически совершенно не изучено.

К поверхностным образованиям, связанным с внутренними органами, относятся прежде всего глазные бугорки и поверхностные поры. Наружное глазное образование присутствует далеко не у всех групп, имеющих глаза. Внешнее проявление боковых глаз можно наблюдать только у некоторых представителей Cytherocopina, значительно реже — Ваігдіосоріпа. Глазное устройство может представлять собой округлое возвышение (глазной бугорок), пятно или прозрачное линзовидное образование, глазную линзу, которая иногда помещается на длинном стебельке — тубусе.

Поскольку поверхностные поры преимущественно являются выходом на поверхность сенсорных щетинок, соединенных с нервными клетками, изучение закономерности их расположения представляется очень важным. Первая попытка связать расположение пор с типами скульптуры была предпринята Либау [Liebau, 1975 г.]. Впоследствии Бенсоном были разработаны «система координат» и соответствующее ей наименование пор [85]. Однако эти изыскания, не подкрепленные исследованиями по биологии на массовом современном материале, можно считать только началом работ в данном направлении. Диаметр поверхностных пор исчисляется микрометрами (от полмикрометра до нескольких десятков микрометров). Так же, как и скульптурные элементы, они классифицируются по местоположению на раковине, отношению к поверхности (погруженные или возвышающиеся) и конфигурации. Помимо того, принимается во внимание характер продольного сечения: прямые, воронкообразные и т. д. Существуют некрупные единичные, или открытые, поры и более крупные, закрытые ситовидной пластинкой, -ситовидные поры. Предполагается, что они могут совмещать несколько функций: сенсорную, выделительную, а по последним данным — и способствовать осморегуляции. Наибольшее число остракод имеет один тип пор - простые. У цитерокопин возможно раздельное или совместное присутствие обоих типов пор.

Внутреннее строение створок. Типы поверхностных поровых каналов в некоторой степени скоррелированы с типом краевых поровых каналов, расположенных в зоне сращения. Чаще всего группы, имеющие единичные поверхностные поровые каналы, имеют и простые краевые поровые каналы. Простые, т. е. тонкие и прямые, каналы являются исходным типом краевых поровых каналов. Более сложно устроенные, они могут иметь различные расширения, изгибаться, располагаться пучками или же разветвляться от общего основания по направлению к краю раковины. Краевые поровые каналы располагаются неравномерно. Наибольшее их число сосредоточено на переднем, несколько меньше — на заднем конце. На брюшной стороне поровые каналы малочисленны и почти отсутствуют в ротовой области. Общее число поровых каналов, по предположению Гартманна, связывается с образом жизні животных: больше краевых поровых каналов у ползающих, меньше — у плавающих форм. Помимо этого, в определенных филогенетических линиях прослеживается тенденция к его увеличению. Существует точка зрения, которую высказал Пейпуке, что размер и форма вестибюля у некоторых морских форм могут быть связаны с количеством содержащегося в воде кислорода [Peypouquet, 1979 г.]. Краевые поровые каналы, находясь в зоне сращения, имеют отношение как к наружной, так и к внутренней пластинкам, но обычно лучше они видны с внутренней стороны, поэтому их принято рассматривать как деталь внутреннего строения раковины.

Подлинно внутренними структурами раковины являются образования внутренней пластинки — замок и краевые структуры свободного края. Их основное назначение — плотное смыкание створок и предотвращение соскальзывания последних по отношению друг к другу, а также укрепление краев раковины. Образованиями внутренней пластинки по свободному краю являются внутренние краевые валики, бороздки, септы, выросты каймы. Некоторую защитную роль, вероятно, играют шипы, присутствующие у многих форм на концах раковины. Обычно они заключают в себе краевые поровые каналы, заканчивающиеся щетинками.

Замок является наиболее прочным образованием. В его строенни участвуют кайма, краевые валики и в некоторой степени наружная пластинка (рис. 13, 1). Предполагается, что замок у остракод возник в процессе эволюции, когда единый панцирь перегнулся по средней линии, а затем разделился на 2 отдельные створки, оставив неразделенным подстилающий хитиновый слой, превратившийся позднее в связку. Этот тип замка и получил свое дальнейшее развитие. По-видимому, был возможен и другой путь развития замка. В среднем и верхнем кембрии найдены остракоды (отряд Phosphatocopida, подотряд Hesslandonina), замок которых состоит из двух перегибов, однако данные о развитии этого типа отсутствуют. Примитивный тип соединения створок на спинной стороне, где главную роль играет связка, сохранился у представителей Муодосоріда, Cladocopida, Platycopida. Среди кайнозойских остракод миодокопиды и кладокопиды имеют очень слаборазвитые замки.

Представители платикопид — цитереллацеи — характеризуются так называемым круговым замком, однако его природа иная, чем у подлинных замков. Контактная борозда большей правой створки и контактное ребро меньшей левой створки развиты не по внутренней пластинке, а в массе наружной пластинки, загнутой внутрь. Замок метакопид, имеющих слаборазвитую внутреннюю пластинку, является, по данным Покорны и Гартманна, уже более эволюционно продвинутым [Pokorny, 1958 г.; Hertmann, 1966 г.]. У групп с развитым замком на замочном крае присутствуют различные выступы на одних створках и соответствующие им ямки на противоположных створках. Замок может быть простым или сложным, т. е. состоять из одного или нескольких элемен-

тов. Наиболее простой замок (адонтный) состоит из одного элемента, сложный имеет 3 исходных элемента или отдела на каждой створке: передний, средний и задний. Замок из четырех элементов возник разделением среднего отдела на 2 элемента (рис. 13, 2). Как правило, выступающие краевые элементы всегда находятся на меньшей створке. Валики и желобки могут быть гладкими и насеченными по всей поверхности или частично (как в вертикальной, так и горизонтальной плоскостях). Желобок или ямки могут быть открытыми, с поддерживающими образованиями, а также замкнутыми. Над средней частью замка иногда присутствует воспринимающая бороздка для спинного края противоположной створки. Зубы и ямки могут иметь различную форму, иногда они разделены на доли.

Перечисленные типы нашли свое отражение в установившейся в настоящее время классификации замков (см. Словарь терминов). Первоначально Трибелем [176] были предложены некоторые термины, заимствованные из терминологии замков, применяемой при описании моллюсков. Затем эта классификация была модифицирована Сильвестером-Брэдли [172] и Хоу [125]. Более подробно этот вопрос рассмогрен в работе Любимовой [31].

Наибольшее развитие замок получил в отряде Podocopida. Наряду с простыми замками у Cypridocopina и Bairdiocopina, не сильно превосходящими своим развитием стадию предковых форм, у морских представителей Cytherocopina, относящихся к этому же отряду, возникли сложнейшие образования. Эволюции замков этой группы посвящено большое число работ [159, 184, 113, 114]. Считается, что появление сложных замков в юре соответствует времени расцвета группы. Развитие проходило параллельными путями в отдельных филогенетических направлениях. Тип замка в его эволюционном развитии является достаточно надежным критерием для единиц надсемейственного и семейственного уровней в пределах подотряда Cytherocopina.

На внутренней стороне раковины имеются следы присутствия внутренних органов, о которых говорилось выше. Это глазной, или окулярный, синус, отпечатки печеночной железы и гениталиев, след упора мандибул (фулькральное пятно), а также кутикулярные образования неясного происхождения «ксестолеберисового пятна». К внутренним структурам раковины относятся также и отпечатки мускульных тяжей (рис. 14). Отпечатки, расположенные в дорсальной области, обычно плохо сохраняются на ископаемом материале и в настоящее время очень слабо изучены.

Основное внимание исследователей направлено на изучение центрального мускульного поля и в нем — в первую очередь отпечатка аддуктора. Мандибулярный и фронтальный отпечатки присутствуют далеко не у всех групп, аддукторные же имелись уже у лепердитиокопид. На удлиненных раковинах, принадлежащих большинству остракод, центральное мускульное поле расположено обычно в конце передней половины раковины, на округлых — в центре. Несмотря на то что конкретные коррелятивные связи строения мягкого тела и мускульных тяжей, отразнвшихся в отпечатках, еще не изучены, достоверно установлено, что все таксоны, выделенные по строению мягкого тела, имеют совершенно определенный, свойственный только им тип мускульных отпечатков. Уже в ранних работах по остракодам Линенклаус и Швейер обращали внимание на значение этого признака [Lienenklaus, 1894 г.; 68].

Классификации мускульных отпечатков посвящены работы Ван Морковена, Покорны, Грюнделя, Гартманна [184; Gründel, 1964 г.; Pokorny, 1964 г., 1965 г., 118]. Этому вопросу посвящены и многолетние исследования Грамма [14]. В данной работе используется принцип классификации Грамма, основанный в отличие от ряда других классификаций на морфологическом строении отпечатков, а не на принадлеж-

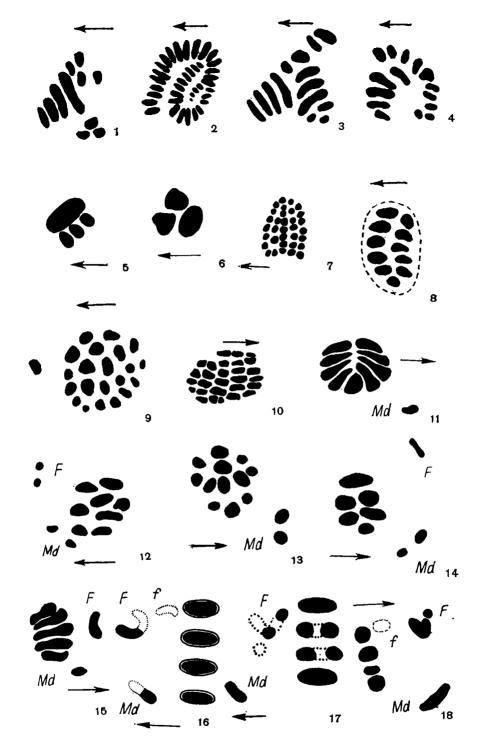


Рис. 14. Схематическое изображение типов мускульных отпечатков у представителей различных отрядов.

различных отрядов.

1—5—отряд Myodocopida: I—Azygocypridina sp., 2—Cyclasterope sp., 3—Cypridina sp., 4—Phylomedes sp., 5—Thaumatocypris echinata G. Müller; 6—otpяд Cladocopida; 7, 8—otpяд Platycopida: 7—Cavellina missourensis (K n i g h t), 8—Cytherella sp., 9, 10—otpяд Metacopida: 9—Hungarella sp., 10—Sigillium bensoni (M a d d o c k s); 11—18—otpяд Podocopida: II—падемейство Darwinulacea, Darwinula stevensoni B r a d y—el R o b e r t s o n, 12—подотряд Bairdiocopina, Bairdia sp., 13, 14—подотряд Cypridocopina (I3—(?) семейство Macrocyprididae, I4—падсемейство Cypridacea), 15—18—подотряд Cytherocopina (I3—enagementeropina cypridacea), 15—18—подотряд Cytherocopina (I3—enagementeropina cypridacea), 15—18—подотряд Cytherocopina (I3—enagementeropina cytherocopina)

ности к определенной систематической категории (типа дарвинулидный, цитереллидный отпечатки и т. п.). Используются также и термины, определяющие типы расположения пятен, имеющихся у мезозойско-кайнозойских остракод, такие как центрический и спиральный. Очертание центрального мускульного поля, его состав, число и тип расположения пятен отвечают в принятом здесь ранге классификации по мягким частям тела уровню отрядов.

В пределах отряда Podocopida различаются несколько подтипов в ранге подотрядов на основании характера расположения пятен в аддукторном поле и его соотношения с фронтальными и мандибулярными отпечатками.

В составе подотрядов различаются подразделения в ранге надсемейств по определенным тенденциям к изменению исходного числа и соотношения аддукторных и фронтальных отпечатков, а также тенденции к их расщеплению. Тонкие отличия соответствуют признакам таксонов более низких рангов. Не следует забывать, что отдельные отпечатки, или пятна, так же как все другие признаки, подвержены индивидуальной изменчивости, а положение мускульного поля может смещаться как в процессе онтогенетического развития, так и за время развития группы, что во всех случаях требует конкретных исследований в пределах каждой филетической линии. Отряды, представители которых существуют в кайнозое, характеризуются следующими основными типами мускульных отпечатков.

І. Отряд Муодосоріда. Присутствует только аддукторная подгруппа. Различаются 2 подтипа отпечатков: первый — мускульное поле обширное, неправильного очертания, с многочисленными неясными удлиненными отпечатками (подотряд Myodocopina, рис. 14, 1—4) и второй — мускульное поле небольшое, округлое, с малым количеством компактно расположенных отпечатков (подотряд Halocypriformes, рис. 14, 5).
Вопросы детальной систематики миодокопид здесь не рассматриваются
ввиду их малой распространенности в кайнозойских отложениях.

II. Отряд Cladocopida. Присутствует только аддукторная подгруппа. Мускульное поле маленькое, округлое, состоит из 3—4 (редко 8)

компактно расположенных отпечатков (рис. 14,6).

III. Отряд Platycopida. Присутствует только аддукторная подгруппа. Мускульное поле поперечно- или продольно-овальное, пятна расположены вертикальными рядами, по 5—8 в каждом (шести-, двухрядный отпечаток) (рис. 14, 7, 8).

IV. Отряд Metacopida. Присутствуют аддукторная, фронтальная и мандибулярная подгруппы. Аддукторное поле неправильно-овального очертания, отпечаток в целом многорядный, пятна многочисленные —

около 30—40 (рис. 14, 9, 10).

V. Отряд Podocopida. Присутствуют аддукторная, фронтальная и мандибулярная подгруппы. В аддукторном поле 14—15 отдельных отпечатков, или пятен, имеющих различное расположение:

— розеточное (надсемейство Darwinulacea); фронтальные и ман-

дибулярные отпечатки мелкие (рис. 14, 11);

— центрическое (подотряд Bairdiocopina); фронтальные и мандибулярные отпечатки удалены и относительно мелкие (рис. 14, 12);

¹ Характер мускульных отпечатков и ряд других признаков могут свидетельствовать о более высоком ранге дарвинулоидных остракод, однако этот вопрос должен быть решен мнением специалистов по данной группе.

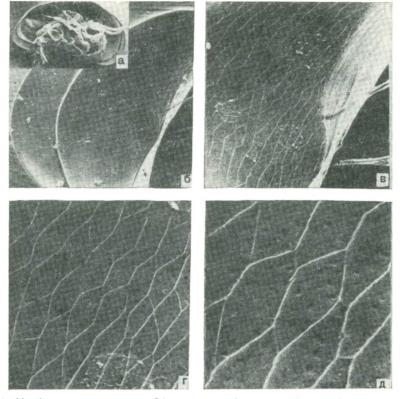


Рис. 15. Mytilosypris praepuncia (С h a p m a n). Современный вид, Австралия, соленое оз. Фокс (коллекция Аладина).

Правая створка: a- изнутри (\times 40), b- передний конец (\times 130); b-b- пористая апикальная поверхность ионотранспортирующих клеток на необызвествленной зоне внутреннего листка: b- \times 300, b- \times 1500.

- спиральное (подотряд Cypridocopina); фронтальные отпечатки мелкие, мандибулярные почти равны по размерам замыкательным (рис. 14, 13, 14);
- однорядное (подотряд Cytherocopina); фронтальные отпечатки хорошо развиты, мандибулярные незначительных размеров (рис. 14, 15—18).

По мнению большинства исследователей, в процессе эволюции подкласса остракод прослеживается четкая тенденция к уменьшению числа отдельных аддукторных отпечатков: от 50—300 у лепердитиокепид до нескольких десятков или единиц у кайнозойских представителей. Не менее вероятно и предположение Грамма о том, что изначально могли уже существовать формы как с большим, так и незначительным числом отпечатков и эволюция и этих групп могла проходить независимыми путями.

І.1.2. Соленостные адаптации

По своему происхождению остракоды являются первично-морскими организмами. В условиях нормальной морской концентрации солей у типично морских форм внутренняя среда (гемолимфа) находится в состоянии изоосмотичности с окружающей средой, т. е. осмоконформности. С изменением солености начинают действовать механизмы саморегуляции, поддерживающие равновесие между осмотическим давлением жидкостей внутренней и внешней среды. Осмоконформеры способ-

ны регулировать объем своих тканей (клеток), увеличивая или снижая внутриклеточную концентрацию осмотически активных веществ: свободных аминокислот и других низкомолекулярных азотсодержащих соединений, а также ионов натрия, калия и хлора. При осморегуляции снижение диффузионного движения ионов и воды между организмом и средой достигается несколькими способами, но уже не на клеточном, и на организменном уровне. В этом случае происходит снижение проницаемости покровов для воды и ионов, причем при гиперосмотической регуляции этому сопутствует увеличение объема воды, выводимой через экскреторные органы, и совершенствование структур, способных к активному транспорту ионов внутрь организма.

При гипоосмотической регуляции направление осморегуляторных способностей изменяется на противоположное. Установлено, что у остракол гиперосмотическая регуляция в значительной степени зависит от солей, поступающих в организм вместе с пищей. Гипоосмотическая регуляция в первую очередь определяется способностью к активному транспорту ионов из организма во внешнюю среду. Структуры, несущие эту функцию, расположены в области необызвествленной зоны внутреннего листка раковины и представляют собой относительно крупные ионотранспортирующие клетки (рис. 15, ∂), образующие сплошные поля (рис. 15, δ — ϵ) или объединенные в группы по ϵ 0 шт. Влияние этого процесса на наружные структуры раковин в настоящее время еще очень слабо изучено. Имеются только предварительные данные в отношении рода *Cyprideis*, у отдельных представителей которого процентное соотношение ситовидных пор различной формы находится в зависимости от солености среды обитания [162, 92].

Соленостные адаптации имели немаловажное значение при обширной адаптивной радиации, в результате которой остракоды завоевали самые разнообразные по солености водные среды. Их можно встретить в водоемах с талой, практически дистиллированной водой, в пресных, солоноватых и гипергалинных озерах, прудах и лужах, в морских, сильноопресненных эстуариях, в полносоленых водах Мирового океана и в гипергалинных водах морских лагун, супралиторальных ванн соленых маршей. Многие австралийские виды остракод выдерживают осолонение до 200 % и выше [De Deckker, 1983 г.]. Некоторые группы проникли даже во влажные наземные биотопы [Шорников, 1980 г.], где они живут в водяной пленке или в микроводоемах на почве и растительности.

В этих необычных для гидробионтов условиях остракоды также сталкиваются с колебаниями солености поверхностной влаги при подсыхании или переувлажнении субстрата. Особенно это характерно для наземных биотопов, связанных с морским побережьем. В данных биотонах просочившаяся или занесенная ветром морская вода при подсыхании очень быстро достигает высоких концентраций солей. За весь период своего существования — от раннего кембрия и доныне — остракоды не испытывали когда-либо угрозы исчезновения [175, 141, 144]. Среди ныне живущих остракод много «живых ископаемых», которые по морфологическим признакам практически не отличаются или отличаются лишь незначительно от древних форм. В связи с этим можно предположить, что у таких остракод сходство в какой-то мере может распространяться не только на морфологические, но и на функциональные особенности организации. В таком случае, изучая влияние на эти организмы солености, можно, по-видимому, столкнуться с весьма примитивными соленостными адаптациями и осморегуляторными способностями.

Таким образом, очевидно, возможно проследить естественную неоднородность развития осморегуляторных способностей. Одни из представителей этого подкласса должны отставать, а другие — уходить далеко

вперед по пути совершенствования соленостных адаптаций. Эта неоднородность, по-видимому, позволяет представить становление и совершенствование осморегуляторных способностей, т. е. в какой-то мере судить об их эволюции в пределах подкласса Ostracoda.

Функциональная зависимость остракод от солености использовалась рядом палеонтологов для реконструкции солености палеобассейнов

[186, 162; Carbonnel, 1977 r., 1982 r.; 94].

1.2. ИСТОРИЯ ИЗУЧЕНИЯ ОСТРАКОД КАЙНОЗОЯ

В истории изучения кайнозойских остракод трудно определить четкую периодизацию, однако наблюдается вполне определенная закономерность в чередовании периодов накопления и периодов систематизации сведений по современным и ископаемым остракодам.

Первые находки остракод связаны с изучением современной фауны. Наиболее крупные представители остракод были известны уже Аристотелю как «очень мелкие формы» среди креветок и крабов [118].

В 1858 г. Линнеем был описан новый род энтомострак Monoculus, в составе которого оказалось 3 вида, впоследствии переотнесенных к

остракодам.

Первые 2 рода остракод — Cypris и Cythere — были установлены датским натуралистом О. Ф. Мюллером и отнесены им к насекомым [Müller O. F., 1776 г., 1785 г.]. В последней из этих работ он объединил Cypris и Cythere с Daphnia в подразделение Bivalves.

Tepмин Ostracoda (первое наименование Ostrachoda) в качестве самостоятельного таксона впервые ввел в обиход Латрейль, объединиь первоначально роды Cypris и Cythere c Luceus и Daphnia, а затем признал самостоятельность Ostracoda в одной из двух «ветвей» отряда Entomostraca [Latreille, 1802 r., 1806 r., 1829 r.].

Первые упоминания об ископаемых остракодах связаны с именами Десмареста, Броньяра и Соверби, определившими Cypris fada D e s m arest, 1813, в неогеновых отложениях Швейцарии и Франции [Brongniart, 1822 r.; Sowerby, 1826 r.].

40-90-е годы прошлого столетия были периодом интенсивного познания как современных, так и ископаемых остракод, в изобилии содержащихся в кайнозойских отложениях. Европейские зоологи знакомились с остракодами северных морей и континентальных водоемов, изучали морфологию мягкого тела и описывали новые виды и роды [Milne-Edwards, 1840 r.; Costa, 1849 r.; Zenker, 1854 r.; Fischer, 1855 r.]. Бэрдом [Baird, 1950 г.] впервые были выделены семейства остракод: Cypridae (роды Cypris и Candona) и Cytheridae (роды Cythere, Cythereis).

Дана [Dana, 1852 г.] подразделил всех современных остракод на 2 большие группы: Cypridae и Halocypridae, ставшие прообразами подокопид и миодокопид. На этой базе, проанализировав все имеющиеся данные по современным остракодам, Сарс в 1865 г. [163] предложил новую систему остракод, ставшую основополагающей во многих последующих классификациях. Отряд Ostracoda подразделяется им на 4 подотряда: Podocopa (семейства Cypridae и Cytheridae), Myodocopa (семейства Cypridinadae, Conchoeciadae), Cladocopa (семейство Polycopidae), Platycopa (семейство Cytherellidae).

Значительно пополнили сведения по остракодам материалы по океанам, собранные экспедицией на судне «Челленджер» 1880 г.]. Выдающейся работой конца XIX в. стала монография Г. Мюллера по современным остракодам Неаполитанского залива, выполненная с обстоятельным описанием морфологии мягкого тела и изображе-

¹ От греч. Ostracon — скорлупа.

нием раковин, содержащая сведения по биологии и критические замечания по систематике [153]. В отношении классификации таксонов высокого ранга Г. Мюллером подобно Дана выделяются 2 крупных таксона («трибы»): Муодосора и Родосора, первый из которых объединяет семейства, отнесенные Сарсом к Муодосора и Садосора, а второй—семейства, входящие в состав Родосора и Platycopa.

Начальный период изучения ископаемых остракод кайнозоя совпал с началом становления стратиграфии третичной надсистемы в Западной Европе. К началу XX в. были изображены и описаны третичные и четвертичные остракоды Англо-Парижского. Венского и Майнцского бассейнов, Северной Германии и Италии [Münster, 1830 г.; Roemer, 1838 r.; 128; Jones, 1856 r.; Jones, Sherborn, 1889 r.; Reuss, 1850 r.; 90; Neviani, 1901 г.; Ramdohr, 1808 г.]. Описываемая фауна классифицировалась в рамках зоологической систематики, а ее принадлежность к тем или иным таксонам определялась подобием раковины. Поскольку такой подход не всегда мог удовлетворить палеонтолога, началось более детальное изучение самой раковины остракод. Линенклаус вслед за Клаусом обратил внимание на мускульные бугорки, определив их число и расположение для семейств Cypridae и Cytheridae [Lienenklaus, 1894 г.]. Фассбиндер исследовал внутренние краевые структуры [Fassbinder, 1912 г.], а Залани были детально описаны замки раковины [Zalanyi, 1913 г.; 189]. Эта тенденция получила развитие в более поздних работах как зарубежных [Sylvester-Bradley, 1941 г.; Напаі, 1957 г., 1961 г.], так и советских исследователей [69; Мандельштам, 1949 г.].

В изучении современных остракод первые 20 лет нашего века были периодом относительного затишья. Расширилась территория исследований с изучением остракод Американского и Африканского континентов; продолжались исследования по детализации морфологии мягкого тела, биологии и экологии остракод [Cushman, 1906 г.; Hirshmann, 1909 г.,

1912 г.; АІт, 1916 г., и др.].

В 1920 г. появляется работа Скогсберга по морским циприидам и халоциприидам [Scogsberg, 1920 г.], открывающая новый этап в изучении сравнительной морфологии остракод. На основании детализации и гомологизации конечностей Скогсберг подразделяет остракоды на 5 самостоятельных подотрядов: Cypridiniformes, Halocypriformes, Polycopeformes, Cypriformes, Cytherelliformes.

Следующая по времени крупная сводка посвящена биологии и эко-

логии морских остракод [Flofson, 1941 г.].

В последующие годы современные остракоды изучаются практически всесветно. Продолжаются исследования по морфологии внутренних органов, биологии и экологии остракод [Klie, 1929 г., 1950 г.; Hartmann, 1953 г., 1959 г.; Weygoldt, 1960 г.; Дубовский, 1939 г.; Бронштейн, 1930 г.; 10; Акатова, 1947 г.].

Последней сводкой 1966—1975 гг. по современным остракодам является монография Гартманна [118], суммировавшего все знания по остракодам, полученные за более чем двухвековую историю их изучения. На сегодняшний день эта работа является наиболее полной по со-

временным остракодам.

С конца 20-х — начала 30-х годов нашего столетия в связи с массовым внедрением бурения в практику геологоразведочных работ резко возросла потребность в изучении микроископаемых. Конец 20-х годов знаменует собой новый крупный этап в изучении остракод, выразившийся в резком преобладании палеонтологических исследований по сравнению с исследованиями современных остракод. Следует сказать, что эта диспропорция продолжает увеличиваться и в настоящее время.

Среди наиболее значительных публикаций начального периода изучения кайнозойских остракод можно упомянуть работы американских исследователей Александера, Блейка, Хоу, Муррея, Эдвардса [Alexan-

der, 1929 r.; Blake, 1931 r.; Howe, 1934 r.; Murray, 1938 r.; Edwards, 1944 r.].

С 50-х годов изучение ископаемых остракод заметно активизируется. Вновь монографически описываются остракоды из стратотипических областей палеогена и неогена Западной Европы и пересматриваются типовые коллекции предшествующих авторов. Результаты этих исследований по Англии и Франции вошли в справочники «Стратиграфический указатель британских остракод» [1978 г.] и «Атлас остракод Франции» [79]. Из наиболее крупных работ по остракодам кайнозоя других территорий следует упомянуть монографии Кея [131] и Марлие [Marliere, 1958 г.] по палеогену Бельгии, Эртли по олигоцену Швейцарии [156], Пиченюк по эоцену ГДР [Pietrzenuik, 1969 г.], Уффенорде по олигоцену — неогену ФРГ [Uffenorde, 1981 г.], Рюджери и Сиссинга по неогену Италии [Ruggieri, 1955 г., 1980 г.; 166], Щекуровой по палеогену Польши [Szczechura, 1965 г., 1977 г.]. Кроме того, сведения по кайнозойским остракодам Западной Европы содержатся в серии статей Дибеля по ГДР, Моус и Мальца по ФРГ, Олтяну по Румынии, Моностори по Венгрии, Покорны и Иржички по Чехословакии, Кристич и Сокач по Югославии, Станчевой по Болгарии [Diebel, 1964 г., 1968 г.; 149, 151; Olteanu, 1970 r., 1977 r.; Monostori, 1972 r., 1987 r.; Jiriček, 1974 г., 1983 г.; Krstich, 1961 г., 1984 г.; Станчева, 1963 г., 1978 г.; Рокогпу, 1973 г., 1975 г.] и ряде других работ.

Изучаются также остракоды Турции [Freels, 1980 г.], Пакистана [167, 165], Египта [82, 83], Японии [Hanai, 1957 г., 1970 г.; Ishizaki, 1963 г., 1977 г.], Бразилии [Bertels, 1968 г., 1975 г.], Китая [Wang,

1985 г.] и Монголии [Ханд, 1976 г., 1979 г., 1987 г.].

Значительная часть публикаций принадлежит американским палеонтологам, однако работы регионального направления составляют здесь незначительную долю. Среди них можно назвать монографии и статьи Ван ден Болда, Хейзела, Хаффа, Свэна [Van den Bold, 1946 г., 1962 г.; 1985 г.; 120; 127; Swain, 1951 г., 1961 г., 1968 г.].

В СССР первые работы по кайнозойским остракодам появились в связи с изучением нефтеносных областей Азербайджана, где продуктивными толщами являются осадки неогена. Одними из первых исследователей были Ливенталь, Агаларова, Джафаров [30; Агаларова, Джафаров, 1940 г.]. С 1932 г. началось планомерное изучение остракод во ВНИГРИ. Эту школу возглавляли сначала А. В. Швейер, а впоследствии М. И. Мандельштам.

За весь период изучения кайнозойских остракод на территории СССР выявлены их чрезвычайно широкое распространение в осадках кайнозоя различного генезиса и четкая стратиграфическая приуроченность к определенным горизонтам. Наиболее хорошо изучены остракоды европейской части СССР, Западной Сибири, Казахстана и Средней Азии. Результаты этих исследований обобщены в диссертационных работах и монографиях Швейера, Мандельштама, Шнейдер, Негадаева-Никонова, Сузина, Шереметы, Хохловой, Агаларовой, Бодиной, Розые-Марковой, Степанайтыс, Векуа, Кармишиной, вой. вой [70, 72, 63, 71, 33, 67, 1, 8, 36, 37, 44, 21, 13, 47], Побединой и др. [1956 г.], Шеремета [1958 г.], Любимовой [1960 г.], Розыевой [1962 г.], Грамма [1963 г.], Шейдаевой-Кулиевой [1966 г.], Сакиной [1973 г.], Казьминой [1975 г.], Макхамова [1980 г.], Зиракадзе [1983 г.]. Кроме того, сведения по кайнозойским остракодам перечисленных ранее областей можно найти в статьях Ливенталя, Швейера, Грамма и Бухариной, Бубикян, Клейн, Кармишиной, Имнадзе, Сакиной, Павловской, Бурындиной, Лев [30, 68, 69, 11, 26, 15, 20, 24, 19, 61, 12, 55, 56, 29], Шнейдер [1939 г., 1968 г., 1971 г.], Ливенталя [1956 г.], Кармишиной [1962 г., 1976 г.], Грамма [1962 г., 1968 г.], Найдиной [1962 г., 1968 г.], Ли [1966 г.], Имнадзе [1964 г., 1974 г.], Поповой-Львовой [1965 г., 1974 г.], Сакиной [1971 г.], Клейн [1972 г.], Степанайтыс [1972 г.], Ильницкой [1972 г.], Павловской [1973 г.], Бурындиной [1973 г., 1975 г.], Рагим-Заде [1974 г., 1975 г.], Яскевич [1975 г.], Зубовича [1979 г., 1986 г.], Лев [1983 г.], Бубикян [1984 г.], Попхадзе [1984 г.], и ряде других работ.

Значительно меньше известно об остракодах Тихоокеанской области, по которым имеется только 1 работа Лев и Исаевой [1971 г.].

Основные результаты исследований по кайнозойским остракодам территории СССР были использованы при составлении разделов по стратиграфии кайнозоя в многотомных изданиях «Стратиграфия СССР» и «Геология СССР». Большое практическое значение имеет выпуск справочников, сводных работ по систематике, видовых каталогов и других изданий. Значительным событием было появление таких пособий, как «Основы зоологической микропалеонтологии» Покорны [158, 159] и, главное, — отечественного издания «Основы палеонтологии» [54], американского «Treatise on Invertebrate Paleontology. Pt. Q» [175], созданных большими коллективами остракодологов. Следующими по времени были справочники «Постпалеозойские Ostracoda» [184, 185] и «Ископаемые остракоды СССР. Семейство Сургіdіdae» [37]. С 1973 г. выходит периодическое издание «А Stereo-Atlas of Ostracod Shells», основанное Британским микропалеонтологическим обществом.

Наиболее крупной сводкой последних лет являются справочники «Указатель и библиография неморских остракод» и «Указатель и библиография морских остракод», составленные проф. Кемпфом [132, 133].

Для современного этапа изучения остракод характерна специализация по определенным направлениям. В числе основных следует назвать работы по систематике и филогении как отдельных групп, так и остракод в целом [Pokorny, 1968 г.; 120; Leibau, 1971 г., 1975 г.; 129, 142, 143, 106, 113, 44, 21; Николаева, 1971 г.; 52, 74].

Параллельно с этим осуществляется изучение ультраструктуры и ультраскульптуры стенки и конструкции раковины [138, 173, 84, 87]. В ряде специальных работ освещаются особенности онтогенетического развития и полового диморфизма [134; Коваленко, 1973 г.; Jaanusson, 1985 г., Maness, 1987 г.].

Математический и экологический аспекты на примере изучения кайнозойских остракод рассматриваются в гл. II и IV.

Одной из отличительных черт современного периода является проведение тематических международных и всесоюзных симпозиумов, коллоквиумов, совещаний. Всесоюзные коллоквиумы по остракодам во многом способствовали подъему исследовательских работ по этой группе в начале 60-х годов, который в значительной степени был результатом научной и организационной деятельности первых руководителей подкомиссии по остракодам И. Е. Заниной и Е. Н. Поленовой.

II. МЕТОДИКА ОБРАБОТКИ И ИЗУЧЕНИЯ КАЙНОЗОЙСКИХ ОСТРАКОД

ІІ.І. ТЕХНИЧЕСКАЯ ОБРАБОТКА

Вопросы методики сбора материала и технической обработки микроископаемых органических остатков имеют первостепенное значение для последующей научной обработки материала. Методика сбора материала и его технической обработки рассматривается в ряде руководств, справочников и специальных работ, таких как «Определитель фораминифер нефтеносных районов СССР» [1937 г.], «Основы палеонтологии СССР» [54], «Труды первого семинара по микрофауне» [64]. «Ископаемые остракоды СССР. Семейство Cyprididae» [37], «Методика палеонтологических исследований» [40].

При сборе материала на обнажении или скважине рекомендуется не собирать отдельные отрывочные образцы. Необходимо самому палеонтологу на основании имеющихся уже документов геологической съемки составить полный разрез данного района или месторождения. При сборе образцов необходимо обеспечить по возможности полное освещение каждого отдельного стратиграфического подразделения разреза вплоть до наиболее дробных единиц (зон и подзон), а также возможно более точное определение стратиграфических границ. Методика сбора зависит еще от типа вмещающих пород. Породы, в которых вероятнее всего могут быть встречены остракоды: слабопесчанистые или жирные глины, известковистые и глинистые сланцы и мергели, а также песчаники и известняки, ракушечники.

Важно, чтобы образцы были хорошо очищены от инородных примесей: выветрившегося поверхностного слоя, бурового раствора.

Первый этап после сбора образцов в поле — это тщательный осмотр пород и сбор или возможное извлечение с поверхности образца раковин видимых остракод.

Второй этап — рассортирование по плотности пород: рыхлые, плотные и очень плотные. От этого зависит метод обработки образца. Дезинтеграция некрепких песчанистых, песчано-глинистых и глинистых пород может производиться следующим образом.

Образец породы или керна массой 100—200 г подсушивают для удаления поровой воды, а затем помещают в этикетированный стакан с водой. Если порода размокла и осела на дно стакана ровным слоем, содержимое его выливают в цилиндрическую банку вместимостью 1,5— 2 л. Затем порода заливается водой до отметки 12 см от дна. Струей воды и вращением банки образец взмучивают. После этого в течение 2 мин раствору дают отстояться и осторожно сливают (декантируют) неосевшую муть, удаляя таким образом тонкие глинистые частицы. Сливание повторяют до получения прозрачной воды. Декантацию обычно доводят до конца уже не в стакане, а в большой фарфоровой чашке днаметром 20 см, глубиной 8 см. Слив из чашки производится над ситом с размерами ячеек от 0,15 до 0,01 мм. Отмытый осадок из чашки и сита осторожно сливают в разные этикетированные чашечки (2 фракции) и сушат в сушильном шкафу. Если осадок хорошо отмыт, го, будучи высушенным, он не дает на поверхности трещин усыхания и выглядит сыпучим порошком. Если простым отмучиванием в воде образец не разрушается, то применяют кипячение в щелочной среде, а если порода — листовая жирная глина, то кипятят с добавлением 3-15 % перекиси водорода (H_2O_2). Образец кипятят до полного разрыхления и затем также промывают и декантируют над ситом.

Для дезинтеграции массового числа образцов пользуются промывочными аппаратами. Так, в 50—60-е годы в лаборатории микрофауны ВНИГРИ пользовались аппаратом Субботиной [1960 г.], который представляет собой систему последовательно соединенных резиновыми шлангами цилиндрических сосудов; скорость движения воды в них неодинакова. Там, где она больше (в первых сосудах), осаждаются более крупные частицы, в последнем сосуде—самые мелкие глинистые частицы—0,01 мм. По этому принципу построены также аппараты Небеля и др.

Многоструйный аппарат МПАН-1 [Негадаев-Никонов, 1962 г.] основан на непрерывном действии теплой проточной воды и дезинтеграции породы во взвешенном состоянии при интенсивном взмучивании у дна последовательно расположенных конических сосудов. Аппарат может быть снабжен ультразвуковым патроном и ситом. Промывочносортировочный аппарат-пирамида Бочкова [1969 г.], состоящий из 5 вставленных друг в друга стаканов, позволяет дезинтегрировать породу с разделением на 5 фракций в течение 15—20 мин. Пирамида снабжена ситом с размером ячей 0.05—0.07 мм. Можно пользоваться системой, составленной из нескольких пирамид. Грубые плотные породы (известняк, песчаник) дезинтегрируются путем повторного обжига в муфельной электропечи. Помещенные в железный тигель обломки известняка доводят до вишнево-красного (избегая ярко-красного) каления, после чего раскаленную породу быстро опускают в чашку с холодной водой. Благодаря резкой смене температур происходит растрескивание породы на мелкие обломки и выпадение из нее раковин. Раздробленный образец отмучивают, высушивают и отбирают из него раковины остракод.

Сплавление. Плотные мергелистые мелкозернистые глины, аргиллиты, алевролиты подвергают многократному сплавлению с глауберовой солью или гипосульфитом, что ведет к расщеплению породы по трещинам вследствие кристаллизации соли. После этого образец отмывают в горячей воде, отмучивают над ситом и высушивают.

Методы химической дезинтеграции породы при извлечении остракод применяются с осторожностью. Наиболее распространен способ обработки образца 15%-ным раствором перекиси водорода или 5— 25%-ным раствором гипохлорита (стирального порошка) с добавлением воды и кипячением. Известен способ пропитывания образца бензином в течение 1 ч, а затем кипячения его в воде с добавлением соды.

Растворение в кислоте применяется только в тех случаях, когда раковины остракод окремнены, а вмещающая их порода карбонатная. Используется обычно при этом слабая уксусная или муравьиная кислота. Процесс обработки ведется длительно, от 1 недели до месяца или более. Раствор заменяется через 2—3 дня. Операция производится в вытяжном шкафу.

Тарковский [174] описывает метод флотации для обогащения микрофауной (фораминиферы, остракоды, спикулы губок) меловых и миоценовых песчаников с помощью любого моющего средства (1 столовая ложка на 250 г породы в глубоком сосуде заливается горячей водой). Пену сливают над ситом с ячейками размером 0,1 мм; процедуру повторяют 8—10 раз.

Большой популярностью в последнем десятилетии пользуется метод препарирования окаменелостей путем частичной дезинтеграции плотных песчаников и массивных известняков с помощью жидкого азота [Мананков, 1974 г.]. Он впервые был применен для препарирования трилобитов, брахиопод, аммонитов и морских ежей, а затем он

3 Зак. 734

был использован для выделения из породы раковин остракод и для выделения раковин фораминифер [Ботвинник, Щербак, 1988 г.]. Этот метод построен по принципу частичного разрушения пород под действием резкой смены температур. Достоинство его заключается в том, что вещество раковины не подвергается никаким химическим изменениям. Образцы породы погружают в жидкий азот, имеющий температуру—196 °С. После охлаждения до температуры азота образец опускают в горячую воду. Образовавшиеся в результате температурного скачка микротрещины нарушают монолитность породы, что значительно облегчает последующее техническое препарирование. Технология процесса изложена в работе Мананкова [32].

Некоторые приемы ручного препарирования с помощью иглы и ланцета, а также вибрационного прибора изложены Зоном, Берданом и Пеком [40].

Дробление. Очень крепкие породы подвергаются механическому дроблению, построенному на раздавливании кусков породы с помощью ручного кернокола, электрической дробилки или металлической ступки и пестика. После этого образец отмывается раскипячением и декантацией.

Сушка. Отмытый образец может быть высушен на сите либо высыпан для просушки на газету, либо перелит из сита в фарфоровую чашечку, этикетирован и высушен в сушильном шкафу или на плите. Высушенный образец просеивают на ситах с ячейками размером от 0,01 до 0,5 мм, разделяя осадок на фракции. Сита перед каждым просеиванием должны быть абсолютно чистыми. Проверяется сито с помощью спиртового раствора метиленовой синьки. Очищается струей воды очень сильного напора, ультразвуком или растворением раковин [40].

Отбор раковин из осадка производится обычно вручную под бинокулярным микроскопом с помощью кисточки № 0 или № 1 из соболя, колонка или верблюжьего волоса, смоченной водой. Порошок насыпается слоем толщиной в 1 зерно на черную стеклянную пластинку, расчерченную на клеточки. Раковины с пластинки переносят в камеры Франке с черной фотоподкладкой. Подробно техника ручного отбора, регистрация отбираемых объектов и другие процессы описаны в «Опре-

делителе фораминифер нефтеносных районов СССР» [60].

Для ускорения процесса отбора Бочковым [1960 г.] изобретена кисточка-капилляр с вентильным краном для регулирования подачи воды в волос. Волос кисточки смачивается в капилляре, и она сохраняет влажность в течение всего рабочего дня. Бочковым же сконструирован столик с вакуумным насосом для отбора микрофауны. Это вращающийся диск, на край которого узкой лентой насыпается тонким слоем отмытый осадок, и в прорезь диска, под которой установлена камера Франке, раковины сталкиваются препаровальной иглой либо собираются вакуумным насосом и переносятся в камеры. Стайнмейер [40] предлагает устройство для отбора микронскопаемых в виде шприца с вакуумным насосом.

Отбор микрофауны с помощью магнита предложен Негадаевым-Никоновым [1972 г.] и другими исследователями [40]. Гюнтер [Günter, 1976 г.] предлагает разъединитель и счетный прибор при отборе и определении микрофоссилий. Выделение микрофауны из осадка может быть проведено с помощью тяжелых жидкостей: четыреххлористого углерода или иодисто-кадмиевого водного раствора. Способ основан на всплывании раковин в верхней части раствора, где их собирают на фильтр. Можно это сделать кисточкой или с помощью разделительной воронки. Вся операция проделывается в вытяжном шкафу. Если раковины слипаются, их нужно промыть денатуратом. Отбор раковин и их фрагментов следует производить с максимальной полнотой. От полноты материала во многом зависит успех палеонтологических исследований.

После отбора раковин остракод из осадка или во время отбора их рекомендуется рассортировать по родам, затем по видам и т. д., т. е. систематизировать материал [16] и составить коллекцию. Методика составления и хранения коллекций приведена в работе Заниной и Ивановой [16]. Изучение раковин остракод можно вести под бинокуляром при отраженном или проходящем свете. Бочковым сконструирован прибор с менисковым манипулятором в проходящем свете. Прибор позволяет рассматривать раковину с любого положения без преломляющих лучи помех (предметное стекло), с полной гарантией сохранности объекта, и дает возможность получить дополнительное увеличение изучаемого объекта [9]. Очень хорошие результаты для изучения внутреннего строения раковины остракод дает пропитывание их глицерином или другой иммерсионной жидкостью и рассматривание после этого в проходящем свете под бинокуляром. В этом случае могут быть хорошо видны мускульные отпечатки на створках раковины. Можно раковины окрашивать фуксином, чернилами и др. Краска адсорбируется в ячейках, ямках, складках.

Для изучения внутренних структур закрытой раковины практикуется шлифование. Техника изготовления шлифов различных сечений раковины описана в книге «Методика палеонтологических исследований» [40]. При изучении раковин необходимо производить измерения с использованием окуляра-микрометра. Измерять следует несколько экземпляров каждого вида с тем, чтобы получить среднее или крайнее значение для каждого из количественных признаков раковины (длина, высота, толщина и т. д.). Зарисовывать объекты следует с помощью рисовального аппарата под бинокуляром. Сначала раковина зарисовывается карандашом, а затем рисунок выполняется тушью точкой или штрихом. Более объективное воспроизведение дает фотографирование его под бинокуляром, для чего можно использовать зеркальную фотокамеру. В лаборатории микрофауны ВНИГРИ палеонтологом Кривоборским [1960 г.] проведено изучение фораминифер с помощью стереоскопического микрофотографирования. Им же даны рекомендации для объемного микрофотографирования остракод [64]. Рекомендуются оптика и аппаратура для проведения фотосъемки, методика подготовки объекта для съемки, освещение объекта и техника самой съемки, а затем изготовление изображений снятых объектов.

В настоящее время изучение и фотографирование остракод, как и другой микрофауны, производятся в электронном микроскопе. Он расширяет возможности палеонтологических исследований, позволяет выявить детали внутреннего строения раковины, микроструктуры ее стенки, получить данные химико-минералогического состава раковины. Таким образом, он значительно дополняет информацию о морфологии раковины, что в свою очередь помогает в установлении естественной классификации такой разнообразной и изменчивой группы микроорганизмов, как остракоды.

Существует уже достаточно много инструкций по изучению микрофауны на электронном микроскопе и изготовлению фотографий микрообъектов [40]. Для подготовки раковины к съемке следует опылить ее тонким слоем металла, напыление производится в специальной камере, в качестве опылителей используются серебро, золото, магний и др. Наилучшим опылителем считается золото. Объект для съемки устанавливается на специальном предметном столике или шайбе, закрепляется клеем ПВА или помещается на клейкую ленту. Финч [Finch, 1974 г.] для подготовки объекта к съемке на электронном микроскопе предлагает использовать воск, с помощью которого объект (раковина) прикрепляется к держателю или предметному столику; воск вносят непосредст-

венно на поверхность держателя. Закрепление производят слабым расплавлением воска. После съемки воск можно смыть бензином или толуолом. Р. Марш и Л. Марш [1975 г.] описывают усовершенствованный прибор для напыления объектов сублиматом хлористого аммония.

В работах Грамма [1984 г.] и японского исследователя Номура Ритсуо [Nomura Ritsuo, 1983 г.] описана техника приготовления шлифов в канадском бальзаме или эпоксидной смоле для изучения внутренних структур раковины в электронном микроскопе. В качестве примера использования электронного микроскопа в палеоэкологических исследованиях невозможно не упомянуть работу Кадо, Мэда, Кеслера и Регера [Cadot, Meade, Kaesler, Roger, 1977 г.]. Авторы с помощью электроннозондового микроанализатора ARL—EMX проанализировали содержание магния у остракод семейства Cytherellidae, надсемейств Bairdiacea, Cypridacea, Cytheracea и попытались установить причины различий в содержании магния.

Техника получения электронных микрофотографий приведена в работе «Методика палеонтологических исследований» [40], в ней описаны также и приемы применения инфракрасных, ультрафиолетовых и

рентгеновских лучей для изучения микрофоссилий.

Изображения изучаемых объектов должны быть объединены в палеонтологические таблицы, которые составляются отдельно для рисунков и фотографий. Как составить палеонтологические таблицы и подготовить их к печати, очень хорошо и подробно изложено в вышеупомянутых работах. Любое научное исследование материала и затем монографическое описание таксона должны осуществляться с привлечением по возможности всей имеющейся на момент исследования литературы. Исчерпывающую инструкцию по этому вопросу дают палеонтологи Занина и Иванова [16].

11.3. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ

Сложность решения задач по систематизации материала при очень большом его объеме ставит перед палеонтологами вопрос о необходимости применения математических методов.

При изучении кайнозойских остракод предпосылкой этого является ряд особенностей самой группы. Так, для большинства остракод континентальных водоемов обычны кажущаяся простота внешней морфологии раковины, сильновыраженная асимметрия створок (часто встречающихся в разрозненном виде) и наличие раковин личиночных стадий. Эти особенности требуют помимо обычной палеозоологической диагностики применения и других методов, более объективно оценивающих диагностические признаки. Для получения более полной характеристики морских остракод важна достоверная интерпретация признаков полового диморфизма, проявляющегося в различной форме или размерах раковин самцов и самок, а также получение данных по онтогенетическому развитию. Кроме того, в разделе изучения как континентальных, так и морских остракод кайнозоя накоплен огромный информационный материал, анализ которого в целях решения вопросов диагностики и таксономии в ряде случаев может быть ускорен применением математических методов, и в первую очередь логико-математического анализа.

В настоящее время имеется ряд работ по остракодам, посвященных решению задач оценки таксономического значения признаков диагностики на видовом и популяционном уровнях, оценки возрастной изменчивости, а также вариабильности популяций с применением математической статистики.

Одной из первых работ по биометрии кайнозойских остракод была монография Реймента по ранне-среднепалеогеновым остракодам Нигерии [Reyment, 1963 г.]. На основании измерений длины, высоты и ширины раковины путем применения одно- и многовариантного статистических методов оцениваются степень проявления полового диморфизма и характер онтогенетического развития. Получена разновидность формулы Брукса, основанная на значении средних векторов.

Метод многовариантного статистического анализа был использован этим автором позднее при изучении эволюции фенотипов в различных направлениях развития эоценовых остракод рода *Echinocythereis* [Reyment, 1985 г.].

Коваленко была предпринята обработка данных по наблюдениям онтогенеза Cypris pubera в лабораторных условиях.

Положительные результаты были получены Кармишиной при изучении плиоценовых остракод Юга СССР методами вариационной статистики с применением ЭВМ. Итоги исследования освещены в монографии и ряде статей [20—24], однако здесь необходимо остановиться на ряде пунктов, полезных в методическом отношении.

Работа проводилась путем изучения массового материала, когда каждый вид представлен многочисленными экземплярами из различных популяций. Первоначальная стадия изучения — подготовка материала к исследованию с применением статистических методов. Из десятков тысяч экземпляров было отобрано 4 тыс. створок; число изучаемых особей для каждого вида определялось фактическим материалом; для видов, представленных множеством экземпляров, число вариант ограничивалось тридцатью.

В связи с особенностями изучаемой фауны были выбраны наиболее информативные признаки, представляющие собой ряд линейных параметров и их соотношений. Очень важно, чтобы измеряемые величины были привязаны к определенным морфологическим элементам, кардинальным углам, мускульным отпечаткам и т. п. При существенной неравностворчатости выполняются отдельные измерения для правой и левой створок (рис. 16). Они производились под бинокулярным стереоскопическим микроскопом, и все вычисления базировались на истинных размерах. Для выбранных параметров вычислялись среднее арифметическое \overline{X} , дисперсия S^2 , степень информативности τ^2 , коэффициент корреляции r, критерий информативности Готелинга T^2 и обобщенное таксономическое расстояние D^2 . Для характеристики изменчивости признаков дополнительно определялся коэффициент вариации v.

Применение статистических методов позволило решить ряд задач, обычно трудноразрешимых при изучении столь массового, кажущегося однородным материала. Оказалось возможным:

- \dot{l}) выявить количественную оценку возрастной и популяционной изменчивости видов (сравнение с помощью τ^2);
- 2) определить степень сходства и различия между признаками близких видов и их популяций, что позволяет уточнить объем видов и выявить их тождество с помощью критерия Готелинга T^2 ;
- 3) выявить информативные признаки, позволяющие провести видовое и подвидовое разграничение на основе анализа значений τ^2 по отдельным признакам;
- 4) определить коррелятивную зависимость изученных признаков, характер и структуру коррелятивных связей, используя коэффициент корреляции *r*;
- 5) выяснить филогенетические связи видов у отдельных родов с помощью подсчета обобщенного расстояния D^2 ;
- 6) выявить главные направления в изменении признаков на основании анализа всех статистических параметров.

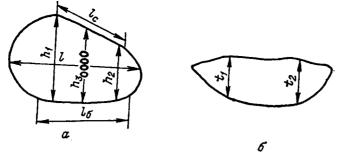


Рис. 16. Схема измерения признаков на раковине остракод [21]. a — створка с наружной стороны; δ — то же, со спинной стороны; l, l_c , l_b — длина створки, спинного н брюшного края; h_1 , h_2 , h_3 — высота переднего, заднего концов и средней части створки; t_1 , t_2 — ширина переднего и заднего концов.

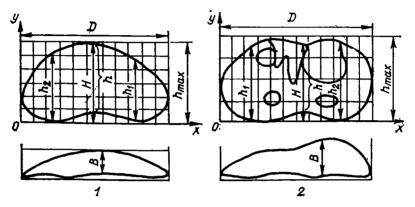


Рис. 17. Схема измерений на створках, ориентированных на координатной сетке [42]. $I- \mathsf{гладкая} \ \mathsf{створка}; \ 2- \mathsf{створка} \ \mathsf{c} \ \mathsf{рельефной} \ \mathsf{поверхностью}.$ Линейные параметры: D- длина, $h_{\mathsf{max}}-$ высота, H- координатная высота, H-h- высота вогнутости брюшного края, $h_1,\ h_2-$ высота переднего и заднего концов; B- выпуклость створки. Соотношения: степень удлиненности $L=D/h_{\mathsf{max}}$. степень вогнутости брюшного края C=(H-h)/h, степень выпуклости створки U=B/D.

В итоге проделанная работа способствовала повышению достоверности палеонтологических данных, положенных в основу зонального деления плиоцена по остракодам, и распространению этих подразделений на всю территорию Юга СССР.

Говоря о применении математических методов в изучении остракод, нельзя не упомянуть о попытках использования ряда Фурье при математической характеристике очертаний раковины. Кеслер и Вотерс на примере изучения 3 видов Xestoleberis показали, что очертание в боковой проекции может быть выражено серией отрезков замкнутой кривой при помощи радиусов, измеренных от одного из мускульных отпечатков, и определением синуса и косинуса углов, образуемых радиусами. Кеслер и Вотерс оценили важность этого метода для родовой диагностики [Kasler, Waters, 1972 г.].

Значительные результаты достигнуты советскими исследователями в опознавании образов [Печерский, Карелина, Негадаев-Никонов, 1972 г.; Печерский, 1983 г.].

Для практической работы может быть рекомендован координатный метод, разработанный Негадаевым-Никоновым [1969 г.; 42; 1983 г.] для изучения гладкостенных остракод.

Сущность этого метода Негадаева-Никонова заключается в следующем. Раковина или створка располагается в координатной сетке, и отмечаются координаты всех важнейших морфологических элементов, включая очертания створок (рис. 17). Такой способ дает возможность

производить точное сравнение всех исследуемых особей. Кроме того, данный метод можно рассматривать как один из способов числового кодирования признаков и использовать его для математической обработки данных.

На этой основе описание вида A может быть представлено как формализованная совокупность признаков:

$$A \approx (X_a, X_a, X_c),$$

где X_n , X_n , X_c — совокупности линейных параметров, производных величин (соотношений) и структурных признаков.

Близкая методика была использована Фаркасом [Farkas, 1986 г.] при оценке изменчивости популяций эоценовых представителей Scule-ridea perforata, причем в качестве координатной сетки предлагается применять сетку окуляра-микрометра микроскопа.

В процессе работы над данным справочником при ревизии таксономического состава надсемейства Trachyleberidacea [52] были использованы некоторые приемы логико-математического анализа по методике, разработанной Олейниковым [17, 39, 53]. В целях выявления синонимов, уточнения диагнозов и решения вопросов классификации надсемейства Trachyleberidacea, объединяющего в настоящее время более 200 родов, была составлена политомическая таблица, включавшая формализованное описание 212 таксонов родовой группы.

Порядок действий не отклонялся от принятого для такого рода классификационных работ [53; Олейников, Занина, 1978 г.; Паевская, 1985 г.].

1. Унификация и упорядочение терминологии морфологических элементов раковины (см. Словарь терминов).

2. Выявление полного набора признаков, используемых при описании таксонов данной группы.

- 3. Анализ признаков, в результате которых были исключены: а) общие для всех записываемых в таблицу таксонов (в рассматриваемом случае амфидонтный тип замка); б) ряд скоррелированных признаков (в данном случае характеристика краевой зоны и концевых шипов вместо 2 концов только по переднему концу); в) случайные признаки (правоперекрывающие раковины); г) малоинформативные признаки, такие как определение объемной формы: бобовидная, почковидная и т. п.
- 4. Формализация качественных признаков (определение типов охвата, формы раковины в боковом очертании и т. п.).
- 5. Статистическая оценка количественных признаков определение малого, среднего и большого значения для длины раковины L, относительной удлиненности L/H, относительной выпуклости L/W (W ширина раковины), относительной ширины порово-канальной зоны (отношение ее ширины к длине раковины) и количества краевых поровых каналов.
- 6. Формирование кода и политомических таблиц. Запись признаков осуществлялась на основании типовых видов. Материалами для записи послужили авторские первоописания родов с привлечением данных по голотипам типовых видов, в том числе их переописаний и изображений в современных работах.
- 7. Классификационный анализ на основании составленных таблиц. Результаты логического анализа по исходной политомической таблице, включающей 212 формализованных описаний родовых таксонов

трахилеберидацей, использованы при классификации этой группы в данной работе. Помимо исходной политомической таблицы были составлены 2 таблицы для машинной обработки (по коду, выработанному для машинной обработки) и получены результаты после обработки на ЭВМ в виде дендрограмм, которые также учитывались при общем анализе надсемейства. Ниже приведены коды для записи в политомические таблицы для ручной (код 1) и машинной обработки (коды 2 и 3; табл. 1).

ІІ.4. ИСПОЛЬЗОВАНИЕ МЕТОДОВ ИЗУЧЕНИЯ СОЛЕНОСТНЫХ АДАПТАЦИЙ

По мнению многих палеонтологов, точность палеоэкологических построений в значительной степени зависит от сведений об экологии рецентных форм. Это мнение зафиксировано в материалах практически всех международных симпозиумов, посвященных ракушковым ракообразным. Сведения об отношении ныне живущих остракод к различным абнотическим факторам, в том числе и к солености, необходимы палеоэкологических реконструкций.

Изучение соленостных адаптаций и осморегуляторных способностей ракушковых ракообразных было начато совсем недавно, в начале 80-х годов нашего века [2—5; 7; Аладин, Шорников, 1986 г.; Топез, 1983 г.]. Для измерения общей осмотической концентрации гемолимфы у различных видов остракод как у нас в стране, так и за рубежом использовали микрокриоскопический метод. Физическая сущность данного метода заключается в том, что температура замерзания раствора всегда ниже температуры замерзания чистого растворителя. Понижение точки замерзания раствора пропорционально его концентрации, не зависит от природы растворенного вещества и определяется числом частиц этого вещества. Таким образом, зная температуру замерзания внутренней среды гидробионтов и окружающей водной среды, можно судить о характере осмотических отношений между этими двумя средами, а также рассчитать их различные осмотические параметры [65, 6].

К настоящему времени микрокриоскопическим методом исследованы осморегуляторные способности у 106 видов остракод, относящихся к отрядам Myodocopida и Podocopida. Эти наблюдения основаны как на результатах определения депрессии гемолимфы у остракод, взятых из естественной среды обитания, так и у остракод, акклиматизированных в лабораторных условиях к воде различной солености.

В табл. 2 приведены все обнаруженные у ныне живущих остракод типы осмотических отношений гемолимфы с окружающей водой, а также предпринята попытка с позиций эволюционной физиологии связать их друг с другом. У ракушковых ракообразных зарегистрировано: А состояние изоосмотичности (водно-солевого равновесия) гемолимфы с окружающей водой, т. е. осмоконформность; Б — сочетание осмоконформности при высокой солености с гиперосмотической регуляцией гемолимфы при низкой солености (примитивная осморегуляция); В — гиперосмотическая регуляция; Г — сочетание гиперосмотической при низкой солености с гипоосмотической при высокой, т. е. амфиосмотическая регуляция гемолимфы; Д — гипоосмотическая регуляция. Все эти типы осмотических отношений внутренней среды со средой внешней хорошо известны исследователям, так как ранее были обнаружены у представителей других классов гидробионтов [Гинецинский, 1963; Potts, Раггу, 1964 г.; 65 и др.]. Однако в пределах однородной систематической группы подобное разнообразие типов осмотических отношений внутренней среды со средой внешней удалось зарегистрировать впервые. Кроме того, в пределах осмоконформности и типов осморегуляции стало возможным выделение как бы отдельных этапов развития.

Коды для записи в политомические таблицы родовых признаков представителей надсемейства Trachyleberidacea для машинной обработки

Наименование признака 1	-
крупная, >0,91 средняя, 0,57—0,91 маленькая, <0,57 2 Соотношение створок и тип охвата: створки почти равного размера или левая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Суthereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Мапасуthere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
крупная, >0,91 средняя, 0,57—0,91 маленькая, <0,57 Соотношение створок и тип охвата: створки почти равного размера или левая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Суthereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
2 Соотношение створок и тип охвата: створки почти равного размера или левая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Суthereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
Соотношение створок и тип охвата: створки почти равного размера или левая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
створки почти равного размера или левая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
вая незначительно больше правой; охват в области намечающихся замочных ушек и переднебрюшной части или переднебрюшной и заднеспинной частятях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
ных ушек и переднебрюшной части или переднебрюшной и заднеспинной частях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	- -
переднебрюшной и заднеспинной частях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_
тях (Cythereis — тип охвата) Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_
Створки разных размера и формы; левая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват потипу стракулума (Mandocythere, Paleoabyssocythere—тип охвата) Левая створка больше правой; охват поспинному краю (Brachycythere—тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_ _ _
вая больше правой с притупленным (а не приостренным, как правая) задним концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere—тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere—тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
концом и замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleoabyssocythere—тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere—тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
рых переднее развито сильнее; здесь же наблюдается максимальный охват по типу стракулума (Mandocythere, Paleo-abyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	- -
наблюдается максимальный охват по типу стракулума (Mandocythere, Paleo-abyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти девая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
типу стракулума (Mandocythere, Paleo-abyssocythere — тип охвата) Левая створка больше правой; охват 3 — - по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти 4 — - подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	- -
аbyssocythere — тип охвата) Левая створка больше правой; охват по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти девая створка больше правой, почти подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_
по спинному краю (Brachycythere — тип охвата) Левая створка больше правой, почти 4 — - подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_
охвата) Левая створка больше правой, почти 4 — - подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	-
Левая створка больше правой, почти 4 — - подобна ей по форме, но имеет развитое переднее замочное ушко, охват в области которого сильно выражен	_
тое переднее замочное ушко, охват в области которого сильно выражен	
области которого сильно выражен	
Левая створка больше правой; охват 5 —	_
субкруговой (Buntonia — тип охвата)	
с различно выраженными особенностя-	
ми: максимальный в области слаборазви- 5а — -	_
того переднего замочного ушка ле-	
вой створки	
то же, по брюшному краю 56 —	_
Общая форма раковины	
3 Форма раковины на основании типа очер-	
таний (вид с боковых сторон): очертание	
овальное 1 2 234	_
субовальное с конвергенцией краев к 2 —	-
заднему концу	
субовально-клиновидное с сильной кон- 2а	_
субокругленно-прямоугольное 3 (1)	_
1 100	
	(1)
ной конвергенцией краев к заднему концу	100
	(1)
сильно конвергируют к заднему концу	ìoó
субокругленно-трапецеидальное или 6 (1)	_
субовальное; брюшной край ориенти- рован примерно параллельно базальной	
І линии	
субокругленно-трапецеидальное; спин- 7 —	(1)
non apan opnominposen apanopas are i	00
раллельно базальной линии; брюш- ной край или закрывающее ero ребро	
нон краи или закрывающее его реоро дугообразно выгнуты	
субокругленно-треугольное 8 (1)	_
001	

		Номер кода					
Номер признака —————	Наименование признака	1	2	3			
4	Задний конец: закруглен или приближается к вертикаль- по-прямому (на обеих створках) приострен (на обеих створках) образует закругленно-прямой угол, а при соединении с краями — закругленно-ту- пые углы с каудальным отростком или вогнутым	1,1 2,2 3 4	(2) 100 010 (3) —	(2) 100 010 (3) 001			
5	уступом Относительная высота раковины наиболь- шая: в передней трети	1	10	10			
6	не в передней трети Степень удлиненности раковины (отношение длины L и высоты H у меньшей створки):	2	ĬŎĬ	01			
7	умеренно-удлиненная, 1,7 <i>≤ L/H ≤</i> 2,1 удлиненная, <i>L/H ></i> 2,1 укороченная, <i>L/H <</i> 1,7 Степень выпуклости раковин (отношение длины <i>L</i> и ширины <i>W</i>):	1 2 3	(4) 100 010 001	_ _ _			
۵	выпуклая, вздутая, $L/W < 1,64$ умеренно-широкая, $1,64 \leqslant L/W \leqslant 2,58$ уплощенная, $L/W \geqslant 2,58$	1 2 3	<u>-</u>	(4) 10 01 —			
8	Характер выпуклости раковины: равномерно выпуклая с уплощением на переднем конце то же, на заднем конце	1 2 3	(5) 10 01	(5) 10 01 —			
9	Брюшно-боковое расширение и киль: отсутствуют имеются; брюшно-боковое расширение соединено с передним краевым ребром	0 1 2	<u>-</u>				
10	то же, не соединено с передним краевым ребром Фундиум или псевдофундиум: отсутствует имеется фундиум ,, псевдофундиум	0 1 2	1 11				
11	Морфология наружной части раковины Толщина раковины и характер поверхност- ных образований: немассивные массивные или выражены в широком ре-	1 2	(6) 10 01	(6) 10 01			
12	льефе Заокулярная депрессия:	_		(7)			
13	отсутствует имеется Выступы на спинном крае: отсутствуют	0 1 0	_	10 01 —			
14	имеются Концевые шипы: отсутствуют имеются на переднем конце	1 0 1 2	_ _ _ (7)				
15	" на заднем конце Краевое ребро: отсутствует	0	10 -	10			

Продолжение табл. 1

			Номер кода	
Номер признака	Наименование признака	1	2	3
	охватывает передний конец " брюшной край " задний конец " спинной край Центральная группа продольных ребер (складок)	1 2 3 4	01 —	01
16	Продольные ребра: отсутствуют имеется брюшное " срединное	0 1 2 3	(8) 1000 0100 0010 0001	(9) 1000 0100 0010 0001
17	" спинное Продольные ребра (изолированность): отсутствуют изолированы соединены между собой Субцентральный бугорок (или внутренняя	0 1 2	— — —	— — —
19	ямка): отсутствует имеется Скульптура (орнаментация):	0 1	(9) 10 01	(10) 10 01
19	отсутствует имеется ямчатая ячеистая ячеисто-бугорчатая крупноячеистая крупнобугорчатая ребристая морщинистая	0 1 2 3 4 5 6 7	(10) 10 — 01 — —	(11) 10 — — 01 — —
20	Поверхность гладкая скульптурные элементы: полигональной основе не подчинены то же, подчинены	1 2	_ 	<i>-</i> <u>-</u>
21	Скульптурные элементы: не ориентированы параллельно концам и краям раковины ориентированы параллельно краям раковины	0	_ _	- -
22	то же, концам раковины Орнаментация: одного порядка двух порядков	1 2	_	_
23	Глазной бугорок (линза, пятно): отсутствует имеется	0	_	=
24	«Подокулярное ребро» (расположение): отсутствует вертикально-прямое дугообразно изогнутое Впутреннее строение раковины	0 1 2	=	=
25	Вторичная зона сращения: отсутствует имеется	0	_	_
26	Вестибюль: отсутствует имеется	0 1	(11) 10 01	(12) 10 01

	<u> </u>	Номер кода					
Номер признака	Наименование признака	1	2	3			
27	Относительная ширина порово-канальной зоны на переднем конце раковины:		(12)	(13)			
28	узкая, <1/11 средняя, 1/11—1/6 широкая, >1/6 Число поровых каналов на переднем конце:	<u>-</u>	10 01	10 			
	малое, <21 среднее, 21—40 большое, >40	=	- -	1 - 1			
29	Замок Страгулярный зуб в переднем отделе на левой створке: отсутствует	o.	_	_			
30	имеется Замок: не насечен во всех отделах насечен в переднем отделе насечен в задней части среднего отдела насечен в заднем отделе	0 1 3 4					
31	Отпечатки мускульных бугорков Фронтальный бугорок: один (не расщеплен) расщеплен на 2 расщеплен на 3	1 2 3	- -	<u>-</u>			
32	Фронтальный бугорок (форма): расщеплен не расщеплен, V-образный J-образный овальный	0 1 2 3	- - -	=			
33	Центральная группа мускульных бугорков (вертикальный ряд из 4 бугорков): все четыре бугорка не расщеплены расщеплен первый верхний расщеплен второй от верха расщеплен третий от верха расщеплен четвертый от верха	0 1 2 3 4	_ _ _ _ _	_ _ _ _			
34	Стратиграфическое распространение Меловая система: К ₁ — берриас—баррем К ₁ — апт—альб	1 2		_			
35	K_2 — сеноман—коньяк K_2 — сантон—маастрихт	3 4	_	_			
36	Палеогеновая система: P_1^1 — нижний палеоцен P_1^2 — верхний палеоцен P_2^1 — нижний эоцен P_2^2 — средний эоцен P_2^2 — верхний эоцен P_3^1 — нижний олигоцен (рупельский	1 2 3 4 5 6	_ _ _ _	_ _ _ _			
27	ярус и его аналоги) Р ₃ 2 — верхний олигоцен	7	-	_			
37	Неогеновая система:	1 2 3 4 5	- - - -	_ _ _ _			
1	ļ						

		Номер кода				
Номер признака	Наименование признака	1	2	3		
38	Четвертичная система:					
30	QI — плейстоцен QII — голоцен, исключая рецентный	1	-	-		
39	Qп — голоцен, исключая рецентный Qп — рецентный	3	<u> </u>	_		
	Географическое распространение					
10	Северная Атлантика: северные моря Американского побережья	,		:		
	северные моря Европейского побережья	1 1	-	-		
	Север Атлантики (без точного указания)	2	l —	-		
	Северная и Центральная Европа и при-	2 3 4	_	l		
	мыкающие акватории	7	-	-		
	Атлантическое побережье США и при- мыкающие к нему штаты	5	_	_		
	побережье Мексиканского залива и при-	5	_	–		
li	мыкающие к нему территории Средиземноморский регион и Тетическая область:					
	Северное Средиземноморье	1		_		
	Южное Средиземноморье	2	_	_		
2	Южная Атлантика:	_				
_	Американское побережье и примыкающие акватории	1	_	_		
	Африканское побережье и примыкающие акватории	2	-	_		
3	Индийская область:					
-	западная часть	1	_	_		
	восточная часть	2		_		
14	Тихоокеанская область:		•			
	восточная часть	1	<u> </u>	_		
	западная часть	2	_			
5	Антарктида	1	_	_		

Среди современных остракод, не способных к осморегуляции гемолимфы, четко прослеживаются три уровня совершенствования конформности (табл. 2, A₁—A₃). Первый уровень (табл. 2, A₁) зарегистрирован у стеногалинных морских ракушковых ракообразных, способных к изоосмии в очень узком диапазоне солености $\sim 30 \div 36$ ‰. Второй (табл. 2, A_2) зарегистрирован у морских остракод, способных изоосмии в более широком диапазоне солености ~ 20÷40‰. $(табл. 2, A_3)$ — у эвригалинных морских ракушковых ракообразных, способных к изоосмии в очень широком диапазоне солености $\sim 8 \div 40 \,\%$. Изоосмия наблюдается у многих современных морских организмов: кишечнополостных, червей, моллюсков, членистоногих, иглокожих и др. Все они — потомки древнейших групп животных Мирового океана. связи с этим осмоконформность считают наиболее архаичным, филогенетически древним типом осмотических отношений внутренней гидробионтов с внешней, а их самих относят к первично-морским формам. В кембрии, ордовике и, очевидно, в силуре остракоды исключительно в водах древнего Мирового океана и были осмоконформерами. За этот период у них, вероятно, был достигнут предел совершенствования клеточной устойчивости к повреждающему воздействию опреснения (табл. 2, $A_1 - A_3$).

В типе примитивных осморегуляторов у рецентных остракод, способных сочетать осмоконформность с гиперосмотической регуляцией гемолимфы при низкой солености, можно выделить два уровня совершенствования гиперосмотической регуляции с одновременным снижением

Подразделение	Типы осмотических отношений											
The response College of the College	١,	A					D	Г	r	r		
Подкласс Ostracoda Отряд Myodocopida	A ₁	A ₂ A ₂	A ₃	$\mathbf{D_1}$	Б ₂	ΒĮ	D_2	1 1	1 2	1 3	1.4	Д
Подотряд Myodocopina	A ₁	A_2										
Семейство Cypridinidae	A	A ₂										
Род Vargula	Aı											
"Philomedes	1 -	A_2										
_,, Euphilomedes	A ₁											
Подотряд Halocypriformes	A ₁	$\mathbf{A_2}$										
Семейство Halocyprididae	A ₁	A ₂										
Род Discoconchoecia	١.	$\mathbf{A_2}$										
" Boroecia	A ₁											
" Paraconchoecia Отряд Podocopida	A	۸.	۸.	B.	Б.	R.	R.	r.	г.	г	г	п
Подотряд Bairdiocopina	A _l A ₁	Α2	тз	ν_1	Б2	υį	<i>D</i> ₂	• 1	1 2	1 3		Д
Семейство Bairdiidae	A											
Род Bairdia	A ₁											
Подотряд Cytherocopina	A	A ₂	A_3	Б	Б	B,	B_2	Γ_1	Γ_{2}	Γ,	Γ.	Д
Надсемейство Bythocytheracea	A	A	A ₃	Б	•	•	•			٠	•	
Семейство Bythocytheridae	'	$\mathbf{A_2}$		•								
Подсемейство Bythocytherinae	1	A_2	A_3									
Род Jonesia	1		A_3									
Подсемейство Pseudocytherinae	i	A_2										
Pog Sclerochilus	١.	A_2		_								
Семейство Paradoxostomatidae	Aı		A_3	Б1								
Poд Paradoxostoma	A ₁		A_3									
" Acetabulastoma	i		A_3	Б ₁								
" Cytherois Надсемейство не определено				ΒĮ								
Семейство Cytheromatidae	ŀ	A_2										
Род Cytheroma		A_2^2										
Надсемейство Cytheracea	A ₁	A_2	Aء	\mathbf{b}_1	$\mathbf{b_2}$			Γ_1				
Семейство Cytheridae	Aı	$\mathbf{A_2^2}$	A ₃	Б,	Б2			$\Gamma_{\rm i}$				
Род Cythere	1 .		A_3	•	-			•				
Семейство Leptocytheridae	1	A_2	-	Б1	Б2			Γ_1				
Род Leptocythere	ŀ	A_2		Б1				_				
" Amnicythere				-	_			Γ_1				
" Tanella				Б				_				
Семейство Limnocytheridae	1				Б2			Γ_{l}				
Подсемейство Limnocytherinae	1				Б2			Γ_1				
Pog Limnocythere " Galolimnocythere	1				Б2			Γ_1				
Семейство Paracytherideidae	A_1							1 1				
Род Paracytheridea	A_1											
Семейство Cytheruridae	A_1	A٥	A_3	Б								
Poд Cytherura	1	2	A ₃	•								
"`Semicytherura	A ₁		A_3	Б1								
,, Howeina	-	A_2	_	•								
"Microcytherura		_	A_3					_				
Семейство Loxoconchidae	A_1	A_2	A_3	Б1				Γ_1				
Род Loxoconcha	A ₁	A_2		Б1				Γį				
" Cytheromorpha	١.	A_2		c				Γ_1^1				
" Hirschmannia	A_1			Б1								
Семейство Schizocytheridae	-	A ₂										
(?) Род <i>Spinileberis</i> Надсемейство Trachyleberidacea		A ₂ A ₂						Γ_{i}				
Семейство не определено	1	~2	ഹു					* 1				
Pog Bicornucythere			A_3									
Семейство Trachyleberididae	ł		A ₃									
Род Carinocythereis			A ₃									
Семейство Hemicytheridae	1	A_2										
Pog Hemicythere		A ₂	A ₂									

Подраздел ение	Типы осмотических отношений	
Pon Urocythereis "Robustaurila "Туггнепосуthere Надсемейство Суtherideidacea Семейство Суtherideidae Род Суtheridea "Cyprideis	A ₂ A ₂ A ₂ Γ ₁ A ₃ B ₁ A ₃ A ₃ A ₃ A ₃	
Семейство Cushmanideidae Род Pontocythere Семейство Xestoleberidinae Род Xestoleberis Надсемейство Terrestricytherasea Семейство Terrestricytheridae Род Terrestricythere Подотряд Cypridocopina (?) Надсемейство Darwinulacea	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Г, Д
Семейство Darwinulididae Род Darwinula Надсемейство Сургіdacea Семейство Paracyprididae Род Aglaiocypris Семейство Pontocyprididae	$\begin{array}{ccc} & & B_2 \\ & B_2 \\ & B_1 & B_2 \end{array} \qquad \Gamma_3$	Г. Д Д Д Д
Род Propontocypris Семейство Candonidae Род Candona Семейство Cyprididae Подсемейство Cyprininae Род Cypris	$\begin{array}{c} B_1 \\ B_1 \\ B_2 \\ B_2 \\ B_3 \end{array}$	Д
" Diacypris Подсемейство Сургіпотіпае Род Cyprinotus " Heterocypris " Alboa	B ₁ B ₂ B ₂ B ₂ B ₂ B ₁	
Подсемейство Dolerocypridinae Род Dolerocypris Подсемейство Eucypridinae Род Mytilocypris " Eucypris	$egin{array}{c} B_1^{\mathfrak{l}} & & & & \Gamma_3 \\ & \Gamma_3^{\mathfrak{d}} & & & \Gamma_3^{\mathfrak{d}} \end{array}$	Γ,
" Lacypris " Lacypris " Lacypris Семейство Cyclocyprididae Семейство Cyprididae Семейство Cypridopsidae Род Cypridopsis " Potamocypris " Plesiocypridopsis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- •

диапазона изоосмии (табл. 2, B_1 — B_2). Первый уровень (табл. 2, B_1) зарегистрирован у широкоэвригалинных морских ракушковых ракообразных, у которых при солености от 2 до 8% гемолимфа гиперосмотична, а при солености от 8 до 50% — изоосмотична окружающей воде. Второй уровень (табл. 2, B_2) зарегистрирован у солоноватоводных остракод морского происхождения. Эти ракушковые ракообразные способны нормально существовать даже в пресной воде. При солености от 30 до 8, реже до 14%, у них наблюдается изоосмия, а при более низкой — гиперосмия гемолимфы.

Сочетание осмоконформности с гиперосмотической регуляцией внутренней среды при низкой солености обнаружено у многих широкоэвригалинных морских обитателей: многощетинковых червей, брюхоногих и двустворчатых моллюсков, ракообразных и др. Считается, что
это — один из первых этапов становления способностей к осморегуля-

ции внутренней среды у гидробионтов. Способность переходить при опреснении от изоосмии к гиперосмии гемолимфы у древних морских остракод, очевидно, стала формироваться еще в силуре, или, самое позднее, в девоне. В течение девонского периода, по всей вероятности, происходило завоевание ракушковыми ракообразными морских солоноватых вод: древних лагун, эстуариев, литоральных и супралиторальных водоемов, в которых соленость опускалась ниже $5-8\,\%$. При этом у древних остракод способность к осмоконформности в олигогалинных условиях обитания, по-видимому, постепенно утрачивалась (табл. 2, $Б_1-Б_2$).

Если учесть, как отмечалось Хлебовичем, критический характер биологического действия солености внутренней среды — около $5-8\,\%$, при переходе через который меняется ряд существенных биологических свойств на разных уровнях биологической интеграции [65], становится понятным переход от осмоконформности к осморегуляции. Среди осморегуляторов у ныне живущих остракод, способных к гиперосмотической регуляции гемолимфы, можно выделить два уровня (табл. 2, B_1 — B_2). При этом второй уровень по отношению к первому нельзя рассматривать как совершенствование гиперосмотической регуляции. Повидимому, это попытка возврата к способу осморегуляции солоноватоводных форм морского происхождения (табл. 2, B_2), т. е. возникновение способности к вторичной осмоконформности при высокой солености.

Первый уровень (табл. 2, В1) зарегистрирован у пресноводных остракод. Их гемолимфа гиперосмотична по отношению к окружающей среде в пределах всего соленостного толерантного диапазона — от пресной до воды соленостью 8 %. При солености более 8 % становится изоосмотичной с окружающей средой и эти организмы быстро погибают. Второй уровень (табл. 2, B_2) зарегистрирован у пресноводных и солоноватоводных пресноводного происхождения ракушковых ракообразных. Гемолимфа у них гиперосмотична только в интервале от пресной до воды соленостью 8 %. При солености от 8 до 14, реже до 20 ‰, наблюдается изоосмия гемолимфы с окружающей водой. Гиперосмотическая регуляция внутренней среды наблюдается практически всех современных обитателей пресных вод: малощетинковых червей, коловраток, моллюсков, ракообразных, насекомых, рыб и др. Способность поддерживать общую осмотическую концентрацию внутри организма на более высоком уровне, чем во внешней среде, является непременным условием для жизни в воде с низкой минерализацией.

Первые пресноводные ракушковые ракообразные появились очень быстро, можно сказать, мгновенно в раннем — среднем карбоне даже раньше. В раннем — среднем триасе также достаточно быстро из морских вод в пресные проникла еще одна большая группа остракод. палеонтологическим данным [Неуструева, 1979 г.; McKenzie, 1981 г.; Гусева, Горский, 1985 г.] в начальный период становления палеозойских и мезозойских пресноводных ракушковых ракообразных их ареалы были приурочены к пресным и олигогалинным водоемам по окраинам морских бассейнов. Только в поздней юре и раннем мелу началось широкое географическое распространение древних ных остракод. Можно предположить, что все это длительное время у ракушковых ракообразных развивались способности к гиперосмотической регуляции (табл. 2, В1-В2) и совершенствовались репродуктивные соленостные адаптации. Лишь с возникновением данных приспособлений могло, по-видимому, начаться широкомасштабное завоевание остракодами низкоминерализованных сред обитания.

У современных ракушковых ракообразных, способных к амфиосмотической регуляции гемолимфы, т. е. сочетающих гиперосмотическую регуляцию при низкой солености с гипоосмотической при высокой, мож-

но выделить четыре уровня совершенствования гипоосмотической регуляции гемолимфы (табл. 2, Γ_1 — Γ_4). Первый уровень (табл. 2, Γ_1) зарегистрирован у некоторых каспийских и аральских солоноватоводных остракод пресноводного происхождения. У них в пресной воде и в воде соленостью 8 % гемолимфа гиперосмотична, а при солености от 8 до 14—16, реже до 20 % — гипоосмотична. Второй уровень (табл. 2, Γ_2) зарегистрирован у некоторых австралийских эвригалинных ракушковых ракообразных пресноводного происхождения. Гемолимфа у них гиперосмотична в интервале от пресной воды до воды соленостью 8 %, изоосмотична — от 8 до 20—24 %, гипоосмотична — от 20—24 до 50 %.

Третий уровень (табл. 2, Γ_3) зарегистрирован у эвригалинных остракод из осолоненных континентальных водоемов и влажных наземных биотопов. У этих организмов способность к гиперосмотической регуляции еще более ярко выражена, а способность к гиперосмотической регуляции гемолимфы остается без изменений. Их гемолимфа гиперосмотична в интервале от пресной воды до воды соленостью 8 и гипоосмотична — от 8 до 50 %. Четвертый уровень (табл. 2, Г4) зарегистрирован у широкоэвригалинных ракушковых ракообразных из гипергалинных континентальных водоемов. На данном уровне способность к гипоосмотической выражена максимально ярко. Подавляющее большинство этих остракод выдерживают осолонение до 100 % и даже выше. Способность же к гиперосмотической регуляции гемолимфы при низкой солености у данных организмов также практически остается без изменений, как и на предыдущих уровнях, т. е. они способны к гиперосмотической регуляции в диапазоне от пресной воды до воды соленостью 8 и к гипоосмотической — от 8 до 100 % и выше.

Амфиосмотическая регуляция внутренней среды наблюдается у некоторых ракообразных и насекомых, а также практически у всех проходных костистых рыб. Этот тип осморегуляции является самым совершенным, так как обеспечивает очень широкую эвригалинность с одновременным поддержанием относительного осмотического гомеостаза в организме. У остракод способность переходить при осолонении от гиперосмии к гипоосмии гемолимфы (табл. 2, Γ_1) стала формироваться, очевидно, уже в мелу, т. е. сразу же после того, как в поздней юре и раннем мелу началось стремительное расширение их ареалов. В кайнозое совершенствование способности к гипоосмотической регуляции и развитие соответствующих репродуктивных соленостных адаптаций позволило ракушковым ракообразным освоить все типы осолоненных континентальных водоемов от солоноватых до гипергалинных.

Среди рецентных морских остракод, способных к исключительно гипоосмотической регуляции, выделить какие-либо уровни развития не удается (табл. 2, Д). У этих остракод гемолимфа гипоосмотична в пределах всего соленостного толерантного диапазона, и только при ности ниже 8—10 % гемолимфа становится изоосмотичной щей среде и эти организмы быстро погибают. Способности тельно к гипоосмотической регуляции внутренней среды наблюдаются у некоторых ракообразных и практически у всех современных морских рыб, как хрящевых, так и костистых, и даже у Latimeria — живого ископаемого среди рыб. Считается, что этот тип происходит от амфиосмотического типа регуляции внутренней среды [Гинецинский, 1963; Potts, Раггу, 1964; 65 и др.]. Предполагают, что в морских условиях постепенно произошла утрата способности к гиперосмотической регуляции. Из этого следует, что морские обитатели, способные исключительно к гипоосмотической регуляции внутренней среды, являются вторичноморскими формами пресноводного происхождения, во всяком случае в своей истории развития они имели такой период, когда были приспособлены к обитанию в пресной или олигогалинной среде. В настоящее

4 Зак. 734

время из-за недостатка данных трудно точно сказать, когда в кайнозое остракоды начали вторичное завоевание морской среды и когда среди них появились формы, способные исключительно к гипоосмотической регуляции. Однако с уверенностью можно утверждать, что данный тип осморегуляции гемолимфы у ракушковых ракообразных самый молодой.

В заключение следует отметить, что в эволюции функции осморегуляции в пределах подкласса Ostracoda прослеживаются полифилетические черты; способность к осморегуляции у остракод, по-видимому, возникала многократно. В этом случае в некоторых семействах остракод эволюционный путь совершенствования типов осморегуляции мог быть пройден независимо.

III. СИСТЕМАТИЧЕСКАЯ ЧАСТЬ

III.1. МОРФОЛОГИЧЕСКИЙ ОЧЕРК

III.1.1. Особенности строения раковин кайнозойских остракод

Одним из первых вопросов при изучении ископаемых остракод является правильное ориентирование раковины. При рассмотрении кайнозойских остракод это не вызывает особых трудностей. Помимо основных общих особенностей, присущих обычно как древним, так и современным группам (расположение центрального мускульного поля в передней половине раковины, заметная выпуклость заднего конца у раковин самок, положение на переднем конце рострума и инцизуры, гидродинамическая ориентация скульптурных элементов, имеющих направление назад, наличие замыкающего устройства на спинном крае), кайнозойские остракоды имеют еще ряд других доступных для изучения признаков.

Прежде всего это определяется лучшей сохранностью кайнозойского материала по сравнению с палеозойским и даже мезозойским. При достаточно хорошей обызвествленности и ненарушенной скульптуре раковины кайнозойских остракод очень часто бывают почти прозрачными, что при просветлении их различными жидкостями и иногда без применения последних дает возможность наблюдать внутреннее строение створок даже при закрытой раковине.

Это в первую очередь относится к подокопидам, составляющим основную массу кайнозойских остракод. Здесь важно иметь в виду, что внутренняя пластинка различно развита на концах и брюшном крае: более широкая с большим числом поровых каналов на переднем конце по сравнению с задним и более узкая в ротовой области (исключение составляют представители цитереттид с неравномерно развитой внутренией пластинкой). Передний элемент замка обычно крупнее на переднем конце; перед аддукторным полем находится фронтальная, а ниже и ближе к переднему концу — мандибулярная подгруппы мускульных отпечатков. Кроме того, ряд групп имеет находящееся в переднеспинном углу глазное образование в виде бугорка снаружи и ямки изнутри. Таким образом, учитывая весь перечисленный комплекс признаков, раковину можно достаточно просто сориентировать, определив се передний и задний концы и спинной и брюшной края.

Диморфность, проявляющаяся обычно в различных пропорциях раковии самцов и самок, не вызывает особых затруднений при отнесении раковин к одному виду. Случаи сильного проявления полового диморфизма довольно редки. Это домациумный тип у цитереллацей и два типа, встреченные у трахилеберидацей: 1) сублокулярный у локулицитереттин (группы, ограниченной в своем распространении Средиземноморьем), 2) различная скульптура створок рода Occultocythereis.

У представителей континентальных групп иногда можно получить представление о половом диморфизме на основании хорошо сохранившихся на раковине отпечатков семенных трубочек или яичников (см. рис. 9).

Наличие в комплексах остракод раковин личиночных стадий различно проявляется в морских и континентальных ассоциациях. В морских

комплексах они обычно редки, при определении видов не создают дополнительных трудностей, но могут представлять интерес в отношении изучения развития отдельных признаков.

Так, по наблюдениям Гартманна [118], поперечные борозды и крыловидные выросты появляются на ранних стадиях, тогда же проявляются и типы поровых каналов. Мускульные отпечатки впервые появляются на третьей личиночной стадии и остаются неизмененными в течение онтогенетического развития. Замок появляется на последних личиночных стадиях и может повторять тип предковых форм. Наружное глазное образование появляется на последней личиночной стадии или у взрослых форм.

Массовость континентального материала и значительные колебания размеров у представителей отдельных групп могут привести к ошибкам в видовых определениях, если не учитывать особенностей строения раковин на различных личиночных стадиях. В этом отношении очень полезны исследования Гартманна, суммировавшего все имеющиеся по этому вопросу данные и результаты собственных наблюдений [118]. Закономерностям увеличения размеров и возможностям применения коэффициента Брукса посвящено значительное количество работ, в том числе Кеслинга и Нила [134, 155].

Форма и очертание раковины у отдельных групп в течение онтогенетического развития изменяются различно. Группы, имеющие округлые очертания (близкие к форме яйца), изменяются мало.

У дарвинулид форма изменяется от округлой до удлиненной, у ципридокопин и цитерокопид наблюдаются наиболее резкие отличия: раковины личинок первых стадий округленно-треугольные, с наибольшей высотой близ переднего конца вследствие быстрого развития антенн [10, 54]. В дальнейшем наибольшая высота смещается к середине; с развитием половых органов удлиняется задний конец. Центральное мускульное поле у ципридокопии из субцентрального положения смещается в сторону переднего конца [Коваленко, 1985 г.]. На первых стадиях раковина слабо обызвествлена и имеет очень тонкие краевые структуры. Скульптура обычно усиливается по мере роста раковины, однако у ципридокопин известны случаи сглаживания скульптуры у взрослых форм. Признаки полового диморфизма на раковине появляются на восьмой личиночной стадии.

Для систематизации кайнозойских остракод, так же как для изучения любой группы ископаемых, большое значение имеют вопросы терминологии морфологических элементов раковин. Помещенный ниже словарь терминов составлен на основе обширного описательного материала по кайнозойским остракодам, а также с учетом уже имеющихся материалов по терминологии морфологических элементов раковин остракод [18, 134]. Нами приводится терминология, наиболее широко используемая при описании кайнозойских остракод, а также ряд относительно новых терминов, появившихся в связи с применением электронной микроскопии и которые впоследствии могут найти более широкое применение. Единой системы буквенных обозначений для терминов в настоящее время еще не существует. Исключение составляют принятые для всех остракод обозначения длины L, высоты H и ширины раковины W.

Для большинства терминов приводятся их эквиваленты на английском языке; исключение составляют термины, используемые только в отечественной литературе и не получившие широкого применения в международной терминологии. В случаях имеющейся синонимии дан перечень дублирующих терминов.

Аддуктор (adductor) — замыкательный мускул и его отпечатки. Аддукторные отпечатки (adductor scars) — см. мускульные отпечат-KH.

Адонтный (adont) — см. замок.

Амфидонтный (amphidont) — см. замок.

Антеромедиальный элемент (anteromedial element) — см. элементы замка.

Антимеродонтный (antimerodont) — см. замок.

Антисоскальзывающие приспособления (antislip) — дополнительные образования каймы: кнопки-упоры, контактные кнопки, защелки, валики, септы, различные выросты, поддерживающие зубы (см. рис. 22. 4).

Базальная линия (basal line) — линия, лежащая в плоскости, которой брюшная сторона тела контактирует с субстратом (рис. 18, 4).

Бесструктурная пластинка — свободная часть внутренней пластинки, не сросшаяся с наружной и образующая вестибюль (см. рис. 21, 1).

Борозда (sulcus, furrow, depression) — углубление на наружной поверхности створки, обычно перпендикулярное к спинному краю, удлиненное в спинно-брюшном направлении. На внутренней поверхности борозде соответствует выгнутость (см. рис. 12, 17, 2).

Брюшная сторона (ventral) — нижняя часть раковины в нормаль-

пом положении.

Брюшно-боковой киль — ребро, разграничивающее боковую брюшную поверхности при развитом крыловидном выступе.

Брюшной край (ventral border, margin)* — очертание створки

брюшной части при рассмотрении ее сбоку 1 (рис. 18, I).

Бугор (bull, knob, tuberde)* — высокий обычно округлый вырост различного размера, возвышающийся над поверхностью раковины. На внутренней стороне раковины ему соответствует углубление рис. 20, 1).

Бугорок (node, pustula) — мелкий округлый вырост на поверхно-

сти раковины. Скульптурное образование I—III порядков.

Вдавленность (depression, sulcate depression)* — широкое относительно неглубокое понижение на наружной поверхности створок без четких границ, иногда отражающееся на внутренней поверхности.

Вздутие (inflation, elevation, swelling)* — большое возвышение на

створке, лишенное четких границ.

Вентральный (ventral) — брюшной.
Вестибюль (vestibule) — пространство между наружной и свободной частью внутренней пластинки (см. рис. 21, 2).

Внутренний край (inner margin) — граница обызвествления внутреннего листка, край внутренней пластинки. Может быть параллельным свободному краю или образует извилистую линию (см. рис. 21).

Внутренний краевой валик (inner list) — проксимальное от каймы

ребро на внутренней пластинке (см. рис. 21, 2).

Внутренний листок (inner lamella of duplicature) — внутренняя

часть дупликатуры (см. рис. 21, 2).

Внутренний хитиновый слой (chitin coating of epidermis) — слой хитина, расположенный между эпидермой и известковым слоем (см. рис. 21, 2).

Внутренняя пластинка (inner lamella) — обызвествленная

внутреннего листка. Синоним: краевая пластинка (см. рис. 21).

Воспринимающая бороздка (accomodation groove)* — бороздка над средней частью замка одной створки, в которую входит спинной край противоположной створки.

Здесь и далее термины, отмеченные знаком *, приводятся по Ивановой [18].

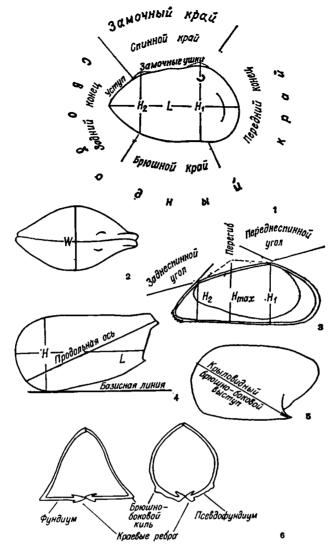


Рис. 18. Основные термины, применяемые при описании формы раковины постпалеозойских остракод на примере представителей Cytherocopina и Cypridocopina; параметры, определяющие размеры раковины. 1—5—схемы составлены Николаевой; 6— положение фундиума и псевдофундиума [152].

 $L = длина; \quad H = высота; \quad H_1, \quad H_2, \quad H_{\max} = высота переднего, заднего концов и максимальная; <math>W = \min$

Вторичная внутренняя пластинка (secondary inner lamella) — часть внутренней пластинки, расположенная между каймой и наружным краем у некоторых родов Сургіdосоріпа. Представляет собой как бы вторичный загиб дупликатуры, перекрывающий первичный наружный край и первичную зону сращения, которые отодвинуты к центру раковины. Синоним: передняя «губа» (рис. 19, 6).

Вторичная зона сращения (secondary marginal zone) — зона сращения вторичной внутренней пластинки с наружным краем (рис. 19, 6).

Вторичное сращение (secondary fusion). Распространено у некоторых групп Суthегосоріпа. При нормально развитой порово-канальной (краевой) зоне происходит сращение первоначально свободной части внутренней пластинки с наружной пластинкой. Сращение наблюдается в виде больших округлых 3—4 участков, между которыми остаются проходы к краевой зоне (рис. 19, 8).

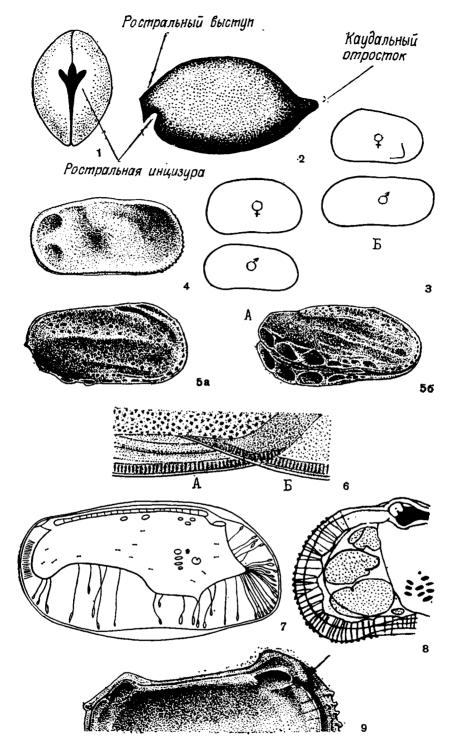


Рис. 19. Форма раковины, типы полового диморфизма, характер зоны сращения, расположение страгулярного зуба.

^{1, 2—} положение ростральной инцизуры у представителей отряда Myodocopida (семейства Cypridinale): 1— род Vargula, 2— род Cypridina [175]: 3—5— типы полового диморфизма: 3— контурный (A—Hemicythere villosa (Sars), B— Cytheromorpha Juscata (Brady), [184]); 4— доманумный. Cytherelloidea hieroglyphica (Bosquet), 6—6 соверонный самки [185], 5— субложулярый. Loculicytheretta pavona (Brady); раковина самки: а—с боковой стороны, 6—с наклоном [89]; 6—8— зона сращения: 6— первичная (A) и вторичная (B) внутренние пластинки у Chlamydotheca hummelincki Triebel, передняя часть брюшного края правой створки (фрагмент) [18], 7— внутренняя пластинка и линия сращения, род Cytheretta [129], 8— вторичное сращение, Caudites пірееліз Van den Bold; точкой затенены участки сращения внутреннего листка с наружной пластинкой [185]; 9— страгулярный зуб (показан стрелкой) у Paleoabyssocythere clivosa (Nikola eva) [51].

Высота раковины (height, H)* — наибольшее расстояние между спинным и брюшным краями раковины по перпендикуляру к длине и ширине (см. рис. 18, 1, 3, 4).

Гемиамфидонтный (hemiamphidont) — см. замок.

Гемимеродонтный (hemimerodont) — см. замок.

Гетеродонтный (heterodont) — см. замок.

Глазной бугорок (eye tubercle) — наружное глазное образование в переднеспинной части створок над боковыми глазами. Синонимы: глазная линза, пятно (рис. 20, 1).

Голамфидонтный (holamphidont) — см. замок.

Гонгилодонтный (gongylodont) — см. замок.

Депрессия (depression)* — широкое относительно неглубокое понижение различных размеров на наружной поверхности створок без четких границ, иногда отражающееся на внутренней поверхности.

Десмодонтный (desmodont) — см. замок.

Дизъюнктивные шипы (disjunctive spines) — мелкие бугорки или шипы, расположенные на стенках ячеек. Скульптурные образования I—III порядков (рис. 20, 4).

Диморфизм (dimorphism) — см. половой диморфизм.

Дистальный (distal) — удаленный от центральной части раковины. Длина раковины (lenght, L)* — наибольшее расстояние между концами раковины, измеренное в горизонтальной плоскости (см. рис. 18, 1, 4).

Дно (solum) — дно скульптурных ячеек или ямок.

Домаций (domacium) — округлая открытая вдавленность на заднем конце створки самки для помещения в нее одного яйца (см. рис. 19, 4).

Дорсальное мускульное поле (dorsal muscle area) — участок прикрепления мускулов тела и конечностей, расположенный в спинной области (см. рис. 6).

Дорсальный (dorsal) — спинной.

Дорсальные отпечатки (dorsal scars) — см. мускульные отпечатки. Дупликатура (duplicature) — двойная складка кожи, покрывающая тело животного; состоит из наружной обызвествленной пластинки и внутреннего кожистого листка, обызвествленного только по краю. Пространство между пластинками заполнено клеточными элементами и служит местом размещения некоторых внутренних органов (см. рис. 8).

Единичные поверхностные поры (single normal pore) — см. по-

верхностные поры.

Единичные поровые каналы (single pore canals) — см. нормальные

поровые каналы.

Заднеспинной угол (posterior dorsal angle) — угол, образованный линиями спинного края и заднего конца в боковом очертании (см. рис. 18, 3).

Задний конец (posterior end)* — задняя часть раковины или створ-

ки (см. рис. 18, 1).

Замок (hinge) — участок прочного смыкания створок, обычно расположен вдоль спинного края. Основными типами замков, встречающихся у кайнозойских остракод, являются адонтный, лофодонтный, меродонтный и амфидонтный, которые подразделяются на подтипы. Помимо того, следует ряд переходных типов (рис. 13, 21, 22, 1-3).

Адонтный (adont) — простой замок, состоящий из валика на одной створке и соответствующего ему желобка на другой. Различаются подтипы:

ректодонтный (rectodont)— не насеченный адонтный замок:

прионодонтный (prionodont)— насеченный адонтный замок;

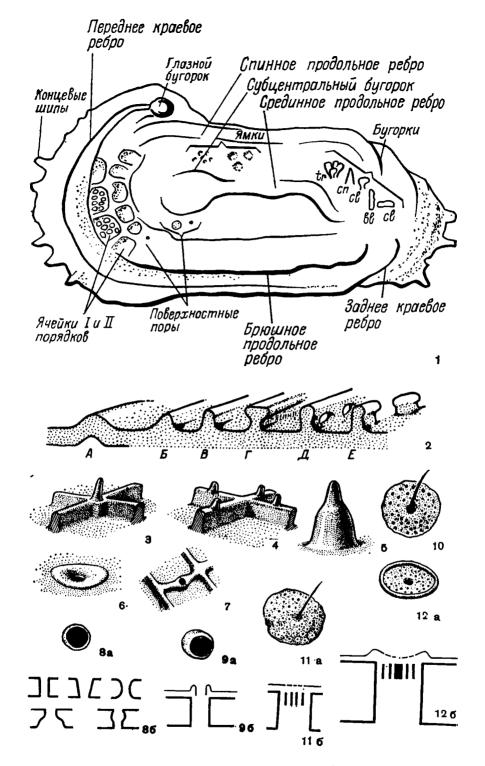
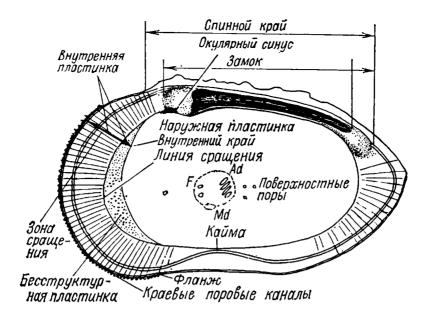



Рис. 20. Наружное строение раковины (2—7 [173]; 8—12 [138]).

. п.с. 20. Паружное строение раковины (2—t [13]; 0—t2 [130]). 1—общий вид; бугорки: tr — турретные, cn — конулы, cl — клавеллятные, bl — буллы; 2—t1 типы складчатых образований: A — рельефная складка; E — карина, B—E — ребра (B — экскаватное, F — подрытое. A — перфорированное: E — состоящее из отдельных элементов); 3—5 — типы поверхностных шипов по расположению: S — дизъюнктивный, A — конъюнктивный по форме; S — мамиллятный; типы поверхностных пор (6, 7, 8a—t22) и их возможное продольное сечение (86—t26): 6—t9 — открытые, t0—t2 — ситовидные.

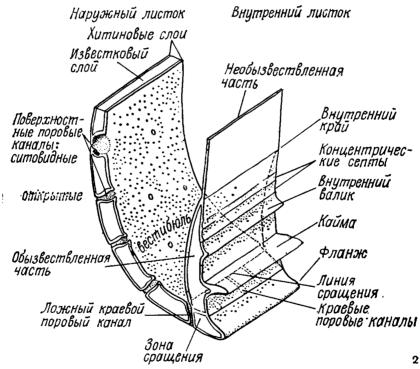


Рис. 21. Внутренние структуры.

Схематическое изображение: 1— внутреннего строения правой створки остракод на примере представителя Echinocytherideinae. 2— структур наружной и внутренней пластинок в сечении через переднюю и краевую часть [134].

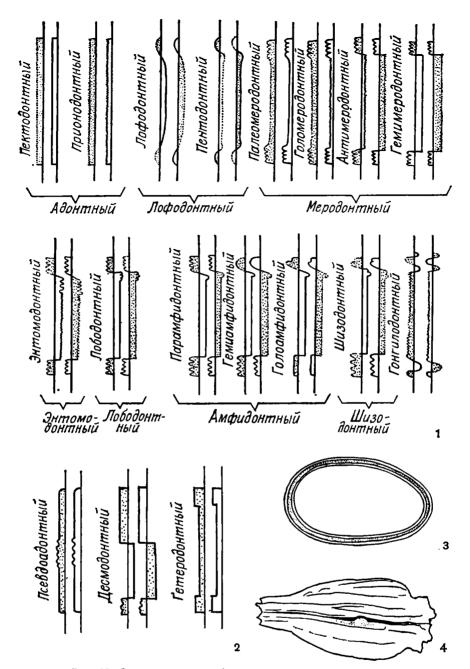


Рис. 22. Схематическое изображение тинов строения замков.

1 — [175], видоизменено; 2 — [118]; 3 — круговой замок, род Cytherella [118]; 4 — контакт по брюшному краю при помощи защелки, род Ambocythere [145].

псевдоадонтный (pseudadont) — адонтный замок, имеющий в средней части валика зуб, а в средней части желобка — ямку (рис. 22, 2).

Пофодонтный (lophodont) — трехэлементный замок, состоящий на меньшей (обычно правой) створке из зубовидных выступов в краевых отделах и желобка в среднем отделе. Все элементы гладкие. Подразделяется на подтипы:

лофодонтный (lophodont)— замочные элементы равной высоты:

пентодонтный (pentodont)— срединный элемент возвышен (или углублен) в краевых частях. Разновидностью этого замка является:

Десмодонтный (desmodont)— имеющий удлиненный передний и укороченный средний отделы. Средний и задний отделы могут быть насечены (рис. 22, 2).

Меродонтный (merodont) — трехэлементный замок, характеризуется насеченными зубовидными выступами (ямками) в краевых отделах и длинным валиком (желобком) в среднем отделе. Различаются подтипы:

палеомеродонтный (paleomerodont) — равноэлементный замок (все погруженные части находятся на одной створке, выступающие — на противоположной). Средний отдел гладкий;

голомеродонтный (holomerodont) — равноэлемент-

ный замок, насеченный в среднем отделе;

антимеродонтный (antimerodont) — разноэлементный замок (на одной створке имеются возвышающиеся и погруженные элементы) с насеченным срединным отделом;

гемимеродонтный (hemimerodont) — разноэлементный замок, гладкий в среднем отделе. Близким к этому типу является:

Гетеродонтный (heterodont) — замок трехэлементный, равноэлементный, гладкий.

Энтомодонтный (entomodont) — четырехэлементный замок; состоит на правой створке из краевых зубовидных выступов и 2 элементов среднего отдела: насеченной ямки и следующего за ней гладкого и тонконасеченного валика.

Лободонтный (lobodont) — четырехэлементный замок, близкий к энтомодонтному, но имеющий более короткий и округлый передний элемент среднего отдела.

Амфидонтный (amphidont) — четырехэлементный замок с хорошо развитыми зубами в краевых отделах меньшей (обычно правой) створки. Передний элемент среднего отдела всегда гладкий. Следующий за ним желобок (валик) гладкий или насечен. Различаются подтипы:

парамфидонтный (рагатрhidont) — краевые элементы насечены; задний элемент среднего отдела гладкий или насечен;

гемиамфидонтный (hemiamphidont) — передний краевой элемент гладкий или ступенчатый; задний — насечен; задний элемент среднего отдела чаще гладкий;

голоам фидонтный (holamphidont) — краевые элементы гладкие или ступенчатые; задний элемент среднего отдела гладкий или насечен.

Шизодонтный (schizodont) — тип четырехэлементного замка, близкий к амфидонтному, но имеет раздвоенный передний элемент.

Гонгилодонтный (gongilodont) — замок представлен на одной из створок в среднем отделе гладким или насеченным валиком; в переднем отделе — гладким зубом, окруженным ямкой, в заднем отделе — двумя округлыми зубами, разделенными глубокой ямкой. На противоположной створке соотношение элементов обратное.

Замочная линия (hinge line) — см. замочный край.

Замочная ямка (socket) — погруженный элемент замка, в который входит зуб противоположной створки; может быть открыта в полость раковины или ограничена поддерживающим зубом (см. рис. 13).

Замочные ушки (hinge ears) — арковидные или угловатые выступы спинного края над краевыми ямками большей створки при сложном (обычно амфидонтном) замке (см. рис. 18, 1).

Замочный валик (hinge bar) — гладкое и насеченное выступающее ребро, обычно составляющее средний отдел замка или задний элемент среднего отдела, входит в желобок противоположной створки (см.

рис. 13).

Замочный желобок (hinge groove) — гладкая или насеченная канавка, в которую входит замочный валик противоположной створки (см. рис. 13).

Замочный край (hinge margin)* — линия сочленения створок на спинном крае. Она может совпадать со спинным краем или располагаться ниже него. Синоним: замочная линия (см. рис. 18, 1).

Заокулярная депрессия — короткая депрессия за глазным бугорком,

обычно косо ориентированная по отношению к замочному краю.

Защелка (snap-knob; snap-pit) — зажим на брюшной стороне раковины, дополняющий замок. Образован на одной из створок бугорком из каймы, сросшейся с внутренним валиком, на другой — ямкой. Синоним: вентральный зуб (ventral tooth) (рис. 22, 4).

Зона сращения (marginal zone) — полоса слияния наружной и внутренней пластинок вдоль свободного края створки. Обычно пронизана краевыми поровыми каналами. Синонимы: краевая зона, порово-ка-

нальная зона (см. рис. 19, 6-8; 21).

Зуб (tooth)* — выступающий элемент замка створки, входящий в ямку на противоположной створке. Может быть гладким, насеченным или более сложным (см. рис. 13).

Зубчик (toothlet) — мелкий зуб, выступ; серия зубчиков, может

формировать отдел замка.

Известковый слой (calcareous layer) — относительно толстый слой раковины, состоящий преимущественно из карбоната кальция; развивается по хитиновой матрице экзо- и эндокутикулы и заключен между так называемыми верхним и нижним хитиновыми слоями, т. е. слоями с повышенной концентрацией хитина.

Инверсия (inversion, reversal structure) — обратное (не свойственное данной группе) соотношение размеров створок и замочных элемен-

тов.

Интрамуральные поры (intramural pore) — выходы поверхностных

поровых каналов на стенках ячеек.

Инцизура (incisure, rostral incisure) — отверстие на переднем конце раковины для постоянного выхода плавательных антенн A_{11} у представителей отряда Myodocopida; обычно расположена под ростральным выступом (см. рис. 19, 1, 2).

Истинные краевые поровые каналы (true marginal pore canals) —

см. краевые поровые каналы.

Кайма (selvage) — первоначальный край раковины, после обызвествления — гребневидная обызвествленная складка. Располагается по свободному краю раковины или продвинута на внутреннюю пластинку; в последнем случае она расположена на створках асимметрично и способствует их более плотному смыканию (см. рис. 21). На замочном крае участвует в образовании замочных структур (см. рис. 13).

Карапакс (сагарасе) — см. раковина.

Кардинальные углы (cardinal angles) — углы, образованные замочной линией и линией концов раковины; часто совпадают с переднеспинным и заднеспинным углами.

Карина (carina) — у кайнозойских остракод — скульптурное ребро на поверхности створок различного положения и сечения (см. рис. 20, 2).

Каудальный отросток (caudal process) — различной длины отросток, обычно в верхней половине заднего конца створок, направлен назад или вверх, иногда с отверстием на конце (см. рис. 19, 2).

Клава (clava) — бугорок, удлиненный в продольном или параллельном краям направлении. Скульптурное образование 1 порядка (см.

рис. 20,1).

Клоденеллидный диморфизм (kloedenellid dimorphism)* — тип полового диморфизма, характеризующийся вздутием задней части раковины половозрелых самок. При характеристике кайнозойских остракод термин употребляется редко.

Клювовидный выступ (beak) — клювообразный выступ в переднебрюшной части раковин Cyprideidae (Podocopida). Может быть отделен от общей поверхности бороздой. Не гомологичен и не аналогичен ростральному выступу миодокопид. Синоним: ростроподобный выступ.

Кнопка-упор (knob-stop) — см. антисоскальзывающие приспособ-

ления.

Конвергенция краев (convergence of margins) — сходимость линий спинного и брюшного краев по направлению к заднему концу, когда передний конец выше заднего.

Контактная кнопка (contact cnob) — см. антисоскальзывающие

приспособления.

Контактный край (contact margin)* — линия соприкосновения створок при закрытой раковине, за исключением спинного края. Синоним: смычной край.

Контурный диморфизм — тип полового диморфизма, при котором отличия раковин самцов и самок проявляются в различных очертаниях бокового контура [Иванова, 1979 г.] (см. рис. 19, 3).

Конула (conulus) — конический скульптурный бугорок на поверх-

Конула (conulus) — конический скульптурный бугорок на поверхности раковины, иногда пронизанный поверхностным поровым каналом.

Скульптурное образование I—III порядков (см. рис. 20, 1).

Конъюнктивные бугорки (conjunctive spines) — мелкие шиповидные бугорки, располагающиеся по углам граней ячеистоскульптированной поверхности. Скульптурные образования I-III порядков (см. рис. 20,3).

Концевые шипы (marginal spines) — шипы на конце створок.

Концентрические септы (concentric septum) — см. септы.

Краевая пластинка — см. внутренняя пластинка.

Краевое ребро (marginal rim) — у кайнозойских остракод; ребро, протягнвающееся вдоль края раковины (см. рис. 20).

Краевой элемент (terminal element) — см. элементы замка.

Краевые поровые каналы (marginai pore canals) — поровые каналы, расположенные в плоскости сращения наружной и внутренней пластинок и проходящие от лиши сращения до наружного края. Синонимы: истинные краевые поровые каналы, радиальные поровые каналы (см. рис. 19, 21).

Краевые структуры (marginai structures) — образования, расположенные по краю раковины (шипы, иглы) или связанные с внутренней пластинкой (антисоскальзывающие приспособления) (см. рис. 21).

Круговой замок (holosolenic hinge) — замок цитереллид, где на большей правой створке вдоль всего края развит контактный желобок, в который входит контактный валик левой створки (рис. 22, 3).

Круговой охват — перекрывание створок, при котором одна из створок почти полностью охватывает другую. Встречается у остракод с круговым и другими типами замков.

Крыловидный выступ (alate extension)* — наружный боковой выступ в брюшной половине раковины, обычно сильно расширяющийся на-

зад (см. рис. 18, 5).

Ксестолеберисовое пятно (xestoleberis spot) — серповидное пятно, расположенное в переднеспинной части створок, образованное хитиновым слоем. Внутри пятна наблюдается расщепление на отдельные участки. Происхождение не известно. Встречается только у представителей семейства Xestoleberididae. Синоним: кутикулярное пятно.

Кутикулярное пятно — см. ксестолеберисовое пятно.

Латеральные поровые каналы (lateral pore canals) — см. нормальные поровые каналы.

Левоваликовый замок* — замок, на котором валик среднего отде-

ла расположен на левой створке.

Лигамент (ligament) — эластичная связка на спинном крае остракод, может совпадать по длине с замочным краем и быть длиннее или короче него.

• Линия сращения (line od concrescence) — линия, лежащая в плоскости сращения наружной и внутренней пластинок и являющаяся внутренней границей зоны сращения (см. рис. 21).

Лободонтный (lobodont) — см. замок.

Ложные поровые каналы (false pore canals) — краевые поровые каналы, проходящие частично в зоне сращения, но открывающиеся устьями на наружную поверхность близ края раковины (см. рис. 21, 2).

Локули (loculi) — глубокие округлые открытые ямки на наружной

стороне заднебрюшной части раковины (см. рис. 19, 5).

Лофодонтный (lophodont) — см. замок.

Мамиллятные шипы, бугорки (mammilated spines) — шипы или бугорки, утолщенные в основании и приостренные на конце. Скульптурные образования III порядка (см. рис. 20, 5).

Мандибулярные отпечатки (mandibular scars) — см. мускульные

отпечатки.

Меродонтный (merodont) — см. замок.

Мускульное поле (muscle area) — общее очертание площади прикрепления мускулов; образовано отдельными отпечатками (пятнами).

Мускульное пятно (muscle spot) — след прикрепления одного му-

скульного тяжа. Синоним: стигма.

Myскульные отпечатки (muscle scrars) — следы прикрепления мускульных тяжей к внутренней поверхности наружной пластинки раковины в виде шрамов или бугорков. Синоним: мускульные бугорки. Различаются два основных поля, или группы: дорсальное и центральное (см. рис. 6). В дорсальном поле находятся отпечатки мускулов тела и конечностей. В центральном мускульном поле находятся следы прикрепления аддуктора (замыкательного мускула) и следы тяжей от мандибул и антенн; в соответствии с этим выделяются подгруппы: аддукторная, фронтальная и мандибулярная. Аддукторная подгруппа объединяет отпечатки замыкательного мускула, расположенные в передней половине раковины, ближе к середине. Фронтальная подгруппа ставляет собой один или несколько отпечатков, расположенных перед аддукторным полем. В состав фронтальной подгруппы могут входить антеннальные и один из мандибулярных отпечатков. В мандибулярной подгруппе относятся один или два отпечатка, расположенные перед аддукторным полем и ниже у метакопид и подокопид. Они представляют собой следы прикрепления хитиново-мышечных тяжей, поддерживающих протоподит мандибул и прикрепленных к его внешней стороне. Отпечаток, входящий в состав фронтальной подгруппы у представителей подотряда Cytherocopina, представляет собой след прикрепления мандибулярной мышцы, протягивающейся от внутренней стороны протоподита (см. рис. 14, 15—18).

Мускульный бугорок (muscle-scars node) — см. субцентральный бугорок.

Мутные пятна — см. опаловидные пятна.

Наружная пластинка (outer lamella)* — твердая наружная оболочка раковины, состоящая из нескольких слоев — среднего известкового и сильно обогащенных хитином наружного и внутреннего.

Наружный зуб (outer tooth) — поддерживающее заток образование наружной пластинки, имеет треугольную форму. Расположен перед передним отделом большей створки. Синоним: краевой зуб.

Наружный край (free margin)* — линия окончания створки вдоль

свободного края.

Наружный хитиновый слой (outer chitinous layer) — тонкий хитиновый слой, покрывающий известковый слой наружной пластинки. Фор-

мируется сразу после линьки.

Нормальные поровые каналы (normal pore canals) — каналы, пропизывающие наружную пластинку более или менее перпендикулярно к ее поверхности. Могут иметь различные диаметры, поперечные сечения и форму устьев (пор): открытые и ситовидные (см. рис. 20, 6—12). Синснимы: поверхностные, радиарные, латеральные поровые каналы.

Нулидонтный замок (nulidont hinge) — неразвитый замок.

Одноэлементный замок — замок, состоящий из одного элемента.

Окулярный синус (ocular sinus) — ямка под глазным бугорком, с внутренней стороны створок, занятая при жизни животного глазом (см. рис. 21, 1).

Опаловидные пятна (opaque spots) — мутные пятна на фоне прозрачных створок, присутствующие у некоторых неогеновых и современных родов. Вероятной причиной является различное направление оптических осей кристаллов кальцита в известковом слое. Синоним: мутные пятна.

Орнаментация (surfase ornament) — см. скульптура.

Отделы замка — составные исходные части сложного замка (см. рнс. 13).

Открытые поверхностные поры (open normal pore) — наружные выходы поверхностных поровых каналов — отверстия — округлых или субокруглых очертаний; могут иметь бортик (rimmed pore canals). Размеры исчисляются микрометрами (см. рис. 20, 8, 9). Синоним: единичные поры.

Отпечатки мускулов — см. мускульные отпечатки.

Охват (overlap)* — смыкание створок раковины, при котором край одной створки находит на край другой. Синоним: перекрывание.

Очертания (outline of shell)*— контуры раковины при рассмотрении ее сбоку, с брюшной и спинной сторон или с концов (см. рис. 11, 18).

Папилла (pappilla) — колючка, шип, игла; скульптурное образование III порядка.

Пентодонтный — см. замок.

Перегиб спинного края — угол, образуемый спинным краем в месте наибольшей высоты раковины (см. рис. 18, 3).

Переднеспинной угол (anterodorsal angle) — угол, образуемый линиями спинного края и переднего конца; может совпадать с передним кардинальным углом (см. рис. 18, 3).

Передний кардинальный угол (anterior cardinal angle) — угол, образуемый линиями замочного края и переднего конца.

Передний конец (anterior end)* — передняя часть раковины.

Передний край (anterior border margin)* — очертание переднего конца раковины при рассмотрении ее сбоку.

Перекрывание — см. охват.

Периоральное ребро (perioral costula) — часть брюшного краевого ребра, огибающая ротовую область; элемент скульптуры I порядка.

Перфорированное ребро (perforate carina) — ребро с отверстиями; элемент скульптуры I порядка (см. рис. 20, 2).

Поверхностные поровые каналы — см. нормальные поровые каналы.

Поверхностные поры — устья поверхностных поровых каналов.

Поддерживающие зубы (anti-sleep teeth) — дополнительные выступы каймы, подпирающие ямки на замочном крае одной из створок; на противоположной створке соответствующие им углубления могут отсутствовать. Способствуют укреплению замка.

Подрытое ребро (undercut carina) — скульптурное ребро, утонь-

шенное в основании.

Половой диморфизм (sexual dimorphism) — см. диморфизм.

Полоски (striae) — см. септы.

Поперечная борозда (vertical sulcus) — рельефное образование, представляющее собой углубление на наружной и выгнутость на внутренней поверхности; вытянута в вертикальном направлении и ориентирована примерно перпендикулярно к спинному краю; сильнее выражена в спинной части раковины. На раковинах кайнозойских остракод могут присутствовать одна или две борозды (см. рис. 12, 17). Синонимы: вертикальная борозда; расчлененность раковины.

Поперечное сечение (transverse section)* — вертикальное сечение створки или раковины в спинно-брюшном направлении, перпендикуляр-

нос к длине.

Поровая конула (pore conulus) — конический шип, внутри которого проходит поровый канал. Элемент скульптуры I—III порядков.

Поровые каналы (pore canals) — каналы, пронизывающие раковину насквозь и содержащие при жизни животного нервные и железистые клетки. Различаются нормальные и краевые поровые каналы.

Поры (роге) — устья поровых каналов, выходящие на поверхность раковины.

Постмедиальный элемент (postmedial element) — см. элементы зам-

Правоваликовый замок — замок, в котором валик среднего отдела расположен на правой створке.

Прионодонтный (prionodont) — см. замок.

Продольная ось раковины (axis)* — линия, соединяющая наиболее выступающие точки переднего и заднего концов (см. рис. 18, 4).

Продольное сечение (frontal section)* — горизонтальное сечение створки или раковины в переднезаднем направлении, перпендикулярное к высоте.

Продольные ребра (складки) — ребра, орнентированные примерно параллельно длине раковины. Элементы рельефа или скульптуры I порядка.

Проксимально (proximal) — по направлению к центральной части раковины.

Простые поровые каналы (simple pore canals) — одиночные, неразветвляющиеся краевые поровые каналы.

Псевдокраевые поровые каналы (pseudomarginal pore canals) — протоки через вторичную зону сращения к краевым поровым каналам у некоторых цитерокопин (см. рис. 19, 8).

Псевдофундиум (pseudofundium) — слабовыпуклая часть брюшной поверхности, заключенная между брюшно-боковыми килями обеих створок (см. рис. 18, 6).

Пустула (pustula) — мелкий выступ на поверхности створок; может заключать в себе поровый канал. Элемент скульптуры III порядка. Равноэлементный замок — замок, где все возвышающиеся по отно-

шению к замочному краю элементы находятся на одной створке, а погруженные — на другой.

Радиально-лучистая оторочка (radially striate flange) — тонкое про-

должение фланжа.

Радиальные поровые каналы (radial pore canals) — см. краевые поровые каналы.

Радиальные септы (radial septum) — см. септы.

Радиарные поровые каналы (radiar pore canals) — нормальные, или поверхностные, поровые каналы. Термин не рекомендуется для употребления.

Разноэлементный замок — замок, где на обеих створках присутствуют как возвышающиеся по отношению к замочному краю, так и по-

груженные элементы.

Раковина (shell)* — защитная оболочка (наружный скелет), покрывающий мягкое тело животного, образованный двумя более или менее симметричными створками, соединенными связкой или связкой и замком вдоль спинного края. Синоним: карапакс.

Расщепленные мускульные отпечатки (divided-muscle scars) — ме-

ста прикрепления раздвоенных на концах мускульных тяжей.

Ребро (ridge)* — вытянутое скульптурное образование на поверхности створки. Элемент скульптуры I порядка.

Ректодонтный (rectodont) — см. замок.

Рельеф (broad relief) — различные структуры раковины или створок, отражающиеся на внутренней поверхности. Синоним: широкий рельеф, макроскульптура.

Ретикуляция (reticulation) — см. яченстая скульптура.

Розеточное расположение отпечатков аддуктора (rosette aductor scars) — примерно радиальное расположение удлиненных пятен (без центрального пятна) в контуре округлого мускульного поля (см. рис. 14, 11).

Ростр (rostrum)* — клювообразный выступ переднего конца раковины представителей отряда Myodocopida, нависающий над инцизурой. Расположен обычно на середине высоты створки или выше (см. рис. 19, 2).

Ростроподобный выступ — см. клювовидный выступ.

Сагиттальное сечение (sagittal section)* — вертикальное сечение створки или раковины в переднезаднем направлении, перпендикулярное к ширине.

Свободная часть внутренней пластинки (free part of the inner la-

mella) — см. бесструктурная пластинка.

Свободный край (free margin) — края створок, не соединенные замком и связкой: передний, брюшной и задний (см. рис. 18, 1).

Селяция (celation) — развитие дополнительного верхнего слоя кальцита, частично перекрывающего скульптуру.

Септы (septa) — очень тонкие ребра на внутренней пластинке: 1) на краевом валике, кайме и дистально от них располагаются радиальные септы, служат для более плотного смыкания створок; 2) на свободной части внутренней пластинки, или бесструктурной пластинке, располагаются параллельно внутреннему краю концентрические септы, происхождение и назначение их неясно. Синоним: полоски.

Ситовидные поверхностные поры (sieve-type pore) — наружные выходы поверхностных поровых каналов, закрытые ситовидной пластинкой закругленных очертаний. Могут располагаться в плоскости поверхности, ниже нее или иметь бортики. Размеры исчисляются микрометрами (см. рис. 20, 10-12).

Сифон (siphon) — отверстие на заднем конце раковины у некоторых представителей отряда Myodocopida.

Скульптура (sculpture) — наружные поверхностные образования известкового слоя раковины, обусловленные определенным расположением хитиновой матрицы и не отражающиеся на внутренней поверхности раковины. Синоним: орнаментация, мезоскульптура. По относительной величине, в некоторой степени условно, выделяются образования I, II и III порядков.

Смычной край — см. контактный край.

Спинной край (dorsal border margin)*— очертание створки в спинной ее части при рассмотрении сбоку. Может совпадать с замочным

краем или располагаться выше последнего (см. рис. 18, 1).

Спиральное расположение отпечатков аддуктора — по терминологии Грамма, мускульные пятна расположены по спирали, закручивающейся сверху и вперед вниз, с числом оборотов от одного неполного до полутора [14]. При сближенных оборотах спирали можно различить один бугорок сверху и два ряда под ним: передний, состоящий из трех бугорков, и задний — из двух (см. рис. 14, 14).

Створка (valve)* — одна из двух частей раковины. Различают пра-

вую и левую створки.

Стенки ячеек (muri) — перегородки скульптурных ячеек или ямок. Синоним: перегородка.

Стигма — место прикрепления отдельного мышечного пучка [14].

Синоним: пятно.

Страгулум (stragulum) — тип охвата у палеозойских остракод, где одна из створок сильно перекрывает другую в области переднеспинного угла.

Страгулярный зуб (stragular tooth) — дополнительный зуб на левой створке перед передним отделом (ямкой) амфидонтного замка некоторых трахилеберидацей. Синонимы: булавовидный зуб с петлевидным выгибом, ложный зуб, удлиненный килевидный зуб (см. рис. 19, 9).

Сублокулярный половой диморфизм (sublocular sexual dimorphism) — тип полового диморфизма у кайнозойских представителей подсемейства Loculicytherettinae (Cytherettidae), при котором раковины самок снабжены локулями на наружной поверхности заднебрюшной части раковины. Установлено, что эти образования не способствуют вынашиванию молоди, однако точное их назначение не известно (см. рис. 19. 5).

Субцентральный бугорок (subcentral tubercle) — хорошо обособленный куполовидный бугорок с наружной стороны раковины, которому изнутри соответствует ямка; внутри нее или по бортам располагаются аддукторные и фронтальные мускульные отпечатки. Синоним: мускуль-

ный бугорок (см. рис. 20, 1).

Терминальный элемент замка (terminal element of hinge) — краевой элемент. См. замок.

Толщина стенки раковины (thickness) — расстояние между наружной и внутренней поверхностями стенки раковины.

Турретный бугорок (turret) — крупный короткий бугорок, несущий на конце венец из более мелких бугорков. Скульптурное образование I и II порядков (см. рис. 20, 1).

Уступ — скос верхней части заднего конца при рассмотрении в боковой проекции (см. рис. 18, 1).

Ушко — см. замочное ушко.

Фланж (flange) — приостренное ребро, формирующее дистальный край наружной пластинки у некоторых групп остракод (см. рис. 21).

Фронтальный отпечаток (frontal scars) — см. мускульные отпечат-ки.

Фулькральное пятно (fulcral spot) — след упора протоподита мадибул на раковинах некоторых *Cytherocopina*. Находится выше и между фронтальным и аддукторным отпечатками (см. рис. 7).

Фундиум (fundium) — плоская часть брюшной поверхности, отделенная от боковой поверхности брюшно-боковыми ребрами (см. рис. 18, 6).

Центральное мускульное поле (central muscle area) — см. мускуль-

ные отпечатки.

Центрическое расположение отпечатков аддуктора — пятна расположены по овальному или округлому контуру вокруг центрального пятна [14].

Шизодонтный (schizodont) — см. замок.

Шипы (spines)* — обычно заостренные более или менее длинные выросты на поверхности или концах раковины, сплошные или полые внутри.

Ширина раковины (width, W) — наибольшее расстояние между боковыми поверхностями створок, перпендикулярное к длине и высоте

(см. рис. 18, 2).

Широкий рельеф (broad relief) — см. рельеф.

Экскаватное ребро (excavate carina) — вертикально-отвесное

скульптурное ребро І порядка (см. рис. 20, 2).

Элементы замка (hinge elements) — отделы простого или сложного замка. В русской терминологии элементам сложного замка равнозначны только передний и задний краевые отделы. Средний отдел подразделяется на два элемента: передний и задний, которые в английской терминологии называются антеромедиальным и постмедиальными элементами (см. рис. 13).

Энтомодонтный (entomodont) — см. замок.

Ямка (pit) — округлое углубление на поверхности раковины.

Скульптурное образование !—III порядков (см. рис. 20, 1).

Яченстая скульптура (reticulation) — сетка полигональных ячеек, покрывающих поверхность раковины. Скульптурное образование I и II порядков (см. рис. 20, I).

Ячейка (fossa) — элемент ячеистой скульптуры.

111.2. ПРИНЦИПЫ И КРИТЕРИИ СИСТЕМАТИКИ КАЙНОЗОЙСКИХ ОСТРАКОД

Одной из основных задач классификации является определение относительного ранга различных категорий, к которым отнесены организмы, и их сопоставление. Естественная классификация базируется на выявлении родственных соотношений таксонов и определении их эволюционного развития путем сравнительного морфологического изучения организмов с учетом географического и экологического критериев. Для решения этих задач необходимо установление наиболее стабильных (надежных) таксономических признаков. Помимо трудностей, имеющихся при изучении любой группы организмов, — гомеоморфии, неравномерности развития отдельных структур, параллелизма в развитии, осложняющих выбор надежных признаков, — имеется ряд специфических моментов, осложняющих также и разработку систематики остракод.

Нельзя не считаться с тем, что пути исследования эмбриональных признаков, в том числе филэмбриогенезов, очень ограниченны вследствие больших трудностей определения на ископаемом материале последовательных стадий по раковинам личинок, остающимся после линьки. Однако в первую очередь сложность выбора надежных таксономических признаков усугубляется тем, что современные остракоды классифицируются биологами на основании признаков мягкого тела, и главным образом конечностей, с целью сравнительного морфологического изучения и гомологизации с конечностями других групп ракообразных с хорошо разработанной классификацией. Палеонтологи могут использовать критерии, полученные только на основании изучения раковины, од-

нако они имеют возможность изучить изменение этих признаков на про-

тяжении определенного геологического времени.

Первая научная классификация остракод была создана в 1865 г. Сарсом, объединившим все известные к тому времени роды современных остракод [163]. Положив в ее основу строение конечностей современных представителей, Сарс подразделил отряд Ostracoda на 4 подотряда: Муодосора, Cladocopa, Platycopa и Podocopa. Впоследствии Г. Мюллером [153] были объединены Cladocopa с Муодосора, Podocopa с Platycopa.

Ряд последовавших за тем классификаций Ульриха, Джонсона, Хеннингсмоена [Ulrich, 1894 г.; Jones, 1901 г.; Henningsmoen, 1953 г.] касался систематизации палеозойских остракод, и только Покорны [Pokorny, 1954 г., 1958 г.] была разработана общая классификация, охватывающая все группы остракод — от палеозойских до современных.

В системе Покорны ранг Ostracoda повышен до подкласса, подотряды, предложенные Сарсом, рассматриваются также в ранге подотрядов, но Podocopa и Platycopa объединены в отряд Podocopida. Муодосора и Cladocopa отнесены к отряду Myodocopida. В эту же систему помещены 2 отряда — Leperditiida и Beyrichiida, объединяющие палеозойские семейства остракод. При создании своей классификации Покорны учитывал как данные по строению мягкого тела остракод, так и особенности строения раковины: мускульные отпечатки, замочные структуры, характер внутренней пластинки и типы полового диморфизма.

Дальнейшая разработка систематики остракод продолжалась советскими и американскими палеонтологами.

В начале 60-х годов появились классификации остракод, принятые в «Основах палеонтологии» [54] и в американском справочнике «Treatise on Invertebrate Paleontology» [175]. В них сохраняются черты преемственности по отношению к классификации Покорны. Однако каждая из этих классификаций является более детальной и более разработанной; в них впервые приводятся схемы родственных соотношений семейств в пределах принимаемых в системах отрядов. В «Основах палеонтологии» в основу систематики древних остракод положены различные морфологические особенности раковины и рассмотрена взаимосвязь с изменениями в их строении, возникающими в процессе филогенетического развития.

Палеозойские остракоды, не имеющие более молодых представителей, в «Основах палеонтологии» [54] объединены в отряд Paleocopida, в «Treatise...» [175] отнесены к трем отрядам: Archaeocopida, Leperditiocopida, Paleocopida.

Отряды Podocopida и Myodocopida, к которым относятся все постпалеозойские остракоды, в рассматриваемых классификациях занимают одинаковые уровни, однако отличаются иной таксономической структурой. В классификации, принятой в «Основах палеонтологии», выделяются 4 подотряда, в американской системе состав отряда Podocopida дополнен новым отрядом Metacopina, установленным Сильвестером-Брэдли. Ниже приводится сравнение этих систем до уровня надсемейств и некоторых семейств.

«Основы палеонтологии», 1960 г.

Подкласс Ostracoda Latreille, 1806 Отряд Myodocopida G. Müller, 1894 Подотряд Myodocopa Sars, 1865 «Treatise on Invertebrate, Paleontology», 1961 r.

Подкласс Ostracoda Latreille, 1806 Отряд Myodocopida Sars, 1866 Подотряд Myodocopina Sars, 1866

Entomoconchidae Семейство Bradv, 1868 Семейство Cypridinidae Baird, Семейство Halocypridae Dana, 1852 Подотряд Cladocopa Sars, 1865 Семейство Polycopidae Sars, 1865 Entomozoidae Pri-Семейство b v l. 1950 Podocopida Отряд Mülleг, 1894 Подотряд Podocopa Sars, 1865 Надсемейство Bairdiacea Sars, 1887 Надсемейство Cypracea S y I v e ster-Bradley, 1949 Надсемейство Cytheracea Baird, 1850 Надсемейство Healdiacea Harlton, 1933 Семейство Darwinulidae Brady et Norman, 1889 Надсемейство Thlipsuridacea Jon e s, 1869 Volganellacea Надсемейство Mandelstam, 1956 Подотряд Platycopa Sars, 1865 Семейство Cytherellidae Sars, Семейство Cavellinidae Egorov, 1950 Семейство Barychilinidae U 1rich, 1894

(?) Надсемейство Entomozoaceae (Jones, 1873), Pribyl, 1951 Налсемейство Entomoconchacea Bradv, 1868 Надсемейство Thaumatocypridacea G. Müller, 1894 Надсемейство Cypridinacea Baird, 1850 Надсемейство Halocypridacea Dana, 1852 Cladocopina Подотряд Sars, 1866 Polycopidae Семейство Sars. 1866 Podocopida Отряд Müller, Подотряд Podocopina Sars, 1866 Надсемейство Bairdiacea Sars, 1888 Надсемейство Cypridacea Baird, 1845 Надсемейство Darwinulacea В г аdv et Norman, 1889 Надсемейство Cytheracea Baird, 1850 Подотряд Metacopina Sylvester-Bradley, 1961 Надсемейство Healdiacea Harlton, 1933 Надсемейство Quasilitacea Соryel et Malkin, 1936 (?) Надсемейство Thlipsuracea Ulrich, 1894 Подотряд Platycopina Sars, 1866 Семейство Cytherellidae Sars, 1865

В сравниваемых классификациях объемы подотрядов Myodocopina, Cladocopina и Platycopina по числу объединяемых ими родов оцениваются примерно одинаково: от нескольких единиц до первых десятков родов. Максимальным объемом характеризуется подотряд Podocopida, представители которого составляют основную часть ископаемых и современных родов постпалеозойских остракод (более 160 по «Основам палеонтологии» [54] и более 300 родов по «Treatise...» [175]).

Появление этих названных выше крупных справочников и вслед за ними книги «Палеозойские и постпалеозойские остракоды» [184, 185] создало прочную базу для дальнейшего изучения остракод. Последовавший за этим период был временем интенсивного изучения ископаемых остракод и накопления нового материала. Использование электронного микроскопа привело к более детальному изучению раковины и ее ультраструктур, выявлению значительного числа новых признаков и выделению множества новых таксонов родового уровня. Особенно заметно это проявилось на подокопидах, наиболее разнообразно и обильно представленных в ископаемом материале, поскольку мезозойская вспышка эволюции остракод связана именно с этой группой.

В разделе изучения постпалеозойских остракод появились существенные расхождения между «неонтологической» (зоологической) и «палеонтологической» систематиками, о чем неоднократно поднимался воп-

рос на международных симпозиумах и всесоюзных коллоквиумах по остраколам.

За последние 20 лет возрастает число монографий по отдельным семействам остракод с параллельным описанием раковины и мягкого тела родов и видов, имеющих современных представителей [85; Benson, 1977 г.; 120, 142, 143, 139, 140, 155, 74].

Наметилась тенденция к углубленному изучению внутренних

структур палеозойских остракод [Грамм, 1977 г.; 14].

В 1964—1975 гг. Гартманном и Гартманном и Пури [Hartmann, 1964 г.; 118, 119) были предложены варианты новой систематизации таксонов современных и ископаемых остракод. Определение Leperditiida и Bevrichiida дано ими по Покорны, классификация же отрядов Myodocopida и Podocopida и подразделение их на подотряды повторяет классификацию, принятую в «Treatise...». Впервые диагноз подотряда Metacopina, подтверждаемого Гартманном, дополнен характеристикой современных форм. Существенные отличия по сравнению с классификациями «Основ палеонтологии» и «Treatise. . .» заключаются в таксономической структуре подотрядов и главным образом понижении ранга составляющих их таксонов. Так, надсемейства сматриваются в качестве семейств, семейства — как подсемейства, подсемейства — как трибы, а трибы — как группы. Эта классификация практически является «зоологической», и ее расхождение с «палеонтологической» объясняется разным подходом к оценке таксономического значения одних и тех же признаков. Сущность этих расхождений достаточно четко изложена Шорниковым [75, с. 233]: «Морфологическая эволюция остракод характеризуется чрезвычайной мозаичностью. Элементы мягкого тела (за исключением органов, связанных с репродукцией) эволюционировали в основном по пути редукции. Эволюция же раковины и органов, связанных с репродукцией, характеризуется преимущественно прогрессирующим усложнением. Конечности остракод в пределах семейств чрезвычайно однотипны, обычно отличаются друг от друга редукцией тех или иных элементов, а новообразования весьма редки и сравнительно незначительны. Зачастую у таксонов, выделенных по морфологии раковин, в строении конечностей не находится адекватных тем, которые положены в основу подразделения таксонов того же ранга в других группах ракообразных. Поэтому у «зоологов» постоянно ощущается тенденция к более широкому пониманию объема надвидовых таксонов, чем у палеонтологов».

Далее Шорников рассматривает возможные пути преодоления несоответствия между «зоологической» и «палеонтологической» классификациями. Основные из них можно обобщить как следующие: увеличение внимания к морфологии мягкого тела и ее коррелятивным связям со строением раковины от видового до семейственного уровня, а также углубленное изучение эволюционного развития отдельных групп. Совершенно очевидно, что создание единой естественной классификации остракод — дело будущего. Исследования в этом направлении наряду с уже имеющимися [141] будут продолжаться. Очень важно, что в настоящее время появились работы, отражающие положение остракод в общей системе ракообразных [62].

Филогенетический критерий положили в основу своих исследований Грюндель и Коцур. Грюнделем был проанализирован огромный коллекционный и литературный материал по ископаемым и современным представителям подокопид, число родов которых в 1975 г., по данным Гартманна, превысило 570 [118].

Грюндель осуществил ревизию родового (а во многих случаях видового) состава отдельных семейств группы; в результате были составлены схемы генетических соотношений отдельных родов в пределах семейств и надсемейств подокопид и дана общая схема филогенетических

соотношений важнейших семейств подокопид. Подробный разбор одной из таких систем был сделан Николаевой ранее на примере изучения надсемейства Trachyleberidacea [49, 52].

Выбор основных систематических признаков осуществлялся Грюнделем на базе анализа таксонов высокого ранга в их полном объеме, при этом отдавалось предпочтение генетически устойчивым морфологическим признакам. Учитывались направленные изменения признаков в отдельных филумах. Вопрос об объеме таксонов и их положении в системе решался путем комплексного анализа, в результате которого Грюндель пришел к выводу о необходимости повышения ранга подотрядов Platycopina S a r s, 1865, и Podocopina S a r s, 1865, до уровня отрядов, считая что уже с ордовика их развитие идет независимыми путями. Ранг надсемейства Cytheracea повышается им до подотряда Cytherocopina G r ü n d e l, 1967. Логическим завершением этой системы было признание Грюнделем ранга подотряда для надсемейств Bairdiacea и Cypridacea (Bairdiocopina K o z u r, 1972, и Cypridocopina J o n e s, 1901), первоначально объединяемых им в одном подотряде — Bairdiocopina G r ü n d e l, 1967.

Таким образом, по ряду последовательных работ Грюнделя его система для подокопидных остракод может быть представлена в следующем обобщенном виде:

Подкласс Ostracoda Latreille, 1806 Отряд Platycopida S a r s, 1866 [Gründel. Подотряд Kloedenellocopina S c o t t, 1961 1967 г.] Platycopina Sars, 1866 Отряд Podocopida Šars, 1866 Подотряд Bairdiocopina Kozur, 1972 Cypridocopina Jones in Chapman, 1901 Cytherocopina Gründel, 1967 Надсемейство (?) Tricorniacea Blumenstengel, Gründel, 1965 Kozur, 1975 r.; Bythocytheracea Sars, 1926 Gründel, Permianacea Schneider, 1948 1978 г.1 >> Cytheracea Baird, 1850 Надсемейство Trachyleberidacea Sylvester-Bradlev, 1948 Cytherideidacea Sars, 1926

Несмотря на то, что в ряде случаев при создании классификации Грюндель обнаруживает формальный подход к оценке ряда явлений (особенно параллелизма в развитии), его система, основанная на филогенетическом и геохронологическом принципах, более всего отвечает практическим запросам применения остракод для целей биостратиграфии.

При составлении настоящей работы по возможности учитывались все данные по вопросам классификации постпалеозойских остракод. За основу предлагаемой здесь системы была взята наиболее стабильная часть всех классификаций постпалеозойских остракод, а именно: подотряды Сарса, выделенные им на основании сравнительно-морфологического анализа по принципам одинаковости критерия и равноценности таксонов [163]. В классификацию включен также подотряд Metacopina, выделенный Сильвестером-Брэдли на ископаемом материке и подтвержденный впоследствии Гартманном [118].

По поводу объединения подотрядов Сарса в таксоны более высоких категорий существуют различные мнения. Основными из них являются классификации, принятые в «Основах палеонтологии» [54] и «Treati-

se. . . » [175]. Альм [Alm, 1916 г.], Бронштейн [10] считают Platycopa и Podocopa обособленными таксонами, а Myodocopa и Cladocopa более тесно связанными между собой. Имеется и вариант объединения подотрядов Сарса с палеозойскими лепердиидами и бейрихиидами [136]. Более обоснованной представляется точка зрения Ван Морковена о самостоятельности всех четырех подотрядов Сарса [163].

В процессе работы над справочником по систематизации кайнозойских остракод была установлена валидность большей части существующих в настоящее время родовых таксонов ископаемых подокопид. Классификация их дана по общим схемам систем, наиболее полно разработанным в разделе каждой крупной группы. Цитерокопины классифицируются по Грюнделю [106, 113]; ципридокопины — по Мандельштаму и Шнейдер [37], Мандельштаму и Андрееву [1968 г.] и Гартманну и Пури [119]; баирдиокопины — по Маддокс [142]; дарвинулацеи — по Кашеваровой и Неуструевой [25]. При этом вносились некоторые изменения и дополнения, которые позволил сделать анализ имеющегося материала. Миодокопиды и кладокопиды, очень незначительно распространенные в кайнозойских отложениях СССР, а также метакопиды и платикопиды описываются по Гартманну [118].

Признавая в целом правомерность иерархического строя системы Грюнделя для подокопидных остракод, последовательно принимается Суthегосоріпа в ранге подотряда и в соответствии с этим (не нарушая принципа равноценности таксонов) как подотряды: Bairdiocopina и Cypridocopina. Следуя далее этому же принципу, Podocopida, Platycopida и находящиеся с ними на одном уровне Myodocopida, Cladocopida и

Metacopida принимаются в ранге отрядов.

В существующих классификациях остракод в той или иной степени использованы почти все критерии, принимаемые при классификации других групп. Основным критерием является сравнительно-морфологический, параллельно с ним присутствует и экологический, тесно связанный со спецификой группы. Уже со времени публикации «Основ палеонтологии» все большее значение приобретают филогенетический и геохронологический критерии. Учитывается также (преимущественно на семейственном уровне) и географический критерий.

Вопросу выбора таксономических признаков ископаемых остракод посвящено много работ [34, 35; Мандельштам, 1967 г.; 31; Николаева, 1971 г., 1975 г.; 49, 106, 111, 113]. При некоторой ограниченности набора признаков, характеризующих раковины остракод, их иерархия построена в значительной степени на детализации. В результате неравномерности развития отдельных групп возможны случаи, когда одни и те же признаки, характеризующие определенный таксономический уровень в одной группе, могут быть признаками иного уровня в другой группе. Предпочтение отдается генетически устойчивым признакам. Во всех случаях имеется возможность определить ведущие признаки или комбинацию признаков, характеризующую тот или иной таксономический уровень.

В рамках принятой в данной работе классификации основные таксономические признаки различных рангов могут быть представлены следующим образом.

Отряд

Присутствие инцизуры (только Myodocopida). Очертание центрального мускульного поля, его состав, количественный порядок, тип расположения пятен. Наличие или отсутствие зоны сращения внутренней пластинки (только Platycopida). Правоперекрывающий охват (только Platycopida). Охват створок в ротовой области (только Podocopida). Степень проявления полового диморфизма; домациумный тип полового диморфизма (только Platycopida).

Подотряд (для Podocopida)

Число и характер расположения пятен в аддукторном поле и его соотношение с фронтальными и мандибулярными отпечатками. Тенденция к усложнению скульптурных образований. Тенденция к появлению наружного глазного образования. Отсутствие или наличие ситовидных поверхностных пор.

Надсемейство

Строение и форма раковины.

Число и соотношение аддукторных и фронтальных мускульных отпечатков. Тип замка. Тенденция к усложнению краевых структур.

Семейство

Форма раковины. Наличие или отсутствие широкого рельефа. Тип охвата створок. Характер линии сращения. Типы скульптурных образований. Детали расположения мускульных пятен; тенденция к расщеплению мускульных отпечатков. Степень сложности замка. Наличие или отсутствие глазного устройства. Характер краевых структур.

Подсемейство

Детали формы раковины. Тенденция к проявлению определенных скульптурных образований. Относительная ширина порово-канальной зоны и характер поровых каналов (простые, ветвящиеся).

Рол

Детали формы раковины. Детали строения скульптуры. Наличие или отсутствие глазного образования. Число краевых поровых каналов. Форма вестибюля, детали строения внутренней пластинки.

Вид

Мелкие детали формы раковины. Мелкие детали скульптуры. Мелкие детали расположения краевых поровых каналов.

Ниже приводится классификация, принятая при описании кайнозойских остракод, распространенных на территории СССР.

Подкласс Ostracoda Latreille, 1806 Отряд Myodocopida Sars, 1865 Подотряд Myodocopina Sars, 1865 Семейство Cypridinidae Ваіг d, 1850 Подсемейство Cypridininae Baird, 1850 Род Cypridina Milne-Edwards, 1840 Отряд Cladocopida Sars, 1865 Семейство Polycopidae S a r s, 1865 Род Polycope Sars, 1865 Отряд Platycopida Sars, 1865 Семейство Cytherellidae S a r s, 1865 Род Cytherella Jones, 1849 » Cytherelloidea Alexander, 1929 Отряд Metacopida Sylvester-Bradley, 1961 Семейство Sigilliidae M andelstam, 1960 Род Sigillium Z. Kuznetsova, 1960 Отряд Podocopida Sars, 1865 Подотряд Bairdiocopina Kozur, 1972 Надсемейство Bairdiacea Sars, 1888 Семейство Bairdiidae Sars, 1888 Подсемейство Bairdiinae Sars, 1888 Род Bairdia M c C o y, 1844

Род Bairdoppilata Coryell, Sample et Jennings, 1935 Подсемейство Bythocypridinae Maddocks, 1969 Род Bythocypris Brady, 1880

Подотряд Cypridocopina Jones in Chapman, 1901

(?) Надсемейство Darwinulacea Brady et Norman, 1889 Семейство Darwinulidae Brady et Norman, 1889 Род Darwinula Brady et Robertson, 1885

Род *Darwinata* Вта d у ет ко в е Надсемейство не определено

(?) Семейство Macrocyprididae G. Müller, 1912 Род Macrocypris Brady, 1868

Надсемейство Cypridacea Baird, 1845

Семейство Pontocyprididae G. Müller, 1894

Подсемейство Pontocypridinae G. Müller, 1894

Род Pontocypris Sars, 1865

- » Propontocypris Sylvester-Bradley, 1947 Подсемейство Argilloeciinae Mandelstam, 1960 Род Argilloecia Sars, 1865
- » Abyssocypris V an den Bold, 1974 Семейство Paracyprididae Sars, 1923 Подсемейство Paracypridinae Sars, 1923

Род Paracypris Sars, 1865

» Aglaiocypris Sylvester-Bradley, 1946 Семейство Candonidae Kaufmann, 1900 Подсемейство Candoninae Kaufmann, 1900 Род Candona Baird, 1845

» Candonopsis V a v r a, 1891

» Cryptocandona Kaufmann, 1900

» Lineocypris Zalanyi, 1929

» Typhlocypris Veidovsky, 1882

Подсемейство Advenocypridinae Schneider, 1960 Род Advenocypris Schneider, 1956

Подсемейство Paracandoninae Schneider, 1960 Род *Paracandona* Hartwig, 1889

Семейство Disopontocyprididae M a n d e l s t a m, 1956

Род Disopontocypris M and elstam, 1956

» Amplocypris Zalanyi, 1944

- » Bakunella Schneider, 1958
- » Caspiocypris Mandelstam, 1956
- » Caspiolla Mandelstam, 1960
- » Caspiollina Mandelstam, 1957

» Guriella I m n a d z e, 1971

- » Liventalina Schneider, 1958
- » Papacaspiocypris Schneider, 1963
- » Pontoniella Mandelstam, 1960
- » Rectocypris Schneider, 1958

» Turkmenella Schneider, 1963 Семейство Cyprididae Baird, 1845

Подсемейство Сургіdinae Baird, 1845

Род Cypris O. F. Müller, 1776

- » Virgatocypris Malz et Moaedpour, 1973 Подсемейство Cyprinotinae Bronstein, 1947 Род Cyprinotus Brady, 1886
 - » Dogelinella Schneider, 1957
 - » Hemicyprinotus Schneider, 1957

» Heterocypris Claus, 1893

Подсемейство Dolerocypridinae Triebel, 1961 Род *Dolerocypris* Kaufmann, 1900 Подсемейство Eucypridinae Bronstein, 1947 Род Eucypris V a v r a, 1891 Род Cypricercus S a r s, 1895

» Kassinina Mandelstam, 1960

» Moenocypris Triebel, 1959

» Prionocypris Brady et Norman, 1896

» Pareucypris Schneider, 1957

» Pseudoeucypris Schneider, 1957

Подсемейство Herpetocyprellinae Bronstein, 1947 Род *Herpetocyprella* Daday, 1909 Подсемейство Herpetocypridinae Kaufmann, 1900

Род Herpetocypris Brady et Norman, 1889

» Ilyodromus Sars, 1894

» Stenocypria G. Müller, 1901

» Stenocypris Sars, 1889

Подсемейство Hungarocypridinae Bronstein, 1947 Род Hungarocypris Vavra, 1906
Подсемейство Mediocypridinae Schneider, 1960 Род Mediocypris Schneider, 1956
Подсемейство Scottinae Bronstein, 1947
Род Scottia Brady et Norman, 1889
Семейство Cyclocyprididae Kaufmann, 1900
Подсемейство Cyclocypridinae Kaufmann, 1900
Род Cyclocypris Brady et Norman, 1870
Подсемейство Cypriinae Kovalenko, subfam. nov.

Род Cypria Zenker, 1854 » Physocypria Vavra, 1898

» Bentocypria Kovalenko, 1987

Семейство Cypridopsidae Kaufmann, 1900 Подсемейство Cypridopsinae Kaufmann, 1900

Род Cypridopsis Вгаd y, 1868 Род Potamocypris Вгаd y, 1870

» Zonocypris G. Müller, 1898

Семейство Ilyocyprididae Kaufmann, 1900 Род *Ilyocypris* Brady et Norman, 1889 Семейство Notodromatidae Kaufmann, 1900 Подсемейство Notodromatinae Kaufmann, 1900

Род Notodromas Lilljeborg, 1853

Подсемейство Cyproidinae Hartmann, 1963

Род Cyprois Zenker, 1854

Семейство и подсемейство не определено

Род Karschicypridea Gramm et Bukharina, 1967

Семейство не определено

Подсемейство Baturinellinae Schneider, 1960

Род Baturinella Schneider, 1960

Подотряд Cytherocopina Gründel, 1967

Надсемейство Bythocytheracea Sars, 1926 Семейство Bythocytheridae Sars, 1926

Подсемейство Bythocytherinae S a r s, 1926

Триба Bythocytherini Sars, 1926

Род Bythocythere Sars, 1865

» Bythoceratina Hornibrook, 1952

Подсемейство Pseudocythrinae Schneider, 1960

Триба Pseudocytherini Schneider, 1960

Род Pseudocythere Sars, 1865

Триба Sclerochilini Schornikov, 1981

Род Sclerochilus Sars, 1865

(?) Семейство Paradoxostomatidae Brady et Norman, 1889 Род *Paradoxostoma* Fischer, 1855 Род Cytherois G. Müller, 1884 Надсемейство Cytheracea Baird, 1850 Семейство Cytheridae Baird, 1850 Род Cythere O. F. Müller, 1785 Семейство Limnocytheridae Sars, 1925 Подсемейство Limnocytherinae Sars, 1925 Род Limnocythere Brady, 1868 Подрод L. (Limnocythere) Brady, 1868 Род Paralimnocythere Carbonnel, 1965

» Denticulocythere Carbonnel et Ritzkowski, 1969 Подсемейство Timiriaseviinae Mandelstam, 1960

Род Kovalevskiella Klein, 1963

Семейство Leptocytheridae H a n a i, 1957

Род Leptocythere Sars, 1928

» Amnicythere Devoto, 1965

» Callistocythere Ruggieri, 1953

» Euxinocythere Stancheva, 1968

» Tanella Kingma, 1948

Семейство Cytheruridae G. Müller, 1894 Подсемейство Cytherurinae G. Müller, 1894

Триба Cytherurini G. Müller, 1894

Pog Cytherura Sars, 1865

» Eucytherura G. Müller, 1894

» Hemicytherura Elofson, 1941

» Orthonotacythere Alexander, 1933

Подсемейство Cytheropterinae H a n a i, 1957

Триба Cytheropterini Напаі, 1957

Род Cytheropteron Sars, 1865

Триба Eocytheropterini Mandelstam, 1960

Род Konarocythere Krutak, 1961

Семейство Paracytherideidae Puri, 1957

Род Paracytheridea G. Müller, 1894

Семейство Schizocytheridae M a n d e l s t a m, 1960

Подсемейство Schizocytherinae M and elstam, 1960

Pog Schizocythere Triebel, 1950

» Amphicytherura Butter et Jones, 1957

» Cnestocythere Triebel, 1950 » Palmenella Hirshmann, 1916

Подсемейство Paijenborchellinae Deroo, 1966

Род Eopaijenborchella Keij, 1966

Семейство Loxoconchidae S a r s, 1925

Род Loxoconcha Sars, 1865

» Loxocorniculina Krstich, 1972

» (?) Cytheromorpha Hirschmann, 1909

Надсемейство Trachyleberidacea Sylvester-Bradley, 1948

Семейство Brachycytheridae Puri, 1954

Род Opimocythere Hazel, 1968

Семейство Protocytheridae L ü b i m o v a, 1955

Род Abyssocythereis Schornikov, 1975

Семейство Mandocytheridae Gründel, 1969

Подсемейство Paleoabyssocytherinae Nikolaeva, subfam. nov.

Род Paleobyssocythere Вепson, 1977

Семейство Veeniidae Puri, 1974

Род Mosaeleberis Deroo, 1966

Семейство Buntoniidae Apostolescu, 1961

Род Buntonia Howe, 1935

Семейство Cytherettidae Triebel, 1952

Подсемейство Cytherettinae Triebel, 1952

Род Cytheretta G. Müller, 1894

» Flexus Neviani, 1928

Подсемейство Paracytherettinae Gründel, 1969

Род Paracytheretta Ťriebel, 1941

Семейство Trachyleberididae Sylvester-Вга dley, 1948

Подсемейство Trachyleberidinae Sylvester-Bradley, 1948

Триба Trachyleberidini Sylvester-Bradley, 1948

Род Trachyleberis В r a d y, 1898

» Acanthocythereis R. Howe, 1963

Триба Costini Hartmann et Puri, 1974

Род Costa Neviani, 1928

- » Falunia Grekoff et Moyes, 1955
- » Paleocosta Benson, 1977

Триба Dumontini Gründel, 1976

Pog Dumontina Deroo, 1966

Триба Hazelini Nikolaeva, trib. nov.

Род Hazelina Moos, 1966

Триба Mauritsini Deroo, 1966

Род Curfsina Deroo, 1966

Триба Oertliellini Liebau, 1975

Род Oertliella Pokorny, 1964

- » Paragrenocythere Al-Furaih, 1975
- » Agrenocythere Benson, 1972
- » Doricythereis Gründel, 1976
- » Horrificiella Liebau, 1975

Триба Parvacythereidini G r ü n d e l, 1973

Род Parvacythereis Gründel, 1973

- » Trachyleberidea Bowen, 1953
- » (?) Occultocythereis Ноwe, 1951 Триба Phacorhabdotini Gründel, 1969

Род *Phacorhabdotus* Howe et Laurencich, 1958

» Praephacorhabdotus Gründel, 1974

Подсемейство Pterygocythereidinae Puri, 1957

Триба Pterygocythereidini Puri, 1957

Род Pterygocythereis Blake, 1933

- » Alatacythere Murray et Hussey, 1942
- » (?) Bosquetina Keij, 1957
- » Carinovalva Sissingh, 1973

» Pterygocythere Hill, 1954

Триба Kingmaini G r ü n d e l, 1976

Род Kingmaina Keij, 1957

Подсемейство Echinocythereidinae H a z e l, 1967

Род Echinocythereis Puri, 1953

Подрод E. (Echinocythereis) Puri, 1953

» E. (Sclediocythereis) Siddiqui, 1971

Род Megahemicythere Witt, 1967

» Rablimis Hazel, 1967

Семейство Thaerocytheridae H a z e l, 1967 Подсемейство Thaerocytherinae H a z e l, 1967

Род Grinoineis Liebau, 1975

- » Hammatocythere Keen, 1972
- » Hornibrookella Moos, 1965
- » Martinicythere Bassiouni, 1969
- » Muellerina Bassiouni, 1965
- » Robertsonites Swain, 1963

Семейство Hemicytheridae Puri, 1953

Подсемейство Hemicytherinae Puri, 1953

Род Normanicythere Neale, 1959

Триба Hemicytherini Puri, 1953 Род Hemicuthere Sars, 1925

» Hemicutheria Pokorny, 1955

Turrhenocuthere Ruggieri, 1955

» Elofsonella Pokorny, 1955

Pon Nereina Mandelstam, 1957

Триба Aurilini Ригі, 1974

Pog Aurila Pokorny, 1955

- » Annomatocythere Sohn, 1970
- Pokornuella Oertli, 1956
- Mutilus Neviani, 1928

Триба Urocythereidini Hartmann et Puri, 1974

Urocythereis Ruggieri, 1950

Семейство Campylocytheridae Puri. 1960

Род Leguminocythereis Howe, 1936

Надсемейство Cytherideidacea Sars, 1925

Семейство Cytherideidae S a r s, 1925

Подсемейство Cytherideinae Sars, 1925

Триба Cytherideidini Sars, 1925

Род Cytheridea Bosquet, 1852

Cuprideis Jones, 1857

- » Miocyprideis Kollmann, 1960
- » Hemicyprideis Malz et Triebel, 1970
- » Neocyprideis Apostolescu, 1956
- » Haplocytheridea Stephenson, 1936
- » Ovocytheridea Grekoff, 1951
- » Cyamocytheridea Oertli, 1956
- Aulocytheridea Howe, 1951
- » Clithrocytheridea Stephenson, 1936
- » Heterocyprideis Elofson, 1941
- » Pseudocytheridea Schneider, 1949
- Eucutheridea Bronstein, 1930

Подсемейство Cuneocytherinae M a n d e l s t a m, 1960

Род Cuneocythere Lienenklaus, 1894

Семейство Schulerideidae M a n d e l s t a m, 1959

Род Schuleridea Swartz et Swain, 1946

Подрод S. (Schuleridea) Swartz et Swain, 1946

S. (Aeguacytheidea) Mandelstam, 1947

Семейство Eucytheridae Puri, 1954

Pog Eucythere Brady, 1868

Семейство Cushmanideidae Puri, 1973

Род Pontocythere Dubowsky, 1939

- » Paracyprideis Klie, 1929
- » Cryptocyprideis Karmischina, 1975

» Cytherissa Sars, 1925

Семейство Krithidae M a n d e l s t a m, 1958

Род Krithe Brady, Crosskey et Robertson, 1874

Thracella Sönmez, 1963

Семейство Xestoleberididae S a r s, 1928

Pog Xestoleberis Sars, 1865

- » Uroleberis Triebel, 1958
- » Pontoleberis Krstich et Stancheva, 1967

111.3. СИСТЕМАТИЧЕСКОЕ ОПИСАНИЕ ТАКСОНОВ

Приводится описание родов остракод, распространенных в кайнозойских отложениях СССР. В диагнозах приняты следующие градации размеров раковин, мм: менее 0,5 — маленькая; 0,5—1 — средних разме-

Общая шкала для четвертичных отложений [41]

Система	Подзона	Раздел	Звено	
Четвертичная (антропо- геновая)	Globorotalia ca- lida calida	Плейстоцен	Верхнее Среднее Нижнее	

Таблица 4 Региоярусы Восточного Паратетиса, Западного Паратетиса и Средиземноморья [Стратиграфия СССР, неогеновая система, 1986 г.]

	_ re	,	Средиземноморье		Западный Паратетис	Восточный Паратетис	
Отдел	Подотдел	Надъ- ярус	Региоярус		Региоярус	Региоярус	
Четвертичный				Четвертичный	Четвертичный		
						Апшерон	
Плиоцен	Ниж- Верх- ний ний	нй	Пьяченццо		Румыний	Акчагыл	
		Росселий	Занклий	,	Дакий	Киммерий	
	Верхиий	Берхнии Кастеллий	Мессин	,	Понт	Понт	
			Тортон		Паннон	Меотис	
		Цезолий	Сарравалий		Сармат s. str.	Сармат s. l.	
	Средний		,		Баден	Конка	
Миоцен	نَّ	Lle				Караган	
W	l 	<u> </u>	Лангий			Чокрак	
		 Жирондий			Карпат	Тархан	
	Нижний				Оттнанг	Коцахур	
			Бурдигал		Эггенбург	Сакараул	
		Жир	Аквитан		Эгер (верхняя часть)	Кавказ	
			<u> </u>			(5)	

Общая шкала		1			1	·····					
Система	Отдел	Подотдел	Ярус	Зоны по планктонным фораминиферам	Зоны по	Горизонты Бахчисарай- ского разреза					
		Верхний	Хаттский								
	Олигоцен	Нижний	Рюпельский	?	Helicoponthos Coccolithus su	phaera reticulata					
		Верхний	Приабонский	Globigerapsis tropicalis	Discoaster barbadi- ensis	Sphenolithus pseudoradians Istmolithus re- curvus Chiasmolithus oamaruensis	Альминский				
		Средний						Бартонский	Globigerina turk- menica	Reticulo- fenestra	Discoaster saipa- nensis
			артон	Hantkenia ala- bamensis	umbilica	(вноскоп ккнжин)	}				
Палеогеновая	Эоцен			Acarinina rotun-	Nannotetrina	fulgens					
	90		Лютетский	dimarginata Acarinina bull-	Discoaster sublodo-	Rhabdosphaera inflata					
			од Г.	brooki	ensis	(нижняя подзона)	Симферо-				
леоге				H KK	HI I	Globorotalia aragonensis	Discoaster lo	doensis 	польский		
Па			 '≝			ИЙ	H,		Marthasterite	s tribrachiatus	
		Нижний	Ипрский	Globorotalia subbotinae s. l.	Discoaster	Discoaster bi- nodosus	Бахчиса				
					Subbotiliae S. 1.	diastypus	Marthasterites contortus	райский			
	Палеоцен	рхний	Верхний Танетский	Acarinina aca- rinata	Discoaster miltira- diatus	Marthasterites bramlettei					
						(нижняя подзона)					
				рхний	тский Усаг	Acarinina sub- sphaerica		Heliolithus rie- delii			
		Be			Helio- lithus	Discoaster gem- meus	Качинский				
						Ac. tadjikistanen- sis djanensis		Heliolithus kleinpellii			

	Общая шкала									
Система	Отаел	Подотдел	Ярус	Зоны по планктонным фораминиферам	Зоны по	Горизонты Бахчисарай- ского разреза				
		Нижний	кий	Gl. conicotrunca- ta	Fasciculithus tympaniformis					
Палеоцен	Палеоцен		Нижний	Монтский	Gl. angulata		Ellipsolithus macellus	Инкерман- ский		
				Тижни	Тижни	-	Globorotalia inconstans	Crucipla- colithus		
				Датский	Globoconusa daubjergensis	tenuis s. l.	Chiasmolithus danicus			
		П	Globigerina taurica		Cruciplacolithus tenuis s. str.					

ров; 1-1,5 — относительно большая; 1,5-2 — большая; более 2 — очень большая.

Почти во всех случаях приведены изображения типовых видов. Для ряда родов, установленных зарубежными исследователями, даны изображения видов, наиболее распространенных на территории СССР. Не опубликованный ранее коллекционный материал хранится в ЦНИГРмузее им. Ф. Н. Чернышева (коллекции № 8485, 10355 — автор Николаева; № 12571 — авторы Николаева, Павловская). При ревизии некоторых таксонов использовались коллекции ВНИГРИ.

В работе приняты стратиграфические подразделения, приводимые ниже (табл. 3—5).

ТИП ARTHROPODA. ЧЛЕНИСТОНОГИЕ КЛАСС CRUSTACEA. РАКООБРАЗНЫЕ

ПОДКЛАСС OSTRACODA LATREILLE, 1806

Раковина известковая или фосфатная, двустворчатая, замыкающаяся на спинном крае при помощи лигамента и часто — замка, в общем субовальной формы, гладкая или орнаментированная, но не имеет линий роста. Большинство групп имеют размеры 0,4—1,5 мм, за исключением некоторых представителей отряда Leperditiocopida, достигающих 10 см. Мягкое тело полностью помещается в закрытой раковине и соответствует ее субовальной полости в закрытом состоянии; оно не сегментировано, однако близ середины намечается разделение на головной отдел (цефалон) и грудной отдел (торакс). Обычно не более 7 пар конечностей, 4 из которых принадлежат цефалону, а 3 — тораксу. Раздельнополые, с парными половыми органами; самцы могут отсутствовать тогда развитие осуществляется партеногенетически. Развитие с превращением. Обитатели морских и континентальных водоемов всех типов; встречаются наземные группы. Кембрий — ныне.

11 отрядов; в кайнозое 5: Myodocopida, Cladocopida, Platycopida, Metacopida, Podocopida.

Отряд MYODOCOPIDA SARS, 1865

Раковина различно обызвествлена. Почти равностворчатая. Очертание разнообразное: округлые и удлиненные раковины, брюшной край всегда выгнут. Могут присутствовать ростральный выступ и инцизура или длинные шипы. У древних представителей иногда имеются поперечные борозды или срединная ямка. Поверхность гладкая, реже скульптирована. Зона сращения узкая. В центральном мускульном поле фронтальные и мандибулярные отпечатки отсутствуют. Аддукторное поле или неопределенного очертания с неясными удлиненными отпечатками, или находящееся в центральной части, круглое с малым количеством отпечатков. Раковины самцов обычно длиннее раковин самок. У современных форм антеннула 5-8-членистая не плавательная. Антенна с сильноразвитым протоподитом и многочленистым экзоподитом с длинными плавательными щетинками; эндоподит 2—3-членистый, хватательный или рудиментарный. Мандибула с жевательными пластинками протоподита и щупиком, подобным ходильной ноге. Максиллула разнообразна у различных групп. Максилла с сильноразвитыми эпиподитами и многолучевыми жаберными придатками. I и II торакоподы различного строения. І подобна максилле и несет фильтрующие щетинки. Фурка широкая пластинчатая, может иметь когтевидные щетинки. Сердце всегда есть у представителей подотряда Myodocopina; присутствуют боковые и личиночные глаза. Фронтальный орган имеется только у представителей семейства Halocyprididae (подотряд Halocypriformes). Обитатели морских водоемов. Присутствуют планктонные группы. Ордовик (?) — ныне.

2 подотряда: Myodocopina ¹ и Halocypriformes Scogsberg, 1920. Современные представители обитают во всех морях. В кайнозое не имеют существенного значения. Единственным ископаемым родом этого возраста является *Cypridina*, относящийся к подотряду Myodocopina.

Подотряд MYODOCOPINA Sars, 1865

Очертание раковины различно, встречаются вытянутые формы. Ростральная инцизура часто присутствует и находится в средней части переднего конца. Мускульное поле состоит из многочисленных мелких отпечатков. Силур — ныне.

CEMERCTBO CYPRIDINIDAE Baird, 1850

Раковина сильно обызвествлена, различной формы, большей частью с рострумом. Края различно выгнуты. Поверхность гладкая или скульптированная. Внутренний край и линия сращения не совпадают. Краевые поровые каналы многочисленны. Замок простой, мускульное поле состоит из косо сходящихся рядов отдельных отпечатков. Силур (?) — ныне.

Подсемейство Cypridininae Baird, 1850.

Ростральная инцизура присутствует. Не менее 7 родов. Маастрихт — ныне.

Cypridina Milne-Edwards, 1840 [С. reynaudii; современный вид, Индийский океан].

Размеры средние и относительно крупные. Левая створка больше правой. Раковина удлиненно-овальная, с ростральным выступом, зад-

¹ Здесь и далее таксон, описание которого дано ниже, приводится без указания автора.

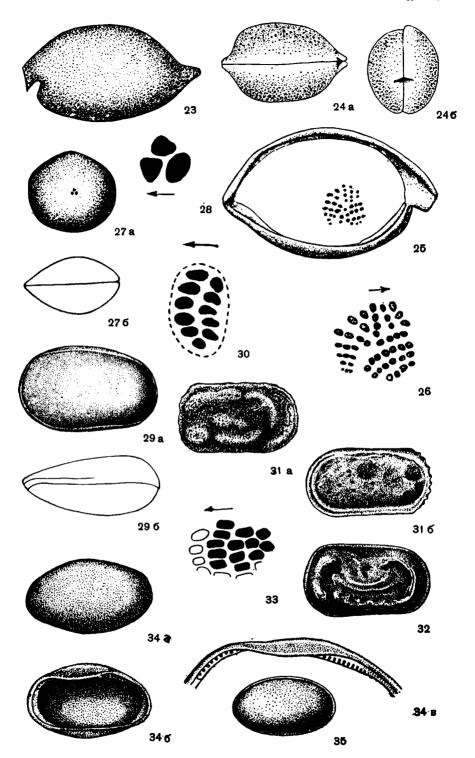


Рис. 23 ° *Cypridina reynaudii Milne-Еdwards, 1840. Раковина самца с левой стороны ($\times 30$). Современный вид, Малайзия [175].

¹ Здесь и далее типовой вид обозначен знаком *.

Рис. 24—26. Cypridina homoedwardsiana (Bosquet, 1852). 24— раковина: a-c брюшной стороны, b-c переднего конца (\times 31) [90]; 25— левая створка изнутри (\times 50); 26— центральные мускульные отпечатки (\times 110) [131]. Лютет, Парижский бассейн.

Рис. 27. *Polycope orbicularis Sars, 1865. Раковина самца: a-c левой, b-c

спинной стороны (×35). Современный вид, прибрежье Норвегии [175].

Рис. 28. Polycope sp. Схема расположения мускульных отпечатков [185]. Рис. 29. Cytherella mirusa Rozyeva, 1962. Экз. № 10355/102. Раковина: а — с левой, δ — со спинной стороны (\times 54). Верхиий палеоцен. Крым, Бахчисарай, качинский горизонт.

Рис. 30. Cytherella sp. Схема расположения мускульных отпечатков [184].

Рис. 31. *Čytherelloidea williamsoniana (Jones, 1849). Правая створка: a-с на-

ружной стороны, 6 — изнутри (×50). Нижний мел, Англия [128]. Рис. 32. Cytherelloidea hieroglyphica (Воsquet, 1852). Экз. № 10355/21. Правая створка с наружной стороны (×54). Верхний палеоцен, Крым, Бахчисарай, качинский

горизонт.

Рис. 33, 34. *Sigillium procerum Z. Kuznetsova, 1960. 33—схема расположения аддукторных отпечатков, левая створка с наружной стороны [14]; 34 — левая створка: a-c наружной стороны (imes 94), b-c изнутри, b-c хема замка (imes 165). Нижний мел, баррем Северо-Восточного Азербайджана [28].

Рис. 35. Sigillium ellipsoidale Sakina, 1971. Раковина с правой стороны (×60).

Средний палеоген, Восточный Устюрт [61].

ний конец закруглен или приострен. Поверхность гладкая или ямчатая. Глазное пятно отсутствует. Краевые поровые каналы прямые, простые. Замок адонтный. Более 300 видов, преимущественно пелагические. Маастрихт — ныне. Лютет, Парижский бассейн (табл. І, рис. 23—26).

Отряд CLADOCOPIDA SARS, 1865

Раковина различно обызвествлена, почти равностворчатая, округлая, овальная. Замочный край короткий, прямой, погружен по отношению к выступающим над ним створками. Замок простой. Ростральная инцизура отсутствует, но передний конец может быть вогнут в месте ее расположения. Поверхность раковины гладкая или скульптирована. У кайнозойских представителей замок простой, без выступающих элементов. Зона сращения узкая, краевые поровые каналы отсутствуют, однако имеются выходы протоков клеточных желез. Свободная часть обызвествленной внутренней пластинки относительно широкая. Внутренний край проходит параллельно краю раковины. Кайма присутствует. Присутствие концевых шипов (иногда образующих ряды) обычно. Центральное мускульное поле почти круглое. Отпечатки замыкательных мускулов малочисленны: 3-4, реже 8. Фронтальные и мандибулярные не наблюдаются. Половой диморфизм на раковинах не проявляется. У современных представителей 5 пар конечностей. Обе пары антенн плавательные. Мандибула с жевательной пластинкой протоподита и слабым жаберным придатком щупика; экзоподит разнообразного строения. Максиллула хорошо развита, частично плавательная, могут присутствовать жевательные придатки. Максилла с многочисленными многолучевыми жаберными придатками. І и II торакоподы редуцированы. Глаза отсутствуют. Сердце не развито. Фронтальный орган развит, состоит из 1-2 оперенных щетинок. Слабоплавающие бентосные обитатели морских водоемов различных глубин. Ордовик (?) — ныне. 1 семейство: Polycopidae.

СЕМЕЙСТВО POLYCOPIDAE Sars, 1865

Включает 4 рода. В палеозое — кайнозое: Polycope 1. Современные роды: Metapolycope Bonaduce e. a., 1982; Parapolycope Klie, 1936; Polycopsis G. Müller, 1894. B mesosoe: Pokornyopsis Kozur, 1974.

¹ Без указания автора здесь и далее перечисляются роды, описание которых приводится ниже.

Polycope Sars, 1865 [P. orbicularis; современный вид, прибрежье Норвегии].

Раковина маленькая, тонкостенная, линзовидная. В боковом очертании передний конец с тупым углом, спинной край выгнут в центре. Поверхность гладкая, ямчатая, ячеистая, ребристая. Поверхностные поры мелкие, многочисленные. Замок адонтный. Аддукторные отпечатки: 3—4 в центре раковины. Более 100 видов. Девон — карбон; юра — ныне. В кайнозое СССР: нижний сармат, Закарпатье (рис. 27, 28).

Отряд PLATYCOPIDA SARS, 1865

Раковина сильно обызвествлена, неравностворчатая, большая (обычно правая) створка перекрывает меньшую с круговым охватом; по форме близка к овальной, имеет слабовыгнутый спинной край. Поверхность почти гладкая с очень слабой скульптурой или же скульптура грубая. Замок круговой левоваликовый. Внутренняя пластинка отсутствует или очень узкая — является непосредственным продолжением наружной пластинки. Линия сращения, внутренний край и краевые поровые каналы неразличимы. В центральном мускульном поле фронтальные и мандибулярные отпечатки отсутствуют; оно представлено эллиптическим аддуктором, состоящим из 2—5 вертикальных рядов, каждый из которых включает 10 отдельных отпечатков и более.

Грудное пространство отделено отвесной перегородкой. Половой диморфизм проявляется расширением заднего конца раковины, иногда с домациями (до 22 у палеозойских групп). У современных представителей 6 пар конечностей. Антеннула 6-членистая, с перегибом в основании. Антенна широкая плоская 2-ветвистая, с 2-членистым экзоподитом и 3-членистым эндоподитом; протоподит с подвижным суставом между коксоподитом и базисом. Мандибула и максиллула имеют большие щупики с многочисленными фильтрующими щетинками (фильтрующий аппарат). Максилла с большим жаберным придатком. І торакопод листообразный, у самцов — хватательный орган. ІІ торакопод отсутствует. Щетковидный орган у самцов хорошо развит. Фурка пластинчатая со щетинками. Глаза и сердце отсутствуют. Обитатели морских водоемов. Основное развитие в палеозое. В мезозое — кайнозое 1 семейство: Cytherellidae.

CEMERICTBO CYTHERELLIDAE Sars, 1865

Раковина иногда с субцентральной мускульной ямкой, сжата с боков в передней части. Концы почти равны по высоте. Поверхностные поры мелкие, открытые. Сформированный каймой наружный край левой створки, входящий в контактный желобок правой створки, может иметь утолщения. Мускульное поле из двух слабоизогнутых в сторону переднего конца симметричных рядов, включающих каждый по 5—9 отдельных отпечатков (большее количество характерно для древних представителей). Триас — пыне.

Родовой состав. В мезозое: Reubenella Sohn, 1968; Issacharella Sohn, 1968; Leviella Sohn, 1968; Staringia Van Veen, 1936; Ankumia Van Veen, 1936; Neocytherelloidea Andreev et Vronskaja, 1970. В мезозое и кайнозое: Cytherella, Cytherelloidea. Кроме того, Keijcyoidea Malz, 1981; Platella Corvell et Fields, 1937.

Cytherella Jones, 1849 [Cytherina ovata Roemer, 1840; нижний мел, Северо-Западная Германия]. Размеры средние. Поверхность почти гладкая или ямчатая, на заднем конце могут присутствовать мелкие шипы. Раковины самок имеют расположенную вертикально в задней части мелкую домицилярную полость. Более 600 видов в морских отложениях и бассейнах. Триас — ныне, повсеместно (рис. 29).

Замечания. Имеются данные, что некоторые современные виды обитают в лагунных условиях [Omatsola, 1971 г.].

Cytherelloidea Alexander, 1929 [Cytherella williamsoniana Jones, 1849, нижний мел, Англия]. Размеры средние. Поверхность сильно скульптирована ребрами, бугорками, ямками. Раковины самок обычно имеют два домация, выступающие с наружной стороны в виде бугорков. Около 40 видов. Юра — ныне, повсеместно. Современные — обитатели мелководья тропиков и субтропиков (рис. 31, 32).

Отряд METACOPIDA SYLVESTER-BRADLEY, 1961

Раковина сильно обызвествлена. По форме близка к овальной или округленно-треугольная, с замочным краем выгнутым или прямым (погруженным по отношению к выступающим над ним створкам). Неравностворчатая, нерасчлененная. Могут присутствовать валиковидные ребра, мускульная ямка и крупные шипы. Поверхность гладкая или яченстая, ребристая. Замок от недифференцированного до состоящего из трех отделов, может быть насечен. Внутренняя пластинка может присутствовать, чаще узкая, не выходящая за пределы зоны сращения. Краевые поровые каналы отсутствуют или малочисленны, наблюдаются только у постпалеозойских представителей. У ряда групп внутренняя пластинка не обнаружена. В центральном мускульном поле присутствуют фронтальные и мандибулярные отпечатки. Аддуктор округлый, содержит многочисленные отпечатки неопределенного расположения, количество которых сильно варьирует.

У современных представителей (семейство Sigilliidae) антенулла 6-членистая, покрыта многочисленными щетинками с волосками. Антенна 5-членистая с сенсорными и другими (не плавательными) щетинками. Щупик мандибулы 4-членистый с гладкими щетинками. Максиллула с тремя эндитами на протоподите и 2-членистым шупиком (подокопидный тип). Максилла с развитыми жаберными придатками, эндоподит короткий с многочисленными щетинками (платикопидный тип). І и ІІ торакоподы присутствуют. Фурка вооружена когтями и щетинками. Палеозой — ныне. Обитатели морских водоемов. 2 надсемейства. В палеозое: Thlipsuracea Ulrich, 1894; в палеозое — мезозое: Healdiacea Нагlton, 1933. В мезозое — кайнозое: семейство Sigilliidae неопределенной надсемейственной принадлежности.

CEMEMOTBO SIGILLIIDAE Mandelstam, 1960 [nom transl. et correct. Schornikov et Gramm, 1974 (ex SIGILLIUMINAE Mandelstam, 1960)] (=Saipanettidae Mc Kenzie, 1968)

Раковина удлиненно-овальная, сильно обызвествлена, левая створка больше правой, охват круговой. Поверхность гладкая с редкими мелкими порами. Внутренняя пластинка узкая; краевые, поровые каналы плохо различимы. Замок меродонтный. Аддукторное поле округлое, состоит из 17—25 мелких отпечатков, иногда расположенных вертикальными рядами (до 5); центральные отпечатки могут быть крупнее. Половой диморфизм на раковине выражен слабо. Юра — ныне, повсеместно.

Родовой состав. Cardobairdia Van den Bold, 1960; Sigillium.

Sigillium Z. Kuznetsova, 1960 = Saipanetta McKenzie, 1968 [S. procerum; нижний мел, Азербайджан]. Раковина очень маленькая или маленькая. Концы близки по высоте или задний чуть ниже. Внутренняя пластинка узкая; внутренний край примерно параллелен наружному. Замок антимеродонтный с удлиненными насеченными краевыми ямками на левой створке, соединенными гладким валиком. Раковины самок и самцов имеют различно выраженную асимметрию створок. Около 10 видов, морские. Ранний мел — ныне; палеоцен — средний эоцен, Северный Кавказ, Узбекистан (рис. 33—35).

Отряд PODOCOPIDA SARS, 1865

Раковина различно обызвествлена; от слабо- до сильнонеравностворчатой: разнообразна по форме: округленно-прямоугольная, округленно-треугольная или близкая к удлиненно-овальной; у некоторых групп расчлененная. Спинной край выгнутый или прямой, в этом случае не превосходящий длину раковины. Контактная линия по брюшному краю в большинстве случаев вогнута в ротовой области. Ростральная инцизура для выхода антенн всегда отсутствует, ростроподобное образование, имеющееся у ряда групп, имеет другое функциональное назначение. Поверхность гладкая или разнообразно скульптирована (иногда образованиями нескольких порядков). Наружное глазное образование присутствует у ряда групп. Замок равен по длине спинному краю или короче него. Внутренняя пластинка обызвествлена в периферической части вдоль всего свободного края. Краевые поровые каналы всегда присутствуют. Центральное мускульное поле находится перед серединой раковины; различимы отпечатки замыкательных мускулов, фронтальные и мандибулярные. Количество и расположение отпечатков разнообразны в пределах различных групп. Половой диморфизм проявляется в относительной укороченности раковин самок, иногда вздутой задней части. У современных представителей, как правило, 7 пар конечностей. Антеннула хорошо развита, 5-8-членистая со щетинками и коготками, приспособленная для движения — плавания, ползания. Антенна с рудиментарным экзоподитом и хорошо развитым эндоподитом. Мандибула с хорошо развитой жевательной пластинкой; щупик 4-членистый, обычно состоящий из второго членика протоподита (с маленькой жаберной пластинкой) и 3-членистого эндоподита. Максиллула с большой жаберной пластинкой. Максилла приспособлена для питания или служит для передвижения. I и II торакоподы приспособлены для движения. Фурка с двумя коготками, разнообразного строения, но может отсутствовать. Парные боковые глаза (фасеточные) отсутствуют, но в большинстве случаев есть простой средний (личиночный) глаз. Сердца нет. Обитатели морских и континентальных водоемов всех типов, редко наземные. Ордовик — ныне. З подотряда. В палеозое — кайнозое: Bairdiocopina, Cytherocopina, Cypridocopina. К этому же отряду относятся: надсемейство Volganellacea Mandelstam, 1956, неопределенного положения в пределах отряда и семейство Robsoniellidae Gramm et Z. Kuznetsova, 1970, неопределенной надсемейственной и подотрядной принадлежности.

Подотряд BAIRDIOCOPINA Kozur, 1972

Раковина обычно нерасчлененная, левая створка больше правой, с различным охватом. Очертание субтрапецеидальное: спинной край плавно выгнут или с углами на концах замочного края, концы скошены в верхней части, при этом задний обычно вогнут. Брюшной край ориентирован параллельно базальной линии и плавно дугообразно соединяется с концами. Поверхность гладкая, реже точечная, с ребрами, буграми, шипами, поверхностные поры открытые. Глазное образование на раковине обычно отсутствует. Обызвествленная внутренняя пластинка у мезозойско-кайнозойских представителей широкая; внутренний край и линия сращения не совпадают, образуя небольшие вестибюли на концах. Краевые поровые каналы прямые, простые. Замок простой. Центральное мускульное поле округлое, представлено группой из 4-15 тесно расположенных аддукторных отпечатков, распадающейся на подгруппы. В развитии подотряда наблюдается тенденция к уменьшению количества аддукторных отпечатков. Половой диморфизм на раковине не проявляется. По строению мягкого тела занимает промежуточное положение между подотрядами Cytherocopina и Cypridocopina. Обитатели морских водоемов всех глубин. Ордовик (?); силур — ныне. Включает надсемейства: Bairdiacea и, возможно, Beecherellidacea Ulrich, 1894.

Надсемейство BAIRDIACEA Sars, 1888 1

Включает в палеозое — ныне: семейство Bairdiidae; современное семейство Pusselinidae Danielopol, 1976 (выделено на основании строения мягкого тела, приспособленного к интерстициальным условиям).

CEMERICTBO BAIRDIIDAE Sars, 1888

Ордовик (?); силур — ныне. Расцвет в позднем палеозое; продолжают существование в кайнозое подсемейства Bairdiinae и Bythocypridinae.

Подсемейство Bairdiinae Sars, 1888

Охват по спинному краю или круговой. Раковина гладкая, реже скульптированная, иногда с шипами на концах. Замок простой, может быть насечен; ниже замочного края иногда присутствуют зубы (ямки). Количество аддукторных бугорков различных очертаний обычно не менее 8. Фулькральное пятно различимо. Расивет в позднем издеозое

нее 8. Фулькральное пятно различимо. Расцвет в позднем палеозое. Родовой состав. С палеозоя доныне (?) распространен род Bairdia. В мезозое: Alatanesidea Colin et Lauverjat, 1978; Carinobairdia Kollmann, 1963; Loculibairdia Colin et Damotte, 1985; Neonesidea (Maddocksia) Рокогпу, 1978. В мезозое — кайнозое: Bairdoppilata Coryell, Sample et Jennings, 1935; Triebelina Van den Bold, 1946. Современные роды: Neonesidea Maddocks, 1969; Paranesidea Maddocks, 1969; Havanardia Pokorny, 1968; Papillatobairdia Bentley, 1982. Кроме того, Gtyptobairdia Stephenson, 1946; Pterobairdia McKenzie et Keij, 1977.

Bairdia M' C o y, 1844 (=? Nesidea Č o s t a, 1849) [В. curtus; карбон, Ирландия]. Размеры средние и крупные. Очертание субтрапецеидальное. Максимальная высота находится в передней половине. Поверхность гладкая. Поверхностные поры единичные, мелкие. Линия сращения почти параллельна наружному краю; 7—16 аддукторных отпечатков, количество которых видоспецифично. Более 900 видов. Орловик (?): силур—ныне (?), повсеместно (табл. II. рис. 36—37).

довик (?); силур — ныне (?), повсеместно (табл. II, рис. 36—37).

Ваігдоррідата Согуе II, Sample et Jennings, 1935 [В. martyni; нижний миоцен, США (Миссисипи)]. Раковина подобна Bairdia, но имеет ниже замочного края серию зубчиков на правой створке и ямок — на левой. Краевые поровые каналы многочисленны. Около 90 видов. Мел — ныне, повсеместно (рис. 38).

Подсемейство Bythocypridinae Maddocks, 1969

Раковина тонкостенная. Поверхность гладкая с открытыми порами. Замок простой. В центральном мускульном поле 3 аддукторных отпечатка впереди и 1 за ними; каждый из них может быть слабо разделен на 2 части.

Родовой состав. В палеозое (?) — ныне: *Bythocypris*. Современный род: *Zabythocypris* M addocks, 1969.

¹ Характеристика надсемейства Bairdiacea и семейства Bairdiidae, представленных в основном палеозойскими группами, в данном томе не приводится.

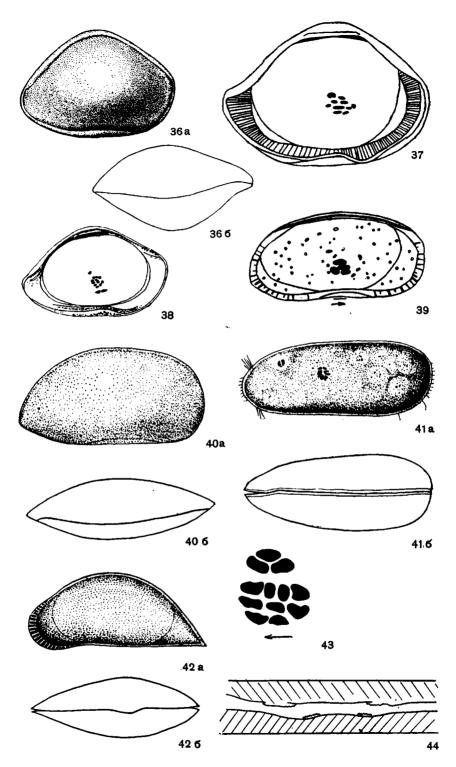


Рис. 36. Bairdia jonesi Mandelstam in Suzin, 1956. Экз. № 10355/34. Раковина: a — с правой стороны, δ — контур со спинной стороны (\times 54). Нижний эоцен. Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 37. Bairdia sp. Схематическое изображение внутреннего строения левой створ-

ки [185]. Рис. 38. Bairdoppilata gliberti Keij, 1957. Левая створка изнутри (× 35). Лютет, Парижский бассейн ([131].

Рис. 39. Bythocypris aff. reniformis Brady, 1880. Левая створка изнутри (×47). Современный вид, Северная Атлантика [185].

Рис. 40. Bythocypris bella Nikolaeva, 1977. Раковина: а — с правой, б — со спин-

ной стороны (×54). Нижний эоцен, Тургайский прогиб [46].
Рис. 41. *Darwinula stevensoni Brady et Robertson, 1870. Раковина самки:

а—с левой, 6—со спинной стороны (×77). Современный вид, прибрежье Норвегии

Рис. 42—44. *Macrocypris minna (Ваігd, 1850). 42— раковина самки: а— с левой, δ — с брюшной стороны (\times 17) [164]; 43 — схема расположения аддукторных отпечатков; 44 — схема замка со спинной стороны [185]. Современный вид, прибрежье Норвегии.

Buthocypris Brady, 1880 [B. reniformis; современный Северная Атлантика]. Размеры средние. Раковина тонкостенная, удлиненно-овальная с выгнутым спинным краем, плавно соединяющимся с концами. Бесструктурная пластинка в 2-4 раза шире зоны сращения. Краевые поровые каналы многочисленные. Около 80 видов. Палеозой (?) — ныне. В СССР: палеоцен — эоцен, Северный Кавказ; палеоцен, Тургайский прогиб (рис. 39—40).

Подотряд Cypridocopina Jones in Chapman, 1901

Раковина относительно слабо обызвествлена. Форма и охват различны. Спинной край арковидно выгнут или с перегибом, реже прямой; с концами соединяется плавно или образует углы. Поверхность гладкая или несложно скульптирована ямками, ячейками, бугорками. Концевые шипы могут присутствовать в виде пилообразно зазубренного края, редко выделяются 1-2 шипа. Наружное глазное образование отсутствует. Поверхностные поры открытые. Замок обычно адонтного типа. Зона сращения, как правило, в несколько раз уже бесструктурной пластинки, образующей большие вестибюли на концах створок. Аддукторное поле округлое, расположено в передней половине раковины. Половой диморфизм выражается в различных пропорциях раковин самцов и самок, которые обычно шире в задней половине. Девон — ныне. Преимущественно обитатели континентальных водоемов. Состав: надсемейство Сургіdacea; условно Darwinulacea и семейство Масгосургіdidae неопределенной надсемейственной принадлежности.

(?) Надсемейство DARWINULACEA Brady et Norman, 1889

Раковина нерасчлененная удлиненно- или округло-овальная, неравностворчатая, с различным охватом; обычно гладкая. Замок адонтный. Аддукторный отпечаток округлый «розеточного» типа, состоит из 8— 13 отдельных компактно расположенных удлиненных или клиновидных пятен. Карбон — ныне. Основное развитие в перми и триасе. В кайнозое продолжают существование 2 семейства: Darwinulidae и Microdarwinulidae Kashevarova et Neustrueva, 1982. Представители последнего в кайнозое на территории СССР не встречены.

СЕМЕЙСТВО DARWINULIDAE Brady et Norman, 1889

Раковина удлиненная, равномерно выпуклая, слаборасширенная в задней половине. Большая створка охватывает меньшую по свободному краю. Аддукторное поле расположено в передней половине створок, овальное, вытянутое по длине раковины, состоит из 8—12 клиновидных пятен, расположенных в форме «розетки». Половой диморфизм проявляется в большей выпуклости раковин самок и наличии у них слабовыраженной внутренней перегородки. Средний карбон — ныне. Обитатели пресных и солоноватоводных водоемов. 2 рода. В палеозое: Suchonellina Spizarsky, 1937; продолжает существование доныне Darwinula.

Darwinula Brady et Robertson, 1885 in Jones, 1885 [Polycheles stevensoni Brady et Robertson, 1870; современный вид, Северо-Западная Европа]. Раковина маленьких и средних размеров. Как правило (за исключением типового вида), левая створка больше правой. Поверхность обычно гладкая, глазное образование на раковине не проявляется. Внутренняя пластинка узкая. В современной фауне самцы очень редки. Около 350 видов. Средний карбон — ныне, повсеместно (рис. 41).

Надсемейство не определено

(?) CEMERICTBO MACROCYPRIDIDAE G. Müller, 1912

Раковина удлиненная, с приостренным задним концом. Правая створка перекрывает левую. Поверхность гладкая. Замок меродонтный со слабонасеченными зубами на левой створке. Бесструктурная пластинка очень широкая на концах. Аддукторное поле округлое, состоит из 12—14 компактно расположенных мелких отпечатков. Ордовик (?); карбон — ныне. Исключительно морская группа.

Родовой состав. Продолжает существование с палеозоя доныне *Macrocypris*. Современные роды: *Macrocypria* S ars, 1923; *Macro-*

cuprina Triebel, 1960.

Замечание. На основании строения мягкого тела зоологи уверенно относят типовой род семейства *Масгосургіз* к Cypridocopina. Однако замок и особенно мускульные отпечатки значительно отличают эту группу от других представителей данного подотряда. Количество отпечатков соответствует представителям подотряда Bairdiocopina, но их гомологизация затруднена. Вследствие изложенного семейство Macrocyprididae отнесено к подотряду Cypridocopina условно.

Macrocypris B г a d y, 1868 [Cythere minna B a i г d, 1850; современный вид, Северное море]. Раковина крупная и очень крупная, тонкая, с арковидным спинным и прямым брюшным краями и закругленным передним концом. Максимальный охват по брюшному краю. Краевые поровые каналы многочисленные. Поверхностные поры присутствуют. Раковины самцов более мелких размеров. Более 120 видов. Ордовик

(?); карбон — ныне, повсеместно (рис. 42—44).

Надсемейство CYPRIDACEA Baird, 1845

Раковина удлиненно-овальная, реже укороченная, у большинства групп нерасчлененная. Внутренняя обызвествленная пластинка хорошо развита, ее свободная часть, или бесструктурная пластинка, обычно в несколько раз шире зоны сращения. Поверхностные поровые каналы открытые. У всех групп выдерживается основная схема соотношения аддукторных отпечатков: 3—4 впереди, 2 за ними, и выше может находиться более крупный отпечаток; иногда отпечатки располагаются центрически. Девон — ныне. Основное развитие в мезозое — кайнозое. 10 семейств. В мезозое: Trapezoidellidae S o h n, 1972; преимущественно в мезозое: Cyprideidae Martin, 1940. В мезозое и кайнозое: Pontocyprididae, Paracyprididae, Candonidae, Cyprididae, Cyclocyprididae, Cypridopsidae, Notodromatidae, Ilyocyprididae, Disopontocyprididae.

Раковина тонкостенная умеренно удлиненная или удлиненная. Соотношение створок различно. Спинной край арковидный; задний конец приостреннее переднего. Поверхность гладкая. Замок адонтный. Обитатели морских вод нормальной солености. Поздняя юра — ныне, повсеместно. 2 подсемейства: Pontocypridinae и Argilloeciinae.

Подсемейство Pontocypridinae G. Müller, 1894

Раковина удлиненная, иногда с концевыми шипами. Линия сращения почти параллельна внутреннему краю. Кайма иногда присутствует. Порово-канальная зона узкая, иногда расширена вдоль брюшного края. Мускульные отпечатки слабо изучены. Поздняя юра — ныне.

Родовой состав. В мезозое: Paracyprella Andreev, 1968. В мезозое — кайнозое: Pontocypris, Propontocypris. Возможно также Pontocyprella Mandelstam in Lübimova, 1955. Современный

род: Pontocypria G. Müller, 1894.

Замечание. Систематическую принадлежность и валидность рода Pontocyprella нельзя считать установленными до проведения ревизии типовой серии вида Bairdia harrisiana Jones, 1849, выбранного типовым видом.

Pontocypris Sars, 1865 (=Erythrocypris G. Müller, 1894) [Cythere (Bairdia) myliloides Norman, 1862; современный вид, прибрежье Англии]. Раковина маленьких и средних размеров, удлиненнотреугольная с максимальной длиной по брюшному краю и максимальной высотой перед серединой. Створки близки по величине или правая больше левой, встречается обратный охват. Поверхностные поры мелкие, многочисленные.

Половой диморфизм на раковине не проявляется. Около 120 видов.

Поздний мел — ныне, повсеместно (табл. III, рис. 45, 46).

Propontocypris Sylvester-Bradley, 1947 [Pontocypris triogonella Sars, 1865; современный вид, прибрежье Норвегии]. Раковина маленькая, субтреугольная, с максимальной длиной по брюшному краю. Правая створка больше левой, но левая может быть выше. Бесструктурная пластинка более широкая на переднем конце. Поверхностные поры мелкие, многочисленные. Около 120 видов. Средний эоцен—ныне, Атлантика, Средиземноморье, Евразия (рис. 47, 48).

Подсемейство Argilloeciinae Mandelstam, 1960

Раковина стручковидная. Линия сращения в большинстве случаев не параллельна внутреннему краю на переднем конце, где свободная часть внутренней пластинки образует языковидный вестибюль. Поровоканальная зона несколько расширена вдоль брюшного края. Количество поровых каналов различно. Аддуктор состоит из 5 компактно расположенных крупных отпечатков. Поздний мел — ныне. Повсеместно.

Родовой состав. В мезозое — кайнозое: Argilloecia. В кайнозое: Abyssocypris (=? Suzinia). Современные роды: Australoecia

McKenzie, 1967; Maddocksella McKenzie, 1982.

Argilloecia S a r s, 1865 [A. cylindrica; современный вид, прибрежье 'Норвегии]. Раковина очень маленькая и маленькая, сжатая с боков, удлиненная, задний конец приострен. Правая створка больше левой, охват круговой; встречается обратное перекрывание. Линия сращения у типового вида параллельна внутреннему краю, у большинства других извилистая. На переднем конце может быть много краевых простых поровых каналов. Поверхностные поры мелкие, малочисленные. Верхний аддукторный отпечаток заднего ряда иногда чуть пережат. Раковины

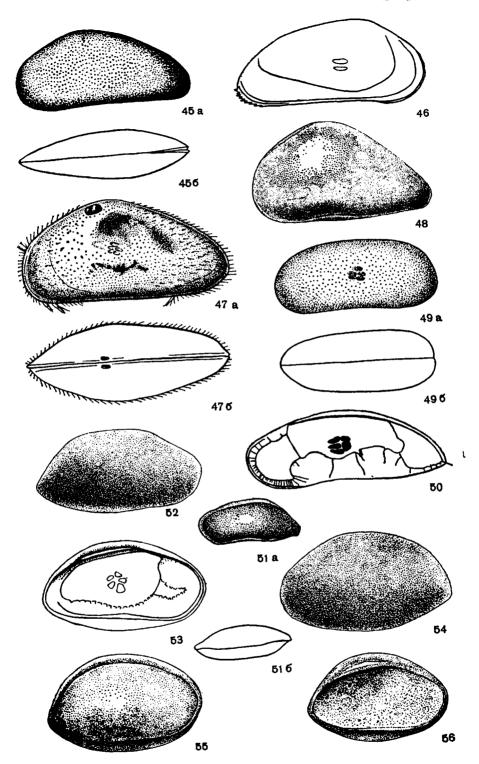


Рис. 45, 46. *Pontocypris mytiloides (Norman, 1862). 45— раковина самки: a— с левой, b— со спинной стороны; 46— левая створка самца изнутри (\times 50). Современный вид, Северная Атлантика [172].

Рис. 47. *Propontocypris trigonella (Sars, 1865). Раковина самки: а-с левой,

6—со спинной стороны (×88). Современный вид, прибрежье Норвегии [164]. Рис. 48. Propontocypris turgaensis Mandelstam, 1964. Экз. № 8485/19. Раковина

с левой стороны (×55). Тургайский прогиб, верхний эоцен, чеганская свита. Рис. 49. *Argilloecia cylindrica Sars, 1865. Раковина самкн. а—с левой, б—со спинной стороны (×70). Современный вид, прибрежье Норвегии [164].

Рис. 50. Argilloecia acuminata G. Müller, 1894. Правая створка самки изнутри

 (×108). Современный вид, Средиземное море [185].
 Рис. 51. Argilloecia corniculata Nikolaeva, 1981. Раковина: а—с левой, б со спинной стороны (×54). Верхний эоцен, Крым, Бахчисарай, альминский горизонт

Рис. 52—54. Abussocupris atlantica (Maddocks, 1977). 52 — правая створка самки с наружной стороны $(\times 50)$; 53 — левая створка самца изнутри $(\times 46)$; 54 — левая створка самки с наружной стороны $(\times 50)$. Современный вид, Ангольская котловина

Рис. 55, 56. Abyssocypris polita (Nikolaeva, 1984). 55 — раковина с правой стороны: 56 — левая створка изнутри (×50). Средний эоцен, Северный Кавказ [51].

самцов мельче, уже и длиннее. Около 90 видов. Поздний мел — ныне,

повсеместно (рис. 49-51).

Abyssocypris V an den Bold, 1974 [A. typica; неоген, Карибский бассейн]. Раковина маленькая, округленно-трапециевидная. Левая створка больше правой. Охват круговой. Порово-канальная зона относительно широкая. Краевые поровые каналы многочисленные, простые. У современных видов нормальные единичные поры окружены ребром. Около 10 видов, обитатели больших глубин. Палеоген — ныне, повсеместно. В СССР: палеоцен — эоцен, Северный Кавказ, (?) олигоцен, Армения (рис. 52-56).

Замечание. Предположительно синонимом этого рода является род Suzinia Schneider, 1956, описанный на основании уникальной . находки 3 экземпляров типового вида из нижнего олигоцена Армении. К сожалению, установить более точно тождество этих родов не представляется возможным.

СЕМЕЙСТВО PARACYPRIDIDAE Sars, 1923 (incl. AGLAIOCYPRIDINAE Schneider, 1960)

Раковина сильно кальцифицирована, удлиненно-треугольная или овальная, сжатая с боков, слабоасимметричная. Поверхность гладкая или малоскульптированная. Замок адонтный или лофодонтный. Бесструктурная пластинка в 3-4 раза шире порово-канальной зоны. Поровые каналы многочисленные. Аддуктор представлен верхним крупным овальным отпечатком и двумя рядами (по 3 и 2) — под ним. Обитатели морских бассейнов, ряд групп переносят понижение солености. Силур — ныне. Включает подсемейства: ископаемое и современное ---Paracypridinae и современное — Renaucypridinae McKenzie, 1980.

Подсемейство Paracypridinae Sars, 1923

Раковина удлиненная, высота составляет менее половины длины. Кайма развита слабо, внутренние валики и септы отсутствуют. Половой диморфизм на раковинах не проявляется. Силур — современный.

Родовой состав. В палеозое — кайнозое: Paracypris. В мезозое: Triassocypris Kozur, 1970. В кайнозое: Aglaiella Daday, 1910; Aglaiocypris, Novocypris D u c a s s e, 1967. Современные роды: Chardaglaia Hartmann, 1964; Gerdocypris McKenzie, 1967; Phlyctenophora Brady, 1880; Tasmanocypris McKenzie, 1979.

Paracypris S a г s, 1865 [P. polita; современный вид, прибрежье Норвегии]. Размеры средние и относительно большие. Раковина стручко-

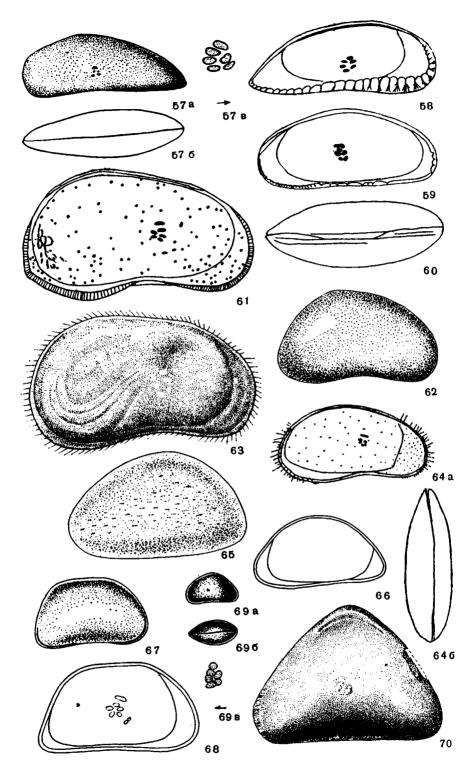


Рис. 57, 58. *Paracypris polita S ars, 1865. 57 — раковина самки: α — с левой, δ — со спинной стороны (\times 40), θ — центральные мускульные отпечатки (\times 150). Современный вид, прибрежье Норвегии [175]; 58 — левая створка самки изнутри (\times 43). Современный вид, прибрежье Норвегии [185].

Рис. 59, 60. Aglaiocypris complanata Brady et Robertson, 1869. 59 — правая створка самки изнутри; 60 — раковина со спинной стороны (оба ×75). Современный вид, Неаполитанский залив [185].
Рис. 61. Candona angulata G. Müller, 1900. Левая створка самца изнутри

(×65). Голоцен, Нидерланды [185]. Рнс. 62. *Candona candida O. F. Müller, 1776. Правая створка с наружной сто-

роны (×50). Плейстоцен, Фюрстенберг, ГДР [177]. Рис. 63. Candona rostrata Brady et Norman, 1889. Правая створка самца с

наружной стороны (×94). Современный вид, Норвегия [164].
Рис. 64. *Candonopsis kingsleii (Brady et Robertson, 1870). Раковина самца: a-c правой, b-c0 спинной стороны ($\times 40$). Современный вид, Северная Европа [185]. Рис. 65. Cryptocandona suzini Schneider, 1958. Левая створка с наружной сто-

Рис. 66. Cryptocandona riognessa Bronstein, 1947. Правая створка изнутри

 $(\times 60)$. Современный вид, Кутанси [10].

Pnc. 67. Lineocypris minuta Schneider, 1958. Правая створка с наружной стороны (×43). Плиоцен, Фергана [54].

Рис. 68. *Lineocypris trapezoidea Zalanyi, 1929. Левая створка изнутри (×40).

Плиоцен, Югославия [189].

Рис. 69. *Typhlocypris eremita Vejdovsky, 1882. Раковина: а—с левой, б—со спинной стороны (×17), в — центральные мускульные отпечатки (+85). Современный вид, Европа [175].
Рис. 70. *Advenocypris alpherovi Schneider, 1956. Левая створка с наружной

стороны (×43). Сармат, Дагестан, грозненские слои [54].

видная с приостренным низким задним концом, наибольшей высотой в передней трети и наибольшей шириной в передней половине, левоперекрывающая. Поверхность гладкая, замок адонтный. Вестибюли на концах большие. Краевые поровые каналы разветвляющиеся. Около 150 видов. Обитатели морских полносоленых бассейнов. Силур: юра — ныне. повсеместно (табл. IV, рис. 57, 58).

Aglaiocypris Sylvester-Bradley, 1946 [Aglaia pulchella Brad у, 1868; современный вид, Средиземное море]. Раковина средних размеров, субовальная, с максимальной высотой примерно посередине и широко закругленными почти равной высоты концами, левоперекрывающая. Поверхность гладкая, замок адонтный. Бесструктурная пластинка более широкая на переднем конце. Порово-канальная зона везде узкая; краевые поровые каналы простые, прямые. Около 20 видов. Переносят значительное понижение солености. Миоцен — ныне, повсеместно. В СССР: нижний — средний мноцен, Закарпатье; тархан, акчагыл. Кавказ (рис. 59, 60).

СЕМЕЙСТВО CANDONIDAE Kaufmann, 1900

Раковина различно обызвествлена, субпрямоугольных, субтрапецеидальных и субтреугольных очертаний, равномерно выпуклая, редко со вздутиями в брюшно-боковой или спинной части. Преимущественно левоперекрывающая. Поверхность гладкая, иногда тонкоскульптированная. Замок адонтный, представлен на большей створке желобком, в который входит край (валик) меньшей створки. Бесструктурная пластинка на концах раковины в 2 раза или более шире порово-канальной зоны. Краевые поровые каналы простые. Центральные мускульные отпечатки представлены несколькими антеннальными и группой замыкательных, которая состоит из крупного верхнего овального отпечатка и 2 рядов, расположенных под ним: переднего из 3 и заднего из 2 отпечатков. Половой диморфизм обычно выражен. Пермь (?) — ныне. Включает подсемейства. В палеозое (?), мезозое и кайнозое: Candoninae. В кайнозое: Advenocypridinae, Paracandoninae. Современное: Thalassocypridinae Hartmann et Puri, 1974.

7 Зак. 734

Подсемейство Candoninae Kaufmann, 1900 (incl. Lineocypridinae Schneider, 1960)

Раковина удлиненная, умеренно выпуклая, слабоасимметричная. Отпечатки замыкательных мускулов тесно расположены и, за исключением верхнего, примерно одинаковы. Раковины самцов крупнее раковин самок, с более высоким, плавнее закругленным задним концом. Обитатели континентальных водоемов. Пермь (?) — ныне.

Родовой состав. В перми (?) и современных водоемах: Eucandona Daday, 1900. В мезозое: (?) Pachoecia Almeida, 1950. В мезозое— кайнозое: Candona. В кайнозое: Alatocandona Carbonnel, 1969; Candonopsis; Cryptocandona; Fissocandonocypris Swain, 1986; Lineocypris; Pactolocypris Swain, 1985; Tuberocypris Swain, 1947; Tuberocyproides Swain, 1947. Typhlocypris. Современные роды: Caribecandona Broodbakker, 1983; Danielocandona Broodbakker, 1983; Mixtocandona Klie, 1938; Nannocandona Ekman, 1914; Phreatocandona Danielopol, 1973; Pseudocandona Kaufmann, 1900.

Candona Baird, 1845. Включает подроды: Candona, Fabaeformiscandona Krstich, 1972; Fusocandona Hou, 1978; Hastacandona Krstich, 1968; Ochridiella Krstich, 1969; Reticulocandona Krstich, 1972; Serbiella Krstich, 1972; Sinegubiella Krstich, 1972; Sirmiella Krstich, 1972; Trapezicandona Schornikov, 1969; Typhlocyprella Krstich, 1972; Varicandona Sywula, 1970; Zalanyiella Krstich, 1968.

Candona (Candona) Baird, 1845 (=Candoniella Schneider, 1956; Camptocypria Zalanyi, 1959; Graviacypris Schneider, 1962) [Cypris candida O. F. Müller, 1776; современный вид, Северная Европа].

Размеры средние и крупные. Раковина трапециевидная с максимальной высотой в задней половине. Спинной край слабо выгнут, реже прямой или с угловатым перегибом в задней части. Поверхность гладкая, редко со слабовыраженным сетчатым рисунком. Замок правоваликовый. Зона сращения составляет 1/5—1/9 бесструктурной пластинки; краевые поровые каналы многочисленные, прямые. Половой диморфизм обычно ярко выражен — самцы больше самок, задний конец их раковины выше и плавнее закруглен; створки ювенильных особей гладкие или ячеистые. Около 700 видов. Обитатели пресных, реже слабоосолоненных водоемов, различных глубин. Пермь (?); поздний мел — ныне, повсеместно (рис. 61—63).

Candonopsis V a v r a, 1891 [Candona kingslei B r a d y et R o b e r t s o n, 1870; современный вид, Англия]. Размеры средние. Раковина удлиненная, сильно сжатая с боков, тонкостенная. Максимальная ширина раковины вблизи середины и достигает половины длины. Задний конец чуть выше переднего, и оба широко закруглены; сверху передний конец заострен. Поверхность гладкая, замок правоваликовый. Обызвествленная часть внутренней пластинки широкая, особенно на переднем конце; порово-канальная зона уже ее в 6 раз, с прямыми краевыми каналами. Отпечатки аддуктора мелкие. Около 40 видов; современные, преимущественно в пресных водоемах, в том числе и в подземных. Олигоцен — ныне, повсеместно (рис. 64).

Cryptocandona K a u f m a n n, 1900 [C. vavrai; современный вид, Швейцария]. Раковина средних размеров, тонкостенная, слабовыпуклая в задней части. Передний конец обычно выше заднего. Поверхность гладкая или слегка скульптирована. Замок правоваликовый. Обызвествленная часть внутренней пластинки одинаково широкая на переднем и заднем концах. Порово-канальная зона узкая. 17 видов; современные, обитают в мелких водоемах, питаемых родниками; в колодцах, родни-

ках. Неоген — ныне, Северное полушарие (рис. 65, 66).

Lineocypris Zalanyi, 1929 [L. trapezoidea; плиоцен, Югославия]. Раковина маленькая и средних размеров, трапециевидная, тонкостенная, слабовыпуклая, спинной край почти прямой. Передний конец широко закруглен, задний — круто скошен сверху, внизу чуть оттянут и резко закруглен. Правоперекрывающая. Поверхность гладкая или слаботочечной скульптуры. Свободная часть внутренней пластинки на переднем конце в 5 раз шире порово-канальной зоны, на заднем — узкая. Около 20 видов. Олигоцен, СССР (Украина). Неоген, Югославия, СССР (Северный Кавказ, Средняя Азия) (рис. 67, 68).

Typhlocypris Veidovsky, 1882 (=Cavernocandonamann, 1964; Kochia Hejjas, 1894; Telekia Sohn et Morris, 1963) [Cupris eremita, современный вид. Европа]. Раковина средних и относительно больших размеров, треугольно-удлиненных очертаний, с передним концом ниже заднего. Охват вдоль концов. Порово-канальная зона составляет 1/5 неширокой бесструктурной пластинки. Поверхность гладкая или точечно скульптирована. Отпечатки аддуктора некрупные, Половой диморфизм слабо выражен: самцы незначительно больше самок, задняя половина их раковин чуть выше. Личиночные формы имеют ячеистую скульптуру. Замок правоваликовый. Около 10 видов. Современные главным образом в неглубоких пресных и слабоосолоненных водоемах, на глубине не более 50 м. Неоген — ныне, повсеместно (рис. 69).

Подсемейство Advenocypridinae Schneider, 1960

Раковина треугольная, резко неравностворчатая, левоперекрывающая. Спинной край левой створки нависает над замочным краем. Поверхность гладкая или слабояченстая. Замок адонтного типа. Бесструктурная пластинка широкая на обоих концах, порово-канальная зона узкая. Солоноватоводные формы. Поздний миоцен — плейстоцен.

Advenocypris S c h n e i d e r, 1956 [A. alpherovi; сармат (грозненские слои), Кавказ]. Раковина средних и относительно больших размеров, субтреугольная. Концы закруглены, наклонены книзу. Поверхность гладкая или слабоскульптированная. 16 видов. Поздний миоцен; плейстоцен, Северный Кавказ, Нижнее Поволжье, Северная Киргизия (рис. 70).

Подсемейство Paracandoninae Schneider, 1960

Раковина удлиненно-овальная, передний и задний концы почти одинаковой высоты, равномерно закруглены. Поверхность имеет многочисленные бородавчатые образования — устья поверхностных поровых каналов и более крупные бугорки.

Paracandona Hartwig, 1899 [Candona euplectella Brady et Norman, 1889; современный вид, Англия]. Раковина средних размеров, удлиненно-овальная, сильно и равномерно выпуклая. Максимальная высота достигает половины длины. Скульптура сетчатая. Замок правоваликовый. Бесструктурная пластинка слабо развита, зона сращения узкая. Отпечатки аддуктора крупные. 1 вид, ныне обитает в пресных водоемах с густой водной растительностью. Плиоцен — ныне, Северное полушарие (см. табл. VI, рис. 95).

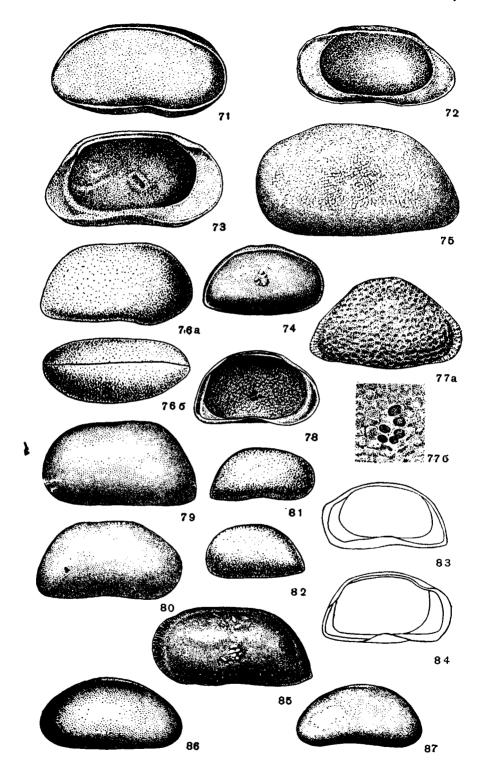


Рис. 71—74. *Disopontocypris oligocaenica Zalanyi. 1929. 71 — раковина с правой стороны; 72 — правая створка изнутри; 73 — левая створка изнутри (все ×59). Рупель, Северный Кавказ, соленовский горизонт [68]; 74 — раковина с правой стороны (×47). Рупель, р. Мамрюк, соленовский горизонт [38].

Рис. 75. Disopontocypris kasachstanica M and elst am, 1956. Экз. № 12571/1. Ле-

вая створка с наружной стороны (×77). Нижний олигоцен, Северный Устюрт, соленов-

ский горизонт. Рис. 76. *Amplocypris sinuosa Zalanyi, 1944. Раковина: а— с правой, б— со

Рис. 76. *Аткрюсургіз sinuosa 2 а 1 а п у 1, 1944. Раковина: a — с правой, б — со спинной стороны (×40). Неоген, Венгрия [175]. Рис. 77, 78. *Вакипеlla dorsoarcuata (Z a 1 а п у 1, 1929). 77 — правая створка: a — с наружной стороны (×50), б — фрагмент с центральными мускульными отпечатками (×100). Понт, Югославия [168]; 78 — правая створка изнутри (×58). Бакинский ярус, Азербайджан [1]. Рис. 79, 80. *Саяріосургіз candida (Livental, 1929). 79 — левая створка с на-

ружной стороны; 80 — правая створка с наружной стороны (×43). Апшерон, Западная

Туркмения [54].

Рис. 81—85. *Caspiolla acronasula (Livental, 1929). 81 — правая створка с наружной стороны; 82 — левая створка с наружной стороны ($\times 43$). Апшерон, Западная Туркмения [54]; 83— правая створка изнутри; 84— левая створка изнутри (оба ×41). Апшерон, Нижнее Поволжье [70]. 85 — экз. № 1/2571/11; левая створка с наружной стороны (×72). Киммерий, Керчь. Рис. 86, 87. *Caspiollina uschakensis Mandelstam, 1957. 86 — правая створка с

наружной стороны; 87 — левая створка с наружной стороны (оба ×43). Акчагыл, За-

падная Туркмения [38].

CEMENCTBO DISOPONTOCYPRIDIDAE Mandelstam, 1956 [nom. transl. Karmischina et Pavlovskaya, nov. (ex DISOPONTOCYPRIDINAE Mandelstam, 1956)]

Раковина различно обызвествлена, чаще толстостенная, неправильно-трапециевидная или неправильно-овальная, с прямым или дугообразным спинным и сильновогнутым брюшным краями. Передний конец выше заднего, закругленный; задний скошен, иногда заострен в нижней части. Равномерно и не сильновыпуклая, резко неравностворчатая, левоперекрывающая. Замок адонтного типа. Бесструктурная пластинка хорошо развита на концах; порово-канальная зона узкая с многочисленными поровыми каналами. Отмечены меньшие размеры раковин самцов по сравнению с раковинами самок. Обитатели солоноватоводных морских и континентальных водоемов. Олигоцен — ныне.

Родовой состав: Disopontocypris, Amplocypris, Bakunella, Caspiocypris, Caspiolla, Caspiollina, Guriella, Liventalina, Paracaspiocypris, Pontoniella, Rectocypris, Turkmenella. Возможно также, Thaminocypris

Zalanvi, 1944.

Disopontocypris Mandelstam, 1956 [Pontocypris oligocaenica Z a l a n y i, 1929; верхний олигоцен, Венгрия]. Раковина средних размеров, удлиненно-овальная или субтрапецеидальная. Поверхность гладкая, реже точечная и мелкояченстая. Над краевыми частями замка (желобка) левой створки нависают загибы спинного края, которым соответствуют уступы на правой створке. Аддукторные отпечатки тесно расположены. 5 видов. Рупель, юг европейской части СССР, Западный Казахстан и Узбекистан, Поздний олигоцен, Венгрия, Румыния (табл. V, рис. 71—75).

Замечание. Из эгерия Венгрии Моностори [Monostori, 1985 г.] описана форма Phluctenophora oligocaenica (Zalanyi), которая по наличию разветвляющихся поровых каналов, вероятно, может быть отнесена к роду Phlyctenophora, но не соответствует признакам вида D. oligocaenica, имеющего простые, неразветвляющиеся краевые поровые каналы, как это отражено в первоописании Залани.

Amplocypris Zalanyi, 1944 [A. sinuosa; сармат, Венгрия]. Размеры средние. Раковина удлиненно-овальная, с прямым спинным краем, задний конец слабо скошен в верхней части, в нижней — заострен. Поверхность гладкая. Бесструктурная пластинка наиболее развита в переднебрюшной части, поровые каналы малочисленны. Около 40 видов. Мио-

цен — плейстоцен, Венгрия, Закарпатье (рис. 76).

Bakunella S c h n e i d e r, 1958 [Pontocypris dorsoarcuata Z a l a n y i, 1929; паннон, Югославия]. Раковина средних размеров, неправильнотрапециевидная, выпуклая. Спинной край дугообразный или прямой; задний конец приострен и опущен книзу. Скульптура ячеистая. Бесструктурная пластинка в 4 раза шире порово-канальной зоны. 5 видов. Поздний плиоцен — ныне, Юго-Восточная Европа, Юго-Западная Азия (рис. 77, 78).

Caspiocypris M andelstam, 1956 [Bairdia candida Livental, 1929; апшерон, Кавказ]. Раковина средних размеров, округло-трапециевидная. Спинной край прямой, короткий; задний конец скошен в верхней части, в нижней — закруглен. Поверхность гладкая. Замок левой створки с нависанием передней части спинного края над желобком. Бесструктурная пластинка более широкая на переднем конце. Краевые поровые каналы многочисленны. Около 35 видов. Меотис — плейстоцен, Югославия, Румыния, Болгария, СССР (Кавказ, юг Молдавии)

(рис. 79, 80).

Caspiolla Mandelstam, 1960 [Bairdia acronasuta Livental, 1929; апшерон, Кавказ]. Размеры средние. Раковина субтрапецендальных очертаний. Спинной край слабоарковидный. Задний конец скошен, с брюшным краем соединяется под острым углом. Поверхность гладкая, с хорошо заметными простыми порами. Над передней частью замка левой створки нависает загиб спинного края, что соответствует уступу на правой створке. Бесструктурная пластинка почти в 4 раза шире порово-канальной зоны, пронизанной многочисленными поровыми каналами. Около 20 видов. Плиоцен— ныне, Югославия, СССР (Черноморско-Каспийская область, Поволжье, Западная Туркмения) (рис. 81—85).

Caspiollina M and elstam, 1957 [C. uschakensis; акчагыл, Западная Туркмения]. Раковина средних размеров, неправильно-овальная; задний конец выше переднего. Спинной край дугообразный; брюшной — слабо вогнут. Поверхность гладкая. Замок правоваликовый, 4 вида.

Акчагыл, Каспийская область (рис. 86, 87).

Guriella I m n a d z e, 1971 [G. abstracta; верхний плиоцен (гурийские слои), Западная Грузия]. Размеры средние. Раковина тонкостенная, неправильно-трапециевидная, с нависающим в передней части брюшным краем. Спинной край прямой, наклонен к заднему концу. Передний конец дугообразно закруглен, задний скошен в верхней части и резко закруглен в нижней. Поверхность гладкая. Над замком левой створки — нависающий загиб, на правой створке — соответствующий уступ в передней части. 1 вид. Верхний плиоцен (гурийские слои), Западная Грузия (табл. VI, рис. 88).

Liventalina Schneider, 1958 [Herpetocypris (?) dagadjikensis Markova, 1956; акчагыл, Западная Туркмения]. Раковина асимметричная средних размеров, тонкостенная, округло-треугольная, удлиненная (длина в 2 раза больше высоты). Спинной край дугообразный, передний конец узко закруглен, задний — более резко. Поверхность створок покрыта ячейками, более выраженными в центральной части. Замок правоваликовый. Около 6 видов. Плиоцен, Каспийская область, Нижнее Поволжье, Западный Казахстан, Западная Туркмения (рис. 89).

Paracaspiocypris Schneider, 1963 [Bythocypris mandelstami Schweyer, 1949; нижний плейстоцен, Западная Туркмения]. Раковина средних и относительно больших размеров, овальная. Спинной край полого дугообразный. Брюшной край слабо вогнут. Концы закруглены. Поверхность гладкая, с четкими точечными выходами поровых каналов. Краевые поровые каналы многочисленные. З вида. Плиоцен,

ранний плейстоцен, Туркмения, Нижнее Поволжье, Кавказ (рис. 90).

Pontoniella Mandelstam, 1960 [Paracypris acuminata Zalanyi, 1929; понт, Югославия]. Раковина средних размеров, стручковидная. Спинной край слабодугообразный или прямой. Передний конец значительно выше заднего. Задний конец в нижней части вытянутый и приостренный. Поверхность гладкая или слабояченстая. Замок левой створки с нависанием в передней части спинного края. 13 видов. Поздний миоцен — плейстоцен, Югославия, Болгария, Румыния, СССР (Крымско-Кавказская область, Средняя Азия) (рис. 91, 92).

Rectocypris S c h n e i d e r, 1958 [Bythocypris reniformis S c h w e y e r, 1949; плиоплейстоцен, Нижнее Поволжье]. Раковина средних размеров, неправильно-овальная, с максимальной высотой в средней части створок. Спинной край дугообразный, с уступом в передней части на правой створке. Передний конец высокий, закругленный; задний — слабо скошен в верхней части, в нижней — закруглен. Поверхность гладкая. Бесструктурная пластинка в 2 раза шире порово-канальной зоны, имеет характерный уступ на брюшном крае (лучше выражен на левой створке). 5 видов. Плиоплейстоцен, Нижнее Поволжье, Западный Казахстан, Западная Туркмения (рис. 93).

Turkmenella S c h n e i d e r, 1963 [T. lucida; неоген, Горный Алтай]. Раковина крупная, трапециевидная. Спинной край короткий, вогнут посередине на левой створке и прямой — на правой. Концы скошены в верхней части и закруглены в нижней. Охват круговой. Поверхность гладкая или слабоямчатая. Бесструктурная пластинка шире порово-канальной зоны в 2—2,5 раза. 6 видов. Неоген, Горный Алтай; плиоплей-

стоцен, Кавказ, Западная Туркмения (рис. 94).

СЕМЕЙСТВО CYPRIDIDAE Baird, 1845

Раковина разнообразной формы, часто крупных размеров, с гладкой или скульптированной поверхностью. Замок адонтный, право- или левоваликовый. Свободная часть внутренней пластинки иногда чрезвычайно широкая. Зона сращения широкая или узкая, с прямыми краевыми поровыми каналами. Кайма большей створки расположена ближе к наружному краю и чаще несет радиальные септы. Обитатели континентальных пресных и слабоосолоненных водоемов, обычно богатых растительностью. Мезозой — ныне. Включает подсемейства: в мезозое и кайнозое: Talicyprideinae Hou, 1982; Cypridinae, Eucypridinae; возможно также, Clinocypridinae; в кайнозое: Cypridinae, Cyprinotinae, Dolerocypridinae, Eucypridinae, Herpetocyprellinae, Herpetocypridinae, Hungarocypridinae, Mediocypridinae, Scottinae, Pelocypridinae Triebel, 1963. Современные подсемейства: Amphibolocypridinae Hartmann et Puri, 1974; Bradycypridinae Hartmann et Puri, 1974; Centrocypridinae Hartmann et Puri, 1974; Indiacypridinae Hartmann et Puri, 1974; Isocypridinae Rome, 1965; Limanocypridinae Hartmann et Puri. 1974: Megalocypridinae Rome, 1965; Mesocypridinae Hartmann et Puri, 1974; Rudjakoviellinae Triebel in Malz, 1973.

Подсемейство Cypridinae Baird, 1845

Раковина округленно-треугольных или овальных очертаний. Левая створка преимущественно больше правой. Замок адонтный. Хорошо обособлена вторичная внутренняя пластинка на обеих створках; зона сращения, находящаяся в ее пределах, узкая; поровые каналы прямые многочисленные. Первичная часть внутренней пластинки широкая с внутренним краевым валиком. Могут присутствовать радиальные или концентрические септы. Отпечатки аддуктора крупные, неправильной фор-

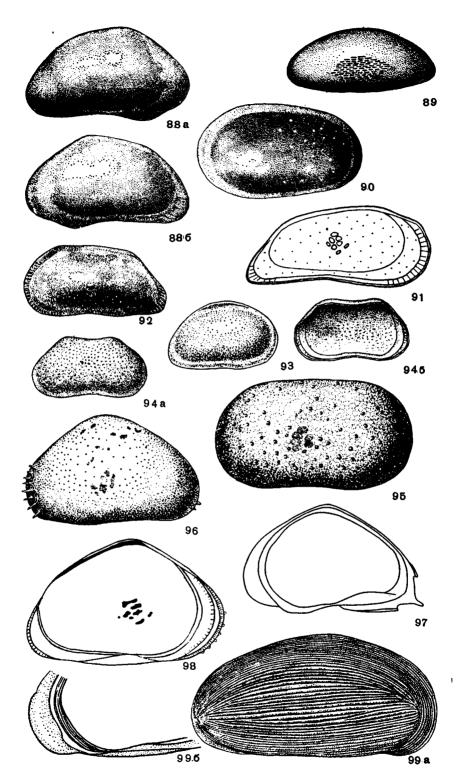


Рис. 88. *Guriella abstracta I m n a d z e, 1971. Правая створка: a-c наружной стороны, b-c изнутри ($\times 60$). Верхний плиоцен, Западная Грузия, гурийские слои [19].

Рис. 89. *Liventalina dagadjikensis (Markova, 1956). Левая створка с наружной

Рис. 99. *Liventatina dagaarikensis (Mark VV 4, 1930). Левая Створка с наружной стороны (×60). Апшерон, Западная Туркмения [36]. Рис. 90. *Paracaspiocypris mandelstami (S c h w e y e r, 1949). Левая створка с наружной стороны (×41). Апшерон, Нижнее Поволжье [70]. Рис. 91, 92. *Pontoniella acuminata (Z a l a n y i, 1929). 91 — левая створка изнутри (×50). Плиоцен, Югославия [189]; 92 — левая створка с наружной стороны (×47). (ход). Понт, Азербайджан (коллекция Мандельштама).

Рис. 93. *Rectocypris reniformis (Schweyer, 1949). Раковина с правой стороны (ход). Апшерон, Нижнее Поволжье [54].

Рис. 94. *Turkmenella lucida Schneider, 1963. Правая створка: а—с наружной

гис. 34. Тигктепена паша 3 стптетает, 1903. Правая створка: а—с наружной стороны, б— изнутри (×43). Плиоцен, Горный Алтай [37].

Рис. 95. *Paracandona euplectella (В га d у et N o r m a n, 1889). Раковина с левой стороны (×75). Современный вид, Шотландия [175].

Рис. 96—98. *Cypris pubera O. F. Müller, 1776. 96— левая створка с наружной стороны; 97— правая створка изнутри (×20); 98— левая створка изнутри (схема). Современный вид, Англия [175].

Рис. 99. *Virgatocypris virgata Malz et Moayedpour, 1973. Правая створка: a-c наружной стороны, $\delta-\phi$ рагмент створки изнутри ($\times 68$). Миоцен, Гессен, Φ РГ,

планорбелловые слои [146].

мы, некоторые слабо раздвоены. Раковины самцов незначительно крупнее раковин самок. Ранний мел — ныне. Обитатели континентальных пресных и слабоосолоненных водоемов.

Родовой состав. В мезозое: Ussuriocypris Mandelstam, 1956; Mongolocupris Szczechura, 1978. В кайнозое: Cypris, Virgato-

cupris.

Современные роды: Afrocypris Sars, 1924; Chlamydotheca Sausure, 1858; Diacypris Herbst, 1961; Globocypris Klie, 1939; Pseudocupris Daday, 1910; Riocupris Klie, 1935; Sclerocupris Sars, 1924;

Tanganyikacypris Kiss, 1961.

Cypris O. F. Müller, 1776 (=Eurycypris G. Müller, 1899) [C. pubera; современный вид, Северная Европа]. Раковина крупная, толстостенная, округленно-треугольная, с наибольшей высотой (более половины длины) в месте перегиба спинного края в передней трети; выпуклая с уплощением на брюшной стороне, с острыми шипами на заднем конце. Поверхность гладкая или ямчатая. Замок правоваликовый. Внутренний краевой валик только на левой створке; кайма с радиальными септами. Краевые поровые каналы простые. Около 500 видов. Неоген — ныне, повсеместно (рис. 96—98).

Virgatocypris Malz et Moayedpour, 1973 [V. virgata; миоцен, планорбелловые слои, Гессен, ФРГ]. Раковина средних и относительно больших размеров, удлиненная, суженная на заднем конце, с наибольшей высотой почти посередине, вздутая с боков и уплощенная на брюшной стороне, слабоасимметричная. Скульптура тонкоребристая; несколько ребер ориентированы параллельно концам, остальные — продольно. Замок правоваликовый. Краевые поровые каналы простые, иногда разветвляющиеся. Имеются концентрические септы. 14 видов. Поздний эоцен — плейстоцен, Западная Европа. В СССР: миоцен — плейстоцен (рис. 99).

Подсемейство Cyprinotinae Bronstein, 1947

Раковина удлиненно-овальная, неравностворчатая, право- или левоперекрывающая. Передний конец несколько ниже заднего. Замок адонтного типа. Внутренняя пластинка хорошо развита. Порово-канальная зона узкая, с многочисленными прямыми поровыми каналами. Пресноводные формы. Поздняя юра — ныне.

Родовой состав. В мезозое: Leiria Helmdach, 1968. В кай-HOSOE: Cyprinotus, Dogelinella, Hemicyprinotus, Helerocypris Claus,

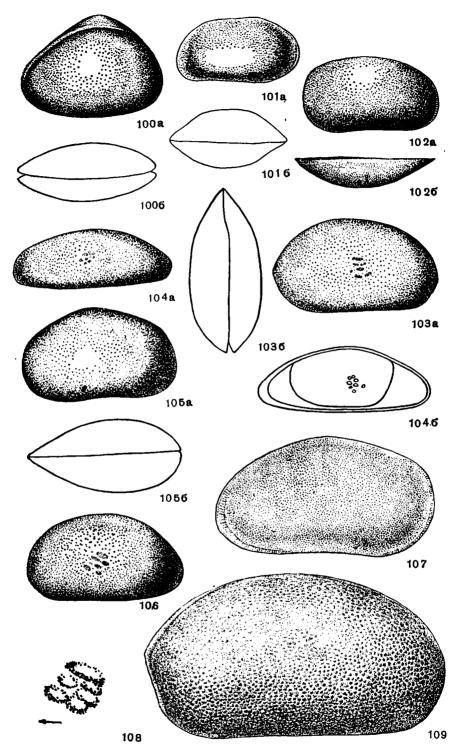


Рис. 100. *Cyprinotus cingalensis B г а d у, 1886. Раковина: a-c левой, b-c0 спинной стороны (\times 30). Современный вид, о. Шри-Ланка [175]. Рис. 101. *Dogelinella taeniata S c h п e i d e г, 1957. Раковина: a-c правой, b-c0 спинной стороны (\times 40). Плиоцен, Фергана [54].

Рис. 102. *Hemicyprinotus valvaetumidus Mandelstam, 1957. Правая створка:

Рис. 102. "Петасургногия видовегитилия Ман и ет стапи, 1957. Правая створка: а—с наружной, б—со спинной стороны (×30). Плиоцен, Китай [54]. Рис. 103. *Heterocypris incongruens (Ram dohr, 1808). Раковина: а—с правой, б—со спинной стороны (×30). Современный вид, Европа [175]. Рис. 104. *Dolerocypris fasciata (O. F. Müller, 1776). Левая створка самки: а— с наружной стороны, б—изнутри (×30). Современный пресноводный вид, Норвегия

 \dot{P}_{HC} , 105, *Eucypris virens (Jurine, 1820). Раковина самки: a — с левой, b — со

спинной стороны (×20). Современный пресноводный вид, Норвегия [175].

Рис. 106. Cypricercus fuscatus (Jurine, 1820). Правая створка с наружной стороны (×30). Современный вид, Норвегия [175].

Рис. 107—109. *Kassinina kassini M and elstam, 1956. 107— левая створка с наружной стороны (×43) [54]; 108— экз. № 12571/2, схема расположения центральных мускульных отпечатков на правой створке (примерно ×430). Рупель, Тургайский прогиб, челкар-нуринская свита; 109— экз. № 8485/8; раковина самца с правой стороны (×53). Северное Приаралье, рупель.

1893. Современные роды: Homocypris Sars, 1924; Alboa De Deckker, 1981.

Cyprinotus Brady, 1886 (=Hemicypris Sars, 1903; Paracyprinotus Schneider, 1957; Microcypris Kaufmann, 1900; Eucyprinotus Sywula, 1972) [C. cingalensis; современный вид, о. Шри-Ланка]. Раковина средняя и относительно крупная, субовальная или округленнотреугольная, с наибольшей высотой (более половины длины) вблизи середины; несколько сжатая с боков, с мелкими концевыми шипиками по свободному краю меньшей (обычной правой) створки. Поверхность гладкая или ямчатая. Замок правоваликовый. Зона сращения узкая, с простыми поровыми каналами. Бесструктурная пластинка в 3 раза шире порово-канальной зоны. Имеются концентрические и слабые радиальные септы. Около 200 видов. Поздний мел — ныне, повсеместно (табл. VII. рис. 100).

Dogelinella Schneider, 1957 [D. taeniata; плиоцен, Фергана]. Раковина маленькая, субовальная, левоперекрывающая, выпуклая в центральной части и уплощенная на концах, с прямым спинным краем, образующим тупые углы при переходе в концы. Передний конец широко закруглен, задний обычно скошен. Поверхность гладкая. 2 вида. Плиоцен, Средняя Азия (рис. 101).

Hemicyprinotus Schneider, 1957 [H. valvaetumidus Mandelstam, 1957; плиоцен, Джунгария]. Раковина большая, неправильноовальная, левоперекрывающая. Спинной край слабодугообразный, передний конец закруглен, задний — дугообразно срезан. Поверхность гладкая. 10 видов. Плиоцен, Тянь-Шань; миоцен, США (Невада)

(рис. 102).

Heterocypris Claus, 1893 [Cypris incongruens Ramdohr, 1808; современный вид, Европа]. Раковина средних размеров или большая, удлиненно-овальная, сверху яйцевидная. Спинной край слабо выгнут, плавно соединяется с концами. Передний конец заужен, задний — закруглен. Асимметрия створок слабая. Поверхность гладкая. Бесструктурная пластинка и зона сращения узкие. Меньшая правая створка с радиальными септами. Многочисленные виды, обитатели мелких водоемов. Миоцен — ныне, повсеместно (рис. 103).

Подсемейство Dolerocypridinae Triebel, 1961

Раковина преимущественно удлиненная, усеченно-овальная, тонкостенная. Поверхность гладкая. Свободная часть внутренней пластинки очень широкая, зона сращения узкая. Обитатели пресных водоемов, богатых растительностью. Плиоцен — ныне.

Родовой состав. В кайнозое: Dolerocypris; Candonocypris

Sars, 1895. Современный род: Astenocypris G. Müller, 1912.

Dolerocypris Kaufmann, 1900 (=Subulacypris Schneider, 1957) [Cypris fasciata O. F. Müller, 1776; современный вид, Европа]. Раковина крупная, ее максимальная высота всегда меньше половины длины, а ширина не более высоты. Спинной край дугообразно выгнут; передний конец чуть выше заднего. Правая створка обычно перекрывает левую на концах. Мелководные формы. Около 20 видов. Плиоцен — ныне, повсеместно (рис. 104).

Подсемейство Eucypridinae Bronstein, 1947

Раковина треугольных или овальных очертаний, несколько удлиненная, обычно с закругленным более высоким передним концом и часто заостренным задним. Левая створка, как правило, больше правой. Поверхность гладкая или скульптированная. Замок адонтный. Свободная часть внутренней пластинки широкая, особенно на переднем кон-

це. Раковины самцов меньше раковин самок. Мел — ныне.

Родовой состав. В мезозое: Lycopterocypris Mandelstam, 1956. В мезозое и кайнозое: Eucypris, Cypricercus, Kassinina, Moenocypris, Paracypricercus Huang, 1984; Paraeucypris, Prionocypris, Pseudoeucypris, Stanchevia Krstich, 1969; Tonnacypris Diebel et Pictrzeniuk, 1975; Amphicypris Sars, 1910. Современные роды: Bradleystrandesia Broodbakker, 1983; Cabonocypris De Deckker, 1982; Mytilocypris McKenzie, 1966; (?) Liocypris Sars, 1924; Strandesia Vavra, 1895.

Eucypris Vavra, 1891 [Monoculus virens Jurine, 1820; современный вид, Швейцария]. Раковина крупная, удлиненная. Спинной край обычно выгнут, часто с перегибом в месте максимальной высоты посередине или в передней трети. Асимметрия створок слабая. Поверхность большей частью гладкая, изредка слабоскульптированная. Свободная часть внутренней пластинки широкая, особенно на переднем конце. Зона сращения относительно узкая, с многочисленными краевыми поровыми каналами. Более 300 видов. Мел — ныне, повсеместно (рис. 105).

Сургісегсия Sars, 1895 [С. cuneatus; современный вид, Южная Африка]. Раковина удлиненно-овальная, выпуклая, средних и крупных размеров. Спинной край прямой со слабым угловатым перегибом в передней трети. Концы дугообразно закруглены; передний — несколько опущен книзу, задний — иногда снабжен шиповидным отростком. Поверхность гладкая или скульптированная. Внутренняя пластинка на переднем конце в 4 раза превышает порово-канальную зону; последняя пронизана многочисленными поровыми каналами. Около 40 видов. Плиоцен Киргизии и Казахстана; современные водоемы Европы, Америки (рис. 106).

Kassinina M a n d e l s t a m, 1960 [K. kassini, 1956; олигоцен, рупель, Казахстан, чиликтинская свита]. Раковина относительно крупная, удлиненно-овальная, умеренно выпуклая. Спинной край — выгнутый или прямой с перегибом в конце передней трети. Передний конец выше заднего и закруглен. Поверхность с мелкими плоскими бугорками (шагреневая), иногда мелкоячеистая. Бесструктурная пластинка в 2 раза шире порово-канальной зоны, в области которой могут присутствовать радиальные септы. Олигоцен — ранний миоцен, Центральный Казахстан, Тянь-Шань (рис. 107—109).

Moenocypris Triebel, 1959 [M. francofurtana; нижний миоцен, ФРГ]. Раковина средних и относительно больших размеров, тонкостенная, умеренно выпуклая, овальная, без кардинальных углов и спинного перегиба, с наибольшей высотой почти посередине. Передний конец

ниже заднего, чуть уже закруглен. Левая створка перекрывает правую по брюшному краю. Поверхность гладкая. Бесструктурная пластинка образует вестибюли на концах. Зона сращения узкая на концах, расширенная по всему брюшному краю, за исключением изолированного округлого пятна в его центре на левой створке. Поровые каналы многочисленные, простые или разветвляющиеся. Нижний олигоцен, рупель, Северный Кавказ; верхний олигоцен, Венгрия; верхний олигоцен — нижний миоцен, Майнцский бассейн, ФРГ (табл. VIII, рис. 110—112).

Prionocypris Brady et Norman, 1896 [Candona serrata Norman, 1862; современный вид, Европа]. Раковина большая, плотная, удлиненная, с точечным или мелкояченстым рисунком поверхности. Максимальная высота ее чуть превосходит половину длины и расположена в передней трети; ширина не достигает половины длины. Задний конец ниже переднего; брюшной край прямой. Зона сращения и обызвествленная часть внутренней пластинки широкие. На переднем конце многочисленные мелкие шипики, на заднем — крупные, заостренные, загнуты вверх. Около 20 видов, современные — обитатели мелких водоемов. Миоцен — ныне (рис. 114).

Paraeucypris Schneider, 1957 [P. tota; плиоцен, Киргизия]. Раковина средних размеров, выпуклая, удлиненно-овальная. Спинной край дугообразно закруглен в передней трети. Передний конец уплощен, слегка скошен в всрхней части и закруглен в нижней. Задний конец круто закруглен. Поверхность гладкая. 1 вид. Плиоцен, Киргизия

(рис. 113).

Pseudoeucypris S c h n e i d e г, 1957 [P. eboris; плиоцен, Илийская впадина]. Раковина средних и относительно больших размеров, вздутая с боков и уплощенная на брюшной стороне, неправильно-овальная. Спинной край дугообразный. Передний конец дугообразно закруглен. Задний — ниже него, заострен или круто закруглен. Поверхность гладкая. Около 10 видов. Олигоцен — плиоцен, Центральный Казахстан, Узбекистан, Тянь-Шань (рис. 115).

Подсемейство Herpetocyprellinae Bronstein, 1947

Раковина округленно-трапециевидных очертаний с одними или двумя бугорчатыми возвышениями на каждой створке. Половой диморфизм

выражен слабо. Плиоцен — ныне, Киргизия, Джунгария. 1 род.

Herpetocyprella Daday, 1909 [H. mongolica; современный вид, оз. Иссык-Куль]. Раковина крупная, слабоасимметричная. Спинной край образует углы в месте наибольшей высоты и при соединении с задним концом. Передний конец выше заднего и более равномерно закруглен. 7 видов. Верхний плиоцен, Илийская впадина; ныне, повсеместно (рис. 116, 117).

Подсемейство Herpetocypridinae Kaufmann, 1900

Раковина удлиненно-овальная. Поверхность со слабыми точечными ямками и мелкими бугорчатыми возвышениями, окружающими устья поверхностных поровых каналов. Свободная часть внутренней пластинки широкая с радиальными септами на внутреннем краевом валике и кайме. Краевые поровые каналы многочисленные. Половой диморфизм слабо выражен. Обитатели континентальных пресных и слабоосолоненных водоемов, богатых растительностью. Олигоцен — ныне.

Родовой состав. В кайнозое: Herpetocypris, Ilyodromus Sars, 1894; Stenocypria, Stenocypris. Современные роды: Acocypris Vavra, 1895; Chrissia Hartmann, 1957; Gesa Hartmann, 1957; Parastenocypris Hartmann, 1964. Возможно также, Pseudostenocypris

Schneider, 1963.

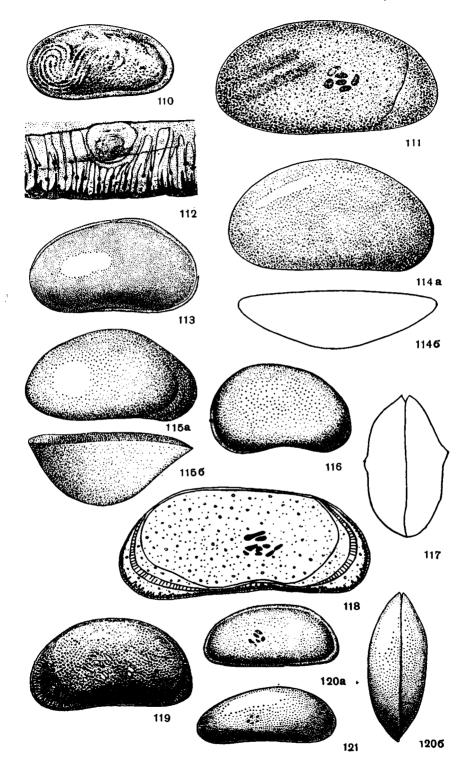


Рис. 110—112. *Moenocypris francofurtana Triebel, 1959. 110 — правая створка самца с наружной стороны ($\times33$); 111 — то же, самки ($\times50$); 112 — брюшной край ($\times200$). Нижний миоцен, Майнцский бассейн, ФРГ [175].

Рис. 113. *Paraeucypris tota Schneider, 1957. Раковина с правой стороны (×47). Плиоцен, Киргизия [54]. Рис. 114. Prionocypris vitria B o d i п a, 1961. Правая створка: а—с наружной, 6—

со спинной стороны (×43). Нижний миоцен, Зайсанская депрессия [8].

Рис. 115. *Pseudoeucypris eboris Schneider, 1957. Правая створка: a—с на-ружной, б—со спинной стороны (×20). Плиоцен, Илийская впадина [54]. Рис. 116, 117. *Herpetocyprella mongolica Daday, 1909. 116—раковина самца с

левой стороны; 117 — раковина самки со спинной стороны (оба ×30). Современный вид, оз. Иссык-Куль [175].

Рис. 118. *Herpetocypris reptans (Baird, 1835). Левая створка изнутри (×32). Голоцен, Нидерланды [185].

Рис. 119. Ilyodromus olivacerus (Вгаd v et Norman, 1889). Левая створка сам-

ки с наружной стороны (×94). Плейстоцен, Северная Европа [97].

Рис. 120, 121. *Stenocypria fischeri (Lilljeborg, 1883). 120 — раковина: a-c левой, b-c0 спинной стороны. Современный вид, Северная Европа [175]; 121 — левая створка с наружной стороны. Современный вид, Чехословакия [10] (все $\times 20$).

Herpetocypris Brady et Norman, 1889 (=Siphlocandona Brady, 1910) [Cypris replans Baird, 1835; современный вид, Англия]. Раковина крупная, с максимальной высотой, не превышающей половины длины. Концы примерно равны по высоте. Спинной край слабо выгнут. Левоперекрывающая. Замок правоваликовый. Зона сращения узкая, с прямыми или разветвляющимися поровыми каналами. Внутренний краевой валик левой створки с радиальными септами. Кайма периферическая, с септами на концах левой створки. Около 100 видов. Олигоцен — ныне, повсеместно (рис. 118).

Ilyodromus Sars, 1894 [Candona stanleyana King, 1855; coppeменный вид, Новая Зеландия. Раковина средних и больших размеров, толстостенная. Максимальная высота расположена примерно посередине. Асимметрия створок слабая. Бесструктурная пластинка на переднем конце в 2 раза шире, чем на заднем. Порово-канальная зона узкая, с ветвящимися поровыми каналами. Около 20 видов. Плейстоцен —

ныне, повсеместно.

Stenocypria G. Müller, 1901 [Cypris fischeri Lilljeborg, 1883; современный вид, Северная Европа]. Раковина крупная тонкостенная, удлиненно-овальная, слабовыпуклая. Максимальная высота и ширина менее половины длины. Спинной край почти прямой, плавно переходит в концы примерно одинаковой высоты. Замок правоваликовый. Бесструктурная пластинка шире зоны сращения в 5-6 раз. Около 10 видов. Плейстоцен — ныне, Северное полушарие. В СССР: Западная Си-

бирь (рис. 120, 121).

Stenocypris Sars, 1889 [Cypris major Baird, 1886; менный вид, Индия]. Раковина средних и крупных размеров, удлиненно-овальная. Максимальная высота и ширина ее меньше половины длины. Концы почти одинаковой высоты, закруглены. Асимметрия створок слабая. Поверхность гладкая, с точечными ямками. Замок правоваликовый. Свободная часть внутренней пластинки очень широкая на переднем конце левой створки, на правой — уже. Порово-канальная зона узкая, с многочисленными поровыми каналами, объединенными в группы по 2—4. На всю зону сращения по свободному краю распространены радиальные септы. Более 90 видов, современные. Обитают в мелких пресных водоемах. Плейстоцен — ныне, повсеместно (табл. IX, рис. 122).

Подсемейство Hungarocypridinae Bronstein, 1947

Раковина удлиненная, толстостенная. Сверху оба конца раковины клювовидно-заостренные. Створки слабоасимметричные. часть внутренней пластинки и зона сращения примерно одинаковой ширины. Отпечатки аддуктора округлые. Обитатели пресных и слабоосо-

Рис. 122. Stenocypris malcomsoni (Вгаду, 1886). Раковина: а—с правой, б—со спинной стороны (×30). Современный вид, Индия [175]. Рис. 123. *Hungarocypris madæraszi (Öerley, 1886). Левая створка самки изнутри (×15). Современный вид, Венгрия [10].

Рис. 124. *Scottia browniana (Jones, 1850). Раковина: а—с правой, б—со

спинной стороны (×60). Плейстоцен, Англия [175].
Рис. 125. *Mediocypris brodi Schneider, 1956. Правая створка с наружной стороны (×40). Чокрак, Северная Осетия [54].
Рис. 126. *Cyclocypris globosa (Sars, 1863). Раковина самки: а—с левой, б—со спинной стороны (×60). Современный вид, Северная Европа [175]. Рис. 127. Cyclocypris laevis (О. F. Müller, 1776). Левая створка изнутри

(×123). Голоцен, Нидерланды [185]. Рис. 128. Cypria exsculpta (Fischer, 1855). Раковина самки с левой стороны (×60). Современный вид, Норвегия [175].

Рис. 129. Cypria ophtalmica (Jurine, 1820). Правая створка изнутри (×88). Го-

лоцен, Нидерланды [185]. Рис. 130. Physocypria globula Furtos, 1933. Раковина: а— с левой, б— со спин-

ной стороны (×60). Современный вид, Северная Америка [175]. Рис. 131. *Bentocypria curvifurcata (Klie, 1923). Правая створка с наружной стороны (×72). Современный вид, европейская часть СССР [Коваленко, 1987 г.].

лоненных водоемов с богатой растительностью. 1 род: Hungarocypris. Hungarocypris Vavra, 1906 [Notodromas madaraszi Öerley, 1886; современный вид, Венгрия]. Раковина крупная, удлиненно-прямоугольная, слабовыпуклая. Спинной край с перегибом в месте наибольшей высоты (превосходит половину длины) в конце передней трети. Задний конец почти вертикальный, образует заднебрюшной угол. Левая створка больше правой. Поверхность гладкая или равномерно ямчатая. Краевые поровые каналы многочисленные. Раковины самцов меньших размеров и имеют резче выраженные заднебрюшные углы. 8 видов. Плиоцен — ныне, повсеместно (рис. 123).

Подсемейство Mediocypridinae Schneider, 1960

Раковина удлиненно-овальная, левоперекрывающая. Спинной край слабодугообразный или прямой. Передний конец закруглен, задний скошен в верхней части. Поверхность ячеистая. Замок адонтный. Бесструктурная пластинка и зона сращения почти равной ширины, узкие, краевые поровые каналы прямые. Могут присутствовать радиальные септы. Пресноводные отложения. Миоцен, Евразия. 1 род: Mediocypris.

Mediocypris Schneider, 1956 [M. brodi; миоцен (чокрак), Северная Осетия]. Раковина крупная, умеренно выпуклая, удлиненно-овальная. Иногда на брюшном крае развито узкое ребро, ограничивающее уплощенную продольную площадку. Концы почти одинаковой высоты. Передний равномерно закруглен, задний полого скошен в верхней части. Поверхность покрыта четкими четырех- и пятиугольными ячейками.

9 видов. Средний миоцен, Евразия (рис. 125).

Подсемейство Scottinae Bronstein, 1947

Раковина овально-округлая, короткая. Спинной край арковидный. Сверху концы раковины закруглены. Мезозой — ныне. Включает 1 род: Scottia.

Scottia Brady et Norman, 1889 [Cypris browniana Jones, 1850; плейстоцен, Англия]. Раковина средних размеров, удлиненноокруглая, толстостенная, сверху яйцевидная, чуть зауженная к переднему концу и закруглена на заднем. Максимальная ширина достигает 3/5, а высота — 2/3 длины раковины и находится в задней половине. Спинной край выгнутый, плавно переходит в концы. Асимметрия створок незначительна. Поверхность гладкая, Замок правоваликовый. Свободная часть внутренней пластинки и зона сращения широкие, особенно на переднем конце. Краевые поровые каналы многочисленные. 13-15 видов, современные обитают в пресных водоемах, главным образом источниках. Мезозой (?); плейстоцен — ныне, Северное полушарие (рис. 124).

8 Зак. 734

Раковина различно кальцифицирована, округлых или полуокруглых очертаний, укороченная, охват различный. Поверхность гладкая, редко скульптированная. Замок адонтного типа. Мускульные отпечатки не равных размеров. Половой диморфизм не сильно выражен. Раковины самцов незначительно меньше раковин самок. Обитатели континентальных пресных или слабоосолоненных водоемов. Поздняя юра — ныне. Включает подсемейства: Cyclocypridinae и Cypriinae.

Подсемейство Cyclocypridinae Kaufmann, 1900

Раковина слабо обызвествлена, округлых очертаний, сильно выпуклая, слабоасимметричная, право- и левоперекрывающая. Максимальная высота составляет почти половину длины. Поверхность гладкая или слабо скульптирована. Бесструктурная пластинка широкая, зона сращения узкая. Поздняя юра — ныне.

Родовой состав. В мезозое: Cetacella Martin, 1958; Scabriculocypris Anderson, 1940; Ilhasina Krommelbein, 1963; Reconcava Krommelbein, 1962; Salvadoriella Krommelbein, 1963; Reticulocypris Staplin, 1963. В мезозое—кайнозое: Cyclocypris. В кайнозое: Oreanocypris Swain, 1986. Современный род: Paracypria Sars, 1910.

Cyclocypris Brady et Norman, 1870 [Cypris globosa Sars, 1863; современный вид, Норвегия]. Раковина маленьких и средних размеров, округлая, спинной край дугообразно выгнут, плавно соединяется с концами, право- или левоперекрывающая. Поверхность гладкая, редко тонко скульптированная. Бесструктурная пластинка широкая, особенно на переднем конце; имеет внутренний контактный валик и концентрические септы. Смыкание створок усилено 2 контактными бугорками, расположенными на брюшном крае большей створки по обе стороны от незначительного вестибюля. Около 70 видов. Маастрихт Монголии. Олигоцен — ныне, Северное полушарие (рис. 126, 127).

Подсемейство Cypriinae Kovalenko, subfam. nov.

Раковина полуокруглых, реже округлых очертаний. Максимальная высота превосходит половину длины, а ширина меньше или равна половине длины.

Родовой состав. В мезозое — кайнозое: *Cypria*. В кайнозое: *Bentocypria*, *Physocypria*. Современные роды: *Allocypria* Rome, 1962; *Candocypria* Furtos, 1933; *Cyclocypria* Dobbin, 1941; *Mecynocypria* Rome, 1962.

Сургіа Z е n k е г, 1854 [Monoculus punctatus J u г i n е, 1820; современный вид, Англия]. Раковина маленькая или средних размеров, полуокруглая или округлая, сжатая с боков. Концы примерно одинаковой высоты и широко закруглены. Максимальная высота расположена почти посередине и достигает 2/3 длины. Левая створка чуть больше правой и охватывает ее с брюшной стороны. Поверхность гладкая, редко со слабой штриховкой. Свободная часть внутренней пластинки широкая, зона сращения узкая. В переднебрюшной части левой створки присутствует контактный кноповидный бугорок. Краевые поровые каналы немногочисленные. Более 130 видов, современные обитают главным образом в толще воды. Плиоцен — ныне, повсеместно (рис. 129).

Physocypria V a v г a, 1898 [Cypria bullata V a v г a, 1898; современный вид, Восточная Африка]. Раковина маленькая и средних размеров, полуокруглая, слабокальцифицированная, сжатая с боков. Максимальная высота более половины длины, а ширина менее. Спинной край чуть

выгнут. Концы примерно одинаковой высоты и широко закруглены. Правая створка перекрывает левую по спинному краю. Поверхность гладкая или нежно скульптирована. Замок левоваликовый. На внутреннем крае правой створки расположены многочисленные мелкие бугорки. Более 30 видов, современные обитают в пресных водоемах преимущественно на мелководье. Миоцен — ныне, повсеместно (рис. 130).

Вептосургіа Қоvalenko, 1987 [Cypria curvifurcata Қlie, 1923; современный вид, европейская часть СССР]. Размеры средние. Раковина толстостенная, полуокруглых очертаний, слабоудлиненная. Передний конец широко закруглен, чуть ниже заднего. Спинной край прямой или слегка выгнут; брюшной почти прямой. Левая створка охватывает правую по спинному краю и заднему концу. Поверхность гладкая, с хорошо заметными единичными порами, интенсивнее развитыми у брюшного края. Малочисленные виды, современные в пресных и слабосолоноватых водоемах, обычно на глубине более 1 м. Плиоплейстоцен — ныне, Юго-Запад СССР (рис. 131).

CEMENCTBO CYPRIDOPSIDAE Kaufmann, 1900

Раковина слабо кальцифицирована, округлая, или удлиненно-овальная, резко асимметричная. Поверхность гладкая или скульптирована. Замок адонтный. Бесструктурная пластинка узкая. Аддуктор представлен верхним крупным овальным отпечатком и 2 рядами под ним, состоящими из трех отпечатков впереди и двух—сзади. Обитатели разнообразных пресных и слабоосолоненных континентальных водоемов. Палеозой (?); поздний мел—ныне. Включает подсемейства. В мезозое—кайнозое: Cypridopsinae. Современные: Batucyprettinae Fernando, 1981; Cyprettinae Hartmann, 1963.

Подсемейство Cypridopsinae Kaufmann, 1900

Раковина субовальная, удлиненная, с выпуклым спинным краем и закругленными концами; выпуклая, правоперекрывающая. Поверхность гладкая, реже ячеистая. Замок адонтный, порово-канальная зона широкая, с многочисленными поровыми каналами. Внутренняя пластинка широкая на переднем конце. Поздний мел — ныне.

Родовой состав. В мезозое и кайнозое: Cypridopsis, Potamocypris. В кайнозое: Zonocypris. Современные роды: Australocypridopsis M с K е n z i е, 1982; Kapcypridopsis M с K е n z i е, 1977; Cheikella S o h n et Morris, 1963; Cyprilla S ars, 1924; Neocypridopsis K l i е, 1940; Neozonocypris K l i е, 1944; Oncocypris G. Müller, 1898; Pseudocypretta K l i е, 1932; Plesiocypridopsis D e D e c k k e r, 1981; Sarscypridopsis M c K e n z i e, 1967.

Cypridopsis Brady, 1868 (= Pionocypris Brady et Norman, 1896) [Cypris vidua O. F. Müller, 1776; современный вид, Европа]. Размеры маленькие и средние. Раковина округло-треугольная, удлиненно-овальная, субпрямоугольная, с максимальной высотой почти посередине. Концы закруглены, примерно одинаковой высоты, на меньшей створке иногда с шипами; выпуклая, право- или левоперекрывающая. Поверхность иногда ямчатая. Свободная часть внутренней пластинки широкая. Могут присутствовать концентрические септы. Зона сращения узкая, особенно на меньшей створке. Внутренний краевой валик не прерывается на брюшной стороне, где краевая зона утолщена. Около 260 видов. Поздний мел — ныне, повсеместно (табл. X, рис. 132, 133).

Potamocypris Brady, 1870 (=Candonella Claus, 1891; Paracypridopsis Kaufmann, 1900) [Bairdia fulva Brady, 1868; современный вид, Англия]. Размеры маленькие и средние. Раковина тонкостенная, удлиненно-округлая, сжатая с боков или слабовыпуклая. Макси-

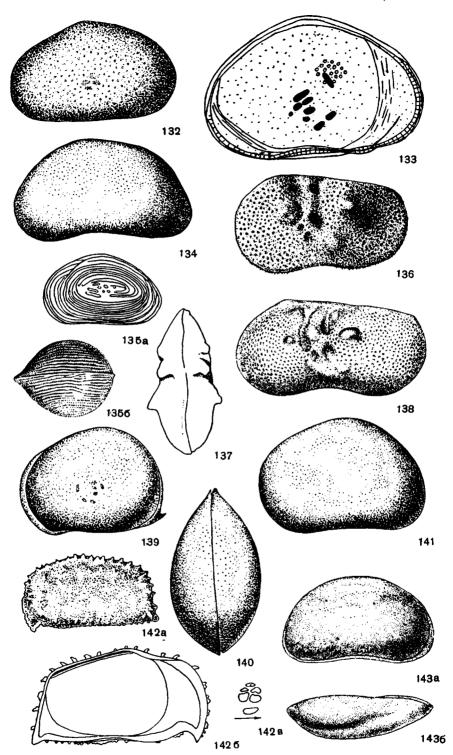


Рис. 132, 133. *Cypridopsis vidua (О. F. Müller, 1776). 132 — раковина с левой стороны (\times 70). Современный вид, Норвегия [175]; 133 — левая створка изнутри (\times 90). Голоцен, Нидерланды [185].

Рис. 134. *Potamocypris fulva (Вгаду, 1868). Раковина с правой стороны (×80). Современный вид, Англия [175].
 Рис. 135. *Zonocypris madagascarensis G. Müller, 1898. Раковина: а—с левой,

6 — со спинной стороны (×80). Современный вид, Восточная Африка [175]. Рис. 136—138. *Ilyocypris gibba R a m d o h r, 1808. 136 — левая створка с наружной стороны; 137 — раковина со спинной стороны (оба ×60). Современный вид, Гессен, ФРГ [176]; 138 — экз. № 12571/3. Левая створка с наружной стороны (×50). Плиоцен, Прикаспийская впадина.

Рис. 139, 140. *Notodromas monachus (О. F. Müller, 1776). 139 — раковина самки с левой стороны; 140 — раковина самца со спинной стороны (оба ×40). Современ-

ный вид, Европа [175].
Рис. 141. *Cyprois marginata Straus, 1821. Левая створка с наружной стороны

(×30). Современный вид, Норвегия [175]. Рис. 142. *Karshicypridea karaktajensis Gramm et Bukharina, 1967. Левая створка: a-c наружной стороны ($\times 53$), b- изнутри ($\times 66$), b- центральные мускульные отпечатки (схема). Плиоцен, Узбекистан [15]. Рис. 143. *Baturinella kubanica Schneider, 1956. Правая створка: а— с наруж-

ной. 6— со спинной стороны ($\times 30$). Верхний плиоцен. Северный Кавказ [54].

мальная высота смещена к переднему концу и достигает половины длины. Спинной край арковидный на правой, более высокой, и почти прямой на левой, более удлиненной створке. Передний конец выше заднего, широко закруглен. Замок левоваликовый. Поверхность гладкая или с мелкими точечными углублениями и легкой штриховкой. Свободная часть внутренней пластинки неширокая, но у современных форм с прозрачным хитиновым продолжением. Краевые поровые каналы хорошо выражены, зона сращения узкая. Кайма иногда сильно развита в заднебрюшной части и имеет радиальные септы. Миоцен — ныне, повсеместно, в различных, в том числе подземных, водоемах (рис. 134).

Zonocypris G. Müller, 1898 [Z. madagaskarensis; современный вид, о. Мадагаскар]. Раковина средних размеров, овальная, вздутая, с характерной ребристо-концентрической скульптурой. Спинной край дугообразный. Концы плавно закруглены, передний ниже заднего, асимметрия створок слабо выражена. Замок правоваликовый. Бесструктурная пластинка в 3 раза шире порово-канальной зоны, иногда присутствуют радиальные септы. Около 25 видов. Плиоцен — ныне. Африка. Западная Европа (рис. 135).

СЕМЕЙСТВО NOTODROMATIDAE Kaufmann, 1900 [transl. Kovalenko, nov. (ex NOTODROMATINAE Kaufmann, 1900)]

Раковина высокая, укороченная, округлой формы, сжатая с боков. Поверхность гладкая или скульптированная. Спинной край выпуклый. Замок адонтный. Краевые поровые каналы прямые, многочисленные. Палеоген — ныне. Подсемейства: Notodromatinae, Cyproidinae.

Подсемейство Notodromatinae Kaufmann, 1900

Раковина уплощенная на брюшной стороне. Внутренняя пластинка широкая лишь у переднего конца. Зона сращения узкая, краевые поровые каналы прямые, многочисленные. Замок правоваликовый.

Родовой состав. Notodromas Lilljeborg, 1853; Newnhamia

King, 1855; Kennethia De Deckker, 1979.

Notodromas Lilljeborg, 1853 [Cypris monacha O. F. Müller, 1776; современный вид, Европа]. Раковина средних и относительно больших размеров, округло-овальная, короткая, сжатая с боков. Ее высота около 2/3 длины, а ширина достигает половины. Спинной край арковидный, задний конец широко закруглен; на переднем хорошо заметна гиалиновая оболочка. В заднебрюшном углу правой створки самки всегда присутствует шип. Створки почти симметричны. Поверхность

гладкая. Зона сращения узкая, краевые поровые каналы многочисленны. Половой диморфизм помимо шипа у самок проявляется в чуть меньших размерах самцов. 10—13 видов, современные, обитают на мелководье стоячих пресных водоемов. Плейстоцен— ныне, повсеместно (рис. 139, 140).

Подсемейство Cyproidinae Hartmann, 1963

Раковина высокая с сильновыгнутым спинным краем. Поверхность гладкая. Зона сращения довольно широкая, четко выраженная. Вклю-

чает 1 род.

Cyprois Zenker, 1854 [Cypris marginata Straus, 1821; современный вид, Северная Европа]. Размеры средние и крупные. Раковина округлой формы. Максимальная высота находится посередине, достигает половины длины. Передний конец широко закруглен, выше заднего. Правая створка чуть больше левой. Бесструктурная пластинка широкая, особенно на переднем конце. 17 видов, современные обитают в мелких пресных водоемах и родниках. Олигоцен — плиоцен, Средняя Азия; ныне, Северное полушарие (рис. 141).

СЕМЕЙСТВО ILYOCYPRIDIDAE Kaufmann, 1900

Раковина толстостенная, субпрямоугольная, с двумя поперечными бороздами и субцентральной ямкой, сжатая с боков. Спинной и замочный края прямые. Концы дугообразно закруглены, передний выше заднего. Раковина, как правило, левоперекрывающая. Поверхность гладкая, ямчатая, бугорчатая, редко ребристая. Иногда бугры и ребра больших размеров. Замок адонтный с тенденцией к усилению краевых частей. Бесструктурная пластинка, как правило, узкая. Зона сращения относительно широкая. Краевые поровые каналы прямые, многочисленные. В центральном мускульном поле 9 отпечатков. Половой диморфизм выражен. Обитатели преимущественно пресных водоемов: рек, стариц, родников. Триас — ныне, повсеместно.

Родовой состав. В мезозое: Rhinocypris Anderson, 1940.

В мезозое — кайнозое: *Ilyocypris*.

Ilyocypris Brady et Norman, 1889 [Cypris gibba Ramdohr, 1808; Северная Европа]. Раковина средних размеров, удлиненная. В середине створок близ борозд расположены 2—3 конусовидных бугра, направленных назад. Поверхность створок яченстая, ямчатая, мелкобугорчатая. Бесструктурная пластинка умеренно широкая. Краевые поровые каналы прямые, широкие в основании. Половой диморфизм выражен расширением и вздутостью задней части раковины самок. Более 100 видов. Мел — ныне, повсеместно. В СССР: олигоцен — четвертичный (рис. 136—138).

СЕМЕЙСТВО НЕ ОПРЕДЕЛЕНО

(?) Подсемейство Baturinellinae Schneider, 1960

Раковина от субовальной до трапециевидной, резко неравностворчатая, правоперекрывающая, с характерным горбовидным возвышением у спинного края. Створки гладкие. Замок лофодонтно-псевдодонтный. Бесструктурная пластинка слабо развита. Порово-канальная зона узкая, с прямыми каналами. Солоноватоводные формы. Поздний плиоцен — плейстоцен, СССР.

Baturinella Schneider, 1956 [B. kubanica; верхний плиоцен, Кубань]. Раковина средних размеров, неправильно-овальная, удлиненная, выпуклая, правоперекрывающая. Спинной край прямой или слабодуго-

образный. Концы закруглены, задний немного скошен в верхней части. Ниже спинного края правой створки имеется характерное округло-гор-бовидное возвышение. Створки гладкие, равномерно покрыты единичными порами. Замок представлен в левой створке серединным конусовидным зубом и боковыми удлиненными выемками, в правой створке — желобком с боковыми пластинчатыми зубами на концах. Внутренняя пластинка немного шире порово-канальной зоны, последняя узкая. З вида. Поздний плиоцен — плейстоцен, Северный. Кавказ, Нижнее Поволжье (рис. 143).

СЕМЕЙСТВО И ПОДСЕМЕЙСТВО НЕ ОПРЕДЕЛЕНЫ

Karshicypridea G г а m m et B u k h а г i n a, 1967 [K. karaktajensis; плиоцен, УзССР]. Раковина средних размеров, неправильно-трапециевидная, с прямым спинным краем и более высоким, чем задний, широко закругленным передним концом, имеющим ростроподобный выступ в нижней части. Задний конец скошен, соединяется с брюшным краем под тупым углом. Скульптура бугорчато-шиповатая. Бесструктурная пластинка широкая (около 1/4 длины раковины и в 6 раз шире зоны сращения на переднем конце) и относительно узкая на заднем. З вида. Плиоцен, Юго-Западный Узбекистан (рис. 142).

Подотряд Cytherocopina Gründel, 1967

Раковина различно обызвествлена. Задний конец обычно не выше переднего. Левая створка, как правило, больше правой, охват различный, у некоторых групп развиты поперечные борозды. Поверхность можеть быть гладкой, но преимущественно разнообразно и сложно скульптирована. У зрячих групп может проявляться наружное глазное образование. Поверхностные поры простые и ситовидные. Замок от простого до сложного. Внутренняя пластинка хорошо развита. Зона сращения относительно широкая и у большинства групп шире свободной части. Краевые поровые каналы простые или усложненные; число их может быть значительным. Аддуктор однорядного типа представляет собой вертикальный ряд, состоящий из 3—5 отдельных отпечатков. Мандибулярные и фронтальные отпечатки хорошо выражены. Половой диморфизм проявляется на раковинах в виде «контурного» и реже скульптурного или клоденеллидного типов. Распространены во всех типах океанических и наземных водоемов. Встречены в наземных биотопах. Основное развитие в мезозое и кайнозое. 6 надсемейств и ряд семейств неопределенной надсемейственной принадлежности. В палеозое и кайнозое: Bythocytheracea. В позднем палеозое — раннем мезозое: Permiапасеа Scharapova in Schneider, 1948. Преимущественно в мезозое: семейство Progonocytheridae Sylvester-Bradley, 1948. В мезозое — кайнозое: Cytheracea, Cytherideidacea, Trachyleberidacea. Современное: Terrestricytheracea S c h o r n i k o v, 1969. Современные семейства неопределенной надсемейственной принадлежности: Microcytheridae Klie, 1938; Psammocytheridae Klie, 1938; Kliellidae Schaefer, 1945: Entocytheridae Hoff: 1942: Parvocytheridae Hartmann, 1959; Cytheromatidae Elofson, 1939.

Надсемейство BYTHOCYTHERACEA Sars, 1926 [nom. transl. Gründel et KOZUR, 1975 (ex BYTHOCYTHERIDAE SARS, 1926)]

Раковина различно обызвествлена, разнообразного строения и формы, часто с поперечной бороздой и каудальным отростком. Могут присутствовать крыловидные расширения, вздутия. Спинной край длинный, прямой или выгнутый, замочный край практически соответствует ему по длине. Поверхность от гладкой до разнообразно скульптированной.

Замок адонтный или лофодонтный с укороченными краевыми элементами. Внутренняя пластинка различной ширины в зоне сращения и свободной части. Центральное мускульное поле с 5 аддукторными, округлым фронтальным и 1—2 мандибулярными отпечатками. Кайма у большинства групп занимает положение наружного края раковины. Обитатели морских водоемов. Палеозой — ныне. Включает семейства: Bythocytheridae и, возможно, Paradoxosmatidae.

СЕМЕЙСТВО BYTHOCYTHERIDAE Sars, 1926

Обызвествление у позднекайнозойских форм слабое. Раковина округленно-прямоугольных очертаний или удлиненно-овальная, часто с поперечной бороздой и брюшно-боковым крыловидным выростом. Может присутствовать каудальный отросток, являющийся продолжением прямого спинного края или находящийся в верхней половине заднего конца. Поверхность гладкая или скульптированная. Наружное глазное образование обычно отсутствует. Замок лофодонтный. Внутренний край и линия сращения часто не совпадают. Краевые и поверхностные поровые каналы простые. 5 аддукторных отпечатков. Присутствующий у некоторых родов над ними шестой отпечаток предположительно относится к дорсальной группе. Палеозой— ныне. Включает 3 подсемейства. В палеозое— мезозое: Editiinae K п ü p f e r, 1967. Продолжают существование в кайнозое Bythocytherinae и Pseudocytherinae. Роды неопределенной подсемейственной принадлежности: Miracythere H o r n i b r o o k, 1952; Cytheralison H o r n i b r o o k, 1952 (современные).

Подсемейство Bythocytherinae Sars, 1926

Раковина различного строения и формы, гладкая или скульптированная. Охват различный. Фулькральное пятно обычно имеется. Половой диморфизм на раковинах проявляется в относительной удлиненности раковин самцов. Палеозой — ныне. Включает 3 трибы. В палеозое — кайнозое: Bythocytherini. Современные: Vitjasiellini Schornikov, 1981, и Jonesiini Schornikov, 1981.

Триба BYTHOCYTHERINI Sars, 1926

Раковина округленно-прямоугольных очертаний, с прямым спинным краем и более или менее развитой поперечной бороздой. Каудальный отросток присутствует или редуцирован. Крыловидный выступ обычно развит. Поверхность гладкая или ямчатая, ячеистая шиповатая, ребристая, концевые шипы могут присутствовать. Среди рецентных форм имеются глубоководные. Палеозой — ныне.

Родовой состав. В палеозое значительное количество родов. В мезозое: Bythocytheromorpha Mandelstam, 1958; Crassacythere Grüdel et Kozur, 1971; Cuneoceratina Gründel et Kozur, 1971 (=? Cretaceratina Neale, 1975); Pariceratina Gründel et Kozur, 1975; Protojonesia Deroo, 1966; Saxellacythere Gründel et Kozur, 1971; Veeniceratina Gründel et Kozur, 1972. В мезозое—кайнозое: Patellacythere Gründel et Kozur, 1971; Bythoceratina. В кайнозое: Bythocythere, Hanaiceratina McKenzie, 1974; Pseudoceratina Vanden Bold, 1965. Возможно также, Evisceratocythere Apostolescu; 1961. Современные: Nodobythere Schornikov, 1981; Orientobythere Shornikov, 1981; Retibythere Schornikov, 1981.

Bythocythere Sars, 1865 [B. turgida; современный вид, прибрежье Норвегии]. Раковина маленькая, субпрямоугольная, с коротким каудальным отростком и брюшно-боковой выпуклостью, переходящей в крыловидное расширение. Медиальная борозда не всегда выражена.

Створки почти равны по величине. Поверхность гладкая, ямчатая, морщинистая. Замок лофодонтный. Порово-канальная зона относительно широкая, бесструктурная пластинка присутствует в центре переднего конца и заднебрюшной области. Краевые поровые каналы прямые (до 20 на переднем конце). Олигоцен — современный. Многочисленные виды повсеместно; нижний олигоцен, Северное Приаралье; нижний мноцен, Северное Приаралье; нижний миоцен, Северный Кавказ (табл. XI, рис. 144, 145).

Вутносегаtina Ногпівгоок, 1952 [В. темарегае; современный вид, прибрежье Новой Зеландии]. Раковина маленькая, округленнопрямоугольная, с каудальным отростком, часто продолжающим спинной край. Поперечная борозда хорошо развита; заднебрюшное вздутие у многих видов заканчивается полым шипом. Левая створка чуть превышает правую в переднеспинном углу. Поверхность гладкая, ямчатая, ячеистая, шиповатая, ребристая. Замок лофодонтный, может быть насечен. Зона сращения ўмеренной ширины, с многочисленными поровыми каналами; имеется неширокая бесструктурная пластинка, вдоль переднего конца и в заднебрюшной части. Поздний мел—ныне. Около 100 видов, повсеместно. Палеоцен Крымско-Кавказской области; нижний эоцен Казахстана (рис. 146—148).

Подсемейство Pseudocytherinae Schneider, 1960

Раковина слабо обызвествлена, нерасчлененная, различных очертаний, гладкая или тонко скульптированная. Левая створка охватывает правую только в ротовой области или у замочного края, а вдоль свободного края правая охватывает левую. Встречается обратный охват. Замок адонтный. 1 мандибулярный и 1 фронтальный отпечаток. Фулькральное пятно отсутствует. Мезозой — ныне. Включает 2 трибы: Pseudocytherini и Sclerochilini.

Триба PSEUDOCYTHERINI Schneider, 1960

Родовой состав. В мезозое: Triassocythere Gründel et Kоzur, 1972. В мезозое (?) — кайнозое: Pseudocythere. Современные роды: Antarcticythere Neale, 1967; Rostrocythere Schornikov, 1981.

Pseudocythere S a г s, 1865 [P. caudata; современный вид, прибрежье Норвегии]. Раковина маленькая, округленно-прямоугольная, с каудальным отростком, продолжающим спинной край, скошенная и уплощенная в заднебрюшной части, часто с шипом в заднебрюшном углу. Внутренняя пластинка широкая, с не совпадающей с внутренним краем линией сращения на переднем конце и в заднебрюшной части. Краевые поровые каналы немногочисленные, прямые, расширенные в дистальной части. 2 канала пронизывают каудальный отросток. Маастрихт (?) — ныне. Около 30 видов, повсеместно. Средний миоцен, чокрак, Крымско-Кавказская область (рис. 149, 150).

Триба SCLEROCHILINI Schornikov, 1981

Родовой состав. В кайнозое: Sclerochilus. Современный род: Oviferochilus Schornikov, 1981.

Sclerochilus S ars, 1865 [Cythere contorta Norman, 1862; современный вид, прибрежье Англии]. Раковина маленькая, тонкостенная, почковидных очертаний, гладкая. Спинной край выгнут. Наибольшая высота находится за серединой раковины, концы закругленные, при этом передний закруглен более резко. Внутренняя пластинка широкая, линия сращения и внутренний край обычно не совпадают, но у некоторых видов сливаются у ротовой области. Порово-канальная зона

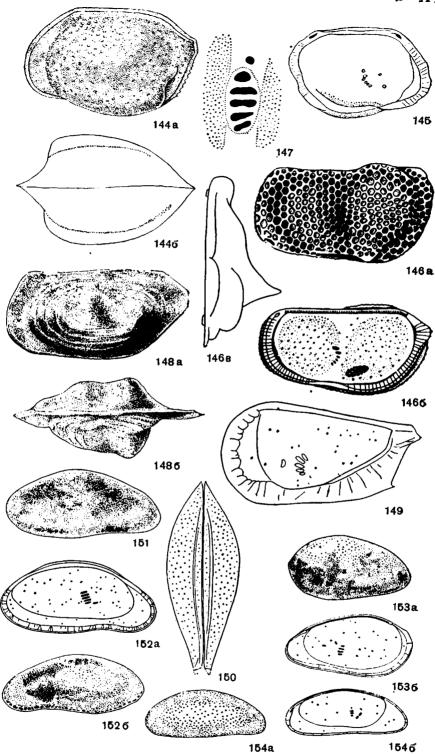


Рис. 144, 145. *Bythocythere turgida Sars, 1865. 144 — раковина самки; a — с левой, b — со спинной стороны (\times 70). Современный вид, прибрежье Норвегии [164]. 145 — левая створка изнутри (\times 54). Современный вид, прибрежье Ирландии [175].

Рис. 146. *Bythoceratina mestayerae Hornibrook, 1952. Левая створка: a—c наружной стороны, δ — изнутри, δ — со спинной стороны (\times 75). Современный вид, прибрежье Новой Зеландии [123]. Рис. 147. Bythoceratina luberculata Hornibrook, 1952. Схема расположения ад-

дукторных отпечатков (×200) [123].

Рис. 148. Bythoceratina constricta Mandelstam, 1964. Экз. № 8485/114. Раковина: а— с левой, б— со спинной стороны (×75). Нижний эоцен, Северное Приаралье. Рис. 149, 150. *Pseudocythere caudata S a r s, 1865. 149— правая створка изнутри; 150 — раковина со спинной стороны (оба ×100). Современный вид, Средиземное море [153]

Рис. 151, 152, *Sclerochilus contortus (Norman, 1862). 151— правая створка с наружной стороны; 152— левая створка: a— изнутри, δ — с наружной стороны (все $\times 60$). Современный вид, прибрежье Норвегии [175].

Рис. 153. *Paradoxostoma variabile (Baird, 1835). Левая створка: а — с наружной стороны, 6 — изнутри (\times 60). Современный вид, прибрежье Нидерландов [175].

Рис. 154. *Cytherois fischeri (Sars, 1865). Левая створка: a — с наружной стороны, 6 — изнутри (\times 60). Современный вид, прибрежье Нидерландов [175].

узкая, краевые поровые каналы многочисленные, могут быть сгруппированы по 2—4. Миоцен — ныне. Более 100 видов, повсеместно. В СССР: средний миоцен (нижний сармат), Закарпатье (рис. 151, 152).

(?) CEMERICTBO PARADOXOSTOMATIDAE Brady et Norman, 1889

Крыловидные выросты, поперечная борозда, концевые шипы отсутствуют. Раковина тонкостенная, удлиненно-овальная, без углов, с редуцированным каудальным отростком или без него, сжата с боков. Правая створка часто чуть больше левой. Поверхность обычно гладкая. Наружное глазное образование отсутствует. Замок адонтный или лофодонтный. Бесструктурная пластинка обычно широкая, порово-канальная зона узкая. Краевые поровые каналы малочисленные, иногда разветвляются или расположены пучками. Поверхностные поры мелкие, малочисленные, открытые. 4 аддукторных и 1 субокруглый фронтальный отпечаток. У живых организмов мандибулы и ротовые органы трансформированы в сосущие для извлечения сока растений. Форма раковины соответствует образу жизни среди водорослей.

Замечания. Отнесено к Bythocytheracea условно. Систематическое положение и происхождение в настоящее время до конца не выяснены; имеются признаки надсемейств Bythocytheracea и Cytherideidacea. Грюндель и Коцур [115] предполагают, что семейство может иметь гетерогенный состав при конвергентном морфологическом сход-

стве отдельных представителей. Неоген — ныне.

Родовой состав. В кайнозое: Paradoxostoma, Cytherois, Pellucistoma Coryell et Fields, 1937. Возможно также, Boldella Keij, 1957. Современные роды: Acetabulastoma Schornikov, 1970; Laocoonella De Vos et Stock, 1956; Megacythere Puri, 1960; Paracythere G. Müller, 1894; Paracytherois G. Müller, 1894; Perspicytherois Swain et Gilby, 1974; Redekea De Vos, 1953; Xiphichilus Bra-

d y, 1870.

Paradoxstoma Fischer, 1855 [Cythere variabilis Baird, 1835; современный вид, прибрежье Мадейры]. Раковина маленькая, с максимальной высотой в задней половине, брюшной край слабо вогнут в передней трети и выгнут сзади. Концы закруглены, задний выше переднего, со слабовыраженным каудальным отростком в верхней половине. Замок лофодонтный. Внутренний край и линия сращения почти всегда не совпадают, исключением является переднебрюшная область некоторых видов. Порово-канальная зона очень узкая. Краевые поровые каналы малочисленны. Миоцен — современный. Более 300 видов. Ранний миоцен — четвертичный, повсеместно. В СССР: тархан -- чокрак; плиоцен, плиоплейстоцен, Крымско-Кавказская область (рис. 153).

Cytherois G. Müller, 1884 [C. virens = Paradoxostoma fischeri S ars, 1865; современный вид, прибрежье Норвегии]. Раковина тонкая, маленькая, удлиненно-овальная, с арковидным спинным краем и наибольшей высотой посередине; концы закруглены, причем передний сужен. Поверхность гладкая, редко тонкополосчатая. Замок лофодонтный. Бесструктурная пластинка везде широкая, кроме приротовой области, где могут совпадать внутренний край и линия сращения. Поровоканальная зона узкая. Краевые поровые каналы простые, малочисленные. Мандибулярный отпечаток относительно крупный. Более 40 видов. Миоцен — ныне, повсеместно. В СССР: ранний — средний миоцен (тархан — конка), Крымско-Кавказская область (рис. 154).

Надсемейство CYTHERACEA Baird, 1850 [emend. Gründel et Kozur, 1975]

Раковина разнообразных очертаний, часто с прямым замочным краем; имеются группы с поперечной бороздой и каудальным огростком. Левая створка, как правило, больше правой. Скульптура разнообразна (продольные ребра, крупные ячейки, ямки, бугры, ретикуляция). Поверхностные поры открытые и ситовидные. Наружное глазное образование может присутствовать. Замок адонтный, лофодонтный, меродонтный, шизодонтный, гонгилодонтный. Краевые поровые каналы малочисленные. Обитатели морских и внутриконтинентальных бассейнов различной солености вплоть до пресных водоемов. Поздний палеозой—ныне. Включает семейства в позднем палеозое: Sinusuellidae K a s c h evarova, 1958, Tomiellidae M andelstam, 1956; в позднем палеозое—мезозое: Glorianellidae S c h n e i d e r, 1960, Cytherissinellidae S c h n e i d e r, 1973; Kerocytheridae K o z u r, 1972; в мезозое—ныне: Cytheridae, Limnocytheridae, Leptocytheridae, Cytheruridae, Paracytherideidae, Schizocytheridae, Loxoconchidae.

CEMEMCTBO CYTHERIDAE Baird, 1850 (incl. XENOCYTHERINAE Mandelstam, 1960, PALAEOCYTHERIDEINAE Mandelstam, 1960, part.)

Раковина округленно-прямоугольная или субквадратная, сильно обызвествленная, асимметричная: правая створка выше левой, перскрывает ее по спинному краю, но левая может перекрывать правую и по брюшному краю; равномерно выпуклая, иногда с брюшно-боковыми ребрами на одной или двух створках. Поверхность гладкая или крупнояченстая, ямчатая, ребристая. Поверхностные поры ситовидные. Глазной бугорок слабо выражен или отсутствует. Замок меродонтного или лофодонтного типа. Внутренняя пластинка неширокая, иногда с незначительными вестибюлями. Краевые поровые каналы малочисленные, простые, прямые или изогнутые, иногда утолщенные. Кайма развита. В центральном мускульном поле — вертикальный ряд из 4 замыкательных отпечатков или 2 антеннальных и обычно 1 округлый мандибулярный отпечаток. Раковины самцов более низкие по сравнению с раковинами самок. Преимущественно морские или эвригалинные виды. Юра — ныне.

Родовой состав. В мезозое: Camptocythere Triebel, 1950. В кайнозое: Cythere, Acuminocythere S wain et Gilby, 1974, возможно, Dahomeya Apostolescu, 1961. Современные роды: Abditacythere Hartmann, 1964; Delamarcythere Hartmann, 1974; Loxocythere Hornibrook, 1952; Nannocythere Schaefer, 1953; Onychocythere Tressler, 1939; Sarsocythere Tressler et Smith, 1948. Возможно также, Xenocyhtere Sars, 1925.

Cythere O. F. Müller, 1785 [С. lutea; современный вид, прибрежье Норвегии]. Раковина средних размеров. Левая, меньшая, створка

овального очертания, правая — неправильно-трапециевидного. Максимальная выпуклость правой створки в заднебрюшной части иногда отмечена брюшно-боковым ребром. На раковине имеются неглубокие овально-округлые вдавленности типа крупных ячеек, располагающиеся радиально от центрального мускульного поля. Скульптура ямчатая, поверхностные поры воронкообразные. Замок голомеродонтный, в краевых отделах насечен на 5 частей. Внутренний край и линия сращения совпадают. Краевые поровые каналы изогнутые, около половины из них ложные. Аддукторные отпечатки образуют вертикальный ряд, изогнутый в сторону заднего конца. Более 80 видов, современные — эвригалинные и эвритермальные, преимущественно морские. Плейстоцен — ныне, повсеместно. В СССР: плиоцен — плейстоцен, р. Печора (табл. XII, рис. 155, 156).

CEMEMCTBO LIMNOCYTHERIDAE Sars, 1925 [nom. transl. et correct. Colin et Danielopol, 1978 (ex LIMNICYTHERINAE Sars, 1925)]

Раковина различно обызвествлена. От субпрямоугольной до округлой, с одной или двумя поперечными бороздами или без них. Замочный край прямой; различно выпуклая. Левая створка, как правило, больше правой. Поверхность от гладкой до различно скульптированной. Глазное образование на раковине не проявляется. Замок адонтный, лофодонтный, меродонтный. Порово-канальная зона от умеренной до широкой, иногда присутствуют незначительные вестибюли. Краевые поровые каналы простые или разветвленные. Случаев расщепления мускульных отпечатков замыкательных мышц не наблюдается. Фронтальный отпечаток единичный. Половой диморфизм сильно выражен, различно проявляется в разных группах. Обитатели солоноватоводных и пресных, преимущественно внутриконтинентальных водоемов. Юра — ныне. Включает 2 подсемейства: Limnocytherinae и Timiriaseviinae.

Подсемейство Limnocytherinae Sars, 1925

Раковина тонкостенная, удлиненная, с одной или двумя поперечными депрессиями, которые могут быть ограничены полыми бугорками или вздутиями. Срединная выпуклость створки иногда нависает над брюшным краем и даже переходит в брюшное ребро или круговое ребро, располагающееся параллельно свободному краю. Концевые шипы преимущественно отсутствуют. Поверхность гладкая или покрыта неглубокими ямками или ячейками. Порово-канальная зона от умеренно широкой до очень широкой; поровые каналы немногочисленные, прямые или изогнутые, простые или разветвляющиеся, иногда пучкообразные. Юра — ныне.

Родовой состав. В мезозое — кайнозое: Limnocythere. В кайнозое: Denticulocythere, Cladarocythere Keen, 1972; Elkocythereis Dickenson et Swain, 1967; Limnocytheropteron Swain, 1986; Paralimnocythere. Современные роды: Cytheridella Daday, 1905; Leucocythere Kaufmann, 1892; Neolimnocythere Delachaux, 1928; Pseudolimnocythere Klie, 1938; Galolimnocythere Schornikov, 1974.

Limnocythere Brady, 1868. Раковина округленно-прямоугольная, с прямым спинным краем и хорошо выраженной поперечной бороздой, ограниченной лопастевидными буграми. Юра— ныне, повсеместно. Включает подроды: L. (Limnocythere), L. (Limnocytherina) Negadaev-Nikonov, 1967, и L. (Frontocytherina) Negadaev-Nikonov, 1974. Представители двух последних известны из Евразии: подрод L. (Limnocytherina)— с миоцена доныне, подрод L. (Frontocytherina)— с плейстоцена доныне.

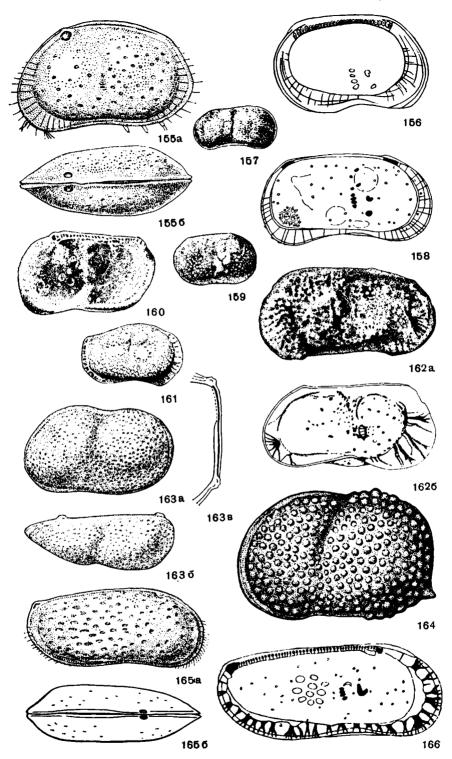


Рис. 155, 156. *Cythere lutea O. F. Müller, 1785. 155 — раковина самки: a-c левой, b-c0 спинной стороны (\times 78). Современный вид, прибрежье Норвегии [164]; 156 — левая створка самца изнутри (\times 60). Северная Атлантика [175].

Рис. 157, 158, *Limnocythere iopinata (Ваігd, 1843). 157 — левая створка с наружной стороны ($\times 40$); 158 — левая створка изнутри ($\times 135$). Современный вид, Северо-Западная Европа [175].

PHC. 159, 160. *Denticulocythere asymetrica Carbonnel et Ritzkowski, 1969. 159 — правая створка с наружной стороны (×45); 160 — правая створка изнутри

(×71). Нижний олигоцен, Гессен, ФРГ [94].

Рис. 161. Denticulocythere tenuireticulata (Suzin, 1956). Правая створка самки с наружной стороны (×33). Акчагыл, Северный Кавказ [63]. Рис. 162. *Paralimnocythere bouleigensis Carbonnel, 1965. Левая створка: а—

с наружной стороны, б— изнутри (×100). Тортон, Франция [93]. Рис. 163. *Kovalevskiella turianensis Klein, 1963. Левая створка: а—с наружной, б—со спинной стороны, в—замок (×94). Четвертичные отложения, Азербайд-

Рис. 164. Kovalevskiella turianensis praeturianensis Vekua, 1975. Левая створка с наружной стороны (×130). Куяльник, Абхазия [13].

Рис. 165, 166. *Leptocythere pellucida (Baird, 1850). 165 — раковина самца: а с правой, 6—со спинной стороны (\times 76). Современный вид, прибрежье Норвегии [164]; 166— левая створка самца изнутри (\times 97). Голоцен, Нидерланды [185].

Подрод L. (Limnocythere) Brady, 1868 [Cythere inopinata Baird, 1843; современный вид, Англия]. Размеры маленькие или средние. Раковина слабовыпуклая, иногда уплощенная на переднем конце. Поперечная борозда протягивается в передней половине раковины от спинного края до брюшной части; к ней примыкают один или несколько полых бугорков. Поверхность гладкая, ямчатая или покрыта слабыми ячейками. Замок лофодонтный. Линия сращения обычно совпадает с внутренним краем. Порово-канальная зона широкая; краевые поровые каналы одиночные, прямые, простые. Раковины самок короче и выше. задняя половина расширена. У раковин самцов удлинена и несколько опущена задняя часть створок. Более 250 видов, повсеместно. Юра ныне. Основное развитие с неогена (рис. 157, 158).

Denticulocythere Carbonnel et Ritzkowski, 1969 (=Prolimnocythere Karmischina, 1970 [Limnocythere (Denticulocythere) asymetrica; олигоцен, Гессен, ФРГ]. Размеры маленькие или средние. Раковина округленно-прямоугольная, с двумя поперечными депрессиями и двумя бугорками между ними. Левая створка превосходит правую в заднеспинной части. Замок трехэлементный, приближающийся к лофодонтному; насечен во всех отделах, краевые элементы короткие, насечены на 2-3 части. Порово-канальная зона умеренно широкая. На переднем конце не более 13 прямых простых поровых каналов. 4 вида. Олигоцен — плейстоцен, Евразия. В СССР: неоген — плейстоцен, Казахстан, Западная Сибирь; плиоцен, ранний плейстоцен, Черноморско-Каспийская область (рис. 159—161).

Paralimnocythere Carbonnel, 1965 (=Limnocythere (Relictocytherina) Negadaev-Nikonov, 1974) [P. bouleigensis; тортон, Франция]. Раковина средних размеров. Поперечная борозда слабо выражена. В средней части раковина сильновыпуклая, имеются полые бугры и вздутия. Характерна очень широкая порово-канальная зона на обоих концах, пронизанная пучкообразными, ветвящимися, изогнутыми поровыми каналами. Замок адонтный, левоваликовый. Около 10 видов, пресноводные формы. Олигоцен — плейстоцен, Западная Европа. В СССР: верхний плейстоцен Молдавии и Саратовского Заволжья (рис. 162).

Подсемейство Timiriaseviinae Mandelstam, 1960

Раковина сильно обызвествлена, укороченная, округлых очертаний, с расширенной (вздутой) задней частью. У ряда групп с одной или двумя поперечными депрессиями. Скульптура ямчато-ячеисто-бугристая. По характеру расположения и форме ямок (ячеек) подсемейство может быть подразделено на группы. Поверхностные поры открытые. Замок лофодонтно-меродонтный, с укороченными и насеченными краевыми элементами. Краевые поровые каналы прямые, простые. Половой диморфизм сильно развит, преимущественно клоденеллидного типа. Триас — ныне.

Родовой состав. В мезозое: Timiriasevia Mandelstam, 1947; Theriosynoecum Branson, 1936; Bisulcocypris Pinto et Sanguinetti, 1958; Stenostroemia Christensen, 1868. В мезозое—кайнозое: Frambocythere Colin et Danielopol, 1980; Rosacythere Colin, 1980; Kovalevskiella. В кайнозое: Pampacythere Whatley et Cholich, 1974; Metacipris Brady et Robertson, 1870. Современные роды: Afrocythere Klie, 1935; Elpidium G. Müller, 1881; Gomphocythere Sars, 1924.

Kovalevskiella Klein, 1963 [K. turianensis; четвертичные отложения, Азербайджан]. Раковина маленькая, вздутая в задней трети; с узкой глубокой поперечной бороздой. Правая створка больше левой. Скульптура ямчато-ячеисто-бугристая. Характерно розеточное расположение скульптурных элементов (до 6). Поверхностные поры открытые. Замок антимеродонтного типа, левоваликовый; краевые элементы укороченные, расчленены на 2—3 части, при этом задний элемент значительно массивнее. Порово-канальная зона относительно узкая. Кайма хорошо выражена. 10 видов. Современные представители обитают в озерах, в том числе пещерных. Мел—ныне, Евразия. В СССР: меотис, плейстоцен, Грузия; четвертичные отложения, Азербайджан (рис. 163, 164).

СЕМЕЙСТВО LEPTOCYTHERIDAE Hanai, 1957 (incl. MEDIOCYTHERIDEISINAE Mandelstam, 1960)

различно обызвествлена, округленно-прямоугольных Раковина очертаний, с прямым или выгнутым замочным краем, почти равным по длине спинному краю. Концы закруглены, задний с почти прямым кардинальным углом. Раковина слабовыпуклая, иногда с поперечной депрессией. Левая створка незначительно больше правой. Иногда с защелкой на брюшной стороне. Могут присутствовать краевые ребра, валики, бугры. Поверхность гладкая, ямчатая или разнообразно яченстая, ячеисто-ребристая. Поверхностные поры простые и ситовидные. Глазное пятно отсутствует или слабо развито. Замок трехчленный, двухосновной (в среднем отделе). Краевые элементы укорочены и слабо нассчены. На левой створке краевые ямки соединены гладким или насеченным желобком, образованным каймой, который ограничен снизу гладким или насеченным валиком, образованным внутренним слоем самой раковины. Валик может быть утолщен в своих краевых частях (тогда замок приближен к энтомодонтному типу), а насеченность может перейти в самостоятельные зубовидные образования, иногда продвинутые к краевым отделам и выполняющие функцию поддерживающих зубов. Детали строения замка родоспецифичны. Внутренняя пластинка умеренно широкая, иногда широкая. Внутренний край и линия сращения у большинства родов несколько не совпадают. Краевые каналы обычно немногочисленные, сильноразветвляющиеся. Характерно присутствие серповидного фулькрального пятна. Раковины самок более выпуклы или вздуты в заднебрюшной части, раковины самцов иногда вытянуты в заднебрюшной части. Обитатели морских полносоленых и солоноватоводных бассейнов. Юра (?); эоцен (?); олигоцен — ныне.

Родовой состав: Leptocythere, Callistocythere, Amnicythere,

Euxinocythere, Tanella.

Leplocythere Sars, 1928 [Cythere pellucida Baird, 1850: современный вид, Северная Атлантика]. Раковина различно обызвествлена, маленькая или средних размеров, удлиненная. Концы иногда скошены

в верхней части и образуют тупые углы со спинным краем. Охват и защелка слабо выражены. Могут присутствовать брюшно-боковое ребро и крупные бугры. Поверхность гладкая, мелкоямчатая, ячеистая; иногда выражена скульптура 2 порядков. Глазное пятно отсутствует. Замок с более крупным задним элементом. Средний отдел гладкий или слабо, равномерно насечен; нижний валик левой створки утолщен в передней части. На переднем конце и в заднебрюшной части присутствуют незначительные вестибюли. Более 140 видов. Обитатели морских и преимущественно солоноватоводных бассейнов. Юра (?); эоцен; олигоцен — ныне, повсеместно, В СССР: караган Керченского п-ова. Меотис, плиоцен — ныне, Черноморско-Каспийская область (рис. 165, 166).

Callistocythere Ruggieri, 1953 [Cythere littoralis G. Müller, 1894; современный вид, Неаполитанский залив]. Раковина маленькая; сильно обызвествлена, несколько укороченная со слабовыгнутым спинным краем, передним и задним краевыми ребрами и мелкими концевыми шипами. Охват хорошо выражен, защелка развита. Поверхность яченстая или бугристо-ребристая. Глазное пятно широкое. Замок насечен во всех отделах. Переднесредний элемент левой створки состоит из 2—4 отдельных зубовидных образований, которые могут быть раздвинуты. Внутренняя пластинка широкая. Линия сращения совпадает с внутренним краем. Поровые каналы малочисленны, очень широкие в своем основании, многоветвистые. Их число и характер видоспецифичны. Около 150 видов. Преимущественно теплолюбивая морская группа. Мюцен — ныне. В СССР: чокрак — караган; ныне, Черноморско-Каспийская область; сармат, Закарпатье.

Аmnicythere Devoto, 1965 [nom. transl. Stancheva, 1965 (ex Leptocythere (Amnicythere) Devoto, 1965)] (=Paraleptocythere Klein et Livental, 1967) [Leptocythere (Amnicythere) fallax Devoto, 1965; озерный плейстоцен, Италия]. Раковина маленькая, тонкостенная, умеренно удлиненная. Охват слабо выражен; защелка присутствует. Краевое ребро выражено. Поверхность гладкая или полигональноячеистая, иногда 2 порядков. Замок гладкий в среднем отделе, насечен на 3 части в переднем и 5 частей в заднем отделе. Вестибюль широкий. На переднем конце 11—17 краевых поровых каналов, преимущественно простых, ампуловидно расширяющихся в дистальной части. Около 25 видов. Средний миоцен — ныне, Средиземноморская, Черноморская и Каспийская области. В СССР: понт, плейстоцен (табл. XIII, рис. 167, 168).

Еихіпосуthеге Stancheva, 1968 [Leptocythere ribenensis Stancheva, 1963; средний сармат, Болгария]. Раковина небольшая, толстостенная, охва слабо выражен, защелка присутствует. Скульптура круппояченстая и яченсто-ребристая, иногда присутствуют бугорки. Характерны 2—3 косо направленных ребра в переднеспинной части и 1—2 вертикальных ребра на заднем конце. Может присутствовать ребро в брюшной части. Глазной бугорок неясно выражен. Замок насечен во всех отделах: в краевых на 3 части — в переднем и 5 частей — в заднем; краевые элементы глубоко насеченного срединного валика утолщены. На переднем конце 4—6 поровых каналов, пучкообразных или раздваивающихся, ампуловидно расширенных в дистальной части. Более 50 видов. Средний мноцен — плиоплейстоцен, Черноморско-Каспийская область (рис. 171, 172).

Pod Tanella Kingma, 1948 (=Mediocytherideis Mandelstam, 1956) [Tanella gracilis Kingma, 1948; неоген (плиоцен?), Суматра]. Раковина маленькая, тонкостенная, удлиненная, со слабовыгнутыми спиным и замочным краями, почти равными по высоте передним и задним концами. Задний конец тупой, при соединении с брюшным краем образует закругленно-тупой угол. Защелка хорошо выражена. Скульптура полигональноячеистая, с выраженной тенденцией к кон-

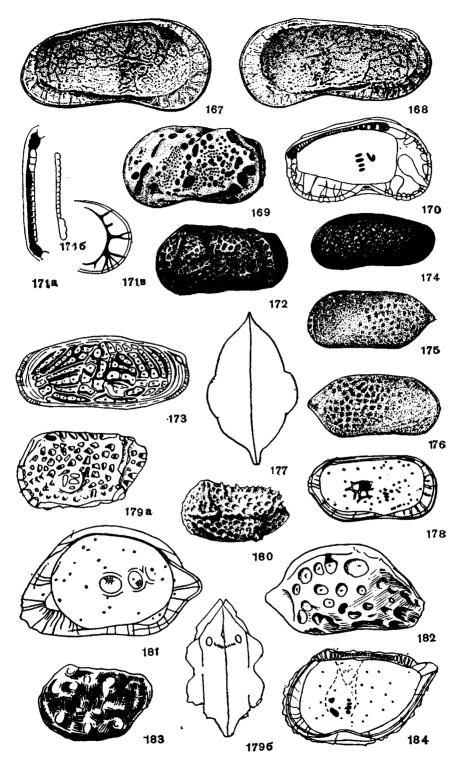


Рис. 167, 168. *Amnicythere fallax Devoto, 1965. 167 — правая створка с наружной стороны; 168 — левая створка с наружной стороны (оба \times 125). Плейстоцен, Италия [96].

Рис. 169, 170. *Callistocythere littoralis (G. Müller, 1894). 169 — левая створка самки с наружной стороны (×94). Современный вид, Неаполитанский залив [175]; 170— левая створка самки изнутри (×97). Плейстоцен, Италия [185]. Рис. 171. *Euxinocythere ribenensis (Stancheva, 1963). Схема строения: а—

замка левой створки изнутри, б — срединного элемента замка правой створки со спинной стороны, в — передней краевой зоны левой створки. Средний сармат, Болгария [171].

Рис. 172. Euxinocythere bosqueti (Livental, 1929). Экз. № 12571/4. Левая створ-

ка с паружной стороны (×72). Понт, Прикаспийская низменность. Рис. 173. *Tanella gracilis Kingma, 1948. Левая створка с наружной стороны

Рис. 173. *Тапена gractits к т п g m a, 1946. Левая створка с наружной стороны (×116). Неоген, Индонезия [180]. Рис. 174. Тапена kenensis (Pavlovskaja, 1982). Левая створка с наружной стороны (×72). Понт, Прикаспийская низменность [55]. Рис. 175—178. *Суtherura gibba (О. F. Müller, 1785). 175, 176—створки самца с наружной стороны: 175—левая, 176—правая (×60); 177—раковина самки со спинной стороны (×83); 178—левая створка самца изнутри (×64). Современный вид, Нидерланды [175]. Рис. 179. *Еисуtherura complexa (B r a d y, 1866). Раковина: а—с левой, б—со

спинной стороны (×108). Современный вид. Неаполитанский залив [185].

Рис. 180. Eucytherura keiji Pietrzieniuk, 1969. Экз. № 8485/321. Левая створ-ка с наружной стороны (×80). Верхний эоцен, Северное Приаралье, нижнечеганская полевита.

Рис. 181, 182. **Hemicytherura cellulosa* (Norman, 1865). Правая створка: 181—изнутри (×150), 182—с наружной стороны (×131). Современный вид, прибрежье

Нидерландов [185]

Рис. 183, 184. Orthonotacythere aff. hannai (Israelsky, 1929). 183 — раковина с левой стороны (×50); 184 — правая створка изнутри (×64). Верхний мел, США (Texac) [185].

центрическому расположению ячеек и усилению отдельных граней. Глазное пятно отсутствует. Передний краевой отдел замка слабо насечен, задний укрупнен и изогнут, насечен на 3 части. На левой створке желобок среднего элемента гладкий, сильно углублен. Нижний валик насечен, в переднем окончании имеет обособленные зубовидные образования, приближенные к ямке переднего отдела. В средней части переднего конца иногда присутствует карманообразный вестибюль. 5 видов. Миоцен — ныне, Индо-Тихоокеанская область. В СССР: понт ныне, Черноморско-Каспийская область (рис. 173, 174).

СЕМЕЙСТВО CYTHERURIDAE G. Müller, 1894

Раковина чаще нерасчлененная, слабоасимметричная; обычно правая створка выше левой; различно развитый каудальный отросток расположен в верхней половине заднего конца. Поверхность обычно скульптирована. Поверхностные поры простые, редко — ситовидные (отмечены у представителей рода Krommelbeinella). Глазное образование иногда присутствует. Замок адонтный, лофодонтный, меродонтно-энтомодонтный. Зона сращения относительно широкая, вестибюль присутствовать; краевые поровые каналы малочисленные, Расщепления аддукторных отпечатков не наблюдалось; фронтальный преимущественно единичный. Половой диморфизм обычно проявляется в относительной удлиненности раковин самцов. Мезозой — ныне. Обитатели морских водоемов.

2 подсемейства: Cytherurinae, Cytheropterinae. Возможно также, подсемейство Parataxodontinae Mandelstam, 1960 (род Parataxodonta Mandelstam, 1956, в мезозое).

Подсемейство Cytherurinae G. Müller, 1894 (incl. Pleurocytherinae Mandelstam, 1960, part.)

Раковина прямоугольных или субовальных очертаний, с различно развитым брюшно-боковым расширением, редко с поперечной бороздой, пересекаемой срединным продольным ребром. Поверхность гладкая или ячеистая, ребристая. Глазной бугорок иногда присутствует. Замок большей частью меродонтный, редко энтомодонтный. Мезозой—ныне. Включает 3 трибы. В мезозое: Otocytherini Gründel in Gründel et Kozur, 1975, и Parariscini Gründel in Gründel et Kozur, 1975. В мезозое—кайнозое: Cytherurini.

Триба CYTHERURINI G. Müller, 1894

Раковина с каудальным отростком. Боковое крыловидное расширение слабо развито или отсутствует, иногда присутствует поперечная борозда. Скульптура различно развита. Замок меродонтно-энтомодонтный. Юра — ныне.

Родовой состав. В мезозое: Allarunella Krommelbein, 1975; Antepaijenborchella Z. Kuznetsova, 1961; Microcosmia Grane, 1965; Oculocytheropteron Bate, 1972; Paijenborchellina Z. Kuznetsova, 1957; Paranotacythere Bassiouni, 1974; Verseya Neale, 1975; Vesticytherura Gründel, 1964. В мезозое—кайнозое: Cytherura, Eucytherura, Hemicytherura, Orthonotacythere, Semicytherura Wagner, 1957. В кайнозое: Gibboborchella Gründel, 1976; Howeina Hanai, 1957; Kangarina Coryell et Fields, 1937; Microcytherura G. Müller, 1894 (=Tetracytherura Ruggieri, 1952); Pseudocytherura Dubowsky, 1939 (=Paracytheropteron Ruggieri, 1952); Rhadinocytherura Sheppard et Bate, 1980.

Суtherura S ars, 1865 [Cythere gibba O. F. Müller, 1785; современный вид, прибрежье Норвегии]. Раковина очень маленькая, нерасчлененная, тонкостенная, округленно-прямоугольных очертаний. Левая створка больше правой, но правая выше. Концевые шипы отсутствуют. Поверхность гладкая, ямчатая или ячеистая. Глазное пятно слабо развито. Замок меродонтно-энтомодонтный, левоваликовый. Линия сращения и внутренний край совпадают; порово-канальная зона неширокая; на переднем конце до 10 поровых каналов. Раковины самок с овальными выступами в заднебрюшной части. Более 350 видов, современные обитают в мелководно-морских и солоноватоводных бассейнах. Мел — ныне, повсеместно (рис. 175—178).

Еисуtherura G. Müller, 1894 [Cythere complexa Brady, 1866; современный вид, Неаполитанский залив]. Раковина очень маленькая, нерасчлененная, сильно обызвествлена, субквадратных очертаний. Левая створка незначительно больше правой. Концевые шипы присутствуют. Поверхность ямчатая, ячеистая, ячеисто-бугорчатая. Глазная линза выражена. Замок меродонтный, лофодонтный, энтомодонтный, левоваликовый. Внутренний край и линия сращения совпадают, поровоканальная зона умеренно широкая; на переднем конце 5—7 поровых каналов. Более 180 видов, преимущественно мелководные. Мел — ныне, повсеместно (рис. 179, 180).

Нетісуtherura Eloíson, 1941 (= Cytherurina Mandelstam, 1958, 1960) [Cythere cellulosa Norman, 1865; современный вид, Англия]. Раковина очень маленькая и маленькая, сильно обызвествлена, субпрямоугольных и субтреугольных очертаний, со скошенным в верхней части передним концом, сжатая с боков. Левая створка превосходит правую по брюшному краю и заднему концу. Скульптура крупноямчатая. Глазное пятно присутствует. Замок меродонтно-энтомодонтный, левоваликовый. Внутренняя пластинка широкая, в центре переднего конца и заднебрюшной части образует небольшие вестибюли; на переднем конце 12—17 поровых каналов, включая ложные; каналы сгруппированы по 3—4. Около 70 видов. Поздний мел— ныне, повсеместно. В СССР: плиоцен, Сахалин, четвертичные отложения приполярных областей (рис. 181, 182).

Orthonolacythere Alexander, 1933 [Cytheridea (?) hannai Israelsky, 1929; верхний мел, США (Арканзас)]. Размеры маленькие и средние. Раковина субквадратных и субпрямоугольных очертаний. Левая створка превосходит правую в области кардинатных углов и по брюшному краю. Иногда намечается медиальная борозда. Скульптура ямчатая, яченстая, бугорчатая, ребристая; часто имеется брюшно-боковое ребро. Глазной бугорок выражен. Замок меродонтно-энтомодонтный, левоваликовый. Линия сращения и внутренний край совпадают; порово-канальная зона умеренной ширины; поровые каналы малочисленны. Около 90 видов. Лейас — палеоцен. Основное развитие в мелу. В СССР: датский ярус, Тургайский прогиб (рис. 183, 184).

Подсемейство Cytheropterinae Напаі, 1957

Спинной край выгнут на одной или обеих створках. Раковина, как правило, с крыловидным расширением или вздутием в брюшной части. Вестибюль обычно присутствует. Юра — ныне. Включает 2 трибы: Cytheropterini и Eocytheropterini.

Триба CYTHEROPTERINI Напаі, 1957

Крыловидное расширение может заканчиваться шипом. Поверхность гладкая, ямчатая, ячеистая, ребристая. Глазное образование слабо развито или отсутствует. Замок меродонтный. Порово-канальная зона умеренной ширины; на переднем конце до 10 поровых каналов. Юра — ныне.

Родовой состав. В мезозое: Brachycytheropteron Z. Kuznetsova, 1960; Cytheropterina Mandelstam, 1956; Infracytheropteron Kaye, 1964. В мезозое—кайнозое: Cytheropteron. В кайнозое: Aversovalva Hornibrook, 1952; Kobayashiina Hanai, 1957. Современные роды: Kroemmelbeinella Mostafawi, 1984; Loxoreticulatum Benson, 1964.

Замечание. Қ этой же трибе, возможно, относится Segmina M and elstam, 1957, с типовым видом Cytheropteron lünulare Lienenklaus, 1894, из олигоцена Северо-Германской низменности. Вид описан на материале с частично разрушенным замочным краем, что делает невозможным признание рода валидным до ревизии типового материала.

Cytheropteron Sars, 1865 [Cythere latissima Norman, 1865; coвременный вид, Северная Атлантика]. Размеры маленькие и средние. Раковина различно обызвествлена, овальных и субромбоидальных очертаний, с арковидным спинным краем, каудальный отросток часто приподнят кверху. Крыловидное расширение может заканчиваться шипом. Поверхность гладкая, ямчато-ячеистая, ячеистая или морщинистая. Глаза отсутствуют. Замок меродонтно-энтомодонтный. Внутренняя обызвествленная пластинка относительно широкая только на переднем конце, где она образует серповидный вестибюль. Около 50 видов, обитатели морских бассейнов всех глубин; глубоководные обычно тонкостенные. Лейас — ныне, повсеместно (табл. XIV, рис. 185—188).

Триба EOCYTHEROPTERINI Mandelstam, 1960

Раковина с коротким каудальным отростком или уступом, сильновыпуклая, примерно равностворчатая или левая створка выше правой. Поверхность гладкая или ямчатая, ячеистая, иногда бугорчатая, реже ребристая. Замок меродонтного типа. Юра — неоген. Основное развитие в юре и мелу.

Рис. 185—187. *Cytheropteron latissimum (Nогтап, 1865). 185 — раковина самки: a-c левой, b-c0 спинной стороны (\times 70). Современный вид, прибрежье Нор-

вегии [164]: 186 — правая створка самки изнутри (\times 70). Голоцен, Нидерланды [185];

187 — замок со спинной стороны (×150). Современный вид, Северное море [185].
Рис. 188. Cytheropteron steinmanni К и і р е г, 1918. Экз. № 8485/316. Раковина:
а—с левой, б—со спинной стороны. Нижний олигоцен, Северное Приаралье, ащеайрыкская свита.

Рис. 189. *Konarocythere prima (Mehes, 1941). Правая створка: а — с наружной.

 δ — со спинной стороны ($\times 68$). Олигоцен, Венгрия [148].

Рис. 190. Konarocythere kalickyi (Mandelstam, 1959). Экз. № 10355/132. Раковина с правой стороны (×54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 191, 192. *Paracytheridea depressa G. Müller, 1894, 191 — левая створка с

наружной стороны (×68); 192— раковина со спинной стороны (×68). Современный вид, Неаполитанский залив [185].
Рис. 193, 194. Paracytheridea brusselensis Keij, 1957. 193— левая створка с наружной стороны (\times 75); 194— правая створка изнутри (\times 92). Эоцен, Бельгия [131]. Рис. 195. *Schizocythere hollandica Triebel, 1950. Правая створка: a-c наруж-

ной стороны, 6 — изнутри (×70). Миоцен, Нидерланды [181]. Рис. 196. Schizocythere appendiculata Triebel, 1950. Экз. № 8485/93. Левая створка с наружной стороны (×60). Верхний эоцен, Северное Приаралье, верхнечеганская подсвита.

Рис. 197, 198. *Amphicytherura dubia (Israelsky, 1929). 197— раковина с правой стороны; 198— левая створка изнутри (оба ×100). Верхний мел, США (Аркан-

3ac) [185].
Рис. 199. *Cnestocythere lamellicosta Triebel, 1950. Левая створка с наружной

Родовой состав. В мезозое: Eocytheropteron Alexander, 1933; Eocytheropterina Gründel, 1976: Citrella Oertli, 1959: Mehesella Reyment, 1960; Metacytheropteron Oertli, 1957; Pseudococytheropteron Andreev et Oertli, 1970. В кайнозое: Konarocythe-

Konarocythere Krutak, 1961 [pro Budaia Mehes, 1941 (non 1933)] [Budaia prima Mehes, 1941; олигоцен, Венгрия]. Раковина средних размеров, субовальная, с коротким каудальным отростком или уступом. Поверхность гладкая или ячеистая, ямчатая, тонкоребристая. Глазное пятно присутствует. Замок голомеродонтный, правоваликовый, при этом валик смыкается со спинным краем. Порово-канальная зона неширокая; на переднем конце 8—23 поровых Иногда 2 фронтальных мускульных отпечатка. Поздний палеоцен миоцен, Евразия, Северная Америка. Многочисленные виды (рис. 189, 190).

СЕМЕЙСТВО PARACYTHERIDEIDAE Puri, 1957 [nom. transl. Hartmann et Puri, 1974 (ex PARACYTHERIDEINAE Puri, 1957)]

Раковина нерасчлененная, с коротким каудальным отростком или уступом, большим крыловидным выростом. Сильно скульптирована. Глазное образование может присутствовать. Поверхностные поры простые и ситовидные. Замок антимеродонтный. Внутренний край и линия сращения совпадают; порово-канальная зона относительно поровые каналы простые, малочисленные. Отпечатки замыкательных мускулов не расщеплены; фронтальный — единичный различных очертаний. Мел — современный.

Родовой состав. В мезозое: Acuminacythere Gründel, 1975; Cresacytheridea Gründel, 1975; Hemingwayella Neale, 1975; Hemiparacytheridea Herrig, 1967; Pedellacythere Gründel, 1975; Vicinia Z. Kuznetsova, 1957. В кайнозое: Paracytheridea; Pedicythere Eeagar, 1965. Возможно также, Tanzanicythere Ahmad,

Paracytheridea G. Müller, 1894 (=Hemiparacytheridea (Tuberocytheridea) Gründel, 1975) [P. depressa; современный вид, Неаполитанский залив]. Размеры маленькие и средние. Раковина удлиненная, с субпараллельными краями. Крыловидный вырост отмечен продольным ребром и часто заканчивается пластинчатым шипом; у многих видов имеется дополнительный шип между ним и каудальным отростком. Левая створка обычно с передним замочным ушком. Концевые шипы отсутствуют. Скульптура крупно-неправильно-яченстая или бугорчатая. Глазное образование хорошо развито. Внутренняя пластинка сужена в ротовой области. Около 130 видов. Поздний мел — ныне, повсеместно (рис. 191—194).

CEMEЙCTBO SCHIZOCYTHERIDAE Mandelstam, 1960 [nom. transl. et correct. Neale, 1975 (ex SCHIZOCYTHERIDES Mandelstam, 1960)]

Строение раковины и очертание различны. Каудальный отросток в неодинаковой степени развит, обычно располагается в средней части заднего конца. Левая створка незначительно больше правой. Скульптура ямчатая, ячеистая, морщинистая; имеется тенденция к развитию продольных ребер. Глазное образование может присутствовать. Замок преимущественно шизодонтный. Порово-канальная зона умеренной ширины; поровые каналы малочисленны. Отпечатки замыкательных мускулов не расщеплены; антеннальный и мандибулярный трудноразличимы. Половой диморфизм не сильно выражен. Обитатели морских водоемов. Мел — ныне. Включает 2 подсемейства: Schizocytherinae и Paijenborchellinae.

Подсемейство Schizocytherinae Mandelstam, 1960

Раковина нерасчлененная, укороченная, округленно-прямоугольных очертаний, со слаборазвитым каудальным отростком, иногда с уступом. Замок шизодонтный. Поздний мел — ныне.

Родовой состав. В мезозое: Sondagella Bate, 1972; Apateloschizocythere Bate, 1972. В мезозое — кайнозое: Amphicytherura Butler et Jones, 1957. В кайнозое: Schizocythere, Cnestocythere, Palmenella. Возможно также, современный род Spinileberis Напаі, 1961

Schizocythere Triebel, 1950 [S. hollandica; миоцен, Нидерланды]. Раковина маленькая, сильно обызвествлена, субквадратная, со слаборазвитым каудальным отростком, несколько сжатая с боков, почти равностворчатая или левая створка незначительно больше правой. Присутствуют спинное и брюшиое продольные ребра. Скульптура крупнояченстая. Поверхностные поры многочисленные, крупные, ситовидные. Глазной бугорок имеется. Замок шизодонтный, левоваликовый. Хорошо развиты кайма и фланж. Вестибюль отсутствует. На переднем конце 4—5 простых прямых поровых каналов. Около 60 видов. Палеоцен — миоцен, повсеместно. В СССР: эоцен, Украина, Казахстан, Средняя Азия (рис. 195—196).

Amphicytherura Butler et Jones, 1957 [*Cytherura dubia I sraelsky, 1929; верхний мел, США (Арканзас)]. Размеры маленькие. Раковина сильно обызвествлена, субромбоидальных очертаний, с прямым спинным краем и слабовыраженным каудальным отростком. Левая створка с передним замочным ушком. Присутствуют 3 массивных продольных ребра; спинное иногда с бугорками. Брюшное свисает ниже брюшного края, может заканчиваться шипами. Межреберная поверхность гладкая или ямчатая, ячеистая. Глазная линза крупная. Замок шизодонтный, обычно с насеченным задним элементом среднего отдела. Внутренняя пластинка относительно широкая, иногда с незначительными вестибюлями. Краевые поровые каналы прямые, простые, малочисленные. Около 40 видов в морских отложениях. Сеноман — ранний палеоцен, повсеместно (рис. 197, 198).

Спевтосувнеге Т г і е b е l, 1950 [С. lamellicosta; миоцен, Нидерланды]. Раковина средних размеров, сильно обызвествлена, округленно-прямоугольная, с уплощенным приостренным задним концом. Левая створка незначительно больше правой. Присутствуют спинное и брюшное продольные ребра, брюшное иногда слабокрыловидное. Скульптура крупноячеистая. Поверхностные поры простые, ситовидные. Глазной бугорок развит. Замок меродонтный, левоваликовый, с короткими краевыми отделами. Кайма и фланж развиты, вестибюль отсутствует. На переднем конце 5 прямых простых поровых каналов. 7 видов. Миоцен, Европа. В СССР: сармат, Закарпатье (рис. 199).

Замечание. По форме и скульптуре подобен (гомоморфен)

роду Schizocythere. Отличается иным замком.

Palmenella Hirschmann, 1916 [Cythereis limicola Normann, 1865; современный вид, Англия]. Раковина маленькая, округленно-прямоугольных очертаний, с замочными ушками на левой створке. Имеются килевидное ребро, ограничивающее брюшно-боковое расширение и подковообразное ребро в верхней передней трети раковины, за которым находится овальное вздутие; 2 более мелких вздутия расположены в задней половине створок. Скульптура тонкоячеистая. Глазное образование отсутствует. Зона сращения широкая; на переднем конце имеются узкий серповидный вестибюль; в передней краевой зоне не более 8 поровых каналов. 6—7 видов. Миоцен — ныне, преимущественно Северо-Атлантическая область. В СССР: миоцен, Сахалин, плиоцен — четвертичные отложения приполярных областей (табл. XV, рис. 200—202).

Подсемейство Paijenborchellinae Deroo, 1966

Раковина неправильно-овальных и округленно-прямоугольных очертаний, с поперечной бороздой, уплощающейся в переднеспинной области, с заостренным задним концом или вытянутым каудальным отростком. Замок шизодонтный и меродонтный (у представителей рода Pseudobythocythere). Мел — ныне.

Родовой состав. В мезозое: Gubkiniella Z. Kuznetsova, 1956; Pseudobythocythere Mertens, 1956. В мезозое— кайнозое: Eopaijenborchella. В кайнозое: Paiienborchella Kingma, 1948. Современные роды: Neomonoceratina Kingma, 1948; Sulcostocythere Benson et Maddocks, 1964.

Eopaijenborchella Keij, 1966 [nom. transl. Keen, 1979, ex Paijenborchella (Eopaijenborchella) Kingma, 1948)] [Paijenborchella lomata Triebel, 1949; верхний эоцен, Нидерланды]. Размеры маленькие и средние. Раковина грушевидного очертания, с глубокой поперечной бороздой, уплощенная на заднем конце, с прямым или загнутым вверх длинным каудальным отростком и 3 продольными ребрами. Спинное ребро менее резко выражено, срединное пересекает борозду, брюшное — дугообразное, может заканчиваться шипом. Иногда имеется дополнительное ребро на брюшной стороне. Присутствуют концевые шипы или радиально-лучистая оторочка. Поверхность гладкая, ямчатая, ячеистая, шиповатая, ребристая. Поверхностные поры открытые, маленькие, многочисленные. Глазное образование отсутствуст. Замок иногда упрочнен мелкими выростами каймы на спинном крае левой створки. Внутренний край и линия сращения совпадают; на переднем конце 8-10 поровых каналов. Около 20 видов в морских отложениях. Поздний мел — неоген, повсеместно. В СССР: эоцен Украины, Кавказа, Казахстана, Средней Азии, Западной Сибири; нижний олигоцен Армении (рис. 203—205).

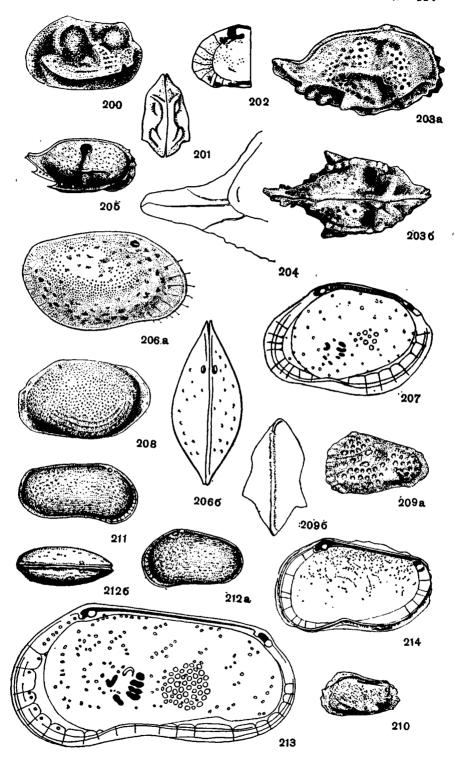


Рис. 200—202. *Palmenella limicola (Norman, 1865). 200 — левая створка с наружной стороны (\times 70). Верхний миоцен, Нидерланды [178]; 201 — раковина со спинной стороны (\times 40); 202 — порово-канальная зона (\times 67) [175].

Рис. 203. *Eopaijenborchella lomata (Triebel, 1949). Раковина: а— с правой,

6— со спинной стороны (×80). Верхний эоцен, Нидерланды [179].
Рис. 204. Eopaijenborchella eocaenica Triebel, 1949. Задний конец левой створки изнутри (×216). Верхний эоцен, Мекленбург, ГДР [179].
Рис. 205. Eopaijenborchella scissa Chochlova, 1969. Экз. № 8240/5. Раковина с правой стороны (×50). Верхний эоцен, Тургайский прогиб, нижнечеганская подсвита. Рис. 206, 207. *Loxoconcha rhomboidea (Fischer, 1855). 206 — раковина самца: а—с правой, б—со спинной стороны (×72). Современный вид, прибрежье Норвегии [164]; 207—правая створка изнутри (×76). Голоцен, Нидерланды [185]. Рис. 208. Loxoconcha involuta M a п d e l s t a m, 1959. Экз. № 8485/99. Раковина с

стороны (×45); 213 — правая створка самца изнутри (×125). Современный вид, Северо-Восточная Атлантика [175].

Рис. 214. Cytheromorpha brabantica Keij, 1957. Правая створка изнутри (×140).

Средний эоцен, Бельгия [131].

CEMERICTBO LOXOCONCHIDAE Sars, 1925 (incl. CYTHEROMORPHINAE Mandelstam, 1960)

Размеры от маленьких до относительно крупных. Раковина нерасчлененная, различно обызвествлена, иногда с каудальным отростком, субовальных или субромбоидальных очертаний, с максимальной длиной по продольной оси. Левая створка незначительно больше правой или наоборот; охват не выражен. Концевые шипы очень редки. Поверхность гладкая или сложно скульптирована. Глазное пятно иногда Поверхностные поры открытые и ситовидные. Замок преимущественно гонгилодонтный; встречается более примитивный. Линия сращения не совпадает с внутренним краем; у представителей рода Loxoconchella извилистая. Порово-канальная зона умеренной ширины; поровые каналы простые, прямые, малочисленные. Наблюдаются случаи расщепления аддукторных отпечатков; фронтальный — единичный. Половой диморфизм слабо выражен. Обитатели морских, солоноватоводных и пресных водоемов. Юра — ныне. Основное развитие с неогена.

Родовой состав. В мезозое: Palaeoloxoconcha Drever, 1967. Возможно также, Polylophus Grane, 1965. В мезозое — кайно-30e: Loxoconcha, L. (Kollmannia) Russo, 1969; L. (Kuiperiana) Bas-1962; Elofsonia Wagner, 1957; Hirschmannia Elofson, 1941; Loxoconchissa Triebel et Malz, 1969; Loxocorniculina; Nipponocythere Ishizaki, 1971; Palmoconcha Swain et Gilby, 1974; Phlyctocythere Keij, 1958; Pteroloxa Swain, 1963. Современные роды: Bonnyannella Athersuch, 1982; Loxocauda Schornikov, 1969; Loxoconchella Triebel, 1954; Loxocorniculum Benson et Coleman, 1963; Miia Ishizaki, 1968; Pseudoloxoconcha G. Müller, 1894; Roundstonia Neale, 1973; Turoconcha Ishizaki et Günter, 1976. Возможно также, Bytholoxoconcha Нагt mann, 1974; Cytheromorpha; Heinia Van den Bold, 1985; Lindisfarina Horne et Kilenyvi, 1981.

Loxoconcha Sars, 1865 [Cythere rhomboidea Fischer, (*—Cythere impressa* Ваігd, 1850) (поп МсСоу, 1844); верхний плейстоцен, Нидерланды]. Размеры от маленьких до средних. Раковина субромбоидальных очертаний или овальная. Иногда с коротким каудальным отростком и боковыми вздутиями. Поверхность почти гладкая или мелкоямчатая, сетчатая. Глазное пятно наблюдается. Поверхностные поры простые и ситовидные. Замок гонгилодонтный. На переднем конце 7—10 поровых каналов. 1—2 аддукторных отпечатка могут быть слабо расщеплены. Более 600 видов. Верхний мел — ныне, повсеместно (рис. 206—208).

Loxocorniculina K r s t i c h, 1972 [(=Microcythereis K a r m i s c h i n a, 1975), emend. K a r m i s c h i n a] [Loxoconcha djapharovi S c h n e i d e r (in S u z i n, 1956); понт, Северный Кавказ]. Раковина маленькая, субовальная, умеренно выпуклая, с шиповидным бугорком в заднебрюшной части и слабой поперечной депрессией близ спинного края. Концевые шипы присутствуют. Скульптура полигональноячеистая. Поверхностные поры ситовидные. Замок гонгилодонтный. Внутренняя пластинка неширокая, с узкой свободной частью. На переднем конце 8—10 краевых поровых каналов. 24 вида. Сармат — понт, Средиземноморье; понт Черноморско-Каспийской области (рис. 209, 210).

(?) Cytheromorpha Hirschmann, 1909 [Cythere fuscata Brady, 1869; современный вид, Северо-Западная Европа]. Размеры средние, обызвествление слабое. Раковина удлиненная, субпрямоугольная. Задний конец скошен в нижней половине и закруглен в верхней. Концевые шипы отсутствуют. Скульптура ямчатая и тонкоячеистая. Поверхностные поры мелкие, ситовидные, расположены группами. Внутренняя пластинка относительно широкая на переднем конце, где может присутствовать вестибюль; зона сращения несколько шире свободной части. На переднем конце 7—10 простых прямых поровых каналов, отпечатки аддуктора не расщеплены; фулькральное пятно хорошо выражено. Раковины самцов по сравнению с раковинами самок относительно длиннее и ниже. Около 70 видов, современные — обитатели морских и солоноватоводных водоемов. Эоцен — пыне, повсеместно (рис. 211—214).

Надсемейство TRACHYLEBERIDACEA Sylvester-Bradley, 1948 [emend. Nikolaeva, nov.]

Раковина нерасчлененная, округленно-прямоугольная, округленнотреугольная или удлиненно-овальная, с равномерно закругленным передним концом, который обычно выше заднего, реже равен ему по высоте. Левая створка в различной степени больше правой, обратное соотношение редко. Могут присутствовать субцентральная мускульная ямка (с наружной стороны — бугорок), краевое ребро вдоль свободного края и продольные складки или ребра. Поверхность разнообразно скульптирована. Поверхностные поры открытые и ситовидные. Глазной бугорок развит, реже редуцирован. Замок меродонтный у предковой группы (семейство Protocytheridae) и амфидонтного типа у других семейств. Линия сращения у всех мезозойских и глубоководных кайнозойских групп совпадает с внутренним краем, у других кайнозойских групп может проявляться несовпадение. Линия сращения параллельна внутреннему краю у всех групп, кроме представителей семейства Cytherettidae. Среднее число поровых каналов в передней краевой зоне 21— 40. В центральной группе мускульных отпечатков имеются 1—2 фронтальных, 1-2 мандибулярных и 4 аддукторных. У ряда групп наблюдается тенденция к расшеплению одного или нескольких аддукторных отпечатков на два и увеличению фронтальных до трех. Половой диморфизм обычно выражается в большей удлиненности и меньшей выпуклости раковины самцов; существенными отклонениями являются сублокулярный тип полового диморфизма у Loculicytherettinae и проявление асимметричного строения створок у самцов рода Occultocythereis (Trachyleberididae). Преимущественно обитатели морских бассейнов с нормальной соленостью. Юра — ныне. Объединяет 10 семейств: cytheridae, Protocytheridae, Mandocytheridae, Veeniidae, Cytherettidae, Buntoniidae, Trachyleberididae, Thaerocytheridae, Hemicytheridae, Campylocytheridae.

Раковина, как правило, сильно обызвествлена, выпуклая в центральной или брюшно-боковой части, субтреугольная или удлиненноовальная, с максимальной высотой в передней трети; задний конец скошен. Левая створка охватывает правую по спинному краю. Концевые шипы в большинстве случаев имеются. Субцентральный бугорок отсутствует. Краевые ребра могут присутствовать. Иногда четко выражено брюшно-боковое продольное ребро. Поверхность гладкая скульптирована; на брюшной стороне наблюдается продольная ориентация скульптурных элементов. Глазной бугорок у типового рода присутствует. Замок амфидонтного типа, краевые отделы сильно развиты; передний зуб (ямка) ступенчатый или насечен; задний отдел удлинен, насечен не менее чем на 4-5 частей. Порово-канальная зона умеренной ширины, на переднем конце 20-30 поровых каналов. Наблюдается тенденция к расщеплению верхних аддукторных отпечатков; фронтальный — единичный, J- или V-образный. Ранний мел — ныне. Обитатели морских водоемов.

Родовой состав. В мезозое: Brachycythere Alexander, 1933; Kikliocythere Howe et Laurencich, 1958. Возможно также, Kikliocythere (Prokikliocythere) Ohmert, 1973; Kikliopterygion Ohmert, 1973. В мезозое—кайнозое: Opimocythere, Digmocythere; Yajimaina Malz, 1981. Возможно также, Schizoptocythere Siddiqui et Al-Furaih, 1981.

Замечание. Род Digmocythere Mandelstam, 1958, с типовым видом Brachycythere russeli Howe et Lea, 1936, из олигоцена США (Луизиана) на территории СССР не встречен.

Opimocythere II a z e l, 1968 [O. browni, датский ярус, США (Мэрилсид)]. Размеры средние. Раковина толстостенная, слабоуплощенная на концах, с шипами. Свободный край окаймляет тонкое краевое ребро. Скульптура ямчатая или ячеистая с бугорками, расположенными в углах граней. На брюшной поверхности (псевдофундиуме) скульптурные элементы ориентированы продольно и образуют тонкую ребристость. Приконцевые части лишены скульптуры. Иногда гладкая, а решетчатая сетка просвечивает через верхний слой. Открытые и ситовидные нормальные поры располагаются на дне и стенках яческ. Глазной бугорок хорошо развит. Замок примитивно донтный с удлиненным задним отделом и насеченными задними элементами среднего отдела. Линия сращения и внутренний край совпадают. На переднем конце 20-30 поровых каналов. Два верхних отпемускулов расщеплены; два нижних — тесно замыкательных фронтальный — Ј-образный. Около 20 видов. расположены: (альб — маастрихт), Северная Америка (редко); палеоген, Северная Америка: ранний палеоцен, Европа, СССР (Мангышлак) (табл. XVI, рис. 215—217).

СЕМЕЙСТВО PROTOCYTHERIDAE Lübimova, 1955 [nom. transl. Kaye, 1964 (ex PROTOCYTHERINAE Lübimova, 1955)]

Раковина умеренно выпуклая, асимметричная, с уступом на заднем конце. Левая створка с намечающимися замочными ушками, охват в области которых сильно выражен. Присутствуют три массивные продольные складки и в ряде случаев переднее краевое ребро. Срединная складка слита с массивным субцентральным бугорком и, как правило, распространяется на переднюю часть раковины. Поверхность гладкая или ячеистая. Глазной бугорок отсутствует. Замок у позднеюрских — валанжинских представителей антимеродонтный. Представлен на левой (большей) створке в краевых отделах ямками, насеченными на 5—6 равных по высоте частей, а в среднем отделе насеченным валиком.

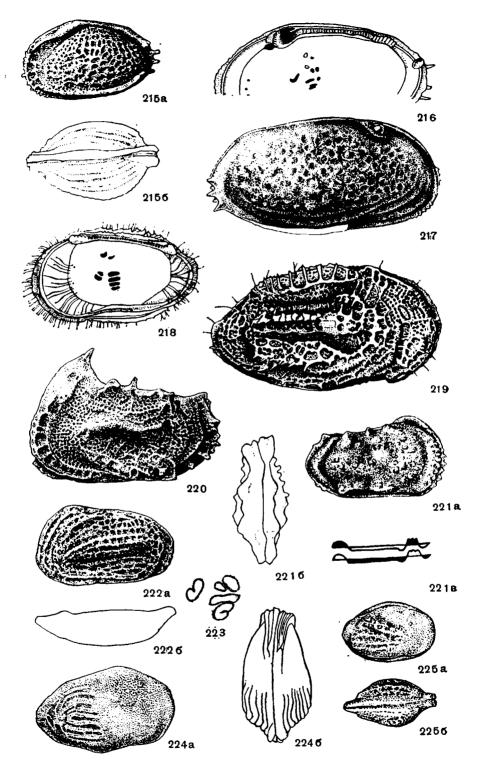


Рис. 215, 216. *Орітосуthеге browni Hazel, 1968. 215— раковина самки: a-c левой, 6-c брюшной стороны (\times 46); 216— схема строения замка и расположения мускульных отпечатков (\times 70). Даний, США (Мэриленд), свита Брайтсет [121].

Рис. 217. Opimocythere pustulosa (Магііеге, 1958). Экз. № 10355/114. Раковина с правой стороны (×54). Нижний палеоцен, Крым, Бахчисарай, инкерманский горизонт. Рис. 218, 219. *Abyssocythereis vitjasi (Schornikov, 1975). 218— правая створка самки изнутри (×34); 219— правая створка самца с наружной стороны (×42). Современный вид, Курило-Камчатская впадина [73]. Рис. 220. *Paleoabyssocythere cenozoica (Вепson, 1977). Левая створка самца (?) с наружной стороны (×100). Верхний палеоцен, Южная Атлантика [85]. Рис. 220. *Paleoabyssocythere clinosa (Nikolarya 1981). Раковича: с с про

Рис. 221. Paleoabyssocythere clivosa (Nikolaeva, 1981). Раковина: a-c правой, b-c0 спинной стороны, b-c0 стороны, b-c1. Нижний палеоцен, Се-

верный Кавказ [51].

Рис. 222, 223. *Mosaeleberis interrupta (Во s q u e t, 1847). 222 — левая створка: а— с наружной, б— со спинной стороны (×40); 223 — схема расположения централь-

ных мускульных отпечатков (×150) [98].

Рис. 224. *Buntonia schubutaensis H o w e, 1935. Раковина: а—с правой, б—со спинной стороны (×80). Эоцен, США (Луизнана) [175].

Рис. 225. Buntonia jordanica (Ваssiouni, 1969). Раковина: а—с правой, б со спинной стороны (×47). Средний эоцен, Иордания [80].

У более поздних представителей краевые отделы изменяются по высоте: наблюдается углубление ямок левых створок и увеличение высоты зубных пластинок правых створок по направлению к концам. У некоторых родов намечается слабая дифференциация среднего отдела. Порово-канальная зона умеренной ширины у мезозойских и раннекайнозойских представителей и широкая у типового вида рода Abyssocythereis. На переднем конце 17-20 поровых каналов. Аддукторные отпечатки не расщеплены; фронтальный U- и V-образный или двойной. Поздняя юра — ныне.

Родовой состав. В мезозое: Protocythere Triebel, 1938; Batavocythere Kemper, 1971; Costacythere Gründel, 1966; Hechticythere Gründel, 1974; Posteroprotocythere Mandelstam, 1958; Pseudoprotocythere Oertli, 1966; Saxocythere Kemper, 1971; Valendocythere Gründel, 1969. Поздняя юра — ранний мел; морские осадки платформенного типа, повсеместно. В кайнозое: Abyssocythereis.

Abyssocythereis Schornikov, 1975 [A. vitjasi; современный вид, Курило-Камчатская впадина]. Раковина крупная, округленно-овальная, сильновыпуклая. Левая створка с сильновыраженным передним замочным ушком, где наблюдается охват по типу страгулума. Присутствуют 3 центральные строго продольные складки. Субцентральный слабо выражен. Краевое ребро отсутствует. Концевые шипы многочисленны. Поверхность покрыта крупными ячейками, имеющими на дне ячейки второго порядка. Глазное образование отсутствует. Замок антимеродонтный, с возвышающимися по направлению к концам зубными пластинками на правой створке. При этом краевые элементы насечены только на спинной поверхности. Внутренний край и линия сращения совпадают. Порово-канальная зона широкая. На переднем конце не более 20 поровых каналов, встречаются ложные. Так же, как и у рода Prolocythere, верхняя часть зоны сращения на переднем конце лишена поровых каналов, а ниже ее поровые каналы располагаются не строго радиально, а направлены вверх. Фронтальный отпечаток двойной. З вида. Эоцен (?) — ныне, Тихий океан. Является реликтом мезозойского семейства, сохранившимся в глубоководных условиях (рис. 218, 219).

CEMEMCTBO MANDOCYTHERIDAE Gründel, 1969 [emend. Nikolaeva, nov.]

Раковина асимметричная, с уступом на заднем конце. створка округленно-овальная, левая — округленно-прямоугольная с замочными ушками, из которых переднее развито сильнее; здесь же наблюдается максимальный охват по типу страгулума. Присутствуют З продольные складки, выраженные различно, иногда представленные цепочкой бугорков. В большинстве случаев имеется переднее краевое ребро. Межреберное пространство гладкое или скульптировано. Глазной бугорок обычно отсутствует. Замок примитивно амфидонтный, с удлиненными краевыми отделами и дополнительным (страгулярным) зубом на левой створке. Порово-канальная зона средней ширины или широкая. На переднем конце у большинства групп не более 20 поровых каналов. Случаи расщепления мускульных отпечатков не известны. Мел — ныне, морские отложения. 2 подсемейства. В мезозое: Mandocytherinae G r ü n d e l, 1969. В мезозое—кайнозое: Paleoabyssocytherinae.

Подсемейство Paleoabyssocytherinae Nikolaeva, subfam. nov.

Раковина умеренно выпуклая, но более уплощенная, чем у представителей подсемейства Mandocytherinae. Продольные складки (ребра) сплошные или представлены отдельными бугорками. Срединное ребро располагается сзади субцентрального бугорка. Для скульптуры, покрывающей как межреберное пространство, так и ребра, характерно наличие образований первого и второго порядков. Отмечаются поровые конулы. Замок с насеченными одним или двумя краевыми отделами. Порово-канальная зона широкая. Краевые поровые каналы малочисленны. Ранний мел — ныне (в мелу — эпиконтинентальные отложения, с кайнозоя — глубоководные).

Родовой состав. В мезозое: Aphrikanecythere Damotte et Oertli, 1982; Herrigocythere Gründel, 1973; Maghrebeis Majoran, 1987; Kamajcythereis Pokorny et Colin, 1976; Navarracythere Colin et Rodriguez-Lazaro, 1986; Peloriops Al-Abdul Razzaq, 1979. В кайнозое: Paleoabyssocythere. Возможно также, Stigmatocythere Siddiqui, 1971. Современный род: Abyssocythere Benson, 1971.

Раleoabyssocythere Вепson, 1977 [Р. сепоzоіса; верхний палеоцен, Южная Атлантика]. Размеры средние. Переднее замочное ушко левой створки сильно возвышается над спинным краем, иногда оно заканчивается острым выступом в виде шипа. Могут присутствовать кощевые шипы. Субцентральный бугорок высокий. Переднее краевое ребро массивное у более древних представителей. Продольные ребра также массивные, иногда — в виде слившихся бугорков. Скульптура от ямчатой у меловых форм до ячеисто-бугорчатой и ячеистой двух порядков у палеогеновых. Замок с крупнонасеченным краевым зубом правой створки. Краевые поровые каналы немногочисленны. Фронтальный отпечаток — V-образный. 6 видов. Поздний мел — палеоген, повссместно. В СССР: нижний — средний палеоген, Северный Кавказ, Западная Туркмения.

CEMEЙCTBO VEENIIDAE Puri, 1974 [nom. transl. Nikolaeva, nov. (ex VEENIINAE Puri, 1974 in Gründel, 1977)]

Раковина удлиненная, субтреугольная или субовальная, с низким приостренным задним концом; сильновыпуклая в центральной части. Левая створка с хорошо развитым передним замочным ушком, где превосходит по высоте правую, не имеющую ушка. Характерно присутствие трех продольных складок, средняя из которых утолщается в области расположения субцентрального бугорка; она наиболее длинная, ориентирована косо от заднеспинной к переднебрюшной части. У типового и близких ему родов краевых ребер нет. Поверхность гладкая или покрыта крупными неправильными ячейками. Слабое глазное пятно может присутствовать. Замок амфидонтного типа, может быть насечен во всех отделах. Порово-канальная зона умеренной ширины, с 20—

30 поровыми каналами на переднем конце; исключение составляет род *Protoveenia*, имеющий широкую порово-канальную зону и мало (5—6) каналов. Отпечатки замыкательных мускулов у большинства родов не расщеплены. Фронтальный — V-образный или сердцевидный. Мел — палеоген; морские отложения.

Родовой состав. В мезозое: Veenia Butler et Jones, 1957; Procytherettina Mandelstam, 1958 (= Glenocythere Al-Abdul Razzaq, 1979); Protoveenia Damotte, 1961; Costaveenia Gründel. 1968. В мезозое — кайнозое: Mosaeleberis.

Мозаеleberis Deroo, 1966 (=Reticulocosta Gründel, 1974) [Cypridina interrupta Bosquet, 1847; верхний мел (маастрихт), Нидерланды]. Размеры средние. Раковина массивная, приближающаяся к округленно-прямоугольной, относительно слабоасимметричная, с краевым ребром вдоль свободного края. Срединное продольное ребро примыкает к переднему краевому. Поверхность гладкая или покрыта субпрямоугольными ячейками, ориентированными длинной стороной параллельно краям и переднему концу раковины. Глазной бугорок присутствует. Замок парамфидонтный. Порово-канальная зона неширокая; на переднем конце около 25 поровых каналов. Верхний аддукторный отпечаток может быть раздвоен; фронтальный — сердцевидный. Около 20 видов. Поздний мел (маастрихт) — даний, Европа, Западная Африка, СССР (Казахстан, Западная Сибирь).

CEMEPICTBO BUNTONIIDAE Apostolescu, 1961 [nom. transl. Nikolacva, nov. (ex BUNTONIINAE Apostolescu, 1961)]

Раковина субовальная, передний конец всегда выше заднего. Охват слабокруговой или в области замочных ушек. Субцентральный бугорок и центральная группа продольных ребер или складок, как правило, отсутствуют. Исключение составляют в первом случае род Nanocythere, во втором — Harringtonia, иногда за центральным мускульным полем намечается слабый поперечный пережим. У некоторых родов выражено переднее краевое ребро. Скульптура отсутствует или ямчаторебристая продольной ориентации. Глазной бугорок различно развит. Замок геми- или голоамфидонтный, чаще с насеченным желобком (валиком). Порово-канальная зона средней ширины или узкая. Количество поровых каналов в передней краевой зоне обычно 30—40, 14 у рода Isobuntonia. Аддукторные отпечатки не расщеплены, фронтальная группа представлена одним, реже двумя бугорками. Мел — ныне. Южно- и Среднеатлантическая и Средиземноморская области.

Родовой состав. В мезозое: Protobuntonia Grekoff, 1953; Nanocythere Apostolescu, 1961; Veenia (Nigeria) Reyment, 1963. В мезозое— кайнозое: Buntonia; Asymmetricythere Bassiouni. 1971; Huantarioconella Bertels, 1968; Harringtonia Bertles, 1975; Isobuntonia Apostolescu, 1961; Soudanella Apostolescu, 1961; Togoina Apostolescu. 1961. Предположительно к этому семейству относятся: Ambtonia Malz, 1982; Pacambocythere Malz, 1982. Возможно, также в состав семейства могут быть включены роды: Basslerites (Basslerites) Но we in Coryell et Fields, 1937; B. (Loculiconcha) Отatsola, 1970, и Protobasslerites Apostolescu, 1961 (триба Bassleritini Puri, 1974).

Buntonia Howe, 1935; in Howe, Chambers, 1935 (=Pyricythereis Howe, 1936 = Semicythereis Elofson, 1944 = Quasibuntonia Ruggieri, 1958) [Buntonia schubutaensis Howe, 1935 (=? Cythereis israelskyi Howe et Pyeatt, 1935); верхний эоцен, США (Луизиана)]. Размеры маленькие. Раковина субовальная, укороченная, с высоким передним концом; максимально выпуклая в задней половине, с чуть уплощенными приконцевыми частями. Левая створка

с развитым задним замочным ушком, где заметно перекрывает правую, но охват может быть выражен также по спинному и брюшному краям. Концевые шипы слабые, присутствуют только на заднем конце. Субцентральный бугорок отсутствует. Может быть выражено переднее краевое ребро. Поверхность гладкая или преимущественно в задней половине покрыта ямками и тонкими ребрами. Глазной бугорок отсутствует. Замок голоамфидонтный, с насеченным желобком (валиком). Линия сращения и внутренний край в центре переднего конца не полностью совпадают. Порово-канальная зона умеренной ширины; в передней краевой зоне до 35 поровых каналов (простых и разветвляющихся); при этом в верхней трети они отсутствуют. Около 130 видов. Палеоцен — ныне, Западная и Северная Африка, Атлантическое побережье Америки, Западная Европа; в СССР: олигоцен, Южная Армения (рис. 224, 225).

СЕМЕЙСТВО CYTHERETTIDAE Triebel, 1952

Раковина удлиненно-овальная; брюшной край приподнят к концам, которые могут быть вверху скошены. Левая створка с сильноразвитым задним замочным ушком и меньшим передним ушком; охват разнообразный. Субцентральный бугорок отсутствует. Поверхность гладкая или продольно орнаментирована ямками, ребрами, ячейками, иногда тремя высокими ребрами. Глазное образование отсутствует. Замок голоамфидоптный, с некоторыми анцестральными признаками. На левой створке в области переднего замочного ушка присутствует вырост каймы, или «фронтальная лопасть» (которая опирается платформу» правой створки), ямка краевых отделов с поддерживающими зубами. Передний зуб среднего отдела слабо развит. Линия сращения, как правило совпадающая с внутренним краем, извилистая; удалена от края раковины в переднебрюшной и заднебрюшной частях и наиболее приближена к заднему концу. Поровые каналы сконцентрированы в передней краевой зоне и переднебрюшной (50-70), а также заднебрюшной частях раковины. Они простые, длинные, изогнутые, с луковицеобразными расширениями близ наружного края. Четыре аддукторных и крупный фронтальный отпечатки.

Проявление полового диморфизма у большинства родов обычное для надсемейства Trachyleberidacea, за исключением представителей подсемейства Loculicytherettinae. Поздний мел—ныне. Морские водоемы. Объединяет три подсемейства: Cytherettinae, Paracytherettinae, Loculicytherettinae G г ü n d e l, 1976. Возможно, также род Argenticytheretta G a г с і о, 1969, неопределенной подсемейственной принадлежности.

Подсемейство Cytherettinae Triebel, 1952

Краевое ребро отсутствует. Концевые шипы иногда развиты. Поверхность гладкая или скульптирована. Среди продольных ребер у ряда групп могут выделяться три наиболее крупных по величине, при этом нижнее из них расположено значительно выше брюшного края. Поздний мел — ныне.

Родовой состав. В мезозое: Acuticytheretta Deroo, 1966; Semicytheretta Deroo, 1966. В мезозое — кайнозое: Cytheretta. В кайнозое: Flexus Neviani, 1928. Кроме того, Puricytheretta Russo et Bossio, 1975, и предположительно Neocytheretta Van Morkhoven, 1963.

Cytheretta G. Müller, 1894 [=Pseudocytheretta Cushman, 1906 = Cylindrus Neviani, 1928 (non Deshayes, 1824, non Fitzinger, 1833, non Herrmannsen, 1952) = Prionocytheretta Mehes, 1941, = (?) Moosella Hartmann, 1964, = (?) Beatmoosina Uf-

f e n o r d e, 1981] [С. rubra, современный вид, Неаполитанский залив]. Размеры средние. Раковина с различно скошенными концами. Поверхность гладкая, но может быть частично или полностью скульптирована различной величины ямками, 10—12 тонкими продольными ребрами, заключающими ряды ямок или ячеек. Иногда выделяются три более крупных продольных ребра. Более 200 видов. Поздний мел (маастрихт) — ныне, повсеместно (табл. XVII, рис. 226—228).

Замечание. Изогнутая линия сращения появляется только у полностью оформившихся взрослых особей. Находки личиночных форм с недоразвитой порово-канальной зоной, включая особей последней стадии, погибших до полного обызвествления, создали предпосылки для появления ряда синонимов, к которым, вероятно, относится род Beatmoosina.

Flexus Neviani, 1928 (=Eucytheretta Puri, 1958) [Cythere plicata Münster, 1830; хатт, Северо-Германская низменность]. Раковина средних размеров, относительно низкая, с вытянутым задним концом, в области которого уплощена. Три продольных ребра, изолированных или соединенных между собой, хорошо заметны. Межреберное пространство гладкое или скульптировано. Около 15 видов. Поздний эоцен (?) — миоцен, Европа, США, СССР (Северное Приаралье) (рис. 229).

Подсемейство Paracytherettinae Gründel, 1969

Раковина слабо уплощена в приконцевых частях. Присутствует переднее краевое ребро. На боковой поверхности, покрытой продольно ориентированными полигональными ячейками, выделяются три длинных продольных ребра. Кайнозой. Два рода: Paracytheretta и Protocytheretta Puri, 1958 (= Grekoffiana Garcia, 1969).

Paracytheretta Triebel, 1941 [P. reticosa; палеоцен, Дания]. Размеры средние. Охват в области переднего и заднего замочных ушек и по брюшному краю. Передний конец равномерно закруглен, задний с уступом в верхней трети. Концевые шипы слабо выражены. Нижнее из трех продольных ребер расположено выше брюшного края, иногда, соединяясь со срединным, образует субовал. Около 20 видов. Палеоцен, Европа, СССР (Казахстан) (рис. 230—232).

CEMERICTBO TRACHYLEBERIDIDAE Sylvester-Bradley, 1948 [emend. Nikolaeva, nov.]

Раковина округленно-прямоугольная, с наибольшей высотой в передней трети; края в различной степени конвергируют к заднему концу; умеренно выпуклая или уплощенная, за исключением представителей подсемейства Pterygocytherinae. Створки почти равных размеров или левая незначительно больше правой; охват в области намечающихся замочных ушек, переднебрюшной и заднебрюшной частях. присутствовать субцентральный бугорок, краевые и продольные ребра. Орнаментация разнообразна. Нормальные поры всех типов. Глазной бугорок не всегда присутствует. Замок амфидонтный всех разновидностей. В передней краевой зоне не более 50 поровых каналов. Краевые структуры (кайма, фланж) хорошо развиты. Иногда наблюдаются отклонения от исходного типа центральных мускульных отпечатков. Мел — ныне, морские отложения и водоемы. 6 подсемейств. Exophtalmocytherinae Gründel, 1966, и Platycythereinae Gründel, распространены исключительно в мезозое. В мезозое — кайнозое: Тгаchyleberidinae, Pterygocytherinae, Echinocytherinae, Rocaleberidinae Bertles, 1969. Кроме того, роды неопределенной семейственной принадлежности: Ruggieria Keij, 1957, и Keijella Ruggieri, 1973.

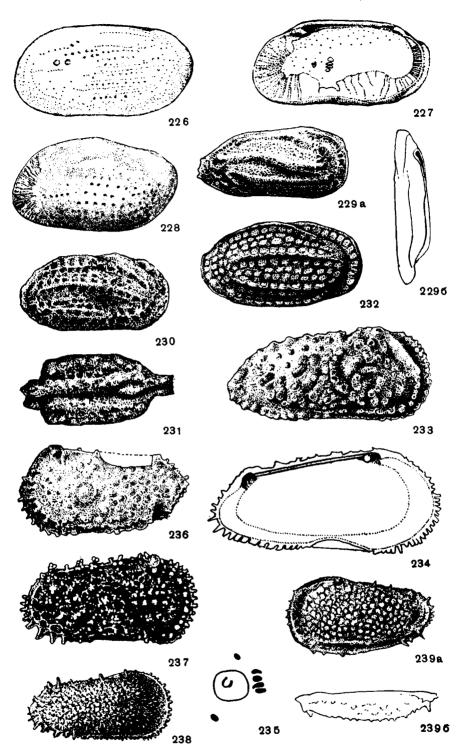


Рис. 226, 227. *Суtheretta rubra G. Müller, 1894. 226 — левая створка с наружной стороны; 227 — правая створка изнутри (\times 46). Современный вид, Средиземное море [122].

Рис. 228. Cytheretta eocaenica (Keij, 1957). № 8485/103. Левая створка с наружной стороны (×50). Верхний эоцен, Тургайский прогиб, саксаульская свита. Рис. 229. *Flexus plicatus (v. Münster, 1830). Правая створка: а—с наружной, б—со спинной стороны (×50). Верхний олигоцен, Кассель, эохатт [101].

Рис. 230—232. *Paracytheretta reticosa Triebel, 1941. 230 — правая створка с наружной стороны; 231 — раковина со спинной стороны (×50). Палеоцен, Дания [176]; 232 — правая створка с наружной стороны (×54). Экз. № 10355/113. Верхний палеоцен, Крым, Бахчисарай, качинский горизонт.

Рис. 233—235. *Trachyleberis scabrocuneata (Brady, 1880). 233 — правая створка самца с наружной стороны; 234 — левая створка самца изнутри ($\times 60$); 235 — схема расположения центральных мускульных отпечатков. Современный вид, Японское

море [117]. Pnc. 236. Trachyleberis hadjibulakensis (Mandelstam, 1949). Экз. № 10355/124. Левая створка с наружной стороны (×54). Верхний палеоцен, Крым, Бахчисарай, ка-

чинский горизонт.

Рис. 237. Acanthocythereis multispicata R. Howe et H. Howe, 1973. Правая створка самца с наружной стороны (×54). Верхний эоцен, США (Миссисипи), свита Шубута [124].

Рис. 238. Acanthocythereis spiniferrima (Jones et Sherborn, 1889). Экз. № 8485/67. Раковина с правой стороны (×50). Средний эоцен, Тургайский прогиб,

тарасаранская свита.

Piic. 239. Acanthocythereis spinosa (Lienenklaus, 1900). Экз. № 10355/148. Левая створка: a-c наружной, $\delta-c$ с спинной стороны (\times 54). Верхний эоцен, Крым, Бахчисарай, альминский горизонт.

Подсемейство Trachyleberidinae Sylvester-Bradley, 1948 (incl. Faluniinae Mandelstam, 1960, part, Macrodentinae Mandelstam, 1960, part.)

Раковина с уплощением на концах. Концевые шипы обычно крупные. Краевое ребро развито. Субцентральный бугорок и три продольных ребра в большинстве случаев присутствуют. Орнаментация разнообразна. Глазной бугорок может присутствовать. Порово-канальная зона умеренно широкая и широкая (только у представителей трибы Phacorhabdotini).

Число поровых каналов в передней краевой зоне не превышает 40. Мел — ныне. Включает трибы: Fissocytherini Gründel, 1969 — в мезозое и Trachyleberidini, Costini, Dumontini, Hazelini, Mauritsini, Oertliellini, Parvacythereidini, Phacornabdotini, распространенные в мезозое и кайнозое.

Триба TRACHYLEBERIDINI Sylvester-Bradley, 1948

Охват мало выражен. Края слабо конвергируют к заднему концу, закругленному или с уступом. Краевое ребро представлено 1—2 рядами шипов; есть концевые шипы. Продольных ребер нет. Субцентральный бугорок может присутствовать. Скульптура бугорчатая и ячеисто-бугорчатая. Глазной бугорок линзовидный, иногда на тубусе, развит обитателей шельфовой зоны и отсутствует у глубоководного рода Atlanticythere. Встречаются все разновидности нормальных поровых каналов. Замок голоамфидонтный. Внутренний край и линия сращения совпадают. Фронтальный бугорок V-образный. Поздний мел (маастрихт) — ныпе, повсеместно.

Родовой состав. В мезозое — кайнозое: Acanthocythereis. Возможно, также Atlanticythere Benson, 1977. В кайнозое: Trachyleberis.

Trachyleberis Brady, 1898 [Cythere scabrocuneata Brady, 1880; современный вид, Японское море]. Размеры средние. Субцентральный бугорок различно развит (крупнее у более древних форм). Скульптура бугорчатая и бугорчато-игольчатая, бугорки могут быть сконцентрированы в заднеспинной и заднебрюшной частях. Глазная линза хорошо развита. Наблюдается три типа поверхностных (нормальных) пор: открытые, или простые, снабженные щетинками; мамиллятные, выходящие на вершине игольчатых бугорков, и ситовидные. В передней краевой зоне 20—25 поровых каналов, однако кажется, что их больше, благодаря ложным каналам, расположенным в наружной пластине выше зоны сращения. Более 300 видов. Палеоцен — ныне (рис. 233—236).

Acanthocythereis Howe, 1963 (=Howecythereis Sohn, 1959, design. Sohn, 1970; =?Megommatocythere Colin et Oertli, 1982) [А. araneosa Howe, 1963; эоцен, США (Луизиана)]. Размеры средние. Субцентральный бугорок с тенденцией к редукции. Скульптура бугорчатая и ячеисто-бугорчатая; одиночные или сгруппированные игольчатые, иногда турретные, бугорки могут находиться в углах граней. Может наблюдаться линейная ориентация бугорков вдоль брюшного края. Глазная линза иногда на тубусе. В передней краевой зоне 25—30 поровых каналов. Около 40 видов. Поздний мел (маастрихт) — мноцен, повсеместно. Плиоцен — плейстоцен Арктического и Тихоокеанского бассейнов (рис. 237—239).

Триба COSTINI Hartmann et Puri, 1974 [nom. correct. Benson, 1977 (ex COSTAINI Hartmann et Puri, 1974)]

Раковина умеренно удлиненная и умеренно выпуклая, края слабо конвергируют к заднему концу, закругленному или имеющему уступ, почти равностворчатая. Концевые шипы всегда есть. Субцентральный бугорок отсутствует. Имеются краевое и три продольных ребра. У рода Oblitacythereis переднее краевое ребро продвинуто к центру раковины. Поверхность покрыта крупными полигональными ячейками, иногда присутствуют бугорки. Поверхностные поры открытые, ситовидные, и в небольшом количестве — поровые конулы. Глазной бугорок у глубоководных форм (представителей рода Oblitacythereis) отсутствует, у остальных родов выражен в различной степени. Замок голо- и парамфидонтный. Мускульные отпечатки центральной группы очень постоянны: замыкательные — овальные, фронтальный — сердцевидный или подковообразный. Линия сращения и внутренний край совпадают. В передней краевой зоне 30—40 поровых каналов. Палеоцен — ныне.

Родовой состав. В кайнозое: Costa; Paleocosta; Carinocythereis Ruggieri, 1956; Cativella Coryell et Fields, 1937; Chrysocythere Ruggieri, 1962; Falunia; Oblitacythereis Benson, 1977; Protocosta Bertels, 1969 (=?Paracosta Siddiqui, 1971); Reticulina Bassiouni, 1969. Возможно также, Occlusacythereis Ruggieri et Russo, 1980, и современные роды Sinoleberis Hu, 1979; Ponti-

cocythereis McKenzie, 1967.

Costa Neviani, 1928 (=Rectotrachyleberis Ruggieri, 1952, design. Ruggieri, 1983 [Cytheridea edwardsii Roemer, 1838; мио-цен, Венский бассейн]. Задний конец закруглен или со слабовыраженным уступом, более заметным с внутренней стороны. Краевые и продольные ребра валикообразные. Срединное ребро длинное, дугообразно изогнуто и косо ориентировано. Скульптура крупноячеистая, ячейки глубокие, со сглаженными или приостренными гранями. Глазной бугорок хорошо развит. Замок голоамфидонтный, с насеченным желобком (валиком). Около 100 видов. Олигоцен — миоцен, Средиземноморская область. В СССР: олигоцен, Южная Армения (табл. XVIII, рис. 240—241).

Falunia Grekoff et Moyes, 1955. Раковина субпрямоугольная, задний конец отвесно прямой, слабо закруглен. Из продольных ребер наиболее выражены срединное и брюшное, которые могут быть соединены между собой. Скульптура ямчатая и ячеистая. Глазной бу-

горок присутствует. Порово-канальная зона умеренной ширины. В центральном мускульном поле один фронтальный и четыре аддукторных отпечатка. Олигоцен — ныне. Два подрода: Falunia (Falunia) и Falunia

(Hiltermannicythere) Bassiouni, 1970.

Falunia (Falunia) Grekoff et Moyes, 1955 [Cythere sphaerulolineata Jones, 1856 (=Falunia girondica Grekoft et Moyes, 1955); плиоцен, Англия]. Раковина маленькая или средняя, слабо обызвествлена. Переднее краевое ребро слабо развито, может быть отодвинуто от переднего конца и соединено с брюшным продольным ребром. Иногда имеются дополнительные продольные или косо направленные ребра. Спинное продольное ребро выражено слабо. Внутренний край и линия сращения несколько не совпадают на концах. Около 45 видов. Олигоцен — плейстоцен, Европа. В СССР: нижний миоцен (слои с Uvigerinella californica), Северный Кавказ (рис. 242—243).

Paleocosta Benson, 1977 [Costa crassireticulata Bassiouni, 1969; верхний эоцен, Египет]. Краевые и продольные ребра тонкие, могут быть пластинчатыми. Скульптура крупнояченстая. Ячейки глубокие, с приостренными гранями. Глазной бугорок неотчетливый. Замок голо-амфидонтный. 10 видов. Палеоцен — эоцен, Северная Африка, СССР

(Северный Кавказ) (рис. 244).

Триба DUMONTINI Gründel, 1976

Размеры средние. Раковина различно обызвествлена, равностворчатая, уплощенная; края конвергируют к заднему концу, имеющему в верхней половине уступ. Концевые шипы отсутствуют. Имеются краевое и три центральных продольных ребра. Срединное ребро длинное, ориентировано диагонально: от переднебрюшного угла к заднеспинному, может быть соединено со спинным. Субцентральный бугорок развит слабо. Скульптура полигональноячеистая; ячейки часто имеют продольную ориентацию. Глазное образование слабо развито или отсутствует. Замок голо- или парамфидонтный. В передней краевой зоне может присутствовать незначительный вестибюль; у представителей рода Dumontina — тенденция к расщеплению аддукторных отпечатков; у остальных групп мускульные отпечатки недостаточно изучены. Поздний мел — (коньяк) — эоцен, Северная и Восточная Африка, Европа.

Родовой состав. В мезозое: Gibberleberis Dingle, 1969; Haughtonileberis Dingle, 1969; Isocythereis Triebel, 1940. В ме-

зозое — кайнозое: Dumontina, Paracaudites Deltel, 1963.

Dumontina Deroo, 1966 [Cythere puncturata Bosquet, 1854; верхний мел (маастрихт), Нидерланды]. Краевое ребро валикообразное; продольные ребра топкие; спинное сливается с краевым. Глазной бугорок присутствует. Замок парамфидоптный. Линия сращения и внутренний край совпадают; в передней краевой зоне около 25 поровых каналов. Верхний аддукторный отпечаток расщеплен на 2; фронтальный — V-образный. Около 15 видов. Маастрихт — ранний эоцен, Западная Европа, СССР (Украина, Крым) (рис. 245—247).

Триба HAZELINI Nikolaeva, trib. nov.

Раковина массивная, умеренно широкая, приближающаяся к уплощенной. Брюшной край ориентирован параллельно базальной линии, задний конец незначительно ниже переднего, закруглен. Охват в области переднего замочного ушка левой створки. Концевые шипы развиты слабо. Краевое и три продольных ребра валикообразные. Брюшное продольное ребро является продолжением переднего краевого. Срединное ребро сливается с субцентральным бугорком и несколько распространяется на переднюю часть раковины. Присутствует неширокий фун-

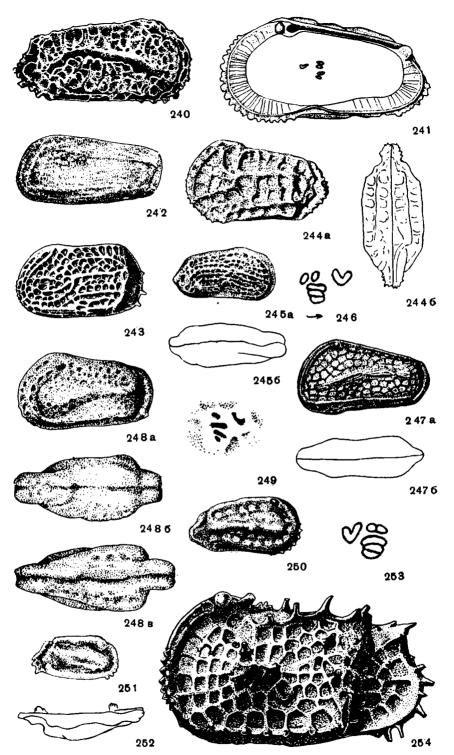


Рис. 240. *Costa edwardsii (Roemer, 1838). Правая створка самца с наружной стороны (×62). Плиоцен, Сицилия [100].
Рис. 241. Costa aff. edwardsii (Roemer, 1838). Правая створка изпутри (×75). Плиоцен, Франция [175].

Рис. 242. *Falunia sphaerulolineata (Jones, 1856). Левая створка с наружной стороны (×45). Миоцен, Аквитанский бассейн [188]. Рис. 243. Falunia plicatula (Reuss, 1850). Левая створка самки (×47). Миоцен, Аквитанский бассейн [131].

Рис. 244. *Paleocosta crassireticulata (Ваввіонпі, 1969). Раковина самца: а с левой, δ — со спинной стороны (\times 52). Верхний эоцен, Египет, свита Мокаттам [81]. Рыс. 245—247. *Dumontina puncturata (Bosquet, 1854). 245 — раковина: a—c правой, б — со спинной стороны (×40); 246 — схема расположения центральных мускульных отпечатков (×150). Маастрихт, Нидерланды [98]; 247— экз. № 10355/50. Раковина: а— с левой, б— со спинной стороны (×54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 248, 249. *Hazelina indigena Moos, 1966. 248 — раковина: a — с левой, δ — со спинной, a — с брюшной стороны (\times 58); 249 — схема расположения центральных мускульных отпечатков. Верхний эоцен (?) — нижний олигоцен (?), Вестфалия, ФРГ,

латторф [150]. Рис. 250. Hazelina nedlitzensis Pietrzeniuk, 1969. Экз. № 10355/130. Раковина с правой стороны (×54). Верхний эоцен, Крым, Бахчисарай, альминский горизонт. Рис. 251—253. *Cursina major (Van Veen, 1936). 251— раковина с правой стороны ($\times 40$); 252 — правая створка со спинной стороны ($\times 60$); 253 — схема расположения центральных мускульных отпечатков (×150). Маастрихт, Нидерланды [98]. Рис. 254. *Oertliella reticulata (Ка ка, 1886). Левая створка самки с наружной

стороны (×93). Турон, Чехия [160].

диум. Поверхность гладкая или грубояченстая. Глазной бугорок развит слабо. Замок геми- и голоамфидонтный. Порово-канальная зона на переднем конце умеренной ширины, с 20-25 поровыми каналами. Мускульные отпечатки не расщеплены. Мел — палеоген, повсеместно.

Родовой состав. В мезозое: Cornicythereis Gründel, 1973. В кайнозое: Hazelina. Возможно также, Platycosta Holden, 1964.

Hazelina Moss, 1966 (=Repandocosta Hazel, 1967) [H. indigena Moos, 1966; верхний эоцен — нижний олигоцен (?), латторф, Вестфалия, ФРГ]. Размеры средние. Поверхность раковины покрыта грубыми ячейками с толстыми гранями. Ячейки ориентированы параллельно краевым и продольным ребрам. Замок голоамфидонтный. У некоторых видов в передней краевой зоне отмечается небольшой вестибюль. Отпечатки замыкательных мускулов различной величины; фронтальный — Ј-образный. Около 20 видов. Палеоцен — ранний олигоцен (?), повсеместно (рис. 248—250).

Триба MAURITSINI Deroo, 1966 [emend. Nikolaeva, nov.] (incl. SPINOLEBERIDINAE POKORNY, 1968 part.)

Раковина умеренно удлиненная и умеренно выпуклая. край ориентирован параллельно базальной линии. Задний конец незначительно ниже переднего, с уступом. Краевые ребра массивные. Присутствующие три продольных ребра и субцентральный бугорок также массивны, Глазной бугорок хорошо развит. Замок в большинстве случаев парамфидонтный. Количество поровых каналов на переднем конце 20-30. Мускульные отпечатки отличаются различным характером расщепления, которое наблюдается как во фронтальной, так и замыкательной группах. Ранний мел (альб) — ранний палеоцен; эоцен (?).

Родовой состав. В мезозое: Mauritsina Deroo, 1966; Matronella Damotte, 1974; Spinoleberis Deroo, 1966. В мезозое—кайнозое: Curfsina. Возможно также, Aquitaniella Deltel, 1963.

Curfsina Deroo, 1966, Cythereis major Van Veen, 1936; Maастрихт, Нидерланды. Размеры средние. Раковина с приостренным задним концом и хорошо выраженным уступом. Срединное продольное ребро относительно длинное, приближено к переднему концу; близ заднего конца соединяется со спинным продольным ребром. Поверхность гладкая или орнаментирована слабыми бороздками, шипами, ребрами или ячейками. Мускульные отпечатки: фронтальный — V-образный; верхний аддукторный слабо расщеплен или пережат посередине. Около 30 видов. Поздний мел, повсеместно. В СССР: нижний палеоцен (в глубоководных фациях), Северный Кавказ (рис. 251—253).

Триба OERTLIELLINI Liebau, 1975 [emend. Nikoiaeva, nov.]

Размеры средние и приближающиеся к крупным. Раковина со слабой конвергенцией краев к приостренному заднему концу, умеренно выпуклая в центральной части и уплощенная на брюшной стороне, где присутствует неширокий фундиум. Задний конец с уступом, располагающимся у большинства родов в верхней половине раковины. Концевые шипы хорошо выражены. Присутствуют субцентральный бугорок и продольные спинное и брюшное ребра, серединное ребро редуцировано, скульптура ячеисто-бугорчатая. Поверхностные поры двух типов: ситовидные и поровые конулы. Глазной бугорок имеется у обитателей литорали и отсутствует у глубоководных групп. Замок в среднем отделе гладкий, краевые отделы иногда насечены. Линия сращения и внутренний край совпадают. На переднем конце у большинства родов около 20 поровых каналов; у Cythereis и Doricythereis — до 35. Аддукторные отпечатки не расщеплены; фронтальный — V-образный. Поздний мел ныне, повсеместно. В СССР: преимущественно палеоцен — средний эоцен.

Родовой состав. В мезозое: Cythereis Jones, 1849; Rehacythereis Gründel, 1973; Scepticocythereis Bate, 1972. В мезозое—кайнозое: Oertliella; Agrenocythere; Doricythereis; Horrificiella; Paragrenocythere. Возможно, также Actinocythereis Puri, 1953.

Oertliella Pokorny, 1964 [Cythere reticulata Kafka, 1886; турон, Чехия]. Краевое ребро и примыкающее к нему брюшное продольное ребро сплошные, тонкие. Спинное продольное ребро может быть представлено соединенными между собой длинными шипами и выступами. Заднеспинной угол левой створки отмечен крупным шиповидным выростом. Скульптура ячеисто-бугорчатая, с наиболее развитыми высокими гранями в области субцентрального бугорка. Значительная часть бугорков представляет собой поровые конулы; присутствуют также ситовидные поры на дне ячеек. Глазной бугорок линзовидный. Замок парамфидонтный. Около 25 видов. Поздний мел (турон) — ранний эоцен, Северо-Атлантическая область, Западная Европа, СССР (Украина, Северный Кавказ, Казахстан, Туркмения) (рис. 254; табл. XIX, рис. 255).

Paragrenocythere Al-Furaih, 1975 [Р. biclavata; нижний палеоцен, Аравия]. Краевое ребро тонкое. Спинное продольное ребро редуцировано до двух крупных выступов в задней половине раковины. Брюшное продольное ребро сплошное, с передним краевым ребром не соединяется. Субцентральный бугорок крупный. Скульптура крупноячеистая; ячейки полигональные, с высокими гранями. Глазной бугорок частично редуцирован. Опирается на короткое вертикальное ребро. Замок голоамфидонтный. 7 видов. Палеоген (ранний палеоцен), Средиземноморье, СССР (Северный Кавказ, возможно, Центральная Туркмения) (рис. 256).

Agrenocythere Benson, 1972 [А. spinosa; современный вид, Индийский океан]. Уступ заднего конца удлинен. Краевое и брюшное продольное ребра сплошные. Спинное продольное ребро состоит из бугорков, крупных выступов, реже—сплошное. Субцентральный бугорок крупный. Поверхность полигональнояченстая, наиболее крупные ячейки располагаются в области субцентрального бугорка. В углах граней

возвышаются поровые конулы. Глазной бугорок отсутствует. Глазная площадка армирована коротким вертикальным ребром. Замок голоамфидонтный. Около 15 видов. Ранний эоцен — ныне, повсеместно. В СССР: нижний эоцен (в глубоководных фациях), Северный Кавказ; средний эоцен, Украина, Кавказ, Казахстан, Западная и Центральная Туркмения (рис. 257, 258).

Doricythereis Gründel, 1976 [Mauritsina jordanica jordanica В а s s i о u п i, 1971; нижний палеоцен, Иордания]. Переднее замочное ушко левой створки хорошо выражено, где наблюдается максимальный охват. Субцентральный бугорок высокий. Продольные ребра состоят из слившихся бугорков. Иногда намечается срединное ребро. Скульптура ячеисто-бугорчатая. Глазной бугорок линзовидный, поддерживается подокулярным ребром. Замок голоамфидонтный. В передней краевой зоне до 35 поровых каналов. 12 видов. Поздний мел (маастрихт), Западная Европа, СССР (Украина). Палеоцен, Иордания, СССР (Крым, Северный Кавказ, Копетдаг) (рис. 259, 260).

Horrificiella Liebau, 1975 [transl. Ducasse, Guernet. Тат bareau, 1985 (ex Oertliella (Horrificiella) Liebau, 1975)] [Cythere horridula Bosquet, 1854; верхний мел, (маастрихт) Нидерланды]. Уступ заднего конца удлинен. Краевое и продольное ребра состоят из отдельных бугорков, которые близ заднего конца расположены группами. Субцентральный бугорок также отмечен группой бугорков. Вся остальная часть боковой поверхности ячеисто-бугорчатая; бугорки расположены в углах граней полигональных ячеек. Некоторые из них представляют собой поровые конулы. Брюшная сторона покрыта ячейками без бугорков. Глазная линза присутствует, слита с коротким тонким вертикальным ребром. Замок голоамфидонтный. З вида. Поздний мел (маастрихт) — средний эоцен, Евразия (рис. 261, 262).

Триба PARVACYTHEREIDINI Gründel, 1973 [emend. Nikoiaeva, nov.]

Раковина тонкостенная, приближающаяся к удлиненной, уплощенная. Брюшной край параллелен базальной линии, спинной заметно наклонен к заднему концу. Задний конец с уступом. Субцентральный бугорок присутствует, изменчив по величине и форме. Срединное продольное ребро выражено различно. Спинное и брюшное продольные ребра стабильной формы; близ заднего конца несколько изгибаются по направлению к срединному ребру. Спинное и срединное ребра на переднюю часть раковины не распространяются. Брюшное продольное ребро плавно сливается с передним краевым. Фундиум присутствует. Поверхность ячеистая, реже гладкая или бугорчатая. Глазной бугорок у большинства родов имеется; отсутствует у относительно глубоководных представителей (*Trachyleberidea*). Замок геми- или парамфидонтный. Вестибюль отсутствует. Порово-канальная зона умеренной ширины. На переднем конце не более 30 поровых каналов. Поздний мел — палеоген.

Родовой состав. В мезозое: Spinicythereis Рокогпу, 1964; Planileberis Dегоо, 1966. В мезозое — кайнозое: Parvacythereis, Trachyleberidea. Возможно, также Occultocythereis и Idiocythere Triebel, 1958.

Parvacythereis Gründel, 1973 [Curfsina subparva Pokorny, 1967; верхний мел (турон), Чехия]. Раковина маленькая. Левая створка со слаборазвитым передним замочным ушком. Концевые шипы присутствуют. Субцентральный бугорок крупный, несколько вытянутый, примыкающее к нему срединное ребро слабо выражено. Скульптура ямчатая, ячеистая. На дне ячеек наблюдаются выходы нормальных поровых каналов. Глазной бугорок отчетливый. Замок, насеченный в

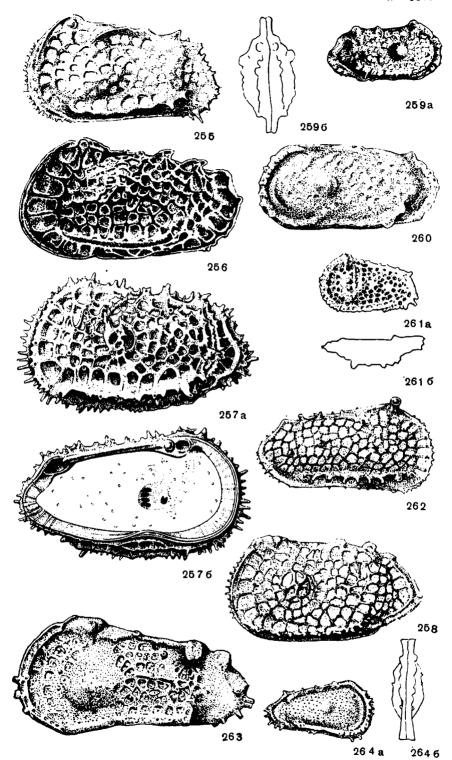


Рис. 255. Oertliella alveoloalata (Scharapova, 1937). Экз. № 8485/43. Левая створка с наружной стороны (×55). Нижний палеоцен, Казахстан. Рис. 256. *Paragrenocythere biclavata (Al-Furaih, 1975). Левая створка самца с наружной стороны (×72). Нижний палеоцен, Саудовская Аравия [76].

Рис. 257. *Agrenocythere spinosa (Вепѕоп, 1972). Левая створка самки: a-c наружной стороны, b-c изнутри (x50). Современный вид, Индийский океан [84].

Рис. 258. Agrenocythere immermorata (Mandelstam in Bubikjan, 1958). Экз. № 10355/140. Раковина с левой стороны (×54). Средний эоцен, Крым, Бахчисарай, бодракский горизонт.

Рис. 259. *Doricythereis jordanica jordanica (Ваssiouni, 1971). Раковина: а —

с правой, δ — со спинной стороны ($\times 28$). Нижний палеоцен, Иордания [83].

Puc. 260. Doricythereis artschmanensis (Rozyeva, 1962). Экз. № 10355/23. Paковина с левой стороны (×54). Верхний палеоцен, Крым, Бахчисарай, качинский горизонт.

Рис. 261. *Horrificiella horridula (Bousquet, 1854). Левая створка: а—с наружной, б—со спинной стороны (×40). Маастрихт, Нидерланды [98]. Рис. 262. Horrificiella lichenophora (Bosquet, 1852). Экз. № 10355/48. Раковина

с правой стороны (×54). Нижний зоцен, Крым, Бахчисарай, бахчисарайский горизонт. Рис. 263. *Parvacythereis subparva (Рокогпу, 1967). Раковина самца (?) с левой стороны (×105). Турон, Чехословакия [161]. Рис. 264. Parvacythereis formosa (Szczechura, 1965). Экз. № 10355/49. Рако-

вина: a-c правой, $\tilde{\delta}-c$ с спинной стороны ($\times 54$). Нижний эоцен, Бахчисарай, бахчисарайский горизонт.

заднем отделе. Около 10 видов. Поздний мел — эоцен, Европа, СССР (Западная Сибирь, Казахстан) (рис. 263, 264).

Trachyleberidea Bowen, 1953 [Cythereis prestwichiana Jones et Sherborn, 1889; (non Trachyleberidea prestwichiana Bowen, 1953); design. Keij, 1957; нижний эоцен (ипр), Англия]. Размеры средние, очень постоянны ($L=0.65\div0.68$ мм). Уступ заднего конца удлинен и слабо вогнут. Концевые шипы слабо развиты. Субцентральный бугорок отчетливый, за ним могут присутствовать 2—3 мелких бугорка, отмечающих положение срединного ребра. Скульптура полигональнояченстая. Глазной бугорок отсутствует. Около 40 видов. Палеоген, повсеместно. В СССР: палеоцен — эоцен (табл. XX, рис. 265, 266).

(?) Occultocythereis Howe, 1951 [O. delumbata; эоцен, (Флорида)]. Размеры маленькие. Раковина тонкостенная. заднего конца слабо выражен, находится в верхней половине. Красвые ребра валикообразные. Концевые шипы игольчатые. Продольные ребра пластинчатые, заканчиваются выступами; брюшное (за исключением случаев проявления полового диморфизма) значительно короче спииного. Субцентральный бугорок развит. Поверхность гладкая. В области глазного бугорка у некоторых видов имеется плоское возвышение. Замок голоамфидонтный. Порово-канальная зона относительно широкая. Поровые каналы примерно в средней части краевой зоны разветвляются на 2-4 канала, утончаясь по направлению к краю раковины. Отпсчатки аддуктора не расщеплены; фронтальный— V-образный. Род характеризуется довольно сильным для данной группы проявлением полового диморфизма, выраженным в заметной асимметрии створок у раковин самцов (наличием более длинного ребра правой створки и сильным охватом по брюшному краю). Около 45 видов. Палеоген — ныне (?), повсеместно. В СССР: средний — верхний эоцен, европейская часть, Эмбенская область, Западная Туркмения (рис. 267—272).

Триба PHACORHABDOTINI Gründel, 1969 [emend. Nikolaeva, nov.]

Раковина тонкостенная, округленно-прямоугольная, умеренно удлиненная или укороченная, сжатая с боков или умеренно широкая, в концевых частях всегда уплощена. Концевые шипы обычно отсутствуют. Переднее краевое ребро непостоянно. Центральная группа продольных ребер у всех представителей состоит из трех, за исключением подрода Karsteneis (Karsteneis). Субцентральный бугорок, как правило, выражен. Поверхность гладкая, ямчатая или ячеистая. Глазной бугорок не всегда присутствует. Замок пара- или голоамфидонтный. Внутренний

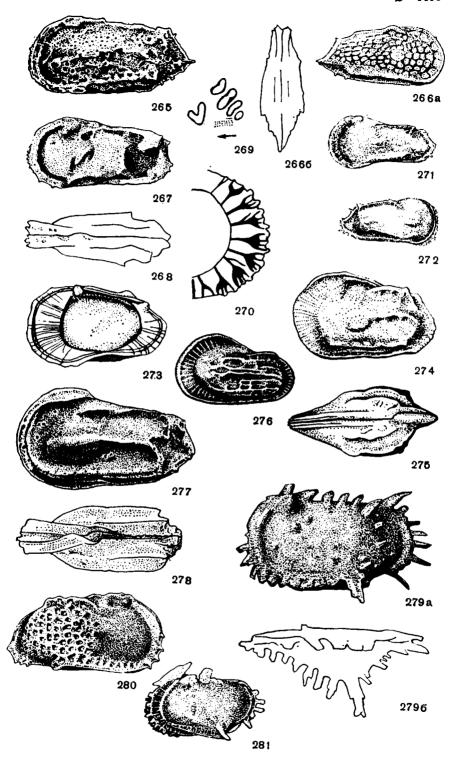


Рис. 265, 266. *Trachyleberidea prestwichiana (Jones et Sherborn, 1889). 265—левая створка с наружной стороны (\times 75). Ипр. Англия [78]; 266 — экз. № 10355/149. Раковина: a—с правой, δ —со спинной стороны (\times 54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 267—270. Occultocythereis mutabilis mutabilis (Trienel, 1961). 267— раковина самца с левой стороны; 268 — раковина самки со спинной стороны (×85); 269 схема расположения центральных мускульных отпечатков ($\times 270$); 270 — схема строения порово-канальной зоны на переднем конце ($\times 160$). Лютет, Парижский бассейи [175]

Рис. 271, 272. Occultocythereis costalis Haskins, 1971. 271— экз. № 10355/139. Левая створка самки с наружной стороны (×54). Крым, Бахчисарай, средний эоцен, керестинский горизонт; 272 — экз. № 10355/93. Правая створка самки с наружной

стороны (×54). Верхний эоцен, Крым, Бахчисарай, альминский горизонт.

Рис. 273—275. *Phacorhabdotus texanus Howe et Laurencich, 1958. 273 — правая створка изнутри; 274— левая створка с наружной стороны; 275— закрытая раковина со спинной стороны (×60). Кампан, США (Texac) [125].
Рис. 276. Phacorhabdotus squamosus Nikolaeva, 1977. Экз. № 10355/116. Левая

створка с наружной стороны (×54). Верхний палеоцен, Крым, Бахчисарай, качинский

Рис. 277, 278, *Praephacorhabdotus bonnemai (Triebel, 1940). 277 — девая створка с наружной стороны ($\times 101$); 278 — раковина со спинной стороны ($\times 96$). Альб, ΦPΓ [102]

Рис. 279. *Pterygocythereis jonesii (Ваіг d, 1850). Левая створка: a-c наружной, b-c0 спинной стороны (\times 50). Современный вид, Неаполитанский залив [176].

Рис. 280. Pterygocythereis permira Mandelstam, 1960. Экз. № 8485/81. Верхний эоцен, Тургайский прогиб, чеганская свита.

Рис. 281. *Alatacythere ivani Ноwe, 1951. Левая створка с наружной стороны (×35). Нижний олигоцен, США (Луизиана) [126].

край и линия сращения совпадают. Порово-канальная зона широкая, от 20 до 38 поровых каналов на переднем конце. Имеется тенденция к расщеплению верхних аддукторных отпечатков. Фронтальный — единичный. Ранний мел (альб) — ныне.

Родовой состав. В мезозое: Fissocarinocythere Brouwers et Hazel, 1978; Imhotepia Gründel, 1969; Karsteneis Pokorny. 1963; Rayneria Neale, 1975. В мезозое — кайнозое: Phacorhabdotus; Praephacorhabdotus: Ambocythere V a n den Bold. 1957. Возможно, также Atjehella Kingma, 1948.

[P. texanus: Phacorhabdotus Howe et Laurencich, 1958 верхний мел (? кампан), США (Техас)]. Размеры средние. Раковина укороченная, иногда со слабым задним замочным ушком, с тонкой оторочкой на переднем конце. Без переднего краевого ребра. Спинное срединное продольные ребра короткие — на переднюю половину раковины не распространяются; спинное ребро близ заднего конца загнуто вниз. Поверхность гладкая или в межреберном пространстве ямчатая. Глазной бугорок практически отсутствует. Замок голоамфидонтный, передний элемент среднего отдела слабо развит. На переднем конце 17-20 поровых каналов. Мускульные отпечатки типового вида не известны; у ряда других видов наблюдается расщепление верхних аддукторных отпечатков. Фронтальный — U-образный. Около 40 видов. Ранний мел (коньяк) — палеоген, повсеместно. В СССР: маастрихт — средний эоцен, Украина, Северный Кавказ, Казахстан, Западная Сибирь (рис. 273—276).

Praephacorhabdotus Gründel, 1974 [nom. transl. Nikolaeva, nov. (ex Phacorhabdotus Praephacorhabdotus Gründel, 1974)] [Cythereis bonnemai Triebel, 1940; нижний мел (альб), Северо-Германская низменность]. Раковина маленькая, умеренно удлиненная и сильно уплощениая. Краевое (по свободному краю) и три центральных продольных ребра длинные, хорошо выражены, соединены близ конца перемычками. Субцентральный бугорок удлиненный, сливается со срединным ребром. Поверхность гладкая. Глазной бугорок слабо выражен. Замок и мускульные отпечатки типового вида не известны. 8 видов. Мел. Западная Европа, СССР (Украина, Казахстан, Западная Сибирь). Редко в палеогене — только в глубоководных фациях (палеоцен — эоцен, Северный Кавказ) (рис. 277, 278).

Подсемейство Pterygocythereidinae Puri, 1957

Обызвествление различно. Передний конец незначительно заднего, как правило заканчивающегося уступом в верхней половине; у большинства родов раковина приближается к округленно-прямоугольной, за исключением представителей рода Pterygocythere. Охват не выражен или наблюдается по спинному краю. Характерен крыловидный выступ в брюшно-боковой части, резко обрывающийся в области заднебрюшного угла. Выступ окантован сплошным или разъединенным отдельные пластины килем, разделяющим боковую и брюшную поверхпости. Присутствует широкий фундиум. Центральные продольные ребра отсутствуют; субцентральный бугорок в большинстве случаев отсутствует. Поверхность гладкая, бугорчатая, ячеистая. Глазное пятно, бугорок или окулярный синус наблюдаются. Замок амфидонтный всех разновидностей. Внутренний край и линия сращения у меловых и палеогеновых представителей совпадают; вестибюль наблюдается только у известного из Средиземноморья позднекайнозойского рода Incongruellina. Порово-канальная зона умеренной ширины. Данных о расщеплении аддукторных отпечатков нет; фронтальный — V- или U-образный. Поздний мел — ныне, повсеместно. 2 трибы: Pterygocythereidini Puri, 1957, и Kingmainini Gründel, 1976.

Триба PTERYGOCYTHEREIDINI, Puri, 1957

Охват различно выражен. Максимальная ширина раковины совпадает с размахом крыловидного выступа по фундиуму. Краевое ребро у большинства родов присутствует, может быть снабжено одним или двумя рядами концевых шипов. На спинном крае иногда имеются ребро или выступы. Поверхность гладкая, бугорчатая, яченстая. геми- или парамфидонтный. Передняя краевая зона имеет 16-20 поровых каналов. Брюшно-боковой киль часто пронизан рядом нормальных поровых каналов. Поздний мел — ныне.

В мезозое: Diogmopteron H i I I, Родовой состав. мезозое — кайнозое: Pterygocythereis; Alatacythere; Alataleberis McKenzie et Warne, 1986; Carinovalva; Incongruellina Ruggieri, 1953; Pterygocythere. Возможно, также Bosquetina.

Pterygocythereis Blake, 1933 [Cythereis jonesii Baird, современный вид, Северная Атлантика]. Размеры средние. Сильно развиты краевое ребро, крупные концевые шипы и пластинчатые выступы на спинном крае. Брюшно-боковой киль является продолжением переднего краевого ребра, расчленен на отдельные пластины или шипы. Субцентральный бугорок, как правило, отсутствует, только слабовыраженный у некоторых меловых форм. Поверхность гладкая или покрыта немногочисленными крупными призматическими или мамиллятными бугорками; у олигоценовых представителей нередка яченстая скульптура. Глазной бугорок линзовидный. Замок со слаборассеченным задним элементом. Около 140 видов. Поздний (коньяк) — ныне, повсеместно. В СССР: коньяк — олигоцен (рис. 279, 280).

Alatacythere Murray et Hussey, 1942 [A. iwani Howe, 1951 (=Cuthereis (Pterygocythereis?) alexanderi Howe, Law, 1936); олигоцен, США (Луизнана)]. Раковина средних размеров, тонкостепная. Краевое ребро развито, окаймляет концы и брюшной край. Концевые шины, выступы на спинном крае и брюшно-боковой киль пластинчатые. Брюшно-боковой киль примыкает к переднему краевому ребру, а не является его продолжением. Поверхность гладкая. Замок донтный, с крупным насеченным задним краевым элементом. Около 40 видов. Палеоген, повсеместно (рис. 281).

(?) Bosquetina K e i j, 1957 [Cythere pectinata B o s q u e t, 1852; плиоцен, Франция]. Размеры средние и большие. Прямой спинной и выгнутый брюшной края конвергируют к заднему концу, который приострен в средней части. Раковина равномерно выпуклая, с наибольшей шириной в центре брюшно-бокового киля, который ограничивает псевдофундиум. Киль сплошной, не достигает края переднего конца, имеет шипы в задней половине. Поверхность гладкая, мелкоямчатая. Глазное пятно отсутствует, окулярный синус слабо выражен. Замок амфидонтного типа, насечен во всех отделах; задний отдел ступенчатый, сильно удлинен. Вестибюли отсутствуют. Порово-канальная зона умеренной ширины, на переднем конце около 40 поровых каналов, включая ложные. 2 фронтальных и 4 аддукторных отпечатка. Около 20 видов. Олигоцен — ныне, Европа. В СССР: кайнозой, Северный Кавказ, Туркмения (табл. XXI, рис. 282).

Carinovalva Sissingh, 1973 [Incongruellina (Lixouria) keiji Sissingh, 1972; плиоцен, о. Криг]. Раковина средних размеров, овальных очертаний, охват слабо выражен. Концевые шипы имеются. Краевое ребро, а также спинное продольное ребро или соответствующие ему выступы отсутствуют. Брюшно-боковой киль достигает края переднего конца. Поверхность гладкая. Глазной бугорок маленький. Замок голоамфидонтный, с насеченным или гладким валиком (желобком). Дополнительный желобок над желобком правой створки отсутствует. Вестибюль отсутствует или слабо выражен. 9 видов. Олигоцен — ранний плейстоцен, Средиземноморье, Бавария, ФРГ. В СССР: пограничные отложения палеогена и неогена, Северный Кавказ, Туркмения, Узбекистан (рис. 283, 284).

Pterygocythere Hill, 1954 [Cypridina alata Bosquet, 1847; маастрихт, Нидерланды]. Раковина средних размеров, округленно-овальная. Левая створка очень незначительно больше правой при слабом охвате по спинному краю. Задний конец относительно низкий, с длинным уступом и концевыми шипами ниже него. Спинное ребро и выступы на спинном крае перазвиты. Присутствует тонкое переднее краевое ребро, с которым сливается брюшно-боковой киль. Иногда наблюдается слабая перфорация брюшно-бокового киля. Поверхность гладкая. Глазной бугорок выражен слабо. Замок парамфидонтный, с удлиненным задним отделом; над срединным валиком левой створки присутствует очень слабый желобок, воспринимающий виды. Поздний мел (маастрихт) — средний эоцен, повсеместно (рис. 285—287).

Триба KINGMAINI Gründel, 1976 [emend. Nikolaeva, nov.]

Раковина массивная. Охват выражен слабо, левая створка чуть превосходит по размерам правую. Максимальная ширина полости раковины находится в центральной части, примерно посередине ее высоты. Скульптура грубоямчатая или яченстая. Замок голо- или гемиамфидонтный. Маастрихт — эоцен, Европа, Северная Америка.

Родовой состав. Kingmaina, Absonocytheropteron Puri, 1957.

Kingmaina Keij, 1957 [Cythere forbesiana Bosquet, 1852; верхинй мел (маастрихт), Нидерланды]. Размеры средние. Присутствуют мелкие концевые шипы и тонкое краевое ребро вдоль концов и брюшного края. Брюшно-боковой киль является продолжением переднего краевого ребра, он сплошной, но слабо перфорирован. Субцентральный бугорок отсутствует, но место его расположения отмечено утолщением скульптурных элементов. Скульптура грубоячеистая, с более резко выраженными вертикальными гранями, которые ориентированы рядами, параллельными концам раковины. Глазной бугорок слабо

11 3ak. 734 16!

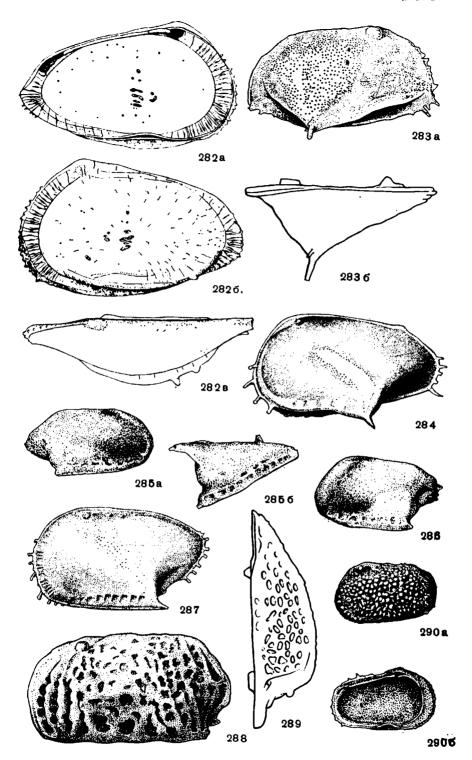


Рис. 282. *Bosquetina pectinata (Воѕqиет, 1852). Левая створка: a — изнутри, 6 — с наружной, θ — со спинной стороны (\times 60). Плиоцен; Франция [131]. Рис. 283. *Carinovalva keiji (Sissingh, 1972). Правая створка: a — с наружной θ — со спинной стороны (\times 65). Плиоцен, о. Крит, формация Астери [166].

Рис. 284. Carinovalva mediocrisa (Rozyeva, 1962). Экз. № 12571/12. Левая створка с наружной стороны (×60). Кавказий, Северная Туркмения. Рис. 285, 286. *Pterygocythere alata (Воз quet, 1847). 285 — правая створка: а—с наружной, б—со спинной стороны; 286 — левая створка с наружной стороны (все

×34). Маастрихт, Нидерланды [98]. Рис. 287. Pterygocythere hilli Keij, 1957. Экз. № 10355/59. Левая створка с наружной стороны (×54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт. Рис. 288, 289. *Kingmaina forbesiana (Во squet, 1852). 288 — левая створка с на-

ружной стороны (×90). Средний эоцен, Бельгия. 289 — правая створка со спинной стороны (×90). Нижний эоцен, Парижский бассейн [131].

Рис. 290. E. (Echinocythereis) garretti (Howe et McGuirt, 1935). Левая створ-ка: a-c наружной стороны, 6- изнутри ($\times 30$). Миоцен, США (Флорида), [175].

выражен. Замок голоамфидонтный. В передней краевой зоне до 25 поровых каналов. Около 15 видов. Поздний мел (маастрихт) — средний эоцен, Западная Европа. В СССР: Маастрихт, Азербайджан; ранний палеоцен, Крым, Бахчисарай (рис. 288—289).

Подсемейство Echinocythereidinae H a z e l, 1967

Размеры средние или приближаются к крупным. Раковина слабоасимметричная, с намечающимися замочными ушками на левой створке и свисанием переднего конца правой створки; умеренно удлиненная, со слабой конвергенцией краев к заднему концу или параллельно направленными, выгнутыми краями (оба типа могут встречаться в пределах одного рода). Задний конец закруглен или может иметь различной длины уступ, плавно соединяющийся со спинным краем частью заднего конца. Умеренно и равномерно выпуклая или вздутая в центральной части; в случае присутствия сильноразвитой брюшнобоковой центральной выпуклости может иметь ограничивающее ее короткое дугообразное ребро. Концевые шипы мелкие, многочисленные. Субцентральный бугорок, центральная группа продольных ребер и краевые ребра, как правило, отсутствуют; исключение составляет Echinocythereis (Sclediocythereis) — с субцентральным бугорком и Verrucocythereis — с субцентральным бугорком и краевым ребром. Скульптура бугорчатая и ячеисто-бугорчатая, подчинена полигональной даже в случае гладкого поверхностного слоя под ним просвечивает полигональная сетка. Поверхностные поры преимущественно открытые. Глазная линза и окулярный синус присутствуют у всех групп, кроме глубоководных (род Bathycythere). Замок голоамфидонтный, обычно с гладким валиком (желобком). Внутренний край и линия сращения у большинства родов, за исключением Rablimis, совпадают. Порово-канальная зона умеренной ширины, в передней краевой зоне 30-40 поровых каналов, редко 50. Отпечатки аддуктора, как правило, не расщеплены; перед ними имеются два фронтальных. У групп, обитающих в водоемах с несколько пониженной соленостью (Megahemicythere), наблюдается расщепление второго сверху аддукторного отпечатка. Кайнозой, повсеместно.

Родовой состав. Echinocythereis; Bathycythere Sissingh, 1971; Megahemicythere; Rablimis; Verrucocythereis Ruggieri, 1962. Возможно также, Nucleolina Apostolescu et Deroo,

Echinocythereis Puri, 1953. Раковина средних размеров, выпуклая в центральной части. Глазная линза и окулярный синус хорошо выражены. Внутренний край и линия сращения совпадают. Краевые поровые каналы прямые, простые; 25—35 — в передней краевой Включает два подрода: E. (Echinocythereie) и E. (Sclediocythereis).

Echinocythereis (Echinocythereis) Puri, 1953 (Ateratrachyleberis) Lie, 1964 = Echinocythereis(Rhodicuthereis) Sissingh, 1972) [Cythereis garretti Howe et McGuirt, 1935,

Рис. 291. *E.* (*Echinocythereis*) isabenana (Oertli, 1960). Экз. № 8485/155. Раковина самки: a— с правой, δ — со спинной стороны ($\times 60$). Средний эоцен, Тургайский прогиб, нижнетасаранский подгоризонт.

Рис. 292. E. (Echinocythereis) hyalina (Scharapova, 1937). Экз. № 8485/160. Раковина с правой стороны ($\times 55$). Средний эоцен, Тургайский прогиб, тасаранская

Рис. 293. *Echinocythereis (Sclediocythereis) multibullata Siddiqui, 1971. Раковина с левой стороны (×65). Верхний эоцен, Западный Пакистан [165].

Рис. 294, 295. *Megahemicythere oertlii Witt, 1967. 294 — раковина самки с левой стороны (×30); 295 — схема расположения центральных мускульных отпечатков (×300). Рупель, Бавария, ФРГ [187].

Рис. 296. Megahemicuthere variatuberosa (Scheremeta, 1964). Левая створка с наружной стороны (×35). Нижний олигоцен, Причерноморская впадина, соленовский горизонт [71]. Рис. 297. *Rablimis mirabilis (В га d у, 1868). Правая створка самки с наружной

стороны (×49). Плейстоцен, Англия [78].

Рис. 298, 299. Grinoineis paijenborchiana (Keij, 1957). 298 — левая створка самца с наружной стороны (×75). Средний эоцен, Парижский бассейн, лютет [131]; 299— экз. № 10355/56, раковина с левой стороны (×54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 300. *Hammatocythere hebrtiana (Во squet, 1852). Левая створка самки с наружной стороны (×60). Средний эоцен, Парижский бассейн, оверз [130]. Рис. 301. Hammatocythere porosa (Мапdelstam, 1949). Экз. № 10355/20. Раковина с левой стороны (×54). Верхний палеоцен, Крым, Бахчисарай, качинский горизонт.

Рис. 302. Hornibrookella macropora (Bosquet, 1852). Экз. № 10355/46. Раковина

с правой стороны (×54). Средний эоцен, Крым, Бахчисарай.

Рис. 303. *Hornibrookella anna (Lienenklaus, 1894). Раковина: a—с правой, δ — со спинной стороны (\times 62). Верхний эоцен (?) — нижний олигоцен (?), Вестфалия, ФРГ, латторф [149].

in Howe, 1935; миоцен, США (Флорида)]. Субцентральный бугорок отсутствует. Скульптура ячеисто-бугорчатая, бугорчатая и ячеистая, иногда часть поверхности гладкая или бугристая. Около 100 видов. Кайнозой (преимущественно палеоген), повсеместно табл. ХХП, рис. 291, 292).

Echinocythereis (Sclediocythereis) Siddiqui, 1971 [E. (S.) multibullata; средний эоцен, Западный Пакистан]. Субцентральный бугорок присутствует. Скульптура бугорчатая. З вида. Эоцен, Западный

Пакистан. В СССР: нижний эоцен, Средняя Азия (рис. 293).

Megahemicythere Witt, 1967 [M. oertlii; нижний олигоцен, рупель, Бавария, ФРГ]. Размеры средние, приближающиеся к крупным. Раковина с брюшно-боковой выпуклостью, отмеченной 1-3 тонкими дугообразными ребрами, образованными гранями ячеек, иногда с несколькими крупными буграми различной формы и местоположения. Скульптура ячеистая, иногда часть поверхности может быть гладкой. Глазной бугорок присутствует. Линия сращения и внутренний край совпадают. В передней краевой зоне не более 20 поровых каналов. Второй верхний аддукторный отпечаток может быть расщеплен на два. 5 видов. Олигоцен, Западная Европа, СССР (Крымско-Кавказская область, Туркмения) (рис. 294—296)..

Rablimis Hazel, 1967 [Cythere mirabilis Brady, 1968; coppeменный вид, Северная Атлантика]. Скульптура ячеистая, имеется тенденция к расположению ячеек параллельно концам раковины. Глазной бугорок присутствует. Внутренний край и линия сращения не совпадают. В передней краевой зоне около 30 поровых каналов. Около 10 видов. Олигоцен — ныне, повсеместно (рис. 297).

СЕМЕЙСТВО THAEROCYTHERIDAE Hazel, 1967 [nom. transl. Benson, 1972 (ex THAEROCYTHERINAE Hazel, 1967)]

Раковина различно обызвествлена, субокругленно-прямоугольная или субокругленно-трапецеидальная, умеренно выпуклая. Задний конец близок по высоте к переднему, короткий, вертикально-прямой, закруглен или с вогнутым уступом в верхней части. Охват слабо выражен;

левая створка очень незначительно больше правой. Концевые шипы присутствуют. Как правило, выражено краевое ребро, огибающее свободный край, два продольных ребра (спинное и брюшное) и субцентральный бугорок. Иногда имеется срединное ребро. Скульптура разнообразна. Поверхностные поры открытые и ситовидные, расположены на дне ячеек. Глазное образование обычно имеется, отсутствует только у глубоководных групп. Замок обычно голо- и гемиамфидонтный. Порово-канальная зона умеренной ширины; количество поровых каналов в передней краевой зоне не превышает 40. 2 фронтальных и 4 аддукторных отпечатка, однако в пределах подсемейств имеются отклонения. Поздний мел — ныне. Объединяет два подсемейства: Thaerocytherinae и Bradleyinae Вепson, 1972, последнее на территории СССР распространено только в мезозое. Возможно, подсемейство Соquimbinae O h m e ft, 1968, известное из плиоцена Чили.

Подсемейство **Thaerocytherinae** H a z e l, 1967 [emend. N i k o l a e v a, nov.]

Раковина часто массивная, округленно-прямоугольная, удлиненная или укороченная, равномерно выпуклая или с уплощением в приконцевых частях. Задний конец с вогнутым уступом, закруглен или редко (у представителей рода Tongacythere) — с каудальным отростком. Продольные ребра (спинное и брюшное) прямые, могут быть соединены поперечными перемычками; срединное ребро присутствует редко. Скульптура ячеистая, крупноячеистая, ячеисто-бугорчатая и морщинистая. Замок голоамфидонтный, с гладким, реже насеченным желобком (валиком) или гемиамфидонтный с насеченным задним элементом. Внутренний край и линия сращения у большинства родов совпадают; исключечение составляют представители родов Jugosocythereis, Puriana, Robertsonites. Иногда наблюдается расщепление одного или двух аддукторных отпечатков и наличие трех фронтальных. Характер строения раковины родов Grinoineis и Robertsonites позволяет относить эти роды к данному подсемейству; наличие одного фронтального бугорка, возможно, соответствует тому, что эта группа родов может рассматриваться как предковая. Кайнозой, повсеместно.

Родовой состав. Ископаемые: Diebelina Pieterzeniuk, 1969; Grinoineis; Hammatocythere; Hermanites Puri, 1955; Hornibro-okella; Jugosocythereis Puri, 1957; Martinicythere; Muellerina; Puriana Coryell et Fields, 1953; Robertsonites; Tongacythere Hazel et Holden, 1971; Quadracythere (Tenedocythere) Sissingh, 1972; Tropidocythere Huff, 1970. Современные: Thaerocythere Hazel, 1967; Australicythere Benson, 1964; Cletocythereis Swain, 1963; Patagonacythere Hartmann, 1962; Procythereis Scogsberg, 1925; Quadracythere Hornibrook, 1952. Возможно также, Murrayina Puri, 1954; Uromuellerina Bassiouni, 1970, и Nephokirkos Howe. 1951.

Grinoineis Liebau, 1975 [nom. transl. Liebau, 1975 (ex Cletocythereis (Grinoineis) Liebau, 1975)] [Hermanites paijenborchiana Keij, 1957; средний эоцен, лютет, Парижский бассейн]. Размеры средние. Раковина удлиненная, с уплощением на заднем конце, который имеет уступ, занимающий по высоте его более половины. Спинное и брюшное продольные ребра могут заканчиваться пластинчатым изгибом в сторону центра раковины. Скульптура полигональноячеистая. Замок с расчлененным задним элементом. Вестибюль отсутствует; в передней краевой зоне около 30 поровых каналов. 4 аддукторных и 1 подковообразный фронтальный отпечаток. Около 10 видов. Палеоцен — эоцен, Западная Европа, СССР (Украина, Казахстан, Средняя Азия) (рис. 298, 299).

Наттатосутнеге Кееп, 1972 [Cythere hebertiana Bosquet, 1852; нижний олигоцен, Парижский бассейн]. Размеры средние. Раковина массивная, умеренно удлиненная, с незначительным уплощением на концах и вогнутым уступом на заднем конце. Краевое ребро, субцентральный бугорок и продольные ребра замаскированы грубой крупной ячеисто-морщинистой скульптурой. Замок с насеченным желобком (валиком). Внутренний край и линия сращения совпадают. В передней краевой зоне 35—40 поровых каналов. 2 фронтальных и 4 аддукторных отпечатка. Около 10 видов. Палеоген, Западная Европа, СССР (Украния, Мангышлак) (рис. 300, 301).

Ногпівгоокейа Мооs, 1965 [пот. transl. Татвагеац, 1971 (ex Quadracythere (Hornibrookella) Мооs, 1965)] [Cythere anna Lienenklaus, 1894; верхний эоцен (?) — нижний олигоцен (латторф), Всстфалия, ФРГ]. Размеры средние. Раковина массивная, укороченная, с приконцевыми уплощениями и вогнутым уступом на заднем конце. Ребра валикообразные. Продольные спинное и брюшное ребра могут быть соединены вертикальной перемычкой близ заднеспинного угла или оканчиваются загнутыми к центру раковины утолщениями. Поверхность покрыта крупными полигональными ячейками со сглаженными гранями. Глазной бугорок крупный. Замок не насечен. Внутренний край и линия сращения совпадают. В передней краевой зоне около 40 поровых каналов. Верхний аддукторный отпечаток расщеплен на два равных; перед ними находятся 2 фронтальных отпечатка. Около 25 видов. Эоцен — ранний олигоцен, Западная Европа, СССР (Украина, Казахстан, Средняя Азия) (рис. 302, 303).

Martinicythere Bassiouni, 1969 (=Phalcocythere Siddiqui, 1971) [М. samalutensis samalutensis; верхний эоцен, Египет]. Раковина маленькая, округленно-прямоугольная, укороченная, с вогнутым уступом на заднем конце. Краевые и продольные ребра тонкие пластинчатые или представлены шипами. Субцентральный бугорок слабо выражен. Скульптура ячеисто-бугорчатая. Замок не насечен или с насеченным задним элементом. 2 фронтальных и 4 аддукторных отпечатка. 6—7 видов. Эоцен, Северная Африка, Западная Европа, СССР (Украина)

(табл. XXIII, рис. 304).

Мuellerina В assiouni, 1965 [Cythere latimarginata Speyer, 1863; верхний олигоцен, Северо-Германская низменность]. Размеры средние. Раковина массивная, удлиненная, задний конец закруглен. Концевые шипы не всегда присутствуют. Краевое ребро валикообразное; субцентральный бугорок и брюшное ребро хорошо выражены, иноггда имеются короткие срединное и спинное продольные ребра, которые могут быть соединены поперечной перемычкой. Скульптура полигональноячеистая; вдоль переднего ребра обычно имеется 6—7 крупных ячеек. Глазной бугорок неотчетливо выражен. Замок парамфидонтный. Внутренний край и линия сращения практически совпадают. В передней краевой зоне около 35 поровых каналов. Расположение отпечатков в центральном мускульном поле изменчиво: фронтальных — 2—3, аддукторных — 4; средние могут быть расщеплены. Около 30 видов. Палеоцен — ныне, Западная Европа, Северная Америка. В СССР: эоцен, Украина, Казахстан, Средняя Азия (рис. 305).

Robertsonites S w a i n, 1963 [Cythereis tuberculata S a r s, 1865 (= R. gubikensis S w a i n, 1963); современный вид, Северная Атлантика]. Размеры средние, приближающиеся к крупным. Раковина массивная, удлиненная, равномерно выпуклая; задний конец закруглен. Краевое ребро почти не развито. Имеются различно выраженное брюшное продольное ребро и субцентральный бугорок; спинное продольное ребро редуцировано до отдельных бугорков. Скульптура ячеистая; кроме того, на поверхности раковины имеются крупные бугорки. Поверхностные поры ситовидные. Замок голоамфидонтный, с насеченным желобком

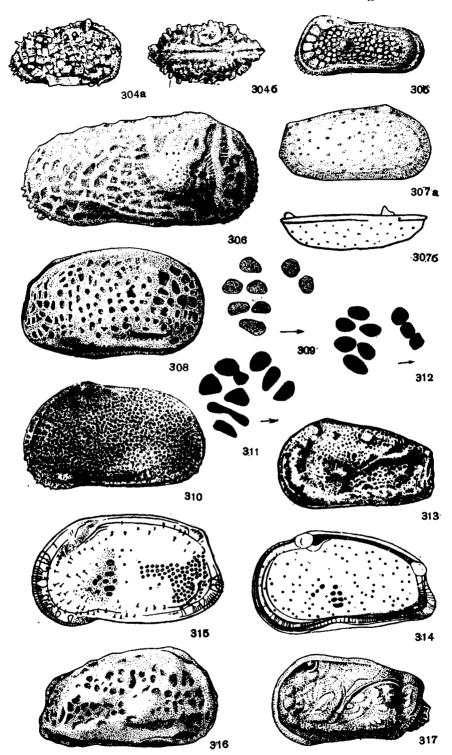


Рис. 304. Martinicythere samalutensis samalutensis Bassiouni, 1969. Раковина самки: a-c правой, b-c0 спинной стороны (×60). Верхний эоцен, Египет [82]. Рис. 305. Muellerina sp. Экз. № 12571/13. Раковина с левой стороны (×56). Средний эоцен, Ферганская котловина, алайский горизонт.

Рис. 306. *Robertsonites tuberculata (Sars, 1865). Правая створка самца с наружной стороны (×60). Современный вид, Северо-Западная Атлантика [120]. Рис. 307. *Normanicythere leioderma (Norman, 1869). Правая створка самца: а—с наружной, б—со спинной стороны (×42). Современный вид, прибрежье Шотландии [154].

Рис. 308, 309. *Hemicythere villosa (Sars, 1865). 308 — раковина с правой стороны (×80). Современный вид, Северо-Восточная Атлантика [175]; 309 — схема расположения центральных мускульных отпечатков (×300). Современный вид, прибре-

положения центральных мускульных отпечатков (хоо). Современный вид, приорежье Норвегии [185].

Рис. 310, 311. *Hemicytheria folliculosa (Reuss, 1850). 310 — левая створка самца с наружной стороны (х60); 311 — схема расположения центральных мускульных отпечатков (х200). Плиоцен, Чехословакия [185].

Рис. 312—314. *Elofsonella concinna (Jones, 1857). 312 — схема расположения центральных мускульных отпечатков (х210); 313 — левая створка самки с наружной стороны (х55). Современный вид, прол. Скагеррак; 314 — правая створка в просвечивающем свете (×62). Плейстоцен, Северо-Германская низменность [185]. Рис. 315. *Tyrrhenocythere amnicola (Sars, 1883). Левая створка с наружной стороны (×66). Современный вид, Тирренское море [175]. Рис. 316. Nereina angulata (Sars, 1865). Раковина самки с правой стороны (×60). Современный вид, Северо-Западная Атлантика [120]. Рис. 317. *Nereina barenzouensis Mandelstam, 1957. Левая створка с наружной стороны (×60). Современный вид, Северо-Западная Атлантика [120].

стороны (×64). Современный вид, Баренцево море [38].

(валиком). Внутренний край и линия сращения не совпадают; бесструктурная пластинка на переднем конце примерно равна по ширине порово-канальной зоне. В передней краевой зоне около 30 поровых каналов. 6-7 видов. Поздний миоцен — ныне, Северная Атлантика, Аляска, Приполярная область СССР, о. Сахалин (рис. 306).

CEMERICTBO HEMICYTHERIDAE Puri. 1953

Створки мало отличаются по размеру, охват выражен слабо. Раковина с наибольшей высотой, располагающейся близко к середине, брюшной край ориентирован примерно параллельно базальной линии. Задний конец с вогнутым уступом, ниже которого имеется каудальный выступ или удлинение, реже закруглен. Раковина равномерно умеренно- и слабовыпуклая. Концевые шипы отсутствуют или слабо выражены. Субцентральный бугорок имеется только у родов Elofsonella и Bajfinicythere. Из группы центральных продольных ребер в редких случаях может присутствовать только брюшное. Краевое ребро также развито очень редко. Скульптура может быть представлена различного размера ямками, ячейками, ребрами, вздутиями, реже поверхность гладкая. Поверхностные поры ситовидные. Глазной бугорок присутствует, но часто слабо выражен. Замок преимущественно голоамфидонтный с гладким желобком (валиком), реже гемиамфидонтный. Внутренние краевые структуры разнообразны; различаются первичная и вторичная зоны сращения, иногда при неполном сращении — несколько неровная линия сращения. Центральные мускульные отпечатки представлены 1-3 фронтальными и 4 замыкательными, которые у большинства групп расщеплены. Обычно обитатели небольших глубин нормально соленых бассейнов; ряд групп обитает в бассейнах со значительно пониженной соленостью. Эоцен — ныне. Включает подсемейства: Hemicytherinae и Orionininae Puri, 1974.

Подсемейство Hemicytherinae Ригі, 1953

Раковина умеренно удлиненная или укороченная. Поверхность гладкая, чаще покрыта различной величины ямками, ячейками и ребрами, образованными их стенками. Иногда наблюдаются крупные бугры или вздутия. Внутренний край и линия сращения могут не совпадать, но в этом случае бесструктурная пластинка узкая; порово-канальная зона обычно умеренно широкая. В передней краевой зоне от 30 до 100 и более поровых каналов. Аддукторные отпечатки отличаются устойчивой тенденцией к расщеплению. Эоцен — ныне, повсеместно. Включает трибы: Hemicytherini, Aurilini, Urocythereidini и роды, не объединяемые в трибы: Normanicythere, Nonurocythereis R u g g i e r i, 1980 (=?Dorukella R u g g i e r i, 1980), а также, возможно, Cuvillierina R o s s i de G a r c i a, 1972.

Normanicythere Neale, 1959 [Cythere leioderma Norman, 1869; современный вид, Шотландия]. Раковина средних размеров, умеренно удлиненная и чуть более выпуклая, чем другие представители подсемейства. Почти прямые края конвергируют к заднему концу, имеющему слабонаклоненный уступ. Близ брюшного края может присутствовать параллельное ему ребро. Поверхность гладкая. Замок голоамфидонтный, с крупными краевыми элементами и слабонасеченным желобком (валиком). Линия сращения и внутренний край не совпадают только в центральной части концов. В передней краевой зоне около 30 поровых каналов. З фронтальных и 4 аддукторных отпечатка, из которых зверхних расщеплены. З вида, в основном обитатели морских холодных вод. Плейстоцен — ныне, Север и Северо-Запад Америки, Север Евразии, СССР (Сахалин) (рис. 307).

Триба HEMICYTHERINI Puri, 1953

Размеры средние. Раковина округленно-прямоугольная или приближающаяся к округленно-квадратной, укороченной, с закругленным задним концом или имеющим уступ и каудальный отросток, слабовыпуклая. Иногда присутствует брюшное или переднее краевое ребро. Скульптура ямчатая. Замок геми- или голоамфидонтный, с гладким желобком (валиком), за исключением представителей рода Elofsonella. В передней краевой зоне от 40 до 100 поровых каналов. З фронтальных и 4 аддукторных отпечатка, из которых 3 верхних могут быть расщеплены. Миоцен — ныне.

Родовой состав. Ископаемые и современные: Hemicythere; Baffinicythere Hazel, 1967; Hemicytheria; Heterocythereis Elofson, 1941; Elofsonella; Nereina; Tyrrhenocythere. Современный род: Hemikrithe Van den Bold, 1950.

Нетісуthеге Sars, 1925 (=Auris Neviani, 1928 (pars), design. Могк hoven, 1962) [Cythereis villosa Sars, 1865, современный вид, Норвегия]. Раковина приближается к укороченной, задний конец чуть скошен и закруглен. Вдоль брюшного края иногда расположено тонкое ребро. Поверхность покрыта ямками или ячейками. Нормальные поры многочисленные, мелкие, ситовидные. Замок гемиамфидонтный, с насеченным задним элементом. Внутренний край и линия сращения не совпадают. В передней краевой зоне около 50 поровых каналов. 2 фронтальных отпечатка; характер расшепления аддукторных отпечатков может являться видовым признаком. У типового вида расшеплены верхние второй или второй и третий отпечатки. Около 120 видов в солоноватоводных и морских условиях или осадках. Плиоцен — ныне, повсеместно (рис. 308, 309).

Hemicytheria Pokorny, 1955 [Cypridina folliculosa Reuss, 1850; плиоцен, Венский бассейн]. Раковина приближается к укороченной. Передний конец несколько свисает ниже брюшного края. Задний конец в верхней части со слабонаклоненным уступом. Скульптура мелкоямчатая. Поверхностные поры многочисленные, мелкие, ситовидные. Внутренний край и линия сращения не совпадают. В передней краевой зоне не более 50—70 поровых каналов. З фронтальных отпечатка; характер расщепления аддукторных отпечатков различен. Около 20 видов

в осадках солоноватоводных и сильноопресненных бассейнов. Поздний

миоцен — плиоцен, Европа (рис. 310, 311).

Tyrrhenocythere Ruggieri, 1955 [Cythere amnicola Sars, 1888 (= T. pignatti Ruggieri, 1955); современный вид, Средиземное море]. Раковина умеренно удлиненная. Передний конец несколько свисает ниже брюшного края. Задний конец чуть скошен, в нижней части закруглен. Поверхность покрыта мелкими ямками. Внутренний край и линия сращения не совпадают, однако вестибюль не сплошной, а имест в верхней части небольшие сросшиеся участки, откуда лучами расходятся поровые каналы; в нижней части переднего конца линия сращения также неровная. В передней краевой зоне около 40 поровых каналов. З фронтальных отпечатка; второй верхний аддукторный расщеплен. Около 20 видов в современных водоемах с нормальной и пониженной соленостью, вплоть до пресных; в ископаемом состоянии — в осадках водоемов различных типов. Поздний миоцен — ныне, Европа. В СССР: плиоцен, Каспийская область (рис. 315).

Elofsonella Pokorny, 1955 (= Paracythereis Elofson, 1941) (=preoc. Paracythereis Delachaux, 1928), design. Howe, [Cythere concinna Jones, 1857; плейстоцен, Англия]. Раковина массивная, умеренно удлиненная, с почти прямыми краями, конвергирующими к заднему концу — почти прямому или со слабонаклоненным уступом. Развито утолщенное переднее краевое ребро, несколько смещенное к брюшному краю субцентральное вздутие и ряд беспорядочно расположенных чуть более мелких бугров; иногда присутствуют ребра. Поверхность покрыта ямками и ячейками различной величины, на фоне которых присутствуют более мелкие ячейки (орнаментация второго порядка). Поверхностные поры многочисленные, ситовидные. Замок голоамфидонтный с насеченным желобком (валиком). Внутренний край и линия сращения не совпадают, образуя небольшой вестибюль. В передней краевой зоне около 80 поровых каналов. З фронтальных и 4 аддукторных отпечатка, из которых 2 средних расщеплены. Около 10 видов. Поздний миоцен Сахалина; плейстоцен — ныне, Север Евразии, Аляска (рис. 312—314).

Nereina M and elstam, 1957 (=Finmarchinella S wain, 1963) [N. barenzovensis; современный вид, Баренцево море]. Раковина умеренно удлиненная. Спинной край слабо выгнут и наклонен к заднему концу. Присутствуют плоский субцентральный бугорок и уплощенное брюшно-боковое ребро. Поверхность морщинистая с крупными ямками. Глазной бугорок выражен. Замок меродонтный, необычен, так как представляет собой сохранившийся на взрослых стадиях личиночный этап. Он состоит из 3 отделов: насеченных на 5—6 частей — краевых и гладкого или насеченного — среднего. Внутренний край и линия сращения несколько не совпадают. Порово-канальная зона умеренной ширины; поровые каналы расширены в средней части; на переднем конце их 30—35. 3 фронтальных отпечатка, первый и второй верхние аддукторные отпечатки могут быть расщеплены; обитатели морских водоемов, немногочисленные виды. Четвертичный период — ныне, Северо-Атлантическая область (рис. 316—317).

Триба AURILINI Ригі, 1974

Раковина укороченная или приближающаяся к укороченной, с наибольшей высотой посередине. Задний конец с вогнутым уступом и небольшим каудальным отростком или удлинением ниже уступа. Брюшное продольное и краевое ребра отсутствуют. Края раковины часто утолщены и чуть уплощены. Поверхность гладкая или покрыта мелкими ямками, ячейками и ребрами, образованными их стенками. Некоторые роды характеризуются наличием мутных пятен. Замок преимущест-

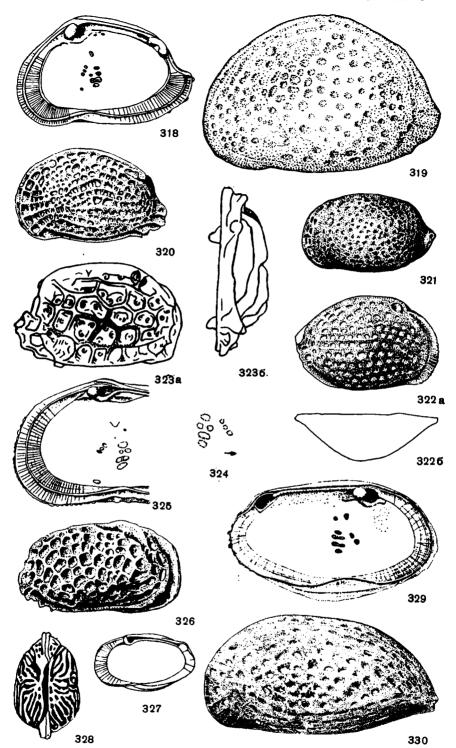


Рис. 318. Aurila punctata (v. Münster, 1830). Правая створка изнутри (×75). Плноцен, Франция [131].
Рис. 319. *Aurila convexa (Baird, 1850). Левая створка с наружной стороны (×97). Современный вид, прибрежье Португалии [122].

Рис. 320. *Pokornyella limbata (Во s q u e t, 1852). Левая створка с наружной стороны (×60). Нижний олигоцен, Парижский бассейн, стампий [131]. Рис. 321. *Anommatocythere microreticulata Sohn, 1959. Раковина с левой сто-

роны (×30). Нижний эоцен, Западный Пакистан [167].

Рис. 322. Anommatocythere ventricosa (Bosquet, 1852). Экз. № 10355/57. Правая створка: a-c наружной, b-c0 спинной стороны (×54). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 323. *Mutilus retiformis (Тегqиет, 1878). Правая створка самки: а — с на-

ружной, δ — со спинной стороны (\times 65). Плиоцен, Италия, калабрий [185]. Рис. 324. Mutilus dohrni (Uliczny, 1969). Схема расположения центральных мускульных отпечатков (\times 90). Плиоцен, Греция [122].

Рис. 325, 326. *Urocythereis favosa (Roemer, 1838). 325 — фрагмент правой створки изнутри (×75); 326 — правая створка с наружной стороны (×46). Плиоцен, Франция [131].
Рис. 327, 328. Leguminocythereis scarabaeus Howe et Law, 1936. 327 — левая

створка изнутри; 328 — закрытая раковина со спинной стороны (×40). Олигоцен, США

(Луизиана), свита Виксбург [126].

Рис. 329. Leguminocythereis striatopunctata (Roemer, 1838). Левая створка из-

нутри (×60). Средний эоцен, Бельгия [131].

Рис. 330. Leguminocythereis cribrosa (Chochlova, 1961). Левая створка с наружной стороны (×56). Верхний эоцен, Тургайский прогиб, саксаульская свита [66].

венно голоамфидонтный. Внутренний край и линия сращения не всегда совпадают. Ширина порово-канальной зоны различная. В передней краевой зоне 20-50 поровых каналов. 3 фронтальных и 4 аддукторных отпечатка, причем второй верхний может быть расщеплен. Эоцен — ныне.

Родовой состав. В эоцене: Anommatocythere. Ископаемые и современные: Mutilus; Pokornyella; Aurila; Urocythere Howe. Robustaurila Yajima, 1982. Возможно, также Graptocythere Ruggieri, 1972, и современный род Radimella Рокогпу, 1968.

Aurila Pokorny, 1955 (=Auris Neviani, 1928, part.) (=Cythereis Cythereis Scogsberg, 1928) (= Eucythereis Klie, 1940, design. Van Morkhoven, 1963) [Cythere convexa Baird, 1850; современный вид, Северное море]. Раковина средних размеров, округленно-треугольная; спинной край сильно выгнут, брюшной — прямой или слабо выгнут. Скульптура ямчатая и ячеистая. На фоне прозрачной раковины могут присутствовать мутные (опаловидные) пятна, расположение которых видоспецифично. Внутренний край и линия сращения не совпадают. Порово-канальная зона умеренной ширины. В передней краевой зоне около 50 поровых каналов. Более 210 видов. Миоцен ныне, Западная Европа, СССР (Западная Украина, Крымско-Кавказская область) (табл. XXIV, рис. 318, 319).

Anommatocythere Sohn, 1970 [A. microreticulata; нижний эоцен, Западный Пакистан]. Размеры средние и относительно крупные. Раковина массивная, скульптура ямчатая. На переднем конце 8—9 крупных ямок, разделенных радиально расположенными гранями. Иногда присутствует ямчато-ребристая скульптура, представленная тонкими валикообразными ребрами, между которыми находятся ямки или ячейки. Ребра могут располагаться параллельно краям и заднему концу раковины. Внутренний край и линия сращения не совпадают. В передней краевой зоне около 30 поровых каналов. Замок и мускульные отпечатки у типового вида не известны; у A. ventricosa (Bosquet) имеется 3 фронтальных и 4 аддукторных отпечатка. 5—8 видов. Эоцен, Западный Пакистан, Европа, СССР (Таджикская депрессия) (рис. 321—322).

Pokornyella Oertli, 1956 [Cythere limbata Bosquet, 1852; нижний олигоцен, Западная Европа]. Размеры средние. Края раковины утолщены, особенно в заднеспинной части. Поверхность покрыта маленькими и средней величины ямками. На переднем конце расположено 8-9 более крупных ямок, разделенных радиальными гранями. Вестибюль отсутствует. Порово-канальная зона узкая. В передней краевой зоне около 25—30 поровых каналов. Мускульные отпечатки центрального поля представлены тремя фронтальными и четырьмя нерасщепленными аддукторными. Многочисленные виды. Поздний эоцен — миоцен,

Западная Европа, СССР (Украина, Копетдаг) (рис. 320).

Mutilus Neviani, 1928 (=Climacoidea Puri, 1956, design. Van Morkhoven, 1963) [Cythere retiformis Terquem, 1878 = Cythereis (Mutilus) laticarinata Neviani, 1928, design. Ruggieri, 1956; плиоцен. Италия]. Раковина средних размеров, округленно-квадратная; края слабо выгнуты. Скульптура крупноячеистая с сильновыраженными продольными гранями. Поверхностные поры ситовидные, могут располагаться на куполовидных возвышениях. Сквозь раковину видны мутные пятна, расположение и форма которых видоспецифичны. Замок гемиамфидонтный с чуть раздвоенным задним элементом. Внутренний край и линия сращения совпадают; порово-канальная зона шире, чем у других представителей трибы. В передней краевой зоне около 50 поровых каналов. Около 120 видов. Миоцен — ныне, повсеместно (рис. 323, 324).

Триба UROCYTHEREIDINI Hartmann et Puri, 1974 [nom. transl. Liebau, 1975 (ex UROCYTHEREIDINAE Hartmann et Puri, 1974)]

Раковина массивная, умеренно удлиненная, округленно-прямоугольная; края почти параллельны; задний конец со слабовыраженным вогнутым уступом. Скульптура со сглаженными гранями, ямчато-ячеистая или продольно-ребристая. Замок голоамфидонтный. Порово-канальная зона умеренной ширины. В передней краевой зоне 70—100 и более поровых каналов. 2—3 фронтальных и 5—7 аддукторных отпечатков. Мноцеп — ныне.

Родовой состав: Urocythereis и Ambostracon Hazel, 1962.

Возможно также, Pachycaudites Uliczny, 1969.

Urocythereis Ruggieri, 1950 [Cytherina favosa Roemer, 1838; плиоцен, Италия]. Размеры средние. Скульптура ямчато-ячеистая, грани с подрытыми стенками. Нормальные поры ситовидные, располагаются на дне, реже стенках ячеек. Внутренний край и линия сращения совпадают. В передней краевой зоне около 70 поровых каналов. Наблюдается сильная изменчивость в характере расщепления аддукторных отпечатков, среди которых только верхний не расщеплен, остальные три даже у типового вида из различных горизонтов могут быть расщеплены по-разному. Около 40 видов. Миоцен — нынс. Западная Европа, Средиземноморье. В СССР: плиоплейстоцен, куяльницкие слои, Абхазия (рис. 325, 326).

CEMEMOTBO CAMPYLOCYTHERIDAE Puri, 1960 [nom. transl. Benson et Coleman, 1963 (ex CAMPYLOCYTHERIDAE Puri, 1960) (=LEGUMINOCYTHERIDAE Howe, 1961)]

Раковина удлиненно-овальная, с наибольшей высотой, расположенной ближе к середине, брюшным краем, ориентированным примерно параллельно базальной линии, низким, закругленным задним концом. Умеренно и равномерно выпуклая. Левая створка незначительно больше правой; охват в области переднеспинного угла. Концевые шипы не выражены. Субцентральный бугорок, краевые и продольные ребра отсутствуют. Поверхность гладкая или ямчатая, ячеистая. Поверхностные поры открытые и ситовидные. Глазное образование не всегда присутствует. Замок модифицированный амфидонтный и амфидонтный всех типов. Внутренний край и линия сращения обычно не совпадают. Порово-канальная зона умеренной ширины. Количество поровых каналов в

передней краевой зоне от 12 до 40. 2 фронтальных и 4 аддукторных отпечатка. Исключение составляют роды Reymentina с одним и Campylocythereis с 3 фронтальными отпечатками. Эоцен — ныне. Обычно обитатели нормально-соленых морских бассейнов, за исключением представителей родов Campylocythereis и Reymentia, способных переносить пониженную соленость лиманов и дельт. Палеоген — ныне, повсеместно.

Родовой состав. Ископаемые и современные: Campylocythere Edwards, 1944; Acuticythereis Edwards, 1944; Bensonocythere Hazel, 1967; Leguminocythereis; Proteoconcha Plusquellec et Sandberg, 1969; Triginglymus Blake, 1950. Возможно, также Thalmannia Le Roy, 1939, и Waiparacythereis Swanson, 1969. Современные роды: Campylocythereis Omatsola, 1971; Reymentia, Omatsola, 1970. Возможно также, Australimoosella Hartmann, 1979; Doratocythere McKenzie, 1967, и Mackencythere Malz et Ikeya, 1982.

Leguminocythereis Howe, 1936 [L. scarabaeus Howe et Law, 1936; олигоцен, США (Луизиана)]. Раковина средних размеров, сильновыпуклая, массивная. Слабовыгнутые, почти прямые края конвергируют к низкому, закругленному заднему концу. Поверхность покрыта крупными полигональными ячейками, с сильнее выраженными продольными гранями. Ячейки могут располагаться рядами, как бы расходящимися примерно от центра спинного края вдоль концов и брюшного края. Поверхностные поры простые. Окулярный синус присутствует. Замок голоамфидонтный, иногда с насеченным желобком (валиком). Внутренний край и линия сращения не всегда совпадают. Количество поровых каналов в передней краевой зоне у некоторых видов достигает 30. Около 120 видов. Эоцен — мноцен, Северная Америка, Европа, Казахстан (рис. 327—330).

Надсемейство CYTHERIDEIDACEA Sars, 1925 [nom. transl. Gründel et Kozur, 1975 (ex CYTHERIDEIDAE Sars, 1925)] [emend. Nikolaeva, nov.]

Раковина разнообразных овальных очертаний, без каудального отростка; обычно нерасчлененная, слабая поперечная борозда или крыловидные расширения имеются только у представителей семейства Speluncellidae. Левая створка, как правило, больше правой, но встречаются инверсионные группы. Крупные скульптурные образования редки. У групп, адаптирующихся в условиях пониженной солености, на раковине могут появляться полые изнутри «фенотипические» бугры. Поверхность гладкая или ямчатая, редко яченстая. Глазное образование на раковине проявляется редко; у некоторых современных групп глаза отсутствуют. Поверхностные поры главным образом ситовидные. Замок адонтный, лофодонтный, меродоптный, антомодонтный. Внутренняя пластинка умеренной ширины, могут присутствовать вестибюли, краевые поровые каналы прямые. В центральном мускульном поле присутствуют: ряд из 4 аддукторных (иногда расщепленных) отпечатков, единичный V- или U-образный фронтальный и мандибулярный отпечатки. Половой диморфизм, как правило, проявляется в различной высоте и выпуклости раковин самок и самцов; последние относительно ниже и менее выпуклы в задней части. Пермь — ныне. Обитатели водоемов всех типов. Включает 8 семейств. В верхнем палеозое — мезозое: Cytherideidae, Speluncellidae Schneider, 1960; Casachstanellidae Kozur, 1973. В мезозое — кайнозое: Schulerideidae, Cushmanideidae, Krithidae, Xestoleberididae. Кроме того, Neocytherideidae Puri, 1957, возможно, также род Microloxoconcha Нагітапп, 1953, неопределенной семейственной принадлежности.

CEMEЙCTBO CYTHERIDEIDAE Sars, 1925 [nom. transl. Sylvester-Bradley et Harding, 1953 (ex CYTHERIDEINAE Sars, 1925)] (incl. CLITHROCYTHERIDEINAE Mandelstam, 1960)

Раковина обычно сильно обызвествлена, прочная. Передний конец чаще более широко закруглен, чем задний. Спинной край прямой или слабо выгнут. Скульптура преимущественно ямчатая, реже отсутствует. Глазное образование на раковине не проявляется. Замок лофодонтный, меродонтный, энтомодонтный. Линия сращения обычно параллельна внутреннему краю. Краевые поровые каналы простые или разветвляющиеся; их число различно, при этом значительную долю могут составлять ложные. Аддукторные отпечатки, как правило, не расщеплены, фронтальных 1 или 2; мандибулярные хорошо выражены. Пермь — ныне. Основное развитие в мезозое и кайнозое. Обитатели водных водоемов различных типов. Включает 6 подсемейств. В верхнем палеозое — кайнозое: Cytherideinae. В мезозое: Galliacytherideinae A ndreev et Mandelstam, 1964, Palaeocytherideinae Mandelst a m, 1960. В мезозое — кайнозое: Cuneocytherinae M a n d e l s t a m, 1960; Habrocytherinae Gründel, 1978. В кайнозое: Perissocytherideinae Van den Bold, 1963. Современное подсемейство: Cobanocytherinae Schornikov, 1975. Кроме того, род Messinella Van den В о 1 d. 1969 (в олигоцене) неопределенной подсемейственной принадлежности.

Подсемейство Cytherideinae Sars, 1925

Раковина овальных очертаний. Охват различен. Концевые шипы обычно присутствуют. Поверхность преимущественно ямчатая, реже гладкая. Замок у некоторых групп лофодонтный, обычно меродонтный, иногда приближающийся к энтомодонтному. З трибы. В верхнем палеозое — кайнозое: Cyrnerideini. В мезозое: Dolocytherideini M and elstam, 1960; Pichottini Gründel et Kozur, 1975. Кроме того, род Egenacythere Ciampo. 1986 (в неогене).

Триба CYTHERIDEINI Sars, 1925

Раковина округленно-овальных, субтрапециевидных, субтреугольных и грушевидных очертаний, иногда со слабовыраженными закругленнотупыми кардинальными углами. Брюшной край ориентирован преимущественно параллельно базальной линии. Может присутствовать слабая поперечная депрессия в спинной части. Охват различен. Краевые и продольные ребра редки (только у представителей родов Ouachitaia. Sphenocytheridea). «Фенотипические» бугры и вздутия обычны для форм, обитающих в условиях с пониженной соленостью. Скульптура ямчатая, реже отсутствует. Замок меродонтный, реже энтомодонтного типа. Нижний и верхний бортики, ограничивающие пониженные элементы замка. могут быть различно развиты, чем обусловлено большое число разновидностей замков этих двух типов. Кайма обычно хорошо выражена. Зона сращения умеренной ширины. 4 аддукторных и V- или U-образные фронтальные отпечатки. Фулькральное пятно присутствует. Половой диморфизм в большинстве случаев, за исключением представителей Сурrideis и близких ему родов (см. описание), выражен в различных пропорциях раковин самцов и самок.

Замечание. Ввиду трудности систематизации здесь триба рассматривается в более полном объеме, чем это принято рядом исследователей, выделяющих трибы Cytherideini и Cyprideidini [Kollmann, 1960 г.; 147; Babinot, Colin, 1976 г.]. Как в мезозое, так и кайнозое между этими группами существует множество переходных форм, что, по-видимому, связано с высокой соленостной толерантностью их представителей. Сведения о филогении, основывающиеся на традиционных методах изучения, очень противоречивы. По-видимому, в данном случае систематизации этой группы может способствовать только привлечение методов изучения соленостных адаптаций. Обитатели морских солоноватоводных и пресноводных бассейнов. Пермь — ныне. Повсеместно.

Родовой состав. В палеозое (пермь): Bassleria Kellet, 1935. B mesosoe: Antibythocypris Jennings, 1936; Cophinia Apostolescu, 1961; Dactylia Apostolescu, 1961; Gobiocypris Khand, 1974; Escharacutheridea Brouwers et Hazel. 1978: Falcocuthere Gründel, 1978; Fossocytheridea Swain et Brown, 1964; Kalyptovalva Howe et Laurencich, 1958; Laevicytheridea Gründel, 1978; Nanacutheridea Gründel. 1978: Oncocutheridea Andreev. 1971: Pondoina Dingle, 1969; Rostrocytheridea Dingle, 1969; Sarlatina Babinot et Colin, 1976; Semicytheridea Mandelstam, 1956; Tetracytheridea Bate, 1963; Veenidea Deroo, 1966; Vernoniella Oertli, 1967 (= Palaeocytheridella Mandelstam, 1958). Преимущественно в мезозое: Bronsteiniana M andelstam, 1956. Возможно, также Netrocytheridea Howe et Laurencich, 1958. В мезозое — кайнозое: Нарlocytheridea; Ruttenella V an den Bold, 1946. В кайнозое: Aulocytheridea: Botulocyprideis Sheppard et Bate, 1980; Clithrocytheridea; Cocoaia Howe, 1971; Cyprideis; Cytheridea; Cyamocytheridea; Hemicytheridea Kingma, 1948; Hemicyprideis; Eucytheridea; Heterocyprideis, Kollmannella Krstich, 1970; Leocytheridea Keen, 1984; Miocyprideis; Nealecythere Purper et Pinto, 1983; Neocyprideis; Neocytheridea Rajagopalan, 1962; Otarocyprideis Sheppard et Bate, 1980; Ouachitaia Howe, 1971; Ovocytheridea; Peratocytheridea Hazel, 1983; Phractocytheridea Sutton et Williams, 1939; Pseudocytheridea; Sohnicythere Purper et Pinto, 1983; Sphenocytheridea Keij, 1958; Vetustocytheridea Apostolescu, 1961. Возможно, также Alieviella Gou, 1962.

Cytheridea Bosquet, 1852 [Cythere muellerii Münster, 1830, design Brady et Norman, 1889; верхний олигоцен, Северо-Германская низменность]. Размеры средние. Раковина с наибольшей высотой на переднем конце субтрапецендально-овальная со слабовыраженными кардинальными углами или округленно-треугольная, равномерно выпуклая, левоперекрывающая. Концевые шипы присутствуют. Скульптура ямчатая. Поверхностные поры многочисленные, мелкие, ситовидные. Замок энтомодонтного типа. Краевые отделы (понижения на левой и зубные площадки на правой створках) удлинены и тонко насечены. Средний отдел состоит из двух элементов. Передний элемент на левой створке образован зазубренным возвышающимся нижним бортиком замка, а задний ограничен сверху слабовозвышенным бортиком и представляет собой пониженный элемент замка.

Линия сращения иногда не полностью совпадает с внутренним краем. Краевые поровые каналы простые или разветвляющиеся, иногда расположены группами. Более 600 видов. Обитатели эпинеритовой зоны морских водоемов. Эоцен — ныне, Евразия (табл. XXV, рис. 331—334).

Cyprideis Jones, 1857 (=Anomocytheridea Stephenson, 1938; =Toscanella Molinari, 1962) [Candona torosa Jones, 1850; плейстоцен, Англия]. Размеры средние и средние, приближающиеся к крупным. Раковина округленно-прямоугольная (концы почти равны по высоте), сильновыпуклая в задней трети, иногда с намечающейся поперечной депрессией в верхней трети раковины. Охват не четко выражен. Полые бугры и вздутия присутствуют часто. Концевые шипы слабо развиты. Поверхность гладкая или мелкоямчатая. Поверхностные поры многочисленные, ситовидные. Замок энтомодонтного типа. Представлен на левой створке в переднем отделе сильноудлиненным желобком, в

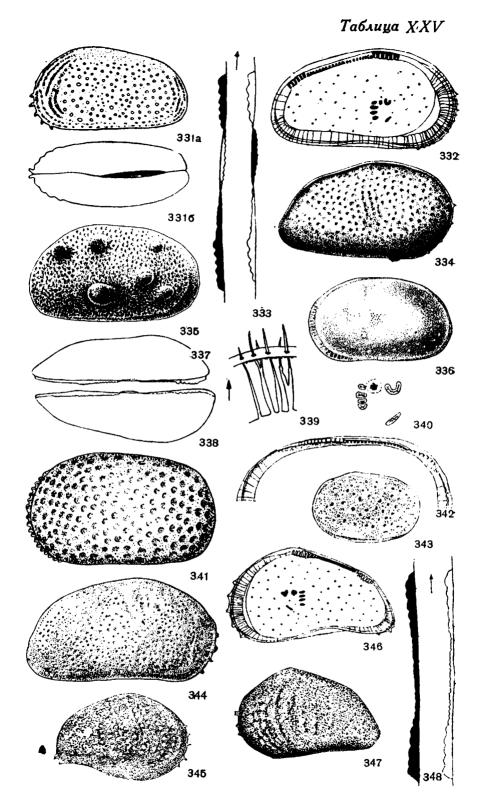


Рис. 331—333. *Cytheridea muellerii (v. Münster, 1830). 331 — раковина самца: a-c левой, b-c0 спинной стороны (\times 58) [103]; 332 — левая створка изнутри (\times 69); 333 — схема строения замка рода Cytheridea [185]. Все изображения из верхнего олигоцена Северо-Германской низменности.

Рис. 334. Cytheridea capitosa (Mandelstam, 1964). Экз. № 8485/24. Раковина

Рис. 334. Суднегідеа сардова (Мап delstam, 1904). Экз. № 8485/24. Раковина с правой стороны (×60). Средний эоцен, Тургайский прогиб.

Рис. 335—340. *Сургідеіз torosa (Јо п е s, 1850). 335—правая створка самца с наружной стороны (×50). Плейстоцен, Англия [78]; 336—экз. № 12571/5. Левая створка самки с наружной стороны (×47). Понт, Прикаспий; 337, 338—створки самки со спинной стороны: 337—правая, 338—левая (×55) [103]; 339—фрагмент передней краевой зоны правой створки [185]; 340—схема расположения центральных мускульных отпечатков (×115) [103]. Современный вид, Северо-Германская низменность. Рис. 341. *Miocyprideis janoscheki Kollmann, 1960. Левая створка с наружной

стороны (×55). Сармат, Закарпатье [12].

Рнс. 342. Neocyprideis williamsoniana (Bosquet, 1852). Схема строения замка

правой створки (×75). Олигоцен, Бельгия [131]. Рис. 343. *Neocyprideis durocortoriensis Apostolescu, 1956. Раковина с правой

стороны (×40), Верхний палеоцен, Парижский бассейн [77]. Рис. 344. *Hemicyprideis aucta Malz et Triebel, 1970. Правая створка с на-

ружной стороны (×50). Аквитан, Майнцский бассейн, ФРГ [147].
Рис. 345. Haplocytheridea asperocostata (Chochlova, 1960). Экз. № 8485/34.
Правая створка с наружной стороны (×50). Верхний эоцен, Тургайский прогиб, верхнечеганская подсвита.

 $P_{\rm HC}$, 346, 347. *Haplocytheridea montgomeryensis Howe et Chambers, 1935. 346— левая створка изнутри (\times 60) [185]; 347— левая створка самки с наружной стороны (×60) [124]. Оба изображения из верхнего эоцена США (Миссисипи).

Рис. 348. Схема строения замка рода Haplocytheridea [185].

среднем отделе — коротким тонконасеченным выступающим валиком, образованным нижним бортиком, далее — низким насеченным желобком, переходящим в короткий насеченный желобок заднего отдела. Линия сращения и внутренний край совпадают. Краевые поровые каналы расширяются в средней части, после чего некоторые из них раздваиваются; одно из этих ответвлений (так же, как и простые) проходят между наружным краем и каймой; второе выходит на поверхность створки за краем раковины. Половой диморфизм сильно выражен. Раковины самок с более высоким задним концом, относительно короче и шире в задней половине. Около 50 видов в различных бассейнах с широким диапазоном солености: от пресных вод до 80 %. Поздний олигоцен — ныне, повсеместно (рис. 335—340).

Miocyprideis Kollmann, 1960 [M. janoscheki; миоцен. Австрия]. Раковина средних размеров, округленно-прямоугольная, концы почти равны по высоте. Равномерно выпуклая. Левоперекрывающая; охват сильно выражен в приротовой области. Концевые шипы развиты. Скульптура крупнояченстая. Замок антимеродонтный. Порово-канальная зона умеренной ширины. Краевые поровые каналы прямые, многочисленные. Около 10 видов. Миоцен — ныне, повсеместно. В СССР: сармат Закарпатья (рис. 341).

Hemicyprideis Malz et Triebel, 1970 [Н. aucta; нижний миоцен, Майнцский бассейн, ФРГ]. Размеры средние и крупные. Раковина удлиненно-овальных, субтрапецеидальных и округленно-треугольных очертаний; передний конец выше заднего. Равномерно выпуклая, в верхней части передней трети намечается слабая депрессия. Охват выражен различно. Концевые шипы присутствуют, чаще на правой створке. Иногда имеются полые бугры и вздутия. Поверхность ямчатая, редко гладкая. Замок голомеродонтный. На левой створке в краевых отделах представлен насеченными примерно на 8 частей ямками без нижнего бортика; в среднем отделе — узкая насеченная бороздка, углубляющаяся по направлению к заднему концу. Вестибюли отсутствуют. Краевые поровые каналы расширенные, ампуловидно раздуваются в средней части, после чего разветвляются на 2-3 канала. На переднем конце до 40 поровых каналов. 8—10 видов в солоноватоводных и пресноводных отложениях олигоцена и миоцена Евразии; олигоцен Северной Америки (рис. 344).

Замечание. До установления рода Hemicyprideis принадлежащие ему виды различными авторами относились к родам Cytheridea, Cyprideis, Vetustocytheridea. В отечественной литературе наиболее распространено отнесение этих видов к группе Cytheridea muellerii, что нуждается в дальнейшем переопределении и более точной диагностике.

Neocyprideis A p o s t o l e s c u, 1956 (= Goerlichia K e i j, 1957) [Cyprideis (Neocyprideis) durocortoriensis; верхний палеоцен, Франция]. Размеры средние. Раковина округло-овальная, задний конец несколько выше переднего, сильновыпуклая, с намечающейся субцентральной депрессией у спинного края. Охват не выражен; левая створка с выступающим задним замочным ушком. Иногда присутствуют некрупные полые бугорки. Концевые шипы редки, фланж обычно развит. Поверхность гладкая или ямчатая. Замок антимеродонтный, левоваликовый. Передний отдел длинный (насечен на 12—15 частей), задний—короткий (5—6 частей). Средний отдел (валик — желобок) узкий, длинный, тонко насечен, более глубоко — в передней части. Внутренний край и линия сращения могут не совпадать. Краевые поровые каналы простые и ветвящиеся. Около 30 видов, преимущественно в солоноватоводных отложениях. Палеоцен — плиоцен, повсеместно. В СССР: средний эоцен, Казахстан (морские отложения) (рис. 342—343).

Нарlocytheridea Stephenson, 1936 [Cytheridea montgomeryensis Howe et Chambers, 1935; эоцен, США (Луизиана)]. Размеры средние. Раковина удлиненно-треугольных очертаний, с наибольшей высотой в передней трети; равномерно выпуклая. Охват не сильно выражен. Концевые шипы присутствуют. Скульптура ямчатая, с тенденцией к расположению вертикальными рядами. Замок меродонтный, правоваликовый; нижний бортик в краевых отделах левой створки присутствует. Внутренний край и линия сращения почти совпадают, образуя лишь незначительные вестибюли. На переднем конце 20—35 поровых каналов, обычно простых. Около 130 видов в эпинеритовых морских отложениях. Поздний мел — олигоцен, повсеместно (рис. 345—348).

Ovocytheridea G г е k o f f, 1951 [O. nuda; верхний мел (кампан), Камерун]. Размеры средние. Раковина овальных очертаний, равномерно выпуклая, левоперекрывающая. Поверхность гладкая. Замок антимеродонтный, левоваликовый, с хорошо развитыми нижними бортиками краевых отделов. Внутренний край и линия сращения совпадают. Порово-канальная зона умеренной ширины; поровые каналы простые, прямые (у типового вида — 18—20 на переднем конце). Около 20 видов в морских отложениях. Поздний мел, Африка. В СССР: эоцен — ранний олигоцен (?), Средняя Азия, Казахстан, Западная Сибирь (табл. XXVI, рис. 349, 350).

Суатосуtheridea Oertli, 1956 [Bairdia punctatella Bosquet, 1852; олигоцен, Франция]. Размеры от средних до крупных. Раковина овальных очертаний. Концы почти одинаково закруглены; концевые шипы слабо выражены. Поверхность от почти гладкой до грубоямчатой. Замок голомеродонтный, правоваликовый. Нижний бортик на левой створке хорошо выражен. Краевые отделы насечены на 6—7 частей, средний— на 12, в задней половине более глубоко. Линия сращения не совпадает с внутренним краем в центральной части переднего конца. Поровые каналы простые, иногда ветвящиеся (до 35 на переднем конце). Кайма несколько отодвинута от края раковины, особенно на правой створке. Около 45 видов в морских эпинеритовых отложениях. Палеоцен— миоцен, Евразия, Северная Америка. В СССР: эоцен— олигоцен, Украина, Казахстан; сармат Закарпатья (рис. 351—354).

Aulocytheridea Howe, 1951 [A. margodentata; верхний эоцен, США, (Флорида)]. Размеры маленькие и средние. Раковина укороченная, субтрапецендальных очертаний, с максимальной высотой в передней

трети и почти одинаково закругленными концами. Равномерно выпуклая. Охват не выражен. Скульптура ямчатая, яченстая, ямчато-ребристая, с тенденцией к концентрическому расположению скульптурных элементов по периферии. Замок антимеродонтный, левоваликовый, с внутренними бортиками в передних отделах левой створки. Внутренний край и линия сращения совпадают; на переднем конце 30—43 простых поровых каналов. Около 15 видов в морских отложениях. Палеоцен — эоцен, Северная Америка, Европа, Тургайский прогиб (рис. 355—357).

Clithrocytheridea Stephenson, 1936 [Cytheridea (?) garretti Howe et Chambers, 1935; эоцен, США (Алабама)]. Размеры средние. Раковина удлиненная, трапецеидальных или грушевидных очертаний; задний конец узко закруглен; равномерно выпуклая. Охват различен. Концевые шипы слабо выражены. Скульптура ямчатая, иногда ямки располагаются рядами. Замок антимеродонтный, левоваликовый, с нижними бортиками краевых отделов левой створки. Над валиком обычно имеется желобок, принимающий край правой створки. Линия сращения обычно совпадает с внутренним краем. Краевые поровые каналы простые. Около 30 видов в морских отложениях. Палеоцен эоцен, повсеместно (рис. 358—361).

Heterocyprideis Elofson, 1941 [Cythere (Cytheridea) sorbyana Jones, 1856; плейстоцен, Англия]. Размеры средние. Раковина грушевидных очертаний, сильновыпуклая, с шипами на переднем конце, на заднем конце—чаще только на правой створке. Поверхность грубоямчатая; стенки ямок образуют ребра и морщины, располагающиеся рядами вдоль свободного края. Замок антимеродонтный. Внутренний край и линия сращения не совпадают. Краевые поровые каналы прямые, простые, могут располагаться группами. Около 15 видов. Холодолюбивые морские формы. Плиоцен—ныне. Север Евразии, северные моря

(рис. 362, 363).

Pseudocytheridea S c h n e i d e r, 1949 [Cytheridea zalanyi S c h n e i d e r, 1939; тархан, Таманский п-ов]. Размеры средние. Раковина массивная, удлиненная, округленно-треугольных очертаний, с наибольшей высотой в передней трети. Спинной край прямой, брюшной в средней части параллелен базальной линии, далее приподнят к суженному заднему концу. Равномерно выпуклая, иногда с валикообразным утолшением близ заднего конца; без концевых шипов. Скульптура мелкои крупноямчатая. Замок палеомеродонтный, левоваликовый, передний отдел удлинен. Внутренний край и линия сращения не совпадают на переднем конце, образуя вестибюль, ограниченный серповидной бесструктурной пластинкой. Порово-канальная зона неширокая; поровые каналы прямые, простые (на переднем конце более 40). Различимы 4 аддукторных отпечатка. Около 5 видов в морских отложениях. Ранний миоцен, тархан, Кавказ; верхнебайгубекский подгоризонт, Северный Устюрт (табл. XXVII, рис. 364, 365).

Eucytheridea Bronstein, 1930 (=Sarsicytheridea Athersuch, 1982) [Cyprideis bairdii Sars, 1865 (design. Kollmann, 1960; = Cythere bradii Norman in Brady, 1865); современный вид, прибрежье Англии]. Размеры средние и средние, приближающиеся к крупным. Раковина удлиненно-овальная или субпрямоугольная, с наибольшей высотой в передней трети. Задний конец чуть уже закруглен; раковина равномерно выпуклая или чуть сжатая с боков, левоперекрывающая. Концевые шипы отсутствуют. Поверхность гладкая, мелко- или крупноямчатая. Поверхностные поры крупные. Замок антимеродонтный, левоваликовый, краевые элементы удлинены. Бесструктурная пластинка широкая. Зона сращения значительно уже на переднем конце и почти равна ей в центральной части заднего конца. Поровые каналы простые, прямые, кайма несколько отодвинута от края. Мускульные отпечатки

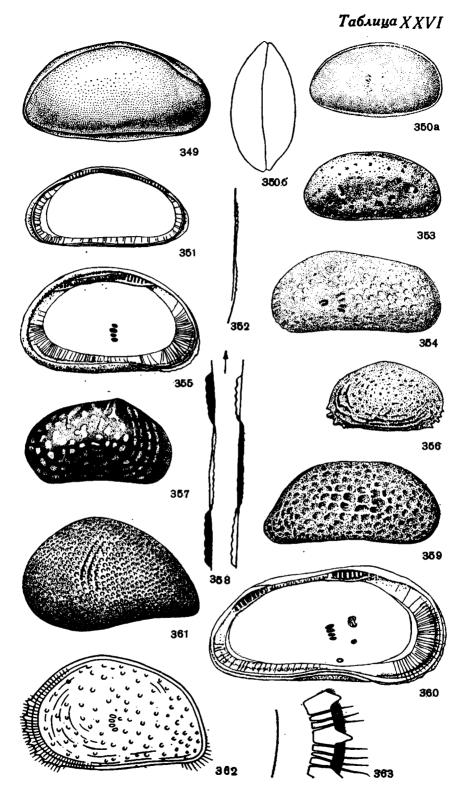


Рис. 349. *Ovocytheridea nuda Grekoff, 1951. Раковина самца с правой стороны (×60). Кампан, Камерун [175].
Рис. 350. Ovocytheridea meris (Мапdelstam, 1960). Экз. № 8485/36. Раковина:

Рис. 350. Ovocytheridea meris (Mandelstam, 1960). Экз. № 8485/36. Раковина: a-c правой, b-c0 спинной стороны (\times 50). Верхний эоцен, Тургайский прогиб, верхнечеганская подсвита.

Рис. 351—353. *Cyamocytheridea punctatella (Bosquet, 1852). 351—правая створка изнутри; 352—схема строения замка правой створки (оба ×70). Рупель, Бельгия [131]; 353— правая створка самца с наружной стороны (примерно ×58). Нижний олигоцен, Франция [156].

Рис. 354. Cyamocytheridea corrugata (Chochlova, 1961). Левая створка с наружной стороны (\times 52). Верхний эоцен, Тургайский прогиб, саксаульская свита [66].

Рис. 355. Autocytheridea punctatella Keij, 1957. Левая створка изнутри (×110). Средний эоцен, Бельгия [131].

Рис. 356. *Aulocytheridea margodentata Howe, 1951. Левая створка с наружной стороны (×50). Верхний эоцен, США (Флорида) [175].

Рис. 357. Aulocytheridea aphtosa Chochlova, 1964. Правая створка с наружной стороны (×78). Верхний эоцен, Тургайский прогиб, саксаульская свита [67].

Рис. 358. Схема строения замка рода Clithrocytheridea [185].

Рис. 359. *Clithrocytheridea garretti (Howe et Chambers, 1935). Правая створка самца с наружной стороны (\times 60). Эоцен, США (Миссисипи) [127].

Рис. 360. Clithrocytheridea lerichei Keij, 1957. Левая створка изнутри (×110). Эоцен, Франция [131].

Рис. 361. Clithrocytheridea innae Mandelstam, 1959. Экз. № 8485/27. Левая створка с наружной стороны (×50). Вёрхний эоцен, Тургайский прогиб, верхнечеганская подсвита.

Рис. 362, 363. *Heterocyprideis sorbyana (Jones, 1857). 362— раковина с левой стороны (×60). Современный вид, Северное море. 363— фрагмент передней краевой зоны левой створки (схема) [175].

типичны для трибы. Около 15 видов. Эвритермальны и эвригалинны. Олигоцен — ныне, Евразия. В СССР: олигоцен Крымско-Кавказской области и Казахстана (рис. 366, 367).

Подсемейство Cuneocytherinae Mandelstam, 1960

Раковина сильно обызвествлена, овальных очертаний, обычно левоперекрывающая с круговым охватом, сжатая с боков или уплощенная в области переднего конца. Спинной край дугообразно выгнут, брюшной ориентирован параллельно базальной линии. Концевые шипы отсутствуют. Поверхность ямчатая, ячеистая, реже гладкая. Глазное образование отсутствует. Замок адонтный, приближающийся к лофодонтному. Внутренний край и линия сращения обычно совпадают. Порово-канальная зона широкая на переднем конце; поровые каналы многочисленные, прямые или слабоизогнутые. Кайма хорошо развита. Обычно 4 аддукторных отпечатка и 1 V-образный фронтальный. Фулькральное пятно плохо различимо. Раковины самцов по сравнению с раковинами самок относительно ниже и уже. Мел — ныне; преимущественное развитие в палеогене, повсеместно.

Родовой состав. В мезозое: Dicrorygma Роад, 1962. В кайнозое: Cuneocythere; Monsmirabilia Apostolescu, 1955; Pakistanella Sohn, 1959; Paleomonsmirabilia Apostolescu, 1956.

Сипеосувнеге Lienenklaus, 1894 [С. truncata; верхний олигоцен, Вестфалня, Гессен, ФРГ]. Размеры маленькие. Раковина удлиненно-овальных очертаний; концы почти одинаково закруглены, передний чуть выше заднего; сжатая с боков. Скульптура крупноямчатая или ячеистая, иногда слившиеся грани ячеек образуют 1—2 ребра, параллельные концам. Поверхностные поры многочисленные, мелкие, ситовидные. Замок адонтного типа: на левой створке — это желобок с нижним бортиком, расширяющийся на концах, на правой — валик. Краевые поровые каналы слабоизогнутые, многочисленные (до 45 на переднем конце), расширяющиеся в дистальной части, иногда загнутые. Кайма хорошо выражена. Около 40 видов. Обитатели морских бассейнов. Эоцен — ныне, Европа. В СССР: олигоцен (рис. 368—371).

Таблица XXVII

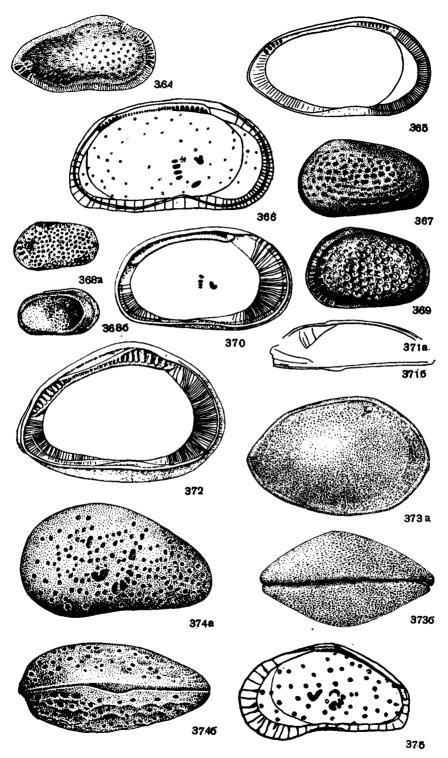


Рис. 364, 365. *Pseudocytheridea zalanyi Schneider, 1939. 364 — правая створка с наружной стороны (\times 52) [54]. 365 — экз. № 19/16. ВНИГРИ. Левая створка изпутри (\times 56). Оба изображения из миоцена, тархан. Таманский π -ов.

Рис. 366. *Eucytheridea bradii (Norman, 1865). Левая створка изнутри (×69).

Современный вид, Балтийское море [185].

Рис. 367. Eucytheridea reticulata Goerlich, 1953. Экз. № 12571/6. Левая створка с наружной стороны (×55). Верхний олигоцен, Северный Устюрт, нижнебайгубекский подгоризонт.

Рис. 368. *Cuneocythere truncata Lienenklaus, 1894. Левая створка: a— с на-

ружной стороны, б— изнутри (×49). Хатт, Гессен, ФРГ [151]. Рис. 369. Cuneocythere praesulcata_Lienenklaus, 1894. Экз. № 8485/13. Левая створка с наружной стороны (×74). Средний олигоцен, Северное Приаралье, ащеай-

рыкская свита. Рис. 370, 371. Cuneocythere marginata (Bosquet, 1852). 370 — левая створка самки изнутри; 371— замок правой створки: а— изнутри, б— со спинной стороны (×90). Рупель, Бельгия [131]).
Рис. 372. *Schuleridea (Aequacytheridea) perforata (Roemer, 1838). Левая створ-

ка изнутри (×75). Средний эоцен. Бельгия [131].

Puc. 373. Schuleridea (Aequacytheridea) gratusa Rozyeva, 1962. Экз. № 8485/22. Раковина: a-c правой, $\delta-c$ спинной стороны ($\times 56$). Верхний эоцен, Тургайский прогиб, верхнечеганская подсвита.

Рис. 374, 375. *Eucythere declivis (Norman, 1865). 374 — раковина: а — с левой, 6 — со спинной стороны (imes 130). Современный вид, Северная Атлантика [175]; 375 правая створка изнутри (×76). Голоцен, Нидерланды [185].

CEMEЙCTBO SCHULERIDEIDAE Mandelstam. 1959 [nom. transl. Bate, 1963 (ex SCHULERIDEINAE Mandelstam, 1959)]

Раковина сильно обызвествлена, субтреугольная или субовальная, обычно левоперекрывающая, часто с круговым охватом. Шипы на концах могут быть развиты. Поверхность гладкая или ямчатая, редко яченстая. Глазное пятно обычно присутствует. Замок меродонтный, часто с воспринимающим желобком, нижняя часть замка четко ограничена. Внутренняя пластинка относительно широкая, иногда с узкой свободной частью. Краевые поровые каналы многочисленные, прямые или изогнутые. В центральном мускульном поле различаются 4 замыкательных и 1 фронтальный отпечаток. Преимущественно морские формы. Юра — олигоцен. Возможно, миоцен.

Родовой состав. В мезозое: Apatocythere Triebel, 1940: Dordoniella Apostolescu, 1961; Eudechacythere Depeche et Guyader, 1970; Schulapacythere Malz, 1970; Paraschuleridea Swartz et Swain, 1946; Praeschuleridea Bate, 1963; Ristalina Colin et Grek of f, 1973. Возможно также, Mesocytheridea Bate, 1965, и Pirileberis Grekoff, 1963. В мезозое — кайнозое: Schuleridea.

Schuleridea Swartz et Swain, 1946 [S. acuminata; кимеридж, США (Луизнана)]. Размеры средние. Раковина субовальных и субтреугольных очертаний, с более узко, чем передний, закругленным задним концом, равномерно выпуклая, левоперекрывающая. Поверхность гладкая или ямчатая. Глазное пятно присутствует. Замок палеон голомеродонтный, правоваликовый. Внутренний край и линия сращения обычно совпадают, порово-канальная зона широкая на переднем конце, где число поровых каналов изменяется от 10-30 (у более древних) до 80—100 (у более поздних) представителей. Морские формы. Средняя юра — олигоцен, возможно, миоцен. Повсеместно. Включает подроды: Schuleridea (Schuleridea), S. (Eoschuleridea) В at e, 1967, в Me3030e H S. (Aequacytheridea), S. (Amphischuleridea) Kollmann, 1971, в кайнозое.

Подрод Schuleridea (Aequacytheridea) Mandelstam, 1947 [Cytherina perforata Roemer, 1838; олигоцен — миоцен, Северо-Германская низменность].

Размеры средние. Раковина округленно-треугольных или овальных очертаний, с наибольшей высотой в передней трети, при рассмотрении сверху — субромбоидальная. Шипы на концах иногда присутствуют.

Поверхность ямчатая, редко гладкая. Поверхностные поры многочисленные, ситовидные. Замок палео- и голомеродонтный; краевые отделы расширенные, насечены на 6—8 частей; средний отдел несколько сужен. Вестибюли отсутствуют. Краевые поровые каналы простые, прямые, многочисленные (60—80 на переднем конце). Кайма периферическая на правой створке и отодвинута от края на левой. Около 15 видов. Эпиконтинентальные морские отложения палеогена. Палеоген — миоцен (?), повсеместно (рис. 372—373).

СЕМЕЙСТВО EUCYTHERIDAE Puri, 1954

Раковина различно обызвествлена, с высоким передним концом и сильно суженным задним концом, с максимальной высотой в передней трети или ближе к середние длины раковины. Замочный край или его средняя часть прямые. Брюшной край ориентирован параллельно базальной линии. Левая створка, как правило, больше правой. Поверхность гладкая или ямчатая. Глазное пятно отсутствует. Замок лофодонтный, меродонтный. Внутренняя пластинка широкая на переднем конце, где может присутствовать вестибюль; краевые поровые каналы малочисленные, прямые, простые. В центральном мускульном поле 4 замыкательных и 1 крупный фронтальный отпечаток. Половой диморфизм проявляется в относительно большей удлиненности и меньшей выпуклости раковин самцов. Юра — ныне. Повсеместно.

Родовой состав. В мезозое: Phodeucythere Gründel, 1978. Возможно, также Aaleniella Plumhof, 1963; Arculicythere Grekoff, 1963; Eorotundracythere Bate, 1972. В мезозое — кайнозое: Eucythere.

Современный род: Rotundracythere M and elst am, 1961.

Eucythere Brady, 1868 [Cythere declivis Norman, 1865, современный вид, прибрежье Англии]. Размеры от маленьких до средних. Раковина округленно-прямоугольных очертаний, равномерно выпуклая, обычно без концевых шипов. Поверхность гладкая или ямчатая, редко мелкоячеистая. Поверхностные поры крупные, ситовидные. Замок анти-или гемимеродонтный, левоваликовый. Средний отдел составляет прямую часть замочного края, краевые элементы соединяются с ним под тупыми углами. Бесструктурная пластинка на переднем конце равна или чуть шире порово-канальной зоны. Фронтальный мускульный отпечаток иногда расщеплен на два. Фулькральное пятно хорошо выражено. Обитатели морских водоемов всех глубин. Около 95 видов. Мел — ныне, повсеместно (рис. 374—375).

CEMEЙСТВО CUSHMANIDEIDAE Puri, 1973 (in HARTMANN et Puri, 1974) incl. PONTOCYTHERINAE Mandelstam, 1960)

Раковина овальных очертаний, с закругленными концами, чаще левоперекрывающая. Поверхность гладкая, ямчатая, ячеистая. Глазное пятно отсутствует. Поверхностные поры у кайнозойских представителей обычно ситовидные. Замок адонтный, меродонтный, лофодонтный. Из мускульных отпечатков могут быть расщеплены только фронтальный или верхний замыкательный. Фулькральное пятно заметно. Обитатели бассейнов различной солености. Поздний мел — ныне.

Родовой состав. В мезозое: Metacyprideis Gründel, 1974. В кайнозое: Cryptocyprideis; Cushmanidea Blake, 1933; Paracyprideis; Pontocythere; Cytherissa. Возможно, также Australocytheridea McKenzie, 1967. Современный род: Microcytheridea Hartmann, 1968.

Pontocythere Dubowsky, 1939 (=Hemicytherideis Ruggieri, 1952; =Hulingsina Puri, 1958) [P. tchernjawskii; современный вид, Черное море]. Раковина средних размеров, удлиненная; со слабоарковидным спинным краем. Левая створка перекрывает правую по брюш-

ному краю. Поверхность гладкая, ямчатая, иногда ячеистая, возможна тонкая ребристость вдоль переднего конца и по брюшной стороне. Замок меродонтного типа; передний элемент удлинен, располагается в передней половине раковины, задний укорочен; средний и задний элементы могут быть насечены. На левой створке представлен длинным желобком переднего отдела (укрепленным снизу «противоскользящим» валиком), валиком среднего отдела и ямкой заднего отдела. Бесструктурная пластинка относительно широкая, без четко выраженного вестибюля. Поровые каналы многочисленные, прямые или сложно разветвляющиеся. Около 55 видов. Обитатели морских бассейнов эпинеритовой зоны. Эоцен — ныне, повсеместно. В СССР: эоцен, Украина; верхний эоцен, Тургайский прогиб; сакараул, чокрак, Крымско-Каспийская область (табл. XXVIII, рис. 376—380).

Paracyprideis Klie, 1929 [Cytheridea fennica Hirschmann, 1909; современный вид, Финский залив]. Размеры средние. Раковина удлиненно-овальных и округленно-треугольных очертаний, левоперекрывающая. Часто с шипом на заднем конце. Поверхность гладкая или ямчатая. Замок лофодонтный, левоваликовый. Внутренняя пластинка широкая на переднем конце и узкая вдоль брюшного края и на заднем конце. На переднем конце ее свободная часть образует большой вестибюль, на заднем — незначительный. Поровые каналы простые, прямые, немногочисленные. Фронтальный мускульный отпечаток может быть расщеплен на два; около 20 видов, обитатели морских мелководных и солоноватоводных бассейнов. Палеоцен — ныне, повсеместно. Многочисленные виды. В СССР: палеоцен — верхний миоцен южных районов; акчагыл — апшерон Крымско-Каспийской области (рис. 381—383).

Cryptocyprideis Karmischina, 1975 [Cythère bogatschovi Livental, 1929; верхний плиоцен, Азербайджан]. Раковина средних размеров, со слабонамечающейся депрессией у спинного края, округленнотрапецеидальных очертаний, левоперекрывающая. Скульптура ямчатобугорчатая. Замок лофодонтный, левоваликовый. Внутренний край и линия сращения совпадают; порово-канальная зона узкая, с прямыми малочисленными поровыми каналами. З вида. Плиоцен — плейстоцен,

Черноморско-Каспийская область (рис. 386).

Сytherissa S a г s, 1925 [Cythere lacustris S a г s, 1865; современный вид, Норвегия]. Раковина средних размеров, иногда со слабой депрессией в переднеспинной части, округленно-трапецеидального очертания, с приподнятым брюшным краем. Левая створка больше правой; возможно обратное соотношение. Концевые шипы отсутствуют. Часто присутствуют полые «фенотипические бугры». Поверхность ямчатая или яченстая. Замок лофодонтный. Внутренняя пластинка узкая; вестибюли незначительны. Поровые каналы прямые, простые, малочисленные. Около 40 видов, современные — обитатели глубокой части пресноводных озер, иногда солоноватоводных водоемов. Миоцен — ныне (рис. 384—385).

CEMEЙCTBO KRITHIDAE Mandelstam, 1958 [nom. transl. Hartmann et Puri, 1974 (ex KRITHINAE Mandelstam, 1958)]

Раковина преимущественно удлиненная, со скошенным задним концом, равномерно выпуклая, как правило, гладкая, без концевых шипов. Глаза у большинства родов отсутствуют. Поверхностные поры простые и ситовидные. Замок обычно простой или псевдодонтный. Внутренняя пластинка широкая. Линия сращения обычно не совпадает с внутренним краем, не параллельна ему и образует в центральной части переднего конца глубокий вестибюль. Поровые каналы немногочисленные, простые и разветвляющиеся. Исключительно морская группа. Мел — ныне.

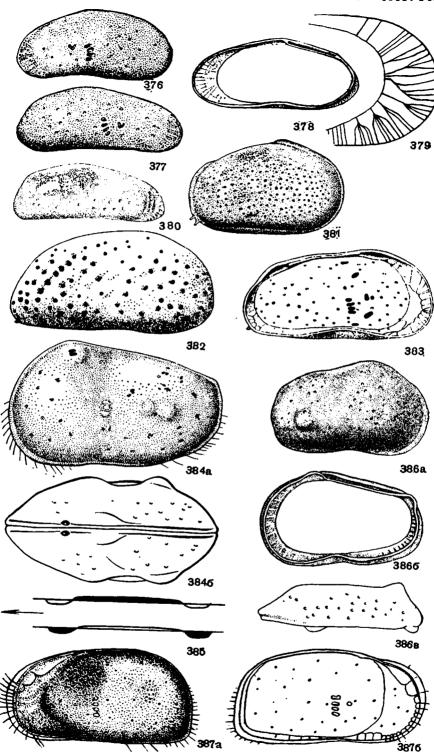


Рис. 376—379. *Pontocythere tçhernjawskii Dubowsky, 1939. 376—экз. № 12571/7, левая створка самки с наружной стороны; 377—экз. № 12571/8, правая створка самца с наружной стороны (все ×62). Схемы: 378—экз. № 12571/9, внутрен-

нее строение раковины (×62), 379— расположение поровых каналов на переднем кон-це правой створки (×155). Современный вид, Черное море, Ялтинский шельф. Рис. 380. Pontocythere lanceata Chochlova, 1961. Правая створка с наружной

стороны (×52). Верхний эоцен, Тургайский прогиб, саксаульская свита [66].

Рис. 381—383. Paracyprideis rarefistulosa Lienenklaus, 1905. 381—экз. № 12571/10, раковина с правой стороны (×63). Верхний олигоцен, Северное Приаралье, нижнебайгубекский подгоризонт; 382— правая створка самки с наружной стороны; 383—левая створка самца изнутри (оба ×75). Олигоцен, Бельгия [131]. Рис. 384, 385. *Cytherissa lacustris (Sars, 1865). 384— раковина самки: а—с ле

вой, δ — со спинной стороны (\times 64). Современный озерный вид, Норвегия [164]; 385 —

схема строения замка [185].

Pnc. 386. *Cryptocyprideis bogalschovi (Livental, 1929). Правая створка: a—c наружной стороны, δ — изнутри, δ — со спинной стороны (\times 94). Апшерон, Азербайд-

жан [1].
Рис. 387. *Krithe praetexta (Sars, 1865). Левая створка самки: а—с наружной

Родовой состав. В мезозое: возможно, Aenigma Z. Kuznets o v a, 1956. В мезозое — кайнозое: Krithe. В кайнозое: Thracella; Parakrithe Van den Bold, 1958. Возможно, также Turmaekrithe Pietrzeniuk, 1969, и Ommatokrithe Ahmad, 1977. Современные роды: Eukrithe Schornikov, 1975, и Parakrithella Hanai, 1959.

Krithe Brady, Crosskey et Robertson, 1874 [Ilyobates praetexta Sars, 1865; современный вид, прибрежье Норвегии]. Размеры средние. Раковина равномерно выпуклая, гладкая, удлиненноовальная, с субпараллельными краями и скошенным задним концом. Для многих видов характерно наличие вдавленности на заднем конце, ограниченной изнутри далеко отстоящей от края каймой. Глаза отсутствуют. Замок адонтный, с желобком на левой створке. На переднем конце присутствует карманообразный вестибюль, в области которого преимущественно сосредоточены немногочисленные краевые поровые каналы, прямые или разветвляющиеся. На заднем конце вестибюль небольшой или отсутствует. Мускульные отпечатки как верхние замыкательные, так и фронтальный могут быть расщеплены. Более 140 видов. Поздний мел — ныне, повсеместно (рис. 387; табл. ХХІХ, рис. 388—391).

Замечание. По данным Донзе, Пейпуке и других, размер и ширина вестибюля увеличиваются с уменьшением кислорода, растворен-

ного в воде [99].

Thracella Sonmez, 1963 (=Dentokrithe Khosla et Haskins, 1980) [T. apostolescui; средний эоцен, Турция]. Размеры средние. Раковина удлиненно-овальная, левая створка больше правой. Глазное пятно отсутствует. Замок псевдодонтный, с небольшим зубом в задней половине левой створки, разделяющим желобок на две неравные части. Передний вестибюль глубокий, карманообразный; на перднем конце 9— 12 простых, обычно прямых, иногда ветвящихся каналов. Мускульные отпечатки не расщеплены. Около 10 видов. Палеоген, Евразия; палеоген — неоген, Средиземноморье, Индия (рис. 392, 393).

СЕМЕЙСТВО XECTOLEBERIDIDAE Sars, 1928

Раковина различно обызвествлена, субовальная, с арковидным спинным краем и передним концом более низким, чем задний; задний конец иногда с каудальным отростком; сильновыпуклая, с максимальной шириной в брюшной части; брюшная сторона может быть уплощена. Левая створка обычно больше правой. Концевые шипы отсутствуют. Поверхность гладкая, реже ямчатая, яченстая. Глазное образование (в случае наличия глаза) на раковине представлено окулярным синусом. Для большинства представителей характерно присутствие кутикулярного («ксестолеберисового») полулунного пятна в переднеспинной

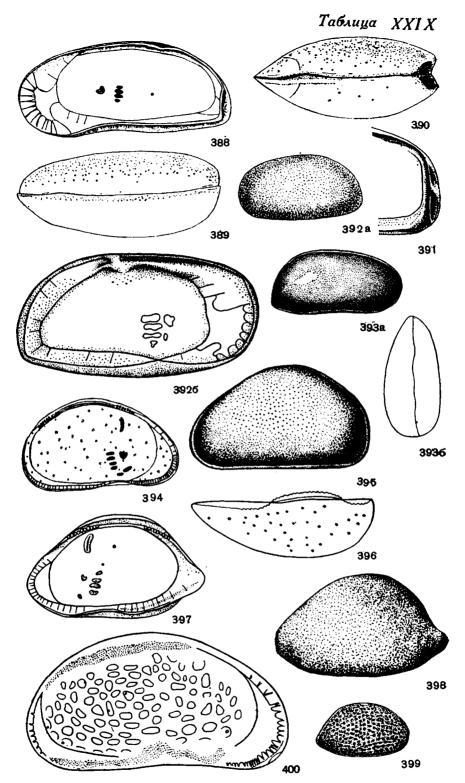


Рис. 388, 389. Krithe papillosa (Bosquet, 1852). 388— левая створка самца изнутри; 389— раковина самца со спинной стороны (оба $\times 90$). Миоцен, Аквитания [131].

[131].
Рис. 390. Krithe pernoides (Вогпетапп, 1855). Раковина со спинной стороны (×90). Рупель, Бельгия [131].

Рис. 391. Krithe praetexta (Sars, 1865). Фрагмент заднего конца правой створки

(×90). Современный вид, Северное море [102]. Рис. 392. *Thracella apostolescui S o n m e z, 1963. Левая створка: a— с наружной

стороны (×75), 6 — изнутри (×45). Средний эоцен, Турция [169]. Рис. 393. Thracella parellela (Urvanova, 1965). Экз. № 10355/108. Раковина: a-c правой, b-c0 спинной стороны ($\times 54$). Нижний эоцен, Крым, Бахчисарай, бахчисарайский горизонт.

Рис. 394—396. *Xestoleberis auranta (В a i r d, 1838). 394— левая створка изнутри (×86). Голоцен, Нидерланды [185]; 395— раковина самки с левой стороны (×100). Современный вид, прибрежье Норвегии [175]; 396— левая створка со спинной сторо-

ны (×100). Современный вид, прибрежье Калифорнии [175].
Рис. 397, 398. *Uroleberis parnensis (Ароstolescu, 1955). 397— правая створка изнутри (×90); 398— раковина с левой стороны (×80). Лютет, Парижский бас-

сейн [175].

Рис. 399. Uroleberis mazoviensis Szczechura, 1965. Экз. № 10355/104. Раковина с правой стороны (×54). Нижний палеоцен, Крым, Бахчисарай, инкерманский

Рис. 400. *Pontoleberis pontica (Stancheva, 1965). Правая створка с наружной стороны (×125). Понт, Болгария [137].

части створок. Замок лофодонтный или меродонтный, вестибюли имеются. Краевые поровые каналы многочисленные, простые и разветвляющиеся. Обычно 4 замыкательных (каждый из которых иногда может быть расщеплен на два) и 1-2 фронтальных муксульных отпечатка. Раковины самцов по сравнению с раковинами самок относительно ниже, менее уплощены в брюшной части, с менее тупым задним концом. Обитатели морских бассейнов. Поздний мел — ныне.

Родовой состав. В мезозое — кайнозое: Xestoleberis. В кайно-30e: Koilocythere Deltel, 1963; Microxestoleberis G. Müller, 1894; Pontoleberis: Uroleberis. Современные роды: Linocheles Brady, 1907; Semixestoleberis Hartmann, 1962. Возможно, Aspidoconcha De Vos, 1953.

Xestoleberis Sars, 1865 [Cythere auranta Baird, 1838; современный вид, Англия]. Размеры средние. Раковина тонкостенная, округленно-треугольных очертаний, концы закруглены. Сильновыпуклая (яйцевидная). Наибольший охват в ротовой области. Поверхность гладкая, могут просвечивать мутные пятна. Поверхностные поры ситовидные и, возможно, простые. Окулярный синус выражен. Замок антимеродонтный. левоваликовый. Краевые части среднего отдела могут быть насечены. Бесструктурная пластинка шире зоны сращения на концах; в ротовой области линия сращения и внутренний край совпадают. На переднем конце 12-20 поровых каналов, простых или разветвляющихся. Более 300 видов. Эврибатиальные формы; некоторые виды способны переносить колебания солености. Поздний мел — ныне, повсеместно (рис. 394—396).

Uroleberis Triebel, 1958 [Eocytheropteron parnensis Apostolescu, 1955; эоцен, Франция]. Размеры маленькие и средние. Раковина с сильновыгнутым спинным краем и коротким каудальным отростком в нижней половине заднего конца. Левая створка выше правой; правая перекрывает левую по брюшному краю. Поверхность гладкая или ямчатая. Окулярный синус и кутикулярное пятно хорошо выражены. Замок гемимеродонтный правоваликовый; имеется воспринимающий желобок на левой створке. Внутренний край и линия сращения не совпадают только в центральной части переднего конца, где имеется значительный вестибюль и порово-канальная зона чуть уже свободной пластинки. На переднем конце до 30 (в том числе ложных) простых, прямых поровых каналов. Около 30 видов. Палеоцен — эоцен, Европа. Ныне: Тихоокеанская область. В СССР: палеоцен — эоцен, Крымско-Кавказская область (рис. 397, 399).

Pontoleberis Krstich et Stancheva, 1967 [Xestoleberis pontica Stancheva, 1965; верхний миоцен— нижний плиоцен, Болгария]. Размеры маленькие и средние. Раковина неправильно-овальных очертаний, удлиненная. Передний конец незначительно выше заднего. Скульптура ячеистая. Кутикулярное пятно хорошо выражено. Замок антимеродонтный, левоваликовый. Замочный край среднего отдела почти прямой, краевые отделы соединяются с ним под тупыми углами. Бесструктурная пластинка на концах примерно равна по ширине порово-канальной зоне. На переднем конце более 20 прямых простых и разветвляющихся поровых каналов. 2 вида. Миоцен— плиоцен, Болгария, Югославия. В СССР: Крымско-Кавказская область (рис. 400).

Примечание. Изображения, приведенные в табл. I—XXIX, уменьшены примерно в 1,12 раза.

IV. ГЕОЛОГИЧЕСКАЯ ЧАСТЬ

IV.I. РАЗВИТИЕ ОСТРАКОД В КАЙНОЗОЙСКУЮ ЭРУ

В кайнозойскую эру существуют представители пяти отрядов остракод — Myodocopida, Cladocopida, Platycopida, Metacopida и Podocopida. Представители первых четырех отрядов составляют не более 5 % всей кайнозойской фауны остракод, основная же ее часть приходится на долю представителей отряда Podocopida. Все пять отрядов существуют с палеозоя. Первые представители подокопид появились в ордовике — силуре, но интенсивное развитие отряда началось в мезозое. Имеется ряд доказательств того, что отряд в целом не утратил эволюционной активности и в кайнозойскую эру. Развитие отдельных подотрядов, входящих в состав подокопид, происходило различными путями. Наиболее древние его представители, морские, относятся к подотряду Ваігдіосоріпа и известны с ордовика — силура; основное развитие подотряда происходило в палеозое. Постпалеозойские группы отличаются значительной консервативностью.

Сургіdосоріпа известны в составе морских комплексов с девона, но взрыв эволюционной активности подотряда связан с его массовым проникновением в континентальные водоемы с неоднородной средой обитания. По данным Неуструевой [1987 г.], массовая перестройка сообществ пресноводных остракод, приведшая к господству ципридокопин в современных континентальных водоемах, произошла на рубеже юрского и мелового периодов.

В составе подотряда Cytherocopina присутствуют надсемейства Bythocytheracea, Permianacea, Cytheracea, Trachyleberidacea, Cytherideidacea, т. е. как типично морские группы, так и группы, которые могут существовать в континентальных водоемах, а также совершенно особая группа, приспособленная к существованию в наземных условиях (надсемейство Terrestricytheracea). Последняя группа в ископаемом состоянии не встречена.

По существующим в настоящее время представлениям, развитие подотряда Cytherocopina происходило в нескольких независимых направлениях. Наиболее древней и обособленной группой являются битоцитерацеи, известные с силура и представленные исключительно морскими формами.

В составе кайнозойских комплексов остракод битоцитерацеи занимают незначительное место. Происхождение надсемейства Грюндель и Коцур [115] связывают с трикорниацеями. Происхождение других надсемейств подотряда менее определенно. Среди них присутствуют Регтіапасеа, надсемейство континентальных остракод, появившееся в позднем палеозое и прекратившее свое существование в ранней юре, а также ряд других групп континентальных остракод карбона и перми.

Наиболее обильные в мезозое и кайнозое Cytheracea, Trachyleberidacea и Cytherideidacea не имеют отчетливых корней. Следует признать, что о происхождении этих надсемейств в настоящее время не известно ничего определенного.

Неоспоримо только, что мезозойская вспышка эволюции цитерокопин связана именно с этими надсемействами. По данным Ватли и Сте-

фенса [Whatley, Stephens, 1976 г.], первая вспышка эволюционной активности группы отмечена в средней юре. В течение второй половины мезозоя уровень эволюционной активности изменялся несколько раз, но к концу мезозойской эры (в кампане и маастрихте) достиг своего наивысшего проявления. К этому времени сформировались и большая часть семейств, составляющих кайнозойскую фауну остракод. На рубеже мезозоя и кайнозоя или в начале кайнозоя заканчивают свое существование (или интенсивное развитие) несколько семейств цитерокопин (Progonocytheridae, Veeniidae) и 1 семейство ципридокопин (Сургіdeidae). Впервые появляются в кайнозое такие семейства трахилеберидацей, как Сатруюсуtheridae и Hemicytheridae, а также продолжают интенсивное развитие появившиеся в конце мелового периода представители этого же надсемейства — Thaerocytheridae и Cytherettidae.

Судя по числу родов и видов, это надсемейство отличалось в кайнозое максимальной эволюционной активностью в пределах его распространения в морских бассейнах. Во внутриконтинентальных полузамкнутых и замкнутых водоемах оно уступает некоторым цитерокопинам из надсемейства Cytherideidacea, отличающимся повышенной способностью к осморегуляции, и ципридокопинам, занявшим господствующее положение в этих водоемах уже с мелового периода. Однако следует сказать, что в кайнозое возникновение новых семейств отличается только в составе надсемейства трахилеберидацей. Для большинства других групп кайнозойских остракод, так же как и для основной массы трахилеберидацей, наиболее существенные перестройки сообществ выражаются в изменении таксономического состава на подсемейственном и родовом уровнях.

Наиболее заметные перестройки в составе морской фауны отмечаются на рубежах мела и палеогена, палеоцена и эоцена, эоцена и олигоцена, палеогена и неогена; в составе континентальных остракод — в начале мноцена и плиоцена.

Антропогеновый этап в континентальных областях отличается в основном сменой видового состава остракод, а в областях распространения морских фаций — появлением ряда новых родов.

Современные ассоциации остракод в морских бассейнах характеризуются наличием значительного числа семейств, подсемейств и родов остракод, не известных в ископаемом состоянии, однако оценить это явление как результат эволюционной активности именно данного отрезка времени достаточно трудно, поскольку многие из этих форм представляют собой очень хрупкие организмы, исключающие их сохранность в качестве ископаемых.

Как уже отмечалось, остракоды, распространенные в кайнозойских отложениях на территории СССР, неравномерно изучены. Более полно изучены остракоды кайнозоя европейской части СССР, Средней Азии, Казахстана и Западной Сибири, и среди них в первую очередь — остракоды морских палеогеновых отложений и неогеновые остракоды области Паратетис, а также четвертичные остракоды упомянутых областей, Башкирского Предуралья и приполярных районов. На основании имеющихся материалов по этим регионам развитие остракод в кайнозойскую эру на территории СССР может быть представлено следующим образом.

История развития остракодовых сообществ в кайнозое в значительной мере предопределена особенностями палеогеографических условий.

По своему происхождению морские остракоды рассматриваемых территорий связаны с остракодами Атлантической и в значительно меньшей степени Тетической биогеографических областей.

Остракоды палеогена. В ранне- и среднепалеогеновую эпоху четко определяются два типа фауны остракод: мелководный и глубоководный. К мелководному типу относятся остракоды эпинеритовой зоны,

к глубоководному — ассоциации остракод батиальной зоны и более значительных глубин.

Долгое время общепризнанными свойствами глубоководных остракод считались тонкостенность раковины и отсутствие скульптуры. Работы Бенсона, в течение ряда лет изучавшего современные и ископаемые остракоды Мирового океана, существенно изменили эти представления [85—88]. На основании исследований Бенсона подтвердилось существование глубоководной фауны остракод как специализированного экологического типа с определенным, довольно ограниченным набором таксонов. По данным Бенсона, обязательными компонентами глубоководной фауны являются эврибионтные представители гладкостенных групп из родов Argilloecia, Abyssocypis, Bairdia, Bythocypris, Cytherella, Krithe, однако определяют облик глубоководной фауны специализированные группы трахилеберидацей с тонкой, но сильно укрепленной ретикуляцией раковиной, без глазного устройства, или «вторично слепые», по терминологии Либау [Liebau, 1980 г.].

Появление глубоководных остракод связано с адаптацией шельфовой фауны в более глубоководных условиях. По времени оно относится к кампану и маастрихту. Наиболее древние комплексы встречены в Южной Атлантике (по данным глубоководного бурения) и в Южном Средиземноморье. В течение палеогена происходило расселение этой фауны в Карибский бассейн, Северное Средиземноморье и Альпийскую область. На территории СССР эта фауна известна на Северном Кавказе и в меньшей степени — в Западной Туркмении.

Бенсоном были установлены новые роды глубоководных остракод: Agrenocythere, Atlanticythere, Poseidonamicus, Abyssocythere, Paleoabyssocythere. Последние 2 рода отнесены в настоящей работе к новому подсемейству Paleoabyssocytherinae, объединившему несколько родов более древнего происхождения и роды, стабилизировавшиеся в кайнозое в глубоководных условиях. Наиболее устойчивой областью обитания глубоководных остракод в палеогене Юга СССР являлся Северный Кавказ. В раннем палеоцене и эоцене здесь присутствуют достаточно обильные, но однообразные в родовом отношении комплексы остракод, с преобладанием «слепых» групп: цитереллидацей, бердиацей, ципридидацей. Из надсемейства цитерацей наиболее обычны критииды и трахилеберидацеи, лишенные глазных образований, т. е. роды Paleoabyssocythere, Phacorhabdotus, Trachyleberidea, Agrenocythere.

В течение палеоцена и большей части среднего эоцена родовой состав остракод Северо-Кавказского бассейна изменялся мало. Наиболее существенным событием этого времени явилось появление в раннем эоцене представителей рода Agrenocythere, сменивших род Oertliella и отличающихся от последнего редукцией глазного устройства, связанной с адаптацией в глубоководных условиях.

Pod Oertliella существует от турона до раннего палеогена и отмечается различными авторами в Тетической и Северо-Атлантической областях.

Первое появление Agrenocythere отмечается в раннем эоцене Карибского бассейна и Средиземноморской области. В раннем эоцене представители этого рода встречены также на Северном Кавказе и в Западной Туркмении; в среднем эоцене они распространены по всей территории юга европейской части СССР и в Западном Приуралье. Появление Agrenocythere в раннем эоцене Северо-Кавказской области, по-видимому, связано с углублением бассейна, причем углубление фиксируется после фазы Globorotaria aequa.

В Крымской области родовой состав палеоценовых остракод характеризует неглубокий бассейн. В раннем эоцене, начале ипрского века, еще продолжает свое существование род *Oertliella*. Наиболее поздним временем его распространения является фаза Discoaster lodoensis, уста-

навливаемая по нанопланктону. По сравнению с глубинами бассейна в палеоцене и начале эоцена в Крыму среднеэоценовый бассейн начала бартонского века представляется более углубленным. В куберлинское время в Крыму появляются первые представители рода Agrenocythere. Наряду с этим в ассоциациях остракод увеличивается роль гладкостенных форм при общем сокращении таксономического разнообразия.

В позднем эоцене, в приабонское время, в пределах всей Крымско-Северо-Кавказской области обитает однородный комплекс остракод. Этот комплекс по сравнению со среднеэоценовыми является более мелководным, однако по сравнению с палеоценовыми комплексами в Крыму он может считаться более глубоководным. Из олигоцена представители глубоководных групп остракод на территории СССР не известны.

Остракоды раннего палеогена Украины, Арало-Тургайской области, Восточного Устюрта, Восточной и Южной Туркмении, Таджикистана и Ферганы представлены эпинеритовыми комплексами. Интересно проследить становление глубоководного и эпинеритового типов остракодовой фауны в начале палеогенового периода. В области распространения глубоководных отложений на Северном Кавказе начало палеогена было отмечено массовым вселением глубоководных групп остракод и относительным обогащением комплекса по сравнению с позднемаастрихтскими.

В противоположность этому в областях распространения эпинеритовых комплексов рубеж мезозоя и кайнозоя проявился в существенном обеднении палеогеновых ассоциаций остракод.

Помимо упоминавшихся выше семейств Progonocytheridae и Veenidae прекращает свое существование ряд групп: границу маастрихт — датский ярус не переходят представители рода Cuneoceratina (Bythocytheridae). В начале датского века исчезают представители рода Orthonotacythere, происходит ряд изменений в составе трахилеберидацей. В палеогене не отмечены представители подсемейства Mandocytherinae, начинают интенсивное развитие подсемейства Echinocytherideinae, Pterygocytherideinae и семейство Thaerocytheridae.

Более подробно граница мела и палеогена охарактеризована в работе Николаевой [1980 г.]. Для палеоцена характерно существование родов Opimocythere и Paracytheretta.

Дифференциация палеогеографических условий обусловила различия и в составе эпинеритового типа комплексов остракод. Так, для Украины характерно преобладание в составах комплексов представителей семейства Thaerocytheridae, для Арало-Тургайской области, Туркмении и Средней Азии доминирующей группой являются представители Echinocytherideinae.

Наибольшая разобщенность комплексов наблюдается в эоцене, проявляясь наиболее отчетливо между западными и среднеазиатским регионами территории СССР. Для эоценовых комплексов территории Украины характерно присутствие родов Leguminocythereis, Krithe, Argilloecia и значительного количества бердиацей. В Среднеазиатском регионе в эоцене представители этих родов отсутствуют. В пределах Восточного Устюрта и в центральных районах Туркмении можно наблюдать смешанные типы этой фауны, но значительное место занимают здесь представители Cytherideidacea.

Для конца позднего эоцена характерно существование нескольких разнотипных комплексов остракод, сопоставление которых возможно благодаря прослеживанию этапов развития рода *Echinocythereis* и ряда видов-космополитов.

В развитии остракод в конце эоцена и начале олигоцена прослеживается отчетливый рубеж. Он повсеместно проявляется в исчезновении многих существовавших на протяжении палеоцена и всего эоцена

групп остракод. Судя по данным Бенсона, в океанических отложениях это исчезновение имеет постепенный характер.

В эпиконтинентальных отложениях перестройка комплексов остракод проявляется более резко. Исчезают представители родов Argilloecia, Acanthocythereis , Trachyleberidea, Hezelina, Eopaijenborchella. Эта граница соответствует кровле латторфского и приабонского ярусов Западной Европы и белоглинского, чеганского и сумсарского горизонтов Крымско-Кавказской, Арало-Тургайской и Среднеазиатской областей. Комплексы остракод перечисленных ярусов дифференцированы по площади.

Более молодая фауна остракод характеризуется обедненным систематическим составом; повсеместно исчезают реликты глубоководноэврибатиальной морской фауны; появляются представители родов, способных переносить понижение солености. К последним относятся в первую очередь представители семейства Cytherideidae.

С началом олигоцена связано возникновение бассейна Паратетис,

распространившегося на обширную территорию Юга СССР.

Состав раннеолигоценовой ассоциации остракод представляет собой тип сообщества, в котором сочетаются элементы унаследованной мелководной морской фауны (роды Echinocythereis, Megahemicythere, Pterygocythereis) с фауной, возникшей в условиях с пониженной соленостью (роды Disopontocypris, Eucytheridea, Moenocypris). Этот комплекс характеризуется однородностью таксономического состава при массовом распространении отдельных видов.

Восстановление условий, близких к нормально-морским, относится к позднему олигоцену (хаттскому времени) и фиксируется изменением комплекса остракод, в составе которого вновь появляются представители битоцитерацей, бердиокопины, цитереллацеи и другие морские группы. Последним морским комплексом на территории Юга СССР являются остракоды кавказского региояруса, известные только в Северной Туркмении и Ставрополье как комплекс остракод ольгинской свиты.

Остракоды неогена². В составе неогеновых остракод области Паратетис присутствуют 3 основные группы различного экологического происхождения: морские, солоноватоводные и пресноводные. К первой группе относятся роды, представители которых жили, а часто и продолжают жить в морских бассейнах. К этой группе относятся появившиеся в мелу Cytherura, Xestoleberis, Paracytheridea, Cytheretta, Eucythere, Pterygocythereis, Cytheropteron, в палеогене Bythocythere, Pontocythere, Cytheridea, Eucytheridea, в миоцене Aglaiocypris, Cytherois, Pseudocythere, Aurila, Pontoleberis, Pseudoeucytheridea и некоторые другие роды. Трудность определения экологического типа ископаемых представителей некоторых родов заключается в том, что они включают как морские, так и солоноватоводные виды. К таким родам относятся Leptocythere, Loxoconcha, Tyrrhenocythere, Paracyprideis.

К собственно солоноватоводным родам принадлежат Caspiolla, Bakunella, Caspiocypris, Cytherissa, известные с плиоцена или позднего миоцена, представители которых живут ныне в современном Каспийском море, а также роды, встреченные на территории СССР только в ископаемом состоянии в отложениях солоноватоводных водоемов: Tanella (средний миоцен, плиоцен — плейстоцен), Pontoniella (плиоцен), Caspiollina, Liventalina (поздний плиоцен), Denticulocythere (олигоцен — плейстоцен). Следует отметить, что некоторые виды последнего рода обитали также в сильноопресненных водоемах, поэтому могут

² По материалам Кармишиной и Шнейдер [45].

¹ Граница «исчезновения» для родов, отмеченных знаком *, несколько условна, так как имеются в виду не пределы существования в Мировом океаническом бассейне, а пределы существования та рассматриваемых территориях.

рассматриваться как солоноватоводные эвригалинные формы ¹. Наиболее характерным представителем их является род *Cyprideis*.

Группа пресноводных остракод представлена родами, основная часть которых широко распространена в современных континентальных водоемах различного типа. Это — Cypria, Cyclocypris, Candona, Ilyocypris, Eucypris, Kovalevskiella, появившиеся в конце мезозоя — палеогене, Cyprinotus, Cypridopsis, Cryptocandona, Potamocypris и Mediocypris, известные с миоцена, Metacypris, известный только с позднего миоцена — плиоцена. Весьма редким компонентом были в неогене представители рода Darwinula (карбон — ныне).

По известным в настоящее время материалам история развития неогеновых морских и солоноватоводных остракод области Паратетис представляется следующим образом. Об остракодах раннего и начала среднего миоцена советской части Западного Паратетиса (Закарпатье) известно мало, так как фауна остракод этого возраста сильно обеднена.

В коние среднего миоцена — конкском и сарматском времени злесь отмечается присутствие достаточно разнообразных полигалинных ассоциаций остракод, представленных родами Polycope, Leptocythere, Callistocythere, Cnestocythere, Mutilus, Hemicytheria, Miocyprideis, Xestoleberis. Смена видового состава позволяет различать несколько этапов развития этой фауны в раннем и среднем сармате [12; Бурындина, 1974 г.].

В раннепаннонское время были развиты эндемичные виды родов Hemicytheria, Herpetocypris, Leptocythere, Loxoconcha, реже Paracypris, Eucypris, Cypria [Шеремета, 1958 г.]. Иногда встречались многочисленные Cyprideis heterostigma.

В понте отмечены виды родов Hemicytheria, Leptocythere, Loxoconcha, Herpetocypris, Cyprideis, т. е. тех же, что и в панноне, а также виды родов Caspiolla, Pontoniella и другие, общие с видами Понтического бассейна Восточного Паратетиса. Возможно, этот комплекс продолжал существовать здесь и в среднем плиоцене.

В пределах Восточного Паратетиса самые древние неогеновые остракоды известны из сакараульского региояруса (сакараульских слоев и ольгинской свиты) нижнего миоцена Кавказа и Предкавказья [75; Шнейдер, 1975 г.] и его аналогов из Северной Туркмении. В сакараульских слоях комплекс остракод состоит из представителей надсемейства Суtherideidacea (роды Pontocythere, Xestoleberis, Eucythere, Krithe) и надсемейства Trachyleberidacea (роды Aurila, Costa, Carinovalva, Bosauetina).

В последующем коцахурском бассейне жили очень немногочисленные виды немногих морских родов (Pseudocytheridea, Pterygocythereis).

Конец раннего миоцена ознаменовался тарханской трансгрессией, которая обусловила приход полигалинных средиземноморских видов родов Costa, Aurila, Loxoconcha, Aglaiocypris, Eucythere и др. Встречены представители рода Pseudocytheridea.

Сменившая тарханскую чокракская фауна остракод генетически связана с тарханской, но более разнообразна в отношении видового и родового состава. Кроме общих видов, известных также в тархане, здесь отмечены виды родов Leptocythere, Aurila, Paracytheridea, Cytherura. Последние два рода почти полностью вымерли в области Восточного Паратетиса в последующее караганское время. Кроме полигалинных форм в чокракском море жили виды, характерные для бассейнов с пониженной соленостью, что было обусловлено затрудненным сообщением с океаном. В пресноводных аналогах чокрака известны виды из родов Denticulocythere, Ilyocypris и Mediocypris.

¹ К солоноватоводным эвригалинным остракодам относятся формы, переносящие сильно пониженную соленость [Гофман, 1966].

Опресненный бассейн караганского времени характеризуется резким изменением состава остракод; в это время почти полностью исчезли достаточно полигалинные морские формы и появились морские эвригалинные и солоноватоводные остракоды из родов Leptocythere, Loxoconcha, Cyprideis, Tanella, а также пресноводные Candona, Eucypris, Ilyocypris.

В конкское время установилась кратковременная связь со Средиземноморским бассейном, вследствие чего появились представители семейств Paradoxostomatidae и Xestoleberidae, рода Aglaiocypris. В пределах Азербайджана и Западной Грузии обедненный комплекс конкских остракод был представлен в основном родами Leptocythere и Loxoconcha [Победина, Ворошилова и др., 1956 г.; Имнадзе, 1974 г.].

Конец бадена и конкского времени ознаменовался существенной изоляцией неогеновых бассейнов Паратетиса от Мирового океана, что соответственно отразилось на составе сообществ, представленных видами морских эвригалинных и солоноватоводных родов: Xestoleberis,

Loxoconcha, Leptocythere, Tyrrhenocythere, Aurila, Cyprideis.

В области Восточного Паратетиса в сармате были последовательно распространены три основных комплекса. Раннесарматская ассоциация была представлена видами Leptocythere mironovi, L. multicristata, L. guttata, Denticulocythere plana, Loxoconcha laevatula, L. viridus, Xestoleberis elongata, Aurila declivis, A. laevis и др. В среднем сармате кроме большинства перечисленных видов встречались Leptocythere schweyeri, L. quadrituberculata, Loxoconcha ornata, Aurila sarmatica, A. kolesnikovi, A. longa, Xestoleberis globosa, X. lunaris, Tyrrhenocythere notata и др. В позднем сармате содержание вышеперечисленных видов сократилось, некоторые из них совсем прекратили свое существование. Появились формы — показатели значительного опреснения Cyprideis torosa, Ilyocypris bradyi, Candona sp.

На границе сармата с меотисом произошла в основном смена видового состава, а родовой состав был близок к сарматскому. В раннемеотическом бассейне преобладали представители родов Leptocythere, Loxoconcha, Xestoleberis. В позднемеотическом бассейне в связи с прогрессирующим опреснением наряду с Leptocythere и Loxoconcha стали преобладать виды рода Cyprideis, а также пресноводные формы Candona, Ilyocypris. В позднем меотисе появились первые, еще единичные представители остракод понтического типа из родов Pontoniella, Bakunella, Caspiolla [170; Имнадзе, 1967 г.].

На рубеже миоцена и плиоцена (меотиса или паннона и понта) солоноватоводная фауна понтического типа заняла господствующее положение в пределах всего Паратетиса, включая и его восточную часть.

Это в основном солоноватоводные роды Caspiocypris, Pontoniella, Caspiolla. Bakunella из семейства Disopontocypididae и новые виды ролов Leptocythere, Loxoconcha (надсемейство Cytheridacea). Происхождение понтической фауны и направление ее миграции пока остаются не совсем ясными. Есть предположение о возможной миграции ее из Паннонского бассейна.

Что касается Восточного Паратетиса, то в составе сообществ понтических остракод Черноморской и Каспийской областей наблюдаются некоторые различия. В пределах Каспийской области в отличие от Черноморской не известны роды Pontoleberis, Amplocypris, Typhlocypris, но наблюдается большое видовое разнообразие Loxoconcha и Leptocythere.

Эти различия были вызваны разделением в конце понта единого бассейна Восточного Паратетиса на два самостоятельных — Черноморский и Каспийский, развитие фауны в которых происходило или при полной их изоляции, или в условиях кратковременной затрудненной связи между ними.

В послепонтическое время наряду с разобщенностью бассейнов отмечалось их резкое опреснение. С этим временем связано накопление продуктивной и красноцветной толщ в Каспийской области и кимме-

рийских отложений в Черноморской области.

В Черноморской области в киммерийском бассейне существовали остракоды, в целом связанные своим происхождением с понтическими. Эти виды родов Caspiola, Bakunella, Caspiocypris. В то же время в Северном Причерноморье, с одной стороны, и в Юго-Восточном — с другой, развитие остракод в послепонтическое время существенно различалось, что дает возможность предполагать некоторую разобщенность этих водоемов.

В Северном Причерноморье в киммерии продолжали существовать редкие понтические виды, наряду с которыми найдены впервые отмеченные в этом регионе *Cryptocyprideis euxinensis* и *C. bogatschovi*.

Поздний киммерий и ранний акчагыл (ранний куяльник) характеризовались здесь типично эвригалинными Cyprideis torosa и пресноводными формами, среди которых встречались Cypria и Cytherissa juschatyrensis, распространенные в акчагыльском бассейне Каспийской области. Позже здесь распространился своеобразный комплекс, солоноватоводных и пресноводных остракод, состоящий из рекуррентных понтических видов Amnicythere multituberculata, A. quinquetuberculata, Caspiolla acronasuta и таких, как Candona schweyeri, Leptocythere laevigata, известных в Каспийской области только с апшерона. Кроме того, здесь встречены позднеплиоценовые виды Denticulocythere scharapovae, D. tuberculata и др. Этот же комплекс остракод содержится и в таманских слоях Северного Причерноморья.

В Юго-Восточном Причерноморье в киммерии преобладали виды солоноватоводных родов Loxoconcha, Leptocythere, Caspiocypris. В раннем куяльнике (ранний акчагыл) число видов этих родов сократилось и появились эвригалинные Cyprideis torosa, а также представители пресноводных родов Cyprinotus и Candona [Имнадзе, 1967 г., 1974 г.]. В позднем куяльнике (поздний акчагыл) и в основном в гурии (апшерон) вновь распространились многочисленные солоноватоводные остракоды из родов Loxoconcha, Leptocythere и представители Неті-

cytheridae.

В Каспийской области после понта существовал пресноводный бассейн, в котором отлагались осадки балаханской серии (продуктивная и красноцветная толщи). Нижняя часть этой серии (до зоны перерыва) охарактеризована реликтами понтической фауны [Агаларова и др., 1958 г.]. Верхняя часть продуктивной толщи после зоны перерыва характеризуется эвригалинными остракодами Cyprideis, пресноводными Ilyocypris, Cypridopsis, Cyprinotus, Eucypris, Zonocypris, Advenocypris, Baturinella. В этой части продуктивной толщи отмечается также первое появление солоноватоводных эвригалинных видов рода Denticulocythere, продолжавших затем существовать в акчагыльском бассейне.

Следует иметь в виду, что <u>Cyprideis littoralis</u> обитает преимущественно в бассейнах с неустойчивым режимом и встречается в условиях почти полного обмеления и опреснения. В Прикаспии он содержится в большом количестве и в отложениях, предшествующих или начинающих новую морскую трансгрессию. Так, на территории Прикаспийской впадины прослеживаются толщи от 50 до 200 м, содержащие только *C. littoralis*; выше этих отложений без перерыва в осадконакоплении начинаются отложения акчагыльского яруса со всеми характерными комплексами [55; 56; Павловская, 1971 г.].

Следующим крупным этапом в развитии остракод Каспийского бассейна является акчагыльский, характеризовавшийся существованием своеобразных остракод из родов Leptocythere, Loxoconcha (L. varia), Denticulocythere, (D. luculenta), Candona и других, характерных для

раннего и главным образом среднего акчагыла. Позднеакчагыльский комплекс остракод отличался присутствием Paracyprideis. Amnicythere. Leptocylhere, Caspiocypris, Loxoconcha, большинство из которых приобрело распространение в следующем — апшеронском бассейне. В прибрежных районах акчагыльского водоема распространены пресноводные и солоноватоводные остракоды Eucypris, Denticulocythere, Cytherissa, Cuprideis. В акчагыльском веке несколько раз происходило кратковременное проникновение некоторых видов в пределы Северного Причерноморья [Шнейдер, 1971 г.; Кармишина, 1973 г.].

Завершающий этап в развитии плиоценовых остракол в Каспийской области связан с распространением вновь комплекса понтического типа остракод — видов таких родов, как Caspiolla, Caspiocypris, Tanella, наряду с видами апшеронского комплекса. Это было вызвано, возможно, миграцией остракод из Черноморской области, где фауна понтического типа существовала непрерывно в течение всего плиоцена. К этому моменту произошло почти полное исчезновение типичных акчагыльских форм.

На территории Прикаспийской впадины по появлению единичных морских апшеронских солоноватоводных остракод проведена граница акчагыльских и апшеронских отложений, в середине так называемой переходной зоны конца акчагыльской трансгрессии и начала апшеронской в сильноопресненной мелководной фации, где нет представителей других групп макро- и микрофауны [Павловская, 1971 г.]. Основным рубежом, на который приходится максимальное расселение аншеронских остракод, было начало позднего апшерона, когда сообщества характеризовались наибольшим систематическим разнообразием. Если для раннеапшеронского и второй половины позднеапшеронского времени были характерны моно- и олиготаксонные сообщества, то для начала позднего апшерона — в основном политаксонные. В этих сообществах наряду с Paracyprideis много видов рода Loxoconcha и большое число представителей Leptocytheridae.

Сравнение послепонтических комплексов остракод Черноморской и Каспийской областей показывает, что киммерийские и особенно куяльницкие ассоциации остракод Северного Причерноморья обнаруживают больше сходства с каспийскими комплексами, чем с одновременными комплексами Юго-Восточного Причерноморья [21].

Филогенетическое развитие неогеновых остракод еще недостаточно изучено. Анализ имеющихся данных показывает, что начало неогена ознаменовалось появлением подсемейства Mediocypridinae и

Aglaiocypris.

В начале плиоцена появились основная часть родов семейства Disopontocyprididae (Caspiolla, Bakunella, Pontoniella) и род Pontoleberis. Изменения на этом рубеже были наиболее принципиальными по сравнению с последующими. Начало акчагыла и начало апшерона характеризовались менее существенными филогенетическими событиями: в акчагыле отмечалось первое появление солоноватоводного рода Liventalina, а начало апшерона характеризовалось появлением монотипных родов Rectocypris и Baturinella.

По морским остракодам неогена Тихоокеанской области известны только некоторые предварительные сведения. Лев и Исаевой [1971 г.] была обработана коллекция остракод из окобыкайской (верхняя часть среднего мноцена) и маруямской (верхи среднего миоцена — плиоцен) свит Сахалина. В окобыкайской свите были встречены Acantocythereis dunelmensis, Elofsonella concinna, Baffinicythere sp., Palmenella limicola, Robertsoniles tuberculata, Cytheropteron arcuatum, C. montrosiense, представители рода Leptocythere и другие (всего 25 видов). В маруямской свите обнаружены три вида — Eucytheridea bradyi, Hemicutherura clathrara u Normanicythere leioderma.

Остракоды палеогена и неогена континентальных водоемов. Лимнические остракоды раннего палеогена на территории СССР известны очень мало. Представление о развитии этой фауны на рубеже мезозоя и кайнозоя может быть получено только на основании материалов по Монголии и Китаю. По данным Кармишиной и Неуструевой [24], изменения таксономического состава в начале палеогена проявились не в появлении новых таксонов высокого ранга, а в исчезновении ряда пресноводных родов, смене видового состава транзитных родов и появлении некоторых эндемичных видов.

На территории СССР находки палеоценовых и эоценовых остракод малочисленны и приурочены только к Зайсанской впадине [Станкевич, 1980 г.]. В олигоцене, с установлением континентального режима на значительной территории Юга СССР, лимнические комплексы остракод получили достаточно широкое распространение. Они известны из Таджикистана, Узбекистана, Казахстана и Киргизни по работам Грамма [1962 г., 1963 г.], Меньшикова [1969 г.], Мандельштама, Николаевой [33, 37, 47]. В олигоцене существовали представители родов Ilyocypris, Candona, Eucypris, Herpetocypris, Kassinina, Hemicyprideis, Limnocythere. Отличительными чертами этой эпохи в пределах рассматриваемой территории является массовое расселение рода Kassinina и появление представителей рода Hemicyprideis.

В неогене область распространения лимнических остракод значительно расширилась. Массовое расселение этой фауны в большинстве случаев связано с многочисленными периодически возникавшими континентальными водоемами. Наибольший интерес для изучения представляют остракоды межгорных впадин Северного Тянь-Шаня, связанные с наиболее стабильными озерными бассейнами неогена.

По данным Кондрашкиной [1970 г.], в пределах озерных водоемов Северного Тянь-Шаня в течение миоцена и плиоцена наблюдалась пятикратная смена комплексов. Начало миоцена характеризовалось массовым развитием солоноватоводных эвригалинных остракод рода Cyprideis и наличием единичных пресноводных Candona, Eucypris, Ilyocypris, Cyprinotus. В среднем миоцене появились более разнообразные остракоды из родов Ilyocypris, Eucypris, Mediocypris, Cyprinotus, Denticulocythere, Kassinina и др. В позднем миоцене преобладали представители рода Cyprideis и встречались единичные пресноводные Ilyocypris, Eucypris, Pseudostenocypris и др.

Начало плиоцена характеризовалось резким сокращением или полным исчезновением солоноватоводных *Cyprideis* и появлением пресноводных *Cyclocypris, Paracandona, Eucypris, Candona*. Позднеплиоценовый комплекс отличался от ранне-среднемиоценового большим видовым разнообразием названных родов. Наиболее близкие видовые ассоциации пресноводных позднеплиоценовых остракод, по данным Кондрашкиной [1970 г.], были распространены в Средней Азии, Сибири и Китае.

На базе этих исследований, а также работ А. П. Савиновой были приняты стратиграфические подразделения по остракодам для Региональной стратиграфической схемы неогеновых отложений Казахстана (Алма-Ата, 1986 г.], где в качестве характерных видов рекомендованы следующие: для нижнего миоцена Hemicyprideis rhenana; для среднего миоцена Eucypris aggeratus, Denticulocythere kuschnari; для нижнего — среднего миоцена Mediocypris candonaeformis; для верхнего миоцена — нижнего плиоцена Paracandona euplectella, Cyprinotus vialovi; для среднего — нижней части верхнего плиоцена Denticulocythere scharapovae, Zonocypris membranae; для верхней части верхнего плиоцена Denticulocythere vara.

 $^{^{1}}$ = Hemicyprideis.— Прим. ред.

В Западной Сибири, по данным Казьминой [1971 г., 1976 г.], достоверные миоценовые комплексы остракод не известны. В составе плиоценовых комплексов выделяются предположительно ранне-среднеплиоценовый (?) и широко известный позднеплиоценовый, содержащий пресноводные позднеплиоценовые виды Denticulocythere scharapovae, D. luculenta, Cytherissa hyalina, Candona combibo, Eucypris foveatus.

Остракоды антропогена. В четвертичном периоде продолжается развитие обособившихся ранее трех основных типов фауны остракод: морского, солоноватоводного и пресноводного.

Наибольшее развитие получила фауна континентальных водоемов; солоноватоводная фауна, связанная с водоемами Черного и Каспийского морей, более ограниченна, типично морские остракоды известны только на Севере СССР, и их появление, как и в позднем плиоцене, вызвано трансгрессиями Арктического бассейна.

По данным Кармишиной и Шкатовой [41, с. 177], на протяжении четвертичного периода остракоды не испытали существенных изменений в эволюционном развитии. Однако чередование ледниковых и межледниковых, трансгрессивных и регрессивных эпох нашло отражение в последовательной смене сообществ остракод. В истории развития четвертичных остракод выделяют ранне-, средне-, позднеплейстоценовый и голоценовый этапы, характеризующиеся сменой сообществ, различаюшихся экологией, качественным составом остракодовых сообществ (в основном термофильностью комплексов). Выделение более дробных подразделений регионального характера основано на качественно-количественном соотношении таксонов, обусловленном характером водоема, типом его трофности, фиксирующим определенные стадии в развитии сообществ. Раннеплейстоценовый этап в развитии остракод континентальных водоемов характеризуется сообществами, испытавшими влияние раннечетвертичного оледенения и представленными стенотермнохолодолюбивыми видами родов Candona, Cytherissa, Potamocypris и умеренно бореальными представителями родов Cupria, Cupridopsis, Zonocupris и др.

Среднеплейстоценовый этап, начало которого ознаменовалось потеплением и развитием межледниковой (лихвинской) эпохи, характеризуется широким распространением более теплолюбивых остракод из родов Limnocythere, Denticulocythere, Sclerocypris. Холодолюбивые элементы занимают здесь подчиненное положение. В период последующего оледенения (днепровского) наблюдается резкое количественное уменьшение остракод этого комплекса. В развитии биоценозов внеледниковой зоны стали преобладать эврибионтные виды широкого вертикального распределения из родов Ilyocypris, Cyclocypris, некоторые Candona и редкие Limnocythere. Во второй половине среднего плейстоцена (в одинцовское межледниковье) сообщества остракод наряду с формами широкого вертикального распределения содержат некоторые новые виды из родов Paralimnocythere, Limnocythere и др. Вероятно, условия нового межледниковья не были благоприятными для развития остракод, так как сообщества их значительно беднее по сравнению с лихвинскими. Это время рассматривается как период исчезновения типичной среднеплейстоценовой фауны остракод и появления ассоциаций, давших начало современным сообществам пресноводных остракод.

Позднеплейстоценовый этап, связанный с микулинским межледниковьем и валдайским оледенением, характеризуется преимущественно холодолюбивыми остракодами из родов Candona, Ilyodromus, Polamocypris, более эвритермными Cyclocypris, Ilyocypris, Limnocythere и редкими термофильными формами в периоды потеплений из родов Notodromas, Dolerocypris, Amplocypris. Наиболее информативным при определении возраста является небольшое число видов: Paralimnocythere originalis, Cyclocypris longa, Herpetocypris ehringsdorfensis, Tonnacypris butgatonensis и др. Позднеплейстоценовый комплекс (особенно в конце этапа) обнаруживает большое сходство с голоценовыми ассоциациями остракод.

По систематическому составу и экологии комплексы континентальных остракод, отвечающие выделенным выше этапам, обнаруживают значительное сходство независимо от района обитания. Это позволяет использовать их для корреляции основных подразделений четвертичной системы Западной, Восточной Европы и Сибири [Шнейдер, 1967 г.; Негадаев-Никонов, 1977 г.].

По эволюции остракоды солоноватоводных бассейнов отличаются от континентальных. В пределах солоноватоводного Каспийского бассейна этапы развития остракод связаны с морскими трансгрессиями и регрессиями. Каждый этап характеризуется появлением новых видов и экологических морф в сообществах морских эвригалинных и солоноватоводных остракод, а также количественным изменением общих для этапов видов. В раннем плейстоцене (бакинский этап) появляются новые виды родов Leptocythere (L. lunata, L. acerata, L. pia и др.), Loxoconcha (L. gibboda, L. endocarpa и др.), Paracyprideis (P. enucleata), Cruptocyprideis (C. cascusa) и др.; в среднем (хазарский этап) — новые Leptocythere (L. longa, L. hilda); в позднем (хвалынский этап) — Leptocythere uschkovi, L. virgata, L. modesta и др. Голоценовый этап характеризуется новокаспийским комплексом остракод, представленным видами родов Cyprideis, Cryptocyprideis, Leptocythere и Loxoconcha, большинство из которых известны из плейстоценовых отложений, а также встречаются в составе современных сообществ Каспийского моря.

В морских плейстоценовых комплексах остракод северных районов СССР Лев, Исаева, Попова-Львова [29, 1971 г., 1975 г.] отмечают присутствие представителей Cytherella, Pontocypris, Palmenella, Cytheropteron, Acanthocythereis, Elosonella, Rablimis, Robertsonites, Normanicyathere, Krithe, а также других родов, обычных для морских бассейнов с нормальной соленостью. По заключению Лев [29], в позднем плиоцене — плейстоцене и плейстоцене арктических областей может быть выделено пять комплексов остракод. Широкое распространение этих комплексов позволяет сопоставлять позднекайнозойские морские стложения арктических островов, Арктического шельфа и примыкающей части материка (север европейской части СССР, Западная Сибирь).

IV.2. ПАЛЕОЭКОЛОГИЯ И СВЯЗЬ С ФАЦИЯМИ

Современные остракоды обитают в самых различных водных условиях: морях, лиманах, дельтах рек, реках, озерах и сезонных водоемах— и имеют хорошо выраженную специализацию в соответствии с этими экологическими типами.

Присутствие в составе кайнозойских фаун значительного количества современных таксонов позволяет с достаточной долей уверенности при оценке ископаемых комплексов применять актуалистический метод. Кроме того, палеоусловия, установленные различными аналитическими методами для определенных типов ископаемых комплексов остракод в каком-то отдельном регионе, и в дальнейшем могут быть использованы для характеристики подобных типов комплексов остракод. Кайнозойские остракоды в основной своей массе — бентосные формы (планктонные группы присутствуют в современных водоемах, но почти не сохраняются в ископаемом состоянии). По образу жизни — это ползающие, зарывающиеся в грунт или плавающие вблизи дна организмы, т. е. слабоподвижный бентос, неразрывно связанный с придонными условиями бассейна. Это обстоятельство делает остракод надежными индикаторами палеоэкологических условий. Их пищей являются преимущественно детрит, простейшие организмы, водоросли, обломки из-

вестковых раковин других организмов. При этом следует иметь в виду, что известь для формирования своей раковины остракоды получают с пишей, а не усваивают из воды.

Основными внешними факторами, воздействующими на остракод и определяющими особенности их таксономического состава, являются следующие: соленость, субстрат, подвижность вод, глубина, содержание органического кальцита и кислорода и температура. По отношению к солености остракоды — одна из самых толерантных групп среди всех когда-либо существовавших гидробионтов.

По данным Пури [Ригі, 1966 г.], определяются следующие типы

остракод по отношению к солености 1.

1. Пресноводный (-0.2-0.5%): представители родов Candona,

Candonopsis, Eucypris, Cypricercus, Herpetocypris.

2. Олигалинный (0,2—0,5—2—3 ‰): представители родов Cyclocypris, Darwinula, Ilyocypris, Limnocythere, Cypridopsis, Potamocypris, Cypria, Herpetocypris.

3. Мезогалинный (подтип A) (2—10 ‰): представители родов Cyprideis, Cypridopsis, Cytheromorpha, Cytherura, Cyprinotus, Loxoconcha.

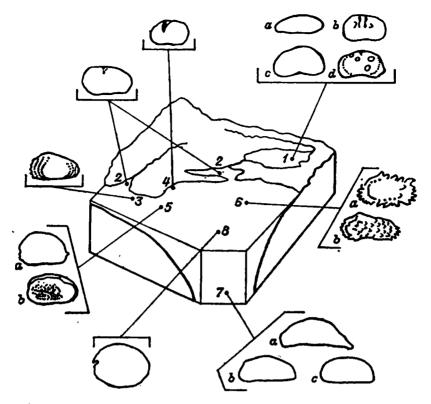
Мезогалинный (подтип В) (более 10 ‰): представители родов Semicytherura, Loxoconcha, Xestoleberis, Cytherois, Paradoxostoma, Hemicytherura, Hirschmannia, Hemicythere, Cythere, Heterocythereis, Leptocythere, Sclerochilus, Paracytherois, Xenocythere.

4. Полигалинный (более 17%): представители родов Paracypris, Robertsonites, Pterygocythereis, Loxoconcha, Cytheridea, Elofsonella, Heterocyprideis, Cytheropteron, Macrocythere, Krithe, Philomedes, Eucythe-

re, Polycope.

5. Эогалинный (более 32 ‰): представители родов Argilloecia, Cytherella, Polycope, Erythrocypris, Echinocythereis, Macrocypris, Cytheropteron, Philomedes, Bythocythere, Cypridina, Macrocypria, Asterope.

С использованием методов изучения соленостных адаптаций (гл. II.4) оказывается возможным определить не только состав ассоциаций, но и происхождение типов остракод. Так, среди кайнозойских остракод могут существовать: первично-морские (эври- и стеногалинные), первично-континентальные — пресноводные; солоноватоводные морского и пресноводного происхождения и вторично-морские.


Соленость оказывает непосредственное воздействие на численность популяций. Так, в условиях морских окраин, по данным Пури [Puri, 1966 г.], максимальное число видов отмечается в интервале солености от 17 до 32 ‰. С понижением солености резко сокращается число видов, но увеличивается их индивидуальная численность.

Таким образом, изучение таксономического и количественного состава комплексов остракод может быть использовано при реконструкции палеогеографической обстановки: солености, конфигурации и, с известной долей вероятности, происхождения и связи бассейнов.

Поскольку субстрат является одним из факторов, определяющих форму и скульптуру раковин, для восстановления придонных обстановок могут иметь значение следующие данные. Для зоны водорослей и подвижных вод характерны гладкие, сжатые с боков, тонкостенные, удлиненные раковины, удерживающиеся на растениях благодаря приклеивающему веществу паутинной железы.

На илистых грунтах обитают как зарывающиеся в ил гладкие формы, так и формы, снабженные фундиумом, обычно приподнятым по направлению к заднему концу и имеющим продольные ребра (это облегчает скольжение — ползание по илистому дну). Для форм, обитающих на поверхности, относительно обычна бугорчато-шиповатая скульптура, препятствующая глубокому погружению в ил.

В промилле по венецианской шкале.

Для песчаных грунтов характерны округлые, укороченные, грубоскульптированные толстостенные раковины. На твердых субстратах можно встретить формы с плоским фундиумом, параллельным базальной линии, и образованиями, препятствующими опрокидыванию раковины (шипы, выросты).

Подвижность придонных вод может быть восстановлена не только по форме раковины, но и по характеру захоронения остатков. Для относительно спокойных обстановок помимо низкого содержания обломочного материала раковин характерен и относительно высокий процент раковин личиночных стадий по отношению к раковинам взрослых особей.

По отношению к глубине остракоды можно рассматривать как широкоэврибатиальную группу. Это относится и к обитателям пресных озер, и к остракодам морских бассейнов. В оз. Байкал на значительных глубинах обитают представители рода Cytherissa и некоторые группы рода Candona. Большая же часть пресноводных остракод характерна для мелководья, богатого водорослями.

Морские современные остракоды встречаются в широком диапазоне глубин — от зоны приливов до глубин более 3000—4000 м.

Различаются два основных типа комплексов остракод (с рядом переходных): эпинеритовый (обитатели шельфовой зоны) и глубоководной (обитатели батиали и более значительных глубии).

Исследованиями Бенсона [85—88], проводившимися по изучению современных остракод и на материале глубоководного бурения, выявлено много новых данных по распространению морских остракод. Помимо известной уже категории родов эврибатиального распространения (Cytherella, Bairdia, Bythocypris, Argilloecia, Abyssocypris, Krithe, Pseudocuthere, Bythocythere, гладкие Cytheropteron и Polycope) им открыт новый специализированный тип глубоководных остракод. К этому типу в первую очередь относятся трахилеберидацеи Poseidonamicus. Abussocuthere, Paleoabyssocythere, Agrenocythere, Bathycythere, Характерными чертами этой группы являются экономично, но прочно построенная раковина, скульптированная обычно образованиями нескольких порядков, и отсутствие глазных образований, — как правило, результат «вторичной» слепоты, поскольку изначально эти группы имели глазные образования. Вертикальным рубежом распространения зрячих форм является нижняя граница световой зоны 600—700 м. Схема распространения основных типов остракод по солености и относительной глубине в том виде, как она используется многими авторами, приведена на рис. 401.

Высокое содержание органического кальцита является одним из условий, обеспечивающих как существование остракод, так и прочность их раковин. Наиболее благоприятными считаются зоны высокой карбонатной продуктивности.

Известно, что таксономическое разнообразие бентосных животных зависит от содержания в воде кислорода. Моие и Пейпуке [Моуеs, Реуроиquet, 1977 г.] в качестве индикатора был выбран род Krithe, размер вестибюля у которого скоррелирован с содержанием O_2 в воде. Как выяснено этими исследователями, размер вестибюля у представителей рода Krithe увеличивается с уменьшением содержания O_2 . Методика изучения вестибюля у представителей родов Krithe и Parakrithe была впоследствии применена Пейпуке при изучении неогена Франции [Реуроиquet, 1979 г.], мел-палеогеновых отложений р-на Кеф (Тунис) (рис. 402).

В отношении влияния температуры на распространение остракод известно, что в составе этой фауны имеются как теплолюбивые, так и холодолюбивые группы. Дифференциация может проявляться на родовом и видовом уровнях. Зависимость некоторых видов остракод от температурных колебаний широко используется в стратиграфии четвертичных отложений при датировках эпох оледенения и потепления.

Приведенные выше сведения далеко не исчерпывают всех методов изучения, применяемых в палеоэкологии, однако с достаточной очевидностью свидетельствуют о том, что изучение остракод можно отнести к одному из перспективных направлений этой дисциплины.

IV.3. ЗОНАЛЬНЫЕ СТРАТИГРАФИЧЕСКИЕ СХЕМЫ

IV.3.1. Палеоген

Известно, что общепризнанными группами ископаемых, которые используются при зональном стратиграфическом расчленении палеогеновых отложений, являются нуммулитиды, планктонные фораминиферы и нанопланктон. Однако приуроченность даже таких широко распространенных групп органических остатков, как планктонные фораминиферы и нанопланктон, к определенным типам фаций делает необходимыми поиски других групп, пригодных для дробного биостратиграфического расчленения палеогена.

Использование остракод для дробного биостратиграфического расчленения этих осадков начато относительно недавно. Этому предшество-

Rpyc	Зона	Krithe Parakrithe	O ₂ , мл/л	Экозона
Nnp- ckuŭ	Globorotalia subbotina e		01 3456	
uŭ	Gl.velascoensis		}	8
Танетский	Gl.pseudomenardii			
Tar	Gl. pusilla		ş	7
Монтский	Gl. angulata			6
Монт	Gl. uncinata			
ŭ	Gl. trinidadensis			5′
Датский	Gl.pseudobulloides			5
Ac	Gl.eugubina			4
μŭ	Abathomphalus			3
Маастрихтский	mayaroensis			2
	Gl.gansseri			
Ma	Gl.faïsostuarti		}	1

Рис. 402. Предполагаемое содержание кислорода в позднемеловом — раннеэоценовом бассейне р-на Кеф на основании изменения размеров вестибюля Krithe и Parakrithe [99].

вал длительный период изучения их стратиграфического и географического распространения, а также монографического исследования ряда групп.

Современный уровень изученности палеогеновых остракод позволил европейским остракодологам создать зональную шкалу по остракодам палеогена Западной Европы для стратиграфического интервала от датского до хаттского яруса, причем при расчленении ряда ярусов использовались данные по их стратотипам. Ниже рассмотрена в общих чертах последовательность создания этой схемы и приведено возможное сопоставление зон по остракодам с биостратиграфическими подразделениями, по остракодам Бахчисарайского стратотипического разреза и Арало-Тургайской области (табл. 6). Необходимо отметить, что в пер-

вых работах, посвященных биостратиграфии палеогена по остракодам, зоны, устанавливаемые западноевропейскими остракодологами, не вполне соответствуют значению этого термина в строгом смысле, однако далее для удобства рассмотрения таких схем сохранена терминология, предлагаемая их авторами. Первой работой по зональному делению палеогена на основании остракод была статья Марлиера [Marliere, 1958 г.]. Эта работа касается нижней части палеогена, стратотипа монтского яруса в р-не г. Монс в Бельгии. На основании исследования остракод по обнажениям и керновому материалу Марлиер выявил характерные видовые комплексы остракод для туфов Ципли, слоев Глин и известняков Монса. Им было приведено еще одно доказательство в пользу того, что туфы Ципли и известняки Монса являются осадками различного возраста, а не разнофациальными одновозрастными отложениями. Марлиер ввел впервые в стратиграфию палеогена такое понятие, как остракодовые зоны. Несмотря на то что зоны были выделены им по составу видовых комплексов, назвал он эти зоны по преимущественному распространению представителей отдельных родов: 1) Cytherelloidea для туфов Ципли ; 2) Cytheretta для переходной пачки; 3) Triginglimus для известняков Монса.

Следующей работой, затрагивающей зональное деление палеогена, но в основном посвященной верхнему мелу и стратотипу маастрихтского яруса в г. Маастрихт (Голландия), была работа Деро [98]. Зоны, предлагаемые Деро для верхнего мела и палеогена, не получили названия, а были пронумерованы. Ему удалось сопоставить с зонами Марлиера: 1) глауконитовые туфы (верхняя часть зоны $\mathbb{N} 2$ 5) — с зоной Cytherelloidea; 2) промежуточные слои (зона $\mathbb{N} 2$ 6) — с зоной Cytheretta; 3) аналоги известняков Монса (зона $\mathbb{N} 2$ 7) — с зоной Trigiuglimus.

По остракодам илердского яруса были предложены две зональные схемы. Первая — схема Тамбаро [Tambareau, 1972 г.] по разрезу р. Тремп, вторая — Дукасс [Ducasse, 1972 г.] по разрезу в провинции Кампо. Тамбаро выделяются зоны с буквенными обозначениями, Дукасс пользуется номерными обозначениями; зоны эти хорошо коррелируются. В подстилающих илердский ярус танетских отложениях выделяются зона е у Тамбаро и зона № 1 у Дукасс, отвечающие опресненному комплексу остракод с Vetustocyrtheridea (зона названа по преобладанию представителей данного рода). Далее, выше по разрезу, следует переходная зона: зона g у Тамбаро с характерным видом Paleomonsmirabilia eliptica и зона № 2 у Дукасс с характерным видом Neocyprideis grandinatus. Подошва илердского яруса совпадает, по данным Тамбаро, с появлением вида Echinocuthereis isabenana — это зона h. В схеме Дукасс ей соответствует зона № 3; на палеонтологических таблицах у Дукасс имеется изображение Echinocythereis isabenana Оег t-1 і из зоны № 3, однако в количественном отношении, по ее данным, преобладают виды Pontocyprella aturica Deltel, Cytherella consueta Deltel. Выше, в зоне № 4 по этой же схеме Дукасс, появляются непосредственные потомки Echinocythereis isabenana, т. е. представители вида Echinocythereis aragonensis, которые отмечаются уже как характерные для зоны № 4.

Этими данными исчерпываются сведения о зональном расчленении по остракодам стратотипических разрезов ярусов палеогена. Можно еще отметить только, что имеются интересные данные о расчленении лютетского яруса по остракодам в Северной Испании. Эртли [Oertli, 1960 г.] отложения в провинции Хуеско, относимые к лютетскому ярусу,

14 Зак. 734 209

¹ Первоначально Марлиер отнес все три зоны к монтскому ярусу. Впоследствии эта точка зрения им была пересмотрена, ввиду того что планктонным фораминиферам туфы Ципли и слои Глин относятся к датскому ярусу.

Палеоге	30							Кюизский	Echinocythereis posterior, Novocypris eocaenana	5	Echinocythereis scabra, Trachyleberidea prestwichiana, Schuleridea per- forata	3
		Нижняй							Paijenborchella lomata, Echinocythereis aragonensis	4	Bairdoppilata gliberti, Krithe rutoti	2
	-	±			Илердский	Echinocythereis isabenana	h	Илердский	Cytherella con- suela, Pontocyprella aturica	3	Paijenborchella lomata, Paracaudites venusta, Proloargilloecia angulata	1
		ий				Paleomonsmira- bilia eliptica	g		Neocyprideis grandinatus	2		
	Палеоцен	Верхний			Танетский	Vetustocytheri- dea	e 	Танетский	Vetustocytheridea	1		_
	Ë		H	Cytheretta		•						
		Нижний	Мовтский	Triginglimus					4			_
		Н	Mo	Cytherelloidea								

Сопоставление схем биостратиграфического расчленения палеогеновых отложений по остракодам

			[/	Бельгия (Монс) Marllere, 1958 г.]		М. Пиренеи (бассейн р. Тремп [Tambareau, 1972 г.])		Сев. Испания (Кампо) [Ducasse, 1972 г.]		Сев. Аквитания [Ducasse, 1969 г.]	
Система	Отаел	Подотдел	Ярус	Зона	Ярус	Характерные формы остракод	Зона	Ярус	Характерные формы остракод	Зона	Характерные виды остракод	Зонв
	Олигоцен	Верхний										•
	иго	Нижний		!								
		Верхний									Krithe bartonen- sis, Pokornyella limbata	8
		8									Pokornyella pennata, Neocyprideis apostolescui	7
		_			١	:					Cytheretta sp. nov., Hermanites alata	6
		Средний									Echinocythereis multicostata, Cytheretta maxima	5
новая	пен		_								Schizocythere appendilulata, Para c ytheridea grignonensis	4

Палеоге	30	Сред	Биар- риц- кий	Cytheridea rigida rigida	9		Бодрак	Не устанавлива- ются	Ta	Cytheropteron turgaicum	reis isabe- nana
			жий	Cytheretta eocae- nica	b	8 -					
			Лютетский	Cytheretta sp. nov.	a		ро- ий				
			Кюиз-	Noyocypris whitecliffensis		7	Симферо- польский	Martinicythere pilosa, Hornibrookella macropora, Cytherelloidea d etrusa		Cytherella uraea, Cytheridea capitosa, Trachyleberidea prestwichiana	
		ий		Echinocythereis reticulatissima	С		ий	Echinocythereis aragonensis, Anommatocythere ventricosa			
	ļ	Нижний	Ипрский	Cytheretta scro- biculoplicata	b	6	Бахчисарайский	Eopailenborchella lomata, Echinocythereis isabenana		Не устанавлива- ются	
				Cytheretta vena- blesi	a		Бау	Thracella parallela, Plerygocythereis tuberculata, Schuleridea perforata			
		ий	танетский	Cytheretta ner- va nerva		5	ский	Cytherelloidea pustulosa, Hammatocythere	-		Paracytheretta
		Верхний	1 1	Paracytheretta reticosa		4	Качинский	porosa Paracytheretta reticosa			
	Палеоцен	- 	Монтский-	Alatacythere cirrusa		3	-на	Echinocythereis		Echinocythereis subulosa,	Echinocythere- is subulosa
	Іале		<u> </u>	Krithe montensis		2	ерма	subulosa, Krithe montensis,	:	Oertliella alveo- loalata	
	I	Нижний	•#	Limburgina orna- toidella fissurata		1	Инкерман- ский	Opimocythere pustulosa			
		i ii	Датский					Не устанавлива- ются		Neocythere concentrica, Mosaeleberis ajatensis	Neocythere (Progono- cytheridae)

Продолжение табл. 6

				Северо-Западная Европа [Keen, 1977 г., 1978 г.]			Крым (Бахчисарай) [Николаева, 1979 г.]	Apa (H	ло-Тургайская область иколаева, 1964 г.; 47]	[50]
Свстема	Отдел	Подотаел	Ярус	Зона	8	Горизонт	Слои по остракодам	Горизонт	Слои по остракодам	Коррелятивные уровни
	-	Верхний	Хаттский	Flexus gutzwil- leri	14			Байгу- бекский	Paracyprideis rarejistulosa	Paracyprideis
	Олигоцен	Å	'n ř	Hammatocythere	b		Cuneocythere mar-	уский	Disopontocypris oligocaenica	
	O	Нижний	Рупельский	hebertiana	13		ginata, Echinocythereis hirsuta	Донгузтауский	Cytheretta michailovi, Cytheropteron steinmanni	Cuneocythere
			Латторф- ский (олигоцен)	Quadracythere diversinodosa	a		Cyamocytheridea mera, Pontocythere barbarica	Чеганский	Echinocythereis spongiosa, Pterygocythereis permira, Loxoconcha min-	Eopaijenbor- chella
		Верхний	хний	Haplocytheridea debilis	12	I I Альминский		Her T	saensis, Schizocythere appendiculata	
		Bej	Бартонский (средний—верхний эоцен)	Cytheretta lati- costa	11	Альм	Acanthocythereis spinosa, Hazelina ned- litzensis	Саксаульский	Cyamocytheridea corrugata, Leguminocythereis cribrosa Echinocythereis adornata	-
2000x	нен	ний	Озерэский	Cytheretta cellu- losa	10	Ский	He устанавлива- ются Phacorhabdotus breviplicatus, Agrenocythere immermorata	саранский	С обедненными Cytherotopina Loxoconcha aborigena,	Группа Echinocythe-

были подразделены на зоны A, B, C на основании прослеживания стадий развития группы Echinocythereis isabenana.

1. Зона A— установлена по верхнему пределу распространения вида E. isabenana O e r t l i.

- 2. Зона B по появлению подвида E. aragonensis aragonensis O ertli.
- 3. Зона С по появлению подвида E. aragonensis posterior Oertli.

Из общих схем следует упомянуть схему Дукасс [Ducasse, 1969 г.] для среднего палеогена Северной Аквитании. Здесь на основании анализа видовых комплексов остракод выделяются зоны с номерными обозначениями. Эта схема выработана на большом фактическом материале, однако по своему значению не вышла за пределы местной схемы.

Значительным достижением является зональная схема Кина [Keen, 1977 г., 1978 г.], которая была предложена в качестве первого опыта общего зонального расчленения всего палеогена Западной Европы. Эта схема создана с учетом всех имеющихся данных. Для морских отложений палеогена Западной Европы Кином было предложено 14 зон, причем две из них подразделены на подзоны. Зоны имеют наименования по виду-индексу и номер. Большая часть предлагаемых зон относится к категории интервальных и зон совместного распространения.

Схема Кина имеет несколько отправных пунктов.

- 1. Анализ стратиграфического распространения остракод в стратотипических разрезах ярусов палеогена в Западной Европе.
 - 2. Корреляция местных схем, предложенных различными авторами.
- 3. Анализ стратиграфического и географического распространения характерных видов.
- 4. Точная привязка детальных биостратиграфических подразделений по остракодам к зонам по планктонным фораминиферам [Berggren, 1972; Curry, Adams, Boulter, 1978 г.] и к зонам по нанопланктону.
- 5. Канвой зональной схемы Кина является анализ филогенетического развития подсемейства циттеретин в Англо-Парижском бассейне с учетом данных по другим группам: цитерейдидам и трахилеберидидам. Зоны, предлагаемые Кином, прослеживаются на территории Западной Европы и могут быть сопоставлены с некоторыми подразделениями палеогена Атлантического побережья Северной Америки.

На территории СССР во многих районах распространения палеогеновых отложений могут быть выделены слои по остракодам на основании присутствия характерных комплексов остракод, имеющих в своем составе ряд руководящих видов или видов-индексов.

Николаевой [1964 г., 1978 г., 1979 г.] были предложены схемы детального биостратиграфического расчленения палеогеновых отложений по остракодам Бахчисарайского разреза Крыма и Арало-Тургайской области. В качестве основной дробной биостратиграфической единицы принимаются слои с определенным комплексом остракод; слои выделяются по появлению или совместному присутствию характерных видов, реже — по пределам распространения отдельных видов. Так как обоснование этих схем было дано ранее, автор не считает целесообразным останавливаться на их описании, а приводит лишь, как упоминалось выше, их сопоставление с другими схемами, что может быть представлено следующим образом.

Датский ярус в бахчисарайском разрезе содержит очень незначительное количество остракод; в Арало-Тургайском регионе в этих отложениях выделяются слои с Mosaeleberis ajatensis, Neocythere concentrica. В инкерманском горизонте бахчисарайского разреза выделяются слон с Echinocythereis subulosa, Krithe montensis, Opimocythere pustulosa, а в Арало-Тургайской области — слои с Echinocythereis subulosa и Oertliella alveolata. Эти слои могут быть сопоставлены по пределам

распространения вида Echinocythereis subulosa Nikol.

Слон с Cytherella uraea, Clithocytheridea capitosa, Trachyleberidea prestwichiana Арало-Тургайской области соотносятся с зоной № 5 провинции Кампо по схеме Дукасс на основании совместного присутствия вида Trachyleberidea prestwichiana и подвида Echinocythereis aragonensis posterior.

Нижняя и средняя части бодракского горизонта в Западном Приаралье соответствуют слоям с Phacorhabdotus breviplicatus, Agrenocy-

there immermorata в Бахчисарайском регионе.

Слои с Haplocytheridea corrugata—Leguminocythereis cribrosa и слои с Echinocythereis spongiosa — Schizocythere appendiculata Арало-Тургайской области могут коррелироваться со слоями с Acanthocythereis spinosa — Hazelina nedlitzensis и слоями с Cyamocytheridea (?) mera — Cushmanidea (?) barbarica в Бахчисарайском регионе и Причерноморской впадине (на основании присутствия общих видов Eohaijenborchella eocaenica, Echinocythereis spongiosa, Cushmanidea (?) barbarica).

Слои с Cytheretta michailovi, Cytheropteron steinmanni (нижний олигоцен) в Арало-Тургайской области и слои с Cuneocythere marginata, Echinocythereis hirsuta параллелизуются на основании идентично-

сти комплексов остракод, определяющих эти слои.

Таким образом, анализ комплексов палеогеновых остракод показывает, что эта фауна в большинстве случаев не является эндемичной и позволяет проводить корреляцию палеогеновых отложений значительно отдаленных территорий, однако следует признать, что еще многое предстоит сделать для создания единой шкалы дробного биостратиграфического расчленения палеогена по остракодам. Тем не менее уже сейчас можно наметить определенные коррелятивные уровни, которые прослеживаются как в пределах распространения палеогена южных районов СССР и Западной Сибири, так и Западной Европы. Этими уровнями являются следующие.

Верхний предел распространения рода Neocythere — датский ярус

(s. str.).

Верхний предел распространения вида *Echinocythereis subulosa* N i-k o l. — кровля монтского яруса.

Верхний предел распространения рода Paracytheretta — кровля та-

нетского яруса.

Первое появление видов группы Echinocythereis isabenana — подошва ипрского яруса. Исчезновение последних представителей группы (Echinocythereis aragonensis) соответствует кровле керестинского горизонта и кровле оверзского яруса в Западной Европе по схеме Кина.

Исчезновение представителей рода Eopajenborchella — кровля верх-

него эоцена.

Появление представителей рода Cuneocythere — основание олигоцена.

IV.3.2. Неоген

При исследовании стратиграфии неогена нередко выделяются монотаксонные, реже би- и политаксонные зоны. Однако существуют определенные трудности в связи с отсутствием четких принципов их выделения. Основная из них связана с тем, что выявленную в пределах одной структурно-фациальной зоны стратиграфическую последовательность комплексов и положение их на определенных уровнях нередко распространяют на другие регионы, характеризующиеся иными фациальными особенностями. Так было со схемой А. В. Сузина [1956 г.]

Схема зонального расчленения плиоцена по остракодам

точ- ый рате- тис	ть Паннонского Централь [Jiricek, 1972 г.]	Страти - графи- ческое подраз- деление	Северное и Восточное Причерноморье (по данным Кармишиной, 1975 г.) Сообщества	Северный Прикаспий (по данным Кармишиной, 1975 г.) остракод	Страти графи ческое подраз делени
Баку — ап- шерон	оны g Cypria ophthalmica, Limnocythere inopinata Cyclocypris huckei	Гурийские	Candona — Cypria, Prolimnocythere, Leptocythere nocy- there — Leptocythere —	Cypria, Prolimno- cythere i Ilyocypris и другие пресновод- ные остракоды la — Lep- tocythere —	<u> </u>
5	lyocypris или пресноводные остракоды ———————————————————————————————————	Куяльник Ниж- (Верх-	Caspiolla — Caspoicypris — Bakunella Cyprideis	Loxoconcha — Cryptocyprideis Cyprideis, Cypria, Prolim-	
Дакий (крас- 1 ноцветная 1 свята)	Она, лишенная остракод ———————————————————————————————————	-	и пресноводные остракоды Caspiolla— Cryptocyprideis Caspiocyp-	гие прес- гие прес- новодные остракоды Сургіdeis — Prolimnocythere— Ilyocypris и другие пресновод- ные остракоды	Кушум- 1 ская 1 Акчагыл свита 1
Понт	Р. (Caspiolla) hungari- ca, P. (Caspiolla) flectime ginata P. (Caspiolla) acronasi P. (Caspiolla) acronasi	Іонт	Pontoniella — Bakunella — Caspiolla — Caspiocypris — Leptocythere	Cyprideis torosa, Bacunella dorsoarcuata	Понт
2	P. (Caspiolla) acronasi	ı, Lio	Понт	Понт Понт	л. Пон

	н	ıй	Herpetocypris		Lineocypris reticulata, L. hodonensis, Callistocythere moravica, Cyprideis hungarica Erpetocypris abscissa, E. recta, Loxoconcha subgranifera	Меотис	Меотис	Cyprideis torosa — Loxoconcha rimopora — Leptocythere crebra	(?)	Меотис
иий миоцен	Паннон	Нижний	Hemicytheria pokornyi	Паинон	Cyprideis sulcata, C. tuberculata	 				
Верхний					Hungarocypris auricula- ta, Erpetocypris (baze)	Верхний сармат				
	Сармат			Верхний сармат	Cyprideis tuberculata, Aurila notata					

¹ Prolimnocythere — синоним Denticulocythere.— Прим. ред.

для Северного Предкавказья, которую пытались распространять на другие регионы Каспийской области. Тенденция универсализации местных особенностей в распределении сообществ остракод наиболее ярко выражена в схеме зонального расчленения неогена Центрального и Восточного Паратетиса [Jiriček, 1972 г.]. В этой схеме для акчагыла и соответствующего ему румыния приводятся как наиболее характерные зоны (трактуемые как ранговые) Limnocythere scharapovae и сменяющая ее во времени Cypria candonaeformis. В действительности эти видыиндексы являются характерными для пресноводной фауны как акчагыла, так и апшерона. Названные виды отражают специфику лишь одной из фаций акчагыльского и апшеронского бассейнов, причем не наиболее характерную. Каждая из этих зон по объему фактически соответствует более чем одному региоярусу. Вероятно, наиболее удачный вариант зонального расчленения по остракодам представляют схемы, где приводится наиболее общая характеристика комплекса, в основном по родовому составу, который более четко прослеживается в пределах определенного стратиграфического интервала для всего региона [Вялов, 1966 г.; Negoita, Роресси, 1965 г.]. Попытку построения схемы с характеристикой сообществ остракод для основных подразделений плиоцена в пределах различных фациальных зон плиоценовых бассейнов Северного Прикаспия и некоторых регионов Черноморской области представляет схема, приведенная в табл. 7, где для сравнения даны также схемы Вялова [1966 г.] и Иржечки [Jiriček, 1972 г.]. В дальнейшем нужны целенаправленные исследования для разработки зональных схем в связи с их широким использованием в практике стратиграфических исследований. При этом необходимо соблюдение основных требований стратиграфических кодексов о типах зон и принципах их выделения (комплексные, ранговые, конкурентные и т. д.).

СПИСОК ЛИТЕРАТУРЫ

1. Агалирова Л. А., Кадырова З. К., Кулиева С. А. Остракоды плиоценовых и постплиоценовых отложений Азербайджана. Баку, Азернешр, 1961. 419 с.

2. Аладин Н. В. Соленостные адаптации и осморегуляторные способности ракушковых ракообразных Ostracoda из Каспийского и Аральского морей.— Зоол. журн., 1983, т. 62, вып. 1, с. 51—57.

3. Аладин Н. В. Соленостные адаптации и осморегуляторные способности ракушковых ракообразных из Черного и Азовского морей. — Зоол. журн., 1984, т. 63. вып. 2, с. 185-190.

4. Аладин Н. В. Соленостные адаптации и осморегуляторные способности ракушковых ракообразных из Баренцева и Белого морей. Эволюция функции осморегуляции в пределах подкласса Ostracoda. — Зоол. журн., 1985, т. 64, вып. 3, с. 368—376.

5. Аладин Н. В. Особенности осморегуляции гемолимфы ракушковых и жаброногих ракообразных из морских и континентальных солоноватых вод. - Тр. Зоол. ин-та

АН СССР, 1986, т. 141, с. 75—97. 6. Аладин Н. В., Хлебович В. В., Комендантов А. Ю. Криоскопический метод в гидробиологии.— Тр. Зоол. ин-та АН СССР, 1986, т. 141, с. 127—135. 7. Аладин Н. В., Шорников Е. И. Соленостные адаптации и осморегуляторные способности ракушковых ракообразных из Японского моря. Сообщение 1.— Зоол. журн., 1986, т. 65, вып. 6, с. 829—836. 8. Бодина Е. И. Остракоды третичных отложений Зайсанской и Идийской депрес-

сий. — Тр. ВНИГРИ, 1961, вып. 170, сб. XII, с. 43—168.

9. Бочков Е. П. Прибор с менисковыми манипуляторами для исследования микрообъектов в проходящем свете. В кн.: Материалы по палеонтологии и стратигра-

кроооъектов в проходящем свете.— В кн.: Материалы по палеонтологии и стратигра-фии Западной Сибири. Л., Гостоптехиздат, 1962, с. 170—174. 10. Бронштейн З. С. Оstracoda пресных вод. Ракообразные. Т. II, вып. 1. Фауна СССР. Л., Изд-во АН СССР, 1947. 339 с. 11. Бубикян С. А. Остракоды палеогеновых отложений Ереванского бассейна.— Изв. АрмССР. Сер. геол. и геогр. наук, 1958, т. ХІ, № 3, с. 3—16. 12. Бурындина Л. В. Сарматские остракоды из семейства Polycopidae и Cytheri-

dae Закарпатья.— Палеонтол. сб. Львов. ун-та, 1969, № 6, вып. 2, с. 62—67.

13. Векуа М. Л. Остракоды киммерийских и куяльницких отложений Абхазии и их стратиграфическое значение. Тбилиси, Мецниереба, 1975, 137 с.

14. Грамм М. Н. Внутренние структуры раковин палеозойских остракод. Л.,

- Наука, 1984. 72 с. 15. Грамм М. Н., Бухарина А. А. Сургіdea-подобные остракоды в неогене Узбе-
- кистана.— Палеонтол. журн., 1967, № 4, с. 95—99.
 16. Занина И. Е., Иванова В. А. К методике исследования и описания остра-код.— Палеонтол. журн., 1970, № 1, с. 142—149.
 17. Занина И. Е., Олейников А. Н. Применение элементов логического анализа

при ревизии таксономических группировок (на примере семейства Knoxitidae, остра-коды).— Тр. ВСЕГЕИ. Нов. серия, 1978, т. 289, с. 87—105.

18. Иванова В. А. Класс Crustacea. Подкласс Ostracoda. — В кн.: Палеонтологи-

ческий словарь. М., Наука, 1965. с. 470—475.

- 19. Имнадзе З. А. О некоторых новых видах остракодовой фауны плиоценовых отложений Западной Грузии — Тр. Груз. отд. ВНИГНИ, 1971, с. 79-86.
- 20. Кармишина Г. И. Результаты изучения некоторых остракод методом вариационной статистики. — Палеонтол. журн., 1970, № 4, с. 77—87.
- 21. Кармишина Г. И. Остракоды плиоцена юга европейской части СССР. Саратов, Изд-во Саратов. ун-та, 1975, 374 с.
- 22. Кармишина Г. И. Остракоды плиоцена юга европейской части СССР и их стратиграфическое значение. Автореф. докт. дис. Саратов, Изд-во Саратов. ун-та, 1975. 53 c.
- 23. Кармишина Γ . И. Изучение остракод опорных разрезов сармата и мэотиса юга европейской части СССР в связи с основными вопросами биостратиграфии позднего миоцена. В кн.: Тез. докл. 4-го Всесоюз. симпоз. по остракодам. Кишинев, 1979, c. 25—27.

√24. Кармишина Г. И., Неуструева И. Ю. История развития пресноводных остракод в мезозое и кайнозое Евразии. Вопр. микропалеонтологии, 1987, вып. 29, c. 127-140.

25. Кашеварова Н. П., Неуструева И. Ю. Состояние изученности и принципы классификации надсемейства Darwinulacea Brady et Norman, 1889.— Вопр. микро-

палеонтологии, 1982, вып. 25, с. 141-154.

26. Каейн Л. Н. Новые остракоды из верхнеплиоценовых и антропогеновых отложений Азербайджана.— В кн.: Сборник научно-технической информации АзИНТИ. Сер. Вопр. геологии и геофизики, 1963. Вып. 2, с. 91—96.

27. Коваленко А. Л. Морфологическое изменение раковины Cypris pubera (Crustacea, Ostracoda) в онтогенезе. В кн.: Фауна позднего кайнозоя междуречья Днестр-

Прут. Кишинев, Штиинца, 1978. 107 с.

28. Кизнецова З. В. Остракоды меловых отложений Северо-Восточного Азербайджана и их стратиграфическое значение. Баку, Азгосиздат. 1961. 48 с.

29. Лев О. М. Комплексы неоген-четвертичных остракод.— В кн.: Основные проб-

лемы палеогеографии позднего кайнозоя Арктики. Л., 1983, с. 104-143.

30. Ливенталь В. Э. Ostracoda акчагыльского и апшеронского ярусов по Бабаза-

нанскому разрезу.— Изв. Азерб. политехн. ин-та, 1929. 61 с. 31. Любимова П. С. Принципы систематики остракод мезокайнозоя.— В кн.: Микрофауна нефтеносных районов СССР. Л., ВНИГРИ, 1984, с. 4-29.

32. Мананков И. Н. Новый метод препарирования морских беспозвоночных.—

Палеонтол. журн., 1974, № 4, с. 121—123.

ъVV33. Манбельштам М. И. Остракоды из отложений палеогена Средней Азии.-В кн.: Микрофауна СССР, сб. 10.—Л., Гостоптехиздат, 1959, с. 442—543 (Тр. ВНИГРИ; Вып. 136).

√34. Мандельштам М. И. Систематика остракод надсемейства Cytheracea Ulrich et Bassler, 1923.— В кн.: Дочетвертичная микропалеонтология. М., Госгеолтехиздат,

1960, с. 134—139. (Междунар. геол. конгр., XXI сес. Пробл. 6). 35. Мандельштам М. И. Оценка морфолого-систематических признаков на раковинах ископаемых остракод и методика их изучения. — Изв. АН ТаджССР. Отд. физ.техн. и хим. наук, 1965, вып. 3(16), с. 61-85.

36. Мандельштам М. И., Маркова Л. П., Розыева Т. Р., Степанайтыс Н. Е. Остракоды плиоценовых и постплиоценовых отложений Туркменистана. Ашхабад, изд. АН

TCCP, 1962. 287 c.

37. Мандельштам М. И., Шнейдер Г. Ф. Ископаемые остракоды СССР. Семей-

- ство Сургідідас.— Тр. ВНИГРИ, 1963, вып. 203, 330 с.
 38. Мандельштам М. И., Шнейдер Г. Ф., Кузнецова З. В., Кац Ф. И. Новые роды остракод в семействах Сургідае и Cytheridae.— Ежегодник ВПО, 1957, т. 16, c. 166—193.
 - 39. Математика и ЭВМ в палеонтологии. Кишинев, Штиинца, 1983. 71 с.

40. Методика палеонтологических исследований. М., Мир, 1973. 392 с.

41. Методическое руководство по изучению и геологической съемке четвертичных отложений. Л., Недра, 1987. 307 с.

42. Негадаев-Никонов К. Н. О координатном методе измерений морфологических

элементов раковин остракод.— Палеонтол. журн., 1970, № 3, с. 151—152. 43. *Негадаев-Никонов К. Н.* Механизация процесса отмывки проб в микропалеон-

тологии (МПАН-1). Кишинев, Штиинца, 1971. 10 с. 44. Негадаев-Никонов К. Н. Остракоды континентального плейстоцена юга евро-

пейской части СССР. Кишинев, Штиинца, 1974. 216 с. 45. Неогеновая система. Стратиграфия СССР. М., Недра. 1986. 419 с. 46. Николаева И. А. Новые виды остракод из палеоцена Тургайского прогиба.— Ежегодник ВПО, 1977, т. 20, с. 191—196. 47. Николаева И. А. Палеогеновые и неогеновые остракоды Тургайского проги-

ба и Северного Приаралья. М., 1978. 187 с.— Деп. в ВИНИТИ, № 3532.
48. Николаева И. А. О критериях классификации семейства трахилеберидид (Ostracoda). — Вопр. микропалеонтологии, 1981, вып. 24, с. 116—123.

49. Николаева И. А. Новые виды остракод из палеогена Крыма и Северного Предкавказья. М., 1981. 36 с.— Деп. в ВИНИТИ, № 3992.

√ 50. *Николаева И. А*. Применение остр<mark>акод для</mark> зонального деления палеогена.—

Сборник научных трудов Днепропетр. ун-та, 1982, с. 45-50.

- 751. Николаева И. А. Глубоководные группы остракод в палеогене юга СССР и их значение для палеогеографии. — Сборник научных трудов Днепропетр. ун-та, 1984, c. 40-48.
- 52. Николаева И. А. Новое в систематической структуре надсемейства Trachyleberidacea (Ostracoda) и возможности использования этой группы в стратиграфии палеогена.— В кн.: Тез. докл. Х Всесоюз. микропалеонтол. совещ., Л., 1986, с. 152—153.
- 53. Олейников А. Н. Кодирование диагностических признаков. Политомические таблицы. В кн.: Цифровое кодирование систематических признаков древних организмов. М., Наука, 1972, с. 12—54.
- 54. Основы палеонтологии. Членистоногие, трилобитообразные и ракообразные. М., ГОНТИ, 1960. 515 с.

55. Павловская В. И. Новый раннеплиоценовый медиоцитеридеис Прикаспийской низменности. — В кн.: Новые роды и виды древних растений и беспозвоночных СССР.

Л., Недра, 1980, с. 179—180.
56. Павловская В. И. К вопросу о стратиграфии среднего и верхнего плиоцена Прикаспийской впадины (остракоды).— В кн.: Микрофауна нефтегазоносных районов

СССР Л. ВНИГРИ, 1984, с. 101—107.

57. Павловская В. И., Волкова Н. С., Зубаков В. А. Новые данные по Таманскому опорному разрезу мно-плиоцена Причерноморья. — Докл. АН СССР, 1985, т. 284, № 4, c. 925—928.

58. Постановления Межведомственного стратиграфического комитета и его по-

стоянных комиссий, вып. 21. Л., ВСЕГЕИ, 1983. 74 с.

59. Постановления Межведомственного стратиграфического комитета и его постоянных комиссий, вып. 23. Л., ВСЕГЕИ, 1987. 60 с. 60. Раузер-Черноусова Д. М., Фурсенко А. В. Определитель фораминифер нефтеносных районов СССР. Ч. 1. Л.—М., Гл. ред. горно-топ. лит., 1937. 319 с.

61. Сакина Н. И. Новые виды остракод из палеогеновых отложений Восточного Устюрта. Науч. тр. аспирантов ТашГУ. Физика и геология, 1971, вып. 407, с. 171-

62. Старобогатов Я. И. Система ракообразных. — Зоол. журн., 1986, т. 15, вып. 12, c. 1769—1781.

63. Сузин А. В. Остракоды третичных отложений Северного Предкавказья. М., Гостоптехиздат, 1956. 184 с.

64. Труды первого семинара по микрофауне. Л., Гостоптехиздат, 1960. 342 с. 65. Хлебович В. В. Критическая соленость биологических процессов. Л., Наука, 1974. 236 c.

66. Хохлова И. А. Новые позднеэоценовые остракоды из Тургайского прогиба.— Палеонтол. журн., 1961, № 4, с. 109—114.

67. Хохлова И. А. О находке представителя рода Aulocytheridea в эоцене Тур-

гайского прогиба. - Тр. ВСЕГЕИ. Нов. серия, 1964, т. 93, с. 29-34. 68. Швейер Л. В. Остракоды «остракодового пласта» Северо-Западного Кавка-

3а.— Тр. НГРИ, 1938, сер. А, вып. 104, с. 63—79.
69. Швейер А. В. К систематике и классификации ископаемых Ostracoda.—
Докл. АН СССР, 1940, т. 29, № 2. Палеонтология, с. 172—176.

70. Швейер А. В. Основы морфологии и систематики плиоценовых и постплиоценовых остракод. Л., Гостоптехиздат, 1949. 109 с.

/71. Шеремета В. Г. Остракоды палеогена Украины. Львов, Изд-во Львов. ун-та, 1969. 273 c

72. Шнейдер Г. Ф. Миоценовая фауна остракод Кавказа и Крыма.— В кн.: Микрофауна нефтяных месторождений СССР. Сб. 2. Л., 1949, с. 89-182. (Тр. ВНИГРИ. Нов. серия; Вып. 34).

73. Шорников Е. И. Живое ископаемое — представитель Protocytherini (Ostracoda) из Курило-Қамчатской впадины.— Зоол. журн., 1975, т. 54, вып. 4, с. 517—525. 74. Шорников Е. И. Остракоды Bythocytheridae Дальневосточных морей. М.,

Наука, 1981. 199 с.

75. Шорников Е. И. Несоответствия между «зоологической» и «палеонтологической» классификациями остракод и возможные пути их преодоления.— В кн.: Тез. докл. X Всесоюз. микропалеонтол. совещ., 1986, с. 232—234.

76. Al-Furaih A. A. On Paragrenocythere biclavata Al-Furaih gen et sp. nov.—

Stereo-Atlas Ostracod Shells, 1975, vol. 2, pt. 4 (37), p. 231-238.

77. Apostolescu V. Contribution a l'étude des ostracodes de l'Eocène inférieur (s. l.) du Bassin de Paris. - Rev. Inst. Franc. Pétrole Ann. Combust. Liquides, 1956, vol. XI, № 11, p. 1327—1352.

78. A stratigraphical Index of British Ostracoda.— Geol. J., 1978, Spec. iss. 538 p. 79. Atlas des Ostracodes de France.— Mém. Flf-Aqut., 1985, № 9, 396 p. 80. Bassiouni M. A. Einige Buntonia- und Soudanella-Arten (Ostracoda, Crustac) aus dem Eozān von Jordanien.— Palāontol. Ztschr., 1969, Bd. 43, H. 3/4, S. 205—214.

81. Bassiouni M. A. Ostracoden aus dem Eozän von Agypten. Trachyleberidinae.-

Geol. Jb., 1969, Bd. 87. S. 383-426.

- 82. Bassiouni M. A. Ostracoden aud dem Eozān von Agypten. Die Unterfamilien Hemicytherinae, Thaerocytherinae und Camphycytherinae.— Geol. Jb., 1969, Bd. 88,
- 83. Bassiouni M. A. Ostracoda (Mauritsininae und Trachyleberidinae) und ihre Bedentung für die Biostratigraphie des Maastricht des Altertiär von Jordanien.— Beih. Geol.

Jb., 1971, № 106, S. 5-54.
 84. Bate R. H., East B. A. The structure of the ostracode carapace.— Lethaia, 1972,

vol. 5, № 2, p. 177—194.

85. Benson R. H. The Bradleya problem, with descriptions of two new psychrospheric Ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smith. Contribs. Paleobiol., 1972, No. 12, 138 p. 86. Benson R. H. The Cenozoic Ostracode faunas of the Sao Paulo. Plateu and the

Rio Grande rise (DSDP Leg. 39, Sites 356 and 357).—Init. Rep. DSDP, 1974, vol. 39,

p. 869-883.

- 87. Benson R. H. Morphologic stability in Ostracoda. Bull. Amer. Paleontol., 1975, vol. 65, № 282, p. 13—45.
- 88. Benson R. Estimating greater paleodephs with Ostracodes, especially in past thermosphaeric oceans, — Paleogeogr., paleoclimatol., paleoecol., 1984, vol. 48, No. 1, p. 107-141.
- 89. Bismuth H., Keij A. J., Oertli H. J., Szczechura J. The Genus Loculicytheretta (Ostracoda).— Bull. Cent. Rech. Explor. Prod. Elf-Aqut., 1978, vol. 2, № 2, p. 227—263.
- 90. Bosquet J. Description Entomostracés fossiles des terrains tertiaires de la France et de la Belgique. Mém. cour., Mém. sav. étrang., Akad. roy. Belg., 1852, t. 24.
- 91. Cadot H. M., Kaesler R. L. Variation of carapace morphology of Bairdiacean and Cytheracean ostracoda from Bermuda.—Univ. Kans. Paleontol. Contr. Pap., 1973,

92. Carbonel P. Les Ostracodes, traceurs des variations hydrologiques dans les systemes de transition eaux douces - eaux salées. - Mém. Soc. geol. Fr., N. S., 1982,

№ 144, p. 117—128.

93. Carbonnel G. Sur nouveu genre (Paralimnocythere) et une novelle espèce (P. bouliegensis) d'ostracodes du Tortonien. — Arch. Sci. Geneve, 1965, vol. 18, fasc. 1, p. 146—150.

94. Carbonnel G. Morphométrie et hypersalinité chez Cyprideis torosa (Jones) (Ostracoda, actuel) dans les salines de Santa - Pola (Alicante, Espagne) - Sci. géol. Bull.,

1983, vol. 36, № 4, p. 211-219.
95. Carbonnel G., Ritzkowski S. Ostracodes lacustres de L'oligocéne.—Arch. Sci. Geneve, 1969, vol. 22, fasc. 1, p. 55-82.

96. Devoto G. Lacustrine Pleistrocene in the lower Liri Valley (Southern La-

tium).— Geol. Rom., 1965, vol. IV, p. 291—368. 97. Diebel K., Wolfschlager H. Ostracoden aus dem jungpleistozän Travertin von Ehringsdorf bei Weimar. — Abh. Zentr. Geol. Inst., 1975, H. 23, T. 2, S. 91-136.

98. Deroo G. Cytheraceae (Ostracodes) du Maastrichtian de Maastricht (Pays-Bas)

et des regions voisines: résultats stratigraphiques et paleontologiques de leur etude.—
Med. Geol. Sticht, ser. C. 1966, vol. 2, Nº 2, 197 p.

99. Donze P., Colin J. P., Damotte R., Oertli H. J., Peypouquet J. P., Said R. Les
Ostracodes du Campanien teminal à l'Eocène inférieur de la coupe du Kel, Tunisse nordoccidentale. Bull. Centres Rech. Explor., Prod. Elf-Aquit., 1982, vol. 6, № 2, p. 237—335.

100. Doruk N. On Costa edwardsi (Roemer) - Stereo-Atlas Ostracod Shells, 1973,

vol. 1, pt. 4(44), p. 245—248.

101. Faupel M. Die Ostracoden des Kassler Meeressandes (Oberoligozän) in Nordhessen.— Götting. Arb. Geol. und Paläontol., 1975, № 17. 77 S.

102. Fossil and Recent Ostracods — Brit. Micropaleontol. Soc. Ellis Horw. Ltd.,

1982. 493 p.

103. Goerlich F. Über die Genotypen und den Begriff der Gattungen Cyprideis und Cytheridea (Ostracoden).— Senckenberg., 1952, Bd. 33, № 1/3, S. 185—192.

104. Grekoff N. Apercu sur les Ostracodes Fossiles. Soc. Edit. Techn., Inst. Franç. Petrole, 1970. 103 p.

105. Grossman S. Morphology and ecology of two podocopid Ostracodes from Red fish Bay, Texas. Micropaleontol., 1965, vol. 11, № 2, p. 141—150.

106. Gründel J. Zur Grossgliederung der Ordnung Podocopida G. W. Müller, 1894

(Ostracoda).— Neues Jb. Min., Geol., Paläont., Monats H., 1967, No. 6, S. 321—332. 107. Gründel J. Zur Taxonomic und Phylogenic der Cytherettidae Triebel, 1952 (Ostracoda, Crustacea).— Freiberg. Forschungsh., 1974, C. 298, S. 81—100.

108. Gründel J. Zur Taxonomic und Phylogenic der Unterfamilie Paracytherideinae Puri, 1957 (Cytherocopina, Ostracoda).— Ztschr. Geol. Wiss., 1975, Jg. 3, H. 5, S. 655-670.

109. Gründel J. Zur Taxonomic und Phylogenic der Cytherurinae G. W. Müller, 1896 (Cytherocopina, Ostracoda) im Zeitraum Trias bis Unterkreide.— Ztschr. Geol. Wiss., 1976, Jg. 4, H. 11, S. 1531—1542.

110. Gründel J. Neue taxonomische Einheiten der Cytherocopina Gründel, 1967

(Ostracoda).— Ztschr. Geol. Wiss., 1976, Jg. 4, H. 9, S. 1295—1302.

111. Gründel J. Überblick über die Klassification der Trachyleberidacea (Cytherocopina, Ostracoda) mit bemerkungen zur taxonomischen Bedeutung der Narbenaufspaltung innerhalb der Übersamilie-Ztschr. Geol. Wiss., 1977, Jh. 5, H. 7, S. 899-907.

112. Gründel J. Zur Phylogenic der Trachyleberidacea (Cytherocopina, Ostracoda).— Freiberg. Forschungsh., 1977, C. 326, S. 33—43.

113. Gründel J. Bemerkungen zur Phylogenie der Cytherideidacea Sars, 1925 (Cytherocopina, Ostracoda).— Ztschr. Geol. Wiss., 1978, Jg. 6, H. 10, S. 1251—1261.

114. Gründel J. Die Ordnung Podocopida Sars, 1866 (Ostracoda) Stand und Probleme der Taxonomie und Phylogenie.— Freiberg. For — schungsh., 1978, C. No. 334, S. 49-68.

115. Gründel J., Kozur H. Zur Phylogenie der Tricorninidae und Bythocytheridae

(Podocopida, Ostracoda) - Freiberg. Forschungsh., 1973, C. 282, S. 99-111.

116. Gründel I., Kozur H. Systematische Gliederung und phylogenetische Beziehun-

gen der triassischen und jurassischen Cytherocopina.- Freiberg. Forschungsh.. 1975. C. № 309, S. 135—160.

117. Harding J. P., Sylvester-Bradley P. C. The Ostracodes genus Trachyleberis.—Bull. Brit. Mus. (Natur. History) Zool., 1953, vol. 2, No. 1, 16 p.

118. Hartmann G. Ostracoda.— In: Klassen und Ordnungen des Tierreichs. Bd. 5. Arthropoda, Abth. 1: Crustacea, B. 2, T. 4, Lfg. 4. Leipzig, 1966, № 138, S. 1—216; 1967, № 139, S. 217—408; 1968, № 140, S. 409—568; 1975, № 143, S. 569—786.

119. Hartmann G., Puri H. Summary of neontological and paleontological classification of Ostracoda.—Mitt. Hamb. Zool. Mus. und Inst., 1974, Bd. 70, S. 7—73.

120. Hazel J. E. Classification and distribution of the recent Hemicytheridae and Trachyleberididae (Ostracoda) Off Norheastern North America. U. S. Geol. Surv., Prof. Pap., 1967, № 564. 49 p.

121. Hazel J. E. Ostracodes from the Brightseat Formation (Danian) of Maryland.—

J. Paleontol., 1968, vol. 42, № 1, p. 111—142.
 122. Helmdach F. F. Leitsaden zur Bestimmung fossiler und rezenter Ostracoden.

Berlin, Walter de Gruyter, 1977. 264 p.

123. Hornibrook N. B. Tertiary and Recent marine Ostracoda of New Zealand.— New Zeal. Geol. Surv. Paleontol., 1953, Bull., № 18. 82 p

124. Howe R. C., Howe H. J. Ostracodes from the Shubuta clay (Tertiary) of Mississippi.— J. Paleontol., 1973, vol. 47, № 4, p. 629—656.

125. Howe H. V., Laurencich L. Introduction to the Study of Cretaceous Ostracoda. Louis. Univ. Press, 1958. 536 p.
126. Howe H. V., Law J. Louisiana Vicksburg Oligocene Ostracoda.—Bull. Geol.

Surv., 1936, № 7, 96 p.
127. Huff W. J. The Jakson Eocene Ostracode of Mississippi.— Miss. Geol. Econ. and Topogr. Surv. Bull., 1970, № 114. 209 p.

128. Jones T. R. A monograph of the Entomostraea of the Cretaceous formation of

England. Paleontogr. Soc., Ld., 1849, 41 p.
129. Keen M. C. Mid-Tertiary Cytherettinae of north-west Europe.—Bull. Brit. Mus.

Nat. Hist., Geol., 1972, vol. 26, № 6, p. 261-349.

130. Keen M. C. An evolutionary study of two homeomorphic Tertiary Cytherid Ostracod genera.— In: Evolution of Post-Paleozoic Ostracoda. Abh. und Verh. Naturwiss. Verl. Hamburg, 1976, Suppl. 18/19, p. 319—323.

131. Keij A. J. Eocene and Oligocene Ostracoda of Belgium.— Mem. Inst. Roy. Sci. Natur. Belg., 1957, No. 136. 210 p.

132. Kempf E. K. Index and bibliography of Nonmarine Ostracoda.— Geol. Inst. Univ. Köln. Zonderver, 1980. 1. Index A, № 35, 188 p.; 3. Index C, № 37, 204 p.; 4. Bibliography A, № 38, 186 p.

133. Kempf E. K. Index and Bibliography of Marine Ostracoda.— Geol. Inst. Univ.

Köln. Zonderver, 1986, Index A, № 50, 762 p.

134. Kesling R. V. Terminology of Ostracod carapaces.— Contrib. Mus. Paleontol. Univ. Michigan, 1951, vol. 9, № 4, p. 93—171.

135. Klie W. Beitrag zur Kenntnis der Susswasser Ostracoden Russlands.— Работы Волж. биол. ст., 1923, т. 7, № 1/2, с. 58—67.

136. Kozur H. Einige Bemerkungen zur Systematik der Ostracoden den Beschreibung

neuer Platycopida aus der Trias Ungarns und der Slowakei.- Geol. Paläontol. Mitt.

Insbruck, 1972, Bd. 2, № 10, S. 1—27.

137. Krstich N., Stancheva M. Pontoleberis gen n. (Ostracoda) from the Neogene of Bulgaria and Jugoslavia. — Изв. Геол. Инст. Българ. Акад. Наук. Сер. палеонтол., 1967, кн. XVI, с. 17—18.

138. Langer W. Rasterelectronmikrospische Beobachtungen über den Feinbau von Ostracoden—Schalen.— Paläontol. Ztschr., 1971, Bd. 45, No. 3/4, S. 181—186.
139. McKenzie K. G. Recent Ostracoda from port Phillip bay, Victoria.— Proc. Roy.

Soc. Victoria. New. ser., 1967, vol. 80, pt. 1, p. 61—106.

140. McKenzie K. G. Homeomorphy: Persistant joker in the taxonomic pack, with the description of Bradleycypris gen. n.— In: Fossil and Recent Ostracods. Brit. Micropaleontol. Soc., 1982, p. 406-438.

141. McKenzie K. G., Müller K. J., Gramm M. N. Phylogeny of Ostracoda.—In:

Crustacean phylogeny — Crustacean. Rotterdam, A. A. Balkema Publ., 1983, vol. 1, p. 29—46.

142. Maddocks R. F. Revision of Recent Bairdiidae Ostracoda. - Bull. Smith. Inst., US Nat. Mus., 1969, № 295. 126 p.

143. Maddocks R. F. Anatomy of Australoecia (Pontocyprididae), Ostracoda.— Micropaleontol., 1977, vol. 23, № 2, p. 206—215.

144. Maddocks R. F. Evolution within the Crustacea. P. 4. Ostracoda.— In: The Biology of Crustacea. Systematics, the fossil record, and biogeography. N. Y.—Ld, Acad. Press, 1982, vol. 1, p. 221—239.

145. Malz H. New data on Indopacific Hemikrithe.— In: Fossil and Recent Ostra-

cods. Brit. Micropaleontol. Soc., 1982, p. 219-230.

146. Malz H., Moayedpour E. Miozäne Susswasser-Ostracoden aus der Rön.- Senckenberg. lethaea, 1973, Bd. 54, № 2/4, S. 281-310.

147. Malz H., Triebel E. Ostracoden aus dem Sannois und jungeren Schichten des

Mainzer Beckens, 2: Hemicyprideis n. g. - Senckenberg. lethaea, 1970, Bd. 51, № 1. S. 1-47.

148. Mehes G. Die Ostracoden des Oberoligozäns der Umgebung von Budapest.-

Geol. Hung., Ser. Paläontol., 1941, Fasc. 16, 95 S.

149. Moos B. Die Ostracoden-Fauna des Unteroligozäns von Bünde (Bl. Herford-West, 3817) und einige verwandte jungere Arten (Ostr., Crust.). I. Quadracythere (Hornibrookella) n. subg., Pokornyella, Hemicythere, Hermanites. — Geol. Jb., 1965, Bd. 82, S. 593-630.

150. Moos B. Die Ostracoden-Fauna des Unteroligozäns von Bunde (Bl. Herford-West, 3817) und einige verwandte Arten aus veschiedenen Tertiärstufer (Östr., Crust.). II. Trachyleberidea Bowen, 1953, Hazelina n. gen.— Geol. Jb., 1967, Bd. 84, S. 281—298.

151. Moos B. Ostracoden des norddeutschen Eozän ung einige Arten aus dem Oligozän.— Geol. Jb., 1973, R. A., H. 6, S. 61—95.
152. Morris R. W. A new concept in ostracod texonomy.— Micropaleontol., 1958,

vol. 4, № 4, p. 341—346. 153. Müller G. W. Ostracoden des Golfes von Neapel und der angrenzenden Meeres-

Abschnitte.— In: Fauna und Flora des Golfes von Neapel, 1894, 21, Berlin, 404 S.

154. Muir M. D., Grant P. R. Photography in paleontology. — Photogr. Techn. Sci,

vol. 1. Ld.—N. Y., 1973, p. 295—338.

155. Neale J. W. Normanicythere gen. nov. (Pleistocene and Recent) and the division of the Ostracod family Trachyleberididae.—Paleontol., 1959, vol. 2, pt. 1, p. 72—93.

156. Oertli H. J. Ostracoden aus der Oligozänen und Miozänen Molasse der Schweiz.—Schweiz. paläontol. Abh., 1956, Bd. 74. 119 S.

157. Peypouquet J. P. Les relations ostracodes-profondeur. Principes applicables pendant le cenozoique.— Bull. Inst. Geol. Bas. d'Aquit., Bordaux, 1980, № 28, p. 13—28. 158. Pokorny V. Zaklady Zoologicke Micropaleontologie. Praha, 1954. 651 S.

159. Pokorny V. Grundzuge der zoologischen Micropaläontologie. Bd. II, Berlin,

1958, S. 66-322.

160. Pokorny V. Oertliella and Spinicythereis, new Ostracode Genera from the Upper Cretaceous.— Vestn. ustred. ustavu geol., 1964, roč. 39, № 4, p. 283—285.

161. Pokorny V. The genus Curfsina (Ostracoda, Crustacea) from the Upper Cretaceous of Bohemia, Czechoslovakia.—Acta. Univ. Carol. Geol., 1967, № 4, p. 345—364.

162. Rosenfeld A., Vesper B. The variability of the sieve pores in recen and fossil species of Cyprideis torsa (Jones 1850) as an indicator for salinity and paleosalinity.—
In: Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. The Hague, Dr. W. Junkb. v. Publ., 1977, p. 55—67.

163. Sars G. O. Oversigt af Norges marine ostracoder.—Forh. Vidensk. Selskab

Christiania, 1865 (1866). 130 S.

164. Sars G. O. An Account on the Crustacea of Norway, Vol. 9, Ostracoda.—Bergen

Museum, Oslo, 1922—1928. 277 p.
165. Siddiqui Q. A. Early tertiary Ostracoda of the family Trachyleberididae from

West Pakistan.—Bull. Brit. Museum (Nat. Hist.). Geol., 1971, suppl. 9. 98 p. 166. Sissingh W. Late Cenozoic Ostracoda of the South Aegean island Arc.—Utrecht micropaleontol. bull., 1972, № 6. 187 p.

167. Sohn J. G. Early tertiary Ostracodes from West Pakistan.— Mem. Geol. surv.

Pakistan, Paleontol., 1970, vol. 3, № 1. 51 p.
168. Sokach A. Pannonian and Pontian ostracode fauna of Mt. Medvednica.—Paleontol. Jugosl., 1972, sr. II. 140 p.

169. Sonmez N. Deux noveaux generes d'ostracodes du Paleogene de Thrace (Turquie).— Rev. micropaleontol., 1963, vol. 6, № 2, p. 76—84.

170. Станчева М. Остракодна фауна от неогена в Северозападна България. IV. Понтски остракоды. — Тр. върху геол. Бълг. Сер. палеонтол., 1965, кн. VII, с. 15—70.

171. Stancheva M. New data on the subfamily Leptocytherinae H a n a i, 1957.— Изв. па геол. ин-т. Сер. палеонт. 1968, vol. XVII, р. 37—48.

172. Sylvester-Bradley P. C. The structure, elotution and nomenclature of the ostracod Hinge.— Bull. Brit. Museum (Nat. Hist.). Geol., 1956, vol. 3, № 1, р. 1—21.

173. Sylvester-Bradley P. C., Benson R. H. Terminology for surface features in ortic Octave des. Lething 1071, vol. 4, № 3, 2, 240, 296

nate Ostracodes.— Lethaia, 1971, vol. 4, № 3, p. 249—286.

174. Tarkowski R. Wzbogacenie utworow piasczystch w mikrofaune za pomoca flotacji.— Zesz. nauk AGH, 1978, № 686, str. 57—62.

175. Treatise on Invertebrate Paleontology. Pt. Q.—Soc. America, Kansas Press,

1961. 442 p

176. Triebel E. Zur Morphology und Okologie der sossilen Ostracoden. Senckenberg.,

170. Triebel E. Die estren Ostracoden aus der Paludienbank.— Ztschr. Geschiebeforsch. Flachlandgeol., 1941, Bd. 17, H. 2, S. 61—75.

178. Triebel E. Micropaleontologische Kennzeichnung der Ostracoden—Gattungen
Xenocythere und Palmenella. Senckenberg., 1949, Bd. 30, № 4/6, S. 185—192.

179. Triebel E. Zur Kenntnis der Ostracoden-Gatting Paijenborchella.- Senckenberg., 1949, Bd. 30, № 4/6, S. 193-203.

180. Triebel E. Homöomorphe Ostracoden-Gattungen. Senckenberg., 1950, Bd. 31, **№** 5/6, S. 313—330.

181. Triebel E. Zwei neue Ostracoden—Gattungen aus dem Lutet des Pariser Beckens.— Senckenberg. lethaea, 1958, Bd. 39, № 1/2, S. 105—117.
182. Triebel E. Ostracoden in: Microskopie in der Geologie sedimentarer Lagrestätten

(Micropaleontologie) - Frankfurt, 1958, S. 193-233.

183. Triebel E. Moenocypris n. g. (Crustacea, Ostracoda). - Senckenberg. lethaea, 1959, Bd. 40, № 1/2, S. 1—17.

184. Van Morkhoven F. P. C. M. Post-Paleozois Ostracoda, their morphology, taxonomy and economic use, Vol. 1. Amsterdam—Ld—NY., 1962. 204 p.

185. Van Morkhoven F. P. C. M. Post-Paleozoic Ostracoda, their morphology, taxonomy, and economic use, Vol. 2. Amsterdam—Ld.—NY., 1963, 478 p.
186. Wagner C. W. Ostracods as environmental indicators in Recent and Subrecent estuarine deposits of the Netherlands.—Pubbl. Staz. Zool., Napoli, 1964, vol. 33, suppl. Ostracods as ecological and palaeontological indicators, p. 480-495.

187. Witt W. Ostracoden der bayerischen Molasse (unter besonderer Berucksichtigung der Cytherinae, Leptocytherinae, Trachyleberidinae, Hemicytherinae und Cytherettinae) — Geol. bavarica, 1967, No. 57, S. 5—120.

188. Yassini J. Ecologie des Associations d'Ostracodes du Bassin d'Archachon et du Littoral Atlantique. Application a l'Interpretanion de quelques Populations du Tertiare.-Aquit. thés., 1969, Bull. Inst. Geol. Bas. Aquit., № 7, 288 p.

189. Zalanyi B. Morpho-systematische studien über fossile Muschelkrebse.— Geol.

Hungar., ser. Palaontol., 1929, fasc. 5, 147 S.

УКАЗАТЕЛЬ РОДОВ И ПОДРОДОВ

Aaleniella 186	Australoecia 93
Abditacythere 124	Aversovalva 133
Absonocytheropteron 161	Azygocypridina 24
Abyssocypris 75, 93, 95, 195, 207	* · · · · · · · · · · · · · · · · · · ·
Abyssocythere 144, 195, 207	Baffinicythere 170, 201
Abyssocythereis 77, 143	Bairdia 24, 46, 75, 89, 195, 207
Acanthocuthoraic 78 140 150 106 901	Bairdoppilata 75, 89, 211
Acanthocythereis 78, 149, 150, 196, 201,	Bakunella 75, 101, 102, 197, 199-201,
204, 212	216
Acetabulastoma 46, 123	Bassleria 177
Acocypris 109	Basslerites 145
Actinocythereis 154	Batavocythere 143
Acuminacythere 135	Bathycythere 163, 207
Acuminocythere 124	Baturinella 76, 118, 200, 201
Acuticythereis 175	Beatmoosina 146
Acuticytheretta 146	Bensonocythere 175
Advenocypris 75, 99, 200	Bentocypria 76, 114, 115
Aenigma 189	Bicornucythere 46
Aequacytheridea 79, 185	
Afrocypris 105	Bisulcocypris 128 Boldella 123
Afrocythere 128	
Aglaia 97	Bonnyannella 139
Aglaiella 95	Boroecia 46
Aglaiocypris 47, 75, 95, 97, 198, 199	Bosquetina 22, 78, 160, 161, 198
Agrenocythere 78, 154, 195, 196, 207, 212	Botulocyprideis 177
Alatacythere 78, 160, 213	Brachycythere 41, 141
Alataleberis 160	Brachycytheropteron 133
Alatanesidea 89	Bradleystrandesia 108
Alatocandona 98	Bronsteiniana 177
Alboa 107	Budaia 135
Alieviella 177	Buntonia 41, 77, 145
Allarunella 132	Bythoceratina 121
	Bythocypris 75, 89, 91, 195, 207
Allocypria 114	Bythocythere 76, 120, 205, 207
Alteratrachyleberis 163	Bythocytheromorpha 120
Ambocythere 59	Bytholoxoconcha 139
Ambostracon 174	
Ambtonia 145	Cabonocypris 108
Amnicythere 46, 77, 128, 129, 200, 201	Callistocythere 77, 128, 129, 198, 217
Amphicypris 108	Camptocypria 98
Amphicytherura 77, 136	Camptocythere 124
Amphischuleridea 185	Campylocythere 175
Amplocypris 75, 101, 199, 203	Campylocythereis 175
Ankumia 86	Candocypria 114
Anommatocythere 79, 173, 213	Candona 15, 28, 47, 75, 98, 198—200
Anomocytheridea 177	202, 203, 205, 206, 216
Antarcticythere 121	Candonella 115
Antepaijenborchella 132	+Candoniella 98
Antibythocypris 177	Candonocypris 108
Apateloschizocythere 136	Candonopsis 75, 98, 205
Apatocythere 185	Cardobairdia 87
Aphrikanecythere 144	Caribecandona 98
Aquitaniella 153	Carinobairdia 89
Arculicythere 186	Carinocythereis 46, 150
Argenticytheretta 146	Carinovalva 78, 160, 161, 198
Argilloecia 75, 93, 196, 197, 205—207	Caspiocypris 75, 101, 102, 197, 199, 200
April 100 101	201
Aspidoconcha 191	
Astenocypris 108	Caspiolla 75, 101, 102, 107, 197, 199—201
Asterope 205	216 Cospielling 75 101 109 107
Asymmetricythere 145	Caspiollina 75, 101, 102, 197
Atjehella 159	Cativella 150
Atlanticythere 149, 195	Caudites 55
Aulocytheridea 79, 177, 180	Cavellina 24
Aurila 9, 79, 173, 197—199, 205, 206, 217	Cavernocandona 99
Auris 170	Cetacella 114
Australicythere 166	Chardaglaia 95
Australimoosella 175	Cheikella 115
	Chlamydotheca 55, 105
Australocypridopsis 115	Chrissia 109
Australocytheridea 186	Chrysocythere 150

Citrella 135 Cladarocythere 125 Cletocythereis 166 Clithrocytheridea 79, 177, 181-11 (1) > (Climacoidea 174 Mand. Cnestocythere 77, 136, 137, 198 Cocoaia 177 Conchoecia 20 Cophinia 177 Cornicythereis 153 Costa 78, 150, 198 Costacythere 143 Costaveenia 145 Crassacythere 120 Cresacytheridea 135 Cretaceratina 120 Cryptocandona 75, 98, 198 Cryptocyprideis 79, 187, 200, 204 Cuneoceratina 120, 196 Cuneocythere 79, 183, 212 Curfsina 78, 153 Cushmanidea 186 Cuvillierina 170 Cyamocytheridea 79, 177, 180, 212 Cyclasterope 24 Cuclocupria 114 Cyclocypris 47, 76, 114, 198, 202, 203, 205, 216 Cylindrus 146 Cypria 76, 114, 198, 203, 216 Cypricercus 76, 108, 205 Cyprideis 27, 47, 79, 177, 198, 199, 201, 202, 204, 205, 206, 216, 217 Cypridina 24, 55, 75, 83, 205, 206 Cupridopsis 13, 17, 47, 76, 115, 198, 200, 203, 205 Cyprilla 115 Cyprinotus 47, 75, 105, 107, 198, 200, 202, 205 Cypris 28, 37, 47, 75, 105 Cyprois 76, 118 Cytheralison 120 Cythere 28, 46, 77, 124, 205 Cythereis 28, 41, 154 Cytherella 24, 59, 75, 86, 195, 204, 205, 207, 211, 213 Cytherelloidea 55, 75, 86, 87, 211, 213 Cytheretta 55, 78, 146, 197, 205, 206, 210, 211, 212, 213 Cytheridea 47, 79, 177, 197, 205, 206, 213 Cytheridella 125 Cytherina 86 Cytherissa 79, 186, 187, 197, 201, 203, 206 Cytherois 46, 77, 123, 124, 197, 205 Cytheroma 46 Cytheromorpha 46, 55, 77, 139, 140, 205 Cytheropterina 133, 185 Cytheropteron 19, 77, 133, 197, 201, 204, 205, 207, 212, 213 Cytherura 46, 77, 132, 197, 198, 205 Cytherurina 132 facilly Hand

Dactylia 177
Dahomeya 124
Danielocandona 98
Darwinula 24, 47, 75, 92, 198, 205, 206
Delamarcythere 124
Denticulocythere 75, 125, 127, 197, 199—
203, 217
Dentokrithe 189
Diacypris 47, 105
Dicrorygma 183

Diebelina 166
Digmocythere 141
Diogmopteron 160
Discoconchoecia 40
Disopontocypris 75, 101, 197, 212
Dogelinella 75, 105, 107
Dolerocypris 47, 108, 203
Doratocythere 175
Dordoniella 185
Doricythereis 78, 154, 155
Dorukella 170
Dumontina 78, 151

Echinocythereis 37, 78, 163, 196, 197, 205, 210 - 213Egenacuthere 176 Elkocythereis 125 Elofsonella 79, 170, 171, 201, 204, 205 Elofsonia 139 Elpidium 128 Eocytheropterina 135 Eocytheropteron 135 Eopaijenborchella 77, 137, 197, 213 Eorotundracythere 186 Eoschuleridea 185 Erythrocypris 93, 205 Escharacytheridea 177 Eucandona 98 Eucyprinotus 107 Eucypris 47, 76, 108, 198—203 Eucythere 79, 186, 197, 198, 205 Eucythereis 173 Eucytheretta 147 Eucytheridea 79, 177, 181, 197, 201 Eucytherura 77, 132 Eudechacythere 185 Eukrithe 189 Euphilomedes 46 Eurycypris 105 Euxinocythere 77, 128, 129 Evisceratocythere 120

Fabaeformiscandona 98 Falcocythere 177 Falunia 78, 150, 151 Finmarchinella 171 Fissocandonocypris 98 Fissocarinocythere 159 Flexus 78, 146, 147, 212 Fossocytheridea 177 Frambocythere 128 Frontocytherina 125 Fusocandona 98

Galolimnocythere 46, 125 Gerdocupris 95 Gesa 109 Gibberleberis 151 Gibboborchella 132 Glenocythere 145 Globocypris 105 Glyptobairdia 89 Gobiocypris 177 Goerlichia 180 Gomphocythere 128 Graptocythere 173 Graviacypris 98 Grekoffiana 147 Grinoineis 78, 166 Gubkiniella 137 Guriella 75, 101, 102

Hammatocythere 78, 166, 167, 212, 213 Kochia 99 Hanaiceratina 120 Koilocythere 191 Haplocytheridea 79, 177, 180, 212 Kollmannia 139 Harringtonia 145 Kollmannella 177 Hastacandona 98 Konarocythere 77, 135 Haughtonieleberis 151 Kovalevskiella 77, 128, 198 Krithe 79, 189, 196, 198. Havanardia 89 204-206, 207 Hazelina 78, 153, 197, 212 Kroemmelbeinella 131, 133 Hechticythere 143 Kuiperiana 139 Heinia 139 Hemicyprideis 79, 177, 179, 202 Laevicytheridea 177 Hemicuprinotus 75, 105, 107 Laocoonella 123 Hemicypris 107 Leguminocythereis 79, 175, 196 Hemicythere 46, 55, 79, 170, 205 Leiria 105 Hemicytheria 79, 170, 198, 201 Leocytheridea 177 Hemicytheridea 177 Leptocythere 46, 77, 128, 197-201, 204, Hemicytherideis 186 205, 216, 217 Hemicytherura 77, 132, 205 Leucocythere 125 Hemikrithe 170 Leviella 86 Hemingwayella 135 Limburgina 213 Hemiparacytheridea 135 Limnocythere 46, 77, 125, 202, 203, 205, Hermanites 166, 210 206, 216 Herpetocyprella 76, 109 Limnocytherina 125 Herpetocypris 76, 109, 111, 198, 202, 203, Limnocytheropteron 125 205 Lindisfarina 139 Lineocypris 75, 98, 99, 217 Herrigocythere 144 Heterocyprideis 79, 177, 181, 205 Linocheles 191 Heterocypris 47, 75, 105, 107 Liocypris 108 Heterocythereis 181, 205 Liventalina 75, 101, 102, 197, 201 Hiltermannicythere 151 Lixouria 161 Hirschmannia 46, 139, 205 Loculibairdia 89 Homocypris 107 Loculiconcha 145 Hornibrookella 78, 166, 167, 213 Loculicytheretta 55 tunicata 1 Horrificiella 78, 154, 155 Loxocauda 139 \(\int Loxoconcha 9, 46, 77, 139, 197-200, 204, Howecythereis 150 Howeina 46, 132 205, 212, 216, 217 Loxoconchella 139 Huantarioconella 145 Hulingsina 186 Loxoconchissa 139 Hungarella 24 Loxocorniculina 77, 139, 140 Hungarocypris 76, 113, 217 Loxocorniculum 139 Loxocythere 124 Idiocythere 155 Loxoreticulatum 133 Ilhasina 114 Lycopterocypris 108 Ilyobates 189 Ilyocypris 20, 76, 118, 198, 199, 200, 202, Mackencythere 175 Macrocypria 92, 205 203, 205, 206, 216 Ilyodromus 76, 109, 111, 203 Macrocyprina 92 Imhotepia 159 Macrocypris 75, 92, 205, 206 Incongruellina 160 Macrocythere 205 Infracytheropteron 133 Maddocksella 93 Isobuntonia 145 Maddocksia 89 Isocythereis 151 Maghrebeis 144 Issacharella 86 Mandocythere 41 Martinicythere 78, 166, 167, 213 Matronella 153 Jonesia 46 Jugosocythereis 166 Mauritsina 153 Mecynocypria 114 Kalyptovalva 177 Mediocypris 76, 113, 198, 202 Mediocytherideis 129 Kamajcythereis 144 Kangarina 132 Megacythere 123 Kapcypridopsis 115 Megahemicythere 78, 163, 165, 197 Karshicypridea 76, 119 Megommatocythere 150 Karsteneis 159 Mehesella 135 Kassinina 76, 108, 202 Mesocytheridea 185 Keijcyoidea 86 Messinella 176 Keijella 147 Metacyprideis 186 Kennethia 117 Metacypris 128, 198 Metacytheropteron 135 Kikliocythere 141 Metapolycope 85 Kikliopterygion 141 Microcosmia 132 Kingmaina 78, 161 Microcypris 107

Microcythereis 140

Kobayashiina 133

Microcytheridea 186 Paijenborchella 137, 211 Paijenborchellina 132 Microcytherura 46, 132 Pakistanella 183 Microloxoconcha 175 Microxestoleberis 191 Palaeocytheridella 177 Palaeoloxoconcha 139 Miia 139 Miocyprideis 79, 177, 179, 198 Paleoabyssocythere 41, 55, 77, 144, 195, Miracuthere 120 Paleocosta 78, 150, 151 Mixtocandona 98 Paleomonsmirabilia 183, 211 Moenocypris 76, 108, 197 Mongolocypris 105 Palmenella 77, 136, 137, 201, 204 Palmoconcha 139 Monoculus 28 Monsmirabilia 183 Pampacythere 128 Papillatobairdia 89 Moosella 146 Mosaeleberis 77, 145, 213 Paracandona 75, 99, 202, 216 Muellerina 78, 167 Paracaspiocypris 75, 101, 102 Paracaudites 151, 211 Murrayina 166 Mutilus 79, 173, 174, 198 Paraconchoecia 46 Paracosta 150 Mytilocypris 8, 26, 47 Paracuprella 93 Paracypria 114 Nanacytheridea 177 Paracypricercus 108 Nannocandona 98 Paracyprideis 79, 186, 187, 197, 201, 212, Nannocythere 124 Nanocythere 145 213 Navarracythere 144 Paracupridopsis 115 Nealecuthere 177 Paracyprinotus 107 Neocyprideis 79, 177, 180, 210, 211 Paracypris 75, 95, 198, 205 Paracythere 123 Neocypridopsis 115 Neocythere 213 Paracythereis 171 Paracytheretta 78, 147, 213 Paracytheridea 46, 77, 135, 197, 198, 210, Neocytherelloidea 86 Neocytheretta 146 Neocytheridea 177 Paracytherois 123, 205 Neolimnocythere 125 Neomonoceratina 137 Paracytheropteron 132 Paradoxostoma 46, 76, 123, 205 Neonesidea 89 Paraeucypris 76, 108, 109 Neozonocypris 115 Nephokirkos 116 Paragrenocythere 78, 154 Parakrithe 189, 207 Nereina 171 Nesidea 89 Parakrithella 189 Netrocytheridea 177 Paralimnocythere 77, 125, 127, 203 Newnhamia 117 Paranesidea 89 Paranotacythere 132 Nigeria 145 Parapolycope 85 Nipponocythere 139 Nodobythere 120 Paraschuleridea 185 Nonurocythereis 170 Parastenocypris 109 Normanicythere 78, 170, 201, 204 Parataxodonta 131 Pariceratina 120 Notodromas 76, 117, 203 Novocypris 95, 211, 213 Parvacythereis 78, 155 Nucleolina 163 Patagonacythere 166 Patellacythere 120 Oblitacuthereis 150 Pedellacythere 135 Occlusacythereis 150 Pedicythere 135 Occultocythereis 51, 78, 155, 157 Pellucistoma 123 Ochridella 98 Peloriops 144 Peratocytheridea 177 Oculocytheropteron 132 Oertliella 78, 154, 195, 213 Perspicytherois 123 Ommatokrithe 189 Phacorhabdotus 78, 159, 195, 212 Oncocypris 115 Phalcocythere 167 Oncocytheridea 177 Philomedes 24, 46, 205 Onychocythere 124 Opimocythere 77, 141, 196, 213 Phlyctenophora 95, 101 Phlyctocythere 139 Phodeucythere 186 Oreanocypris 114 Phractocytheridea 177 Orientobythere 120 Phreatocandona 98 Orthonotacythere 77, 132, 133, 196 Otarocyprideis 177 Physocypria 76, 114 Pionocypris 115 Ouachitaia 177 Pirileberis 185 Oviferochilus 121 Planileberis 155 Ovocytheridea 79, 177, 180 Platella 86 Platycosta 153 Pacambocythere 145 Plesiocypridopsis 47, 115 Pokornyella 79, 173, 210 Pachoecia 98 Pachycaudites 174

Pokornyopsis 85

Pactolocypris 98

Polucheles 92 Polycope 75, 85, 86, 198, 205, 207 Polycopsis 85 Polylophus 139 Pondoina 177 Ponticocuthereis 150 Pontocyprella 93, 211 Pontocypria 93 Pontocypris 75, 93, 204 Pontocythere 47, 79, 186, 197, 212 Pontoleberis 79, 191, 192, 197, 201 Pontoniella 75, 101, 103, 197, 198, 199, Poseidonamicus 195 Posteroprotocythere 143 Potamocypris 47, 76, 115, 198, 203, 205 Praephacorhabdotus 78, 159 Praeschuleridea 185 Prionocypris 76, 108, 109 Prionocytheretta 146 Procythereis 166 Procytherettina 145 Prolimnocythere 127, 216, 217 Prokikliocythere 141 Propontocypris 47, 75, 93 Proteoconcha 175 Protobasslerites 145 Protobuntonia 145 Protocosta 150 Protocythere 143 Protocytheretta 147 Protojonesia 120 Protoveenia 145 Pseudobythocythere 137 Pseudocandona 98 Pseudoceratina 120 Pseudocypretta 115 Pseudocypris 105 Pseudocythere 24, 76, 121, 197, 199, 207 Pseudocytheretta 146 Pseudocytheridea 79, 177, 181, 197, 198 Pseudocytheropteron 135 Pseudocytherura 132 Pseudoeucypris 76, 108, 109 Pseudolimnocythere 125 Pseudoloxoconcha 139 Pseudoprotocythere 143 Pseudostenocypris 109, 202 Pterobairdia 89 Pteroloxa 139 Pterygocythere 78, 160, 161 Pterygocythereis 8, 78, 160, 197, 198, 205, 206, 212 Puriana 166 Puricytheretta 146 Pyricythereis 145

Quadracythere 166, 212 Quasibuntonia 145

Rablimis 78, 165, 204
Radimella 173
Rayneria 159
Reconcava 114
Rectocypris 75, 101, 103, 201
Rectotrachyleberis 150
Redekea 123
Rehacythereis 154
Relictocytherina 127
Repandocosta 153
Retibythere 120
Reticulina 150

Reticulocandona 98 Reticulocosta 145 Reticulocypris 114 Reubenella 86 Reymentia 175 Rhadinocutherura 132 Rhinocypris 118 Rhodicythereis 163 Riocypris 105 Ristalina 185 Robertsonites 78, 166, 167, 201, 204, 205 Robustaurila 47, 173 Rosacythere 128 Rostrocythere 121 Rostrocytheridea 177 Rotundracythere 186 Roundstonia 139 Ruggieria 147 Ruttenella 177

Saipanetta 87 Salvadoriella 114 Sarlatina 177 Sarscypridopsis 115 Sarsicytheridea 181 Sarsocythere 124 Saxellacythere 120 Saxocythere 143 Scabriculocypris 114 Scepticocythereis 154 Schizocythere 77, 136, 210, 212 Schizoptocythere 141 Schulapacythere 185 Schuleridea 79, 185, 213 Sclediocythereis 78, 163, 165 Sclerochilus 10, 46, 121 Sclerocypris 105, 203, 205 Scottia 76, 113 Segmina 133 Semicythereis 145 Semicytheretta 146 Semicytheridea 177 Semicytherura 46, 132, 205 Semixestoleberis 191 Serbiella 98 Sigillium 24, 75, 87 Sinegubiella 98 Sinoleberis 150 Siphlocandona 111 Sirmiella 98 Sohnicythere 177 Sondagella 136 Soudanella 145 Sphenocytheridea 177 Spinicythereis 155 Spinileberis 46, 136 Spinoleberis 153 Stanchevia 108 Staringia 86 Stenocypria 76, 109, 111 Stenocypris 76, 109, 111 Stenostroemia 128 Stigmatocythere 144 Strandesia 108 Subulacypris 108 Suchonellina 92 Sulcostocythere 137 Suzinia 93, 95

Tanella 46, 77, 128, 129, 199, 201 Tanganyikacypris 105 Tanzanicythere 135 Tasmanocypris 95 Thaerocythere 166 Thalmannia 175 Thaminocypris 101 Thaumatocypris 24 Theriosynoecum 128 Thracella 79, 189, 213 Telekia 99 Tenedocythere 166 Terrestricythere 47 Tetracytheridea 177 Tetracytherura 132 Timiriasevia 128 Togoina 145 Tongacythere 166 Tonnacypris 108, 204 Toscanella 177 Trachyleberidea 78, 155, 157, 197, 211, 213 Trachyleberis 78, 149, 206- n > Trapezicandona 98 Triassocypris 95 Triassocythere 121 Triebelina 89 Triginglymus 175, 211 Tropidocythere 166 Tuberocypris 98 Tuberocyproides 98 Tuberocytheridea 135 Turkmenella 75, 101, 103

Turmaekrithe 189

Typhlocyprella 98

Turoconcha 139

Typhlocypris 75, 98, 99, 199 Tyrrhenocythere 47, 79, 170, 171, 197, 199 Urocythere 173 Urocythereis 47, 79, 174 Uroleberis 79, 191 Uromuellerina 166 Ussuriocypris 105 Valendocythere 143 Vargula 55 Varicandona 98 Veenia 145 Veeniceratina 120 Veenidea 177 Vernoniella 177 Verrucocythereis 163 Verseya 132 Vesticytherura 132 Vetustocytheridea 177, 211 Vicinia 135 Virgatocypris 75, 105 Waiparacythereis 175 Xenocythere 124, 205 Xestoleberis 38, 47, 79, 191, 197-199, 205, 206 Xiphichilus 123 Yajimaina 141 Zabythocypris 89 Zalanyiella 98

Zonocypris 76, 115, 117, 200, 202, 203

ОГЛАВЛЕНИЕ

Предисловие 6 1. Вводная часть 7 1.1. Общая характеристика кайнозойских Ostracoda — 1.1.1. Общая характеристика (И. А. Николаева) — 1.1.2. Соленостные адаптации (Н. В. Аладин) 26 1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 11. Методика обработки и изучения кайнозойских остракод 32 11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладия) 40 111. Осстематическая часть 51 111.1. Морфологический очерк (И. А. Николаева) — 111.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) — 111.3. Систематическое описание таксонов 79 Тип Агінгорода. Членистоногне 82 Класс Стизіасеа. Ракообразные — Подкласс Оstracoda Latreille, 1806 — Отряд Муодосоріда S ar s, 1865 (И. А. Николаева) 85 Отряд Рафосоріда S ar s, 1865 (И. А. Николаева) 86
1. Вводная часть 7 1.1. Общая характеристика кайнозойских Ostracoda — 1.1.1. Общая характеристика (И. А. Николаева) — 1.1.2. Соленостные адаптации (Н. В. Аладин) 26 1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 11. Методика обработки и изучения кайнозойских остракод 32 11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладоин) 40 111. Особенности строения раковин кайнозойских остракод — 111.1. Особенности строения раковин кайнозойских остракод — 4011.1.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Агthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Отряд Муодосоріda S ars, 1865 (И. А. Николаева) 83 Отряд Одасоріda S ars, 1865 (И. А. Николаева) 85 Отряд Редусоріda S ars, 1865 (И. А. Николаева) 86
1.1.1. Общая характеристика (И. А. Николаева) — 1.1.2. Соленостные адаптации (Н. В. Аладин) 26 1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 11. Методика обработки и изучения кайнозойских остракод 32 11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 111. Морфологический очерк (И. А. Николаева) — 111.1. Особенности строения раковин кайнозойских остракод — 411.1.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Агінгорода. Членистоногие 82 Класс Стизіасеа. Ракообразные — Подкласс Озітасода Latreille, 1806 — Отряд Муодосоріда S ar s, 1865 (И. А. Николаева) 83 Отряд Раізусоріда S ar s, 1865 (И. А. Николаева) 86 Отряд Метасоріда S yl ve ster - Br ad le y, 1961 (И. А. Николаева) 87 Отряд Метасоріда S ar s, 1865 (И. А. Николаева) <
1.1.1. Общая характеристика (И. А. Николаева) — 1.1.2. Соленостные адаптации (Н. В. Аладин) 26 1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 11. Методика обработки и изучения кайнозойских остракод 32 11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 111. Морфологический очерк (И. А. Николаева) — 111.1. Особенности строения раковин кайнозойских остракод — 411.1.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Агінгорода. Членистоногие 82 Класс Стизіасеа. Ракообразные — Подкласс Озітасода Latreille, 1806 — Отряд Муодосоріда S ar s, 1865 (И. А. Николаева) 83 Отряд Раізусоріда S ar s, 1865 (И. А. Николаева) 86 Отряд Метасоріда S yl ve ster - Br ad le y, 1961 (И. А. Николаева) 87 Отряд Метасоріда S ar s, 1865 (И. А. Николаева) <
1.1.2. Соленостные адаптации (Н. В. Аладин) 26 1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 II. Методика обработки и изучения кайнозойских остракод 32 II.1. Техническая обработка (В. И. Павловская) — II.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 II.3. Применение математических методов (И. А. Николаева) 36 II.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 III. Морфологический очерк (И. А. Николаева) — III.1. Особенности строения раковин кайнозойских остракод — III.2. Словарь терминов 53 III.3. Систематическое описание таксонов 79 Тип Агthгорода. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Муодосоріда Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Редосоріда Sars, 1865 (И. А. Николаева) 86 Отряд Редосоріда Sars, 1865 (И. А. Николаева) 86 Отряд Редосоріда Sars, 1865 (И. А. Николаева) 87 Отряд Редосоріда Sars, 1865 (И. А. Николаева) 87 Отряд Ваігдіосоріпа К
1.2. История изучения остракод кайнозоя (И. А. Николаева) 28 11. Методика обработки и изучения кайнозойских остракод 32 11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладим) 40 111. Систематическая часть 51 111. Морфологический очерк (И. А. Николаева) — 111. Особенности строения раковин кайнозойских остракод — 411. Словарь терминов 53 111. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) — 111. Систематическое описание таксонов 79 Тип Агіһгорода. Членистоногие 82 Класс Стизіасеа. Ракообразные — Подкласс Оstracoda Latreille, 1806 — Отряд Муодосоріда Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Метасоріда Sars, 1865 (И. А. Николаева) 87 Отряд Рафосоріда Sars, 1865 (И. А. Николаева) 87 Отряд Ваітдіосоріпа Когиг, 1972 (И. А. Николаева) — Подотряд Ва
II. Методика обработки и изучения кайнозойских остракод 32 II.1. Техническая обработка (В. И. Павловская) — II.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 II.3. Применение математических методов (И. А. Николаева) 36 II.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 III. Систематическая часть 51 III. Морфологический очерк (И. А. Николаева) — III. Принципы и критерии систематики кайнозойских остракод — III. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 III. Систематическое описание таксонов 79 Тип Агінгорода. Членистоногие 82 Класс Сгизтасеа. Ракообразные — Подкласс Оstracoda Latreille, 1806 — Отряд Муодосоріda Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Метасоріda Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Ваігбіосоріпа Коz ur, 1972 (И. А. Николаева) — Подотряд Ваігбіосоріпа Коz ur, 1972 (И. А. Николаева) —
11.1. Техническая обработка (В. И. Павловская) — 11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 111. Систематическая часть 51 111. Морфологический очерк (И. А. Николаева) — 111. Особенности строения раковин кайнозойских остракод — 411. С Словарь терминов 53 111. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Стизтасеа. Ракообразные — Подкласс Оstracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Metacopida Sars, 1865 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina K oz ur, 1972 (И. А. Николаева) —
11.2. Микроскопическое изучение, фотографирование, зарисовки (В. И. Павловская) 35 11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 111. Систематическая часть 51 111.1. Морфологический очерк (И. А. Николаева) — 111.1. Особенности строения раковин кайнозойских остракод — 111.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Агіһгорода. Членистоногие 82 Класс Сгизtасеа. Ракообразные — Подкласс Озігасода Latreille, 1806 — Отряд Муодосоріда Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Metacopida Sars, 1865 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina K oz u r, 1972 (И. А. Николаева) —
11.3. Применение математических методов (И. А. Николаева) 36 11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладин) 40 111. Систематическая часть 51 111.1. Морфологический очерк (И. А. Николаева) — 111.1. Особенности строения раковин кайнозойских остракод — 411.1.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Сгизtacea. Ракообразные — Подкласс Оstracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Podocopida Sars, 1865 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina K oz ur, 1972 (И. А. Николаева) — Подотряд Bairdiocopina K oz ur, 1972 (И. А. Николаева) —
11.4. Использование методов изучения соленостных адаптаций (Н. В. Аладии) 40 111. Систематическая часть 51 111.1. Морфологический очерк (И. А. Николаева) — 111.1.1. Особенности строения раковин кайнозойских остракод — 411.1.2. Словарь терминов 53 111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 111.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Platycopida Sars, 1865 (И. А. Николаева) 85 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina K ozur, 1972 (И. А. Николаева) —
дин) 40 III. Систематическая часть 51 III.1. Морфологический очерк (И. А. Николаева) — III.1.1. Особенности строения раковин кайнозойских остракод — III.2. Словарь терминов 53 III.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 III.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
III.1. Морфологический очерк (И. А. Николаева) — III.1.1. Особенности строения раковин кайнозойских остракод — III.2. Словарь терминов 53 III.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 III.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
III.1.1. Особенности строения раковин кайнозойских остракод — III.2. Словарь терминов 53 III.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 III.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Сгизtacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Ваігdiocopina К о z u r, 1972 (И. А. Николаева) —
III.1.2. Словарь терминов 53 III.2. Принципы и критерии систематики кайнозойских остракод (И. А. Николаева) 68 III.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina K ozur, 1972 (И. А. Николаева) —
111.2. Принципы и критерии систематики кайнозойских остракод (И. А. Ни-колаева) 68 111.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные 9 Подкласс Ostracoda Latreille, 1806 9 Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) 88
колаева) 68 III.3. Систематическое описание таксонов 79 Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
Тип Arthropoda. Членистоногие 82 Класс Crustacea. Ракообразные — Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
Класс Crustacea. Ракообразные
Подкласс Ostracoda Latreille, 1806 — Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
Отряд Myodocopida Sars, 1865 (И. А. Николаева) 83 Отряд Cladocopida Sars, 1865 (И. А. Николаева) 85 Отряд Platycopida Sars, 1865 (И. А. Николаева) 86 Отряд Metacopida Sylvester-Bradley, 1961 (И. А. Николаева) 87 Отряд Podocopida Sars, 1865 (И. А. Николаева, В. И. Павловская, Г. И. Кармишина, А. Л. Коваленко) 88 Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) 88
Отряд Platycopida Sars, 1865 (И. А. Николаева)
Г. И. Кармишина, А. Л. Коваленко)
Г. И. Кармишина, А. Л. Коваленко)
Подотряд Bairdiocopina Kozur, 1972 (И. А. Николаева) —
Полотрял Cypridocopina Jones in Chapman 1901 (А. Л. Кова-
ленко, И. А. Николаева, В. И. Павловская, Г. И. Кармишина) 91
Надсемейство Darwinulacea Brady et Norman, 1889 (И. А. Нико-
лаева)
колаева, В. И. Павловская, Г. И. Кармишина)
Подотряд Cytherocopina Gründel, 1967 (И. А. Николаева, В. И. Пав-
ловская)
Надсемейство Cytheracea Baird, 1850 (И. А. Николаева, В. И. Пав-
ловская)
(И. А. Николаева)
Надсемейство Cytherideidacea Sars, 1925 (И. А. Николаева) 175 IV Геологическая часть 193

IV.1. Развитие остракод в кайнозойскую эру (И. А. Николае ловская, Г. И. Кармышина)	ва, В. 	. И . ·	Пав-	19
IV.2. Палеоэкология и связь с фациями (И. А. Николаева)				20
IV.3. Зональные стратиграфические схемы (И. А. Николаево мишина)	a, Γ.	И. ·	Кар- 	20
IV.3.1. Палеоген (Н. А. Николаева)				_
IV.3.2. Неоген (Г. И. Кармишина)				21
Список литер ат уры				21
Указатель родов и подродов				22

CONTENS

Editors preface	5
Preface	6
I. Introduction	7
I.1. General characteristic of Cenozoic ostracoda	. —
I.1.1. General characteristic (I. A. Nikolaeva)	. —
I.1.2. Salt-bearing adaptation (N. V. Aladin)	. 26
1.2. History of study of Cenozoic ostracoda (I. A. Nikolaeva) .	. 28
II. Methods of treating and study of Cenozoic ostracoda .	. 32
II.1. Technical treating (V. I. Pavlovskaya)	. —
II.2. Microscopic study, photography, sketching (V. I. Pavlovskaya)	. 35
II.3. Application of mathematical methods (I. A. Nikolaeva)	. 36
11.4. Use of methods of study of salt-bearing adaptations (N. V. Aladin).	40
III. Systematic part	. 51
III.1. Morphological essay (I. A. Nikolaeva)	. —
III.1.1. Pecularitics of structure of Cenozoic ostracod shells (I. A. Niko laeva)	
III.1.2. Dictionary of terms	· . 53
III.2. Principles and criteria of Systematyc of Cenozoic ostracoda (I. A. Ni	•
kolaeva)	. 68
III.3. Systematic description of taxa	. 79
Phylum Arthropoda	. 82 . —
Class Crustacea	. —
Order Myodocopida Sars, 1865 (I. A. Nikolaeva)	. 83 . 85
Order Platycopida Sars, 1865 (I. A. Nikolaeva)	. 86
Order Cladocopida Sars, 1865 (I. A. Nikolaeva) Order Cladocopida Sars, 1865 (I. A. Nikolaeva) Order Platycopida Sars, 1865 (I. A. Nikolaeva) Order Metacopida Sylvester-Bradley, 1961 (I. A. Nikolaeva) Order Podocopida Sars, 1865 (I. A. Nikolaeva, V. I. Pavlovskaya	. 87
G. I. Naimismia, A. L. Novaienko)	. 88
Suborder Bairdiocopina Kozur, 1972 (I. A. Nikolaeva) Suborder Cypridocopina Jones in Chapman, 1901 (A. L. Kovalen	. <u>-</u>
ko, I. A. Nikolaeva, V. I. Pavlovskaya, G. I. Karmishinà)	
Superfamily Cypridacea Baird, 1845 (A. L. Kovalenko, I. A. Nikolaeva	١,
V. I. Pavlovskaya, G. I. Karmishina)	. 9 2 -
olovskaya)	. 119
Syperfamily Cytheracea Baird, 1850 (I. A. Nikolaeva, V. I. Paulov	:
skaya)	. 124 8
(I. A. Nikolaeva)	. 140 175
Superfamily Cytherideidacea Sars, 1925 (I. A. Nikolaeva)	. 193
IV. Geological part .	. 133

IV.1. Evolution of ostracods in Cenozoic Era (1. skaya, G. 1. Karmishina)	A. Nikolaeva, V.	I. Pavlov-
IV.2. Paleoecology and connection with facies (1.	A. Nikolaeva)	204
VI.3. Zonal stratigraphic charts (I. A. Nikolaeva,	G. I. Karmishina	. 207
IV.3.1. Paleogene (I. A. Nikolaeva)	•	-
IV.3.2. Neogene (G. 1. Karmishina)	•	. 215
List of literature		. 219
Directory of genera and subgenera .		. 226

Сборник научных трудов

ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО МИКРОФАУНЕ СССР

Том 3

ОСТРАКОДЫ КАЙНОЗОЯ

Редактор издательства В. Н. Малахова Переплет художника В. М. Иванова Технический редактор С. А. Кодаш Корректор Е. А. Стерлина

H/K

Сдано в набор 2.02.89. Подписано в печать 25.08.89. М-23291. Формат 70×108¹/16. Бумага тип. № 1. Гарнитура литературная. Печать высокая. Усл. печ. л. 20,65. Усл. кр.-отт. 20,65. Уч.-изд. л. 21,43. Тираж 500 экз. Заказ № 734/1462. Цена 1 р. 50 к. Заказное.

Ордена «Знак Почета» издательство «Недра», Ленинградское отделение. 193171, Ленинград, С-171, ул. Фарфоровская, 18.

Ленинградская картографическая фабрика ВСЕГЕИ.